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Abstract 

Characterization of micro/nano-copper particles impregnated Polydimethylsiloxane 

(PDMS) submersed in supercritical carbon dioxide (scCO2) was studied.  The purpose of this 

investigation was to advance micro-corrosion sensor technology utilizing PDMS and micro-

metal particle composite as the sensing element currently under-development.  One of the key 

challenges encountered was the removal of the native oxides inherently existing on the metal 

particles.  Numerous techniques were experimented with to counter this problem at the UA 

Engineered Micro/Nano Systems Laboratory (EMNSL), with swell-based protocols being 

identified as the most promising solution.  In terms of compatibility to Micro-electro-mechanical 

Systems (MEMS) fabrication, CO2 is often used in the release of stiction for sensitive 

microstructures.  The experimental method was classified as low temperature techniques (less 

than 100 degrees Celsius).  Commonly, the composite exhibits expansion ratio from 2.5% to 

20%, exhibiting more sensitivity to the percentage content of the metal particles, albeit below 

those reported in literature for pure cross-linked PDMS. The expansion time-constant is found to 

be on the order of 100 to 1000 seconds. 
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Chapter 1.  Introduction 

The current goal of the UA EMNSL is to develop a novel micro corrosion sensor that 

requires the use of PDMS embedded with micro metal particles.  This PDMS composite is 

critical for the sensing element of the sensor under development, and one of the challenges in 

using micro metal particles is the difficultly in keeping the particles from oxidizing rapidly due 

to its high surface area to volume ratio.  As discussed in the corrosion and corrosion sensing 

portion of the next chapter, oxidation occurs at the surface of the particle.  The result of this large 

surface area to volume ratio is the rapid oxidation of the particles.  There are, of course, a 

number of ways to keep oxidation from occurring during the sensor fabrication process.  One of 

the more common ways is to keep the process in an oxygen-free environment.  This method can 

be very expensive and also increases the complexity of the entire fabrication process because the 

oxygen free environment has to be maintained for the entire sensor fabrication processes.  

Another way is to etch away the oxide on the metal particles after the PDMS-copper composite 

has already been placed onto the substrate.  For cases using copper particles, the oxides can be 

etched away without significant damage to the particle by using acetic acid [1].  There are 

attempts of in-situ wet etching of the PDMS-copper composite samples by UA EMNSL but the 

results were not ideal.  The separated oxides did not vacate the PDMS samples completely, and 

the residual oxides became sediments at the bottom of the sample.  The sediments will ultimately 

affect the electrical resistance across the PDMS composite. The fact that solvents could expand 

cross-linked polymers, PDMS in particular, has been studied in the past [2] [3] [4].  Then, it is 

conceivable that if etching could be done when the PDMS composite is in an expanded state, 

then the oxides could be vacated without leaving any sediment behind.     
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In order for this newly conceived process to be integrated into the current sensor 

fabrications process, understanding of this expansion behavior is vital.  There are many solvents 

used in MEMS fabrication process, scCO2 was considered in this study.  Among the reasons 

scCO2 was considered for this study over the other solvents is the ability for the solvent 

characteristics of scCO2 to be tuned by changing the temperature and pressure. Adjustments in 

pressure and temperature will change the solubility parameter, diffusion coefficient, and density 

which should affect the expansion characteristics of the PDMS samples.  Another reason CO2 

was chosen was its relative inertness. Lastly scCO2 is considered an environmentally clean 

solvent because it is a naturally present in the atmosphere.   

This study will help in the understanding of polymer expansion due to submersion in 

scCO2 by providing more data in the research area.  Literature search on the subject produced 

three different theories, one is based on solubility parameter, second is based on the diffusion of 

CO2 and bulk energy, and the third one based on adsorption.  It is hoped that with additional data 

on expansion of PDMS, a more unified theory could be developed in this field.  

The expansion of cross-linked PDMS submersed in scCO2 has been studied by multiple 

groups and their findings have been published.  PDMS with embedded metal particles submersed 

in scCO2 however, has not been studied.  Also most PDMS expansion studies do not consider 

the time to reach expansion equilibrium.  After an exhaustive literature search, the amount of 

expansion and the time to swell to equilibrium is an unknown for the combined PDMS and metal 

particle composite.  In order to use this in-situ etching technique in the sensor fabrication 

process, the expansion characteristic of the combined PDMS and metal particle composite must 

be known.  The focus of present investigation is to characterize the expansion behavior of cross-
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linked PDMS and metal particle composite submersed in scCO2 and to compare results with 

studies on pure PDMS expansion.  

The general expectation for expansion should follow some form of exponential increase 

(Equation 7) that will reach equilibrium after some characteristic time constant.  As pressure of 

the system increases, the maximum expansion should increase as well.  As temperature 

increases, the PDMS sample should expand more because increases in thermal energy in the 

system should excite the CO2 molecules, therefore increasing the amount of diffusion into the 

PDMS composite.  The increase in micro copper particles in the sample should diminish 

expansion because the copper particles should not change volumetrically when submersed in 

scCO2, and the PDMS portion of the sample will decrease as more copper particles are 

incorporated into the sample.  In summary, the objectives of this research are:  

 Pave way for an improved fabrication of MEMS metal polymer composite sensor 

element.  

 Correlate the expansion of PDMS-copper particle composite to CO2 pressure and 

temperature.  

 Correlate PDMS-copper particle composite expansion to particle concentration.   

 Determine time constant of the expansion process for both pure PDMS and PDMS-

copper particle composite.   
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Chapter 2. Back Ground Information  

This chapter will give some basic ideas and concepts needed to understand the reasoning 

behind this investigation.  The importance of corrosion and corrosion sensing will be discussed 

first.  This is followed by the development of a MEMS-based metal micro-particle composite 

corrosion sensor being developed at the UA EMNSL. The basic properties of the polymer used 

in this investigation (PDMS) and the solvent (CO2) also will be discussed.  Lastly the current 

understanding of polymer expansion in solvents is discussed at the end of this chapter. 

2.1. Corrosion and Corrosion Sensing 

Corrosion is the unintended destruction of metallic material due to electrochemical 

reactions initiated at the surface of the material.  The electrochemical reaction process generally 

occurs as formation of metal oxides due to a reduction-oxidation reaction.  When metal particles 

lose electrons the oxidation process is initiated. When the electrons react with oxygen forming 

negative ions of oxygen is the reduction process.  In many metals the oxidation process does not 

stop at the initial surface layer. This process will continue and cause material loss.  The loss of 

material will inevitably cause stress concentrations and structural damage [1].    

Corrosion costs in United States are estimated to be about 5% of the national Gross 

Domestic Product per year, thus, knowing when corrosion has become damaging can be very 

useful in maintenance and reduction of cost of ownership for infrastructure, transportation 

vehicles, military hardware, etc.  By detecting the source and location of corrosion early, a 

significant portion of cost of ownership could be saved by avoiding major overhauls and 

unexpected break downs [5].      
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There are four types of maintenance strategies.  They are corrective, preventative, 

predictive, and reliability-centered maintenance.  Corrective maintenance is centered on repairs 

and replacement after the damage has occurred.  Preventative maintenance is based on regular 

servicing and replacement regardless of the condition of the structure or part.  Predictive 

maintenance requires active characterization of the status of the structure or part under 

consideration, making replacement/repairs as needed.   Reliability-centered maintenance is 

conducted on reliability history and risk analysis to improve the other three strategies [6].  

For the preventative maintenance method to be effective, corrosion monitoring is vital.  

In general, there are three types of corrosion monitoring techniques.  The first one to be 

discussed is the offline technique.  Generally, this method is conducted with material samples 

that have a similar composition to that of the material of interest.  The change in material 

dimension or weight loss of the material sample after it is subjected to the same conditions as the 

infrastructure or equipment in question.  This technique can only detect an average rate of 

corrosion; therefore it can only provide a good guess on the state of corrosion.  Another 

disadvantage is that it generally takes months to produce results, making preventative 

maintenance difficult.  It is also not possible to determine the change in corrosion rate.  The 

second technique is the online technique.  This technique uses probes to monitor corrosion and 

store the corrosion data over time.  The advantage of the online technique over the offline 

technique is that it can detect the rate of corrosion and the data can be collected at a faster rate.  

The Disadvantage for this technique is that it can only report the corrosion information after 

corrosion has taken place.  The last of the three techniques is the real-time measurement.  This 

technique requires the corrosion information collected by the probe to be transmitted in real-

time.  The Advantage of this technique over the other two is that it allows for continuous 
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monitoring [6].  The last two techniques should provide corrosion information in a timely 

manner for the preventative maintenance method.     

2.2. MEMS Corrosion Sensor under Development 

The development of a MEMS-based metal micro-particle composite corrosion sensor has 

been the focus of the research group at the UA EMNSL.  The sensor functions by corrosion of 

metal particles within the composite as corrosive species diffuses into the sensing element.  As 

the particles corrode the corrosion can be quantified by detecting changes, such as its electrical 

resistance, or electro-chemical noise.  The basic operating principles of the metal particle 

polymer composite corrosion sensor are shown in Figure 1 [6].  As corroding agents diffuse into 

the polymer composite, oxidation will take place on the surfaces of the metal particles. This 

process causes changes to the electrical resistance and electro chemical noise within the 

composite.  The changes can be detected by the contact lead on the substrate. This sensor design 

can potentially provide provide real time corrosion data.   

 
Figure 1: Basic Operation Principles of metal particle poly composite corrosion sensor [6] 

The sensor composite can be fabricated using the Direct Polymer Patterning On Substrate 

Technique (DPPOST) [7].  The process is summarized in Figure 2.  The first step is to deposit a 

thin dissolvable layer (Omincoat
TM

) on the substrate. Then a mechanically tough sacrificial layer 

(SU-8, a photo-curable epoxy) is deposited.  Both layers war then lithographically patterned with 
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the desired geometry and etched away.  The substrate surface exposed by the pattern is then 

chemically roughened to enhance bonding between the soft polymer and the substrate. Then the 

soft polymer is deposited onto the patterned geometry.  Lastly the sacrificial layer is removed to 

expose structures of soft polymer [7].   

 
Figure 2: DEPPOST Process [6] 

2.3. Polydimethylsiloxane (PDMS) 

PDMS is a mineral organic polymer (structure containing carbon and silicon) of the 

siloxane family (word derived from silicon, oxygen and alkane) [8].  PDMS is a viscous liquid 

before the introduction of the cross-linking agent.  The cross-linked PDMS becomes a 

viscoelastic material with adjustable mechanical properties depending on the cross-linking 

process.  Cross-linking can take place at room temperature.  Because of its commercial 

availability, chemical stability, low curing temperature, and mechanical flexibility, PDMS is a 

desirable material for application in MEMS devices, such as those used in microfluidic devices 

[9] [10].  Cross-linked PDMS sample used in this investigation is shown in Figure 3.  
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Figure 3: Typical PDMS sample used 

The tendency of PDMS to expand when in contact with non-polar solvents should be 

noted when considering it as material for MEMS fabrication.  After exposure to nonpolar 

solvents, PDMS has the ability to return to its original shape by chemically and/or mechanically 

desorbing the solvent.  However, this relaxation process has to be done gradually to avoid 

cracking due to excessive local mechanical pressures. The molecular structure of PDMS is a 

repeating units of -OSi(CH3)2- groups.  By exposing PDMS to oxygen plasma, the surfaces can 

become hydrophobic.  Oftentimes glass is used as a substrate for mounting MEMS devices.  The 

process involving oxidizing both glass and PDMS surfaces with Oxygen plasma before intimate 

contact.  The resulting chemical bond can be very strong.  The expansion of bonded PDMS and 

glass chips immersed in solvents has been known to break the glass substrate or tear the PDMS. 

[3]  

A property that has been reported to affect expansion of polymers is the solubility 

parameter. The solubility parameter of PDMS at different temperatures under standard and 

atmospheric pressure conditions was discussed by Roth [11].  There seems to be a slight decrease 

in solubility parameters as the temperature increased from 30 C to 90 C. The chain length was a 

significant factor in determining solubility parameter of PDMS in the same study [11].   
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2.4. Supercritical Carbon Dioxide (scCO2) 

Supercritical Fluids have been used for the last 25 years as an environmentally clean 

solvent in a variety of technical and chemical processes. One of the advantages of a supercritical 

fluid is that its solvent strength can be adjusted with pressure and temperature, which enables 

tuning of the selectivity, degree of extraction, and the degree of loading during an expansion 

process. In addition, supercritical fluids are soluble in many polymers, often resulting in 

substantial expansion of the polymer composite, which enhances solute diffusivity [12].  scCO2 

has been used to release MEMS structures as a final rinser, due to low surface tension [13].  This 

method avoids capillary force between the MEMS structures and surround features [13].  scCO2 

has been especially attractive due to its moderate critical point at 31.3 C and 7.38 MPa [14].  A 

possibly problematic characteristic of scCO2 is the large density fluctuations.  The density 

fluctuations are inhomogeneous regions of high and low density.  This density fluctuation 

<(ΔN)
2
>/<N> is defined by the following equation  

  Equation 1 

 

Where kb is the Boltzmann constant and T is the thermodynamic temperature, (N/V)KT are 

known functions of temperature and pressure.   

The peak of the density fluctuation forms a ridge on the phase diagram.  This density 

fluctuation ridge passed through the critical point and runs through the supercritical region 

linearly as seen in Figure 4. 
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Figure 4: Density Fluctuation Ridge on a phase diamgram. Y-axis is the pressure axis, X-axis is 

the temerature,  Pc is the critical pressure, and  Tc is critical temperature [14] 

 

The solubility parameter of CO2 is discussed by Charles M. Hansen. In general the 

solubility parameter is a function of three different parameters. These parameters are Dispersion 

Factor, Polar Parameter, and Hydrogen Bonding Parameter. All three parameters increase none-

linearly as a function of pressure. This increase was much more evident at higher temperatures.  

All three parameters decrease as a function of temperature [15].    

2.6. Expansion Theories 

Three theories were considered for explaining the expansion of PDMS in solvents and, all 

described the expansion of PDMS well.  It is not the scope of this study to investigate the 

physical-chemical reasons for PDMS swelling, therefore the works from others will be used only 

as guide for this study.   

2.6.1 Theory by Tanaka   

Kinetics of expansion of gels has been studied for some time now.   Gel is defined as a 

cross-linked polymer network immersed in a fluid. Analogous result from gel studies in the 

literature can be used as a guide for the PDMS research reported here. 
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Theory proposed by Tanaka‟s states that, “the characteristic time of expansion is 

proportional to the square of the linear size of the gel and also proportional to the diffusion 

coefficient of gel network which is defined as , where E is the longitudinal bulk 

modulus of the network and f is the coefficient of friction between the network and the gel fluid” 

[2].   The time of expansion is directly related to the size of the gel and D of the gel network.     

The equation characterizing the expansion of gel was derived by Tanaka, Hocker, and 

Benedeck [16]. A displacement vector u(r,t) is defined as the final displacement of a point in a 

gel network from its final equilibrium location after the gel is fully expanded meaning the u is 0 

when t has reached an arbitrary infinity.  The Equation of Motion (EM) is given by  

  Equation 3 

 

Where f is the friction coefficient between the network and fluid medium and σ is the 

stress tensor of the component of given force along the k axis on a unit plane perpendicular to the 

i axis σik is related to displacement vector u as follows 

   Equation 4 

 

Where 

   

 

The first term of Equation 4 is the stress caused by volumetric change and the second 

term is the stress caused by shear deformation.  K is the bulk modulus of the polymer network 

and μ is the shear modulus. Equation 4 becomes  

 
 Equation 5 

 

Where  
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In order to solve the EM of gel network, it is necessary to determine the initial condition.  

Before the gel is submersed into any liquid, it is under uniform stress, so Equation 4 becomes 

 .    is the positive osmotic pressure of the gel.  When the gel is submersed in a 

fluid, the gel will expand until the osmotic pressure becomes zero.  If integrated along all 

directions and assume uniform stress in all direction, the result of the integral would produce a 

component denoting the final displacement of the gel in equilibrium with the surrounding fluid 

and a component denoting the change in displacement during the expansion process.  With this 

information, the initial dimensions of the gel can be found.   Lastly boundary conditions must 

also be defined to solve EM of Gel Network. This can be done by knowing that once the gel is 

submersed in a fluid, the surface of the gel will become free of normal stress. 

.   

In principle it is possible to solve the EM of Gel Network.  Tanaka and Fillmore solved 

the equation of spherical gel with 0 shear modulus (μ = 0) to be  

 

  Equation 6 

 

The change in radius of a spherical gel can be expressed as  

 
 Equation 7 

    

Where , n is summation indices, t is time, and τ is the characteristic time of 

expansion.  Expansion experiments were also conducted by Tanaka and Fillmore using 

polyacrylamide gels submersed in water.  The samples were produced by pipetting a mixture of 

uncross-linked polyacrylamide and cross-linker into paraffin oil.  The drops formed will become 

cross-linked after they rest at the bottom of the paraffin oil container.  The experiment was 
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conducted by dropping the spherical gel into distilled water and the expansion was measured 

visually under a microscope with a calibrated scale.    

The data gathered has been shown to match the theory very well.  The typical expansion 

curve (radius vs time) is shown in Figure 5.   

 
Figure 5 Typical expansion curve observed by Tanaka and group. Radius of the gel sample vs 

time data points with fitted line [2] 

 

The points on the graph indicates measured points and the solid line is the theoretical 

prediction of the expansion given by Equation 7.  The characteristic time  is plotted against the 

squared of the final radius of the spherical gel in Figure 6. 

 
Figure 6: Time Constant observed by Tanaka and group as function of expansion. The time 

constant vs total expansion of the gel. [16] 
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Equation 7 only describes expansion kinetics of spherical gels for the case of zero shear 

modulus.  The EM of Gel Network has described the kinetics of expansion of spherical gel. It is 

important to note that the equation will no longer be valid if the degree of expansion is so large 

that Hooke‟s law can no longer describe the elasticity of a gel network.  When the sample 

approaches double its original size due to expansion then the EM must be reformulated.  

Tanaka and Li revisited the problem later and devised kinetics of expansion of gel for 

geometries other than a sphere and with nonzero shear modulus [17].  The zero shear modulus 

assumption is not accurate to describe the expansion of gels with more complex geometry.  It is 

easy to see the difference in the shear modulus created in Figure 7. 

 
Figure 7 : Difference in diffusion of ink and swelling of gel [2] 

 

The shear modulus is present in gels to keep its original geometry while gel relaxation is 

the minimization of total shear energy. For asymmetrical geometry this means that a change of 

dimension in one direction will be coupled with a change in other directions.  The total energy of 

a gel is consists of bulk energy and shear energy.  The bulk energy is related to the volume 

change of the gel which is determined by diffusion. The shear energy is related to the geometry 
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of the gel. At any instant the shear energy is minimized.  The shear energy for a gel of any shape 

is  

 
 Equation 10 

 

 

   

Where  

   

 

If the shear modulus μ is not zero and the small changes in geometry of the gel does not change 

the volume of the gel then  

  Equation 11 

 

This combined with Equation 5 becomes a much more realistic description of expansion 

of gels.  The introduction of the shear modulus has effectively slowed the rate of diffusion, 

which is taken into account by a reduced diffusion constant.  The reduction factor is related to 

the dimension in which the diffusion is taking place. For a sphere, diffusion occurs in all three 

dimensions; therefore the reduction factor is 3/3.  For a long cylinder, diffusion occurs in two of 

the three dimensions; therefore the reduction factor is 2/3.  Lastly, for a disc, diffusion only 

occurs in one of three dimensions, resulting in reduction factor of 1/3.  

2.6.1 Theory by Whitesides  

Another theory developed by George Whitesides and his group propose that expansion of 

PDMS is correlated with the solubility parameter, which is based on the cohesive energy density 

of the material [3]. Cohesive energy density c is the energy associated with the intermolecular 

interactions within a unit volume of material.  c is the negative of molar internal energy U 
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divided by the molar volume V.  For materials to be dissolvable, their cohesive energy densities 

must be similar. For materials such as cross-linked polymers that do not dissolve, solubility 

parameters can then be used to predict the degree of expansion. The cohesive energy can also be 

presented as solubility parameters  or Hildebrad value.  The solubility parameter is the squire 

root of the cohesive energy density  

  Equation 12 

 

The degree of expansion of a polymer can be predicted without knowing any other 

information.  For a binary system, the Hildebrand-Scratchard equation is used to relate the 

solubility parameter to enthalpy change.  

  Equation 13 

  

Where Vm is the volume of the mixture, 1 is the volume fraction of solute in the mixture, 

2 is the volume fraction of the solvent in the mixture, δ1 and δ2 is the solubility parameter of 

solute and solvent. For two parts in the system to be soluble the free energy of mixing must be 

favorable, that is  and  

  Equation 14 

 

Where  

   

  
So when ΔHm is zero, the maximum expansion condition is reached. To validate this 

theory, expansion data was collected by placing solid PDMS samples in a solvent for 24 hours 

and the change in length dimensions was measured. The expansion ratio S is the ratio of the 

length of the PDMS sample before submersion divided by the length of the sample after it has 
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been submersed for 24 hours.  The collected data have shown that as solubility parameter of the 

solvents approaches solubility parameter of PDMS more expansion was detected. 

The solubility parameter of PDMS is 7.5cal
1/2

cm
-3/2

 and as the solubility parameter of the 

solvent get close to that of the PDMS, the expansion ratio generally increased.  There are cases 

where the solubility of the solvents are similar but the expansion ratio was very different.  For 

example, acetone and methylene chloride have the same solubility parameters at 9.9cal
1/2

cm
-3/2

 

but the expansion ratio of acetone is 1.06 and methylene chloride is 1.22.  This phenomenon can 

be explained by the difference of the polarity of the solvent. The solubility parameter is also the 

sum of the dispersion forces, polar forces, and hydrogen bonding forces.  Similar solubility 

parameters do not mean the solvents have the same proportions of the dispersion forces, polar 

forces, and hydrogen bonding forces.  Unfortunately, these values for mentioned forces are not 

readily available for the solvents in question, but the dipole moment μ is available and it is a 

representation of the polar contribution.   In the example given, methylene chloride has the 

dipole moment of 1.60D and acetone has the dipole moment of 2.88D.  Both methylene chloride 

and PDMS have lower polar contributions therefore, methylene chloride is more soluble in 

PDSM than acetone [3].    

2.6.3 Theory by Goodman 

Study by Goodman comparing carbon dioxide absorption in PDMS has revealed that 

there are no evidence of reaction products formed between CO2 and PDMS.  The study used 

attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to detect gas 

absorption and to calculate expansion of PDMS.  The CO2 absorption in to PDMS results at 50C 

is shown in Figure 8.  
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Figure 8: CO2 absorption into PDMS as function of pressure. Mass % adsorbance of CO2 is the 

y-axis and pressure is the x-axis.  Absorbance is becoming more nonlinear at 10 MPa  [4] 

 

The data was taken when the adsorption band no longer changed with time. This is 

defined as the equilibrium state, and the PDMS reached this equilibrium within minutes.  

Expansion of the PDMS is directly correlated to absorbance before and after exposure of CO2. 

  Equation 2 

 

A
o
 is the net absorbance of PDMS before CO2 exposer and A is the net absorbance of 

PDMS during Exposure to CO2.   The % expansion calculated by using net PDMS absorbance is 

plotted in Figure 9 [4].   
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Figure 9: PDMS expansion calculate by using equation 2 is pressented here as 

expansion(swelling) vs pressure [4] 
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Chapter 3. Experimental Setup 

This chapter will discuss the experimental setup and the rationale behind each step of the 

experimental setup.   

3.1. Experimental Design 

The number of experiments and combination of temperature, pressure, and PDMS to 

copper ratio to be experimented with was carefully considered.  It was known from previous 

works by the UA EMNSL that the saturation of copper in PDMS is around 80 weight % copper 

[1].  It was decided that the region closer to the saturation was more interesting to the 

development of the corrosion sensor, so a finer step was chosen closer to 80 wt% Copper.  The 

variations of PDMS to copper ratio are 20 wt%, 30 wt%, 40 wt%, 60 wt%, 80 wt%, and 100 

wt%.  which correlates to approximately 64.49 vol%, 75.69 vol%, 82.89 vol%, 91.59 vol%, 

96.67vol%, and 100 vol%. the volume percentage was calculated with the assumption of particle 

density of 7.01 g/cm
3
 and PDMS density of 0.965 g/cm

3
.  

The critical point for CO2 is 304.2 K (31.05 C) and 73.8 bar (1070.38 Psi) with slight 

discrepancies between different studies [18].  The discrepancies were smaller than the accuracy 

achievable by the equipment used.  It was also decided that that the subcritical region is worth 

investigating.  Thus pressure range from 1000 Psi (6.98MPa) to 3000 Psi (20.68MPa) with 500 

psi (3.45MPa) intervals was set for this investigation.  1000 Psi (6.98MPa) is just under the 

supercritical pressure for CO2, and 3000 Psi (20.68MPa) is what the syringe pump can be 

pressurized to without refilling the syringe.   

The temperature range was determined to be 40 C to 80 C with 10 degrees increments.  

The temperature control set up is only capable of heating the apparatus and the sensitivity of the 
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temperature control unit cannot maintain temperatures close to room temperature. The 

temperature step was dictated by limited temperature control issue discussed in the temperature 

control section later.  Because of the limited time allowed, no experiment was repeated unless 

error has been spotted during the experiential process.  The resulting experimental matrix is 

shown in Table 1.  

Table 1: Experimental Matrix 

 

3.2. PDMS Samples 

The PDMS samples where made under a fume hood inside a clean room located at 

EMNSL.  The mass of the PDMS, cross-linker, and copper particle used for every batch of 

sample made was recorded in a lab book.   

3.2.1. Sample Mold 

Initial attempts at making PDMS samples were utilized molds formed by the rapid 

prototype 3D printer. The mold consisted of ABS plastic layered on top of each other.  The first 

iteration mold was designed to produce 1 x 1 x 0.1 in. sheets of PDMS that will be cut later by a 

PDMS to Metal Particle 

Ratio wt% (vol%)

Pressure 

(Psi)

Temperature 

(C )

20 (64.49) 1000 40

30 (75.69) 1500 50

40 (82.89) 2000 60

60 (91.59) 2500 70

80 (96.67) 3000 80

100 (100)

Variables 6 5 5

Total Exprements 150
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knife which is shown on the right side in Figure 10.  This mold was not used due to a meniscus-

shaped curvature on the free –surface of the molded PDMS. Attempts at over filling the mold 

resulted in a convex meniscus, and the extra PDMS could be removed, using a Xacto
® 

knife, 

from the convex meniscus without damaging the top surface of the PDMS sheet.     

 
Figure 10: First (right) and second (left) iteration mold 

 

Because of the meniscus issue, it was decided that a sacrificial mold designed to produce 

one 0.25 x 0.25 x 0.25 in. sample per mold should be attempted, as shown on the left side in 

Figure 10.  Wedges were designed into the sides of the mold in order to facilitate mold release. 

In theory, when the mold was physically deformed the thinnest part at the wedge would break, 

thus breaking the mold and releasing the sample.  Because of the 3D printer resolution the 

designed wedge protruded into the sample space resulting in wedges on the sample surface as 

can be, seen in Figure 11.      
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Figure 11: Samples produced by second iteration mold 

 

Another version of the 3D printed sacrificial mold was attempted.  This time, the design 

was changed to have taps instead of wedges to separate the mold from the sample.  After the 

PDMS sample was cured, two out of the five sides of the mold can be broken off to release the 

sample.  This version of the mold was used to produce samples for the preliminary experiments.  

The success rate of this mold was also low. Primary failures of this mold were the bubbles left 

inside the mold after curing.  

It was discovered, after the preliminary experiments, that the 3D printed mold does not 

have the resolution to produce samples with smooth sides required for the experiment.  When the 

sample was placed in the view cell, the image acquired would have blurred edges, and this could 

not be over came by the edge finding software.  The blurred edges were caused by ridges left 

from each layer of the 3D print process. These ridges are transferred onto the PDMS samples 

after the sample was released from the mold. Textures were left on all five sides where the mold 

came in contact with the sample. The ridges cannot be removed due to the inherent 3D printing 

process.   
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Figure 12: Final 3D printed PDMS mold and sample produced. Notice the texture on the sample. 

 

The 3D printed molds were abandoned and a machined aluminum mold was attempted. 

The first iteration was a 0.25 in. thick 1 in. wide aluminum strip with 0.25 in cut outs on the 

outside edge.  This was then sandwiched in between two 0.25 in. thick 1 in. wide aluminums 

strips.  The assembly was bolted together with 1/4-20 bolts and nuts with appropriate washers to 

avoid deforming the aluminum strips.  

 
Figure 13: First iteration of the aluminum mold for the PDMS test sample 

The sample was formed inside the 0.25 x 0.25 x 0.25 in. space.  When the curing process 

was completed, the bolts are removed, and the samples can be easily released from the mold.  
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The resulting samples have smooth sides and clearly defined edges and corners.  The PDMS 

sample required preexisting holes to mount to the view cell apparatus. This requirement is 

discussed in the view cell apparatus section.  These holes were provided by a 3D printed strip 

with pegs that is strapped onto the top of the mold by zip ties when the sample cures. It took 

multiple attempts to 3D print in different orientations to get this strip with pegs that will not 

break.   The completed final version of the mold is shown in Figure 14.  Two such molds were 

produce to increase the speed of PDMS sample production.  

 
Figure 14: Mold used for fabricating all of the samples used in this thesis work 

3.2.2. PDMS Mixing, Degassing, and Curing 

A Sygard 184 Silicone elastomer kit was purchased from Dow Corning and used for all 

experiment.  The kit came with two separate parts, one part PDMS and one part cross-linker.  

The PDMS component is a heavy and viscous substance.  The cross-linker has a much lighter, 

less viscous liquid.  The specific chemical makeup and most physical properties of the PDMS 

and cross-linker are stated in the data sheet.  The cross-linked PDMS was produced following the 

instructions provided by Dow Corning.  The instruction from Dow Corning stated that the PDMS 
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base should be mixed thoroughly with the cross-linker at a 10 to 1 weight ratio to produce cross-

linked PDMS.   

The copper particles were purchased from Alfa Aesar.  They were ±325 mesh particles 

with diameter varying from 8 to 11 microns.  The particles were not kept in an oxygen free 

environment; therefore they have already been oxidized to an unknown degree. These particles 

are the primary health concern for this investigation, due to inhalation hazards.  All transferring 

of the particle from original packaging to the daily use packaging was done under the fume hood.  

Trials were done to determine the most effective method for mixing, degassing, and 

curing of the PDMS sample. The first trials were done with thoroughly mixed PDMS and cross-

linker mixed with copper particles at predetermined mass ratios.  The curing time was set at 24 

hours at room temperature as instructed by the Sygard 184 Silicone elastomer kit manual.  The 

results were not satisfactory, the copper particles were not distributed evenly, and there were air 

bubbles formed within the sample.  Over 90% of the samples were not useable. The reason for 

the uneven distribution of the copper particles was determined to be settling of the heavier 

copper particle to the bottom of the sample.  The air bubble in the sample was due to the bubbles 

introduced during the mixing process.  

Subsequent trials were conducted to address these issues.  A pre-curing process was 

introduced to increase the viscosity of the PDMS to help keep the copper particles from settling 

to the bottom of the sample.  An elevated temperature final curing step was also used to shorten 

the curing process.  A shortened curing time should reduce the time for the particles to sediment. 

Several temperature and time combination from the Figure 15 [1] were tried.  It was determined 

that per-curing at 60 C for 20min and then another 30min of final curing worked well.  Elevated 



 27  

  

temperature is provided by a Cincinnati Sub-Zero Micro Climate Control oven shown in Figure 

17.   

 

Figure 15: PDMS curing time as a function of temperature [1] 

A degassing process was introduced to eliminate the air bubbles.  The first trials used a 

converted container modified from a plastic food preservation box.  This system pulled a 

maximum vacuumed of 60 Psi (21.5 Torr) with only one degassing step, which was done before 

the final curing at 60C.  The resulting samples were not perfectly cube due to material 

unintentionally removed during the degassing process.  As the vacuum pulled gases from the 

sample mixture, bubble form within the sample mold and rise to the top of the mold.  These 

bubbles carry sample mixture to the surface and expel the mixture out of the mold resulting in 

reduced sample mixture inside the mold.  Multiple degassing steps were taken so that the mold 

could be refilled in between each degassing step.  Another new degassing system (from the 

Parylen coater camber model PDS 2010 manufactured by Specialty Coating System) that could 

achieve vacuum of single digit Torrs was also was used to replace the modified plastic food 
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preservation box, see Figure 16.  The new vacuum also had a more reliable seal which provided 

more consistent processing between different batches of sample.  The much higher vacuum 

allowed for a more complete degassing process. 

 

Figure 16: Parylen coater camber model PDS 2010 manufactured by Specialty Coating System 

used to degas the samples.  

 

The final process consist of four degassing steps each lasting about five minutes.  The 

first degassing step was after the PDMS and the copper particle was mixed together, before it 

was placed in the mold.  The second degassing step was done after the mold has been filled.  

Excess PDMS and copper particle mixture was degassed along with the filled mold.  The mold 

was refilled with the excess mixture after the degassing step. This was repeated one more time.  

The fourth degassing step was not followed by a refilling step. The mold was placed in the 

Cincinnati Sub-Zero Micro Climate control oven for the final curing process.   Once the mold 
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was removed from the oven, it was allowed to sit over night before samples were released from 

the mold to ensure consistency for the cross-linking process.  

 

Figure 17: Cincinnati Sub-Zero Micro Climate Control oven 

3.3. View Cell Apparatus 

The original intent of the experimental set up was to visually observe scCO2 as pressure 

and temperature increase.  This apparatus was originally designed and built by an undergraduate 

research student working for Dr. Jerry Wayne King of the University of Arkansas, Department of 

Chemical Engineering.  The setup needed to be upgraded and modified for the purpose of this 

investigation. The original set up programing did was programed inadequately, image acquisition 

was done as video, temperature and pressure readings was not recorded in a text file.  The 

program language used was not compatible with the image processing program. The view cell 

was does not have any mechanism to keep a PDMS sample in place for the image acquisition of 

the PDMS sample be consistent.  Noisy raw temperature signal was filtered by digitally 
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averaging the sampled data. The resulting temperature data can be plus or minus 2 degrees from 

the set temperature and with high frequency variations up to 5 degrees. The modifications and 

upgrades will have to address all the issues mentioned.  The completed view cell set up after 

modification is shown in Figure 18.   

 

Figure 18: The completed view cell setup 

3.3.1. View Cell 

The original purpose of the apparatus was for visual examination of scCO2 therefore it 

was mostly ready for the use of this investigation.  The view cell is a stainless steel tube 6.875 in. 

long. The inside and outside diameter was measured to be 0.75 in. and 2.0 in. respectively.  

There are four tapped holes for 8 mm fittings along the outside of the tube in a 2 x 2 pattern. 

These tapped holes are for the thermal couple, pressure transducer, CO2 inlet, and CO2 outlet.  

The ends of the tube are capped off with 1.5 in diameter threaded caps. The cap encapsulates a 
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circular sapphire window, with dimensions 1.0 in. diameter 0.275 in. thick, between the cap and 

the tube.  Buna N-213 O-rings were used to maintain a pressure seal around the sapphire 

windows. The overall volume inside is about 3 in
3
.  The view cell is rated to 15000 Psi, but the 

maximum pressure attempted successfully was 5000 Psi during trial runs.     

 

Figure 19: View cell setup schematic 

It was decided that the view cell can safely operate at the elevated temperature and pressure so 

therefore there was no need to modify it.   

3.3.2. PDMS Holder  

As stated before, the view cell used was not designed originally to have PDMS samples 

inside.  The first trials of pressurizing the view cell with a sample inside were done by leaving a 

sample in the view cell without any support or bracing. The results of the trials was that the 

sample washed around in the view cell and the image acquisition device (camera) had no way of 

determining the before and after condition of the sample.  Thus, a mounting mechanism was 

needed to keep the sample stationary in the view cell so that the entire expansion process could 
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be captured by the camera.  This device must not restrict the sample from dilating while the 

inside of the view cell must be left unaltered after the experiments are done.  A few variations of 

the sample holder were attempted before a design was finalized.  Because the inside of the view 

cell is smooth, it was difficult to mount any devices inside without changing the geometry inside 

the view cell.  A device resembling a gallows that sat on two horizontal plates (Figure 20) was 

first considered.  But it has few major draw backs.  The first of the drawbacks was that it took up 

too much space inside the view cell where the space was already limited.  The second drawback 

was that it has to be made very small which will make the fabrication process challenging and 

time consuming.  Third, the horizontal plate base would not be stable enough to maintain the 

same orientation for the duration of the experiment.  

 

Figure 20: PDMS holder first iteration design 

It was decided that a tube with the same outside diameter as the inside diameter of the 

view cell should provide a much better base to mount the holder than the horizontal flat plates.  

PDMS Sample 

Ruler  

Base Plates 
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This tube design will not damage the inside of the view cell.  A aluminum was chosen for this 

application because it is easy to machine and it has a favorable thermal expansion coefficient, the 

stainless steel has a coefficient of thermal expansion of around 15 K
-1

 while aluminum‟s is 

around 25 K
-1

 [19]. As temperature increased the aluminum will expand faster than stainless 

steel, which will result in a friction fit between the stainless steel view cell and the sample holder 

during the experiment.  The holder can be released when the view cell apparatus cools back 

down to room temperature.  An aluminum tube with inside and outside diameters of 0.438 in. 

and 0.875 in. respectively, was chosen as the starting material.  The outside diameter was worked 

down to 0.76 in. and by sanding away a small amount of the material at a time to have a close fit 

with the view cell.  The inside diameter was not big enough to accommodate the 0.25 in. PDMS 

sample sufficiently.  The concern was that if the sample had an unexpected level of expansion it 

would come in contact with the side of this tube making the experiment invalid.  The inside 

diameter was therefore enlarged to 0.6 in. 

 On the first iteration of this tubular sample holder, a gold vector pin used for pinted 

circuit boards was press fitted into a hole drilled on the side of the aluminum tube see Figure 21.  

The pin fitted inside the whole left in the PDMS sample.  After a series of experiments it was 

discovered that the gold pin did not keep the sample from rotating about self during the 

pressurization process.  To prevent rotations of the sample during the experiments, a small screw 

was press fitted into the aluminum tube instead, as shown in Figure 22.  The screw provided 

more surface area for friction between the aluminum/head of the screw contact and also for 

PDMS/thread contact. The resulting set up performed well and was used for the remainder of the 

experiments.  
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Figure 21: PDMS holder with gold pin 

 

Figure 22: PDMS holder with the screw 

3.3.3. Pressure Control  

ISCO 260D syringe pump controlled by ISCO D Series controller was used to supply the 

CO2 at the pressures required for the experiments.  The liquid CO2 supply tank was used to fill 

the ISCO pump is at a normal pressure of 600 Psi.  The ISCO 260D pump has a capacity for 266 

ml (16.23 in
3
) and a maximum pressure of 7500 Psi, which is enough to pressurize the view cell 

to the desired pressures for this investigation.  In order to pressurize the view cell rapidly, a 

cooling process was incorporated at the CO2 intake of the ISCO 260D syringe pump. The 
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cooling process was provided by a Neslab cooling bath, with the bath temperature set to 0 C.  

Although the CO2 temperature at entry of the view cell is not instrumented, it can be assumed 

that it is close to 0 C.  However, the pressure inside the view cell was rarely the set pressure due 

to several reasons.  The fluctuation in density inherent in pressurized CO2 discuses in the back 

ground section could be one of the reasons.  Another reason could be the sensitivity of the 

syringe pump pressure transducer, and the reaction speed of the syringe pump.  These two 

factors cannot be eliminated with the equipment available to this investigation. The last reason 

was the pressure transducer used to monitor the pressure within the view cell giving  false 

readings. This was the least likely scenario because the transducer was new and calibrated before 

being used in this setup.  

3.3.4 Temperature Control   

In this research only heat can be actively applied to the view cell while, cooling relies on 

natural dissipation down to the lab‟s ambient temperature, normally at 23C.  the thermocouple 

provided the feedback for the thermo controller to regulate the power supplied to the Omega flux 

heating tape thus controlling the heat input into the system.  The temperature controller was  an 

Omega Engineering, Inc. type CN5001k2 thermo controller.  A type-K thermocouple 

manufactured by Omega was used to sense the temperature within the view cell through one of 

the four 8 mm tapped holes on the view cell.  It did not protrude in to the inner diameter of the 

view cell in order to allow the sample holder to slide into the view cell freely.  The heating tape 

was wrapped around the view cell, and a layer of insulation was applied on top of the heating 

tape to improve efficiency.  To reach the designated temperature quickly for the test volume 

inside the view cell, the view cell was heated to the test temperature before the pressurized CO2 
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was introduced.  By experience, the temperature control system was only accurate within +/-2 C 

around the region of operation for this investigation.  

3.4. Pressure, Temperature, and Image Data Acquisition 

A Sentra 3100S15KPT2T9 pressure transducer‟s was connected to the inside of the view 

cell via another one of the four 8 mm tapped holes.  The pressure transducer will output 0 V to 

10 V corresponding to 0 psi to 15000 psi.  This signal was then inputted in to the computer via 

the National Instruments SCB-68 Shielded I/O Connector Block for Data Acquisition Devices 

with 68-Pin Connectors and the National Instruments 6036E 200kS/s, 16-bit, 16-Analog-Input 

Multifunction Data Acquisition card.    

Thermocouples work by having a pair of different metallic wires joined at one end which 

produces thermoelectric voltage at the open end with magnitude corresponding to the 

temperature difference at both ends [20].  The thermocouple poses a greater challenge than the 

pressure transducer because of the noise issue.  The unfiltered raw signal resulted in high 

frequency fluctuations of 10 degrees.  A capacitor-based low pass filter was used to partial filter 

the high frequency noise while digital data averaging was used to limit it with in a 2 degree C 

fluctuation.  It has been determined that the noise was introduced by the temperature controller 

do to its alternation current injection into the heating tape.   

Image data acquisition was performed by a Scout machine vision camera manufactured 

by Basler.  The original view cell set up was intended only to view the near the sapphire window.  

Additional lenses were required provide the required depth of focus in the view ell where the 

cubed sample resides. . A combination of a 25 mm lens and a 10 mm focal length extender 

purchased from Edmund Optics was employed to provide the necessary viewing distance and 

focus required for this investigation. The camera set up was then fixed to a scissor jack.  This 
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was done to provide stability so the vibrations from the work bench do not produce inconsistent 

data from one moment to the next during the experiment; also to ensure that the camera remain 

at the same location so that the setup was consistent for all experiments.  The camera was then 

connected to the computer through its FirewireII interface.  The camera was the only 

experimental parameter the computer controlled.  The pressure was controlled by the syringe 

pump and the pump controller not coupled with the computer. Temperature was controlled 

separately by the thermo-controller.   

LabView programing was used for the machine vision, pressure, and temperature data 

acquisition.  The program was built around a “while loop per image acquisition”.  Pictures of the 

sample in the view cell were taken at about two per second.  For every loop a unique millisecond 

based time stamp was generated and used to name the corresponding image file.  The time stamp 

is also stored in the first column of a designated “Data.txt” file (essentially a data log file).  The 

pressure data from that same millisecond was saved to the second column of “Data.txt” file after 

the voltage result was converted to pressure value in Psi.  Similarly, the temperature data was 

saved on to the third column of the “Data.txt” file after the voltage value was converted to 

temperature in Celsius.  The picture was saved in the same folder as the “Data.txt” file.  This was 

done until the user stops the loop.  The LabView VI and the block diagram are presented in 

Appendix A.             

3.5. LabView Image Processing 

LabView Vision Assistant software was used aid in the development of a LabView 

Virtual Instrument (VI) program used to post process the recorded data, screen capture of the VI 

during processing is shown in Figure 23 . 
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Figure 23: Post processing VI screen capture.  

First the post processing VI imports the image file name from the first column of the 

“Data.txt” file.  This was done by inputting the folder location where the image files and the 

“Data.txt” file was saved before the post processing VI is initiated. Once the image file name 

was constructed the VI then proceed to import the image file.   

LabView‟s built in visual processing VI could detect changes in brightness and color to 

find edges of objects in the image. This capability was used to scan for the edges of the PDMS 

sample within the image; from left to right for the left edge of the sample, and then a repeated 

scan from right to left of the right edge of the sample in the image. The edges found were not 

always perfectly vertical. So the width values for the top most point and the bottom most point of 

each edge line were averaged.  The resulting difference from the two averages was then used as 
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the width of the PDMS sample at the time the image was taken.  Figure 24 is a flow chart of the 

process, and it also includes a typical edge finding iteration by the LabVeiw VI. 

The result was then written in to the fist column of a text file specified by the user before 

the VI loop was initiated.  To be consistent all new file was named “expansion.txt”.  This process 

repeated untill all millisecond time stamped value in the “Data.txt” file is processed. Every time 

a new image is processed the result is written to the next slot down of the “expansion.txt” file to 

avoid overwriting the previous iteration of the loop.  The LabeView VI and block diagram is 

located in Appendix B  

 

 

Figure 24: Flow chart of the LabView VI describing one iteration of the edge finding process 

3.6. Expansion vs Time Curve 

After the data Images has been process by the LabView VI, the results from 

“expansion.txt” and “Data.txt” was imported to an excel file given a name unique to each 
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experiment.  The file name was created with temperature, sample ratio, and pressure. So the 

experiment involving a 20% PDMS sample submersed in 1500Psi and 40C scCO2 would have 

the file name 40201500.xlsx.   This was done so that the file can be easily recognizable and to 

avoid confusion.  

In order for time to start at zero, all millisecond time stamp values were subtracted by the 

first millisecond time stamp value. The result of this operation was that all the time stamps 

became time elapsed from the start of the experiment in milliseconds. The resulting expansion vs 

time data is then plotted.   The initial width of the sample in pixels was extracted from the 

average values from the 60
th

 image to 120
th

 image.  This correlates to a time span of about 30 

seconds starting around 30 seconds from initial data acquisition.  The fully expanded width was 

extracted from the average value from the 6000
th

 to 6061
th

 image this also correlates to a time 

span of about 30 seconds staring around 3199 second from the start of the experiment. This point 

was chosen because it is far beyond the steady state points from the initial trial experiments.  

This was done for all experiments by importing text files into an excel template file which is then 

renamed with the naming convention described before.  It is very important that every file follow 

the same format in order for the MATLAB program described later to work properly.  The initial 

width and the expanded width was then collected for all experiments conducted under the same 

temperature to produce the expansion data, typical results resemble Figure 25.  Excel 

unfortunately do not have an adequate line fitting function to extrapolate the time constant from 

data of this particular investigation, so MATLAB was employed for such function.       
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Figure 25: Typical expansion vs time expansion plotted after the data has been imported to MS 

Excel 

3.7. MATLAB Curve Fitting 

Curve fitting was used to find the time constant for each experiment.  After the LabView 

process, the data was imported into the excel file with specific naming convention. This unique 

naming convention described in the previous section will allow the MATLAB Curve Fitting 

process to be automated.   The code that performed the automated curve fitting process was 

discussed next, see code in Appendix C.  

Three layered „For Loops‟ was used to construct the excel file name from which the data 

was imported.   The first loop will determine the first variable in the naming convention from a 

list of possible temperature values provided.  The second loop determines the second variable in 

the naming convention from a list of PDMS ratio values.  The last loop determines the third 

which was determined in the same manner as the first two.  The excel file name is then 

constructed from the three variables determined by the layered “For Loop”.  With the name of 

the file and the directory of the file, MATLAB can now import the data from the appropriate 

column and row from the appointed excel file.    
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The last loop was where the curve fitting algorithm is placed.  The code for the curve 

fitting algorithm is mostly generated by MATLAB as an .m file.  One of the functions of 

MATLAB is that it can self-generate .m files to complete the process that the user has recently 

accomplished in MATLAB.  So the curve fitting tool (MATLAB code “cftool”) was used to find 

an appropriate curve to fit the data collected.  It was decided that the first ten summations from a 

modified Equation 7 [2] should be used.   

 
 

Equation 15 

 

 

The constants d, b, c and the R value are printed to the command window of MATLAB 

after each curve fit.  The constant „d‟ corresponds to  in Equation 7, constant „b‟ 

corresponds to  in Equation 7, and constant „c‟ corresponds an correction in the y-axis 

because the data does not start form (0,0).  Different smoothing methods, thresholds, and initial 

guesses were experimented with. This process was then turned into an .m file, the particular lines 

of code involving the parameter of the curve fitting and the lines used in the curve fitting was 

then placed in the last loop of the automated curve fitting .m file.  

The resulting curve fit was then plotted over the data for each of the curve fit performed. 

Typical plot was shown in Figure 25. The figure is plotted to check that the fitting was done 

reasonably.  The constants and R values were then copied and pasted into another excel file.  

This was done because the three for loops have produced a three dimensional array. To write a 

code that will write the information to an excel file or a text file automatically would take much 

longer than to perform the process manually.  After the resulting d, b, c, coefficients and R were 

saved to the appropriate excel file where the inverse of b was calculated, the result was the time 

constant for each curve fit. The time constant was defined as the time it took the sample to reach 
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its equilibrium state under the temperature and pressure conditions within the view cell.  The .m 

file is in Appendix C.  

 
 

Figure 26: Typical curve fit of the expansion curve. The red line is the fitted curve and the blue 

line is the data. 

3.8. View Cell Experimental Procedures  

All view cell experiments were carried out in room 2540 at the engineering research 

center.  First step in conducting the expansion experiments was to make sure the equipment are 

in working order and all temperature control system are set at the desired temperature. The CO2 

reservoir was also checked and opened.  If this was the first experiment of the day the syringe 

pump was tested by pressurizing up to 3000 Psi. The Neslab cooler was turned on and set to 0 C 

and the heating tape was plugged in and the thermo controller was set to the desired temperature. 

It will take about an hour for the cooler to reach the set temperature.  The second step was to 

weigh the sample and record the information, this step was taken to determine if significant 

amount of copper has left the sample during the expansion process. The third step was to mount 
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the sample onto the sample holder.  It was very important to make sure the sample was mounted 

in such a way that it will present one of the surfaces to the camera parallel with the lens. The 

forth step was to place the PDMS holder inside the view cell and be pushed to the camera end of 

the view cell.  The fifth step was to check the setup with the camera by initiating the camera 

control software in LabView program.  The sixth step was to close the view cell, enclosing the 

sample inside.  The seventh step was to initiate the data acquisition program. The syringe pump 

was activated in the eighth step about a minute after the data acquisition program was initiated.  

Data gathered during this time was used to establish the pre-expansion width of the sample.  

When the syringe pump starts to pressurize, the valve between the syringe pump and the view 

cell was opened and the valve for pressure release on the view cell was closed.  The experiment 

was left running for the next hour.  When the experiment was over, the valve between the 

syringe pump and the view cell was closed, syringe pump was turned off, and the pressure relive 

valve was opened.  The data acquisition program was left on during this in hopes of capturing the 

decompression process.  Majority of the data gathered during the decompression process was 

inconsistent because the relive valve could not be controlled consistently.  The sample was then 

removed from the view cell and weighed three times, immediately after it‟s removed from the 

view cell, an hour after the experiment and 2-24 hour after leaving the view cell.  The used 

sample was then placed in storage.   
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Chapter 4. Data 

4.1. Expansion and Pressure 

The expansion vs pressure plots is presented in this section. Every plot in this section is 

consists of expansion and pressure data for all six PDMS and copper particle ratio at a given 

temperature.  As expected, pressure and total expansion forms a positive correlation.  This 

correlation however, was not a linear relationship for lower temperatures but becomes more 

linear as temperature increases.  As shown in Figure 27 and Figure 28 the expansion plateaued 

after 2500 Psi (17.24MPa).   From Figure 29 to Figure 31 the expansion increases linearly as 

pressure increase.   

Maximum expansion generally occurred at 3000 Psi (20.68 MPa) for all temperature and 

PDMS ratio except for 40 C and 50 C cases.  The maximum expansion for 40 C data set occurred 

when pressure was around 2500 Psi (17.24MPa) at 22.4% this is also the greatest expansion 

observed from all the experiments conducted.  The minimal expansion occurred at 1000 Psi (6.89 

MPa) for all temperature and PDMS concentration.   As pressure increase, the difference in the 

magnitude of expansion between different concentrations of PDMS increases.  Difference 

between 100wt% PDMS and 20wt% PDMS for expansion under 1000 Psi (6.98 MPa) is only 

around 3% for all temperature ranges.  On the other hand difference between 100wt% PDMS and 

20wt% PDMS for expansion under 3000 Psi (20.68 MPa) vary from 5% to 10% as temperature 

increases.   

50 C data have shown an anomaly in that the 80wt% PDMS samples have expanded 

more than 100wt% PDMS sample.  This is anomaly do not make physical sense, when the 

sample has higher PDMS content it should expand more because copper should not contribute to 
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the expansion.  It is highly likely that this anomaly was caused by human error.  But without 

repeating the experiments it is not possible to determine the cause with certainty.       

 
Figure 27: 40C Expansion Data as function of pressure for different concentrations of PDMS and 

copper particles 
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Figure 28: 50C Expansion Data as function of pressure for different concentrations of PDMS and 

copper particles 
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Figure 29: 60C Expansion Data as function of pressure for different concentrations of PDMS and 

copper particles 

 
Figure 30: 70C Expansion Data as function of pressure for different concentrations of PDMS and 

copper particles 
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Figure 31: 80C Expansion Data as function of pressure for different concentrations of PDMS and 

copper particles 

4.2. Expansion and PDMS Ratio  

Expansion vs wt% data for all pressure and temperature is presented form Figure 32 to 

Figure 36.  Ratio of PDMS and copper particle and expansion also formed a positive correlation.  

As expected the component of the sample that will expand is the primary factor in expansion. 

Higher ratio of PDMS results in more expansion was a reasonable trend.  The positive linear 

correlation is evident.  A more concise trend could be achieved if samples with 50 wt%, 70 wt%, 

and 90 wt% PDMS were experimented. Maximum expansion was observed to occur with 

100wt% PDMS samples for almost all pressures and temperatures.   There were three cases 

where samples subjected to 2500 Psi (17.24MPa) expanded more than samples subjected to 3000 

Psi (20.68MPa). These data points occurred in the 40 C data and the 50 C data.  Results from the 

40 C and 50 C data sets seemed to be more erratic and unpredictable.  The reason for this erratic 
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and unpredictable behavior could be that the pressure and temperature the experiment conducted 

under was close the high density fluctuation ridge for CO2.  The trend formed by each pressure 

groups are well separated for each temperature sets.  

 
Figure 32: 40C Expansion Data as function of PDMS ratio for different pressures ranging from 

1000 Psi (6.98MPa) to 3000 Psi (20.68) 
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Figure 33: 50C Expansion Data as function of PDMS ratio for different pressures ranging from 

1000 Psi (6.98MPa) to 3000 Psi (20.68) 
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Figure 34: 60C Expansion Data as function of PDMS ratio for different pressures ranging from 

1000 Psi (6.98MPa) to 3000 Psi (20.68) 

 

 
Figure 35: 70C Expansion Data as function of PDMS ratio for different pressures ranging from 

1000 Psi (6.98MPa) to 3000 Psi (20.68) 
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Figure 36: 80C Expansion Data as function of PDMS ratio for pressures ranging from 1000 Psi 

(6.98MPa) to 3000 Psi (20.68) 

 

4.3. Expansion and Temperature  

Expansion vs Temperature data for all pressure and PDMS ratio is presented form Figure 

37 to Figure 41. As temperature increased, expansion decreased, this was not expected. This 

could be explained by Whitesides‟ theory.  The difference of solubility parameter between 

PDMS and CO2 increases as temperature increases this will result in less expansion due to the 

incompatibility of the solvent and solute.  The results from lower pressure are much more 

predictable than the results from higher pressure.  This could be the result of density fluctuation 

of scCO2, or errors from the experimental setup. 
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Figure 37: 1000Psi (6.89MPa) Expansions as a function of temperature for different PDMS 

sample concentrations 
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Figure 38: 1500Psi (10.34MPa) Expansions as a function of temperature for different PDMS 

sample concentrations 

 
Figure 39: 2000Psi (13.79MPa) Expansions as a function of temperature for different PDMS 

sample concentrations 
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Figure 40: 2500Psi (17.23MPa) Expansions as a function of temperature for different PDMS 

sample concentrations 
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Figure 41: 3000Psi (20.68MPa) Expansions as a function of temperature for different PDMS 

sample concentrations 

4.4. Time Constant and Pressure 

Time constant vs Pressure data for all PDMS ratios and temperature is presented form 

Figure 42 to Figure 46.  It took longer for the sample to reach equilibrium in lower temperature 

experiments.   One of the reasons for this was that the lower temperature samples expanded 

more.  It also took longer for the higher pressure to build up in the view cell.  The syringe pump 

has a limit flow rate; therefore it will have a longer pressurization time if the targeted pressure is 

higher.  It is generally the case for lower PDMS ratio samples to reach equilibrium faster than the 

higher PDMS ratio samples.  This trend is much more obvious in the higher temperature data 

sets.  The copper particles block the path of scCO2 diffusing into the sample so the scCO2 will 

have to travel much further to reach the PDMS at the center of the sample.     

 
Figure 42: 40C Time constant data as a function of Pressure for all PDMS sample concentrations  
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Figure 43: 50C Time constant data as a function of Pressure for all PDMS sample concentrations 

 
Figure 44: 60C Time constant data as a function of Pressure for all PDMS sample concentrations 
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Figure 45: 70C Time constant data as a function of Pressure for all PDMS sample concentrations 

 
Figure 46: 80C Time constant data as a function of Pressure for all PDMS sample concentrations 
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4.5. Expansion and Time Constant  

Expansion vs time constant data for all PDMS ratio and temperature is presented from 

Figure 47 to Figure 51.  It was observed that greater overall expansion will take longer to reach 

the expansion equilibrium.  This formed a positive relationship as seen in the scatter plotted 

results for all temperature ranges.  The positive correlation becomes much weaker as temperature 

increase. At lower temperature both the time it took for the sample to reach equilibrium and 

maximum expansion was increased.  There seem to be no correlation between different 

concentrations of PDMS.   

The time to reach equilibrium range from around 100 seconds (1.7 minutes) to around 

1300 seconds (21.7 minutes).  Time constant is mainly dependent on the amount of expansion 

experienced by the sample.   

 
Figure 47: 40C Expansion as a function of time for different PDMS sample concentrations 
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Figure 48: 50C Expansion as a function of time for different PDMS sample concentrations 

 
Figure 49: 60C Expansion as a function of time for different PDMS sample concentrations 
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Figure 50: 70C Expansion as a function of time for different PDMS sample concentrations 

 
Figure 51:  80C Expansion as a function of time for different PDMS sample concentrations 
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4.5. Possible Errors  

There are several sources for error in this investigation even though great care was taken 

to ensure experimental consistency.  These errors will be discussed in this section.  

4.5.1. Human Errors 

The techniques and procedure might not be exactly the same form experiment to 

experiment due to few reasons. First reason is that all of the experiments were done by two 

individuals. This will result in slight differences in the procedural.  Much of the experimental 

setup was automated and controlled by electronic controls but there are still part that was 

controlled by humans.  For example: the valves on the view cell apparatus were controlled by 

humans, so there are going to be slight differences in how fast it opens and closes every time.  

This was the primary reason that the decompression data was not available because there was no 

consistent way of opening the valves; this also has influence the time it took to reach equilibrium 

for samples.   

4.5.2. Equipment Errors 

There are a few errors that could be avoided by perfecting experimental design and 

experimental setup construction.  The CO2 concentration fluctuation discussed in the 

introduction can be avoided if temperature and pressure is chosen differently.  This could have 

changed the result slightly.   The thermocouple was placed with in the thickness of the view cell 

wall.  The reason for this placement was that if the thermal couple protrudes into the test 

chamber any more it would be prohibiting the sample holder from being placed inside the view 

cell.  The negative of this set up is that the thermocouple could not read the temperature at the 
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center of view cell (where the sample was).   The reading from the thermocouple was going to be 

closer to the temperature of the view cell wall.  Some of the resulting expansion curves might be 

the result of the near 0 C CO2 that did not have a chance to warm up to the set temperature. 

Figure 52 presents an expansion curve that exhibit irregular data points that could been caused 

by initial temperature differences.  Errors like this could be minimized if the experiments can be 

repeated and the results are the average of the different repetitions.  Errors could have 

compounded in the experiments carried out for this investigation. The errors made in the 

production of the PDMS sample added to the errors made in the view cell experiment will result 

in the errors in the expansion curve and by the time the expansion is curve fitted the error could 

be very significant.  

 
Figure 52: expansion curve with irregular data points during pressurization  
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Chapter 5. Conclusion  

The expansion and the time constant data of PDMS and copper particle composite in this 

investigation have not been published previously.  Basic expansion characteristic of PDMS-

copper particle composite in CO2 was defined. This will provide a starting point for improved 

fabrication process for MEMS metal-polymer composite sensor element.  The data gathered in 

this study can be used to target specific expansion of a PDMS-copper particle composite by 

adjusting pressure and temperature of CO2.  

PDMS-copper particle composite expansion is positively correlated to CO2 pressure. 

Most expansion observed for all temperature and PDMS to particle ratio occurred at higher 

pressure, 2500Psi (17.24Mpa) and 3000Psi (20.68MPa). The least expansion occurred at lowest 

pressure, 1000 Psi (6.98MPa). Temperature is negatively correlated to PDMS-copper particle 

composite expansion.  As temperature increased expansion decreased, at 80 C, the highest 

temperature, the least expansion was observed.  The most expansion occurred at the lowest 

temperature, 40 C.  Negative correlation between expansion and temperature can be explained by 

Whitesides‟ theory.  As temperature increase the difference between the solubility parameters 

becomes greater resulting in less compatibly between PDMS and CO2.  

PDMS to copper particle ratio is positively correlated to expansion. As the PDMS portion 

of the sample increases the overall expansion of the composite increases. This result was within 

expectations.  Copper should not have any volumetric changes when submersed in CO2 so the 

driving factor of the composite expansion is the PDMS portion of the composite. Pure PDMS 

generally experienced the most expansion for all temperature and pressure data sets. Samples 

with 80 wt% copper (20 wt% PDMS) experienced the least expansion for all temperature and 

pressure data sets.    Copper particles are inhibitors for expansion of the combined composite.    
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Time constant and expansion observed is positively correlated. it generally took longer to 

reach greater expansion. This could be the results of two factors. First factor is that it took longer 

for the test camber to reach the higher pressure where greater expansion was observed. Second 

factor is the increased shear energy involved as the sample expands.   

The expansion data have shown expansion of PDMS-copper composite can be achieved.  

The expansion of 20% PDMS samples is vary from around 2% to 12%.  This means that in-situ 

etching of oxide using scCO2 expansion technique with PDMS imbedded with copper particles 

can be attempted.  Furthermore the basic parameters for PDMS expansion with scCO2 technique 

are now known.        

The data from this thesis work is compared with data form Eckert‟s  group and can be 

seen in Figure 53 [12] where both sets of data is over-laid on top of each other with the same 

scale. The pressure range studied by Briscoe was from 0 bar to 200 bar whereas this thesis work 

studied pressure ranging from 69.8 bar (6.98 MPa) to 206.8 bar (20.68 MPa).  The difference 

between the data could be attributed to the difference in the PDMS source, the curing process, 

geometry of the sample, and the pressurization method.  The literature by Eckert stated a 

different vendor for the PDMS, and PDMS films were used in the experiments.  The method for 

PDMS curing was not discussed.  
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Figure 53: 40 C expansion data form Ekert and group compared to 50 C expansion data from this 

investigation. The data is over-laied to the same scale [12].   
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Chapter 6. Future Work 

Next step is to develop the parameters needed to mix CO2 and etching agent. In order to 

accomplish this step, a new experimental set up is needed, an appropriate etching agent have to 

be chosen, and PDMS-metal composite sensing element samples have to be made. 

The new experimental setup requires a new syringe pump, a system that will allow 

mixing of the scCO2 and an etching agent.  In addition to replicating the conditions of this thesis 

work, the new system has to cool down to at least 20 C to allow greater expansion or to reduce 

the pressure requirement.  Multiple factors have to be considered for the etching agent, the 

inertness, etching strength, availability, and chemical compatibility.   Extensive literature search 

is need to find the optimal etching agent.  The sensing element sample can be made through the 

DEPPOST fabrication process. Sensor sized, the metallic lead gap, and wafer arrangement have 

to be considered.   
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APPENDEX A 

LabVeiw VI for DATA acquisition Front Panel 

 

LabVeiw VI for DATA acquisition Block Diagram  
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APPENDEX B 

LabVeiw VI for Edge detection Front Panel 

 

LabVeiw VI for Edge Detection Block Diagram  
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APPENDEX C 

MATLAB Codes: 

function [loc, co, R] = file1(Temp,Per,Press) 

% expand will import excel files and fit a-b*exp(-c*t) 

% imputs: 

% output: i = inital width in pixels  

%         max =  maximum expansion 

%         tc = time constant(time it took to reach max) 

 

%importing form Exel  

Temp=[50 60]; 

Per=[100 80 60]; 

Press=[2000]; 

 

for T = 1:2; 

    for P = 1:3; 

        for S = 1:1; 

        Temp1 = Temp(T);     

        STemp = num2str(Temp1); 

         

        Per1 = Per(P); 

        SPer = num2str(Per1); 

         

        Press1 = Press(S); 

        SPress = num2str(Press1); 

         

        filename = strcat(STemp, SPer, SPress,'.xlsx'); 

        fn=strcat(STemp, SPer, SPress); 

        filepath = fullfile('C:', 'Users', 'Teng','desktop','DataAll', filename); %make file name 

     

        x = xlsread(filepath,'d300:d7000'); 

        y = xlsread(filepath,'h300:h7000'); 

        

        y=smooth(x,y,81,'rlowess',3); 

        figure('Numbertitle','off','Name',fn); 

        z=plot(x,y); 

        hold all; 

        fo = fitoptions('method','NonlinearLeastSquares','Lower',[0 0 0]); 

 

        st = [0 0 550]; 

        set(fo,'Startpoint',st); 

        ft = fittype('-a*(exp(-b*x)+exp(-b*x*4)/4+exp(-b*x*9)/9+exp(-b*x*16)/16+exp(-

b*x*25)/25+exp(-b*x*36)/36+exp(-b*x*49)/49+exp(-b*x*64)/64+exp(-b*x*81)/81+exp(-

b*x*100)/100)+c',... 
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    'dependent',{'y'},'independent',{'x'},... 

    'coefficients',{'a', 'b', 'c'}); 

        cf = fit(x,y,ft,fo); 

        z = plot(cf,'fit',0.95); 

        [cfun,gof] = fit(x,y,ft,fo); 

        

        loc = filename 

        co  = coeffvalues(cfun) 

        R   = getfield(gof,'rsquare') 

        

        disp('<><><><><><><><><><><><><><><><><><><><><><><><>');   

        end 

    end 

end 
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