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Abstract

Preferential wetting can have a signi�cant impact on the kinetics of phase separation in

certain systems. The depletion of the wetting component can simply alter domain growth

rates or change the structure entirely. In this thesis, we employ a Cahn-Hilliard model to

study the evolution of binary thin-�lms with symmetric surface wetting. Three possible

morphologies were identi�ed: discrete, bicontinuous, and a novel quasi-2D bicontinuous

structure in which both phases retain continuity throughout the volume as well as on

the center xy plane. Using a continuity factor, regions of �lm thickness versus blend

composition were classi�ed as producing a certain morphology. This region was then

extended to further explore the possibilities o�ered by symmetric surface wetting. This

information can guide future researchers to novel morphologies.
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Chapter 1

Introduction

1.1 Background

A number of interesting phenomena can occur as the thermodynamic properties of a

system change. Most are familiar with the occurrences of freezing, melting and boiling.

These shifts between states of matter are the most commonly known examples of phase

transitions. However, a change of state is not required for a system to undergo phase

transition. In actuality, a transition occurs anytime a break in the symmetry of a material

is seen as the result of a change in its basic thermodynamic properties[1]. As in the above

examples, this is normally brought about by a change in temperature, which will cause

the formation or breaking of bonds as the system reaches a state of minimum free energy.

This can result in a number of events. Changes of state are typically de�ned as �rst order

transitions, so named due to the plateau of temperature that can be seen while energy

is consumed or released to form the new state. This leads to a discontinuity in the �rst

derivative of the system's energy. The remaining transformations have been classi�ed

as continuous transitions, which have a smooth variation in temperature, resulting in

a smooth energy derivative. This type of transition was �rst conceived during studies

of superconducting states in metals, but its real signi�cance came with the idea of the

order parameter [2]. The order parameter, commonly called a phase variable throughout

this work, sprung from the idea that any continuous transition could be tracked by

the evolution of a single variable across the material. Applying this concept to phase

separation in alloys, Cahn and Hilliard developed a composition based equation to explain

behaviors that were not characteristic of �rst order transitions [3]. Their model explained

these formations using a free energy approximation to determine how local compositions

would be a�ected. The new mode of separation which this described came to be known

as spinodal decomposition, and it soon became one of the most popular topics in several

�elds of materials science.

Spinodal decomposition (SD) is a di�usion based un-mixing which was found to be
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the cause of certain micro-structures in materials ranging from metals to �uid mixtures.

The most common application of SD today is in the production of thin-�lm materials,

which can have a range of thicknesses on both the nano and micro-scales. Given that

thin-�lm technology has become a prominent feature in everything from electronics to

�ltration[4, 5], knowledge of their production processes has never been more important.

It is crucial for some applications that a given internal structure is achieved, which has

prompted decades of experimental and computational works on the topic. Through these

experiments, several interesting mechanics that a�ect phase separation have been iden-

ti�ed. One of the most pronounced e�ects is the preferential wetting of surfaces, often

called surface-directed spinodal decomposition (SDSD). SDSD can play a signi�cant role

in determining �lm structure, as it results in a change of composition adjacent to the

wetted surface. Indeed, it has been noted in experiments that domain evolution in these

regions will follow much di�erent trends than in the bulk of the blend [6�9]. Cases of

both symmetric and single surface wetting have shown the potential for interesting mor-

phologies [10�13]. However, the possibilities of utilizing SDSD for controlling structure

remain largely unexplored.

Experimental studies of SDSD are generally limited to a few cases [6�8, 12, 13]. A

small number of �lm thicknesses separated by hundreds of nanometers in thickness are

used, and the majority are performed using evenly mixed blends [6, 7, 12, 14]. This

is not surprising given the time necessary to produce and analyze these structures. In

this aspect, computational modeling o�ers interesting opportunities. In recent years, the

availability of computational resources has made simulation a valuable tool in materials

science. Methods have been developed to model events at every length scale, including the

range of sizes seen in SDSD. When concerned about the exact nature of the interactions

that cause a behavior, molecular dynamics can be used. This method has been utilized

several times to simulate small systems undergoing SDSD [15, 16] However, this can be

too computationally intensive to model larger scales. Other methods have been developed

that accurately portray the di�use interfacial properties using a continuum approximation

as opposed to particle based, lattice methods. Using the concept of the phase variable,
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or order parameter, a system can be modeled using an approximation of the free energy

to evolve the concentration at every location in a discretized space. This de�nes the

phase �eld methods (PFM's), which have become a popular tool set in the study of

meso-scale events, a group which includes the intermediate range of lengths seen in SD.

Guided by experimental observations, PFM's have evolved from simple approximations

to complex models that account for a variety of e�ects. Due to their e�ciency and

increased availability of computing power, these methods have been used not only to

explain observed events, but to probe new areas at speeds that are di�cult to match

with experiment. This is not a new concept in phase separation studies. Several of

the earliest experiments detailing SDSD cite computational works as their motivation to

explore the topic [17]. Experiment and simulation in this area have developed a type of

synergy that constantly pushes new limits.

In this spirit, we are using simulation to probe unexplored territory in the realm of

symmetric surface wetting. It has been seen in experiment that a single material might

be attracted to one or both of the external interfaces[12, 14]. But few works exist on the

topic of symmetric wetting. As was previously mentioned, those that do are of a limited

scope and leave much to be determined. This experiment will serve to clarify results

found in previous studies while also extending our knowledge of SD mechanics in �lms

su�ciently thin that the e�ects of preferential wetting can be seen throughout the �lm.

1.2 Objectives

The purpose of this thesis was to study the crossover of separation kinetics in thin-

�lms with preferential surface wetting. The possibility of a transition from bulk separation

to quasi-2D SD has been noted in experiments, but the conditions required are largely

unexplored. For this reason, we have performed a parametric study in an e�ort to de�ne

the regions in which a selected morphology can be obtained. Initially, exploration of

wetting e�ects on �lms of various thicknesses was performed to �nd where a crossover

could be expected for our chosen concentrations. Once a reasonable space was de�ned,

the likely morphology at each combination of �lm thickness and composition had to be

determined. To achieve this goal, it was necessary to form an adequate de�nition of each
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morphology that could be easily quanti�ed. Using a continuity parameter, simulated

systems of various thicknesses and compositions were classi�ed by structure type. These

regions were then extrapolated using simulations at conveniently spaced parameters for

con�rmation.

1.3 Organization

The remainder of this work is divided into �ve chapters. The next section, chapter

two, will provide a thorough explanation of phase transitions in terms of the free energy

of a system. Solution models will be derived from basic thermodynamic principles, chap-

ter two will end with the initial explanations of continuous phase transitions. Chapter

three is a survey of experimental and computational research relevant to the topics of

general SD as well as SDSD in open and con�ned systems. Chapter four will describe

the computational methods used for this experiment. This will include an explanation

of common numerical methods, the speci�cs of our model, and the algorithms used for

analyzing results. Chapter �ve will describe the �ndings of our experiment, including

morphological classi�cations and discussion on how structures were formed. The �nal

chapter will list what we were able to conclude given our �ndings and suggest future

work in the area.
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Chapter 2

Scienti�c Background

2.1 Introduction

The science of phase transitions has seen several major advances in the last century.

Since the development of early solutions theories, researchers have been working to both

generalize descriptions to cover all materials, as well as �ne-tune models to determine

the exact interactions in a given mixture. In this section, the earliest relevant solution

theories will be derived from the fundamental thermodynamics of a system. To build

upon that work, one of the most important works in the study of phase transitions, the

Landau theory of free energy, will be presented. Finally, the work leading up to and the

conception of the Cahn-Hilliard model will be discussed.

2.2 Free Energy and Phase Separation

The states occurring in a binary mixture are determined by the fundamental ther-

modynamics of the blend at a given time. An isolated system will always tend towards

a lower energy state, which could result in a phase transition or separation. The most

common descriptor of a system's energy is the Gibbs Free Energy. Gibbs Free Energy,

described as the maximum possible work that a system could perform at a constant

pressure and temperature, is described by

G = H − TS (2.1)

where H is the enthalpy of the system, T is its temperature, and S is its entropy.

Enthalpy includes both the internal energy of the system, which can be determined

through the inherent chemical bonding of that state, as well as the product of the system

pressure and volume. The entropy is a measure of disorder in the system. To determine

how these quantities will act at various compositions and temperatures, we expand this

energy to describe the environment created by mixing. This is called the Gibbs Free

Energy of Mixing, which is given by
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∆Gmix = ∆Hmix − T∆Smix (2.2)

where each term simply represents the change incurred when two components are

mixed. Depending on the system, the free energy function could take on a variety of

shapes, which would signi�cantly a�ect the homogeneity of the mixture. One of three

cases will occur. The �rst is the case of immiscibility, which is the result of a positive

free energy with a negative second derivative. In this situation, mixing never occurs. The

second case is that of total miscibility, which requires the free energy to be negative over

the entire range with a positive curvature. This leads to a homogeneous mixture at all

compositions and temperatures. The third, and most interesting case is that in which the

free energy has several local minima, which leads to partial miscibility. Systems that fall

into this category will have parametric regions of temperature and composition at which

they will be mixed or have potential for separation. A typical temperature-composition

phase diagram for this scenario can be seen in �gure 2.1.

Several curves de�ne the regions of miscibility as well as the stability of any structures

that occur through transitions. The binodal, or the outer curve, is determined by the

locations of the common tangent points on the free energy function. Under the binodal,

phase separation is possible, but structures formed will only be stable against small

�uctuations in composition. This metastable region encompasses the space between the

binodal and the second curve, which is called the spinodal. The spinodal, which is outlined

by the points of in�ection of the free energy curve, encompasses a region of stable phase

separation. It was previously thought that phase separation must take place after some

form of nucleation. However, there is a fundamental di�erence between nucleation and

growth and the mechanism that takes place in the spinodal region. By de�nition, the

former requires the formation of a nucleus which will become stable at a certain size and

the free energy pro�le will lead to growth through "downhill di�usion". The nature of this

process requires that the system be located between the binodal and spinodal in order

to both allow de-mixing and meet the need for upward concavity of free energy. Under

the spinodal, mixtures can spontaneously separate through a rapid di�usion based de-
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Figure 2.1: Phase diagram in relation to free energy curve of the system. The limits of
the binodal and spinodal are denoted by φB1-φB2 and φS1-φS2 [1].

mixing due to the concavity of the energy pro�le. This led to vastly di�erent structures,

and has become a crucial mechanism in the production of several technologies [2�4]. The

desire to explain these mechanisms in certain materials has brought about multiple phase

transition theories, including several of the most widely used models in materials science.

2.3 Free Energy Solutions

Given that the free energy functional is the basis on which models of phase transitions

are built, it is important that an accurate approximation is used. The components of

free energy, as given by equation 2.2, are the enthalpy and entropy of mixing, which both
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require the assumption of random mixing for standard mean-�eld approximations. The

entropy of mixing is calculated by determining the number of con�gurations that the

system can take. In order to determine the proper expression to describe con�gurations

while mixing, it is necessary to begin by �nding the isothermal entropy of expansion for

an ideal gas. Beginning with the fundamental thermodynamic relation, we are given

dU = TdS − PdV (2.3)

where P is the system pressure, and V is its volume[5]. Given the nature of an ideal

gas, we can simplify this relation by assuming the di�erential internal energy is negligible

and rearranging terms to the following form.

dS =
PdV

T
(2.4)

Then, using the ideal gas equation, we can rewrite equation 4 as

∫ S1

S2

dS = nR

∫ V1

V2

dV

V
(2.5)

whereR is the ideal gas constant and n is the number of moles of gas[5]. Then consider-

ing the fact that the �nal volume will be the sum of the volumes of two mixed components

(A and B), we can integrate for component A to obtain its change in energy[5].

∆SA = nRln
(V2
V1

)
= nARln

(VA + VB
VA

)
(2.6)

At this point, we can use the proportionality between the number of moles in an ideal

gas and its volume to rewrite equation 6 using the mole fraction, χA,of the component[5].

This yields

∆SA = −χARln(χA) (2.7)

Using this form, it is possible to write the full molar entropy of mixing for a mixture

of components A and B, as seen in equation 2.8.
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∆Smix = −R[χAln(χA) + χBln(χB)] (2.8)

This can be further re�ned using the knowledge that the two fractions, χA and χB,

have a sum of one. We are now able to express the entropy in terms of a single variable,

χB[5].

∆Smix = −R[(1− χB)ln(1− χB) + χBln(χB)] (2.9)

The second free energy component that we will need to consider, the enthalpy of

mixing, will vary depending on the chosen model. The simplest is the ideal solution

model, which assumes that a mixture will act similarly to an ideal gas. This would mean

that all chemical bonds that occurred in both pure components and the mixture required

similar amounts of energy to break and form, so no type of bond would be favored. This

results in a negligible enthalpy of mixing, so the molar free energy of an ideal gas would

be given by[5]

∆Gmix,i = RT [(1− χB)ln(1− χB) + χBln(χB)] (2.10)

However, few real mixtures act in this fashion. The change in internal energy that

occurs when two species are mixed can rarely be ignored, which raised the need for an

alternative. This came about with the development of the regular solution model. It

was based in the theory of a randomly mixed composition throughout with molecules

having an average coordination number, z[5]. If there are nA particles of A, they will

form roughly z × nA bonds. Given the molar fraction of B, χB, we can say that some

portion of those bonds, roughly χB × nA, will connect A and B molecules[5]. This allows

us to de�ne the di�erence in internal energy incurred by mixing B into pure A and A

mixing into pure B as

∆Umix,A = χBznA(εAB − εAA) (2.11)
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∆Umix,B = χAznB(εAB − εBB) (2.12)

where εAB, εAA and εBB are the bond energies between molecules of A and B, pure A,

and pure B, respectively[5]. The total internal energy change of mixing can be given by

the sum of these terms, with a coe�cient of one-half to prevent double-counting of bonds

∆Umix =
1

2
[χAznB(εAB − εBB) + χBznA(εAB − εAA)] (2.13)

By expanding the coe�cients using the de�nitions of the molar fractions and com-

bining like terms, we can reach the most commonly used de�nition for the enthalpy of

mixing,

∆Umix =
z

2
χAχB(2εAB − εAA − εBB) = β(1− χB)χB (2.14)

where β is called the interaction parameter, and serves to lump energy related terms

into a single coe�cient for simplicity[5]. This allows for the expression of free energy

using the regular solution model through one variable, χB, as seen below.

∆Gmix = β(1− χB)χB +RT [(1− χB)ln(1− χB) + χBln(χB)] (2.15)

These standard mean �eld approximations formed the basis which further solution

theories were built on past the early 1900's[6]. In the �eld of phase transitions, one of

the largest contributions was due to Lev Landau in 1937 [7]. During his studies, he

noticed a unifying concept among several transitions. A series of phenomena could be

described in terms of broken symmetry in a �eld of some conserved value, later called

the order parameter. In his theory, when a system was in its random, or symmetrical

phase, the relevant order parameter would be zero, while more ordered structures would

result in a non-zero value. This led Landau to describe continuous, or second order, phase

transitions as a series expansion around the order parameter, Ψ, for a given situation.

Based on the fact that energy the di�erence should be non-zero values and not their signs,

terms with odd powers were ignored [7]. This gave the fundamental Landau theory
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G =
1

2
α(T )Ψ2 +

1

4
γ(T )Ψ4 + ... (2.16)

where α and γ are both temperature based coe�cients, which are commonly assigned

a value of one for simplicity. This simpli�ed version of bulk free energy has become

the basis of numerous theories and models. These include several variations of equation

2.16, including the Ginzburg-Landau free energy, which adds a term to consider critical

mixtures, and Landau-de Gennes theory, which integrates Landau theory into another

Mean-Field approximation called the Flory-Huggins model.

2.4 Spinodal Decomposition

Early evidence of non-nucleation phase separation events was discovered during stud-

ies of the compositions of alloys. The �rst notable experiments that gave evidence of

this mechanism were studies of X-ray di�raction patterns in Cu-Ni-Fe alloys [8]. This

prompted further analysis by Daniel and Lipson who concluded that the compositional

changes were periodic with an alloy speci�c wavelength [8]. This group gave no exact

conclusion on the reason behind these �uctuations, but they did believe that the periodic

structure could be the beginning of standard phase separation. It was later theorized that

the observed compositions could not have been the result of nucleation and growth, so an

alternative type of separation must exist. Given the knowledge that negative di�usivity

could occur in the spinodal region [9], several researchers attempted to explain the model

through Fick's laws of di�usion. However, these were unable to capture the modulations

described by previous experiments. The �rst successful attempt to model the di�usive

nature of these systems was given by Mats Hillert. In his doctoral thesis, Hillert for-

mulated a model which used the regular solution for the free energy of mixing to de�ne

the interaction between the species on a lattice. This one-dimensional model almost un-

doubtedly proved the signi�cance of the spinodal region to stability in phase separation

by showing �uctuations similar to those seen in previous experiments. However, it was

found to be incomplete due to its inability to account for interfacial regions, which is

a problem inherent to coarse-grained, lattice methods. Building on the work of Hillert,

John W. Cahn and John E. Hilliard made one of the most signi�cant contributions to this
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�eld to date. In their collaborative work, they determined that the interaction should not

only include the free energy of the uniform solution, but also the e�ects of the di�erence

in composition over a region [9]. The general Cahn-Hilliard equation is given by

∂φ

∂t
= ∇ ·

(
M∇δF

δφ

)
(2.17)

where φ represents the system composition,M is the mobility, and F is the free energy

functional to describe the system. The free energy could be expanded into the form of

equation 2.18

F =

∫
[f0 + κ(∇φ)2]dV (2.18)

where f0 is the free energy of a homogeneous blend of composition φ and the gradient

term serves to emulate the e�ects of interfacial regions. The gradient term penalizes

excessive boundaries between regions, which leads to a more realistic structure after

coarsening. The bulk free energy can take several forms, the most common of which is

the Ginzburg-Landau energy. However, a series of functionals based in Flory-Huggins

theory and alternative solutions derived from Landau theory have been shown to model

speci�c types of systems with good qualitative accuracy. The Cahn-Hilliard equation grew

to be one of the most widely used methods of modeling phase separation, particularly

spinodal decomposition, in a range of materials. After its acceptance as the primary

model for phase separation in alloys, it was also applied to a variety of liquid mixtures,

including polymer blends, petrochemicals, and alcohols [10, 11]. Its wide range of uses led

to expansions of the model, which included the addition of random thermal �uctuations,

micro�uidics, and interactions for speci�c polymer blend. The Cahn-Hilliard-Cook model

became the new standard due to the reality of random thermal noise in experiment, and

it will be discussed at greater length in later chapters.
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Chapter 3

Literature Review

3.1 Introduction

The phenomena of spinodal decomposition and surface-directed spinodal decomposi-

tion have been observed by many experimentalists and modelers. This chapter will begin

with a brief review of several materials in which spinodal decomposition was observed, as

well as the initial models and laws used to describe their late stage morphologies. This

will be followed by a description of the mechanism of surface-directed spinodal decom-

position and a review of research focused on the interplay between surface e�ects and

bulk separation. In the last section, the situation of thin-�lms with symmetric surface

wetting will be discussed, including the observed stages of evolution and techniques used

to model these systems.

3.2 Spinodal Decomposition

After the work of Cahn and Hilliard, a plethora of theories were developed both to in-

crease its qualitative accuracy and to better describe transitions in other materials. One

of the �rst modi�ed Cahn-Hilliard theories was presented by H. E. Cook, and has come

to be known as the Cahn-Hilliard-Cook equation [1]. The basic model assumed that a

system coarsened without thermal �uctuations, which caused the model to diverge from

realistic behavior with time. Cook suggested the addition of a stochastic term, speci�cally

a random white noise, which could account for potential variance due to thermal e�ects.

This began a series of attempts to rectify the late stage growth dynamics of systems in

the spinodal region with traditional models. At this point, it was somewhat well accepted

that after initial spinodal decomposition and development of discrete domains, the time

scale of growth changed. The most commonly accepted theory was that of Lifshitz and

Slyozov, who said that the growth of domains proceeded through Ostwald ripening [2].

This resulted in discrete domains di�using through another phase in order to coalesce and

form larger clusters while maintaining overall self-similarity. Several numerical studies

were performed in order to provide a more fundamental description of this mechanism.
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The �rst of these was due to Binder and Stau�er in 1974 [3]. The group described these

events from the scale of individual molecules breaking from and reconnecting to a cluster.

They determined that, below a temperature and composition dependent cluster size, the

tendency of molecules to di�use towards a higher concentration would cause the center

of the smaller cluster to shift. This eventually led to the coalescence of this cluster with

a nearby domain, which would reduce the amount of phase interface and lower the free

energy of the system. Other temperature domains saw a slower mechanism, which was

determined to be di�usion of individual molecules over short distances between clusters.

This theory as well as a coarse grained model proposed by Langer et al [4] were both

tested through simulation and experiment. Both showed good agreement with recent

Monte-Carlo simulations, but the theory of Binder and Stau�er was proven accurate over

a greater range of times [2]. Nojima and Tsutsumi came to similar conclusions in their

studies of small molecule polymer blends [5]. The results were somewhat consistent with

the theory of Langer et al, but the obtained power law �t was in better agreement with

Binder and Stau�er [3]. Both of these theories were considered in later studies by Eric

Siggia, who focused on extending the time period over which coarsening dynamics could

be predicted in liquids[2]. Siggia's theory divided growth into regimes based on compo-

sition and the resulting domain density after the initial decomposition. In early time,

they agreed that the separation could be modeled using the Cahn-Hilliard-Cook equation.

However, as the system coarsens into discrete domains, the mechanisms described in pre-

vious theories become dominant. A combination of Ostwald ripening and coalescence of

domains results in an altered growth rate throughout late stages. However, the di�erence

in density of the two components can also come into play, leading to a second increase in

the rate of coarsening. This theory was partially con�rmed for a series of polymer blends

by Hashimoto et al [6]. However, certain dynamics of polymer mixing could not be de-

scribed accurately using a traditional Cahn-Hilliard-Cook methods. Nojima et al found

that in mixtures of polystyrene and poly(methylphenylsiloxane) a reasonable approxima-

tion could not be reached using linearized Cahn-Hilliard-Cook theory [5]. The traditional

Ginzburg-Landau free energy functional was found to be inadequate for polymers above
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a certain chain length. The e�ects of reptation for long polymers cause di�usion mechan-

ics that are more di�cult to predict than those of small molecules. This was partially

addressed by the development of the Flory-Huggins free energy functional for polymer

mixtures, which is given by

∆Gmix = kT

[
1− φB
NA

ln(1− φB) +
φB
NB

ln(φB) + χφB(1− φB)

]
(3.1)

where NA is the degree of polymerization of component A, NB is the degree of poly-

merization of component B, and χ is an interaction parameter describing the speci�c

blend, which will often favor segregation [7, 8]. The Flory-Huggins free energy was ini-

tially developed to describe the interactions that occured when a polymer was dissolved

in a solvent. However, it was quickly adapted to �t polymer blends, which became an

area of signi�cant interest in the mid-1970's. The Flory-Huggins energy was adapted

by de Gennes and Pincus in 1980 and 1981, respectively, to consider alterations of the

gradient term which would more accurately represent interfacial e�ects in binary polymer

blends. This model was immediately recognized, tested and expanded upon. As early as

1983, Binder used the de Gennes extension to Flory-Huggins theory to develop a Cahn-

Hilliard style model for general phase separation in polymer blends[9]. The theory was

also con�rmed through several experiments throughout the following decade. Hashimoto

et al found this model to accurately describe behavior over several time regimes in mix-

tures of styrene-butadiene and polybutadiene [6]. The same group later discovered some

dissonance when comparing coarsening kinetics of long-chain polymer mixtures to the

previously existing theories [10]. However, they did attribute the di�erences to entangle-

ment of the chains as had been predicted by de Gennes and earlier theories [7]. Despite

the potential for increased accuracy, the Flory-Huggins-de Gennes free energy was not

commonly used in modeling. The di�culty of deriving appropriate expressions for mobil-

ity to describe real systems was not often justi�ed when slight modi�cation to a standard

Ginzburg-Landau energy would likely su�ce.

17



3.3 Surface-Directed Spinodal Decomposition

As studies of spinodal decomposition became more common, a new e�ect was noticed

throughout several experiments. The kinetics of phase separation often changed near the

outer boundaries of the mixture, which were in contact with either open air or a substrate.

The interface between the mixture and its surrounding often saw a large concentration

of one material, which would then change the internal structure. The earliest studies

of this property were due to Guenoun et al in 1989 [11]. In mixtures of methanol and

cyclohexane, they noticed a high concentration of methanol near both the air and the

quartz substrate on which the experiment was conducted. They showed that both surfaces

were completely wetted by methanol, and that layer remained connected to the same

phase in the bulk. As a result, the region adjacent to the wetting layer saw the formation

and coalescence of cyclohexane domains which showed markedly di�erent growth than

expected for bulk material[11]. However, as the system coarsened, �ow of methanol from

the bulk fed the increasing thickness of the wetting layer until the capillaries connecting

the two were consumed. The result was a methanol layer surrounding a matrix of the

cyclohexane that contained small droplets of methanol. The growth laws were not easily

determined, and the group was not certain what led to the formation of the wetting layer.

There were several theories on what caused the formation of wetting layers. One of the

�rst models to achieve similar behavior was that of Ball and Essery in 1990 [12]. Theirs

was essentially a study of boundary conditions prompted by the temperature quenches

used in experimental studies. Ball and Essery made the point that, despite the low

thickness of the �lms being studied, a temperature quench was not truly instantaneous.

The group developed a �nite di�erence method to solve the Cahn-Hilliard-Cook model

with coe�cients that vary as the result of a typical temperature di�usion equation. Using

their model, they showed the structures that would be obtained as a system coarsens

due to various types of quenches. Starting with an instantaneous quench, the model

showed typical spinodal decomposition. However, when the simulated cooling front moved

slowly across the material, a layered structure was observed. The results of interest for

surface e�ects were obtained with a median quench rate, which resulted in a layered
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structure near the simulated heat sink and a typical bicontinuous network at greater

depth. While these were similar to the desired structures, it was later found that these

were simply the results of the o�-critical nature of the simulated system. Further theories

on the nature of the wetting layer were formulated during the following years. The �rst

work to use the term "surface-directed spinodal decomposition" o�ered an alternative

explanation which focused on both broken symmetry and preferential attraction between

one material and the air or substrate[13]. Jones et al experimented with a mixture of poly

(ethylene propylene) (PEP) and its perdeuterated form (dPEP). The group witnessed the

formation of a d-PEP layer at the outer surfaces and corresponding changes in nearby

separation kinetics. However, they did not believe quench speed was the culprit. It

was hypothesized that the shorter and less polarizable deuterium bonds led to a lower

surface energy, and thus, the segregation of d-PEP to the outer interfaces. This theory

was built upon by Wiltzius and Cumming in their studies of polymer mixture [14]. They

reported similar behavior, and they were the �rst to attribute the preferential attraction

of the substrate to long-range van der Waals forces. By this point, the explanation of

preferential attraction was widely accepted. Moving forward, computational studies used

altered energy pro�les to model the attraction and ensure realistic surface wetting. The

�rst of these simulations was the work of Brown and Chakrabarti [15], who used a two-

dimensional Cahn-Hilliard-Cook model. In order to ensure wetting, the group forced

two conditions. The �rst was that the surface to be wetted was set to keep the order

parameter at the value of the preferred phase. The second, which guaranteed growth,

altered the surface energy as a function of distance from the preferred surface. Coupled

with the ability to vary quench depth through further alterations of the Ginzburg-Landau

free energy, this model became a powerful tool for probing the possibilities of thin-�lm

systems. Starting with a strong surface attraction, which mimics a long-range van der

Waals force, they achieved growth of the wetting layer which matched the di�usion limited

theories of Lifshitz and Slyozov [16] across both quench depths. For the short range

potential, they saw separation that followed typical theories of spinodal decomposition.

The results obtained were in agreement the experimental work of Jones et al regarding the
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strength of the preferential attraction. Domains growth was seen to occur at a similar

rate both parallel and perpendicular to the free surface. In wetting cases, the length

scales were also seen to be larger in planes parallel to the layer, which was in agreement

with previous works [11, 13]. Growth rates found to be inconsistent with experiments

were attributed to the model's lack of an appropriate hydrodynamic scheme, and several

models con�rmed these results. Both an analysis by through molecular dynamics and a

later simulation study by Chen and Chakrabarti con�rmed that hydrodynamic pumping

would result in a faster wetting layer growth rate [17]. However, as computational studies

continued, several models based on that of Brown were able to con�rm that similar

results would be obtained at the surface and in nearby regions with or without �uid

e�ects [18, 19]. All of these experiments and many others shared one aspect. They

focused on the case of one material wetting a single surface. There are many situations

in which this will not be the case. Experiments by Bruder and Brenn pointed to the

potential for interesting structures when wetting comes into play on both the top and

bottom of a �lm [20]. In their case, the air interface was totally wetted by one polymer

while columnar structures likely protruded from that layer to the opposite interface.

Although the substrate in this experiment showed no preferential wetting, it did prove

that alternative structures could be achieved through a combination of surface e�ects

and low �lm-thickness. Further studies involving variation of �lm thickness with surface

wetting were performed by Geoghegan et al [21]. The results of this experiment largely

resembled those obtained in previous works on polymer blends [13, 14]. However, one

of their �lms, which was determined to be below a threshold of 1.5 times the spinodal

wavelength of the blend, showed di�erent dynamics. This prompted a similar study

by Sung et al focused on the di�erences seen as �lm-thickness reached and passed this

crossover [22]. Using a similar polymer blend, they prepared �lms slightly above and

far below the spinodal wavelength of the mixture. Upon quenching, the higher thickness

�lm showed variations in composition that indicated SDSD with typical bulk kinetics in

the central region of the �lm. Films of lower thickness showed something much more

similar to two-dimensional separation. While the causes and implications of these results
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were not clear, they did o�er some view of the morphologies that were attainable due to

the formation of wetting layers in thin-�lm blends. Moving forwards, researchers placed

increasing interest not only on the e�ects of �lm thickness, but also on new materials and

experimental arrangements that could provide more information on the nature of surface

wetting.

3.4 Symmetric Surface-Directed Spinodal Decomposition

Even before the works of Geoghegan and Sung, researchers had begun to study the

e�ects that �lm thickness could have on morphology. The work of Tanaka et al studied

these from a di�erent perspective by altering the surfaces con�ning the mixture [23].

Using a small diameter tube and two parallel plates of the same material, which they

called one and two-dimensional capillaries, the group studied how systems would react if

the surrounding environment was composed of a single material. In the one-dimensional

case, they saw surface wetting of the entire capillary, with columns of a limited diameter

connecting opposite sides. The columns formed remained stable through later stages in

both liquid and polymer mixtures. However, a di�erent coarsening process was noted

in the two-dimensional tests. Like the �rst case, initial stages involve the formation of

wetting layers and a bicontinuous network in the central region. At later times, the lack

of geometrical constraints on the tubes that bridge the wetting layers come into play.

While the layers do grow due to �ow of wetting material from the central region, they

do not stabilize as was seen in the one-dimensional capillary. Instead, the layers reach

a thickness that seemed to result in back�ow to the columns. Eventually the wetting

layers were consumed by the columns and they became disk-shaped domains. Further

compositional studies continued to explore the region without giving exact descriptions of

the morphological evolutions that occurred. Wendlandt et al [24] presented composition

pro�les of polymer blends with various "boundary conditions" that would closely match

modeling experiments by Binder [18]. Their results both agreed with the general trends

of experiments that utilized asymmetric boundary conditions, and studied the e�ects

of quench depth on evolution of symmetrically bound mixtures. Using the model of

Binder [18], they predicted two morphologies for the ranges of temperatures separated by
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the "wetting transition temperature" in the same blend. The �rst resulted in a partial

wetting scenario, where domains of both materials were in contact with the surfaces

and a fairly even composition would be seen through out. However, the case above the

wetting transition temperature was markedly di�erent. Wetting layers were predicted at

both surfaces, which resulted in columnar domains connecting the two. This scenario,

which seemed to minimize the free energy for un-mixing systems of this type, o�ered one

explanation of the compositions the group obtained. They noted a lack of the second

material near each of the con�ning surfaces, with a nearly even (≈55% non-wetting)

composition throughout the central region. With the proper �lm thickness, this would

have likely corresponded to the predicted structure. It was proposed that a more realistic

morphology, as a result of both composition and annealing time, would be a suspension

of wetting material droplets in a non-wetting material matrix. That results in a nearly

even composition, which matched their �ndings. This was probable, but the group could

not con�rm what structures were formed. Work in this �eld was continued by Wang and

Composto, who more accurately characterized the stages of evolution under symmetric

wetting conditions [25]. They used a blend in which one component wetted both the air

and the substrate to achieve similar wetting layers at both extremes. In the early stages,

they saw initial segregation of the deuterated poly(methyl methacrylate) (dPMMA) to

the top and bottom while the central region displayed a bicontinuous structure typical

of spinodal decomposition. Due to pumping of the wetting phase from the bulk, this

stage is also characterized by a higher surface roughnness as pressure from the capillaries

forces an uneven distribution. The �ow of the preferred material was reversed in the

intermediate stage when the layer has reached its peak thickness. This phase occurs

when the inner layer has separated into a largely columnar structure. These columns

grow due to back-�ow from the wetting layers, which results in lower thickness and

surface roughness for the layer formed at the free surface. Eventually, the domains in

the central region will rupture to form a bicontinuous network. Portions of this network

will then coalesce, leading to large droplets of the non-wetting material covered by the

wetting layers. During the documentation of these stages, the exact mechanism that
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caused them was not well understood. Further research by Chung and Composto helped

to elucidate the relationship between symmetric wetting and bulk separation dynamics

[26]. Using PMMA and poly(styrene-ran-acrylonitrile) (SAN), the group explored the

e�ects of �lm thickness and composition on late stage morphology. In �lms that were

roughly 700nm thick, the expected morphology of discrete droplets was observed in a

50:50(PMMA:SAN) blend. However, as the composition of the �lm was varied, the

e�ects of the wetting layers became more apparent. Signi�cant di�erences were noted

in the evolution of 70:30 blends. The 2D bicontinuous structure, typical of early stages,

remained and coarsened into a similar form at a larger scale. They continued by exploring

several thicknesses over a wide range. They found that the con�nement imposed by the

symmetric wetting conditions caused slower domain growth as �lm thickness decreased.

Their proposed explanation was that pumping of the materials was impeded by the low

�lm thickness. No exact relation for bicontinuous growth was determined. The works

of Chung, Wang, and Composto were of immediate interest to the modeling community.

Das and coworkers published a work detailing their simulation of symmetric systems

with both partial and complete wetting only a year later[27]. The group used a 3D

PFM with a free energy modi�ed near the surfaces to control surface attraction. Their

results for the case of partial wetting showed the formation of disc-like domains, similar

to those described in previous experiments. Their simulations of the complete wetting

case yielded similar results for late stages, but they showed columnar domains similar to

those described by Wang and Composto in early times [25]. The same group published a

second computational experiment utilizing a molecular dynamics simulation as opposed

to the conventional PFM. This model, based on a modi�ed Lennard-Jones potential,

was able to produce structures that were qualitatively similar to their continuum model.

However, the computational expense of molecular dynamics meant they had to limit both

the size and time of their simulations. This yielded only enough information to con�rm its

accuracy for very early stages of SDSD. In a later work, Puri, who collaborated with Das

for the previous two articles, further studied SDSD with complete, symmetric wetting.

Using a similar molecular dynamics simulation to that of Das[28], Puri showed that the
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kinetics of SDSD are relatively una�ected by an increase in surface attraction past the

point of complete wetting. Building on this work, Naraigh and Thi�eault developed a

Navier-Stokes/CH model in an attempt to explain the events leading to rupture in late

stage coarsening [29]. While the model did demonstrate some qualitative information, it

was limited by unrealistic boundary conditions that did not properly describe the free

surface. It was not until new methods were applied by a separate group that a su�cient

explanation of late stage coarsening was o�ered. Hore and Laradji designed a dissipative

particle dynamics model that went beyond the small size and times previously studied

by Das and coworkers [30]. The group was able to replicate the early, intermediate,

and late stages as de�ned by Wang and Composto. More importantly, their results

provided a clear view of these stages and their transitions, which would be di�cult to

obtain experimentally. The shift from the initial to intermediate stage as well as the

intermediate to late stage were found to be related to the average domain size. In the

latter case, the this refers to the widths of the columns connecting the wetting layers. As

the relevant domain length scale approaches the thickness of the �lm, separation kinetics

are altered due to interaction between the domains. This causes growth of domains above

the �lm thickness, which eventually leads to the late stage rupture described by Wang

and Composto [25].
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Chapter 4

Methods

4.1 Introduction

Landau's use of a single order parameter, sometimes called the phase variable, greatly

reduced the complexity of describing continuous phase transitions. Over the course of

several decades, a series of similar methods were developed to more accurately model

systems of interest. With the formulations of the CH equation and its derivatives [1],

researchers were able to accurately describe the kinetics of phase separation in a series

of mixtures. Using these models, it became possible to obtain the compositional trends

that occur in a mixture. However, due to the inherent di�culty of solving large sets

of equations, these methods did not reach their full potential until signi�cant advances

were made in the �eld of computing. With increased access to computing resources,

the �eld of simulation has exploded since the 1980's, bringing us into the modern era of

research. Soon after these resources became available for research, simulation techniques

were developed so that a more detailed understanding of continuous transitions could be

attained. These have come to be known as the phase-�eld methods, which encompass

all techniques that describe a situation through updating an array that stores the phase

variable. A phase-�eld method discretizes the evolution in both time and space, and

updates are performed at a given time interval based on values of the order parameter

previously stored near that location. The following section will describe the common

computational approaches used to solve the Cahn-Hilliard equation, which is the most

common governing equation for this family of methods. An explanation of both �nite-

di�erence and fourier based approximations will be provided, along with an explanation

of the boundary conditions used. The algorithm used for processing of results will also be

described, and our criterion for determining morphology of a structure will be discussed.

4.2 Finite Di�erence vs Fourier Methods

As has been demonstrated in literature [2�4], it is possible to model many types of

systems in both two and three dimensions using phase �eld methods. For our purposes,

27



it was necessary to understand the simulation of an immiscible binary �uid mixture

in three dimensions. This is typically accomplished using an approximation scheme to

evolve a discretized system over a given time at increments of a selected time step.

This means that a simulated volume of length X, width Y , and height Z is divided

into smaller volumes of dimension dx × dy × dz, and a value for the phase variable is

calculated at time increments of dt for every location in the volume. A common method

of approximating solutions to di�cult problems, such as the Cahn-Hilliard equation, is

the use of a �nite di�erence scheme. Finite-di�erence formulas utilize Taylor expansions

to o�er approximations to di�erential equations with varying degrees of accuracy. Recall

the Cahn-Hilliard equation. Numerically solving this equation requires a scheme for the

Laplacian operator. To achieve O(h2) accuracy, we can apply a centered �nite di�erence

scheme in three dimensions. A commonly selected form is given by

∂2φ(x)

∂x2
=
φi+1 − 2φi + φi−1

dx2
(4.1)

where dx is the spatial step size in their X direction. This can be applied in three

dimension by summing the second partial derivatives to suit the dimensionality of your

problem. Using this scheme to calculate the chemical potential and its Laplacian, the

right side of the equation can be solved for a given time. This provides both the current

phase �eld and the rate at which it is changing, so an approximation at the next time

step can be achieved using the Euler method,

φn+1 = φn + dt
∂φn

∂t
(4.2)

where dt is the time step and n is the current time. This process is repeated for an

amount of simulation time that varies depending on the intentions of the user. However,

for certain domains of simulation size, there are more e�cient methods that utilize fourier

transforms to approximate the solution. These are called spectral methods. Spectral

methods generally use fast fourier transforms to decompose a function into a number of

sinusoidal elements of various frequencies. This is accomplished by utilizing a series of
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algorithms to calculate the discrete fourier transform (DFT) of all available data points.

The DFT of a data set is calculated by determining the e�ect each frequency, or basis

function, has in the overall data set through the formula

Xk =
N−1∑
n=0

xne
−2πikn
N (4.3)

where xn is the sequence of data points, N is the number of data points, k is the

frequency of the basis function being considered, and Xk will be the expression telling

the weight of that frequency in the overall data set [5]. As opposed to �nite di�erence

methods which use a number of surrounding points, this process considers all available

data making it a global approximation. In some applications, this allows the use of

a coarse mesh while maintaining or improving spatial accuracy. However, when using

spectral methods, the size of the data set will often play a factor in the computational

e�ciency of a simulation. The preferred methods of calculating a DFT in scienti�c

computing are collections of fast fourier transform algorithms (FFT's) [6]. FFT's break

a data set down into smaller portions to simplify the calculation of a series of DFT's.

One of the most common algorithms used for this divide and conquer strategy is due to

Cooley and Tukey [6], which is used when the number of data points is composite, or

highly factorable. The basic Cooley-Tukey algorithm is seen below

Xk =

N
2
−1∑

m=0

x2me
−2πik(2m)

N +

N
2
−1∑

m=0

x2m+1e
−2πik(2m+1)

N (4.4)

where n = 2m [6]. The data is being grouped by index into even and odd sets to

reduce complexity of the DFT calculation. This can be performed recursively in order

to return at most m small sets of points, which reduces the size, and di�culty, of matrix

operations in the DFT calculations to increase e�ciency. While there are methods for

calculating the DFT of prime data sets, such as the prime factor algorithm, it is preferable

to choose a size with small factors, making powers of two ideal. This makes simulation

size an important consideration when working with large data. Existing FFT packages,

such as Fastest Fourier Transforms in the West (FFTW), will utilize the proper algorithm

29



based on factorization to reduce the computational intensity posed by complicated sizing.

This will ensure a high degree of spatial accuracy while time evolution can be handled

using a �nite di�erence approximation.

4.3 Model and Analysis

In our experiments, a Cahn-Hilliard-Cook (CHC) model was utilized to study the

evolution of immiscible thin-�lms through surface-directed spinodal decomposition. The

CHC equation is given by

∂φ

∂t
= ∇ ·

(
M∇δF

δφ

)
+ ζ (4.5)

where ζ is a randomly generated term which approximates thermal �uctuations in real

systems. This variation of the CH equation has been widely used for modeling spinodal

decomposition in immiscible systems [7]. The general form of the free energy density was

described earlier. However, the bulk term is actually composed of several contributions

given by,

f = w(fpp + fps), (4.6)

where fpp and fps represent bulk material and surface attraction forces, respectively,

and w is a parameter used to scale the energy curve. The bulk term, which describes the

interaction between the two phases, is seen below.

fpp =
φ4

4
− φ2

2
(4.7)

The form of fpp is a typical Ginzburg-Landau style double well function with extrema

at values of φ = ±1. The locations of the energy wells de�ne the two materials in the �eld,

with φ = +1 and φ = −1 representing the wetting and non-wetting phases, respectively.

The surface term gives our model the ability to simulate preferential wetting by altering

the free energy based on distance from the con�ning surfaces. fps is described by

fps =
B(z)(φ2 + 2φ)

2
(4.8)
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where the B(z) is a piece-wise, depth dependent function. It was given the form

B(z) =


β

(4− z)δ

4
, 0 < z < 4δ

0, 4δ < z < (nz − 5)δ

β
[z − (nz − 5)]δ

4
(nz − 5)δ < z < nzδ

, (4.9)

where δ is the mesh spacing, z is distance from the lower surface (height), nz is the

total thickness of the simulation, and β is a bias used for tuning the wetting strength.

With some testing, a bias strength was selected that mimicked the formation of wetting

layers seen in previous experiments and simulations [8]. This alteration provided the

boundary conditions for the z-dimension while periodic boundaries were applied in x and

y to emulate a larger system. Periodic boundaries treat opposite extremes of the space

as neighbors, and this is common practice in simulation. The method used to calculate

the �eld variables is a semi-implicit spectral method devised by Zhu and coworkers [9].

Updating the �eld for a new time step begins with the calculation of the chemical poten-

tials, denoted µ, which simply means evaluating the material derivative of the free energy

functional at all locations. The second step requires the calculation of the DFT's of both

the concentration �eld as well as the chemical potentials, which results in

∂φ̃(k, t)

∂t
= −k2∂f̃pp

∂φ
− κk4φ̃(k, t) (4.10)

where a ~represents a transform to fourier space, while k and k are a fourier vector de-

scribing the components and its magnitude, respectively [9]. While this could be updated

in fourier space using an explicit Euler step, this would have a low degree of accuracy

through time. This would require the use of a smaller time step, which could signi�cantly

increase the computational resources needed to simulate a given time period. However,

a semi-implicit scheme results in signi�cantly higher accuracy in time. By handling the

higher order (k4) term implicitly, you can reach the following equation

˜φt+dt(k) =
φ̃t(k)− dtk2 ∂

˜f tpp
∂φ

1 + dtκk4
(4.11)
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where t and t+dt represent the present step and the step to be estimated, respectively

[9]. Using this method, we were able to use a signi�cantly larger time step (up to two

orders of magnitude larger) while maintaining a high degree of accuracy. In our simu-

lations, a time step of dt = 0.5 was used while it is not uncommon for �nite di�erence

methods to require step sizes of dt = 0.001. This allowed us to use simulate a broad

range of system sizes in a comparatively small amount of time. Each of our systems had

nx = ny = 512δ while the thicknesses, nz, ranged from 14 ≤ nz ≤ 256. Each simulation

coarsened for 100,000 time steps ending at a time of τ = 50000.The mobility, scaling

constants and noise terms were all assigned a value of one for simplicity.

In previous works [10], it has been noted that the structure of a thin-�lm can be

altered signi�cantly by varying �lm thickness. For this reason, we have chosen to ex-

plore the potential morphologies that can be obtained as both thickness and composition

are decreased into a region that displays similar behavior. This required a method for

quantifying di�erent morphologies for easy classi�cation. For this reason, we used a clus-

ter enumeration algorithm to track the evolution of non-wetting material domains. The

Hoshen-Kopelman (HK) algorithm is a tool well suited to this purpose [11]. The HK

algorithm is a union-�nd based method that is capable of counting clusters of values that

meet a certain criterion using a single pass over that data and a small set of reorganiza-

tion calculations to provide clarity in the outputs. As each data point is processed, it is

compared to previously scanned neighboring points. Each grid location above a provided

threshold is assigned a cluster number based on the information that has already been

collected. For example, if a data point is surrounded by un-labeled points, it will be

considered the �rst point of a new cluster. However, if one of the relevant neighboring

points has a cluster value, the current position would take on the lowest value held by a

neighbor. If multiple neighbors hold dissimilar cluster numbers, they are united under the

cluster with the lowest value. Figure 4.1 below show a simpli�ed �ow of the algorithm.

We applied the HK algorithm to concentration �elds produced at selected time steps

in each simulation. Being that the pure non-wetting phase is represented by φ = 1,

we selected a concentration threshold of φmin = 0.2 to avoid noise caused by small
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Figure 4.1: Simple case showing result of HK algorithm. Algorithm starts at top left and
follows standard raster scan until the entire space has been analyzed.
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�uctuations in the interfacial regions. This allowed us to track the simulated volume

of every non-wetting domain for each output �eld. While it does not give morphology

directly, this information can be used to calculate the degree of continuity. Continuity

has been described in experiments as the weight of non-wetting material remaining after

the second phase is chemically etched away divided by the weight of that material used

in the mixture [12]. In a similar fashion, we have described continuity as

ΓC =
VL
VT
, (4.12)

where VL is the volume of the largest domain of non-wetting material and VT is the

sum of the volumes of all non-wetting domains at that time. An example of the simulation

results after analysis by the HK algorithm can be seen in �gure 4.2, where each domain

has been classi�ed and given a separate label and corresponding color.

Figure 4.2: Simulation developing into 2D bicontinuous morphology (top) and HK rep-
resentation (bottom). Images shown are at τ = 2500, 25000, 50000.

Using this parameter, we were able to determine the morphological regions as we

moved through the parameter space of �lm thickness and composition. A rough cut-o� for

continuity was set at ΓC = 0.8. To obtain a statistically valid classi�cation, our primary

region of thicknesses and compositions was averaged over twenty runs with initial states
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that randomly vary about the same mean value. This data showed some regions with

clearly de�ned morphologies, while others represent a transition in separation kinetics

that will be discussed in the following section.

To ensure the accuracy of our model, results at high thicknesses were compared to

an experimental work using a PMMA/SAN blend to achieve similar structures. Using

this thin-�lm study [13], early and intermediate stage morphologies were found to be

qualitatively similar to real structures for blends with φNW = 0.3 if a spacing of δ = 10nm

was used. Given this length scale and an experimentally obtained di�usion constant of

D = 1.6× 10−13 cm2

s
[14], a simulation time scale of τ = 6.25s was obtained. This gives us

a simulation size of 5.12nm × 5.12nm with varying thickness, and a �nal time of nearly

87hrs.
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Chapter 5

Results

5.1 Introduction

In experimental studies of SDSD, signi�cant changes in separation kinetics have been

attributed to variations in �lm thickness. However, in many systems it is di�cult to

gain a full understanding of the process due to the length and time scales on which they

occur. For this reason, we have designed a parametric study using our model to study

the interplay between bulk separation and preferential wetting of the con�ning surfaces.

By varying �lm thickness over a small range of blend compositions, we were able to note

distinct regions where the formation of wetting layers caused a morphological crossover.

Initial exploration provided three morphology classi�cations that could be achieved in

our parameter space: discrete, bicontinuous, and two-dimensionally (2D) bicontinuous.

Each combination of �lm thickness and blend composition was classi�ed by tracking the

continuity of the non-wetting phase throughout each simulation. This parameter pro-

vided a narrow region that was further probed to determine the limits of the dimensional

crossover. Exploration was continued into the space of higher thicknesses and concen-

trations, and initial classi�cations for this region were made by extrapolating between

conveniently spaced data points. An overview of the explored space will be provided,

and examples of the structures obtained will be compared to show the signi�cant e�ects

that preferential wetting can have throughout a �lm. A plot showing the morphologies of

each parametric region will be presented, along with the most likely structures in nearby

space. To conclude the chapter, our results will be compared to relevant experiments from

literature to for further explanation of the phase separation kinetics in �lms of similar

thicknesses.

5.2 Exploration: Preferential Wetting vs. Bulk Separation

While it is well documented that surface e�ects can alter the morphology of a system

[1�3], their interplay with separation in the bulk is complex. Several works have studied

this interplay over a wide range of thicknesses [3, 4]. While these provided valuable
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information, they do not give much discussion of the morphologies that can be achieved

as a result of preferential wetting. Given the segregated nature of immiscible thin-�lm

blends, it would be sensible to assume that the bulk kinetics will change as a result of

the altered composition in the central region. This prompted initial testing to determine

what structures are attainable in very thin-�lms with symmetric surface wetting. We

began our study by simulating relatively thin (nz = 20 or roughly 200nm) systems with

large variations in composition. Using blends with 0.2 ≥ φNW ≥ 0.325 at increments of

∆φNW = 0.025, three clear morphologies (seen in �gure 5.1) were recognized.

Figure 5.1: Simulation results displaying the three morphologies of interest: discrete
(left), 2D bicontinuous (middle), and bicontinuous or porous (right). Images shown are
at τ = 2500 for nz = 20 with φNW = 0.2, 0.275, 0.325 (listed left to right).

At the lower values of φNW , the initial bicontinuous structure typical of spinodal de-

composition quickly broke down into a large number of small domains. In this discrete

morphology, droplets coalesced to minimize the interface between materials and likely

would have continued to form larger domains if they had been allowed to continue coars-

ening. As φNW was increased, the initial spinodal structure remained intact for extended

times. Domains became irregular and their average size increased. This trend contin-

ued into a second region, where continuity of the non-wetting phase is maintained. The

network of non-wetting material takes on a �attened state, as can be seen in �gure 5.2

below.

This is a subset of bicontinuous structures which we will call 2D bicontinuous. This

name comes from the high continuity of both phases in the central plane. Out of our initial

simulations, only those at φNW = 0.275 showed this structure. At higher non-wetting
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Figure 5.2: Images showing the e�ects of restricting �lm thickness on development of a
2D bicontinuous.

concentrations, a second type of bicontinuous structure is seen. While this type would

generally have total continuity in non-wetting phase, the central plane is not bicontinuous

as seen in �gure 5.1. As φNW increases, the pores in the non-wetting layer decrease in

size as it tends towards becoming a dense sheet.

Moving forward, we explored how preferential wetting a�ects �lms of varying thick-

nesses for a subset of the previous concentration range. To make the best use of the

DFT algorithms while covering a large range of sizes, we selected thicknesses as powers

of nz = 2n where n = 5, 6, 7, 8.

At the highest thickness, there is little variation in domain size throughout the thick-

ness of the �lm. The e�ects of surface wetting are minimal and the non-wetting phase

is characterized by a series of irregularly shaped droplets. This is the result of a lack

of interplay between the depleted regions adjacent to the wetting layers. Once a �lm is

su�ciently thin, the composition wave initiated by the formation of the layers can actu-

ally be felt throughout the bulk of the �lm. This is obviously not the case for �lms that

are deep compared to the thickness of said layers. Take �gure 5.3 as an example. It is

quite clear that compositional change due to segregation near the con�ning surfaces was

insigni�cant throughout the majority of the �lm when nz = 28. This translates to a lo-
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calized increase in the density of non-wetting material and slightly altered domain growth

near the surfaces. The di�erence is much more pronounced in a �lm of signi�cantly lower

thickness (nz = 24), where a suppressed 2d bicontinuous structure is formed.

Figure 5.3: Samples showing morphology for nz = 256, 16 (top to bottom) at φNW =
0.2625 at a time of τ = 7500.

However, as thickness decreases for the same concentration, a notable di�erence can

be seen at di�erent depths. For nz = 27, some hint of the wetting e�ects can seen as the

oddly shaped domains adjacent to the wetting layers grow at an increased rate. Near the

con�ning surfaces, domain shapes are reminiscent of a broken spinodal structure growing

at a slightly accelerated rate. With increasing distance from the surfaces, domain size

tends to decrease and take on typical droplet shapes. The change in behavior can be seen

in �gure 5.4.

This pattern continues downwards through nz = 26 where we begin to see a clear shift

due to the compression imposed by the �lm thickness, as shown below. Near this �lm
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Figure 5.4: Samples showing morphology for nz = 128, 64, 32 (top to bottom) at φNW =
0.2625 at a time of τ = 7500 steps.

thickness, the depletion regions adjacent to the wetting layers begin to intersect. This

results in a structure that more closely resembles the two dimensional networks of non-

wetting material seen in �gure 5.2. However, several simulations at nz = 26 have shown

that an atypical layered structure remains dominant for low φNW . As thickness is con-

tinually decreased (nz < 25), the symmetrical wetting causes an even greater shift in the

composition of the central region. To �nd the extent of these e�ects at low thicknesses,

our primary test space was centered around the location where we discovered the 2D
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bicontinuous network. This provided a region of thicknesses nz = 14, 16, 18, 20, 22, 24, 26

and compositions φNW = 0.25, 0.2625, 0.275, 0.2875, 0.3. For every combination of thick-

ness and composition in that region, we averaged the results of twenty simulations to

determine its range of possible continuities. Using this as a guideline, we were able to

classify setups as likely to produce one of the three previously described morphologies.

5.3 Initial Morphology Classi�cation

Beginning with our lowest concentrations, we saw the formation of small domains

as expected. At φnw = 0.25, all �lm thicknesses were determined to produce a discrete

morphology. The smallest domain sizes were seen at nz = 26 where the concentration

of wetting material in the middle layer is slightly higher. As �lm thickness decreases,

we saw the potential domain size grow, despite large variations as seen in �gure 5.5

below. This was to be expected, as the interaction of the depletion regions should be

the most pronounced at our lowest values of nz. This trend can be seen in the plots and

corresponding images below.

However, it seemed obvious that a shift was likely to occur as φNW approached the

values at which we initially observed the 2D bicontinuous morphology. The next compo-

sition, φNW = 0.2625, was found to be the lower end of the transitional region leading

to bicontinuity. The three lowest �lm thicknesses tested (nz = 14, 16, 18) yielded mostly

bicontinuous morphologies, while larger �lms were more likely to experience a breakdown

into smaller domains. A similar case was observed for φNW = 0.275, with an interesting

di�erence. As nz was increased at this composition, we witnessed a shift from a porous

layer, to a 2D bicontinuous morphology, to the formation of discrete droplets all within

our initial range of thicknesses. This transition can be seen in the representative images

of �gure 5.6 below.

For higher values of φNW , the trend established by the previous compositions con-

tinued. As expected, an increased density of non-wetting material led to both porous

and 2D bicontinuous structures. The latter only occurred at higher values of nz where

the increased height of the shared depletion region resulted in a composition that was

less biased towards the non-wetting phase. The variations in morphology seen at our
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Figure 5.5: Plots showing average continuity factor for φNW = 0.25 at nz = 14, 20, 26
(bottom to top) alongside images displaying the average continuity at that location.

highest initial value of φNW can be seen in �gure 5.7 below. The deviation and average

ΓC for simulations at φNW = 0.3 for low thicknesses had little variation from complete

continuity of the non-wetting phase.

It was noted that a portion of the discrete and 2D bicontinuous regions had large

variations in continuity. This is generally caused by variations in capillary widths caused

by random initializations. If the diameter of a connecting tube drops signi�cantly below

the characteristic length scale of non-wetting domains in the system, it is likely to be
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Figure 5.6: Plots showing average continuity factor for φNW = 0.275 at nz = 14, 20, 26
(bottom to top) alongside images displaying the average continuity at that location..

absorbed into the structures that it connects. Since our parameter is akin to a degree of

connectivity, the separation of two sizable domains can cause large variations in ΓC and

thus increase the standard deviation. This can be explained through a concept called the

percolation threshold. This is a critical system value near which the connectivity of a

system changes signi�cantly with minimal di�erence in the independent variables. This

percolation threshold is generally represented through system properties that indicate
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high continuity in a material, such as thermal or electrical conductivity in composites [5].

However, this critical value has a signi�cant e�ect in all percolation problems, including

the one presented here. The combinations of �lm thickness and composition that result in

a shift from discrete to 2D bicontinuous structures are close enough to this threshold that

thermal noise and random initialization can cause signi�cant changes in the percolation

of the system.

Figure 5.7: Plots showing average continuity factor for φNW = 0.2875 at nz = 14, 20, 26
(bottom to top) alongside images displaying the average continuity at that location.
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5.4 Extended Classifcation

Given the rather well-de�ned morphological regions from our initial study, we contin-

ued exploration to see if even larger �lms were able to maintain a bicontinuous structure.

To expand our parameter space, we included nz = 32, 64 and doubled the concentration

range, which now ends with φNW = 0.35. To improve our extrapolation, we elected to in-

clude simulations with nz = 40, 50 for all compositions that were not clearly de�ned to be

in one area. The results from this followed the trends established in the initial parameter

space. However, nearly bicontinuous structures at higher thicknesses may only appear

to be such due to the need for longer simulations to coarsen. For example, consider the

results given by �gure 5.8.

Given the near total continuity of the non-wetting phase at nz = 64, it would be

tempting to classify the regions below it as either 2D or standard bicontinuous. However,

examining results for a lower thickness paints a di�erent picture. Given the discrete

nature of the sample provided for nz = 40, it might be necessary to re-evaluate the

previous point. Upon closer inspection, while these morphologies are nearly continuous,

these structures will probably be short lived. A combination of viewing angles gives a

clearer picture of the tubes connecting larger domains. Another example can be found

at the end of our concentration range, φNW = 0.35, in �gure 5.9.

Figure 5.8: Simulation results showing sample morphology for φNW = 0.3 at nz =
40, 50, 64 (left to right).

In �gure 5.9, it is quite clear that the lower end of this thickness range produced a �lm

that will remain bicontinuous. Given the amount of non-wetting material forced between
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Figure 5.9: Simulation results showing sample morphology for φNW = 0.35 at nz =
26, 40, 50 (left to right).

the wetting layers, this is not surprising. This morphology is actually maintained through

nz = 40, as can be seen. However, the same cannot be said for our higher thicknesses.

While �gure 5.9 may seem to be three bicontinuous �lms at �rst glance, an angled view

of the largest �lm reveals necking in several of the capillaries. This indicates that the

connection will be broken as the tubes are absorbed into larger domain, resulting in a

2D bicontinuous structure. By analyzing all results obtained over our larger parameter

space, we were able to con�dently de�ne larger morphological regions, as can be seen in

�gure 5.10.
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Figure 5.10: Suggested morphology map showing likely structure for values of nz (vertical)
at each value of φNW (horizontal). One, two and three along with their associated colors
represent discrete, 2D bicontinuous, and bicontinuous structures, respectively.
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Chapter 6

Conclusions

Thin-�lm materials are already being utilized in many industries, and that number is

only going to increase as the push for new technology drives us forward. This makes a

full understanding of the processes through which they are produced crucial as we seek

newer and better solutions to modern problems. Given their application in all realms,

from medicine to consumer electronics, all knowledge of the mechanics through which

they form is valuable. This work studied what is possible when something as simple as

preferential surface wetting acts on a phase separating blend. As has been seen before

[1�4], the interplay between the surface e�ects and bulk phase separation can yield results

that would have been otherwise di�cult to obtain. The 2D bicontinuous morphology that

was described in previous sections came about because of symmetric wetting. This adds

another important factor to consider, as the altered growth near the wetting layers in

symmetric systems can compound if �lms are below a certain thickness. Taking advantage

of the overlap that occurs with complete wetting on both sides resulted in a continuous

non-wetting phase at low concentrations. Using only small variations in composition or

thickness, we were able to obtain signi�cant changes in �lm structure, with some shifting

from discrete domains to a traditional bicontinuous form over a region which yields a

2D bicontinuous morphology. With further research into this region, symmetric surface

wetting could be used to gain �ne control over the �ux through a thin-�lm, or possibly

even a real porosity for �ltration membranes. This could be useful in the design of various

composite �lms.

Moving forward, it would be useful to analyze these �lms as a function of compo-

sition to gain deeper understanding of the events that occur under symmetric wetting

conditions. This would provide a more accurate explanation of the changes seen as �lm

thickness was varied. It would also be necessary to study various arrangements by further

altering the free energy. While this study focuses on the case where the two con�ning

surfaces exert the same attractive force, this is often not the case. Arrangements using
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two di�erent con�ning surfaces would be equally simple to implement and could yield

vastly di�erent structures than those explained here.
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