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Abstract 

 Cereal food fines are a leftover by-product from breakfast cereal processing that is 

typically sold as animal feed or used as a pet food ingredient; however this product could be of 

greater value as a feedstock for the production of fuel ethanol via fermentation. In order for this 

material to be fermented it has to be broken down in to simple sugars using hydrolysis. One 

method of hydrolysis is called dilute-acid hydrolysis, whereby low concentrations of acid are 

added to the feedstock to facilitate the breaking of chemical bonds. This study investigates the 

effect of different concentrations of acid to determine optimal conditions for the production of 

ethanol. It was found that higher concentrations of acid yielded greater production of ethanol 

and, overall, this particular feedstock showed promise as a future source of fuel ethanol 
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Chapter 1 

1.0 Introduction 

Cereal food fines are the leftover byproduct of breakfast cereal food processing. This 

leftover material is generally used as an ingredient in pet food or animal feed. This material, 

however, could be of much greater value if used in the production of bio-fuels such as 

bioethanol. An estimated 300 tons of this material is produced per year, so finding an efficient 

method for converting this leftover material into useable bioethanol could be of significant 

interest to industries needing to find uses for this common food processing byproduct. 

Conversion of food biomaterials into ethanol is a process that has been widely developed 

worldwide and fuel-grade ethanol is currently the largest competitor to the petroleum market 

with 24.57 billion gallons being produced in 2014 (1). The process generally consists of three 

distinct steps: 1) breakdown of biomass, most commonly corn, rice, starch, or lignocellulosic 

materials, into fermentable sugars, 2) fermentation using microorganisms, most commonly the 

yeast Saccharomyces cerevisiae, and 3) recovery of the ethanol. The first step is achieved via 

hydrolysis, where water is used to break the more complex sugars down in to glucose. There are 

a number of different chemical, physical and biological methods of hydrolysis currently 

available (2), but the subject of this research is a method called dilute-acid hydrolysis, where low 

volume percentage acid solutions, in the range of 0.1% – 10% acid, are mixed with the biomass 

and heated to high temperatures. The resulting mixture is then made suitable to host the specific 

microorganism, such as by pH modification, aeration, etc. The bacterial strain will naturally 

consume the broken down sugars and create ethanol as a by-product. There are many methods of 

recovery, but only the hydrolysis and fermentation steps are the subject of this research project. 
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 The primary focus of investigation is the effect of acid concentration on ethanol 

production from cereal food fines. A dilute sulfuric acid hydrolysis process was used with 

several sample groups of different acid concentrations in the above-mentioned range as the 

independent variable. The hydrolyzate mixtures were inoculated with Saccharomyces cerevisiae 

and allowed to incubate for a period of at least two days. Gas chromatography is an effective 

technique for separating and comparing relative amounts of a compound from a mixture and was 

used as the primary means of measuring and comparing ethanol production between the different 

groups as well as determining concentrations of ethanol produced within the samples. A larger-

scale batch reactor experiment was also conducted to measure ethanol levels during the growth 

phase for the purpose of obtaining a growth curve. 
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Chapter 2 

2.0 Bio-Ethanol Production 

Bio-ethanol is ethanol produced via fermentation of biological materials for use as a 

transportation fuel. This type of technology has existed since the turn of the 20
th

 century in the 

United States and corn-based ethanol was commonly used in automobiles until the 1930s. After 

World War II, however, the availability and abundance of petroleum sources led to fossil fuel-

derived gasoline becoming the primary fuel source for the country (3). The 1970s Oil Embargo 

led to renewed interest in domestically-produced alternative fuels, chief among these being corn-

based ethanol. As a result, fuel ethanol production facilities have steadily increased since this 

time and research in to optimization and expansion of this domestically produced energy supply 

has as well. In the United States, the vast majority of ethanol produced is from corn; however, 

many different biological sources are now readily converted in to ethanol using a variety of 

different methods. This chapter will be a review of the science and chemistry behind the 

conversion of biological materials in to fuel-grade ethanol, with a particular emphasis on the 

materials and methods used in this study. 

2.1 Conversion of Cereal Grains into Ethanol 

The feedstock used in this research project is a product known as cereal food fines. A 

commodity profile obtained from McNess company (a rural commodities exporter) defines 

cereal food fines as consisting “of ground and fine particles of breakfast cereals that are obtained 

as a byproduct of the processing of them” (4). The profile further states that cereal food fines 

represent “many varieties of breakfast food consisting of a mixture of cereal grains or processed 

products thereof, specific amino acid composition specifications in general can be expected to 

reflect that of corn, oats, rice and wheat combinations.” Thus, this particular feedstock is to be 
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considered a combination of different starch-based sources. As mentioned earlier there are a 

number of different sources that can be and are currently used for the production of bioethanol, 

but there are typically considered to be three main categories: starches, sugars and lignocellulosic 

materials. Starches include sources such as corn, wheat, potato, rice and cassava; sugars include 

molasses, sugar cane and sugar beet while lignocelluloses, in the context of bio-ethanol 

production, generally refer to agricultural residues such as sugar cane bagasse, corn stover or 

switchgrass (5, 6). Conversion of biomass into ethanol generally involves the same fundamental 

process for all types of feedstocks. For starch and lignocellulose, a saccharification step is 

required to break down the more complex sugars that make up the materials into simple sugars 

that can be digested by particular microorganisms, most typically yeast (Saccharomyces 

cerevisiae), although the use of other strains such as Zymomonas mobilis has become more 

common (7). The resulting sugars are then fermented by the microorganisms and ethanol is 

produced as a by-product. What generally separates the three different groups of feedstocks is 

the type of pre-treatment required prior to fermentation. For starches, a process called hydrolysis 

is required. 

2.1.1 Hydrolysis of Starch 

 Starch is a polymer of glucose that consists of two main structural components, amylose 

and amylopectin. Amylose is a straight chain polymer of D-glucose molecules linked together 

via α-1, 4 glycosidic linkages while amylopectin is a larger branched molecule composed of both 

α-1, 4 and β-1, 6 linkages. 
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Figure 1: Amylose and Amylopectin (8) 

In order for the bacteria to convert the starch into ethanol, the polymeric amylose and 

amylopectin must be broken down into monomeric glucose. This is achieved, both biologically 

and chemically, through a process called hydrolysis. Hydrolysis is the breaking of a chemical 

bond through the addition of water. In polysaccharides specifically, this occurs through the 

breaking of the glycosidic bonds linking the monomeric sugar units together. 

 

Figure 2: Polysaccharide Hydrolysis (9) 
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The vast majority of industrially-produced ethanol from starch uses an enzymatic hydrolysis 

process, where the endogenous enzyme α-amylase is used to liquefy the starch and the enzyme 

glucoamylase hydrolyzes the liquefied starch into glucose. There are also, however, two 

chemical hydrolysis methods available, dilute and concentrated acid hydrolysis. Dilute-acid 

hydrolysis typically uses acid solutions between 1 and 10 percent acid while concentrated-acid 

hydrolysis uses solutions between 10 and 30 percent (10). Generally, dilute-acid processes 

require higher temperatures and minimal to no acid recovery, as well as shorter reaction times 

compared to concentrated processes, but dilute-acid hydrolysis also results in the formation of 

undesired by-products, while concentrated-acid hydrolysis gives higher sugar yields compared to 

dilute-acid hydrolysis (10). The chosen method for this research project was the dilute-acid 

hydrolysis method, so there will be a further discussion on factors affecting this method. 

2.1.2 Factors Affecting Efficiency of Dilute-Acid Hydrolysis 

As already mentioned, both in industry and research, the enzymatic hydrolysis method for 

starches is a very well refined and mature practice and because of this is essentially the accepted 

method for the hydrolysis of starches for the production of glucose. This means, however, there 

is very little published research that investigates the efficiency of acid hydrolysis of starches for 

the production of glucose. However, dilute-acid hydrolysis is still a common practice as a pre-

treatment of lignocelluloses, specifically, for the conversion of the cellulose components to 

glucose and the conversion of the hemicellulose fraction of lignocelluloses to xylose (11). The 

process and parameters investigated are similar enough that the studies on dilute-acid hydrolysis 

of lignocelluloses could help inform optimal process conditions for the hydrolysis of starch 

material.  
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The primary variables open to manipulation in an acid hydrolysis are temperature, pressure, 

residence time, and concentration of acid. It is also of interest to measure the formation of by-

products, as the presence of these can affect both the efficiency of the hydrolysis reaction as well 

as subsequent fermentation of the sugars in to ethanol. 

Studies on the effects of the mentioned variables are often aimed at developing kinetic 

parameters to measure the combined effect of changes of these variables on the production of 

sugars from various lignocellulosic feedstocks. Attempts to develop these parameters go back to 

Saeman’s (12) work in 1945 measuring the effect of temperature and concentration of sulfuric 

acid on glucose production from Douglas fir wood. For models of glucose production from 

cellulose, there are typically two first-order rate constants, one for the degradation of cellulose to 

glucose and the other for the degradation of glucose to by-products (13). Numerous studies on 

various lignocellulosic materials, such as sugar cane bagasse, rice straw, corn stover and corn 

fiber (14-18) all show that glucose yield increases with temperature, residence time, pressure or 

acid concentration.  However, these more extreme conditions also generally lead to greater 

production of by-products, most notably furfural and 5-hydroxymethylfurfural (HMF), which 

have also been shown to be by-products of starch hydrolysis (19,20).  Finding balance between a 

maximum yield of glucose while minimizing formation of by-products is typically the goal in 

developing kinetic parameters, and this can help inform optimal conditions for a hydrolysis of 

cellulose, starch or other biomaterial.  

2.1.3 Yeast Fermentation of Glucose for the Production of Ethanol 

 Once a biomaterial is broken down to the constituent sugars (most typically glucose) a 

biological fermentation process takes place where baker’s yeast (Saccharomyces cerevisiae) uses 

the glucose for the production of energy while creating ethanol as a by-product.  This is the same 
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fermentation process used in baking or by which alcoholic beverages are made. This chemical 

process occurs when there is a lack of oxygen available and is known as anaerobic glycolysis, 

and is the same energy production process responsible for the production of lactic acid in the 

human body during short periods of intense physical exercise.  

 Glycolysis is a metabolic process whereby glucose is used for the production of ATP and 

NADH for cellular energy in the absence of oxygen. This occurs through a series of enzyme-

catalyzed reactions where glucose is converted to pyruvate and eventually ethanol and carbon 

dioxide. Optimally, for every molecule of glucose, two moles of ATP, NADH, carbon dioxide 

and ethanol are created. The glycolysis pathway used by yeasts is known as the Embden-

Meyerhoff-Parnas pathway (EMP pathway) and is the most common pathway used by cells. 

However, ethanol fermentation can occur via other glycolytic pathways as well, such as the 

Entner-Doudoroff pathway (ED pathway) used by Zymomonas mobilis. 

  

  

Figure 3: Glycolysis Summary (19) 
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2.1.4 Conditions for Yeast Fermentation 

 Several factors can help contribute to a successful fermentation, whether it is 

maintenance of the requisite conditions to promote growth or the inclusion of additional 

measures to promote either overall yield or rate of production. Since there are many different 

strains of microorganisms as well as many different ways to manipulate a fermentation, only the 

factors most relevant to the current study will be elaborated upon.  

 In order for the yeast to grow, it has to be suspended in a sufficiently nutritive aqueous 

medium. For yeast fermentation for the production of ethanol produced from a dilute-acid 

hydrolysis, this is going to be the hydrolyzate itself, which has the necessary glucose to provide 

nutrition for the cells. In general, however, a medium needs to contain some kind of carbon 

source that can be used by the cells for energy, most typically some kind of carbohydrate broth. 

Often pH buffering is required for optimal growth conditions. Most yeast thrive best under 

slightly acidic conditions (pH 5.0 -5.5) but this can vary depending on the strain used and other 

growth conditions. As has already been mentioned, yeast fermentation into ethanol is an 

anaerobic process, so in order to have a viable growth environment, there needs to minimal to no 

oxygen present. A method called nitrogen sparging was used for this study, where nitrogen (N2) 

gas was circulated throughout the medium to dissolve the oxygen. Temperature and time are also 

important factors in fermentation. The optimal temperature range for yeast fermentation is 32–35 

°C and complete growth typically takes 48-72 hours. The by-products formed from the 

hydrolysis stage have been shown to have inhibitory effects on fermentation, most notably in the 

case of starches, furfural and 5-hydroxymethylfurfural. Numerous detoxification methods, 

however, have been developed to help mitigate this problem (20).  
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Chapter 3 

3.0 Experimental  

3.1 Materials 

Pre-ground cereal food fines were obtained from ConAgra Corporation and stored at 

room temperature. Sodium Hydroxide pellets and Dibasic Potassium Phosphate were obtained 

from Sigma-Aldrich in St. Louis, MO. Compressed nitrogen gas was obtained from VWR 

Scientific. Lyophilized Saccharomyces cerevisiae cells in MRS media were obtained from 

American Type Culture Collection and stored at 37° C in an incubator.  

3.2 Equipment 

3.2.1 G.C.  

 A Shimadzu GC-2014 with attached AOC-20i Autoinjector was used to measure ethanol 

content of samples. Samples were measured using flame ionization detection (FID) with helium 

as a carrier gas. Further gas chromatography specifications can be found in Appendix I. 

3.2.2 Reactor 

 A 1 L Applikon Bioreactor was used for the batch reactor experiment. BioExpert 

supervisory software was used to control pH, agitation and temperature. 
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Figure 4: Shimadzu GC-2014 and AOC-20i AutoInjector 

 

Figure 5: 100mL Batch Reactor and Set-up 
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3.3 Procedure 

3.3.1 Small Batch (Culture Bottle) Experiments 

 The first part of this investigation studied the effect of acid concentration on ethanol 

production by creating four sample groups with varying concentrations of sulfuric acid. The four 

groups were 0.2%, 3%, 6% and 10% sulfuric acid by volume. The procedure was as follows: 10 

g cereal fines were mixed with water and concentrated sulfuric acid (18 M) in a 100 mL solution. 

For an example 10% acid solution, 10 mL sulfuric acid would be added to 90 mL water. The 

mixture was then steam autoclaved at 120° C for 30 minutes. After being allowed to cool to 

room temperature, the mixture was vacuum filtered using a Whatman no. 3 filter to remove 

undissolved solids. To help maintain buffering, 1.0 M potassium phosphate was added to give a 

final concentration of 25 mM. Next, 3 M sodium hydroxide solution was added until a pH 

between 7.0 and 8.0 was obtained. At this point, the mixture was separated in to culture bottles 

with clamp-sealable lids; five bottles with 20 mL each for each sample group. To remove oxygen 

from the sealed bottles, nitrogen gas was bubbled in for approximately 20 minutes for each 

bottle.  

 Completion of preceding procedure meant that the media was suitable for fermentation. 

1.0 mL of S. cerevisiae suspended in MRS media was injected in to each bottle and allowed to 

incubate at 37° C for a period of at least two days. Once ready, 1.0 mL samples from each bottle 

were taken and centrifuged at 14,100 rpm for seven minutes. The liquid was then separated from 

the formed pellet and the sample was stored and frozen for later analysis. 

3.3.2 Batch Reactor Experiment 

 A larger-scale batch reactor experiment was conducted to obtain a growth-curve vs. time. 

The hydrolyzate media was prepared in the same method as in the previous section with a 10% 
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sulfuric acid concentration hydrolysis. A 1 L reactor was used, so between 400 and 500 mL of 

hydrolyzate was desired. This was accomplished by originally making 200 mL of hydrolyzate 

prior to pH balancing with sodium hydroxide, as the previous experiment with 10% acid 

indicated that about an equal volume of sodium hydroxide solution was needed to balance the 

pH, and this resulted in a final volume of 437 mL hydrolyzate media. After being transferred to 

the reactor, the media was bubbled with nitrogen gas for 30 minutes. 10 mL of S. cerevisiae in 

the same hydrolyzate media was added and conditions for growth were set; the reactor was 

maintained at 37° C, a pH of 7.0 and stirred at a constant rate of 150 rpm. Sample taking began 

approximately 24 hours after inoculation and were taken every six hours after that for two days 

and every twelve hours for three days after that to give a five day growth period. All samples 

were 1.0 mL samples that were centrifuged, transferred in to new storage tubes to remove pellets 

and frozen directly after being taken.  

 

3.3.3 Gas Chromatography Experiments  

 All experimental data was obtained from gas chromatography. Frozen samples were 

thawed out and filtered using 0.45 μm syringe filters. In addition to the experimental groups 

mentioned in the previous sections, an ethanol standard was prepared for determining ethanol 

peak locations and magnitude. This standard consisted of pure ethanol and water mixtures of 

0.1%, 1%, 3% and 5% ethanol by volume samples. For the standard, two repetitions for each 

sample were analyzed for a total of eight data files. For the culture bottles, five samples were 

taken from each variable group and three repetitions were conducted for a total of fifteen data 

files per variable group. A common method file was used for all samples and its specifications 

are in Appendix I.   
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Chapter 4 

4.0 Results 

 This chapter summarizes results obtained from the small batch and batch reactor 

experiments using gas chromatography peak data to detect ethanol formation and calculate 

concentrations. For the culture bottle experiments, five samples from each sample group were 

analyzed, however all of these were theoretically equal samples and, for the large majority, the 

data supported this, so mean data will be presented here. However, if any significant disparities 

were apparent between any of the individual samples within the same sample group, then this 

will be noted. The complete data set is given in Appendix II. 

4.1 Ethanol Standard Curve 

 The following table gives the ethanol standard data with percent (%) ethanol being the 

volume percentage of the ethanol/water sample and peak being the chromatography elution peak   

height for ethanol. The slope of the curve on the plot generated from this data was used as the 

reference for calculating ethanol concentrations in the experimental groups. 

Table 1: EtOH Standard Curve Data 

% EtOH Peak 

0.1 1,214,071 

1 1,918,711 

3 4,861,232 

5 6,525,398 
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Fig. 6: EtOH Standard Curve Slope 

Using the point-slope equation: 

y = mx + b (eq. 1) 

a satisfactorily linear fit (R
2
 = .9378) is found for the standard data where y is the peak, x is the 

concentration of ethanol, x is the slope and b is the y-intercept, also, error bars are presented 

using standard error of the mean. The value for the slope, m, is found to be 1,133,611.17 and this 

value will be used to calculate ethanol concentrations of the experimental groups.  

 Figures 2 – 5 are the peaks for the different ethanol standard samples. The presence of 

ethanol is indicated by a peak at a retention time between 2.7 and 3.0 minutes. 
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Figure 7: 0.1% EtOH Standard Chromatogram 
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Figure 8: 1% EtOH Standard Chromatogram 

 

  



 18 

 
 

Figure 9: 3% EtOH Standard Chromatogram 
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Figure 10: 5% EtOH Standard Chromatogram 
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4.2 Culture Bottle Experiments 

 The four sample groups analyzed were 0.2%, 3%, 6% and 10% sulfuric acid by volume. 

Five samples from each group were analyzed with three repetitions each. Ethanol formation was 

indicated by the retention time peak and a mean peak height value was found to determine 

concentration using the slope formula determined in the previous section. Groups are presented 

in the order the experiments were performed. 

4.2.1 3% Sulfuric Acid 

 Disappointingly, the 3% sulfuric acid sample group did not present a significant ethanol 

peak, as shown in figure 11. The mean peak height for this sample group was 81,284; which is 

not significant compared to even the lowest standard concentration which yielded peak heights 

on the order of 10^6. The concentration given from this value is 0.071% ethanol by volume with 

a standard deviation of 0.0264%. The retention time data does however present multiple other 

significant peaks, suggesting the presence of inhibitory by-products. This possibility is supported 

by the literature (2) and data in this study, as multiple non-ethanol peaks were common to all the 

samples that yielded little to no ethanol. These peaks were, however, present in samples that did 

yield significant amounts of ethanol, though in not as large amounts. Studies indicate that by-

product formation from hydrolysis increases with increased ethanol formation (13), so the idea 

that these by-products are causing there to be no ethanol formation seems unlikely, however, it 

may be possible that more of the glucose was converted to degradation products, leaving less 

available for fermentation. It may be valuable to determine what substances are responsible for 

these other peaks, but retention times and peak heights vary across chromatography studies and it 

would be inaccurate to try to make any judgements on the nature of these compounds from other 

chromatography studies without developing our own standards of whatever compounds are 
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expected.  Results of this sample group could also be attributed to incomplete sample mixing, 

measurement error from the equipment or just growth failure in general.  
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Figure 11: Chromatogram of 3% Hydrolysis Fermentation Product 
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4.2.2 6% Sulfuric Acid 

 The 6% sulfuric acid group showed good and consistent production of ethanol (figure 

12). The mean peak height obtained was 6,279,157, yielding a mean concentration of 5.54%  

(SD = .5084%). Also, there were no significant peaks aside from the ethanol, suggesting 

hydrolysis by-products could in fact be a significant factor in determining the difference between 

successful and unsuccessful batches. 
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Figure 12: Chromatogram of 6% Hydrolysis Fermentation Product  
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4.2.3 10% Sulfuric Acid 

 The 10% sulfuric acid group showed good and consistent production of ethanol as well 

(figure 13). The mean peak height for this sample group was 11,626,940, giving a mean 

concentration of 10.26% (SD = 1.175%). Once again ethanol was the only significant peak, 

suggesting the ethanol production process was dominant. The increase of this batch from the 6% 

batch seems to indicate that, when done successfully, ethanol production from dilute-acid 

hydrolysis increases with acid concentration. This result would be consistent with the wide body 

of literature (14-18). This, however, is premature to conclude with only two data points. 

However, it does appear that two successful ethanol production experiments indicated that the 

highest percentage of acid yielded the most ethanol, and it is for this reason that 10% acid was 

used for the batch reactor experiment. Also, the hypothesis that byproduct formation was the 

cause behind the lower ethanol yields in the 3% acid group seems even more unlikely, as the 

higher concentrations of the 6% and 10% groups would lead to more byproduct formation 

according to this idea, yet this is clearly not the case. There still might be a relationship between 

the presence of byproducts and lower ethanol yields, but a causative relationship appears 

unlikely.  
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Figure 13: Chromatogram of 10% Hydrolysis Fermentation Product   
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4.2.4 0.2% Sulfuric Acid 

 The 0.2% sulfuric acid batch yielded interesting results. One of the samples showed no 

ethanol content and had the familiar non-ethanol peaks seen for the 3% batch. However, the 

remaining four samples successfully produced ethanol and showed no significant by-products. 

Since these samples were only separated after hydrolysis and prior to inoculation, this suggests 

that whatever led to the inhibition of ethanol production occurred in the fermentation phase, such 

as a failure of growth, but also could simply be an issue of incomplete mixing when the sample 

was taken. There was also an instance of a repetition measurement of the same sample showing 

no significant ethanol content while the other repetitions on the sample showed ethanol content 

consistent with the remaining samples. This would most likely be attributed to a measurement 

error from the equipment. For the sake of presenting meaningful data, the points that indicated 

no ethanol content (no peak at a retention time of 2.8 minutes) were not included in the average 

presented here. The complete data set, however, is given in Appendix II along with the average 

and standard deviation. The samples that displayed significant growth had surprisingly high peak 

values, with a mean peak of 11,230,446 and a mean concentration of 9.91% (SD = .8226%). This 

is comparable to the 10% acid batch and seems to contradict the trend from the previous two data 

groups that indicated that acid concentration and ethanol production were positively correlated. 

Two factors are likely responsible for this result, and both have to do with the amount of sodium 

hydroxide added in the pH balancing stage. For the 10% acid batch, a nearly equal volume of 

NaOH solution needed to be added to the hydrolyzate mixture in order to create a neutral pH 

solution; however, less than 5 mL of NaOH solution was necessary for the 0.2% acid batch. This 

meant that a total of 200 mL of hydrolyzate media was made for the 10% batch and a total of a 

little more than 100 mL was created for the 0.2% acid batch, meaning that only half of the 
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mixture from the 10% batch, and subsequently, half of the sugars from the original 10 g of fines 

were separated in to the culture bottle samples and available for fermentation, while nearly all of 

the hydrolyzate mixture from the 0.2% batch was used for fermentation. This possible dilution 

effect was not considered at the time of the experiments and exact concentrations of NaOH 

solution were not recorded, so this factor remains a confounding variable in interpreting the 

results of these experiments. Aside from dilution of samples, however, it is possible that large 

salt concentration itself could have been a factor in growth inhibition in the groups that required 

more buffering. There is some precedent for this in the literature, as well (23).  
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Figure 14: Chromatogram of 0.2% Hydrolysis Fermentation Product; 1

st
 Sample (No EtOH 

Production) 
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Figure 15: Chromatogram of 0.2% Hydrolysis Fermentation Product; 4
th

 Sample (Significant 

EtOH Production, Characteristic of 2
nd

 through 5
th

 Samples) 
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4.3 Batch Reactor Experiment 

 
 A batch reactor experiment was conducted to develop a curve for cell growth/ethanol 

production versus time. Samples were taken starting one day after inoculation and were taken 

every six hours for two days and every twelve hours for three days after that for a total of five 

days analysis. Three repetitions of each sample were recorded. The data from this experiment is 

presented in table 2. 

Table 2: Batch Reactor Data 

Sample # Time (min.) Peak Avg. Peak Present 

Avg. 

1 1352 6,997,845   

  7,944,837 7,368,040 7,368,040 

  7,161,438   

2 1612 143,772   

  145,090 139,241 N/A 

  128,862   

3 2039 2,575   

  8,225,697 5,161,210 7,740,527 

  7,255,358   

4 2457 7,086,444   

  8,000 5,335,387 7,999,081 

  8,911,717   

5 2817 32,710   

  134,101 3,522,724 10,401,360 
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Table 2: Batch Reactor Data (Cont.) 

Sample # Time (min.) Peak Avg. Peak Present 

Avg. 

  10,401,360   

6 3192 52,904   

  62,994 60.724 N/A 

  64,925   

7 3814 68,078   

  62,126 114,894 N/A 

  216,299   

8 4167 28,016   

  7,927 15,282 N/A 

  9,903   

9 4612 6,280   

  17,807 21,732 N/A 

  41,108   

10 5352 9,941,177   

  10,128,277 10,063,092 10,063,092 

  10,179,822   

11 6152 92,305   

  32,710 3,833,546 11,375,624 

  11,375,624   

12 6912 91,602   

  17,807 39,661 N/A 
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Table 2: Batch Reactor Data (Cont.) 

 

Sample # Time (min.) Peak Avg. Peak Present 

Avg. 

  9,573   

13 7542 93,413   

  103,394 3,337,331 9,815,186 

  9,815,186   

14 8382 13,608   

  10,808 3,446,961 10,316,466 

  10,316,466   

 

 It’s clear from this data that the results of this experiment are largely inconsistent. Many 

samples did not indicate any significant ethanol content, while multiple samples showed growth 

for some measurements but not for others. Possible explanations for this have been mentioned in 

previous sections; however, these aberrations make taking an average of the repetitions and also 

developing a curve based on every sample not meaningful toward deducing a growth trend. One 

can see, though, that significant ethanol peaks were present for samples at the beginning, end, 

and throughout the growth period indicating that there was in fact ethanol produced by the 

experiment and it should not be considered a complete failure. So for the sake of meaningful 

interpretation of the data, the fifth column in table 2 was included, which only takes in to account 

the data representing significant ethanol content (i.e. peak heights on the order of 10^6) and this 

data is presented graphically as a plot of peak height vs. time is figure 13. 
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Figure 16: Peak Height vs. Time for Batch Reactor Experiment 

 When only using the data indicating significant ethanol content, the results of this 

experiment seem to be closer to what would be expected. At the end of the first day of growth 

the ethanol content is 6.5% and rises during the second day to 7.1% and by the start of the third 

day of measurement is near 10% and moves between 8 and 10 percent for the rest of the growth 

period, which is near enough to the average determined from the 10% culture bottle experiment 

to suggest consistent growth and accurate readings. However, the fact that only three data points 

are in the growth phase and that there is a sharp jump to an equilibrium value suggests this data 

is not representative enough to give an accurate growth curve. If this experiment were to be 

conducted again, sampling should begin earlier than 24 hours after inoculation, should be taken 

more often (perhaps every 3-4 hours) and should not need to be necessary after 3 days.  
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4.4 Overall Process Efficiency and Analysis 

 The primary trend from the experiments is that increasing acid concentration led to more 

ethanol production. Even though there was a large of amount confounding and unsuccessful data, 

there was enough meaningful data to give a relevant and consistent trend. Table 3 gives mean 

volume of ethanol produced per gram cereal fine input for the three samples groups that gave 

meaningful results. Total volume is included as well because of the varied final volumes due to 

the different pH buffering requirements; these totals were not recorded during the experiments 

and are estimates. 

Table 3: Mean Production Efficiencies 

 

 0.2% 6% 10% 

Total volume (mL) 100 180 200 

mean EtOH conc. (%) 9.91 5.54 10.25 

mL EtOH / g fines 

(mL/g) 

.991 .997 2.05 

 

 

 First of note here is that the 0.2% batch produced an overall efficiency equal to that of the 

6% batch. This reinforces the idea that the significantly lower salt concentration necessary for 

buffering the lower volume acid solution gave it an advantage by having a less toxic growth 

environment than higher concentration solutions, which theoretically yielded higher glucose 

concentration hydrolyzates. However, the 10% batch showed that, overall, the effectiveness of 

higher acid concentrations eventually outweighs the detrimental effect of increased pH buffering 

and yielded the most productive results. Table 4 compares our optimal production rate to 

theoretical ethanol yields for different cereal grain feedstocks found in the literature. 
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Table 4: Theoretical Ethanol Yields from Various Grain Feedstocks (24) and Experimental Yield  

 

Feed Grain Theoretical Yield (mL/g) 

Rice .57 

Corn .52 

Wheat .55 

Barley .41 

Sorghum .52 

Oat .42 

Fines (10% Experimental) 2.05 

 

 

It is unlikely that the yield from this experiment led to a 2- to 4-fold increase from even 

the best theoretical yields on ethanol production from this type of feedstock, especially 

considering that actual yields are generally lower than these estimates (24) and employ more 

efficient and optimized methods of production than those used in this experiment. The most 

logical source of error for this would be from the standard curve development. The fact that an 

order of 10 reduction in the experimental yield data would give very reasonable results in 

comparison to the values from the literature lends more credibility to such a possibility.   

If this possibility were to be the case, and a yield of .21 mL of ethanol were produced per 

gram of feedstock, then 300 tons of annual material would be able to produce 15,098 gallons of 

ethanol. If the standard curve isn’t the source of error, and we were to assume yields within a 

reasonable range for this type of materials, say between .35 and .5 mL per gram feedstock, this 

would give between 25,163 and 35,948 gallons of ethanol annually.  
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 Chapter 5 

5.0 Conclusions and Recommendations 

Overall, the experiments led to predicted results given what was indicated by the body 

research in this field. It has been well established that higher acid concentrations from dilute or 

even concentrated acid hydrolyses lead to greater glucose production and, subsequently, higher 

ethanol yields. These studies, however, measure glucose production directly following 

hydrolysis and do not indirectly measure ethanol formation after fermentation. The issue of 

higher salt concentrations required for the higher acid concentration groups seemingly leading to 

inhibition of fermentation even more reinforces that measuring glucose concentration 

immediately following hydrolysis would have led to greater clarity in determining hydrolysis 

efficiency as well as helping to isolate which steps in the experimental process might have been 

responsible for creating confounding results. Chromatography can and has been used to measure 

glucose levels in a similar manner (25) as for ethanol in this experiment and would not be an 

unreasonable experimental manipulation for future studies. Worth consideration in future 

chromatography work might be the use of an internal standard, where a standard amount of an 

unrelated analyte is used in all sample and concentrations are measure relative to this separate 

analyte. The consistency of the absolute values in this study as well as the lack of intermediate 

steps between drawing the sample and the GC measurement suggests that the external standard 

used in this study was the better choice. 

The most fundamental issue to be addressed in any future studies would be to obtain a 

precise characterization of the feedstock. The nature of this product lends to there likely being a 

combination of many different materials at different concentrations within the mixture. This 

could have wide-ranging effects on what sort of treatments would be necessary and/or optimal 
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and also creates a highly variable and uncertain economic cost/benefit profile. The product 

profile given in chapter 2 describes fines as largely consisting of starch material, but it is also 

likely that the by-product of breakfast cereal contains a large amount of free sugar as well as 

undesired waste that becomes intermixed with the fines during its collection. So based on the 

exact composition of the feedstock a number of alternative routes would be available. If it were 

determined that a significant portion of the fines were simply free sugar, then this material could 

be directly fermented, since yeast is able to directly ferment sucrose. This of course would 

eliminate the cost and time necessary for a hydrolysis procedure. It might also be possible to 

separate the sugar from the starch and only need to hydrolyze the starch material.  Under this 

circumstance, a hot water treatment of the material would suffice in isolating free sugar from the 

insoluble material.  Such a wash would provide two sources of carbohydrates – one capable of 

fermentation without hydrolysis, and one requiring additional treatment, respectively.  It is also 

possible that a portion of the material is either lignin or waste material, neither of which is 

readily fermentable and would skew efficiency measurements (ethanol produced / gram cereal 

fines). So any economic assessment of the viability of this project going forward would be 

dependent on determining the exact composition of the fines to give an accurate forecast of how 

to optimally treat the material. Several assays are available to for the detection of sugars such as 

α-amylase or sucrose, such as enzymatic assays and the 3,5-dinitrosalicylic acid (DNS) assay. 

Relative compositions could then be determined using either high performance liquid 

chromatography (HPLC) or GC. A meaningful economic assessment of the possible process 

efficiency of producing ethanol from this material could then be performed. 

As far as new experimental manipulations to the current method are concerned, a few 

potentially beneficial alterations would be worth considering. First, Qureshi et al. (23) not only 
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helped to confirm that high salt concentrations inhibited fermentation, but also successfully 

showed that removal of salts using electrodialysis prior to fermentation significantly increased 

fermentation product yield. So looking in to the costs and benefits of adding a salt removal step 

prior to fermentation would very likely increase process efficiency. It is important to note that 

the acid hydrolysis conditions used were standards set for lignocellulosic materials, which 

require more extreme treatments that starches. It is likely the conditions that were chosen for this 

work were too harsh, as there is minimal guiding literature useful for the determination of acid 

hydrolysis conditions for starch.  Less severe conditions for hydrolysis might have led to similar, 

if not better, yields. A logical alternative to either of these recommendations is, however, to 

consider using an enzymatic hydrolysis process, as this is the industry standard for hydrolysis of 

this type of feedstock, and has been for some time (21). This practice has been shown to 

eliminate many of the disadvantages associated with acid hydrolyses.  It would however, be 

factored in to a cost estimate because such an addition is not without cost. 

Finally, a consideration of the ethanol yield must be discussed in terms of recommended 

work.  A large impediment to the project lay in the timing of sample analysis due to multiple 

users vying for the instrument used to measure the ethanol produced, which eventually led to 

calculated yields that are theoretically impossible.  To this end, immediately analyzing the 

product and standard curves would be prudent. 
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Gas Chromatography Method File 
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Appendix II 

 

Complete Ethanol Peak Height Data Set 
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Sample Group Sample Repetition Ethanol Peak Height 

Standard 1 (0.1%) 1 1,069,657 

  2 1,358,485 

 2 (1%) 1 2,437,156 

  2 1,400,266 

 3 (3%) 1 5,007,054 

  2 4,715,410 

 4 (5%) 1 6,630,975 

  2 6,419,821 

3% 1 1 55,749 

  2 43,001 

 2 1 93,743 

  2 43,089 

 3 1 88,967 

  2 95,988 

 4 1 111,078 

  2 118,653 

6% 1 1 4,459,748 

  2 6,154,041 

  3 6,066,087 

 2 1 6,290,143 

  2 6,258,520 

  3 6,270,327 

 3 1 5,832,156 

  2 6,726,706 

  3 6,869,421 

 4 1 6,574,819 

  2 6,293,583 

  3 6,453,695 

 5 1 6,662,088 

  2 6,701,270 

  3 6,574,752 

10% 1 1 10,314,756 

  2 10,396,001 

  3 10,612,394 

 2 1 10,894,172 

  2 13,228,022 

  3 10,491,375 

 3 1 11,068,884 

  2 10,662,988 

  3 10,528,444 

 4 1 12,158,941 

  2 14,033,775 

  3 13,546,340 

 5 1 12,530,607 
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Sample Group Sample Repetition Ethanol Peak Height 

  2 10,760,093 

  3 13,177,312 

0.2% 1 1 0 

  2 0 

  3 0 

 2 1 11,388,355 

  2 10,417,304 

  3 11,299,260 

 3 1 11,866,451 

  2 9,317,542 

  3 11,108,312 

 4 1 5,800 

  2 11,204,001 

  3 10,842,053 

 5 1 12,543,194 

  2 12,317,983 

  3 0 

Batch 1 1 6,997,845 

  2 7,944,837 

  3 7,161,438 

 2 1 143,772 

  2 145,090 

  3 128,862 

 3 1 2,575 

  2 8,225,697 

  3 7,255,358 

 4 1 7,086,444 

  2 8,000 

  3 8,911,717 

 5 1 32,710 

  2 134,101 

  3 10,401,360 

 6 1 52,904 

  2 62,994 

  3 64,925 

 7 1 68,078 

  2 62,126 

  3 216,299 

 8 1 28,016 

  2 7,927 

  3 9,903 

 9 1 6,280 

  2 17,807 

  3 41,108 
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Sample Group Sample Repetition Ethanol Peak Height 

 10 1 9,941,177 

  2 10,128,277 

  3 10,179,822 

 11 1 92,305 

  2 32,710 

  3 11,375,624 

 12 1 91,602 

  2 17,807 

  3 9,573 

 13 1 93,413 

  2 103,394 

  3 9,815,186 

 14 1 13,608 

  2 10,808 

  3 10,316,466 

 

0.2 % Batch: Average = 7487350.333; Standard Deviation = 5530112.073 
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