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ABSTRACT 

4D printing is an emerging technology that prints 3D structural smart materials that can 

respond to external stimuli and change shape over time. 4D printing represents a major 

manufacturing paradigm shift from single-function static structures to dynamic structures with 

highly integrated functionalities. Direct printing of dynamic structures can provide great benefits 

(e.g., design freedom, low material cost) to a wide variety of applications, such as sensors and 

actuators, and robotics. Soft robotics is a new direction of robotics in which hard and rigid 

components are replaced by soft and flexible materials to mimic mechanisms that works in living 

creatures, which are crucial for dealing with uncertain and dynamic tasks. However, little research 

on direct printing of soft robotics has been reported.  

Due to the short history of 4D printing, only a few smart materials have been successfully 

4D printed, such as shape memory and thermo-responsive polymers, which have relatively small 

actuation strains (up to ~8%). In order to produce the large motion, dielectric elastomer actuator 

(DEA), a sheet of elastomer sandwiched between two compliant electrodes and known as artificial 

muscle for its high elastic energy density and capability of producing large strains (~200%), is 

chosen as the actuator for soft robotics. Little research on 3D printing silicone DEA soft robotics 

has been done in the literature. Thus, this thesis is motivated by applying the advantages in 3D 

printing fabrication methods to develop DEA soft robotics. The ultimate research goal is to 

demonstrate fully printed DEA soft robots with large actuation. 

In Chapter 1, the research background of soft robotics and DEAs are introduced, as well as 

3D printing technologies. Chapter 2 reports the rules of selecting potentially good silicone 

candidates and the printing process with printed material characterizations. Chapter 3 studies the 

effects of pre-strain condition on silicone material properties and the performance of DEA 



 

configurations, in order to obtain large actuation strain. In Chapter 4, two facial soft robots are 

designed to achieve facial expressions as judged by a smiling lip and expanding pupils based on 

DEA actuation. Conclusions and future developments are given in chapter 5.  
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1 INTRODUCTION 

 

1.1 Soft Robotics 

Robots are often thought as machines with rigid bodies and rigid motions, resulting in rapid, 

precise, and powerful movement in the certain environments. However, their functions are difficult 

to perform in harsh and unpredictable environments or disastrous situations. In contrast, soft 

robotics is a new direction of robotics in which hard and rigid components are replaced by soft and 

compliant materials to mimic the actuation mechanisms of living creatures. Some soft biomimetic 

robots associated with artificial muscle are earthworm robots [1, 2], hexapod inspired robots [3, 

4], Gecko climbing robot [5] and micro flying insect robot [6]. Soft robots are convenient to apply 

in uncertain and dynamic task-environments, such as manipulating unknown objects, performing 

locomotion in rough terrains, and making contact with living cells and human bodies without 

damages. In these cases, soft robots outperform rigid robots. For applications, there are huge 

demands for soft robots due to their advantages aforementioned. For example, in 2014, $27 billion 

profit was made in the Fresh-Cut Fruit and Vegetable Market in US, based on a Produce Marketing 

Association (PMA) report. However, the American Farm Bureau Federation reported that $9 

billion losses resulted from labor shortages. Hence, soft robots that easily handle soft and irregular-

shape fruit and vegetable are capable of solving huge loss in this food market, also to markets like 

pharmacy.  

Although there are huge interests and demands for soft robotics, researchers and engineers 

have many fundamental difficulties in studying this field, including exploring unconventional 

materials, developing fabrication methods and tools, establishing an agreement on the simulation 

of soft continuum bodies, integrating actuation and control, and evaluating the communication in 
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soft robotics. These barriers, summarized by IEEE Robotics & Automation Society, are also the 

research trend of soft robotics in the future.  

As soft robotics developed over the past decades, manufacturing methods are evolving from 

traditional machining, casting, and forging to more advanced approaches [7]. Although some soft 

robots were fabricated using traditional manufacturing processes, the demand for more advanced 

soft robotics has spurred the development of new manufacturing methods, such as shape deposition 

methods (SDM) and smart composite microstructures (SCM). SDM, a solid freeform fabrication 

(SFF) process, requires subtractive and additive manufacturing processes [8]. The subtractive 

manufacturing processes cause high energy consumption and large wastes of materials. SCM 

integrates the rigid structures with flexure joints and links, which is a fabrication process typically 

using laser micromachining methods [6]. These advanced manufacturing processes provide 

freedom in designing new types of 3D structured soft robots. Nonetheless, the manufacturing time 

and cost are still expensive for these methods. In addition, the complex manufacturing processes 

limit the robotic geometry and design freedom. Therefore, in order to further improve the freedom 

of design, the ease of fabrication and customization, simpler and more direct manufacturing 

technologies are desired.  

1.2 Dielectric Elastomer Actuators (DEAs)  

Soft robots are embedded with various sensors and actuators to achieve precise movement, 

and one of the most important actuators in soft robotics is dielectric elastomer actuators (DEA).  

Dielectric elastomer (DE) is a group of electroactive polymers (EAP) that can generate strains 

under electric field, and DEA operates like a capacitor with a sheet of elastomer sandwiched 

between two compliant electrodes, generating deformation under the electric field. DEA is 
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typically referred as “artificial muscle” for its ability to mimic mammalian muscles and its large 

strain, lightweight and high energy density. Natural muscle uses many complex mechanisms 

involving protein motion and regeneration from neural signals, while artificial muscle changes in 

shape when an external stimuli are applied [9]. Many research about DEAs and applications have 

started since 1990s, such as robotics [10], active vibration control of structures [11], and energy 

harvesting [12].  

In this section, a comprehensive introduction to DEAs is presented, including comparisons 

among human muscle and DE and other smart materials, fundamental principles of DEAs, two 

commonly used dielectric elastomer materials, and current manufacturing methods.  

1.2.1 Comparison among smart materials and human muscle 

A survey about some key characteristics of DEA with human muscle and other smart 

materials is completed in order to find the appropriate material mimicking human muscle.  As 

shown in Figure 1, human muscle and four smart materials, including dielectric elastomer, 

electrostrictive polymer, piezoelectric polymer and shape memory polymer, are compared in terms 

of their general properties. In Figure 1 (a), dielectric elastomer has about 380% maximum strain 

that outperforms human muscle and other smart materials. In Figure 1 (b), all listed smart materials 

can produce the maximum pressure larger than human muscle, and dielectric elastomer is capable 

to produce about 10 times pressure than that of human muscle. In Figure 1 (c), human muscle can 

respond to internal or external stimulus within 50 milliseconds, while dielectric elastomer is over 

20 times faster than human muscle and hundreds of times than that of shape memory polymer. In 

Figure 1 (d), working efficiency of DE is typically around 90%, which is two times than human 

muscle, while shape memory polymer has a low efficiency of~10%. Hence, dielectric elastomer is 
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a promising material for making artificial muscles, due to the fact that it can outperform human 

muscle and other smart materials in these key characteristics.  

 
(a)                                                                           (b) 

 
(c)                                                                           (d) 

Figure 1. (a) Maximum strain, (b) maximum pressure, (c) response speed and (d) efficiency 

comparison among human muscle, dielectric elastomer and other smart materials [13-15] 

1.2.2 Fundamental principles of dielectric elastomer actuator 

With its capability to outperform human muscles, dielectric elastomer has been used to 

develop actuators for soft robot [9]. DEA operates like a capacitor, with a dielectric elastomer film 

sandwiched by compliant electrodes. Upon applying voltage, the electrostatic force between the 

electrodes squeezes the elastomer in the thickness direction and actuate the elastomer in the planar 

direction. The equivalent electromechanical pressure is the Maxwell electrostatic pressure, which 

is given by:  
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𝑝𝑒𝑞 = 𝜀0𝜀𝑟

𝑈2

𝑧2
 

(1) 

where 𝜀0 is the vacuum permittivity, 𝜀𝑟 is the dielectric constant of the elastomer, U is the applied 

voltage between electrodes and z is the thickness of elastomer membrane [16]. Compressive 

Maxwell pressure causes mechanical deformation to DEAs, based on the general expression:  

𝜀 =
𝜎

𝐸
 

(2) 

where 𝐸  is the Young’s modulus of material, 𝜎  is the Maxwell pressure, and 𝜀  is the strain 

responding to the stress. Dielectric elastomer is squeezed in the direction of Maxwell pressure, and 

expands in other two directions, from the general expression of Poisson ratio: 

𝛾 =
𝑑𝜀𝑡𝑟𝑎𝑛𝑠

𝑑𝜀𝑎𝑥𝑖𝑎𝑙
 

(3) 

where 𝛾  is the Poisson ratio, 𝑑𝜀𝑎𝑥𝑖𝑎𝑙  is the derivative axial strain, 𝑑𝜀𝑡𝑟𝑎𝑛𝑠  is the derivative 

transverse strain. For incompressible dielectric elastomers, Poisson ratio is assumed to be 0.5.  

From understanding the fundamental principles of DEA, the properties of dielectric 

elastomers play a significant role on DEA actuation. Some desirable properties for producing large 

actuation strain include high dielectric constant, high breakdown strength, and low Young’s 

modulus. However, most of dielectric elastomers have a non-linear hyper- elasticity, which means 

Young’s modulus changes with strain. An example of hyper- elasticity curve of dielectric 

elastomers shows the varying Young’s modulus in the below Figure 2. It is obvious that Young’s 

modulus in region 2 is much smaller than those of region 1 and 3, so large actuation is easily 

achieved in region 2 that has a lower Young’s modulus. In order to obtain large DEA actuation, 

an important approach is to apply pre-strain to stretch silicone to achieve the low Young’s modulus 
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in region 2 prior to DEA actuation. Pre-strain condition plays an essential role in increasing DEA 

actuation.  

   
(a)                                                                       (b) 

Figure 2. (a) Non-linear elasticity or hyper-elasticity; (b) the varying Young’s modulus in hyper-

elasticity 

Besides reducing Young’s modulus of dielectric elastomer, pre-strain condition was found 

the positive relationship to increase the dielectric breakdown strength. In the literature, there were 

a lot of papers reporting the effects of pre-strain on DEA actuation, such as reducing Young’s 

modulus and increasing dielectric breakdown strength [17-19]. For example, silicone elastomer 

generally has a maximum uniaxial elongation larger than 75%, and the pre-strain have been shown 

as an effective approach to increase DEA actuation strain by experiments and simulations [17]. A 

study of different pre-strain modes, such as uniaxial, equi-biaxial, and planar stretching modes, 

were presented by Yang [18]. He reported that DEA actuation was dependent on different pre-

strain modes and the equi-biaxial mode would stiffen dielectric elastomer to weaken its actuation. 

From his experiments, Dow Corning HSIII RTV silicone DEA was shown to have a peak actuation 

of 160 μm over 20 mm active length at a 15% pre-strain through experiments. In addition, a 10 

times actuation strain from 7.7% to 80% of a uniaxial actuator made of Sylgard 186 silicone 
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elastomer was reported when a 175% pre-strain was applied [19]. This paper also reported that 

excessive pre-strain could stiffen the elastomer and increase the requirement for actuation voltage.  

1.2.3 Selective materials for dielectric elastomers 

Two of the most common dielectric elastomer materials are acrylic and silicone elastomers. 

They have different advantages and disadvantages. Specifically, acrylic elastomers can produce 

the relatively large strain up to 380% and have the high dielectric constant, while silicones 

generally have the high electromechanical response speed, long durability, large range of operating 

temperature and high energy efficiency, shown in the Figure 3 [20]. Most of silicone products are 

in liquid form or gel form, and can easily be turned into solid form via certain curing processes. 

Due to the ease of processing and customization, silicone has wider applications than acrylic 

elastomer, which is typically in solid form. 

 

Figure 3. Material property comparison of two common dielectric elastomers 
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1.2.4 Previous research on dielectric elastomer actuators 

In addition, many investigations have done on various aspects of DEAs, such as the geometry 

of the compliant electrodes [11], the breakdown strength [21-23], and the enhancement of silicone 

dielectric and mechanical properties [9, 24-29]. One study demonstrates a heart-shape DEA that 

could expand and remain in heart shape with fast response at a high frequency of 20 kHz [11], 

which indicates that DEA actuation is isotropic.   

DEAs typically break down in three different ways, the electrical, the partial discharge, and 

the thermally initiated breakdown [21]. The partial discharge and thermally initiated breakdowns 

during the short testing period can be mitigated. The electrical breakdown or dielectric breakdown 

that is dielectric elastomer’s electrical property limits the maximum voltage that can be applied on 

DEAs, so limits the DEAs actuation. Dielectric breakdown strength is also relevant to the material 

physical properties, such as mechanical stiffness, thickness, and pre-strain. The empirical results 

showed that the dielectric breakdown strength of silicone elastomer films as actuators can be 

enhanced by decreasing thickness or increasing pre-strain [22]. In addition, un-cured or not fully 

cured silicone gel has a comparatively lower dielectric breakdown strength than fully cured 

silicone [23]. 

It is desirable to have a large dielectric constant for large electrostatic pressure, which can 

produce large mechanical strain. Many different approaches have been developed for increasing 

the dielectric constant of dielectric elastomers. Three approaches were explored, including random 

composites, field-structured composites, and new synthetic polymers [9]. To illustrate, random 

composite approach is to fill and disperse either solid (powders) or liquid materials into dielectric 

elastomer, such as ferro/piezoelectric ceramics, metal conductive particles, and organic polymers. 

Field-structured composite approach is by mixing dielectric elastomers with some 
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ferro/piezoelectric ceramics and curing them in an external electric field to form the bipolar 

molecular structure so as to increase dielectric constant. The polymer synthesis approach creates 

a new molecular structure of dielectric elastomer materials by copolymerization.  

For silicone dielectric elastomer, random composite is a typical approach for enhancing 

dielectric constant by studying the impact of the types and content of fillers on the DEAs 

performance. For example, some high dielectric constant materials were added in pure silicone to 

enhance its dielectric constant, such as ferro/piezoelectric ceramics (titanium dioxide and BaTiO3 

powders) [24, 25] and multi-walled carbon nanotubes [26]. However, adding high dielectric 

constant materials may increase the elastic modulus and the decrease of the breakdown strength, 

which are not desirable for DEAs [25]. Softening the materials is another type of random 

composite method through adding plasticizers to enable large deformation at relatively low electric 

field [27]. In addition, there are examples demonstrating the synthesis approaches to improve 

silicone dielectric constant, such as copolymerizing copper-catalysed azide-alkyne 1,3-dipolar 

cycloaddition (CuAAC) [28] and polar cyanopropyl group polymers [29]. 

1.2.5 Current manufacturing methods 

Current manufacturing methods for fabricating silicone DEA are spin-coating and spray 

coating. In the paper [30], spin-coating method for uncured silicone dielectric elastomer membrane 

was studied by using a spin coater, and sample characterizations by this method were also 

investigated. They found that this spin-coating method was efficient to produce massively thin 

silicone membranes of less than 10 μm thicknesses. However, sophisticated geometry and 3D 

structural configuration of DEA is difficult to be fabricated though this method.  
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Another paper presented that spray-coating method for fabricating uncured silicone 

elastomer is advantageous on scalability, flexibility for different DEA configuration, and 

multilayered assembly for a high degree DEA actuation [31]. For example, a multi-layered silicone 

DEA of 67μm single layer thickness was demonstrated through this method. However, the 

electrode fabrication process requires an extra mask to partially airbrush graphite powder on the 

silicone film, which causes the complexity of the entire DEA fabrication. Also, different 

geometries of silicone membranes is complex to achieve through this method.  

In summary, two commonly manufacturing methods for DEAs are discussed. The spin 

coating method is good at achieving thin film silicone elastomer with good uniformity, while the 

spray coating method is advantageous on fabricating 3D structural stacked DEAs. They both are 

efficient to produce massive DEAs in short time. However, free design and customization for 

sophisticated DEA-base soft robotics are extremely difficult to obtain from these methods. Hence, 

this research is motivated to develop a digital fabrication method for DEA based soft robots via 

advanced manufacturing methods, like 3D printing technologies. 

1.3 3D Printing Techniques 

3D printing, also known as additive manufacturing, is a digital manufacturing method that 

builds a three-dimensional object from a digital model layer by layer. The first prototype system 

of 3D printing technology, stereo-lithography (SL), was developed by Chuck Hull in 1984. Until 

now, many 3D printing techniques, such as fused deposition modeling (FDM), inkjet printing, 

selective laser melting (SLM) and selective laser sintering (SLS), have been developed.  

Two types of 3D printing techniques are used in this thesis, such as fuse deposition modeling 

(FDM) and syringe-based extrusion. First of all, FDM is a typical additive manufacturing 



 

11 

 

technology that deposits the layered plastic filament or metal wire from a coil, shown in the Figure 

4. Plastic filament or metal wire heats in the extrusion print head, and then molten material is 

extruded and fused with printed material. FDM software reads a STL file format. The material 

deposition rate is controlled by the extrusion rate of plastic filament or metal wire, and the fine 

resolution is achieved by both precise motion in motor stage and nozzle tip size. Generally, 0.4 

and 0.2 mm nozzle-size tips are used for both 2.85 and 1.75 mm diameter filament to achieve 

different resolutions. In this thesis, Acrylonitrile butadiene styrene (ABS) thermoplastic filament 

of 2.85 mm is applied on Ultimaker 2 through 0.4 mm nozzle-size tip.  

 

Figure 4. Fused deposition modelling method: 1 – nozzle ejecting molten material, 2 – deposited 

material, 3 – controlled movable table  

(Wikipedia: https://en.wikipedia.org/wiki/Fused_deposition_modeling) 

Another type of 3D printer, Fab@Home model 3, is employed for fabricating main 

components in DEAs. Fab@Home printer is a material extrusion based multi-material printer. On 

our Fab@Home printer, two liquid materials can be deposited from a dual-syringe print head, 

simultaneously. Two different types of print heads, motor-driven and pressure-driven print heads, 

are used in this thesis, and their differences are discussed in the DEA fabrication process in Chapter 

2.  

https://en.wikipedia.org/wiki/Fused_deposition_modeling
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3D printing techniques have made significant strides during the past decades, enabling the 

direct fabrication of 3D structures. These advanced techniques reduce the complexity in fabrication 

from the conventional subtractive manufacturing methods, improve the efficiency in time and 

materials, and offer more customization in design freedom. Hence, 3D printing is a promising 

technique for the direct fabrication of soft robotics.  

1.4 4D Printing Review 

4D printing, as an extension of 3D printing, is an emerging technology that prints 3D 

structures with smart materials, which can respond to external stimuli and change shape or 

properties over time. 4D printing was first presented from Massachusetts Institute of Technology 

(MIT) in 2009, by demonstrating a 4D printed temperature-responsive polymer, which was 

programmed to show “MIT” and “SAL” [32]. 4D printing represents a major manufacturing 

paradigm shift from single-function static structures to dynamic structures with highly integrated 

functionalities. Direct printing of dynamic structures can provide great benefits (e.g., design 

freedom) for a wide variety of applications, such as sensors, actuators, and robotics. Due to its 

short history, only a few smart materials have been successfully 4D printed for various applications, 

including shape memory polymers [33, 34], and ionic electroactive polymers [35]. Massive 

research is encouraged to explore more applications for the 4D printing technology.  

1.4.1 Literature Review of 4D Printing Dielectric Elastomer Actuator Cases: 

Dielectric elastomers are known as artificial muscle materials for various applications due 

to large actuation, light weight and high energy density. The significant DEA development 

progress has been made, including a few papers reporting directly 3D printing DEAs, similar to 
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this thesis. However, the research gaps found from these papers are discussed to ensure that this 

research produces new knowledge and contribution.  

In 2009, Rossiter J. et al. presented a new approach to the fabrication of soft dielectric 

elastomer actuators via 3D printing technologies [36]. They emphasized that 3D printing 

technologies have the capability of forming complex three-dimensional structures, like actuators 

and sensors. The contribution of this paper was developing a 3D printing process for acrylic 

elastomer membrane and frame structure through stereo-lithography (SL) process and designing a 

novel 3D structural DEAs that involves pre-strain mechanism. However, the low performance of 

their printed acrylic DEA was 0.12 mm maximum displacement over a 20 mm active length, which 

is 0.6% actuation strain, because acrylic-based photopolymer materials (resin) only had 50% 

maximum elongation.  

Another study on inkjet 3D printing DEAs was reported in 2008 at the University of 

California at Berkeley [37]. They studied the inkjet 3D printing process, dielectric breakdown 

strength study and the design of printable pre-strain structures for silicone DEAs. However, the 

DEA behavior test was actually conducted on VHB 4910 acrylic DEAs that was not 3D printed. 

VHB 4910 acrylic is in solid phase that is not printable on the inkjet 3D printer, and they manually 

made those acrylic membranes stretched on the rigid frames. In addition, they did not demonstrate 

any DEA based soft robotics through 3D printing techniques.  

This literature review reveals that very little research on the 3D printed DEAs has been very 

preliminary, and 0.6% actuation strain on the 3D printed DEA was too small to match with 

promising performance of these artificial muscle materials with over 100% maximum elongation. 
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In addition, the design freedom in 3D structural DEA soft robotic endowed by 3D printing 

techniques was not well exploited.  

1.5 Motivation and Objective:  

From literature survey, it is clear that little research has been done on 3D printing silicone 

DEA soft robot with large actuation strain. Hence, the research objective of this thesis is to develop 

fully printed DEA soft robotics with large actuation strain. In this thesis, I will first develop a 3D 

printing process for silicone DEA, and then investigate the DEA behavior for selecting the best 

silicone candidates, and finally fabricate a DEA soft robot that meets the desired functions, which 

will be discussed respectively in Chapter 2, 3, and 4 respectively.  
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2 DIELECTRIC ELASTOMER ACTUATOR FABRICATION PROCESS 

 

2.1 Introduction 

In this chapter, a 3D printing process for fabricating silicone elastomer membrane and carbon 

grease electrode is developed. It is organized to be three sections. In the first section, the principal 

rules for selecting appropriate materials based on material properties are discussed. In the second 

section, the entire fabrication process for silicone DEA is discussed, including material preparation 

process, printing process, post-curing, and assembly. In the last section, the characteristics of these 

printed materials are tested.  

2.2 Principal Rules for Material Selection 

Material properties play an important role in obtaining large DEA actuation. Understanding 

fundamental principles of DEA actuation is very helpful to select right and appropriate materials 

from a large amount of candidates. In the DEA configuration, a circular DEA is composed of 

dielectric elastomer film, electrode and circular rigid frame. In this section, the rules of selecting 

silicone dielectric elastomer, electrode and frame are discussed, respectively.  

 

Figure 5. A schematic circular dielectric elastomer actuator 
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2.2.1 Dielectric elastomer:  

The primary challenge for achieving the large deformation is to select the appropriate 

dielectric elastomer materials. Among all types of dielectric elastomers, silicone elastomer is 

chosen because of its ease of processing, higher working efficiency, and faster response time than 

acrylic elastomer. However, there are hundreds of commercial silicone elastomers on the market, 

because many different types of fillers are added in pure silicone to enhance its different properties 

for various applications. For our application, some key material properties of silicone dielectric 

elastomer are desired based on the DEA actuation principles, such as high dielectric constant and 

dielectric breakdown strength for generating large pressure, and low Young’s modulus for 

obtaining large strain.  

Besides these factors above, viscosity is another important factor. Higher viscosity materials 

require more pressure to be extruded from a small nozzle. Fab@Home syringe-base print heads 

can produce pressure up to 80 psi. For the motor-driven and pressure-driven print heads, the upper 

limit of printable viscosities are 10,000 cP and 100,000 cP motor-driven, respectively, shown in 

the below Figure 6. In addition, low viscosity silicone is preferred for ease of fabrication. For 

example, it is much easier to degas silicone with lower viscosity, which is a critical step for 

preparing the materials for printing. High viscosity make it more difficult for the air bubbles to get 

out.  
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(a)                                                                                            (b) 

Figure 6. Fab@Home printer with (a) Pressure-driven print head or (b) Motor-driven print head 

Four silicone elastomers of within 10,000 cP viscosity from different manufacturers are 

selected to print via the motor-driven print head, including ShinEtsu KE-1283, KE-3417 and KE-

3494 and Dow Corning Sylgard170, shown in the Table 1. Six silicone elastomers with a wider 

range of up to 100,000 cP viscosity were selected to print via the pressure-driven print head, 

including Momentive LIM6010, Nusil R2188 and R3-1075, and Dow Corning 236, SE9186 and 

Sylgard186 in the Table 2.  

Table 1. Material properties for Group 1 silicone elastomer from motor-driven print head 

 KE-1283 KE-3417 KE-3494 Sylgard170 

Viscosity (cP) 2000 5000 5000 2135 

Tensile Strength (MPa) 0.2 1.7 2.5 - 

Elongation at break (%) 300 260 250 - 

Dielectric Constant 4 3.2 3.5 2.54 

Dielectric breakdown 

strength (kV/mm) 
25 19.68 25 18 
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Table 2. Material properties for Group 2 silicone elastomer from pressure-driven print head 

 Sylgard186 SE9186 LIM6010 R-2188 R3-1075 236 

Viscosity (cP) 66,700 64,000 30,000 11,300 3,300 675 

Tensile strength (MPa) 2.1 2.5 2.76 3.3 4.8 2.24 

Elongation at break (%) 255 550 510 350 350 500 

Dielectric Constant 2.7 2.7 - 2.9 - - 

Dielectric breakdown 

strength (kV/mm) 
>14 23 - 19.5 49.2 >14 

2.2.2 Flexible electrodes and connecting wires:  

For electrodes, it is critical to select a flexible and stretchable conductive material with 

extremely low Young’s modulus that can provide uniform charge distribution over the surface 

under large deformation. It was reported in the literature that carbon conductive grease can meet 

these requirements for the electrode in DEA. MG carbon conductive grease is selected in this 

research, and its volume resistivity is 1.17 ohm*cm from the supplier. In addition, copper wire is 

used to connect compliant electrodes to a high voltage supply. 

2.2.3 Rigid frames 

DEAs need frames for supporting itself for both fabricating and actuating. Frames should be 

strong enough for holding the pre-stretched soft silicone elastomers. The rigid frames made of 

ABS plastic were applied with two different configurations, circular and rectangular. The effects 

of different configurations on DEA actuation is discussed in the next chapter.  

2.2.3.1 Circular rigid frames 

A circular rigid frame is designed to tightly hold the pre-stretched silicone membrane as 

shown in Figure 7, which can also protect the printed electrodes and wire traces on both sides of 

dielectric elastomer film from touching the platform of the Fab@Home printer during printing. 
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The DE film is sandwiched between two frames, and three clamps tightly hold the two frames 

together. Circular rigid frame kits with some clamps were fabricated on an Ultimaker 2 3D printer 

using ABS plastic filament. In order to fit in the build area of Fab@Home printer (230x128x100 

mm3) for printing electrodes on the silicone films, frames with a diameter of 100 mm and height 

of 6 mm were designed.  

  

Figure 7. CAD model of assembled frames and clamps. 

2.2.3.2 Rectangular rigid frames 

For rectangular DEAs, rigid frames are separate parts to provide uniaxial pre-strain condition 

only in the horizontal direction. Screw sets in rigid frames are used to tightly hold silicone 

elastomer membrane. These rigid frames with 80x10x5 mm dimensions were also printed on U2 

printer. It is shown in Figure 8.  

2.2.4 Stretching base 

It is known that silicone elastomers have the hyper-elasticity, which has the strain-dependent 

Young’s modulus. Pre-strain can be applied to obtain lower the Young’s modulus for large DEA 

actuation. Pre-strain also affects the dielectric constant and breakdown strength of silicone 

elastomers and the effects of the pre-strain on these properties need to be investigated. For these 
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investigations, a stretching base was designed to apply different pre-strain as shown in Figure 8. 

This stretching base clamps rigid frames of rectangular DEAs, and stretches DEAs by tuning the 

butterfly nuts on thread rods. A ruler is taped to the base to determine the stretch ratio. This 

structure kit including screw nuts are all designed in Solidworks and then printed on a FDM printer.  

 

Figure 8. Stretching base showing assembled rectangular DEA with pre-strain condition 

2.3 Fabrication Process 

In the DEA fabrication process, 3D printing techniques are applied due to their reliability of 

good quality of the printed materials, such as accuracy and consistency. Our objective is to 

fabricate all DEA components, except copper wires, via 3D printing techniques to achieve a fully 

printed DEA. It is essential to study the 3D printing fabrication process for obtaining good quality 

DEAs. Silicone films and carbon grease films are printed on syringe based Fab@Home multi-

material 3D printer, and the stretching base and rigid frames are printed on FDM printers.  

Stretching base 

Ruler 

Thread rod &  
Butter fly nut 

Clamps 

Rectangular DEAs 
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It is fairly straightforward to print on FDM printers, while it is new to print silicone and 

carbon grease through a material extrusion based multi-material printer, which is the focus in this 

chapter. The main procedures in this fabrication process are developed, including material 

preparation, printing process with the printing parameter study, post-curing, and assembly as 

described in each sub-sections below. Two groups of silicone candidates, printed via different print 

heads, are discussed in each step, respectively. 

2.3.1 Material preparation 

Before the printing process starts, materials need to do some preparations for printing. One 

critical issue reported in the literature is that air bubbles are easily trapped in viscous materials, 

inducing the inconsistency in material appearances and defects in the printed parts [25]. An 

example of a printed silicone film without sufficient degassing shows the bad quality of the 

inconsistent print in Figure 9 below. To eliminate the air bubble issue, a vacuum chamber kit that 

can extract about 28.5 inches mercury pressure is used to degas silicone elastomers. 

 

Figure 9. A printed silicone film with inconsistent appearance from insufficient degassing 
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The results of the degassing process are influenced by two parameters: the extracting 

pressure and duration. The maximum extracting pressure is determined by the power of the 

vacuum pump, while only duration is the controllable parameter. Experiments showed that 30 

minutes of degassing were sufficient and effective for low and medium viscosity silicones of less 

than 10,000 cP. Through observation, air bubbles in the low viscosity silicones are much easier to 

remove, such as KE-1283 and Sylgard 170 silicone elastomers. Another issue involved in 

degassing process is that fast-cure silicones may cure during the degassing process due to the rapid 

loss of moisture in vacuum condition. Of the four selected silicone products, KE-3417 and KE-

3494 silicones cure fast, typically in one hour, while KE-1283 and Sylgard 170 elastomers cure in 

more than 5 hours. The alternative operation for fast-cure silicone is to degas in three iterations of 

10 minutes, instead of one iteration of 30 minutes, and at each break the cured silicone must be 

removed so as not to block air bubbles coming out. In order to avoid this issue, the slow-cure 

silicone elastomers are preferred for easier degassing process, such as KE-1283 and Sylgard 170.  

For high viscosity silicone, the degassing duration in the vacuum chamber need to be longer. 

For example, Dow Corning Sylgard 186 silicone with 66,000 cP viscosity took about 4 hours to 

eliminate bubbles inside of silicone, but still some bubbles stayed at top of syringe barrels. 

In addition, a mixing process is sometimes required for two parts material, like Sylgard 186 

and LIM 6010 silicone, prior to degassing process. Based on their material datasheet, part A and 

part B materials are poured in a beaker at the given mixing ratio by weight using a mass scale with 

1 μg resolution. Then, two parts are manually stirred by using a teaspoon for 1 minute as suggested 

in their material datasheets. 



 

23 

 

2.3.2 Printing process 

Fab@Home multi-material printer is used for printing silicone films and carbon grease films. 

On a Fab@Home printer, two print heads are used for different purposes. For example, the motor-

driven print head is good for the ease of fabrication, while the pressure-driven print head is capable 

of producing high pressure for extruding high viscosity materials. The adjustable process 

parameters for motor-driven print head are deposition rate, path speed, path spacing, path height, 

and syringe tip nozzle size, as explained in the Table 3. While the deposition rate parameter 

changes to air pressure when the pressure-driven print head is being used, also explained in the 

Table 3. The good quality of printed dielectric elastomer films, such as uniformity, smoothness 

are dependent on these process parameters. The fabrication processes though two print heads are 

discussed in the following sections, respectively.  

Table 3. Description of the printing parameters of Fab@Home printer 

Deposition rate  

(OR air pressure) 

The extruding rate in motor-driven print head 

(OR extruding pressure in pressure valve print head)   

Path speed The traveling speed of the print head while printing 

Path spacing The spacing between two parallel paths 

Path height The single layer thickness 

Syringe tip size Tip nozzle size, also the diameter of extruded material line 

 

2.3.2.1 Fabrication process through motor-driven print head 

The printing process for silicone elastomer was conducted on the Fab@Home printer using 

a dual-syringe kit with 10 cc syringe barrels and 0.4 mm nozzle size tips, shown in Figure 10. The 

impact of each parameter on the quality of the print is explained below. 
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Figure 10. a) A syringe kit of 10 cc barrel and 0.4 mm nozzle tip. b) Dual syringe kit with two 

different silicone elastomers in barrels 

Path height is to determine how thick each layer is, and also associated with the 3D model 

thickness to determine how many layers are built up. For silicone films, a mono-layer model with 

0.4 mm thickness applied the 0.4 mm path height for using 0.4 mm nozzle-size tips. Single layer 

can avoid the potential air bubble issue between the layers, and a thin film is desired for producing 

large electrostatic pressure according to Equation (1). 

Path spacing and tip nozzle size need to match up in order to print uniform and smooth films 

without any ridges or valleys, but not necessarily equal. For example, when a 0.4 mm nozzle tip is 

used, the path spacing need to be around 0.4 mm. However, the material viscosity also need to be 

taken into account. For low viscosity materials (~2000 cP), such as KE-1283 and Sylgard 170 

silicone elastomers, the path spacing is recommended to be 0.5 mm because they are easy to spread 

out on the surface. For high viscosity materials (~5000 cP), such as KE-3417 and KE-3494 silicone 

elastomers, the path spacing need to be 0.3 mm based on experiments. 

a b 
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Deposition rate determines how much volume of material is deposited on the substrate per 

second, while path speed means how fast the print head travels on the XYZ stage. The path speed 

is held at 30 mm/s, while the deposition rate varies from 0.4 mm3/s for low viscosity silicones of 

about 2000 cP to 1.6 mm3/s for high viscosity silicones of about 5000 cP. The reason for that is 

because higher viscosity silicones require larger extruding pressure, which is obtained by giving a 

higher deposition rate for the motor-driven print head to to generate more pressure.   

 

Figure 11. A good quality silicone elastomer film with extra areas 

In addition, there are other factors that influence the quality of the printed materials. For 

example, the levelness of the printer platform may influence the film uniformity, especially for 

thin films (~100 µm). The motor-driven print head has a problem to instantly adjust pressure. 

Simply speaking, it takes time to ramp up pressure at the beginning of the print and to wind down 

pressure at the end of the print. To solve this issue, two extra areas at the beginning and the end 

were designed for circular silicone films as shown in Figure 11. Finally, a uniform and smooth 

film is obtained after all adjustments.  
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2.3.2.2 Fabrication process through pressure-driven base print head 

Pressure-driven base print head is typically applied for printing high viscosity materials. A 

different configuration file is loaded in the control software of Fab@Home printer. One key 

printing parameter is changed from deposition rate to air pressure, which directly controls the 

extruding pressure. Other parameters work in the same ways with that of dual-motor print head.  

Pressure-driven print head is advantageous on instantly adjusting pressure during printing 

by turning the internal pressure valve on or off. However, an issue associated with this print head 

is that switch valves have to be replaced after every print, because silicone finally solidifies inside 

of switch valve and blocks flows. The cured silicone is very difficult to be removed or dissolved 

by typical cleaning chemicals, such as isopropyl alcohol and acetone, which may damage the 

plastic switch valve. Some special cleaning solvents provided from silicone manufacturers can be 

used for the cured silicone elastomers.  

Printing high viscosity material is discussed here. The ultimate goal for printing silicone is 

to obtain good quality of thin silicone films without any inconsistency. 3D model of silicone film 

is designed with 0.4 mm thickness for using 0.4 mm nozzle-size tips. Path spacing and path height 

that are related to nozzle size both are determined to be 0.4 mm. Path speed that controls the 

traveling speed of the print head is set as default 30 mm/s. Hence, air pressure is the only variable 

to study for printing silicone elastomer and carbon grease.  

In the parameter study, three different air pressures are studied for each material in order to 

obtain a thin film with good quality. For example, 5 psi pressure was first applied to print SE9186 

silicone through 0.4 mm nozzle-size tip, and a 180 μm thick film with inconsistent quality was 

obtained. Then, 20 psi air pressure was used to print a silicone film with 380 μm thickness and 
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consistent film quality, but it is too thick. Finally, a film thickness of 230 μm was achieved by 

applying 10 psi air pressure. This trial-and-error approach to obtain the printing parameters for a 

thin film with good quality was applied to every silicone candidate or carbon grease, as shown in 

Table 4.  

Table 4. Printing parameters for each materials printed on Fab@Home printer 

    
Deposition 

 pressure (psi) 

Path speed 

 (mm/s) 

Path spacing 

(mm)  

Path height 

(mm) 

Tip size 

(mm) 

Silicone  

Elastomer 

Sylgard 186 35 30 0.4 0.4 0.4 

SE 9186 10 30 0.4 0.4 0.4 

LIM 6010 20 30 0.4 0.4 0.4 

R-2188 20 30 0.4 0.4 0.4 

R3-1075 10 30 0.4 0.4 0.4 

236  10 30 0.2 0.4 0.2 

Electrode 
Carbon 

grease 
45 30 0.4 0.4 0.4 

In addition, for printing electrodes on the both sides of dielectric elastomer films, it uses the 

same pressure based print head and the same parameter study, as shown in Figure 12 below. The 

printed silicone films need to be well aligned from some reference points for precisely printing 

symmetric carbon grease electrodes on both sides of films. Carbon grease films need to be thick 

for the uniform charge distribution while being stretched. In the parameter study of the print 

process for carbon grease, a set of three different air pressure, 40, 45 and 50 psi, were tested to 

extrude carbon through 0.4 mm nozzle-size tip. Inconsistent appearance occurs in carbon grease 

film with 40 psi extruding pressure, while 45 and 50 psi pressure have more uniform appearances. 

However, applying 50 psi pressure makes carbon grease film about 2 mm thick, which is twice of 

that under 45 psi pressure. Thus, 45 psi air pressure was determined for printing about 1 mm thick 

carbon grease.  
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Figure 12. Printing carbon grease under the optimal extruding pressure of 45 psi 

2.3.3 Post-Process 

All silicone candidates are originally in uncured state during printing, and require post curing 

process for polymerization. For curing, different silicone elastomers require totally different 

processes and conditions. The curing process specifications of two groups of silicone candidates 

are shown in Table 5 and Table 6, respectively. The curing conditions for the first group of silicone 

elastomers are either moisture or heat cure. For moisture curing silicone, the curing duration may 

change due to the change in the ambient environment, such as the temperature and humidity. For 

example, KE-1283 silicone elastomer films should be cured in 2 hours at 50% relative humidity 

and 80 °C, but in higher humidity circumstance with about 80% relative humidity in our lab, it 

took almost 4 hours to fully cure them. 

Group 2 silicone candidates all require a heat cure process for polymerization. After silicones 

were printed, they were heated at the standard curing temperatures on a hot plate for a certain 
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period of time. The specifications of the heat curing process for each silicone candidate is listed in 

the Table 6.  

Table 5. Curing conditions for Group 1 silicone elastomer from motor-driven print head 

 KE-1283 KE-3417 KE-3494 Sylgard 170 

 Curing Type Heat Moisture Moisture Heat 

Condition 80 °C 20 °C 20 °C 100 °C 

Duration 4 hours 2 hours 6 hours 20 minutes 

*Note: Lab humidity is about 80% relative humidity (RH). 

Table 6. Curing conditions for Group 2 silicone elastomer from pressure-driven print head 

 Sylgard 186 SE 9186 LIM 6010 R-2188 R3-1075 236 

 Curing 

Type 
Heat Heat Heat Heat Heat Heat 

Condition 100 °C 100 °C 150 °C 100 °C 100 °C 100 °C 

Duration 25 min 60 min 0.5 min 30 min 120 min 120 min 

2.3.4 Assembling process for dielectric elastomer actuator 

After being printed, all components were manually assembled into a DEA. In the assembling 

process, pre-strain is applied by stretching silicone membranes on the rigid frames at a certain 

elongation. The round corner copper tapes which can avoid the concentrated charging and a local 

dielectric breakdown were attached to the electrodes for connecting to the external voltage source. 

The configuration of a circular DEA is shown in Figure 13, including silicone dielectric 

elastomer films, carbon conductive grease as electrodes, and circular rigid frames. All components 

of the circular DEAs are 3D printed, except that copper tapes are used as electrical wires to connect 

the DEA to a voltage supply. The configuration of this circular DEA is designed for testing the 

performance of each selected silicone elastomer. 
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Figure 13. The configuration of a circular DEA 

For a rectangular DEA as shown in the Figure 8, its configuration includes a silicone film 

sandwiched by carbon grease films, two rigid frames for holding DEA, copper wires for 

connecting external supply, and a stretching base for adjusting pre-strain condition. 

2.4  Characterizations of Printed Materials  

In this section, the characteristics of the printed DEA components are discussed. Specifically, 

the printed silicone and carbon grease films are the major components in DEA development that 

influence performance, while rigid frames and stretching base made of ABS plastic are used to 

provide sufficient strength for holding and stretching DEAs. Thus, only silicone and carbon grease 

films are studied.  

2.4.1 Silicone film 

Silicone films have the dominant impact on DEA actuation. Any defects or voids in the 

printed silicone film may weaken its material properties. Uniform film thickness is a main indicator 

of the printing quality, which was measured for the printed samples of each silicone candidate to 

demonstrate the printing quality.  

The film thickness of each silicone candidate was measured by using a micrometer at six 

different positions. The average value of six measurements for each candidate is shown in the 

Figure 14, and error bars show the standard derivations of film thickness. Most of silicone films 
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have over 10% thickness variations, which is over 30 µm and caused by the accuracy (~100 µm) 

of Fab@Home printer. Non-uniformity in film thickness may weaken silicone’s mechanical or 

dielectric properties. Although the film quality obtained on Fab@Home printer is not ideal, they 

can still be used to produce good DEA actuation.  

 

Figure 14. Measured film thickness of silicone membranes 

2.4.2 Carbon grease electrode 

Carbon grease used as the compliant electrodes in DEAs need to be conductive while being 

stretched. However, carbon grease film may become inconsistent at a large elongation, i.e. cracks. 

Cracks weaken the conductivity of carbon grease and cause non-uniform charge coverage on 

silicone film. On the other hand, the change of carbon grease film conductivity can indicate the 

film inconsistencies. Thus, the carbon grease film quality was tested by measuring its electrical 

conductivity versus up to 100% elongation. Electrical conductivity is reciprocal of electrical 

resistivity. Resistivity is a material intrinsic property that can be calculated by resistance and the 

dimensions of the material. During stretching, carbon grease film inconsistencies can be found 

from the change in electrical resistance.  
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In Figure 15, the configuration of conductivity tests is shown. Carbon grease film was printed 

in a 4x4 cm2 square with 1.2 mm thickness, and connected with two copper wires at the left and 

right sides. A LCR meter was used to measure resistance by connecting to copper wires on the 

stretched film. Thus, the initial length 𝑙  of conductive material in this configuration is 4 cm, and 

the initial cross-sectional area 𝐴 is 4x0.12 cm2. The resistivity of initial length carbon grease, 1.2 

Ω*m, is calculated from measured resistance 1,100 Ω and dimensions, while the standard value of 

carbon grease is 1.17Ω*m. Less than 5% error between actual and standard conductivity at initial 

length is acceptable.  

 

Figure 15. Conductivity versus stretch ratio testing setup 

For measuring the conductivity over certain stretch ratios, however, it is difficult to measure 

the resistance of varying cross-section area in soft and stretchable carbon grease. In this test, an 

analytical method is employed to estimate the cross-section area by assuming incompressibility of 

carbon grease.  If carbon grease is incompressible, the product of strains in three dimensions should 

remain at 1.  

𝜆𝑥𝜆𝑦𝜆𝑧 =1 (5) 
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In this testing configuration, 𝜆𝑥 is the stretch ratio along the direction of electrical current,  

𝜆𝑦𝜆𝑧 is the area stretch ratio of the cross section of conductive material. In the conductivity versus 

stretch ratio test, printed carbon grease film was stretched up to 100% by an increment of 20%, so 

stretch ratio  𝜆𝑥 is known. Thus, 𝜆𝑦𝜆𝑧  is equal to  
1

𝜆𝑥
, and cross sectional area at every 20% 

increment of  𝜆𝑥  can be calculated by the product of the original area and area stretch ratio. Hence, 

conductivity of printed carbon grease at each stretch ratio is finally calculated from the reciprocal 

resistivity. All specifications of this conductivity test are listed in the Table 7.  

Table 7. Specifications for carbon grease conductivity test   

𝑙 Length  

(cm) 

𝜆𝑥 Length  

Stretch Ratio 

𝜆𝑦𝜆𝑧 Area  

Stretch Ratio 

𝐴 Cross section 

Area (cm^2) 

Resistance 

(Ω) 

Resistivity 

(Ω*m) 

Conductivity 

(Ω-1*m-1) 

4.0E-02 1 1.00  4.8E-05 1000 1.20  0.83  

4.8E-02 1.2 0.83  4.0E-05 1400 1.17  0.86  

5.6E-02 1.4 0.71  3.4E-05 2000 1.22  0.82  

6.4E-02 1.6 0.63  3.0E-05 3500 1.64  0.61  

7.2E-02 1.8 0.56  2.7E-05 5400 2.00  0.50  

8.0E-02 2 0.50  2.4E-05 7100 2.13  0.47  

Compared to carbon grease standard conductivity from the given resistivity, the printed 

carbon grease film can provide 100% conductivity under 40% elongation with an acceptable error 

of below 5% based on the Figure 16. After being stretched over 40%, carbon grease film has a 

significant change in conductivity, which indicates the film inconsistencies. In addition, film 

inconsistencies, like cracks, were found on the printed carbon grease film at 100% elongation, 

shown in the Figure 17. In summary, the film inconsistency, like cracks, is the reason why 

conductivity of carbon grease is weakened at large elongation.  
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To explain, cracks in  the carbon grease electrode cause changes in electrical resistance, 

because cracks generate non-conductive gaps in electrode. The change of electrical resistance can 

be reflected to the change of electrical resistivity and the change of electrical conductivity, 

assuming that carbon grease and cracks are considered as one electrode. In addition, the non-

conductive gaps in the electrode cause the non-uniform charging, which means that the DEA is 

partially charged. Thus, DEA actuation is weakened by the partial charging when cracks occur in 

electrode. Hence, this conductivity versus stretch ratio test is essential to know until which 

elongation the printed carbon grease electrode will not weaken DEA actuation.  

The result shows that the printed carbon grease film is capable of providing good 

conductivity within 40% elongation. It indicates that the printed carbon grease film on DEAs will 

not weaken DEA actuation within 40% actuation strain.  

 

Figure 16. Conductivity result of printed carbon grease versus up to 100% elongation 
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Figure 17. Cracks showing on carbon grease film under 100% elongation 

2.5 Conclusions:  

In this chapter, I developed a fabrication process for 3D printing DEAs. All DEA materials 

were selected based on certain criterions, including silicone elastomer, carbon grease, frames and 

the stretch base. The most important DE, silicone elastomers, follows the critierions, including low 

Young’s modulus, high dielectric constant and breakdown strength, and printable viscosity. In 

addition, I fabricated all DEA components via 3D printing techniques and studied the printing 

parameters to obtain good film consistencies of the printed materials. Moreover, the characteristics 

of the printed silicone and carbon grease were studied. Silicone films with 10% variation in about 

300 µm thickness were 3D printed. The printed carbon grease can remain good conductivity until 

40% DEA actuation strain. 3D printed DEAs were used for the investigations to maximize the 

actuation of 3D printed DEAs in the next chapter. 
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3 DIELECTRIC ELASTOMER ACTUATOR PERFORMANCE TESTS 

 

3.1 Introduction 

After silicone DEA fabrication, performance tests of these 3D printed DEAs were conducted 

to select the largest actuation DEA for soft robotic development. To obtain large DEA actuation, 

both pre-strain condition and DEA configuration play important roles, and their impacts on DEA 

actuation are investigated in the following sections, respectively. For example, the investigation 

of pre-strain condition with key material properties, such as Young’s modulus and dielectric 

properties, was completed to obtain large actuation for each silicone DEA. The quantitative 

relationships between silicone’s material properties and pre-strain were used to estimate DEA 

actuation and validated with the empirical results. In addition, different DEA configurations, like 

circular and rectangular types, present different DEA actuation due to their different boundary 

constraints. Empirical and modeling results were obtained to discuss the impact of DEA 

configuration in order to employ the DEA configuration with the largest actuation in soft robot.  

3.2 Investigation of the Effect of Pre-strain Condition 

Based on the literature review of pre-strain condition in the first chapter, pre-strain can 

enhance DEA actuation by reducing Young’s modulus and increasing dielectric breakdown 

strength of dielectric elastomer. The largest DEA actuation strain of 80% in the literature was 

achieved by applying large pre-strain of 175% on Dow Corning Sylgard 186 silicone elastomer, 

which was fabricated through the conventional spin-coating method. However, it was reported that 

the excessive pre-strain would stiffen dielectric elastomer which weakens DEA actuation.  
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Hence, understanding the effects of pre-strain on dielectric elastomers key properties is 

helpful to find the optimal pre-strain for maxmizing the DEA actuation. For example, it was 

reported that pre-strain condition in acrylic dielectric elastomer simultaneously increases dielectric 

breakdown strength while decreases dielectric constant [38]. Thus, excessive pre-strain would 

weaken acrylic DEA actuation from this contradictory effect.  

For silicone dielectric elastomers, pre-strain condition was found reducing Young’s modulus 

and increasing dielectric breakdown strength. However, the relationship between pre-strain 

condition and silicone’s dielectric constant has not been explained well in the literature. It is 

important to understand the effects of pre-strain condition on relevant silicone properties in order 

to find the optimal pre-strain condition for obtaining the largest actuation. Hence, in this section, 

some important material properties, such as Young’s modulus, dielectric constant and breakdown 

strength, versus stretch ratios are studied for understanding the pre-strain effects for each silicone 

candidate.  

3.2.1 Tensile tests 

For silicone elastomer candidates, knowing their elasticity curve are essential for 

determining the pre-strain condition that reduces Young’s modulus. In this test, ISO 37:2011 test 

standard (Rubber, vulcanized or thermoplastic – Determination of tensile stress-strain properties) 

was used to obtain the stress-strain curve. Dumbbell-shaped specimens are stretched in a tensile 

tester at a constant rate, based on ISO 37:2011 standard. In addition, the types 1, 2 and 1A 

dumbbells specimens with different dimensions are more precise for measuring tensile stress 

versus strain until the break. Considering the ease of fabrication, the type 2 dumbbell test specimen 

with a minimum 2 mm thickness of narrow portion was employed, as shown in the Figure 18, and 

other dimensions are listed in the Table 8.  
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Figure 18. Schematic dumbbell shape tensile specimen 

Table 8. Specifications of type 2 dumbbell specimen for rubber materials 

Dimensions Type 2 dumb-bell 

A - Overall length (mm) 75 

B - Width of ends (mm) 13 

C - Length of narrow portion (mm) 25 

D - Width of narrow portion (mm) 4 

E - Transition radius outside (mm) 8 

F - Transition radius inside (mm) 13 

Three dumbbell specimens of each silicone candidate were molded in 3D printed molds after 

the degassing process to eliminate air bubbles inside of silicone, shown in the Figure 19. Then, 

each silicone candidate specimens in the molds were heated at their own curing temperature, 

typically around 100 °C. ABS plastic molds has the melting temperature at about 210 °C, which 
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doesn’t cause any issue in the heat curing process. Finally, three dumbbell specimens were made 

for each of the six silicone candidates listed in Table 2 and were tested on a tensile tester as shown 

in Figure 19. This tester can automatically store tensile force and elongation, and tensile stress is 

calculated by dividing the measured force by the cross-sectional area. Thus, elasticity curves of 

tensile stress and strain of six silicone candidates were obtained and plotted in the Figure 20. 

Obviously, these six silicone candidates all have the capability of being stretched over 300% 

elongation, which shows good potential for large DEA actuation.  

  
  (a)                                                                      (b) 

Figure 19.  (a) An example of molding 236 silicone elastomer (b) 236 silicone dumbbell 

specimen being tensile tested 
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Figure 20. Elasticity curves of all silicone candidates.  

 

Figure 21. Logarithmic Young’s modulus of all silicone candidates 
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Based on the stress-strain curve, the change of Young’s modulus with strain is shown in the 

Figure 21, which demonstrates the non-linear hyper-elasticity of silicone. These silicone 

candidates share the similar hyper-elasticity that the globally lowest Young’s modulus occurs in 

the middle region of elasticity curve. Hence, the applicable pre-strain for reducing silicone 

elastomers’ Young’s modulus should be in the middle region of their elasticity curves.  

In addition, the measured Young’s modulus of Sylgard 186 silicone varies from 0.18 MPa 

at zero pre-strain, while in the literature some papers reported the constant Sylgard 186 silicone 

Young’s moduli from 1.2 MPa to 0.6 MPa [39-41]. There could be two possible reasons for this 

discrepancy. One is the Young’s modulus was measured by compression test in the cited references 

while we did a standard tension test using ISO 37 standard, which may cause the measurement 

difference due to the hyper-elasticity of Sylgard 186. The other possible reason is that we observed 

some slippery of the sample from the grip during the tensile test, which may have increased the 

tensile strain and thus lead to a smaller Young’s modulus.  

After elasticity and Young’s modulus with strain curves were measured for each silicone 

candidates, determining the applicable pre-strain is the ultimate goal of tensile test. Dow Corning 

Sylgard 186 silicone is used to exemplify the approach in the Figure 22. The change of Young’s 

modulus versus tensile strain of Sylgard 186 silicone is presented, and the variation of its Young’s 

modulus is apparent. First step is to record the initial Young’s modulus of 0.19 MPa and find the 

lowest value of 0.08 MPa among the entire progression. Thus, the maximum reduction from the 

initial is about 0.11 MPa.  

The pre-strain at the lowest young’s modulus may not be the optimal one to maximize the 

DEA actuation. It is known that DEA actuation depends on three material properties of silicone 
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elastomers, including Young's modulus, dielectric constant and dielectric breakdown strength. Pre-

strain condition induces reducing Young's modulus and increasing dielectric breakdowns strength, 

and the relationship between pre-strain condition and silicone's dielectric constant is unknown yet 

and will be studied in this research. Hence, the optimal pre-strain condition cannot be solely 

determined from silicone's elasticity or The change of Young’s modulus.  

To facilitate experiments on the investigation of the pre-strain effects, a range of pre-strain 

that can significantly reduce Young's modulus is first selected, and then the optimal pre-strain from 

this range by taking into account of other factors is determined. In this research, I select a range of 

pre-strain that can reduce the Young's modulus by 75% percent. Hence, a range of 40% to 230% 

pre-strain is determined for Sylgard 186 silicone.  

 

Figure 22. The change of Young’s modulus of Sylgard 186 silicone showing how to determine 

the applicable range of pre-strain 
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Based on this approach, all applicable ranges of pre-strain conditions of six silicone 

candidates are obtained, as shown in the Table 9, as well as the initial, the lowest and 80% reduced 

values of Young’s modulus. In general, 40% to 200% applicable pre-strain is obtained to reduce 

about 40% Young’s modulus for each silicone candidate.  

Table 9. Specifications of elasticity curve for each silicone candidate 

 
Initial Young’s 

modulus (Mpa) 

lowest Young’s 

modulus (Mpa) 

75% reduced  

Y. modulus 

Pre-strain 

Range (%) 

Y. modulus 

Reduction 

Sylgard186 0.186 0.080 0.101 40~230 45.7% 

SE9186 1.493 0.724 0.878 60~370 41.2% 

LIM6010 0.146 0.088 0.099 40~180 31.9% 

R-2188 0.334 0.187 0.217 40~170 35.2% 

R3-1075 1.738 0.669 0.883 40~390 49.2% 

236 0.370 0.199 0.233 40~240 36.9% 

Although the applicable range of pre-strain is determined by the change of Young’s modulus 

versus stretch ratios, the optimal pre-strain condition for the maximum DEA actuation is also 

affected by other key material properties, such as dielectric constant and breakdown strength. If 

the impacts of pre-strain on silicone’s mechanical and dielectric properties have opposite effects 

on increasing the DEA actuation strain, like acrylic elastomers, the optimal pre-strain for the 

largest silicone DEA actuation may not be obtained at the largest strain in the applicable range. To 

clarify, it was reported it the literature that increasing pre-strain reduced acrylic’s Young’s 

modulus and increased dielectric breakdown strength to enhance DEA actuation while it decreased 

dielectric constant weakening DEA actuation. Thus, the largest pre-strain in the applicable range 

may not be the optimal one for obtaining the largest DEA actuation.  

Hence, the investigations of the relationship between pre-strain condition and silicone’s 

dielectric properties are essential to find the optimal pre-strain. The experimental setups and results 

for dielectric constant and dielectric breakdown strength will be discussed in the next two sections.  
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3.2.2 Dielectric constant tests 

The relationship between pre-strain condition and dielectric constant is needed in order to 

find the optimal pre-strain condition for obtaining large actuation. Dielectric constant, also called 

the relative permittivity or the permittivity of material, expresses a ratio related to the vacuum 

permittivity. It is a material property that affects the Coulomb force between two point charges in 

the material. Dielectric constant can be measured by measuring capacitance based on the equation 

below: 

𝐶 = 𝜀0𝜀𝑟
𝐴

𝑑
 , (6) 

where C is the capacitance in farads, A is the area of overlapping two plates in square meters, d is 

the separation between two plates in meters, 𝜀0  is the permittivity of vacuum, and 𝜀𝑟  is the 

relativity permittivity of material (dielectric constant). Hence, based on this expression, a simple 

experimental setup can be developed to measure dielectric constant of each silicone candidate by 

using a capacitance meter, shown in the Figure 23.  

 

Figure 23. Dielectric constant measurement for printed silicone elastomers 

3D printed silicone films were assembled on the stretching base without printed electrodes. 

Actual electrodes for measuring capacitance were two pieces of 2.5 cm width copper tapes that are 
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orthogonal to each other, and they stick well on the adhesive silicone surface. Thus, the 

overlapping area of 2.5x2.5 cm2 was fixed for dielectric constant measurements versus up to 100% 

stretch ratio. This measurement method was validated with standard dielectric constant of R-2188 

silicone candidate provided by the supplier. The measured dielectric constant of 2.95 is 

approximate to the standard value of 2.9 of R-2188 silicone, and the measurement error is less than 

2%. Hence, this method is accurate for measuring dielectric constant of silicone membranes.  

Dielectric constant versus stretch ratio measurements were conducted on six silicone 

candidates from 0% to 100% elongation at an increment of 10% elongation. First of all, thickness 

of silicone films at each stretch ratio was measured by using a micrometer. Then, copper films 

were attached to the both sides of silicone films at different stretch ratios, respectively. Finally, 

copper wires were connected to a DE-5000 LCR meter by using alligator clamps, and the average 

capacitance of three measurements was taken. 

The empirical dielectric constant is calculated from the capacitance expression in equation 

6. Dielectric constants of six silicone candidates versus stretch ratios are shown in the Figure 24 

below. It indicates that increasing stretch ratio increases dielectric constants for all silicone 

candidates with some fluctuations. In addition, this relationship between silicone’s dielectric 

constant and pre-strain is opposite to that of acrylic elastomer. More importantly, the increasing 

tendency of dielectric constant versus stretch ratio is positive to produce larger actuation strain. 

From these increasing tendencies, the dielectric constants of all candidates increase about 20% at 

100% stretch ratio.  
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Figure 24. Measured dielectric constant versus up to 100% elongation for each silicone candidate 

In addition, four silicone films, R2188, 236, R3-1075 and SE9186, broke until 100% 

elongation during dielectric constant measurements, while they should have the standard 

elongation at break larger than 300%. These four silicone films have something in common, such 

as relatively high Young’s modulus shown in the Figure 21 and relatively large variation in film 

thickness shown in the Figure 14. The reason of breaking at early elongation is very likely that 

large variation in film thickness causes stress concentration at thin places while silicone films are 

being stretched. The stress concentration at thin places actually performs larger elongation than 

the given pre-strain and even approximate to their elongation at break. This issue also happened 

in the dielectric breakdown strength measurements and DEA behavior tests. Even though there are 

large variations in silicone film thickness, the feasible elongations for all silicone films were still 

in the applicable range of pre-strain condition during this test. It means that silicone DEAs with 

good pre-strain can be obtained in this research.  
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3.2.3 Dielectric breakdown strength 

Dielectric breakdown strength describes the maximum voltage applied to dielectric materials 

with certain thickness until electrical breakdown. Dielectric breakdown strength is a critical to 

DEA actuation because it limits the voltage-dependent Maxwell pressure. Pure silicone elastomer 

has breakdown strength about 20 kV/mm. Commercial silicone products add different types of 

fillers to enhance the desired properties for varying applications. These fillers may enhance or 

weaken silicone’s dielectric breakdown strength. In addition, from literature about silicone’s 

dielectric breakdown strength, pre-strain condition has a significant impact on increasing dielectric 

breakdown, which is able to generate more Maxwell pressure for larger DEA actuation strain. Thus, 

in this section, the quantitative relationship between silicone’s dielectric breakdown strength and 

stretch ratios is investigated.  

In this research, ISEG THQ 30 kV dual-channel High-Voltage (HV) supply was used to 

measure the dielectric breakdown strength of silicone films, as well as testing DEA actuation strain. 

In the experimental setup of HV test, shown in the Figure 25, a rectangular DEA with circular 

electrodes is assembled on the stretching base. HV and ground cables with metallic rod head are 

inserted in holes of rigid frames, which are designed for power connection and covered by copper 

tape, and connect to the front and back compliant electrodes, respectively.  
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Figure 25. HV testing setup for both dielectric breakdown measurements and DEA actuation 

performance 

Before measuring the breakdown strength at different stretch ratios, the actual dielectric 

breakdown strength of each silicone candidate without pre-strain was first measured to validate 

with its standard value, shown in the Figure 26. Only three silicone candidates, including SE 9186, 

R-2188 and R3-1075, provide standard dielectric breakdown strengths, and their measured 

dielectric breakdown strength are approximate to their standard values with acceptable errors of 

below 5%. In the Figure 27 below, the breakdown strength versus stretch ratios of each silicone 

candidate is plotted. Obviously, pre-strain can dramatically increase dielectric breakdown strength.  



 

49 

 

 

Figure 26. Validation of standard and measured dielectric breakdown strength 

 

Figure 27. . Measured dielectric breakdown strength versus different stretch ratios 

In addition, the increasing rates of breakdown strength from initial to 40% are listed in Table 

10, and the increasing rates at 100% pre-strain condition of all silicone candidates are estimated 

based on the tendency of initial 40% pre-strain. The estimated rates at 100% pre-strain condition 

can be used to predict the DEA actuation strains for six silicone candidates.  
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Table 10. Estimated increasing rate for each silicone candidate under 100% pre-strain 

 
Pre-Strain 

(%) 

Breakdown Strength 

(kV/mm) 

Increasing Rate 

(%) 

Sylgard 186 

0 26.7 - 

40 30.0 12.4% 

80 44.7 67.5% 

100 - estimated 54.0 80% 

SE 9186 

0 23.6 - 

40 40.7 72.5% 

100 - estimated 66.3 181.1% 

LIM 6010 

0 26.7 - 

40 42.5 74.9% 

80 62.5 157.2% 

100 - estimated 72.0 196.5% 

R2188 

0 20.3 - 

40 47.6 140.0% 

100 - estimated 91.4 350.0% 

R3-1075 

0 48.9 - 

40 59.5 21.7% 

100 - estimated 75.5 54.3% 

236 silicone DEAs without pre-strain and with 40% pre-strain conditions both failed due to 

dielectric breakdown. Their 5.6 and 7.9 kV/mm actual dielectric breakdown strengths are much 

lower than 14.8 kV/mm breakdown strength of a bare 236 silicone membrane without pre-strain 

condition. In addition, no leaking sparks or physical breakdowns were observed. Thus, the failure 

reason of 236 silicone DEA is very likely that 236 silicone’s dielectric breakdown strength was 

weakened by other materials in contact, especially carbon grease. Other evidence shows that 236 

silicone surface became crumbled after carbon grease was deposited on the silicone for a short 

period of time. Hence, it is very possible that carbon grease weakened 236 silicone’s dielectric 

breakdown strength. Since carbon grease is selected for its good conductivity at large elongation, 

236 silicone will not be applied in the DEA in contact with carbon grease.  
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3.2.4 Estimation for Dielectric Elastomer Actuator Behavior 

In this section, a validated analytical method is also presented to estimate DEA actuation 

strain with pre-strain. All quantitative relationships between pre-strain and key material properties 

of each silicone elastomer at the feasible pre-strain range have been measured, including Young’s 

modulus, dielectric constant and breakdown strength. The actuation strain of each silicone 

candidate can be calculated based on the physical principles of electrostatics and solid mechanics. 

Specifically, maximum Maxwell pressure at certain pre-strain condition is obtained from the 

measured dielectric constant and breakdown strength at the same pre-strain. By assuming that 

silicone is an incompressible and isotropic material, its mechanical deformation is calculated from 

Hooke’ Law expressions: 

𝜀𝑥𝑥 =
1

𝐸
[𝜎𝑥𝑥 − 𝛾(𝜎𝑦𝑦 + 𝜎𝑧𝑧)] 

𝜀𝑦𝑦 =
1

𝐸
[𝜎𝑦𝑦 − 𝛾(𝜎𝑥𝑥 + 𝜎𝑧𝑧)] 

𝜀𝑧𝑧 =
1

𝐸
[𝜎𝑧𝑧 − 𝛾(𝜎𝑥𝑥 + 𝜎𝑦𝑦)] 

(12) 

 

where 𝜀𝑥𝑥, 𝜀𝑦𝑦 and 𝜀𝑧𝑧 are the strain in the direction of x, y and z axis, 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑧𝑧 are the 

stress in the direction of x, y and z axis, E is Young's modulus, 𝛾  is Poisson's ratio that is 

approximate to 0.5 for silicone rubber.  

3.2.4.1 Validation with experimental results 

By applying measured material properties at 40% stretch ratio, the DEA actuation strain of 

each silicone candidates can be estimated through this analytical method. The estimated results of 

five silicone candidates were compared to their empirical actuation strains in order to validate the 
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feasibility of analytical method, shown in the Figure 28. Most of the estimated DEA actuation 

strains are close to their empirical results. However, there are some big differences between the 

empirial and estimated values, and the estimated values are not always large than actual strains. 

These differences may result from either estimated results induced by the inaccuracy in material 

property measurements or the non-ideal empirical results induced by the uneven thickness 

distribution in the printed silicone films. In addition, both of actual and estimated results show that 

LIM 6010 silicone has the largest actuation strain. LIM 6010 is selected for rectangular DEA facial 

robot development.  

 

Figure 28. Comparison between empirical and modeling results of rectangular DEAs.  

3.2.5 Estimated actuation strain under 100% pre-strain condition 

 This validated analytical method is also able to estimate the DEA actuation strain at larger 

pre-strain. Estimated actuation strains of five silicone candidates at 100% pre-strain are shown in 

the Figure 29 below. From this figure, there are three silicone candidates showing good 

performance of about 30% actuation strain. Sylgard 186 and LIM 6010 silicone candidates have 

very low Young’s modulus. R2188 has large increasing rate of material properties over stretch 

ratios, even though its original material properties are not outstanding among all candidates.  
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Figure 29. Estimated actuation strain of rectangular silicone DEAs under 100% pre-strain 

condition via this analytical method 

3.2.6 Result discussion 

Above, the impacts of pre-strain condition on three key material properties have been 

investigated, including Young’s modulus, dielectric constant and breakdown strength. Young’s 

modulus of each silicone candidate reduces about 40% upon the application of 40% to 200% pre-

strain condition, which can produce larger mechanical deformation. In addition, increasing pre-

strain increases silicone dielectric constant and dielectric breakdown strength, which can generate 

larger Maxwell pressure. Therefore, the application of pre-strain condition is able to enhance large 

DEA actuation. Then, based on the pre-strain and material property investigations, the optimal 

pre-strain of each silicone candidate is determined to be the maximum value in  the applicable 

range, typically 200%.  

Moreover, from the quantitative relationships between pre-strain and key material properties, 

40% maximum DEA actuation at 100% pre-strain was estimated from the coupling physics.  
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3.3 Study of Different Dielectric Elastomer Actuator Configurations 

In this section, a comparison study of different DEA configurations is discussed. The impacts 

of DEA configurations, like circular and rectangular type actuators, have not been well explained 

to DEA actuation in the literature. The difference between rectangular and circular DEAs may be 

due to different boundary constraints applied to dielectric elastomer membrane. Two independent 

rigid frames in rectangular type DEA on the opposite sides hold the pre-stretched elastomer 

membrane, which provide free boundary constraint in other two edges. While a circular rigid frame 

in circular type DEA provides the isotropically fixed boundary constraints on the entire edge. Thus, 

it brings a new research question to my DEA development: do boundary constraints affect DEA 

behavior for producing larger actuation? By hyprothesizing that less boundary constraint can 

produce larger DEA actuation, rectangular and circular DEA configurations with different 

boundary constraints are studied via experiment and simulation.  

In addition, DEA actuation for all silicone candidates are tested to select the best candidate 

with the largest actuation strain for DEA robotic development. DEA actuation tests were 

conducted in HV tests. Initial status and maximum actuation of DEAs were video-captured using  

a digital USB microscope, and vertical and horizontal actuation strain were measured via the image 

processing method. Finally, the results of actual DEA actuation strains and estimated value will 

be discussed at the end of this section.   

3.3.1 DEA actuation strain measurements by image processing 

An image processing method via MATLAB was developed to measure DEA actuation strain. 

DEA actuation strain was measured by calculating the changing rate of the electrode dimensions 

at the maximum actuation and the initial status, and two images of initial status and maximum 
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actuation are desired. After converting to black/white images, they can be represented by two 

binary matrices. The ratio between the sum of black pixels in one dimension in the maximum 

actuation image and the sum of black pixels in the same dimension in the initial status image can 

represent DEA actuation strain in that direction. In addition, an experimental validation was done 

to present the accuracy of this method.  

A simple experimental setup was used to validate the results from MATLAB image 

processing method with actual elongation, shown in Figure 30. A silicone film with a 4x1 cm2 

marker was assembled on the stretching case, and a ruler was fixed on one side of silicone film to 

show the actual elongation. A high-resolution camera was also used to film the stretching process, 

and in Figure 30 two images of initial status and 60% elongation were snapped from the film. 

Using the developed image processing method, an average elongation of 60.3% along the 

stretching dimension was measured. A 0.5% error between the actual and measured strains is 

acceptable. Therefore, this MATLAB image processing method shows in good agreement with 

actual values, and is feasible for DEA actuation strain measurement. 

 

Figure 30. Experimental validation for MATLAB Image Processing method 
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3.3.2 Circular dielectric elastomer actuator behavior 

Circular DEAs, made of group 1 silicone candidates, were 3D printed. All circular DEA 

actuation behaviors were tested to select the best one with the largest actuation for later robotic 

development. The initial status and maximum actuation are shown in Figure 31. The maximum 

strain for each silicone DEA was measured via the image processing method, shown in Figure 32. 

Among all silicone elastomers, KE-1283 silicone DEA under 20% pre-strain condition shows the 

largest maximum strain of 5.9%, which is about 10 times of actuation strain of 3D printed acrylic 

DEA in literature. KE-1283 silicone was selected as the dielectric elastomer film for the circular 

DEA facial robot. 

In addition, 20% and 30% pre-strain conditions were successfully applied to KE-3494 

silicone DEAs. The results show that higher pre-strain induced larger planar deformation and 

smaller normal deformation (perpendicular to the planar film). It indicates that increasing pre-

strain is able to produce large DEA actuation in planar direction.  

Maximum 
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Figure 31. Circular silicone DEA performances 

          
 
 
 

         
 
 
 

 

a). 1.2x pre-stretched Sylgard 170 silicone DEAs 
show 1.4% maximum strain and slightly normal 
dimension deformation 

b). 1.2x pre-stretched KE-1283 silicone DEAs 
show 5.9% maximum strain 

c). 1.2x pre-stretched KE-3417 silicone DEAs 
show about 2.1% maximum strain 

d). 1.2x pre-stretched KE-3494 silicone DEAs 
show about 1.8% strain and obvious normal 
deformation 

e). 1.3x pre-stretched KE-3494 silicone DEAs 
show about 2.4% maximum strain and 
slightly normal deformation 

Initial Maximum Initial 

Initial Initial 

Initial 

Maximum 

Maximum Maximum 

Maximum 

Maximum 
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Figure 32. Maximum actuation strain for circular silicone DEAs 

3.3.3 Rectangular dielectric elastomer actuator behavior 

From the comprehensive investigation of the pre-strain condition impacts on the key material 

properties of group 2 silicone candidates, the optimal pre-strain should the largest value in the 

applicable range of 40% to 200%.  However, only 40% pre-strain was successfully achieved on 

the silicone films with 10% thickness variation. Although the applied pre-strain is not ideal, these 

rectangular DEAs still show the visible deformation in Figure 33. Horizontal and vertical DEA 

actuation strains of five silicone candidates were measured via the image processing method, as 

shown in Figure 34. Horizontal and vertical actuaion strains are the changing ratio of the horizontal 

and vertical dimensions of electrode between maximum actuation and initial status, respectively.   
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Figure 33. Rectangular silicone DEA performances 

In the Figure 34, DEA actuation strains in vertical direction without boundary constraint are 

larger than the horizontal strains in the constrained direction. It indicates that less boundary 

constraints can provide more freedom for large actuation. In addition, LIM 6010 silicone DEA at 

40% pre-strain shows the largest actuation strain of 12.5% among all silicone candidates, which is 

20 times of actuation strain of 3D printed acrylic DEA in the literature.  

a). 1.4x pre-stretched Sylgard 186 silicone 

DEAs showing 12% actuation strain  
b). 1.4x pre-stretched SE9186 silicone DEAs 

showing 8.1% actuation strain 

c). 1.4x pre-stretched LIM6010 silicone DEAs 

showing 12.5% actuation strain and normal 

deformaton 

d). 1.4x pre-stretched R2188 silicone DEAs 

showing 9.4% actuation strain and normal 

deformation 

e). 1.4x pre-stretched R3-1075silicone DEAs 

showing 8.2% actuation strain 

Initial Maximum Initial Maximum 

Initial Maximum Initial Maximum 

Initial Maximum 
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Figure 34. Measured actuation strains of rectangular silicone DEAs  

3.3.4 Finite element method (FEM) simulation 

FEM simulation is applied to understand the effect of boundary constraints on DEA 

actuation. In addition, the DEA displacement map is helpful to know where the maximum 

actuation happens for designing DEA soft robots.  

In this study, FEM simulation of DEA actuation was performed through COMSOL 4.4 to by 

coupling electrostatics and solid mechanics with non-linear elasticity. In addition, this simulation 

was validated with experimental results to approve its feasibility and accuracy. Finally, a 

comparison between circular and rectangular DEA actuation simulation was made to test the 

hypothesis in this section, which less boundary constraint leads to larger DEA actuation.  

3.3.4.1 Numerical modeling 

DEA actuation couples electrostatics and solid mechanics. In this simulation, this coupling 

effect of these two physics was manually coupled by applying Maxwell stress tensor produced 

from electrostatics to the solid mechanics equations as a boundary load. Their governing equations 
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and constitutive laws are discussed in detail, respectively. In addition, boundary conditions of the 

DEA model is also discussed.  

3.3.4.1.1 Electrostatics  

 Electrostatics describes the physical phenomena of the stationary electric charges. DEAs 

apply the electrostatic pressure or Maxwell pressure as the external load to compress the soft 

dielectric elastomer membranes for obtaining the transverse deformation. Maxwell pressure 

aforementioned in the equation 1 in the first chapter is the constitutive laws of the electrostatics in 

DEA actuation. The governing equations of the electrostatics thoughout the DEA can be expressed 

as: 

𝐸 =  −∇𝑉 

and     ∇𝐸 =
𝜌𝑒

𝜀0
 

(7) 

(8) 

where 𝐸 is the electric field, 𝑉 is the electric potential or the applied voltage, 𝜌𝑒 is the electric 

charge density and 𝜀0 is the permittivity of free space (𝜀0 = 8.8542e-12 C2/Nm2 ). The Maxwell 

stress tensor at each element node of the electrodes is calculated based on these governing 

equations, and then applied to the structural mechanics of silicone elastomers. 

3.3.4.1.2 Solid mechanics 

 Upon the application of voltage to the electrodes, Maxwell pressure induces the transverse 

strain for DEA actuation. The governing equation of each element node in the solid mechanics is 

described: 

−∇ ∗ 𝜎 =  𝐹𝑣 (9) 
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where  𝜎 is the internal stress and 𝐹𝑣 is the volume force vector.  

 Silicone elastomer has the hyper-elasticity. To get solution of this hyper-elasticity, three 

hyper-elastic models are generally used, such as Mooney-Rivilin, Ogden and Yeoh numerical 

models, shown in below equations: 

𝑊 = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3)                                  Mooney-Rivlin strain energy 

𝑊 = 𝜇𝑝/𝛼𝑝
(𝐼1 − 3)𝛼𝑝                                              Ogden Strain energy 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼1 − 3)2+𝐶30(𝐼1 − 3)3     Yeoh strain energy 

(10) 

(11) 

(12) 

where the strain energy density function W is a linear combination of two invariants of the left 

Cauchy–Green deformation tensor, parameters 𝐶1 and 𝐶2 in Mooney-Rivilin model, 𝜇𝑝 and 𝛼𝑝 in 

Ogden, and 𝐶10 and 𝐶20 and 𝐶30 in Yeoh model are empirically determined values.  

 Strain in these hyper-elastic models is defined by using the first and second invariants of 

strain energy in Equation 13 and Equation 14. These expressions assume that the material is 

imcompressible throughout elongation. 

𝐼1 =  λ1
2 + λ2

2 + λ3
2 =

2

𝜆3
+ λ3

2                              the first invariant of strain energy 

𝐼2 =  λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2 =
1

λ3
2 + 2𝜆3                the second invariant of strain energy 

(13) 

(14) 

These hyper-elastic numerical models are used to find the approximate solutions, close to 

the actual solution. Either of their approximate solution has an error to the actual solution. 

Generally speaking, Mooney-Rivilin model is relatively accurate for the hyper-elasticity with 

small elongation of less than 100%, while Yeoh and Ogden models are good representatives for 

the hyper-elasticity with large elongation. Also, Yeoh model is better for larger elongation up to 

600% than odgen model. From the tensile tests, all silicone candidates have the maximum 



 

63 

 

elongation about 600%. Thus, Yeoh model is selected for silicone elastomers in this research. 

Parameters in the Yeoh strain energy function was calculated from the measured silicone elasticity 

curves by applying Curve Fitting Toolbox in MATLAB. Yeoh model parameters for the best 

silicone candidate, LIM 6010, are listed in the Table 11 below.  

Table 11. Yeoh hyperelastic material model parameters for LIM6010 silicone 

C10 (MPa) C20 (MPa) C30 (MPa) 

0.01459 -0.00014 1.49E-06 

3.3.4.1.3 Boundary condition  

 After determining all physical principles in DEA simulation, the real boundary conditions 

were also added to the circular and rectangular DEA models. Boundary condition is very essential 

to get the solution from those governing equations of electrostatics and structural mechanics. For 

example, two boundary conditions in the electrostatics are the electric potential on the surfaces of 

electrodes and the zero charge for the rest of surfaces. For the structural mechanics, several 

boundary conditions are applied, such as the fixed constraints for zero displacements at the rigid 

frames of DEA, boundary load for applying Maxwell stress tensor and free constraint for free 

actuation.  

3.3.4.2 Validation of empirical and modeling results 

After setting up the numerical model, it is necessary to validate this numerical model with 

experimental results. Primarily, rectangular DEA model need to match up experimental setup, such 

as silicone membrane of 70x44 mm2 area and 0.22 mm thickness and carbon grease film of 20 

mm diameter and 1 mm thickness. However, in this numerical model, the pre-stretched silicone 

film is difficult to build with non-stretched carbon grease film. Hence, this numerical model 

applied the minimum width of 44 mm at the middle of the pre-stretched silicone film in the 
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experiment to mimic the actual situation. For future, the numerical model need to be improved by 

involving the pre-strain condition for more accurate simulation.  

 

Figure 35. FEM simulation for rectangular DEAs 

In the Figure 35, the displacement result of this rectangular model is shown when the actual 

10 kV/mm breakdown strength is applied. Simulation result shows that large displacement happens 

at the edge of the electrode while the negligible displacement happens at the center of the electrode. 

In addition, it is obvious that the horizontal displacement with fixed boundary constraints is smaller 

than the vertical displacement without any boundary constraints. It approves that less boundary 

constraint can make DEA actuation larger, which is in good agreement with the empirical results. 

Moreover, the maximum 10% vertical actuation strain in this simulation is approximate to the 

empirical strain 12% of LIM 6010 silicone DEA.  

However, there is a big difference between the vertical actuation strains at the membrane 

edge in the experiment and simulation, shown in the Figure 36. From this chart, the experimental 

actuation strain at the edge is about one-third of this simulating result. Simulation generally 

presents the ideal results, so it is more likely that experimental result has some issues. Through 

empirical result, DEA actuation doesn't fully present the planar deformation, while normal 
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deformation is also generated. This phenomenon occurred in both circular and rectangular DEA 

behaviors, shown in the Figure 31 and Figure 33. The deformation in normal direction can be 

visualized from the change in light reflection between initial status and maximum actuation. To 

solve this issue, applying higher pre-strain is helpful to reduce normal deformation and increase 

planar deformation in order to present the ideal result, which is explained in the 3.3.2 section of 

circular DEA behavior tests. In addition, although there is a significant difference between 

simulation and experiment, the tendencies of simulation and experiment actuation strain along the 

membrane edge are in common.  

 

Figure 36. Vertical actuation strain comparison between experiment and simulation results at the 

membrane edge 

3.3.4.3 Comparison between circular and rectangular actuator simulation  

After validating with empirical results, this FEM simulation was also used to compare 

circular and rectangular DEA behavior. For the circular DEA model, the same diameter of 

electrodes was applied to compare with rectangular model, except the 50 mm diameter of the 

circular silicone membrane. In the Figure 37 below, two displacement maps show the simulation 
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results of circular and rectangular DEA models both at 10 kV/mm breakdown strength. It is 

obvious that different configurations have different DEA actuation. For example, isotropic DEA 

actuation happens to circular DEA configuration with isotropic boundary constraint, while 

rectangular DEA configuration has relatively large actuation in the direction without any boundary 

constraints. Thus, it indicates that boundary constraints in different DEA configurations have a 

significant impact on DEA actuation. In addition, the largest displacement in rectangular DEA is 

twice of that in circular DEAs. It indicates that rectangular DEA is capable of producing more 

actuation strain.  

 

Figure 37. FEM simulation results for circular and rectangular DEAs 

3.3.5 Result discussion 

In this section, the study of circular and rectangular DEA configurations was done though 

experiments and simulations. Circular and rectangular DEAs were tested on HV test system about 

their DEA actuation behavior, and actuation strains were measured through a validated image 

processing. Maximum actuation strain of 5.9% in circular DEAs was found in KE-1283 silicone, 

while 12.5% actuation strain was found in the vertical direction of LIM 6010 rectangular DEA. 
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These two best performance silicone candidates are employed in the later soft robotic development 

based on circular or rectangular DEA.  

In addition, rectangular and circular FEM models, including coupling physic phenomena, 

hyperelastic material models and boundary constraints, was built to further understand the working 

principles behind DEA actuation. This numerical model was validated with empirical results, and 

showed a good agreement. More importantly, the hypothesis that less boundary constraint in 

rectangular DEAs makes actuation large was validated by the empirical and modeling results. It is 

new for understanding the effect of boundary constraint on DEA actuation.  

3.4 Summary 

In this chapter, I investigated the impact of pre-strain condition on material properties to find 

the optimal pre-strain and the impact of DEA configurations on DEA actuation behaviors to select 

the optimal configuration with the most actuation freedom for obtaining large DEA actuation.  

Pre-strain condition was investigated with the silicone’s material properties, including 

Young’s modulus, dielectric constant and dielectric breakdown strength. From the change of 

Young’s modulus with strain, the general 40% to 200% applicable range of pre-strain condition is 

determined to reduce about 40% Young’s modulus. Dielectric constant and breakdown strength 

measurements up to 100% elongation show the positive impact of pre-strain condition to increase 

these properties. Thus, the pre-strain in the applicable range can enhance DEA actuation by 

decreasing Young’s modulus to produce large mechanical deformation, increasing dielectric 

constant and breakdown strength to generate large Maxwell pressure. In addition, these 

investigations also indicate that higher pre-strain in the applicable range can produce larges 

silicone DEA actuation, and the optimal pre-strain in the applicable range should be the maximum 
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value, generally 200%. However, all silicone films with 10% film thickness variation in DEA 

configuration were successfully pre-stretched by 40% in the experiments. 

In addition, two different DEA configurations, circular and rectangular types, showed 

different DEA actuation through experiments and simulations. two different DEA configurations, 

circular and rectangular types, were investigated about their impacts on DEA actuation through 

experiments and simulations. In experiments, rectangular silicone DEA has a 12.5% maximum 

actuation strain, twice the maximum strain in circular silicone DEA. Two fold improvement 

indicates that rectangular DEA configuration provides more actuation freedom than the circular 

one. In FEM simulations, rectangular and circular DEA models validate the phenomenon in the 

experiments. Hence, modeling and empirical results indicate that the rectangular DEA with less 

boundary constraints can produce more actuation.  
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4 DIELECTRIC ELASTOMER ACTUATOR SMILEY FACE ROBOT 

 

4.1 Introduction 

In the previous chapters, a 3D printing process for DEAs has been developed, and the best 

DEA behaviors among the selected silicone candidates has been identified. Next, developing a 4D 

printed DEA robot is the ultimate goal of this research to demonstrate good customization of 3D 

printing technology. 3D printing techniques provide more design freedom for DEA-based robots, 

and also consume much lower cost of material and time than conventional subtractive 

manufacturing methods. In this chapter, two 4D printed novel DEA smiley face robots are 

demonstrated.  

4.2 Quantitative Theory of Smiley Lip 

The idea of this facial robotic system is that the expansion of pupils can be directly obtained 

from circular electrodes which can expand isotropically, and the smiley lip can be demonstrated 

from the differential deformation, which is the difference of deformation at different locations on 

the lip when an electric field is applied. In order to demonstrate a smiley lip, a quantitative theory 

of lip was designed, shown in the Figure 38 below. The dashed straight line is the lip at initial 

status, and the solid curve line is the smiley lip. D is the differential deformation made by DEA 

actuation, and L is the length of the lip. A visible smiley lip should have a large differential 

deformation D with a short lip length L, and the smiley lip ratio of D over L is used to determine 

a smiley lip. In the Figure 39, two easily recognized smile lips with different smiley lip ratios are 

presented, which are one big smile and one normal smile. For example, a big smile should have 
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the ratio of ~1/2, while a normal smile is determined by the ratio from 1/8 to 1/4. Hence, the smiley 

lip ratio in the DEA facial robot should be at least 1/8 in order to demonstrate a visible smiley lip.  

 

Figure 38. Quantitative theory of smiley lip 

 

Figure 39. Two examples of easily identified smiles showing smiley lip ratios 

4.3 Smiley Face Robot based on Circular Dielectric Elastomer Actuator 

4.3.1 Robotic design based on the tested dielectric elastomer actuator behaviors 

Considering 5.9% maximum actuation strain in the circular DEA, the facial robot need to 

enlarge deformation from the small actuation strain. In order to demonstrate the visible smiley lip, 

an effective method is to apply large actuating dimensions of the electrodes to obtain large lip 

deformation. Thus, the electrodes of 80 mm diameter is applied on the 100 mm diameter silicone 

membrane.  

Referring to 1/8 smiley lip ratio, a lip of 38 mm long is desired to demonstrate the smiley lip 

with full DEA actuation strain. Based on this idea, a novel design is proposed as shown in Figure 

L 

D 

             (a) Big Smile           (b) Smile 

    D/L = 1/2                       D/L = 1/8 ~ 1/4 
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40. To clarify, the expansions of two eye pupils are demonstrated by two small circular DEAs at 

the left and right side, while the lip deformation is presented by the relative deformation between 

point 2 at the lowest edge of the large irregular-shaped electrode and two “static” points 1 and 3, 

shown in Figure 40-a. The deformation of these electrodes illustrated by the dash line is calculated 

by using the 5.9% strain of KE-1283 silicone elastomer. As electric field is applied, point 2 follows 

the deformation at the bottom moving downward, while points 1 and 3 that are far away from the 

electrode are expected to have negligible deformation. If the initial lip is designed to be the straight 

line connecting these three points, shown in Figure 40-b, the relative deformation of point 2 and 

points 1 and 3 would bend the lip downward to make a smiley face. The complex geometry of this 

robot would take advantage of the capability afforded by 3D printing tehcniques to make the 

arbitrary shapes. 

 
a). Printed electrodes                                                  b). Facial features 

Figure 40. A modified design using irregular electrode for small strain actuators 

4.3.2 Performance test of facial dielectric elastomer actuator soft robot 

After being designed, this facial soft robot upon circular DEA was fully fabricated via the 

developed 3D printing processes. The performance of this facial robotic system was tested on a 

1 2 3 
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HV testing system. Dielectric breakdown strength and maximum strain measurements are 35.3 

kV/mm and 3.6%, respectively, shown in Table 12. This facial robot with the initial status and the 

maximum actuation status prior to dielectric breakdown is shown in Figure 41. However, due to 

the unexpectedly small strain of about 3.6%, the deformation cannot be clearly visualized.  

Table 12. Dielectric test results for the facial DEA 

 

Film 

Thickness 

(mm) 

Tested 

Breakdown 

Voltage (kV) 

Tested 

Breakdown 

strength (kV/mm) 

Standard 

Breakdown  

Strength (kV/mm) 

 

Maximum 

Strain (%) 

KE-1283 

pre-strain 20% 
0.215 7.6 35.3 18 3.6 

 

Figure 41. Performance of circular DEA facial robot 

4.3.3 Result discussion 

Only 3.6% actuation strain was obtained from the circular DEA robot, while it had the 

maximum 5.9% actuation strain in its DEA behavior test. This unexpected result is discussed as 

follows. 35.3 kV/mm dielectric breakdown strength of this soft robot is approximate to 34.9 

kV/mm of the KE-1283 DEA, so this soft robot and the previous DEA should produce the 

Initial Maximum 
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approximate Maxwell pressure. In addition, this soft robot and the previous DEA at the same 20% 

pre-strain should have the same Young’s modulus of KE-1283 silicone. Hence, it is more likely 

that the actuation strain of the large electrodes close to the circular frame is limited by the fixed 

boundary constraints. This result need to be validated from more experimental and modeling data.  

In addition, about 1.5 mm differential deformation of the smiley lip is also smaller than the 

2.88 mm deformation from 3.6% actuation strain on 80 mm electrode. This phenomenon is 

explained by a simulation of circular DEA, shown in the Figure 42. From this figure, a circular 

DEA with a single electrode is shown to simplify the problem. A straight and solid line that locates 

at the bottom edge of centric electrode represents the initial status of smiley lip. A curved and dash 

line represents the ideal situation, which two ends of smiley lip have negligible deformations. 

However, in fact, these deformations at the two ends are inevitable, shown as the curved and solid 

line. Thus, the actual differential deformation is significantly smaller than the maximum 

deformation from DEAs.  

 

Figure 42. FEM simulation of circular DEA to present the unexpectedly small lip deformation 
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4.4 Smiley Face Robot based on Rectangular Dielectric Elastomer Actuator 

 Rectangular DEAs are more advantageous than circular DEAs to produce large deformation, 

because rectangular configuration with less boundary constraint is capable of providing larger 

actuation. A 12.5% maximum actuation strain was obtained in LIM6010 silicone rectangular DEA 

in the previous DEA behavior test, which is about twice of the best circular DEA actuation. Thus, 

rectangular DEAs are expected to present large lip deformation.  

 In addition, some phenomena in rectangular DEAs, such as edge effect and counter reaction, 

were found through FEM simulations to increase the deformation at desired locations. To clarify 

the edge effect in rectangular DEAs, a common DEA with circular electrodes at the center as the 

control group was compared with another DEA with circular electrodes close to the unconstrained 

membrane edge, as shown in the Figure 43. The common DEA has the symmetric actuation in x 

or y direction shown in the Figure 43-a. 1.74 mm maximum displacement is shown at the top and 

bottom edge of electrodes from a 20 mm diameter electrode.  

For the DEA associated with the electrodes close to membrane edge, most of actuation occurs at 

the bottom edge of the electrodes, shown in the Figure 43-b. The maximum displacement is 3.21 

mm, which is about twice of the displacement in the DEA with the centric electrode. Hence, from 

this comparison, it indicates that electrodes close to the membrane edge increase the displacement 

at the bottom edge of electrodes. More importantly, this phenomenon can be manipulated to 

produce larger deformation in the DEA soft robot.  
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(a) 

 
(b) 

Figure 43. FEM simulations for investigating the edge effect in rectangular DEA 

 Counter reaction phenomenon was also found via FEM simulation. To clarify, two sets of 

compliant electrodes have a counter reaction to each other. When two sets of electrodes are close 

to each other, the transverse stress induced by the electrostatic pressure in the normal direction 

from each set of electrodes pushes another set of electrodes away. Thus, the counter reaction is 
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formed, and the displacement corresponding to the counter reaction is shown in the Figure 44. By 

applying this counter reaction, the deformation increases at the opposite sides of the electrodes to 

the counter reaction.  

 

Figure 44. FEM simulation of the counter reaction from two neighboring electrodes 

 In this section of developing rectangular DEA facial robot, the edge effect and counter 

reaction are both applied to increase the lip deformation. For robotic design, FEM simulation is 

employed to find the optimal geometry for the largest deformation. Then, a rectangular DEA facial 

robot is demonstrated. 

4.4.1 Smiley face robotic design via FEM simulation 

 A smiley face robot based on rectangular DEAs was designed via COMSOL software, 

which can estimate DEA behavior and optimize the robot geometry. A smiley face robot based on 

rectangular DEA is shown in the Figure 45. In this robot, two small electrodes at the top are used 

to represent eye pupils, which can expand upon voltage. The smiley lip is represented by a straight 
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line that connects A, B and C points. Points A and C locate far from the lip electrode, while point 

B locates at bottom edge of lip electrode. When being charged, point B follows with the bottom 

edge of the lip electrode to move downward, and points A and C have small downward 

displacements. Thus, a differential deformation is obtained from these points to present the smiley 

lip.  

 In addition, the edge effect and counter reaction in rectangular DEAs aforementioned are 

involved in this smiley face robot. For example, the lip electrode is designed close to the 

unconstrained bottom edge of the membrane to produce more deformation at the bottom. However, 

the spacing between the bottom edge of the lip electrode and the bottom edge of the membrane 

cannot be less than 2 mm, because leaking sparks were found at small spacing in experiments. For 

the counter reaction, it is applied naturally when the pupil electrodes are close to the lip electrode.  

 

Figure 45. Schematic drawing of rectangular smiley face robot 

 In order to get the optimal lip deformation, two geometric parameters, the diameter of the 

pupil electrode rS and the horizontal distance between the pupil and lip electrodes dx, are studied 

via COMSOL Multiphysics. In this parameter study of the optimal geometry, four variables are 
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used for either of two parameters rS or dx. The smiley lip ratio for each geometry is calculated, 

shown in the Figure 46. It shows that the largest smiley lip ratio of 0.075 is obtained in the optimal 

geometry with 8 mm rS and 15 mm dx. Although the largest ratio is still smaller than the desired 

ratio of 0.125 (1/8), at least the smiley lip of this optimal geometry is visible via COMSOL, shown 

in the Figure 47.  

 

Figure 46. Geometric parameter study of rectangular DEA robot  

 

Figure 47. FEM simulation of the optimal result from this smiley face robot 
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 In this optimal geometry, the edge effect and the counter reaction totally increased the 

maximum deformation by 115%, comparing to the rectangular DEA with a single electrode at the 

center. In addition, the edge effect has the 73.5% weight of the total enhancement of the maximum 

deformation, which is much bigger than 26.5% weight of the counter reaction. In summary, the 

edge effect and the counter reaction both have significant impacts to successfully demonstrate a 

smiley face robot.  

4.4.2  Performance tests of rectangular dielectric elastomer actuator robot 

 A rectangular DEA smiley face robot based on the optimal geometry was then fabricated 

via 3D printing techniques. The facial features of circular pupils and a straight lip were manually 

drawn by using a white pen. This robot performance was tested on the HV testing system. Two 

images of the initial status and the maximum actuation before the dielectric breakdown were 

shown in the Figure 48. A bended lip is slightly visible from two images, and the lip electrode has 

7.14% actuation strain. Right eye pupil shows an expansion with a 9.55% vertical actuation strain 

from on a circular electrode to an elliptical shape, while left eye pupil has very small deformation 

with about 4% actuations strain.  

            

Figure 48. Initial status and maximum actuation of this smiley face robot 

Initial Max 



 

80 

 

4.4.3 Result discussion 

 The performance of this smiley face robot was imperfect to match the simulation result, 

because the actuation strains of three compliant electrodes were unequal and all smaller than the 

maximum 12.5% DEA actuation strain. In fact, this robot failed after a leaking spark occurred at 

the bottom edge of the right pupil electrode, so dielectric breakdown is the failure reason. The 28 

kV/mm breakdown strength of this robot is much smaller than the 40 kV/mm breakdown strength 

of the same silicone DEA with the 12.5% actuation strain.  

 The uneven thickness distribution with over 50 µm variation was found on the average 200 

µm thick membrane of this robot. Specifically, the right side of the membrane is thinner than the 

left side. The electric field can more easily break down the membrane at the thinner places.  In 

addition, the gradually decreasing actuation strains (9.55%, 7.14% and about 4%) of three 

electrodes corresponds to the increasing silicone film thickness.  It indicates that thinner places are 

easier to produce larger DEA actuation, approaching to the maximum 12.5% DEA actuation strain 

that is also approaching to the dielectric breakdown strength. Hence, the early dielectric breakdown 

is induced by the uneven thickness of the membrane. The 50 µm thickness variation in silicone 

film was the result of the standard 100 µm accuracy on Fab@Home printer. In order to fabricate a 

good DEA soft robot, 3D printers with the finer accuracy are preferred to use.  

4.5 Summary:  

In this chapter, I reported fully 3D printed soft robotic faces using DEAs for the first time. 

1/8 smiley lip ratio from the differential deformation of DEAs was determined to present a visible 

smiley lip, and eye pupils were presented from circular shape DEAs. Two novel soft robotic faces 

of using circular or rectangular DEAs were demonstrated upon application of voltage. 3D printing 
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techniques are approved to feasibly and easily fabricate the complex geometry in DEA robotic 

design. COMSOL Multiphysics software is involved in the design of DEA face robot, including 

the optimization and prediction of robotic performance.  
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5 CONCLUSION  

 

This thesis is motivated to develop a digital fabrication method for DEA based soft robots 

via 3D printing technologies. The objective is to fully 3D print DEA robot with large actuation. 

The fabrication process was developed for DEAs via 3D printing techniques. Silicone films with 

about 300 µm thickness and carbon grease films with good conductivity until 40% elongation was 

3D printed.  

In addition, in order to enlarge DEA actuation, the impact of pre-strain condition on silicone 

material properties and the impact of DEA configurations on DEA actuation were investigated to 

find the optimal pre-strain and select the optimal configuration with the most actuation freedom, 

respectively. Specifically, pre-strain condition was found to enhance DEA actuation by reducing 

Young’s modulus to produce large mechanical deformation, increasing dielectric constant and 

breakdown strength to generate large Maxwell pressure. The investigation of DEA configuration 

indicates that rectangular DEAs have less boundary constraints to produce larger DEA actuation 

than circular DEAs, through experiments and simulations. The maximum 12.5% actuation strain 

was obtained from 3D printed rectangular LIM6010 silicone DEA. 20 times enhancement of 

actuation strain on 3D printed DEA was achieved in this thesis, compared to literature.   

Furthermore, I demonstrated 4D printed smiley face DEA soft robots for the first time. The 

geometric design of these smiley face robots employed the quantitative theory of smiley lip and 

COMSOL multiphysics simulation.  
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6 FUTURE WORK 

For the future development of 3D printed DEAs, a number of improvements are desired to 

further achieve the characteristics of DEAs that outperform human muscle, including large 

actuation strain and stress, high working efficiency and fast response time. In this thesis, in order 

to obtain large actuation, we demonstrated a 12.5% actuation strain of 3D printed DEA, which is 

20 times of existing 3D printed DEA in the literature. Nonetheless, in order to obtain the 

comparable actuation strain to 80% through conventional manufacturing methods, the finer 

resolution 3D printer is needed to fabricate thin silicone films with more even thickness 

distribution for applying the optimal pre-strain of about 200%.  

3D printing technologies are also capable of enhancing DEA actuation stress. To clarify, 

multi-stacked DEAs that are designed for replicating actuation stress are recommended to be 3D 

printed by taking the advantages of 3D printing technologies, such as ease of fabrication and more 

design freedom. 

To achieve high working efficiency in DEA based soft robot, geometric optimization is 

necessary to reduce the burden of unnecessary materials and maximize DEA actuation. 3D printing 

technologies are much easier to fabricate the optimized DEA based soft robot due to its ease of 

customization.  

DEAs typically have a few milli-seconds response time or less than 1 kHz actuation 

frequency, due to its time-dependent viscoelastic material property. Even though its response time 

is much faster than that of biological mechanism (100 milli-seconds in human muscle), DEAs have 

difficulty responding to higher than 1 kHz electrical signal. Ultra-sonic motion is almost 

impossible for DEA based soft robots. On the other hand, DEA can naturally filter over 1 kHz high 
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frequency noise, which enables some new applications of anti-vibration and noise-cancellation for 

3D printed DEAs or 3D printed DEA based robots.  

For the future development of 3D printed DEA based soft robots, there are many potential 

applications, such as bio-mimetic robots and evolutionary designs. For example, biology offers 

abundant mechanisms in life, which can take the advantages of DEA based soft robots, such as 

large actuation strain, light weight, fast response and etc. Some bio-mimetic robots associated with 

artificial muscle are earthworm robots [1, 2], hexapod inspired robots [3, 4], Gecko climbing robot 

[5] and micro flying insect robot [6]. In order to develop DEA based bio-mimetic robots, there are 

some suggested objectives, such as understanding the working mechanisms of robotic locomotion, 

validating robotic performances with simulations, optimizing robotic geometry and configuration, 

and building the control system for complex robotic functions.  

In addition, as science and technology develops, some precise apparatuses, like optical and 

MEMS devices, have huge desires for the evolutional designs and prototypes of soft robots. The 

evolutional designs and prototypes of soft robots are easily affordable via 3D printing technologies 

to enable smart mechanisms, short design time, and aesthetic design elements. For example, a 

smart mechanism of binary actuation system can be achieved from 3D printed DEA based soft 

robot. Binary actuation basically has two stable and discrete states, original status and actuation. 

For DEAs, these two states could be represented by the initial length and the actuating length upon 

the application of voltage. A binary actuation system can program many simple binary DEAs to 

very sophisticated functions, like binary code in computer. To explain, a soft robot with three 

binary DEAs has eight (23) degrees of freedom. Therefore, future researchers may develop a binary 

actuation system associated with large actuation DEAs to achieve sophisticated functions.  
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