
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2017

Computer Simulation of Pore Migration Due to
Temperature Gradients in Nuclear Oxide Fuel
Ian Wayne Vance
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd
Part of the Heat Transfer, Combustion Commons, Materials Science and Engineering Commons,

and the Nuclear Engineering Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Vance, Ian Wayne, "Computer Simulation of Pore Migration Due to Temperature Gradients in Nuclear Oxide Fuel" (2017). Theses and
Dissertations. 1943.
http://scholarworks.uark.edu/etd/1943

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F1943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/300?utm_source=scholarworks.uark.edu%2Fetd%2F1943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/285?utm_source=scholarworks.uark.edu%2Fetd%2F1943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/314?utm_source=scholarworks.uark.edu%2Fetd%2F1943&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/1943?utm_source=scholarworks.uark.edu%2Fetd%2F1943&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


Computer Simulation of Pore Migration Due to Temperature Gradients in Nuclear Oxide Fuel 
 
 
 
 

A thesis submitted in partial fulfillment 
 of the requirements for the degree of  

Master of Science in Mechanical Engineering 
 
 
 
 

by 
 
 
 
 

Ian Vance 
University of Arkansas 

Bachelor of Science in Mechanical Engineering, 2014 
 
 
 

May 2017 
University of Arkansas 

 
 
 
 
This thesis is approved for recommendation to the Graduate Council. 
 
 
 
       
Dr. Paul Millett  
Thesis Director 
 
 
 
 
                               
Dr. Arun Nair 
Committee Member 

Dr. David Huitink 
Committee Member 

	 	



ABSTRACT 
 

A phase-field simulation model is being presented that captures the thermal-gradient-

driven migration of pores in oxide fuel associated with fuel restructuring. The model utilizes a 

Cahn-Hilliard equation supplemented with an advection term to describe the vapor transport of 

fuel material through the pore interior due to gradients in vapor pressure.  In addition, the model 

also captures changes in a migrating pores’ morphology.  Simulations demonstrate that the 

model successfully predicts pore migration towards the hottest portion of the fuel, the centerline.  

The simulations also demonstrate changes in pore shape that are in agreement with previous 

experimental observations.  Initially isotropic pores are shown to evolve during migration into 

either a lenticular or a prolate morphology depending on the vapor transport conditions.  In 

addition to the isotropic pores; elliptical initial morphologies are also shown to migrate and 

experience shape change.  This model is the first to simulate the vapor transport mechanism and 

concurrent changes to a pore’s shape during migration.  It is a necessary step in performing 

accurate simulations of the unique and complicated process known as oxide fuel restructuring.  
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CHAPTER 1 

INTRODUCTION 

	

1.1 Background 

Oxide fuels used in reactors are made from ceramic powder, and the process of creating 

them is not capable of achieving 100% theoretical density.  As-fabricated UO2 fuel pellets 

contain 5-10% porosity after compaction sintering.  Nuclear reactors operate at very high 

temperatures that cause steep thermal gradients to develop within the UO2 fuel pellets.  The 

thermal gradients can exceed 1000 K/cm and are capable of driving a unique microstructural 

change known as pore migration (Olander, 1976).  Pore migration refers to the porosity initially 

present in the fuel and how it migrates radially inwards to the central and hottest portion of the 

fuel.  The migration of the pores results in a large centralized pore that directly affects the fuels 

performance (MacEwan and Lawson, 1962).    

Pore migration results in many microscopic changes that occur during the complicated 

process of oxide fuel restructuring.  The most prevalent is the formation of a central pore.  

However, it also results in the formation of large inwardly oriented columnar grains in the region 

immediately surrounding the pore (MacEwan and Lawson, 1962).  These columnar grains 

replace the equiaxed grain structure initially present in the fuel element.  The formation of the 

columnar grains is attributed to the migration of lenticular shaped pores.  Lenticular pores are 

one of two distinct pore shapes that have been observed experimentally.  It has been documented 

that a migrating pore’s shape can transform into either a lenticular or a prolate morphology based 

on the pores initial radial location (Sens, 1972). 
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The physical driving mechanisms behind pore migration have been debated for years and 

many theoretical explanations have been considered.  However, current research has identified 

two basic mechanisms to explain the phenomenon.  The two mechanisms are solid-state 

thermodiffusion and vapor transport.  Solid-state thermodiffusion, or Soret-effect diffusion 

(Platten, 2006), is the primary driving mechanism for sub-micron diameter pores and is 

explained by atomic diffusion along the pore surface or within the solid. The temperature and 

concentration gradients present in the fuel act as driving forces for solid-state diffusion.  Vapor 

transport, or the evaporation-condensation mechanism, deals with relatively large pores (>1 𝜇m) 

and is explained by the diffusion of the solid material across the inside of the pore.  The driving 

force for the vapor transport mechanism is the variation of the vapor pressure of the solid 

material with temperature inside the pore (Sens, 1972).  This mechanism is characterized by the 

evaporation of solid fuel material on the hot side of the pore and condensation of said material on 

the cold side of the pore.  Many theoretical treatments of the vapor transport mechanism have 

been performed, but the models of Nichols (1967,1968,1972) and of Sens (1972) are often the 

most cited descriptions. 

The initial porosity of as-fabricated fuel consists primarily of pores larger than a few 

microns, and it is the migration of these large pores in their lenticular morphology that most 

dramatically influences changes to the grain structure (Sens, 1972).  Therefore, a computer 

simulation for the vapor transport mechanism that can capture the changes in pore shape during 

migration could prove very useful but has yet to be developed.  Many models have been 

produced in the past that use phase-field and Monte Carlo methods to show pore migration in a 

temperature gradient.  However, past models have used a thermodiffusion model to drive pore 

migration even though theoretical descriptions predict the vapor transport to be dominant.  
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Furthermore, these models use a constant initially circular pore shape despite experimental 

observation of non-equilibrium geometries. 

 

1.2 Why Study Pore Migration? 

It is well understood that the microstructure of a material is directly related to the 

performance of said material on the continuum scale.  Therefore, it is desirable to fully 

understand the microstructure of a material in order to achieve the best performance possible.  

This is certainly the case when dealing with the oxide fuel used in certain nuclear reactors.  The 

microstructure of a UO2 fuel pellet will change drastically due to pore migration.  The primary 

consequence of pore migration is a non-homogeneous density distribution in the fuel (Sens, 

1972).  The migration of pores to a central pore will cause a densification of solid fuel at the 

periphery of the fuel.  This will have a direct influence over the distribution of fission power and 

the thermal conductivity of the fuel.  Both factors will affect the temperature distribution, which 

now varies in time since pore migration itself is not an instantaneous process.   The grain 

structure of the fuel is also altered by the migration of lenticular shaped pores (Nichols, 1979).  

The initial equiaxed grain distribution is replaced with large columnar grains oriented towards 

the fuel centerline that will also affect the fuel behavior. 

It is necessary to be able to accurately predict the behavior and physical properties of 

oxide fuel in order to benefit from it the most.  This work serves to help understand the 

mechanisms that lead to the formation of microstructures that characterize pore migration in 

oxide fuels.  Computer simulations that are able to model thermal gradient driven pore migration 

and its driving forces can provide critical insight.  For this reason, pore migration has been 

studied extensively and some models have been developed that incorporate a solid-state 
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thermodiffusion model to drive pore migration.  These models have been able to produce pore 

migration in the high-temperature direction but have not been able to reproduce the change in 

pore shape during migration that experimental research has observed.  Thermodiffusion models 

certainly have their place, but numerous theoretical descriptions predict that the vapor transport 

mechanism is the dominant controlling mechanism.   

Based on the literature, there is a need for a computational model to be developed that 

describes pore migration due to vapor transport and captures the drastic changes in pore shape 

during migration for the first time.  This thesis serves to develop and present that model. 

 

1.3 Objectives Of The Thesis 

The objective of this thesis is to study pore migration and morphology changes in thermal 

gradients due to the vapor transport mechanism through the use of mesoscale phase-field 

modeling techniques.  A computational model has been built to simulate this type of 

microstructure evolution using a combined Cahn-Hilliard diffusion-advection equation that uses 

a widely accepted analytical expression for the transport velocity of gaseous UO2 as a function of 

temperature and temperature gradients [see Eq. (25) in Sens (1972)]. The simulations used in this 

work were developed and performed in the MATLAB environment.  The simulations will treat 

vacancy concentration as a conserved variable and will show that a pore will behave in 

conjunction with relevant literature by measuring changes in shape morphology and migration 

velocity.  The specific goals of this thesis are as follows: 

1. Develop a mesoscale phase-field model that incorporates thermal gradient-driven migration 

of pores in oxide fuel due to the vapor-transport mechanism.  Simulations should show that 

the model follows the following standards:                         
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• The model developed should predict pore migration toward the centerline of the fuel while 

demonstrating concurrent changes in pore shape during migration from an initially 

isotropic morphology. 

• Both lenticular and prolate morphologies should be observed in accordance with changes 

to the supplied transport velocity equation. 

2. Develop a parametric study to compare the magnitude of pore migration velocity during 

simulation to the supplied transport velocity equation.  This study is necessary to determine 

if changes in pore shape influences the velocity of a migrating pore. 

 

1.4 Thesis Organization 

This thesis is divided into six (6) chapters.  Chapter 1 is an introduction to the type of 

research performed and provides on overview of the scope of this work.  Chapter 2 serves to 

provide a brief overview of the characteristics of pore migration and the influencing factors.  

Chapter 3 reviews relevant research work on pore migration including theoretical, 

computational, and experimental research.  Chapter 4 explains how the model in this work was 

built and the methodology behind the simulations performed.  Chapter 5 will present the results 

of the research performed for this thesis and discuss them appropriately.  Chapter 6 is devoted to 

conclusive remarks and a discussion of possible future works. 
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CHAPTER 2 

PORE MIGRATION CHARACTERISTICS 

	

2.1 Introduction 

  Pore migration is a type of unique microstructure evolution characteristic of oxide-based 

nuclear fuels.  A general knowledge of this type of evolution is necessary in order to study it 

using either computational modeling or experimentation.  This chapter is presented in order to 

provide a brief overview of pore migration including why it happens, how it happens, and its 

consequences.   

 

2.2 Overview 

Nuclear reactors operate at high temperatures and an extremely harsh environment is 

created for the materials, in particular the ceramic oxide-based fuels used.  Temperature 

gradients in the fuel can exceed 1000 K/cm in such reactors.  The large thermal gradient caused 

by the irradiation of the fuel leads to a unique fuel restructuring evolution that happens early in 

the fuels lifetime, on the scale of hours (Olander, 1976).  The fuel contains an initial porosity of 

5-10% that is homogenously dispersed throughout the fuel matrix as irregularly shaped pores 

after compaction sintering.   This initial porosity migrates radially inward toward the center of 

the fuel pellet due to the steep thermal gradient and coalesces into a larger centralized pore 

(MacEwan and Lawson, 1962).   
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Figure 2.1. Irradiated fuel pin overview 
Cross-section of an irradiated fuel pin that shows a central cavity at the center of the fuel element 
and a collection of columnar grains surrounding the central cavity (Sens, 1972). 
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Figure 2.2. Creation of central cavity 
The center of an irradiated fuel pin is shown. (A) Lenticular shaped pores migrate and cluster at 
the center of the fuel pin. (B) The picture on the right, at a later time than section A, shows that a 
central cavity is formed from the coalescence of the pores shown in part A (Sens, 1972).  The 
dark lines present in figure are cracks in the fuel element. 

Migrating pores have been experimentally observed to take on either a lenticular 

morphology or a prolate (bullet-shaped) morphology depending on their initial radial location 

and orientation (Sens, 1972).  The substantial redistribution of porosity, particularly of the 

lenticular pores, alters the grain structure of the fuel by replacing the initial equiaxed grain 

structure with relatively larger columnar grains in the inner one-third of the fuel element 

(MacEwan and Lawson, 1962).  The columnar grains are oriented inwards toward the fuel 

center.  The radially oriented migration path of the porosity follows the direction of the thermal 

gradient towards the center and hottest portion of the fuel.  This process of a mobile phase 

moving toward a “hot” side is known as the Soret Effect (Platten, 2006) and is based on the 
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phenomenon of thermophoresis.  One consequence is that pores will pick up fission gas during 

migration and deposit it the central cavity.  The means that pore migration serves as a way of 

removing fission gases and byproducts from the fuel, and depositing them into the central pore.  

 

 

Figure 2.3 Migrating lenticular pores  
Lenticular pores are migrating up the temperature gradient in 𝑈𝑂!.  Here the temperature 
increases from the bottom of this figure to the top (MacEwan and Lawson, 1962). 
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Figure 2.4. Radially oriented prolate shaped pores 
Radially oriented pores known as bullet or prolate shaped.  The pores are shown along the 
circumference of the columnar grain region and are pointing towards the center of the fuel 
(bottom) (Sens, 1972). 

 

Cracks in the fuel element can act as a source of lenticular pores during irradiation and 

will continue to follow the thermal gradient towards the center of the fuel element (Sens, 1972).  

These cracks are often created from the thermal stresses on the fuel element but can be repaired 

by the very pores they emanate.   This reparative process could be due to the vapor transport 

mechanism and how it can produce single-crystal material in its wake (Olander, 1976).   
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Figure 2.5. Crack acting as a source of lenticular pores 
Example of a crack that is acting as a source of lenticular pores (Sens, 1972). 

 

2.2.1   Controlling And Driving Mechanisms 

Though the physical origins of thermal gradient pore migration have been considered for 

years; two basic mechanisms are generally considered when explaining pore migration; the 

surface-diffusion mechanism and the vapor-transport mechanism.  Surface-diffusion uses a 

temperature gradient as a secondary driving force in addition to the conventional concentration 

gradient driving force.  However, the driving force behind vapor-transport is the variation of the 

vapor pressure of the solid material with temperature inside the pore.  This variation of pressure 

causes the evaporation of the fuel material (UO2 molecules) on the hot side of the pore and the 

likewise condensation of material on the cold side of the pore.   
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2.2.2   Initial Size Influence 

There is no evidence to show that a pore will migrate due to only one mechanism.  

Speight (1964) developed theoretical models for pore migration for both mechanisms, and 

showed that the total pore velocity for spherical pores is the sum of both surface diffusion and 

vapor transport.  Speight also found that the two different mechanisms will dominate at different 

ranges of pore size.  Other researchers such as Sens (1972) believe that one mechanism will 

contribute significantly more to the velocity than the other.  Factors exist that limit the influence 

of each mechanism by adjusting the magnitude of its impact on migration velocity.  In practice, 

the mechanism that produces the highest migration velocity is considered responsible for the 

motion.  According to theoretical derivations, the pore size is understood as the key indicator of 

which physical mechanism will yield the highest speed and thus be the controlling mechanism.  

Surface-diffusion is the dominant mechanism of small pores (<1 𝜇m), and conversely, the vapor-

transport mechanism dominates pore migration when pore size exceeds just a few microns.   

Theoretical derivations show that each mechanism presented dominates the migration 

velocity at different regimes of pore size (Olander, 1976) (Speight, 1964).  Pore velocity due to 

the solid-state thermodiffusion mechanism is inversely proportional to the diameter of the pore.  

This inverse relationship has been qualitatively verified by Cornel and Williamson (1964).  This 

relationship leads researchers to believe that this mechanism dominates pore migration at the 

nanoscale.  Contrarily, theory states migration due to vapor transport is independent of pore size 

and thus the most likely mechanism responsible for the migration of larger pores.  As an 

example, the limiting pore size at 2000 K is 1 𝜇m; meaning that pores with a diameter at or 

above 1 𝜇m will migrate due to the vapor transport mechanism (Sens, 1972). 
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2.2.3   Pore Characterization: Location And Shape 

The density of nuclear oxide fuels is over 90% theoretical density.  A higher fuel density 

means higher energy output during irradiation, but some porosity is desirable in the as-fabricated 

fuel in order to accommodate fission-product swelling (Olander, 1976).  The remaining pore 

volume is homogeneously distributed in the fuel matrix as irregular shaped pores.  Two primary 

shapes of pores have been experimentally observed during pore migration, lenticular and prolate.  

Lenticular shaped pores are oriented with their major axis perpendicular to the direction of 

temperature gradient and prolate pores are generally found in the outermost region of the fuel 

with major axis aligned parallel with the temperature gradient.  Lenticular pores are generally 

concentrated in the inner one-third to two-thirds of a fuel pellet while prolate pores are primarily 

found on the peripheral regions.  The characteristic morphologies are a consequence of the 

transport mechanism that causes migration.  The lenticular shape is caused when the trailing 

edge of the pore is moving at the same speed as the leading edge and midplane of a pore when 

starting from an initial disc shape.   A radially oriented bullet shape is the result of the leading 

edge moving faster than the rest of the pore when starting from an initial sphere shape (Sens, 

1972).  

2.2.4   Pore Redistribution And Its Consequences   

Nuclear fuel usually consists of cylindrical pellets created from ceramic oxides with a 

density above 90% where the remaining percentage pertains to pore volume.  Pore volume in the 

fuel pellets, or as-fabricated fuel, is homogenously dispersed as irregular shapes and most have 

diameters exceeding 1 𝜇m.  This type of closed pore is usually filled with a low-pressure gas that 

is composed primarily of helium, which is used as a cover gas during the fuel-element assembly.  

This relative large size for pores means that vapor transport is the dominating mechanism for the 
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majority of porosity redistribution (Sens, 1972).  Surface diffusion is primarily responsible for 

the smaller pores, as discussed earlier, and these small pores are usually created from the 

precipitation of fission gases during irradiation.  The resulting pores usually have a radius less 

than 0.5 𝜇m and are mainly filled with Xenon at high pressure (Olander, 1976). After a reactor is 

engaged and the fuel element has been irradiated, it is exposed to a steep temperature gradient 

that causes the as-fabricated porosity to migrate toward the center and hottest portion of the fuel.  

The restructured fuel element can be subdivided into a columnar-grain immediately surrounding 

the central pore, followed by a region of equiaxed grain structure, and finally an area at the 

periphery known as unstructured because few changes occur due to restructuring.  Since the 

porosity of the fuel is now localized at the centerline of the fuel as a ‘central pore’, solid fuel is 

relocated to the periphery.  The solid fuel acts as a nuclear heat source and a redistribution of this 

heat source will result in a temperature profile different than in the as-fabricated fuel.  Most 

notably, the heat source is now located closer to the heat sink and coolant that is surrounding the 

fuel pellet, and the reduction of temperatures in the inner-most region of the fuel.  Not only has 

the distribution of fission power changed but also the thermal conductivity of the fuel element 

will vary between areas of large porosity, such as the central pore, and the dense solid fuel in 

areas with little or no porosity.   These effects will result in a change to the temperature 

distribution.  This restructuring means that low-rated fuel rods will theoretically never reach a 

steady state during their lifetime. However, numerical computations have been performed that 

couple the temperature distribution and porosity distribution of restructured fuel.  These 

calculations show that the rate of restructuring will decelerate quickly over a few days’ time and 

converge to a quasi-steady-state situation. 

 
  



15 

CHAPTER 3 

LITERATURE REVIEW 

	

3.1 Introduction 

The unique microstructure evolution of thermal gradient driven pore migration is a 

complicated process whose physical origins have been considered for decades with varying 

degrees of success.  The complicated nature of this phenomenon is in no small part due to the 

numerous variables that influence it.  It has been documented through experimental observations 

that a pore can exhibit a change in shape during migration.  It can be rationally concluded that 

the shape morphology of a pore will have a degree of influence over the fast reactor oxide fuel 

restructuring process.  Therefore, it is beneficial to perform a literature survey in order to 

understand the current state of relevant research.  Relevant research in this breadth has been 

identified as the mechanisms that have been proposed to explain pore migration and how they 

have been examined theoretically, computationally, and experimentally. 

 

3.2   Vapor Transport /Evaporation-Condensation Mechanism 
 

The center of the fuel element is its hottest portion with the temperature profile 

decreasing as the outside edge of the fuel pellet is approached.  This means that every pore, 

regardless or shape or orientation, can be viewed as having a hot side, closest to the center, and a 

cold side, closest to the outside edge.  Large pores can attribute their mobility during the pore 

migration process to the vapor transport of matrix material from the hot side of the pore to the 

cold side through the contained gas.  The physical driving force behind this mechanism is the 

variation of the vapor pressure of the solid with temperature, thus resulting in being termed vapor 
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transport.  However, the deposition of material from hot side to cold side means this mechanism 

is also referred to as the evaporation-condensation mechanism.  The models of Nichols 

(1967,1968,1972) and of Sens (1972) are the most often cited description of the vapor transport 

mechanism.  

The as-fabricated fuel may be a polycrystalline compact, but the matrix material 

deposited on the cold side of the pore during vapor-transport tends to condense into a nearly 

single-crystal configuration.  Therefore, there exists a grain boundary between the cylindrical 

columnar-grain region and its surrounding region due to a mismatch of crystal orientations.  The 

peripheral trails of the migrating pores are believed to be in part due to this grain boundary.   The 

grains formed in this way are radially oriented and termed columnar grains due to their 

resemblance.  The trails of migrating lenticular pores can be seen resembling a series of small 

spheres rather than the straight lines often associated with normal grain boundaries.  Sens argues 

these spheres are simply smaller pores pinched off from the larger parent pore during migration.   

Conversely, Oldfield and Markworth (1969) argue that impurities are rejected from the migrating 

pore as small bubbles along the advancing periphery.  The latter of which would serve to explain 

how a migrating pore deals with nonvolatile impurities that would build up on the hot side of the 

pore and eventually slow down or stop migration if not rejected in some way.   
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Figure 3.1. Lenticular pores with trailing edges 
Lenticular pores are migrating towards the central cavity (top right). Small bubbles can be seen 
trailing along their periphery (Nichols, 1968).   

	
It has been noted that the migration velocity of typical pores containing low-pressure gas 

is largest for the vapor-transport mechanism, and therefore focus can be given to this process 

when considering pore migration (Olander, 1976). This is a result of the as-fabricated fuel 

containing porosity with average dimensions on the scale of micrometers.   

3.2.1   Pore Velocity Considerations 
 

The migration velocity can be either independent of the cavity radius or proportional to 

the radius depending on the dominant transport mechanism.  The independent case is a result of 

the gas pressure being considered constant.  If the velocity is to be proportional to the radius then 

the gas pressure is taken as balanced by surface-tension forces.  A pore that has its internal 
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pressure equilibrated by the surface tension would result in a spherical pore, but experimental 

observations show pores with non-spherical morphologies (Sens, 1972).  If the pores remained in 

equilibrium with the surface tension during migration then the pores would be expected to grow 

as they approached the centerline, which has not been observed.   Therefore, it can be assumed 

that the pressure in the pores is, to some degree, independent of the surface tension; resulting in a 

pore whose pressure is only determined by temperature and whose volume remains more-or-less 

constant during migration.  This means that pore migration velocity due to the vapor transport 

mechanism is independent of pore size.   

The migration velocity of a pore appears to be dependent on both temperature and the 

temperature gradient (Sens, 1972).  A distribution of pore velocity can be calculated from a 

given temperature distribution, but the initial temperature distribution will change when the pore 

begins to move.  Therefore, the velocity and temperature distributions should be adjusted during 

the process in order for a numerical approach to give accurate predictions.  Early approaches 

proved incorrect because of a diffusion coefficient being too high (Kaneko et al., 1969).  The 

original velocity calculation for vapor transport was given by De Halas and Horn (1963), but 

other researchers such as Speight (1964), Nichols (1967), and Sens (1972) have improved upon 

their research by using different considerations and assumptions.  For example, Speight (1964) 

deduced an equation for velocity due to vapor transport that was linearly dependent on pore size, 

Eq. (3.1), and is based on his derivation of the diffusion coefficient. Speight assumes that the gas 

bubbles are in equilibrium and therefore created an equation for the internal pore pressure, Eq. 

(3.2), where 𝛾 is the surface tension of the UO2 fuel, P is the partial pressure of the gas filling the 

pore, and p is the vapor pressure of the diffusing species. 

                                                                  𝑣! = 𝐴𝑟 !"
!"

                                                                (3.1) 
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                                                                  𝑃 + 𝑝 = !!
!

                                                (3.2) 

3.2.2   Deduction Of The Diffusion Equation 
 

The vapor transport mechanism has the temperature gradient and resulting concentration 

gradient as driving forces, and both forces must be taken into account in order to accurately 

represent the mechanism.   Analytical models are derived from basic principles and the theory of 

irreversible thermodynamics.  Even with this theory considered, some assumptions must be 

made.  Sens (1972) derived a diffusion equation and a migration velocity equation for the vapor 

transport mechanism that was used in this research.  Sens’ assumption for his deductions 

included: 

• vapor transport is the controlling mechanism, 

• pores are filled with helium, one atmosphere at room temperature, behaving as an ideal 

gas, 

• 𝑈𝑂! vapor behaves as an ideal gas, and 

• velocity is independent of pore size. 

Sens starts by describing the transport of material and of energy from an arbitrary point in the 

pore given by steady state thermodynamics (Denbigh, 1950). 

                                                      𝑗! = −𝐿!!∇(ln𝑇)− 𝐿!"𝑇∇(
!
!
)                        (3.3) 

                                                      𝑗! = −𝐿!"∇(ln𝑇)− 𝐿!!𝑇∇(
!
!
)                   (3.4) 

where 

𝑗! = 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑙𝑜𝑤, 𝑐𝑎𝑙/𝑐𝑚! ∗ 𝑠𝑒𝑐 

𝑗! = 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑓𝑙𝑜𝑤,𝑚𝑜𝑙𝑒𝑠/𝑐𝑚! ∗ 𝑠𝑒𝑐 

𝐿!" = 𝑝ℎ𝑒𝑛𝑜𝑚𝑒𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 (𝑂𝑛𝑠𝑎𝑔𝑒𝑟, 1931) 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝐿!" = 𝐿!" 
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𝜇 = 𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑝𝑒𝑟 𝑚𝑜𝑙𝑒 

𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒. 

If the material and energy transport are under isothermal conditions, then the coefficients 

𝐿!" = 𝐿!" can be expressed in terms of 𝐿!!, and then ∇(ln𝑇) = 0. 

                                                       !!
!! !!!"#$%&#%  

= !!"
!!!

= !!"
!!!

= 𝑞                    (3.5) 

Where q is defined as the energy per diffusing mole transported in the absence of a temperature 

gradient.  This step allows the equation for the material flow to be rewritten as: 

                                                      𝑗! = −𝐿!! 𝑞∇(ln𝑇)+ 𝑇∇ !
!

                   (3.6) 

The next step involves substituting the Gibbs free energy thermodynamic relations into Eq. (3.6).  

This is possible because Gibbs energy is a thermodynamic potential used when a system is at a 

constant temperature and pressure.  

𝜇 = 𝑢 − 𝑇𝑠 + 𝑝𝑣 = ℎ − 𝑇𝑠 

𝑑𝜇 = −𝑠𝑑𝑇 + 𝑣𝑑𝑝 

                                                         𝑗! = −𝐿!!
!!!
!
∇𝑇 + 𝑣∇𝑝                       (3.7) 

Since isothermal conditions are being considered, then Eq. (3.7) must be representative of Fick’s 

first diffusion law. Fick’s first law relates the diffusive flux with the concentration under a steady 

state assumption.  It states that the flux will move from regions of high concentration to regions 

of low concentration with a magnitude proportional to the concentration gradient. Stating 

isothermal conditions and knowing that Fick’s first law is represented by Eq. (3.7), it then 

becomes 

                                            𝑗! !!!"#$%&#% = −𝐿!! 𝑣∇𝑝 = −𝐿!!vRT∇c                             (3.8) 

                                                             𝑗! !!!"#$%&#% = −D∇c                              (3.9) 
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where 𝑐 = 𝑝/RT and is the concentration of the diffusing species.  The coefficient, 𝐿!!, can be 

solved for by setting Eq. (3.8) and Eq. (3.9) equal to each other.  This newly found coefficient 

could then be substituted back into Eq. (3.7) to achieve: 

                                                         𝑗! = − !
!"#

!!!
!
∇𝑇 + 𝑣∇𝑝          (3.10) 

The quantity q-h is defined as the excess energy of the diffusing molecules as compared to the 

enthalpy of the bulk gas.  Nichols (1969) states that the molecules in transit are indistinguishable 

from the bulk gas and therefore q and h are equal, resulting in the aforementioned quantity being 

zero.  However, Sens says that Nichols statement is incorrect because the molecules in transit are 

distinguishable.  Sens then derives values for q and h based on the average translational energy 

of all molecules in a Maxwell-Boltzmann distribution to show how q and h are equal and that the 

quantity is zero.  He also states that this result is only valid in a special case of gaseous diffusion 

when there are no restrictions to the gas stream.  Eq. (3.10) then becomes: 

                                                𝑗! = − !∇!
!"

         𝑚𝑜𝑙𝑒𝑠/𝑐𝑚! ∗ 𝑠𝑒𝑐                    (3.11) 

Eq. (3.11) describes the flow of 𝑈𝑂! moles as a function of the temperature and pressure 

gradients at each point in the pore.  Steady state conditions can then be applied to Eq. (3.11) to 

give: 

                                                               ∇ ∙ !
!"
∇𝑝 = 0                                              (3.12) 

The diffusion coefficient used here is given by kinetic gas theory and is stated by Sens 

(see Eq. (15) in (Sens, 1972)) (Dushman, 1958).  Nichols has solved Eq. (3.12) algebraically for 

an initially spherical pore and claims his equation is correct to second order terms and predicts a 

change in shape from spherical to lenticular (Nichols, 1968). However, he also predicts that 

lenticular pores must arise from pores that are initially partially lenticular.  Previous work 

assumed the temperature distribution in the pore is unidirectional, similar to the surrounding fuel 
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matrix (De Halas and Horn, 1963)(Nichols, 1967). It can then be decided that cross-sectional 

planes in the pore, that are perpendicular to the direction of the temperature gradient, are 

isothermal planes in the pore.  The vapor pressure on these isothermal planes is determined by 

the solid-vapor equilibrium at the edge of the planes, along the pore surface, and is given by: 

                                                          p = 𝑝!𝑒𝑥𝑝 −∆𝐻/𝑅𝑇                             (3.13) 

Sens (1972) derives values for 𝑝! and ∆𝐻 from supplied vapor pressure data on 𝑈𝑂! (Ohse, 

1964).  Sens also assumes that the cross sectional planes are isobaric in addition to being 

isothermal and the resulting pressure gradient is unidirectional.  This assumption means that the 

pores will preserve their shape during migration.  In order to capture changes to the pores shape 

during migration then Eq. (3.13) must be restricted to the pore surface where actual solid-vapor 

equilibrium exists.  In order to find the pressure distribution throughout the pore volume, it must 

be determined as a solution of Eq. (3.12).   Sens uses Eq. (3.13) to convert a given temperature 

distribution along the pore surface into a vapor pressure distribution which is then used as the 

boundary condition for Eq. (3.12).  Once the 𝑈𝑂! vapor pressure distribution is found then the 

material flow can be calculated via Eq. (3.11).  The molar flow is expressed as the amount of 

material transported in terms of solid 𝑈𝑂! of the density at the appropriate temperature.  This 

means a transport velocity is given by: 

                                                    𝑣 = −𝑗!NΩ! = −𝑗!
!!"!
!"

  𝑐𝑚/𝑠𝑒𝑐                 (3.14) 

where 

𝑁 = 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜!𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 

𝑀!"! = 𝑚𝑜𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑈𝑂! 

𝜚𝑇 = 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑈𝑂! 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇 

Ω! = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑈𝑂! 𝑎𝑡 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇 
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𝑇 = 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

This velocity is primarily significant at the pore surface because it gives the evaporation and 

condensation rates.  Eq. (3.14) could describe the material transport in the pore as an equivalent 

velocity.   

3.2.3   Migration Velocity Equation 
 

Calculating values for Eq. (3.14) at three key points along a pores surface can be used to 

describe the motion of the pore.  A lenticular or disc shaped pore at steady-state has a transport 

velocity at the midplane of the pore that is equal to both the leading and trailing edge.  Therefore, 

one of these velocities can be taken to represent the pore as a whole.  It is worth restating that 

concentrating on lenticular pores migrating due to the vapor transport mechanism is justified 

when considering the microstructural changes in 𝑈𝑂! fuel rods.  Sens arrives at an expression for 

the transport velocity of gaseous 𝑈𝑂! as a function of temperature and temperature gradient by 

combining many of the previously mentioned equations with measured and published material 

data (see Eq. (25) in (Sens, 1972)). 

                          𝝂 = 𝐴 𝐵 + 𝐶𝑇 + 𝐷𝑇! + 𝐸𝑇! 𝑇!!/!𝛥𝐻 𝑝! exp − !"
!"

!"
!" !"#$%&

,            (3.15) 

Variables from Eq. (3.15) are given as: 𝑇 is temperature, 𝛥𝐻 is the enthalpy of vaporization of 

UO2, 𝑝! is a pressure prefactor, and 𝐴 − 𝐸 are empirical constants.  Sens supplies values for 

𝐴 − 𝐸, 𝛥𝐻, and 𝑝!, which allow the transport velocity to be plotted against the fuel radial 

distance.  This equation lets the migration rate of a lenticular pore be calculated for each value of 

the temperature and the temperature gradient.  Thus, with a given temperature distribution in a 

fuel rod, the pore migration rates as a function of fuel radius can be calculated. 
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3.3   Surface Diffusion 
 

The surface diffusion mechanism in nuclear fuels refers to the movement of small pores 

that move both randomly and under the influence of a driving force, but for a pore in a 

temperature gradient, the temperature gradient causes the diffusion of atoms along the pores’ 

inside surface in a preferential direction, i.e. from the hot region to the cold region. The 

directional flow of atoms in this prescribed way means the pore will travel towards the hot region 

of the fuel element, which is in agreement with the vapor transport mechanism described earlier.  

Differences between the two mechanisms are due to three primary categories; magnitude of 

predicted velocity, pore size relationship, and the actual mechanism of migration.   

Surface diffusion is being driven by a temperature gradient in addition to the 

conventional concentration gradient, which means that it is a thermodiffusion process.  It has 

also been called surface thermal self-diffusion and Soret-effect diffusion.  The Soret-effect is a 

phenomenon observed in mixtures where the particles of two or more materials behave in 

different ways in response to an applied temperature gradient.  A flux of one species is generated 

by a temperature gradient and will result in a concentration gradient under steady-state 

conditions.  In the case of surface diffusion, the diffusing species will travel from the hot region 

to the cold region.  It should also be noted that the Soret effect is proportional to the temperature 

gradient as well (Platten, 2006).  

It has already been stated that surface diffusion is the dominating mechanism for pores of 

small size, usually sub-micron diameters.  This is because the migration velocity for surface 

diffusion is inversely proportional to the pore radius; meaning, the larger a pore is then the less 

influence surface diffusion will have on its migration velocity.  Olander (1976) developed an 
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equation for the migration velocity of pores due to surface diffusion that is accepted and used in 

other papers (Desai et al., 2010).   

                                                                  𝒗 = !!!!!∗!!
!!!!

!"
!"

                               (3.16) 

The variable 𝒗 is the pore migration velocity, 𝐷! is the surface diffusivity, 𝑄!∗ is the value of the 

heat of transport for surface thermal self-diffusion, R is the radius of the pore and 𝑑𝑇/𝑑𝑥 is the 

temperature gradient.  The temperature, T, is taken as the average temperature over the region in 

which the pore moves.  𝑄!∗ is not readily available and is difficult to calculate, so it is 

approximated as the activation energy required for surface diffusion (Olander, 1976).  𝐷! and 𝑄!∗ 

must be calculated for all of the species being considered, uranium and oxygen in the case of 

nuclear oxide fuel.   

 

3.4   Computational Research 
 

It is exceedingly difficult to observe pore migration with in-situ techniques.  Nuclear fuel 

can be an unforgiving medium for experimental studies due to the large temperatures and other 

variables that are necessary to accurately represent realistic conditions.  Therefore, 

computational methods provide much needed insight into the subject.  Mesoscale simulations are 

well suited for examining the microstructure evolution of pore migration.  Phase field techniques 

have been shown to demonstrate multiple mechanisms of pore migrations, Monte Carlo methods 

are well suited for simulating the grain growth evolutions associated with pore migration, and 

molecular dynamic methods are inherently appropriate for studying pore migration at the atomic 

scale.   

The results of computer simulations in the past have been useful but have not been 

entirely inclusive.  The simulations often result in the migration of pores with velocity in 
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agreement with analytical models, and the migration is shown in the high-temperature direction, 

which follows the Soret Effect.  However, computer simulations have yet to capture the shape 

evolution of a pore during migration that has been experimentally observed.  This change in 

shape is usually ignored by most existing theoretical models in favor of a constant shape 

assumption in order to simplify the problem.  There also has not been a mesoscale simulation 

model that describes pore migration due to the vapor transport mechanism.  Capturing migration 

to the high temperature domain due to the vapor transport mechanism and demonstrating 

concurrent changes in the pore shape has not been previously achieved. 

3.4.1   Phase Field 

Phase field methods are well equipped to handle pore migration because they have 

successfully been used to model and predict the mesoscale morphological and microstructure 

evolution in materials (Chen, 2002).  Additionally, the benefits of phase field techniques did not 

emerge until around the turn of the century.  Thus, most of the research of pore migration in 

terms of phase field models is all relatively recent and benefits from the decades of research 

performed by others.   

Phase field methods describe a microstructure by using a set of conserved and 

nonconserved field variables that are determined by the Cahn-Hilliard (Cahn and Hilliard, 1958) 

and Allen-Cahn (Allen and Cahn, 1979) equations, respectfully.  Phase field models used to 

study pore migration in a temperature gradient have been developed in the past.  However, they 

assumed a thermodiffusion model in order to drive pore migration, which directly contradicts the 

theoretical models that predict the vapor transport mechanism to be dominant.  There are two 

primary ways in which this has been done; a temperature-dependent free energy function (Hu 
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and Henager, 2010)(Li et al., 2010) or a flux term containing the temperature gradient (Zhang et 

al., 2012).   

Hu and Henager developed a model in 2010 that was used to study pore migration by 

both bulk and surface diffusion in a temperature gradient (Hu and Henager, 2010).  Their model 

demonstrated that the migration velocity varied inversely with the pore size and that agrees with 

the theory for surface diffusion driven migration.  This model also showed that the pores migrate 

up the temperature gradient, which also agrees with theoretical and experimental observations.  

The intent of this work is to study the effect of temperature gradients and vacancy surface 

mobility on pore migration.  They state that bulk and surface diffusion and the 

evaporation/condensation of atoms are expected to take place simultaneously during migration.  

However, the evaporation/condensation mechanism is not included in the model.   This paper 

used a temperature dependent free energy function in order to have the equilibrium vacancy 

concentration in the matrix and the free energy of the matrix phase decrease with decreasing 

temperature while having the free energy of the pore phase be independent of temperature (Hu 

and Henager, 2010).  This means that the Soret effect is implicitly contained in the model 

because a concentration gradient will exist when a temperature gradient exists.  The model 

presented in this paper stands out from others because it is very robust.  The model was 

developed in a way that allows for the impact of vacancy concentration, multi-pore interactions, 

and temperature gradients on pore migration to be studied. 
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Figure 3.2. Simulation results from Hu and Henager (2010) 
(a) Evolution of pore position.  The solid lines represent the position of the center of the pore as a 
function of time and the dashed lines represents how the pore radius changes with time.  Multiple 
radii are shown, R0 = 8l0, 12l0, 16l0, and 20l0 where l0=2nm (b) Simulation results for the 
morphology change of a pore with R0 =16l0.  A temperature profile is shown on the right side of 
the figure and is used to show that the pore moves towards the high temperature domain during 
migration. The pictures in (b) are placed from left to right, beginning to end respectfully.  The 
figure is used to demonstrate the simulation results for the case of M1=0 (Hu and Henager, 
2010).  

 

Hu and Heneger were part of another research paper that was presented shortly after the 

one previously described, (Hu and Henager, 2010).  A team from Pacific Northwest National 

Laboratory developed a phase field model to study the effects of temperature gradients, vacancy 
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concentrations, vacancy generation rates, and the recombination of vacancies and interstitials on 

pore migration and pore growth (Li et al., 2010).  This model is similar to what others have 

presented, namely Hu and Henager, but this paper aims to address the effect of radiation on pore 

migration and growth kinetics.  It extends the work of Hu and Henager (2010) to accomplish the 

aforementioned goals by assuming bulk diffusion controlled migration, and considering only 

single vacancies and single interstitials for simplicity. The model demonstrated pore migration 

towards the high-temperature domain by implanting the Soret effect in the same way as Hu and 

Henager (2010).  The pore migration mobility is found to be independent of pore size, which is 

in theoretically agreement for bulk diffusion controlled migration.  The drawback to this research 

is that bulk diffusion is no longer considered a primary mechanism for pore migration.  The 

research was successful in concluding that the pore migration mobility is dependent on the 

temperature gradient and the temperature gradient itself causes vacancies, interstitials, and pores 

to flow toward the high temperature domain.  The researchers postulate that this results in the 

formation of a central hole, which has been observed in spent nuclear fuel.  It is also stated that a 

thermodynamic database is needed in order for the accuracy of this, and other mesoscale and 

macro-scale simulations, to be sufficient.  This is because the uncertainty of the simulation is 

dependent on the thermodynamic and kinetic properties used to build it.   

The Fuels Modeling and Simulation Department of Idaho National Laboratory published 

a paper in early 2012 that aimed to simulate temperature gradient driven pore migration coupled 

with thermal conduction with a phase field model (Zhang et al., 2010).  This paper identified a 

missing component of previously performed research; quantification of the impact of the low 

thermal conductivity of pores.  Theory states that pores will migrate toward the high temperature 

domain as a result of a temperature gradient driving force.  Previous studies often assume a 
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constant temperature gradient across the fuel element, but the pores will often contain gases that 

have a thermal conductivity much lower than the surrounding fuel matrix.  The low thermal 

conductivity of the pore will result in an increase of the temperature gradient across the pore.  

This paper is different from the previous two because here a flux term containing the temperature 

gradient is introduced in order to represent the Soret effect associated with pore migration.  

However, bulk and surface diffusion are still considered as the primary mechanisms.  The phase 

field model is implemented with the Cahn-Hilliard format and the heat conduction equation is 

solved simultaneously to describe the temperature field.  In order to study the influence of 

thermal conductivity, the conductivity is varied spatially based on the different phases of the 

system.  The different phases being calculated from the conserved order parameters of the Cahn-

Hilliard equation.  The simulations preformed in this paper were successful in demonstrating 

pore migration toward the hot region of the simulation environment, the model was also 

validated by comparing displacements with analytical solutions, and it demonstrated the impact 

of a pores thermal conductivity on the thermal gradient and temperature profile.  The paper only 

considered pore migration in a single crystal and thus did not deal with the influences of grain 

boundaries and it also did not deal with change in the pores shape.  
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Figure 3.3. Simulation results from Zhang et al. (2012) 
Two simulations showing pore migration in a thermal gradient.  The top figure is a reference 
case, and the bottom figure includes thermal conductivity coupling when the pore contains Xe 
gas.  The two figures are shown at the same time step so the difference in position can be 
observed.  The thermal gradient increases inside of the pore in the bottom figure, which is 
demonstrated by the black marking lines bending towards the center of the pore (Zhang et al., 
2012). 

 

Previous phase field simulations show pore migration in the direction of the temperature 

gradient and often use bulk and surface diffusion as the driving forces behind migration.  

However, simulations failed to show changes to the shape of pores during the course of 

migration. This lack of shape change is in disagreement with experimental observations that 

document highly non-equilibrium geometries. Also, a simulation model has yet to be developed 

that can describe pore migration due to the vapor transport mechanism.  
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3.4.2   Monte Carlo 

Phase field simulations make up the majority of the computational research that has been 

done concerning pore migration.  However, Monte Carlo techniques have also been used to 

simultaneously show grain growth, pore migration, and thermal segregation of pores in a thermal 

gradient (Tikare and Holm, 1998).  Tikare and Holm (1998) used a statistical-mechanical Potts 

Monte Carlo technique in 1998 to model the grain growth kinetics while incorporating conserved 

dynamics to model pore migration via surface diffusion.  Conserved dynamics are used so that 

the total number of pore sites and grain sites remain constant though the entire simulation.  The 

volume fractions of both grains and pores were assumed constant during the simulation and the 

model ignored any vacancies that would realistically exist in the matrix. 

The standard Metropolis algorithm is used to perform the pore migration step and the 

grain growth step by determining the transition probability with Eq. (3.17), and where the 

equation of state is the sum of all the neighbor interaction energies given by Eq. (3.18).  Multiple 

simulation techniques were investigated during this research and they include same spin 

assignment, random spin assignment, and minimum-energy spin assignment.  Tikare and Holm 

chose minimum-energy spin assignment as the best representation of pore migration through 

surface diffusion.   

                                                    𝑃 =
𝑒𝑥𝑝 !∆!

!!!
  𝑓𝑜𝑟 ∆𝐸 > 0

      1              𝑓𝑜𝑟 ∆𝐸 ≤ 0
                     (3.17) 

                                                    𝐸 = !
!

1− 𝛿(𝑞! , 𝑞!)!
!!!

!
!!!                                 (3.18) 

They introduced a temperature gradient via the interfacial mobility gradient and added a heat of 

migration term in order to show thermal segregation of the pores and 𝑈𝑂!.  This heat of 

migration term also biased the motion of the pores towards the high-temperature region 
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demonstrating the Soret Effect.  The research was successful in terms of its own stated 

motivations (Tikare and Holm, 1998), to simulate grain growth and pore migration 

simultaneously.  This method even showed differences in the shape of the pores during 

migration; however, the change in pore shape is based on the shape of the surrounding grain 

boundaries and does not resemble any of the commonly observed morphologies typical of oxide 

fuels.  Grain growth was found to be pinned by the pores at the finite Monte Carlo temperature 

simulated.  A notable assumption in this paper is that grain growth and pore migration as well as 

their driving forces remain constant with temperature.  The only variables that are changed are 

their respective mobility terms.    

 

Figure 3.4. Simulation results in an isothermal region from Tikare and Holm (1998)  
A Monte-Carlo simulation demonstrates the microstructural evolution from grain growth and 
pore migration.  The simulation shown is for the case of an isothermal region using the 
minimum-energy spin assignment for pore migration (Tikare and Holm, 1998). 
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Figure 3.5. Simulation results in a thermal gradient from Tikare and Holm (1998)  
Results from a Monte-Carlo simulation that shows microstructural evolution from grain growth 
and pore migration.  The simulation is for the case of a thermal gradient being present, and 
demonstrates a higher grain growth rate and larger pores compared to Figure 3.4. The left side of 
the simulation domain corresponds to the cold side and the hot region corresponds to the right 
side (Tikare and Holm, 1998). 

 

3.4.3   Molecular Dynamics 
 

As stated earlier by analytical and theoretical models, surface diffusion is the primary 

mechanism responsible for pore migration at the submicron scale.  Therefore, the phase field and 

Monte Carlo methods previously discussed are not optimal for simulating the atomic processes 

that control the migration of nanometer sized pores.  Molecular dynamics is a technique that 

allows the simulation of individual atoms and their interactions and is thus a great method for 

simulating surface diffusion.  A paper, 2010, from Desai, Millett, Tonks, and Wolf at Idaho 

National Lab performed atomistic simulations of nanometer sized pores which serves to 

understand the atomic processes involved in migration (Desai et al., 2010).   

Molecular dynamics simulations were performed on single crystal 𝑈𝑂! with pores of 2.2 

nm with an external temperature gradient applied across the simulation cell.  The simulations 

showed migration of the pore towards the high-temperature domain and captured data for the 

migration velocity of the pores.  The velocities were then compared with available 
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phenomenological equations for pore migration due to different transport mechanisms.   The 

mechanism with values most closely matching the data from the simulations was determined to 

be the dominant mechanism for pore migration.  The dominant mechanism in this case was 

found to be surface diffusion of the slowest moving species, i.e. uranium.  This paper also found 

that other contributions from lattice diffusion and the thermal stress gradient, which is due to the 

applied temperature gradient, were negligible.  This type of simulation and its post processing 

also serves as a method of identifying the point at which the dominant mechanism crosses over 

from diffusion-controlled mechanisms to a lattice-diffusion-controlled mechanism.  This 

crossover point was found to be for pores in the micron range, which is in agreement with past 

papers.   

The simulations performed in this paper demonstrated pore size and shape that remained 

stable and constant during the migration process.  Since this paper compares data with 

phenomenological equations, which contain a basic assumption of constant pore shape, then 

constant shape must be assumed here as well.  Lattice diffusion can be presumed to be non-

dominant because no lattice diffusion was observed for ions away from the pore.  Furthermore, 

the paper also presents a figure in which a single atom, represented by a black color, is 

monitored for multiple time steps.  The single atom is initially shown to lie in the high 

temperature region of the pores surface and then moves along the pores surface towards the cold 

temperature region as the simulation progresses.  This ability to follow a single atom 

demonstrates evidence for researchers to presume surface diffusion.   
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Figure 3.6. Simulation results from Desai et al. (2010) 
Snapshots taken at 0 and 29 ns during an atomistic simulation performed by Desai et al. (2010).  
The snapshots demonstrate pore migration toward the hot side of the simulation cell, which 
corresponds to the left side of the figure.  Two black lines are placed at the center to act as 
guidelines for the eye. 
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Figure 3.7. Single atom tracking from Desai et al. (2010) 
Atomistic simulation highlighting a single atom.  Snapshots are taken at 21, 25, and 29 ns and 
are shown from top to bottom respectfully.  A single atom is enlarged and is shown in a different 
color from the other atoms.  The purpose of this is to be able better visualize the bath of diffusion 
that is taking place during migration.  The atom can be seen staring near the hot side of the 
simulation cell and moving along the surface towards the cold side of the domain.  Multiple 
atoms following similar paths of diffusion would result in a pore migrating towards the hot side 
(Desai et al., 2010). 
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3.5   Experimental Research 
 

MacEwan and Lawson (1962) performed an early experimental study in 1962.  This 

particular experiment focused on inducing columnar grains to grow in high-density sintered 

uranium dioxide specimens.  They achieved this by introducing a steep temperature gradient into 

the specimen, but were careful to remain below the melting point.  Though this experiment was 

not focused on pore migration, it was able to demonstrate that a temperature gradient high 

enough to cause columnar grains could be introduced without melting the specimen.  Columnar 

grains are known to develop from the migration of lenticular pores and thus the methodology of 

this experiment could be expanded for further studies into pore migration. 

Michels, Poppel, and Niewmark in 1970 measured migration velocities of gas bubbles 

and solid inclusions while comparing their results with equations for surface thermal self-

diffusion (Michels et al., 1970).  The pores ranged from 1 to 5 𝜇m and their findings were 

between 2 and 5 times higher than the velocities predicted by Eq. (3.16).  They also did not 

observe any noticeable relationship between velocities and pore radius which is contrary to 

surface diffusion theory (Michels et al., 1970).  However, their findings at this time provide 

some evidence that surface diffusion may not be the controlling mechanism for large bubbles.  

The experiments also noted that the solid inclusions migrated up the temperature gradient but 

with velocities that decrease as the size of the inclusion increased which matches the surface 

diffusion relationship.  Surface diffusion for inclusions makes sense because the inside of a given 

cavity is occupied and the vapor transport mechanism will not be able to occur. 

The Power Reactor and Nuclear Fuel Development Corporation released a paper in 1977 

in which researchers attempted to measure the migration rates of lenticular pores and compare 

their results with the theoretical values derived from Sens’ model and Nichols’s model 
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(Kawamata et al., 1977).  Lenticular pores are chosen as the focus of this paper because, as they 

state, the lenticular pore is most commonly observed in irradiated fuel and is responsible for the 

formation of columnar grains due to their migration by the vapor transport mechanism 

(Kawamata et al., 1977).  Disc shaped pores were fabricated in the interface of two thin discs of 

𝑈𝑂! using a resintering process.  The pores were then allowed to move under the influence of a 

temperature gradient via an induction furnace, and their migration rates were measured.  The 

migration distances can be measured after the experiment and will lead to the migration rate 

when divided by the heating time.  The temperature gradient was found by dividing the 

temperature difference of the two sides of the specimen by its width.   The paper concludes that 

the observed migration rates are in good agreement with Sens’ model.  Although “good” is a 

relative term that could be argued, Sens’ model certainly matches better than that of Nichols and 

leads to a conclusion that the temperature gradient in the lenticular pore is approximately four 

times as large as the fuel matrix.  It should also be noted that this paper mentions that previous 

experimental researchers inaccurately determined the position of where the pore begins to 

migrate and that made comparison to theoretical models impossible.  

 

3.6   Summary 
  
 Theoretical, experimental, and computational methods have all been used to study pore 

migration and have thus been investigated in preparation for the objectives of this research.  

Thermal gradient driven pore migration has been studied for decades and the primary driving 

mechanisms assumed have evolved along the way.  Two basic mechanisms can be presented 

today that explain the phenomenon; solid-state thermodiffusion (either surface or bulk) and 

vapor transport.  The majority of research has been focused on thermodiffusion, so much so that 
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no mesoscale simulation model has been developed to model pore migration in a thermal 

gradient due to vapor transport. This is surprising because the migration rate of large pores is 

dependent on the vapor transport mechanism according to the literature and these large pores, 

often lenticular in shape, are responsible for the development of the columnar grain structure 

typical of irradiated oxide based fuels.  In fact, most research assumes a constant isotropic 

morphology during migration, which is contrary to experimental observations of multiple pore 

geometries (lenticular or prolate shapes).  A review of pore migration research will reveal that no 

computer simulation has been developed that captures the characteristic change of pore shape 

during migration.  In conclusion, there is a “void” in the relevant research for a simulation that is 

able to model pore migration via vapor transport and capture the drastic change in shape during 

migration. 
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CHAPTER 4 

SIMULATION METHODOLOGY 

	

4.1 Introduction 

 This chapter provides a basic overview for the model used in this work.  It will serve to 

illustrate how the relevant mechanism are applied to thermal gradient driven pore migration in 

general and pertaining to the vapor transport mechanism.  This chapter includes the theory 

behind the model as well as justification on why certain numerical methods were chosen.  

Aspects of the simulation will be discussed such as the computational domain, methods used, 

reduced units, and simulation initialization. 

 

4.2 Theoretical Description 

The theoretical description of the vapor-transport mechanism as given by Sens serves as a 

building block for the simulations developed here (Sens, 1972).  A basic assumption made by 

Sens is that the vapor pressure of as-fabricated pores is independent of surface tension and rather 

a function only of temperature.  This assumption can be justified by the fact that migrating pores 

do not remain spherical during migration.  The case of constant shape would require a constant 

equilibrium pressure to be applied, such a case would employ 𝑝 = 2𝛾/𝑟 which Speight derived 

from thermodynamics in which p is vapor pressure, 𝛾 is the surface tension of the solid and r is 

the radius (see Eq. (1) in (Speight, 1964)) and is further explained by Olsen (1979). The 

simulation presented here employs a transport velocity equation that has been developed by Sens 

(see Eq. (25) in (Sens,1972)).  The derivation has been previously described in section 3.2 and 

3.2.3 in particular (see Eq. (3.15)).  This equation allows the transport velocity of gaseous UO2 to 
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be plotted against the fuel radial distance, which is shown in Figure 4.1. We assume a 

temperature profile to conform to a parabolic profile with a centerline temperature of 2800 K and 

900 K on the outer edge.  The velocity profile of UO2 vapor can represent the pore velocity, as a 

function of radial position because it is assumed that vapor pressure is independent of surface 

tension.  The microstructure features usually have a length scale that ranges from nanometers to 

microns and that mesoscopic scale is handled well with phase-field models; therefore, a phase-

field model is believed to be well suited for illustrating the principal microstructure evolution of 

pore migration in a temperature gradient.    

 

Figure 4.1. Temperature profile and graph of its associated transport velocity  
The assumed temperature profile in the radial direction used in this work is shown for reference 
(top).  The bottom figure shows the transport velocity profile for a pore due to the vapor 
transport mechanism as derived by Sens (1972).  The transport velocity is shown as negative, 
which results in a migration of the pore towards the centerline of the fuel element since the 
positive radial direction is along the x-axis.  The shaded portions of the figure show the regions 
of characterized pore shape morphology. 
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4.3 Phase Field Method 

The phase-field method has become a powerful computational tool capable of modeling 

and predicting phenomena associated with microstructure evolution in materials.  The phase-

field method describes a microstructure by either using a set of conserved or nonconserved field 

variables that are continuous across the interfacial regions, which leads to diffuse interfaces.  

Interfaces can generally be categorized into two types, sharp and diffuse.  Diffuse interfaces 

separate multiple phases with a smooth transition between values in the immediate area 

surrounding the interface, which is defined by a finite width.  The finite width mentioned is 

referred to as the interfacial width and is often represented as a variable in simulations.  

Conventional microstructure modeling techniques use mathematically sharp interfaces to 

separate the compositional or structural regions.  This requires the local interfacial velocity to be 

determined as part of the boundary conditions or calculated from the driving forces, which thus 

requires the explicit tracking of the interface positions.  Explicit interface tracking can become 

complicated for systems with more than one dimension.  Phase-field models can describe sharp 

interfaces with an infinitesimal interfacial width known as the sharp interface limit. The sharp 

interface description is primarily used in continuum scales while the diffuse interface is useful in 

mesoscale models.  The variables pertaining to mobility and interface width are set to unity in 

this work for simplicity. 
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Figure 4.2. Visualization of a sharp and diffuse interface  
The sharp interface (top) defines a phase as being either all of one phase or all of another with a 
rapid, or sharp, change between phases.  The diffuse interface (bottom) allows a smooth 
transition between two phases (Nabi et al., 2014). 
 
 

 

Figure 4.3.  Demonstration of a diffuse interface  
Simple phase-field Cahn-Hilliard simulation used to show a diffuse interface.  The simulation 
begins with the top left picture and end with the top right picture.  A portion of the final 
simulation frame has been expanded so that the diffuse interface can be observed.   
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Phase-field models substitute boundary conditions at the interface with a set of partial 

differential equations.  This allows the model to describe the compositional/structural domains 

and the interfaces together with a set of field variables (Chen, 2002). Phase-field models serve to 

model the interface between multiple phases by observing the evolution of an auxiliary field 

developed from the continuous variation of field variables, also known as order parameters.  

Since this method does not need to explicitly track the positions of interfaces; the temporal and 

spatial evolution of the field variables is enough to represent the microstructure. The types of 

field variables, conserved and nonconserved, are governed by the Cahn-Hilliard diffusion 

equation and the Allen-Cahn relaxation equation, respectfully.  The phase-field method uses 

thermodynamic and kinetic information pertaining to the simulation as an input and is then able 

to evolve arbitrary morphologies and microstructures. Conserved variables are so named because 

they conserve their integrated values globally. 

 

4.4 Cahn-Hilliard Model 

The method presented here uses the Cahn-Hilliard equation (Cahn and Hilliard, 1958) 

because concentration is conventionally viewed as a conserved variable.  Also, phase-field 

models usually describe mass transport and interface migration by solid-state diffusion processes 

specified by the CH equation. 

                                                                  !"
!"
= ∇ ∙ 𝑀∇𝜇                                              (4.1) 

The concentration of a chemical species is represented by the variable c and is the conserved 

field variable, 𝑀 is the mobility of that species, and 𝜇 is the chemical potential of that species.  

The Ginzburg-Landau energy functional is used to describe 𝜇: 

                                                   𝜇 =  !"
!"
= 𝑓 𝑐 + 𝜅 ∇𝑐 ! 𝑑𝑉                                              (4.2) 
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The free energy density associated with the chemical species, 𝑓 𝑐 , is a key component of any 

phase-field model.  The microstructure evolution of a material evolves to reduce the total free 

energy present and thus 𝑓(𝑐) is an important piece in determining the different phases present in 

the model.  A double-well equation is used in this model in order to take advantage of the 

inherent ability of the Cahn-Hilliard equation to evolve interfacial migration within multi-phase 

microstructures.  The double-well function represents an approximation of the Van der Waals 

equation of state near the critical points.  A common drawback to this expression is the 

spontaneous drop shrinkage phenomenon that happens when the radius of a droplet is less than 

some critical value, but is not expected to be a problem because the initial radius is relatively 

large and the desired morphology will have a relatively large radius as well.  It is acknowledged 

that more physics-based expressions could be used; such as those used by Rokkam et al. (2009) 

and Millett et al. (2011). However, the emphasis of the presented simulation is to explore the 

combined mechanisms of diffusion and advection with a driving force that leads to a migration 

of a pore and the double-well function is expected to perform adequately. The equation used in 

this model is defined as: 

                                                                𝑓(𝑐) = 𝑐!(1− 𝑐)!                     (4.3)  

The two singular points of Eq. (4.3) are c=0 and c=1 which are the concentration values used to 

differentiate the individual phases in the simulation. It is assumed that the variable 𝑐 represents a 

vacancy concentration in the UO2 material, and a pore is simply a condensation of vacancies.  

Therefore, the concentration within a pore is 𝑐 ≈ 1, and thus 𝑐 ≈ 0 is taken to represent the solid 

UO2 material.   
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Figure 4.4. Plot of the free energy function 
Plot of Eq. (4.3) in order to visualize the double well equation.  Each well of the plot is 
considered one of the phases being modeled.  Here, 𝑐 ≈ 1 and 𝑐 ≈ 0 are the two phases of the 
model where 𝑐 ≈ 1 corresponds to the pore and 𝑐 ≈ 0 is the fuel matrix. 

 

4.5 Advection Equation 

Another piece is still needed in order to represent vapor transport.  Advection is known as 

the transport of a dissolved species within a convecting gas or liquid.  Advection is represented 

as: 

                                                                   !"
!"
=  −∇ ∙ 𝑣𝑐                                                         (4.4) 

where c is the conserved concentration variable and 𝑣 is a velocity field associated with the fluid 

that is responsible for transporting the dissolved species.  Advection fits well with the idea of the 

vapor transport mechanism.  The fuel is dissolved into a fluid, in this case a vapor, and is 

transported across the inside of a pore and is deposited on the opposite side.  The velocity field in 
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this case can be represented by Sens’ transport velocity equation previously described. 

Therefore, combining the Cahn-Hilliard diffusion equation with the advection equation to create 

a hybrid equation can simulate the vapor transport mechanism governing pore migration. 

                                                       !"
!"
= ∇ ∙ 𝑀∇𝜇 −  ∇ ∙ 𝑣𝑐                                                   (4.5) 

 

4.6 Solving The Cahn-Hilliard Model 

 The Chan-Hilliard equation can be solved or implemented in many different ways in 

terms of numerical methods.  The method used here is the Semi-Implicit Fourier-Spectral 

method and will require further explanation.  L.Q. Chen and Jie Shen studied the semi-implicit 

Fourier-spectral method used to model phase field equations.  They found that this method is at 

least two orders of magnitude faster than explicit finite difference schemes in two dimensions 

with a given accuracy of 0.5% (Chen and Shen, 1998).  The temporal evolution of the field 

variables used in phase field models is described by systems of time-dependent Ginzburg-

Landau (TDGL) and Chan-Hilliard equations.  Both equations are nonlinear and can only be 

solved numerically though discretization in space and time (Chen and Shen, 1998).   

Implicit and explicit methods have both been used for obtaining numerical 

approximations of the CH equation.  Explicit methods calculate the state of a system at a later 

time from the current state while implicit methods attempt to find a solution by using both the 

current state and a later state.  The implicit method requires an extra computational step, which 

can be harder to implement than the explicit method.  However, the explicit method can require 

impractically small time steps to achieve accurate results.  The implicit scheme becomes more 

computationally efficient when large time steps are required even though it takes extra 

calculations. The model presented in this work deals with a physical process that requires a 
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relatively large time step therefore an implicit scheme is chosen.  More specifically, a semi-

implicit scheme is chosen.  The term semi-implicit means that, in a two variable equation, one 

variable is treated implicitly and the other is treated explicitly.  In this case the semi-implicit 

scheme is used to discretize the time variable used in the Ginzburg-Landau equation and a 

Fourier-spectral method is used to discretize the space variable.   

Fourier-spectral methods are often chosen because their convergence rate is exponential 

in contrast to the second order convergence used by traditional finite-difference methods (Chen 

Shen, 1998).  Fourier-spectral methods are slightly harder to implement than simpler methods 

and can generally only be implemented on a system with periodic boundary conditions.  The 

basic explanation behind this type of method is that a periodic function can be represented by a 

series of sine and cosine functions, which in turn can be determined from a Fourier transform.  A 

function, 𝑝 𝑘 , is determined by 𝑃 𝑘  via the inverse Fourier transform as shown in Eq. (4.6). 

                                                         𝑝 𝑘 = 𝑃 𝑘 𝑒!!!"#𝑑𝑘!
!!                     (4.6) 

where 

k = wavenumber vector 

𝑃 𝑘  = forward Fourier transform of 𝑝 𝑥  
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Figure 4.5. Example of a Fourier approximation 
Simple visualization of a Fourier approximation of a square wave function plotted against the 
original function (Mic, 2015).   
 

A Fourier transform essentially decomposes a signal into the frequencies that make it up.  

In practical applications, a frequency domain representation can be built that combines all the 

contributions of the different frequencies to recover the original function.  This process is known 

as Fourier synthesis and is the principal behind the inverse Fourier transformation.  Fourier 

transforms can produce relatively large errors when the original function contains discontinuities.  

However, they are particularly effective at approximating smooth functions such as the Cahn-

Hilliard function.  The Fourier-spectral method for Cahn-Hilliard equations can be seen as a two-

step process developed from the work of Chen and Shen (1998).  The process is: recast the Cahn-

Hilliard equation in Fourier space (Eq. 4.7) and then discretize time using semi-implicit time 

stepping (Eq. 4.8).  

                                                  !! !
!"

= −𝑀𝑘! 𝑓!! 𝑐 + 𝐾𝑘!𝑐 𝑡                     (4.7) 

                                           ! !!!" !! !
!"

= −𝑀𝑘! 𝑓!! 𝑐 + 𝐾𝑘!𝑐 𝑡 + 𝑑𝑡                    (4.8) 
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Then the equation can be rearranged to get: 

                                                   𝑐 𝑡 + 𝑑𝑡 = ! ! !!"!!!! ! !"
!!!"!!!"

                     (4.9) 

This method allows the concentration variable to be solved in Fourier space and inverted back so 

that the advection term can be added to the Cahn-Hilliard equation.  

 

4.7 Implementation of The Cahn-Hilliard Diffusion-Advection Equation 

 The Cahn-Hilliard diffusion-advection equation, Eq. (4.5), was solved by treating the two 

associated terms separately.  The Cahn-Hilliard diffusion term (first time on the right hand side) 

was solved using the semi-implicit Fourier-spectral method.  The advection term is simple 

enough to be calculated quickly and accurately using a central finite difference approximation. 

Simulations were performed in the two-dimensional domain by using a uniform rectilinear mesh 

to represent the fuel element.  A grid consisting of 512×128 nodes (or in 1024×128 nodes for 

some cases) was used for discretization.  The larger domain is used primarily as a way of 

creating clear figures.  Round-off errors are an unfortunate consequence of using a floating-point 

number system, but reduced units for length and time were chosen in order to minimize the 

impact of these errors.  The simulations were executed with grid spacing parameters Δx = Δy = 

1.0 and physical lengths were later assigned with Δx = Δy = 500 nm.  The rectilinear simulation 

box thus represents a 256×64 𝜇m region of the fuel, 512×64 𝜇m for the larger simulation.  The 

simulation is designed so that the x-direction corresponds to the radial direction and this is the 

direction where the velocity field gradient is applied.  The time step value used during the 

simulations is Δt = 0.1 in reduced units, which corresponds to 4 seconds and a realistic 

representation of around 3.33 hours. 
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The transport velocity profile from Figure 1 shows two colorized regions, each 

corresponding to their own individual simulation.  This means that two different velocity field 

profiles are needed; one to simulate a lenticular morphology (Eq. (4.10)) and one to simulate a 

prolate morphology (Eq. (4.11)).  The transport velocity field is represented in reduced units as 

well. 

     𝑣! = −0.012𝑥                                                         (4.10)                                                                                                      

                                                              𝑣! = 0.005𝑥 − 3.1                                                     (4.11) 

It should be noted that 𝑣! = 0 throughout the domains.  The x-direction velocity fields shown in 

Eq. (4.10) and Eq. (4.11) are linear functions that have negative values throughout the given 

domain meaning that pores will always travel in the negative radial direction; i.e., towards the 

center of the fuel element. However, one has a negative slope and one has a positive slope.  This 

difference in slope between Eq. (4.10) and Eq. (4.11) is expected to affect the pore shape 

evolution during migration.  The linear velocity profiles given here can be re-scaled into physical 

units of centimeters and seconds where they can then be plotted and compared with Sens’ model 

(Eq. (25) in (Sens, 1972)). Even though Sens’ model is a curve, the curve can be assumed linear 

in the small region of the fuel element being simulated. Figure 4.6 shows this comparison below.  

Eq. (4.10) is shown to overlap well with the innermost region of the fuel radius and corresponds 

with the region from 0.0 to 0.0256 cm in the radial direction.  Eq. (4.11) corresponds with the 

region from 0.185 to 0.2106 cm in the radial direction.   
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Figure 4.6. Transport velocity equation plotted with Sens’ model  
The linear equations used to model the transport velocity in this work are plotted over the model 
put forth by Sens (1972), with the top plot showing Eq. (4.10) and the bottom plot showing Eq. 
(4.11).  Shaded regions are used in each figure to show the domain size used in their respective 
simulations (= 256 µm, with a 512×128 grid). It should be noted that Eq. (4.11) has been shifted 
to the right by 0.2 cm for this figure while keeping the slope constant.  

 

A single pore is initialized into the simulation domain.  Three morphologies are used to 

characterize the initial pore.  The first type uses a circular pore with an initial diameter of 30 Δx 

corresponding to 15 µm.  This size is important because it means the pore is relatively large, 

larger than 1 µm, and will thus have vapor transport as the driving source of pore migration.  

This large size is characteristic of all initial morphologies being tested in this work.  The second 

type of morphology being used is an ellipsoid.  Two types of ellipsoids are being used; one that 

has an aspect ratio of five to one and another whose aspect ratio is one to five.  All three initial 

morphologies will be simulated with each velocity field previously described for a total of six 

simulations; each shape with Eq. (4.10) and each shape with Eq. (4.11).  The pore center is 
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located at the point 480×64 for the smaller simulation domain and 900×64 for the larger domain.  

This location corresponds to the cold side of the domain since x = 0 is the portion of the 

simulation domain that is closest to the fuel centerline.  For example, the simulation domain used 

in association with Eq. (4.10) is adjacent to the centerline of the fuel, meaning that x = 0 is the 

centerline and x = 512 or 1028 in the radial direction is the opposite end of the simulation 

domain.  All simulations are run for 3000 time steps. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

	

5.1 Introduction 

 The simulations and figures presented here characterize the migration of a single pore in 

a temperature gradient.  Multiple initial morphologies are used during the course of these 

simulations in order to demonstrate the change in shape that occurs during migration.  The pore 

is shown to migrate in the direction of the temperature gradient towards the centerline of the fuel, 

which is in agreement with both theoretical predictions and experimental observations.  Changes 

to the pore’s shape during migration were also captured during the simulation and both lenticular 

and bullet shapes were observed.  Pore migration is also shown to be due to the vapor transport 

mechanism and not the thermodiffusion mechanism used by other models.  A contour field was 

created as to visualize the advection flux and vacancy concentrations present in the simulation.  

Differences in the shape morphology of migrating pores could potentially cause the pore’s 

migration velocity to deviate.  A parametric study was built to monitor the pore’s migration 

velocity and compare it to the prescribed transport velocity equation.  Since dimensional changes 

were observed in the migrating pores; it is worthwhile to calculate those changes and create a 

figure to show dimension change versus pore position. 

 

 

5.2 Shape Morphology 

 The initial morphologies that will be shown include a circle, an ellipse with a five to one 

aspect ratio, and another ellipse with an aspect ratio of one to five. In the case of the circular 
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pore, an initial diameter of 30 Δx, which corresponds to 15 µm in physical units is used.  This 

diameter places the pore well above the theoretical “large” category where vapor transport is the 

dominant mechanism responsible for migration.  Any contribution to an overall migration 

velocity due to solid-state thermodiffusion will be negligible, and thus vapor transport is the only 

driving mechanism considered for the simulation.  The following figures were taken from the 

simulations that used the larger grid; a 1024×128 grid. Therefore, discussion on the simulations 

will be limited to as it pertains to the larger grid.  All initial pores are placed at x = 900 Δx and y 

= 64 Δy.  The simulation domain is oriented so that the hottest portion, center, of the fuel 

element is located on the left hand side. 

 Figure 5.1- 5.3 uses Eq. (4.10) as the supplied transport velocity equation.  The use of Eq. 

(4.10) means the simulation domain corresponds to a region immediately adjacent to the 

centerline of the fuel; the fuel centerline is at the left end of the domain and the right end of the 

domain corresponds to a point 512 µm into the radial direction.  These figures depict successive 

snapshots of a pore as it migrates across the domain in the x-direction.  Migration of the pore in 

this direction is in agreement with the literature because pore migration should always be in the 

direction of increasing temperature; i.e. toward the centerline of the fuel element.  The x-

component of the velocity field is negative throughout the domain, which results in a pore that 

migrates in the negative x-direction.  This orientation is similar to the axial definition of Figure 

4.1.  The most notable aspect of Figure 5.1 is the transformation of the pore from a circle to a 

lenticular shape during the migration process.  This morphological change is due to the slope of 

the transport velocity equation in the x-direction (see Figure 4.6).  The equation, Eq. (4.10), 

produces a negative velocity profile and has a negative slope throughout the domain.  This 

causes the leading surface of the pore to experience a lower (or, less negative) velocity than the 
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trailing surface.  This results in the trailing edge moving slightly faster than the leading edge of 

the pore and thus reduces the width of the pore in the x-direction and the formation of a 

lenticular shape.  The concentration parameter, 𝑐, and the volume of the pore remain conserved 

due to the characteristics of the prescribed phase field model.  The surface area of the pore 

increases as the x-direction width approaches zero and counters the kinetic driving force for pore 

shape change previously described, which prevents the pore’s width from reducing to zero.  The 

pore then reaches a steady-state lenticular morphology.  

Figure 5.1 shows 4 snapshots of the simulation that are taken at equally spaced intervals 

of time, with the top image corresponding to the beginning of the simulation and the bottom 

image corresponding to the end.  Monitoring the relative position of the pore at each instance in 

time allows for the deduction that the pore velocity is highest at initial stages of the simulation.  

The velocity begins to decrease as the pore approaches the left side of the domain and the end of 

the simulation.  This type of behavior is expected because the velocity field defined by Eq. (4.10) 

equals zero at the left side of the domain. 

Figure 5.2 shows 4 snapshots of the simulation at equally spaced intervals of the 

simulation.  This particular simulation is for the initial ellipsoid morphology with an aspect ratio 

of five to one.  This simulation is able to show a pore with an initial morphology similar to the 

prolate shape transforming into a lenticular morphology during migration.   

Figure 5.3 depicts snapshots for the initial ellipsoid morphology with an aspect ratio of 

one to five.  The pore in this simulation is initially the lenticular shape that is expected to occur 

at the end of the simulation.  Therefore, the figure simply shows and ending morphology that is 

very similar to the beginning shape of the pore. 
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Figure 5.1. Pore migration simulation using Eq. (4.10) and starting from a circle 
Snapshots of a simulation showing pore migration when using Eq. (4.10).  The images are 
arranged top-to-bottom and correspond to 0, 1000, 2000, and 3000 simulation steps, respectively.  
The left side of the simulation domain corresponds to the fuel centerline. These images were 
taken from a simulation that used the larger grid (1024×128).  

 

 

 

Figure 5.2. Pore migration simulation using Eq. (4.10) and starting from a 5:1 ellipsoid 
Snapshots of a simulation showing pore migration when using Eq. (4.10).  The images are 
arranged top-to-bottom and correspond to 0, 1000, 2000, and 3000 simulation steps, respectively.   
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Figure 5.3. Pore migration simulation using Eq. (4.10) and starting from a 1:5 ellipsoid 
Snapshots of a simulation showing pore migration when using Eq. (4.10).  The images are 
arranged top-to-bottom and correspond to 0, 1000, 2000, and 3000 simulation steps, respectively.   
 

The second set of simulations used Eq. (4.11) as the prescribed transport velocity 

equation.  Figure 5.4- 5.6 shows snapshots of the simulations in the same manner as above.  The 

transport velocity here, much like of Eq. (4.10), consists of negative values throughout the 

domain that cause pore migration in the negative x-direction.  However, this time the velocity 

field has a positive slope in the x-direction.  This causes the leading edge of the pore surface to 

experiences a larger velocity than the trailing edge.  The pore will then elongate in the x-

direction and become similar to the experimentally observed prolate shape. 

The type of velocity field caused by Eq. (4.11) induces a pore shape transformation from 

a circular shape into a prolate (bullet) shape for Figure 5.4. It is observed that a somewhat 

circular protrusion develops at the leading surface of the pore and continues to evolve during 

migration.   

Figure 5.5 uses an elliptical pore with an aspect ratio of five to one.  The pore has an 

initial shape similar to the prolate morphology expected to occur during the simulation.  The 
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positive slope induced by Eq. (4.11) causes the pore to elongate in the x-direction as expected.  

The elongation present in Figure 5.5 is much greater than in Figure 5.4 due to the pore initially 

being in the prolate orientation.  

Figure 5.6 is for the simulation using an initial elliptical shape with an aspect ratio of one 

to five.  The pore began to precipitate during the simulation and resulted in a pore that was 

breaking up as the simulation progressed.  However, it can be observed that the pore began to 

approach a circular shape during the simulation, which is similar to the behavior of Figure 5.2.  

This circular shape is a key step in transforming between morphologies; from a lenticular shape 

to a prolate shape in this case.   The prolate morphology is a result of the leading edge moving 

faster than the trailing edge of the pore, and the nucleation action here is believed to be a result 

of this leading edge moving too fast for the concentration available.  Therefore, adjustments 

would need to be made to the simulation variables to fully capture the lenticular to prolate shape 

transformation, but the precipitation in Figure 5.6 is not of major significance.   

 

 

Figure 5.4. Pore migration simulation using Eq. (4.11) and starting from a circle 
Snapshots of a simulation showing pore migration when using Eq. (4.11).  The images are 
arranged top-to-bottom and correspond to 0, 1000, 2000, and 3000 simulation steps, respectively. 
These images were taken from a simulation that used the larger grid (1024×128).  
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Figure 5.5. Pore migration simulation using Eq. (4.11) and starting from a 5:1 ellipsoid 
Snapshots of a simulation showing pore migration when using Eq. (4.11).  The images are 
arranged top-to-bottom and correspond to 0, 1000, 2000, and 3000 simulation steps, respectively. 
These images were taken from a simulation that used the larger grid (1024×128).  
 
 

 
 

Figure 5.6. Pore migration simulation using Eq. (4.11) and starting from a 1:5 ellipsoid 
Snapshots of a simulation showing pore migration when using Eq. (4.11).  The images are 
arranged top-to-bottom and correspond to 0, 1000, 2000, and 3000 simulation steps, respectively. 
These images were taken from a simulation that used the larger grid (1024×128).  
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5.3 Contour Plot 

 The primary simulations in this work are mainly performed to demonstrate pore shape 

change during migration.  A contour plot was built in order to better understand the 

spatiotemporal evolution of both the pore shape and the advection flux present during simulation.  

Figure 5.7a-5.7c shows a close up view of a pore during the lenticular simulation with intervals 

akin to those of Figure 5.1 without the initial position snapshot.  A contour field is used to 

represent the vacancy concentration and an overlaid vector field is used to represent the 

advection flux.  Figure 5.7d is an even closer view of the shaded box from Figure 5.7b to better 

visualize the advection flux field.  Figure 5.7d shows the advection flux as vector arrows and it 

can be seen that the advection flux only exists to any significance within the interior of the pore.  

The length and direction of the vectors represent the flux of vacancies within the pore and are 

equal and opposite to the flux of the solid UO2 fuel material.  This means that solid material is 

being moved from the hot surface of the pore to the cold surface of the pore, which depicts the 

vapor transport mechanism. 
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Figure 5.7.  Contour plots showing advection flux for the lenticular pore 
Images (a), (b), and (c) illustrate the pores shape at different instances in time for the lenticular 
profile achieved using Eq. (4.10).  A vector plot is overlaid in order to depict the advection flux 
present due to vapor transport.  The magnified view (d) corresponds to the shaded box in (b).  
The lengths of the vectors are proportional to the magnitude of flux and are only significant 
within the pore.   

 

5.4 Parametric Study 

 Research by Nichols (1972) concluded, based on mathematically derived relations that 

the velocity of a migrating pore due to the vapor transport mechanism does not depend on the 

pore’s shape.  Therefore, it is necessary to study the velocity of a migrating pore during the 

simulation to see if changes to the pore shape resulted in a deviation of the pore velocity from the 

prescribed transport velocity equation.  

 The instantaneous position of the pore’s ‘center of mass’ was calculated by averaging the 

x- and y-positions of all the grid points with a concentration value of   c > 0.5.  The position 

points were plotted against the simulation time.  The plot subsequently allowed for the pore’s 

(a)$(b)$(c)$

(d)$
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instantaneous velocity to be calculated using a finite-difference approximation for the derivative 

of the pore position versus the time curve.  The pore velocity was then plotted against the pore’s 

x-position (i.e., the pore’s radial position).  The pore transport velocity for the lenticular profile, 

as modeled by Eq. (25) from Sens’ work and seen in Figure 4.1, was then overlaid so that 

comparisons can be made.  The results for the simulations using Eq. (4.10) are shown Figure 5.8-

5.10 which corresponds to the simulations performed and shown in Figure 5.1-5.3; the pore’s 

velocity matches very closely with the imposed transport velocity model throughout the 

simulation, despite the fact that the pore has drastically changed its shape during migration and 

despite different initial morphologies.  A small difference between simulation and prescribed 

equation can be observed at the beginning stages of the simulation, at the right hand side of 

Figure 5.8-5.10, but this is believed to be due to an initial acceleration that the pore must perform 

since the pore has an initial velocity of zero. 

 

Figure 5.8. Simulated migration velocity using Eq. (4.10) and starting from a circle 
The velocity of a migrating pore is plotted versus the pore’s radial position.  Blue data points 
correspond to the velocity values measured from the simulation that used Eq. (4.10).  The red 
line corresponds to Eq. (4.10).  The figure shows that even though the pore has changed shape to 
a lenticular morphology, the pore velocity matches very closely to the prescribed model.   

Figure 4: Velocity versus position figures for lenticular simulation.  The linear velocity profile is plotted against data points taken from the 
simulation.  The data matches the profile very well and shows no indication of major deviations. 
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Figure 5.9. Simulated migration velocity using Eq. (4.10) and starting from a 5:1 ellipsoid 
The velocity of a migrating pore is plotted versus the pore’s radial position.  Blue data points 
correspond to the velocity values measured from the simulation that used Eq. (4.10).  The red 
line corresponds to Eq. (4.10).  
 

 

 

Figure 5.10. Simulated migration velocity using Eq. (4.10) and starting from a 1:5 ellipsoid 
The velocity of a migrating pore is plotted versus the pore’s radial position.  Blue data points 
correspond to the velocity values measured from the simulation that used Eq. (4.10).  The red 
line corresponds to Eq. (4.10).  
 

pore starts  
         here 

measured 
model from Fig. 4.1 

fuel radius (µm) 

-2 

-4 

-6 

-8 

po
re

 v
el

oc
ity

 (×
10

-2
 µ

m
/s

) 

pore starts  
         here 

measured 
model from Fig. 4.1 

fuel radius (µm) 

-2 

-4 

-6 

-8 

po
re

 v
el

oc
ity

 (×
10

-2
 µ

m
/s

) 



66 

 The same process described above was repeated for the prolate (bullet) simulations when 

the transport velocity of Eq. (4.11) was used, and the results are shown in Figure 5.11-5.13. 

These figures correspond to the simulations shown in Figure 5.4-5.6. The results show that the 

pore velocity from the simulation matches closely with the associated transport velocity model 

throughout the simulation. 

 

 

Figure 5.11. Simulated migration velocity using Eq. (4.11) and starting from a circle 
The measured velocity of a migrating pore for the simulation using Eq. (4.11) is shown with blue 
data points and is plotted over the red line, which corresponds to Eq. (4.11).  The velocities are 
plotted against the pore’s radial position.  The simulation shows a pore that transformed into a 
prolate (bullet) shape and this figure shows that the velocity profile during the simulation still 
matches closely with the prescribed equation. 
 

 
	

Figure 5: Velocity versus position figure for the radially oriented pore migration simulation.  The transport velocity from Figure 1 can be taken as 
linear in the relatively small radius of the fuel pellet shown; .18 < r < .205 cm, meaning the x-axis of the origin corresponds to the fuel element 
radius r=0.19cm.  The linear velocity profile is plotted against data points taken during the simulation that shows the velocity of the pore at a 
particular point along the fuel radius.  The pore starts in the top right of this figure and migrates towards the origin, closely following the velocity 
profile.   
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Figure 5.12. Simulated migration velocity using Eq. (4.11) and starting from a 5:1 ellipsoid 
The measured velocity of a migrating pore for the simulation using Eq. (4.11) is shown with blue 
data points and is plotted over the red line, which corresponds to Eq. (4.11).  The velocities are 
plotted against the pore’s radial position.  The simulation shows a pore that began in a prolate 
orientation and extended axially throughout the simulation.  
 

 

 

Figure 5.13. Simulated migration velocity using Eq. (4.11) and starting from a 1:5 ellipsoid 
The measured velocity of a migrating pore for the simulation using Eq. (4.11) is shown with blue 
data points and is plotted over the red line, which corresponds to Eq. (4.11).  The velocities are 
plotted against the pore’s radial position.  The simulation shows a pore that began as in a 
lenticular orientation.  
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 The results of this study serve to conclude if pore shape influences transport velocity.  

Simulations were performed that showed drastic changes in pore shape during migration for both 

lenticular and prolate morphologies.  The instantaneous velocities of the pore during the 

simulations closely followed that of their respective prescribed transport velocity models thus 

showing that shape did not affect velocity during these simulations.  This illation is in agreement 

with the work previously performed by Nichols (1972). 

 

5.5 Dimensional Changes 

 One of the primary objectives of this work is to demonstrate a pore’s change in shape 

during migration.  Figures 5.1-5.6 show this change in shape during the simulation, but the 

dimensional changes observed still need to be described numerically to fully understand the 

changes in morphology.  The dimensional changes in the migrating pores were calculated for 

each simulation.  The pore’s width in the x- and y-directions were calculated and plotted versus 

the pore’s radial position in order to visualize how much the pore has changed in each dimension 

and where the change occurs.   

In the case of initially circular pores, both pores began as 15 µm circular pores.  The end 

of the simulation shows that the lenticular pore, using Eq. (4.10), reached x- and y-dimensions of 

10.5 and 31.5 µm, respectively.  The prolate simulation, using Eq. (4.11), ended with x- and y-

dimensions of 30.0 and 9.5 µm, respectively.  These results can be seen in Figure 5.14, for both 

the lenticular simulation and the prolate simulation.  The only difference between the two types 

of simulations is the attributed values for the transport velocity.  Therefore, the transport velocity 

equation assigned (and its mathematical properties such as radial profile, slope, and sign of 

slope) is the important parameter that dictates the change in pore shape during migration. 
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The initial elliptical morphologies are shown in Figure 5.15 and Figure 5.16.  Figure 5.15 

uses Eq. (4.10) as the prescribed transport velocity equation.  This figure is able to portray the 

change in shape from a prolate like initial morphology into a lenticular morphology well because 

the pores width in the x- and y-directions can be seen crossing each other and then continue to 

evolve (top).   It also demonstrates than an initial lenticular shape will maintain its shape as the 

simulation progresses (bottom).  Figure 5.16 uses Eq. (4.11) as the prescribed velocity equation.  

It demonstrates that an initial prolate shape will maintain its overall shape as it evolves during 

migration (top).  It also shows an initial lenticular morphology attempting to become a prolate 

morphology by showing the pores width in the x- and y-directions converging on each other, 

similar to the top of Figure 5.15 (bottom). 
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Figure 5.14.  Plots showing the shape evolution of a circular pore during migration 
The x- and y-dimensions of a migrating pore are plotted against the fuel radius.  The top figure is 
for the simulation using Eq. (4.11) and shows the transformation of a pore into a prolate 
morphology.  The bottom figure shows data for the simulation using Eq. (4.10) and demonstrates 
a transformation from an isotropic morphology into a lenticular morphology.  The blue dots 
correspond to the pore’s y-dimension and the red dots correspond to the pore’s x-dimension.   
 

Figure'6:'Pore'change'in'the'x2axis(red)'and'y2axis(blue)'plo;ed'against'the'center'posi<on'of'the'pore.'''
The'top'and'bo;om'figures'represent'the'bullet'and'len<cular'simula<ons'respec<vely.'For'example,'the''
bo;om'figure'demonstrates'a'compression'in'the'radial'direc<on'and'an'increase'in'the'tangen<al'direc<on;''
indica<ve'of'a'len<cular'shape.'
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Figure 5.15.  Shape evolution of an initial ellipsoid during migration using Eq. (4.10) 
The x- and y-dimensions of a migrating pore are plotted against the fuel radius.  The top figure is 
for the simulation using an ellipsoid with an aspect ratio of 5:1 and the bottom figure is for the 
ellipsoid with an aspect ratio of 1:5.  Both figures presented here use Eq. (4.10) as the prescribed 
transport velocity profile. The blue dots correspond to the pore’s y-dimension and the red dots 
correspond to the pore’s x-dimension.   
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Figure 5.16.  Shape evolution of an initial ellipsoid during migration using Eq. (4.11) 
The x- and y-dimensions of a migrating pore are plotted against the fuel radius.  The top figure is 
for the simulation using an ellipsoid with an aspect ratio of 5:1 and the bottom figure is for the 
ellipsoid with an aspect ratio of 1:5.  Both figures presented here use Eq. (4.11) as the prescribed 
transport velocity profile. The blue dots correspond to the pore’s y-dimension and the red dots 
correspond to the pore’s x-dimension.   
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CHAPTER 6 

CONCLUSION 

	

6.1 Summary 

 A computational simulation of pore migration in a thermal gradient due to the vapor 

transport mechanism has been performed using phase-field modeling techniques.  The simulation 

presents the vapor transport mechanism as UO2 molecules diffuse through the pore interior due 

to a temperature gradient.  The model utilizes the traditional Cahn-Hilliard equation appended 

with an advection term to create an equation that requires a vapor transport velocity field to be 

supplied and thus model the vapor transport mechanism.  Two simple linear velocity profiles 

were used during the course of this thesis to be the supplied vapor transport velocity fields.  The 

two simple equations were closely correlated to the transport velocity equation developed by 

Sens (1972) at two different radial positions within the fuel.  The simulations performed show 

the migration of a single large pore across the simulation domain.  These simulations illustrate 

highly non-equilibrium shapes, lenticular and prolate geometries, forming during their migration 

toward the hot side of the fuel.  The dimensional changes of the pore during migration were 

closely monitored because experimental observations state that highly non-equilibrium shapes 

have been observed during migration.  The pore migration velocity was also closely tracked so 

that it could be compared to the supplied velocity equations.   

 In summary, a phase-field model was built that incorporates thermal gradient-driven 

migration of pores in oxide fuel due to the vapor-transport mechanism.  The model developed 

successfully showed migration of a pore towards the end of the simulation domain that 

represented the centerline of the fuel and thus the hottest portion of the fuel.  An initially 

isotropic pore demonstrated concurrent changes in shape during its migration.  Elliptical initial 
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shapes were also simulated that showed concurrent changes in shape during migration as well.  

Moreover, both lenticular and prolate morphologies were observed and the predicted 

morphology was shown to be in agreement with changes to the supplied transport velocity 

equation.  Also, the velocity of the pore during migration accurately represented the supplied 

transport velocity equation and changes to the pore’s shape during migration did not influence its 

velocity (i.e., migration velocity is independent of shape).  The behavior of the model in terms of 

the transport mechanism, pore shape change, migration direction, and velocity independence is 

all in agreement with related literature.  A model that successfully shows changes in shape 

morphology and migration due to the vapor transport mechanism is being presented for the first 

time.   

 

6.2 Conclusions 

 The simulations presented here illustrate that the slope of the transport velocity field can 

explain the non-equilibrium shapes, lenticular and prolate geometries, observed in migrating 

pores.  Figures 5.1 demonstrates a lenticular morphology and Figure 5.4 shows a prolate 

geometry for the isotropic initial pore.  The only difference between the simulations shown in 

these figures is the supplied transport velocity equation, and the slope of the transport velocity 

field in the radial direction describes the difference between Eq. (4.10) and Eq. (4.11).  

Therefore, it can be concluded that the slope of the transport velocity field is responsible for the 

change in a pore’s shape during migration.  Consequently, this information gives additional 

support to the notion of large pore migration during fuel restructuring being driven by the vapor 

transport mechanism.  This conclusion draws from the fact that similar simulations of large pore 
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migration via solid-state thermodiffusion do not show any change to the pore’s shape during its 

migration (Hu and Henager, 2010)(Li et al., 2010)(Zhang et al., 2012).   

 Additionally, it was found that the magnitude of a migrating pore’s velocity in these 

simulations is independent of any changes in shape that occur based on the information presented 

in Figure 5.8 and Figure 5.11.  This conclusion agrees with the work of Nichols (1972) who 

states that the velocity of a pore migrating due to the vapor transport mechanism is independent 

of changes to the pore’s shape.  However, Sens’ model contains a built in assumption that the 

internal vapor pressure of the pore is a function solely based on temperature and therefore 

neglects contribution from surface tension.  It was not investigated whether or not this 

assumption affects the previous conclusion. 

 

6.3 Recommendations For Future Work 

 The model and simulations presented in this thesis successfully reproduce the 

transformation of an initially isotropic pore into either a lenticular or prolate shape via the vapor 

transport mechanism, and it is believed to be an advance over other recent attempts to simulate 

thermal-gradient-driven pore migration (Li et al., 2010)(Zhang et al., 2012)(Tikare and Holm, 

2005).  This type of work is used to help understand the mechanism of vapor transport behind 

thermal gradient driven migration in large pores with the hopes of engineering microstructures 

for optimal performance of the fuel.  This model could potentially, for this reason, lead to 

significant scientific progress if it is further refined.   

A more sophisticated version of this model could include a direct calculation of the 

spatially dependent temperature field surrounding the pore (in the fuel element), and allow that 

to inform the transport velocity field.  The current model presented here assumes a particular 
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temperature profile when the transport velocity field was assigned.  Though this was a rather 

simple way of dealing with this variable, it was sufficient for the purpose of this work.  This 

work also only used a single pore in the simulations.  Future models could include the migration 

of multiple pores in a polycrystalline matrix in order to understand the formation of the columnar 

grain structure.  Additional pores could also mean supplementary physics to handle pore 

coalescence.  Further work on this particular model could also investigate if surface tension 

forces will affect the conclusion of velocity independence stated earlier. 

 

	  



77 

REFERENCES 

	
	

Allen, S. M., Cahn, J. W., 1979, “A microscopic theory for antiphase boundary motion 
and its application to antiphase domain coarsening,” Acta Metallurgica, Vol. 27, pp. 1085-1095. 

Cahn, J.W., Hilliard, J.E., 1958, “Free Energy of a Nonuniform System,” The Journal of 
Chemical Physics, Vol. 28, pp. 258–267. 

Chen, L.Q., Shen J., 1998, "Applications of Semi-implicit Fourier-spectral Method to 
Phase Field Equations," Computer Physics Communications, 108, pp. 147-58. 
 

Chen, L.Q., 2002, "Phase-Field Models for Microstructure Evolution," Annual Review of 
Materials Research, Vol. 32, pp. 113-40.   
 

Denbigh, K. G., 1950, “The Thermodynamics of the Steady State,” Methuen, London.  
 

Desai, T.G., et al., 2010, "Atomistic Simulations of Pore Migration under Thermal 
Gradient in UO2," Acta Materialia, Vol. 58, pp. 330-39.  
 

Dushman, S., 1958, “Scientific Foundations of Vacuum Technique,” Wiley, New York, 
pp. 75. 
 

Halas, D.R. De, Horn, G.R., 1963, "Evolution of uranium dioxide structure during 
irradiation of fuel rods," Journal of Nuclear Materials, Vol. 8, pp. 207-220.  
 

Hu, S.Y., Henager, C.H., “Phase-field simulation of pore migration in a temperature 
gradient.” Acta Materialia, Vol. 58, pp. 3230-3237. 
 

Kaneko, H., et al., 1969, “Calculation Program MIPORE for Structure Change of Oxide 
Fuel during Irradiation,” Journal of Nuclear Science and Technology, Vol. 6, pp. 601-603. 
 

Kawamata, H., et al., 1977, “Migration Rate of Lenticular Pores in UO2 Under the 
Influence of Temperature Gradient,” Journal of Nuclear Materials, Vol. 68, pp. 48-53.  
 

Li, Y., et al., 2010, “Phase-field modeling of pore migration and growth kinetics in 
materials under irradiation and temperature field,” Journal of Nuclear Materials, Vol. 407, pp. 
119-125. 
 

MacEwan, J.R, Lawson, V.B., 1962, "Grain Growth in Sintered Uranium Dioxide: II, 
Columnar Grain Growth," Journal of the American Ceramic Society, Vol. 45, pp. 42-46. 
 

Mic, 2015, “Fourier Series and Square Wave Approximation,” from 
http://firsttimeprogrammer.blogspot.com/2015/04/fourier-series-and-square-wave.html 



78 

 
Michels, L. C., Poeppel R. B., Neimark, L.A., 1970, “Movement Of Fission Gas Bubbles 

And Inclusions In Mixed-Oxide Fuel,” Argonne National Lab., Ill.. 
 

Millett, P.C., et. al., 2011, “Phase-field simulation of irradiated metals, Part I: Pore 
kinetics” Computational Materials Science, Vol. 50, pp. 949-959.  
 

Nabiollahi, N. et al., 2014, "Microstructure simulation of grain growth in Cu Through 
Silicon Via using phase-field modeling," 15th International Conference on Thermal, Mechanical 
and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems.   
 

Nichols, F.A., 1967,  “Theory of columnar grain growth and central pore formation in 
oxide fuel rods,” Journal of Nuclear Materials, Vol. 22, pp. 214-222. 
 

Nichols, F.A., 1968, “Pore migration in ceramic fuel elements,” Journal of Nuclear 
Materials, Vol. 27, pp. 137. 

 
Nichols, F.A., 1969, “Kinetics of diffusional motion of pores in solids: A review,” 

Journal of Nuclear materials, Vol. 30, pp. 143-165. 
 

Nichols, F.A., 1972, “On the diffusional mobilities of particles, pores and loops,” Acta 
Metallurgica, Vol. 20, pp. 207. 
 

Nichols, F.A., 1979, “On the thermal gradient migration of lenticular pores,” Journal of 
Nuclear Materials, Vol. 84, pp. 319. 
 

Ohse, R.W., 1964, “High-Temperature Vapor-Pressure Studies of UO2 by the Effusion 
Method and Its Thermodynamic Interpretation,” Journal of Chemical Physics, Vol. 44., pp. 
1375-1377. 

 
Olander, D.R., 1976, Fundamental Aspects of Nuclear Reactor Fuel Elements, Technical 

Information Center, Energy Research and Development Administration, Oak Ridge, TN. 
 

Oldfield, W., Markworth, A.J., 1969, "The theory of bubble migration applied to 
irradiated materials," Materials Science and Engineering, Vol. 4.6, pp. 353-66.  
 

Olsen, C. S., 1979, “UO2 Pore Migration and Grain Growth Kinetics,” Rep. Idaho Falls: 
IASMiRT. 
 

Onsager, L., 1931, “Reciprocal Relations in Irreversible Processes. I.,” Physical Review, 
Vol. 37, pp. 405-426. 
 

Platten, J.K., 2006, "The Soret Effect: A Review of Recent Experimental Results," 
Journal of Applied Mechanics, Vol. 73, pp. 5. 
 



79 

Rokkam, S., et al., 2009, “Phase field modeling of pore nucleation and growth in 
irradiated metals,” Modelling and Simulation in Materials Science and Engineering, Vol. 17. 
 

Sens, P.F., 1972, "The Kinetics of Pore Movement in UO2 Fuel Rods," Journal of 
Nuclear Materials, Vol. 43, pp. 293-307. 
 

Speight, M.V., 1967, “The migration of gas bubbles in material subject to a temperature 
gradient,” Journal of Nuclear Materials, Vol. 13, pp. 207. 
 

Tikare, V., Holm, E.A., 2005, "Simulation of Grain Growth and Pore Migration in a 
Thermal Gradient," Journal of the American Ceramic Society, Vol. 81, pp. 480-84. 
 

Williamson, G. K., Cornell, R. M., 1964, "The Behavior of Fissici Product Gases in 
Uranium Dioxide", Journal of Nuclear Materials, Vol. 13, pp. 278-280. 
 

Zhang, L., et al., 2012, "Phase-field Modeling of Temperature Gradient Driven Pore 
Migration Coupling with Thermal Conduction," Computational Materials Science , Vol. 56, pp. 
161-65. 
 
 
	  



80 

APPENDIX  

	

Figure A.1. Variables and initialization 
Script to initialize variables including domain size, pore position, and concentration 
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Figure A.2. Code to update Cahn-Hilliard model 
Script to update the Cahn-Hilliard model with the concentration variable.  This is also where the 
specified transport velocity equation is used. 
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Figure A.3. Code to run the simulation(s) 
Script to run the simulation and plot the results to visualize pore migration.  This script produced 
the images seen in Figure 5.1 and Figure 5.2.	
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