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ABSTRACT 

Tornado forces on structures have been a research focus for the past decades, and some 

comparisons have been made to distinguish between straight boundary layer (SBL) wind and 

tornado wind forces on specific structures. However, very little attention has been paid to terrain 

effects on tornado damage and path. Available damage investigation data for four tornado 

locations (Joplin-2011, Tuscaloosa-2011, Parish-2011 and Mayflower-2014) is utilized to 

explore terrain effects on tornado damage and path. Google Earth, site visits and aerial images 

are employed to study the influence of terrain on an extent of damage and path variation. 

Additionally, a three dimensional computer model is developed by employing computational 

fluid dynamics (CFD) to study terrain (hills) effects on tornado path deviation and tornado forces 

reduction in the sheltered region. 

From the study, it is concluded that there is a significant effect of hills on tornado damage. Much 

damage is observed on the windward side of a hill comparing to its leeward side. When the 

tornado crosses the investigated hills, the hills provide sheltered zone on its leeward side. 

Furthermore, measurements of the sheltered zone on the leeward side of the investigated hills 

show that the sheltered zone length is about five times the hill height (5H) along tornado 

travelling path. After that, a modified version of the computer model presented in Selvam and 

Millet (2002) is utilized to simulate tornado-terrain interaction, and then the model is validated 

for further investigation of terrain effects on tornado path deviation and forces. The Navier–

Stokes equations are approximated by the finite elements method (FEM), and the numerical 

domain is discretized using a terrain following coordinate system. It is shown that the ratio of 

tangential velocity to translational velocity (Vθ/Vt) significantly affects the tornado deviation 

shape when a tornado interacts with the investigated 2D hill. The deviation shape changes from 



 
 

straight line to double curvature shape as the ratio (Vθ/Vt) increases. The UA numerical results 

for tornado path deviation shape are comparable to field data (single and no curvature) for 

(Vθ/Vt) < 4. The UA Numerical results for (Vϴ/Vt) >4 are comparable to wind tunnel data (Vθ/Vt 

≈45) in which the deviation is double curvature. Therefore, the computer model is considered for 

further investigation. Finally, the computer model is utilized to measure tornado forces on a 

sheltered dome building. Rounded and triangular hill profiles are considered with varied heights, 

and it is concluded that the hills reduce tornado forces and velocities on their leeward side. The 

computer model outcome is that tornado forces applied on a structure are reduced by more than 

70% when the structure is located within six times the hill height (6H) on the leeward side. 
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1. INTRODUCTION 

1.1. Introduction  

The United States experiences the most number of tornadoes in the world. Every year an 

average of more than 1200 tornadoes kills up to 60 individuals, injures 1,500 and causes at least 

$400 million in economic damage in the United States (NWS, 2010). In 2011which was a record 

year for the United States tornado losses, 1690 tornadoes were reported, and the total damage 

from the outbreaks exceeded $28 billion. As reported by the Insurance Information Institute 

(I.I.I.) for 1993-2013, tornadoes losses are ranked as the second highest losses after hurricanes 

(See Figure 1.1).  

 

Figure 1.1 The average losses due to severe events taken from Catastrophes: U.S. (2014). 

 Even though the reported damage and loss of lives due to tornadoes are increasing, this 

does not necessarily mean tornadoes are becoming more severe. As shown in Figure 1.2, 

population in United States is growing, and at the same time the amount of developed lands 

(residential houses, buildings, etc.) is increasing. Therefore, the chances of tornadoes hitting 
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densely populated areas are more likely. This leads to a conclusion that more research is required 

to develop our understanding of tornado wind and to improve tornado warning systems. Tornado 

warning systems improvement can help to provide a better opportunity for reaching a tornado 

shelter and saving more lives. The development in tornado wind modeling can improve the 

prediction of tornado maximum forces and the tornado path. Then, the modeling predictions can 

be implemented for improving design standards (building codes). Also, the modeling outcome 

can be utilized to select a better location for a building (e.g. shelters) with less probability for 

direct exposure to a tornado.  

 

Figure 1.2 The population growth in United States (U.S. Demographic History (2014)). 

1.2. Evaluation of Tornado Forces on Structures 

 The most precise way to evaluate tornadoes forces and identify tornado wind velocity 

and tornado severity would be measuring an actual tornado wind velocity; however, this is 
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currently difficult due to the high risk associated with being in the vicinity of an actual tornado 

and due to the fact that tornado’s occurrence time and location are unpredictable. Even though 

the WSR-88D Doppler Radar network was created to provide velocity profiles for tornadic 

winds, there are still limitations due to the obstructions for the radar beam waves (Doswell et al., 

2009). Also, a radar can only provide velocities at heights more than 100m above the ground 

level. However, velocities are desired close to the ground. This means that alternative methods 

should be used for evaluating tornado wind speed, especially near the ground where a tornado 

interacts with structures and causes the most damage. Several approaches were used to evaluate 

tornado forces on structures and to develop the knowledge about tornadoes. Some of these 

approaches are discussed briefly in the following sections.  

1.2.1. Post Damage Investigation  

Post damage investigation is an approach utilized to estimate tornado wind velocity and 

severity. The post damage investigation was first started by Fujita et al. (1967). Fujita (F) scale 

for rating tornado intensity (severity) is based primarily on the damage that tornadoes inflict on 

buildings. The final version of Fujita scale was published in 1973 and it was used to evaluate the 

documented tornadoes’ damage back to 1950. The F scale is associated with several limitations, 

and these limitations are a lack of damage identifiers, no awareness for construction quality and 

no clear link between damage and wind speed.  Hence the F-scale over estimates the wind speed. 

Therefore, an enhanced edition of Fujita (EF) scale was approved in 2007 by the American 

National Weather Service (NWS) considering some of the good aforementioned damage 

identifiers (McDonald & Mehta, 2006). Tornado wind is much more complicated than straight 

wind and consists of translational, tangential and vertical velocities. Also, tornadoes change their 
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velocity direction and magnitude suddenly.  Moreover, buildings strength are not identical and 

human evaluations are subjective.  

Tornado post damage investigation is mainly done by expert engineers who have design 

experience and damage assessment. Mostly they identify and classify tornado damage to EF 

scale according to damage severity. Different levels of damage are categorized by the EF scale 

numbers. For example, some damage to gutters or siding or branches broken off trees can be 

classified as an EF0 tornado with wind velocity range of 65-85 mph. The EF scale represents the 

main outcome from current tornado post damage investigations.  

The damage ratings reported by National Weather Service (NWS) for the Tuscaloosa-

2011 tornado are reported in Figure 1.3, and the terrain elevation profile along the tornado 

damage line is reported below. By analyzing the elevation and damage ratings, one can see that 

the damage ratings vary from EF3 to EF4 in flat terrain regions and EF0 to EF2 in hilly terrain 

regions. Therefore, this observation raises a question for the author, “Are the variation in tornado 

damage linked to the building location in a hilly region and the shape and height of a hill?” Even 

though it can be linked to a structures’ strength and construction methods, a further step is taken 

to check a potential link between terrain and tornado damage. Also, the literature does not 

provide an answer whether there is a connection between terrain and tornado damage. This 

means that tornado damage evaluation for buildings has never been connected to their position 

with respect to a natural or artificial obstacle. Also, there is no documentation for tornado 

tracking over topographical configurations (hills, escarpments, ridges). If there were documented 

data for this kind of damage, it would have helped in analyzing the effect of terrain on tornado 

damage. Therefore, it is very important to study terrain effects on tornado damage and start 

documenting this type of damage now on.   



5 
 

 

Figure 1.3 Tornado damage ratings for Tuscaloosa-2011 EF4 tornado laid along terrain 

variations profile. 

 

1.2.2. Numerical Investigation for Tornado Characteristics  

In the last three decades, there has been much development in the field of computational 

wind engineering, and wind flow around buildings and a tornado-like vortex are modeled 

considering the effects of viscosity and turbulence. Computational fluid dynamics (CFD) has 

been a great tool which has provided most of the initial development and basic understanding in 

wind engineering. Selvam et al. (2002) provided the state of the art for tornado forces on 

structures. The first three dimensional CFD simulation of a translating tornado was conducted by 

Selvam and Millet (2002). This development is considered a great achievement in developing the 

tornado knowledge and distinguishing between straight line wind forces and tornado forces on 

structures. Selvam and Millet confirmed that the tornado flow characteristics differ extremely 
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from that of straight boundary layer (SBL) wind. Therefore, tornado damage should not be 

represented by straight wind equivalent velocity. Several studies (Selvam and Millet, 2003and 

Selvam and Millet, 2005) were conducted later at the computational mechanics laboratory at 

University of Arkansas. They concluded that the translating tornado generated about 200% more 

force on the roof of a cubic building and about 45% more force on the walls compared to straight 

boundary layer (SBL) wind loads. 

In all previous computational work, the interaction of a tornado on a small cubic building 

was examined where the building width was one third of the tornado radius. In recent times, 

tornado interaction with a rectangular building width of up to eight times the tornado radius has 

been examined by Alrasheedi and Selvam (2011). They found that the forces on the building 

decreased when the ratio of tornado radius to building width increased. Selvam and Gorecki 

(2012a) used a similar approach to investigate the effects of increasing tornado radius on a 

circular cylinder. They confirmed the results from the earlier study (Alrasheedi and Selvam, 

2011). However, only the plan area influence was investigated and no attention was paid for the 

building height.  

Gorecki and Selvam (2013) were motivated by Selvam and Ahmed (2013) to study the 

interaction of tornado with large structures. They assumed a 2D rectangular prism (man-made 

wall) and their focus was only the flow characteristics on the leeward side of the hill. 

In the present work, the CFD program presented by Selvam and Millet (2002 and 2003) is 

modified using finite elements method (FEM) and a terrain following coordinate system to 

investigate tornado interaction with real terrain data (i.e. hill dimensions and elevations can be 

imported to the program form an actual complex terrain site (GIS coordinates)). Tornado-like 

vortex interaction with a 2D rounded hill and a 2D triangular hill is investigated. University of 
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Arkansas (UA) numerical tornado simulator is capable of producing a significant amount of 

information for the whole field velocity and pressure values for each time step. Also, tornado-like 

vortex characteristics (i.e. radius, translational and angular velocities) can be changed to have 

different tornado-like vortex structure and strength (intensity). Moreover, configurations of 

topographical obstacle (surface profile, height, length and width) are also changeable so that it 

economically provides opportunities to investigate wide variety of cases. On the other side, like 

most of the numerical simulator, the UA simulator has some limitations and drawbacks. In the UA 

simulator, Rankin Combined Vortex Model (RCVM) is utilized, and only the tangential velocity 

profile is represented. Vertical velocity is not included in RCVM. Also, different numerical errors 

are involved due to numerical rounding up error and truncating error due to the approximation of 

governing equations. Grid independent result is another limitation that it is difficult to achieve due 

to the high computational cost and the large required storage.  

1.3. Tornado-Terrain Interaction Investigation  

 The term terrain here refers to any topographical configurations (ridges, knolls, valleys, 

ridge pairs, hills, etc.) which may affect the tornado’s path, damage or any other characteristics of 

a tornado. Even though tornado occurrence location is never predicted and tornado could happen 

at any place, it frequently happens in the Tornado Alley. Even though flat terrain is predominant 

feature in the Tornado Alley, there is a quite good amount of complex terrain (hilly terrain) in this 

region. Since the tornado-terrain interaction effects have not been explored, several questions are 

raised by the author seeking for answers. Will tornado cross a hill or move by the side of a hill 

(along it)?  What will happen if a tornado crosses a hill? Does the hill provide any sheltering or 

shielding? If a tornado crosses a hill, is there going to be any difference in the damage experienced 

by buildings on the windward side and buildings on the leeward side? If a tornado crosses a valley 
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(a place surrounded by hills), is the valley going to experience damage? Or not? When a tornado 

interacts with terrain (hill or hills), does the hill orientation angle affect tornado characteristics and 

damage amount? Finding answers for all these questions might be helpful in reducing life losses 

and economic crises. Therefore, finding answers for some of the aforementioned questions is 

sought through damage investigation using Google Earth and field data. Also, computational fluid 

dynamic (CFD) is utilized to explore and determine terrain effects on tornado damage and path. 

By employing the UA numerical tornado simulator, the pressure coefficients are determined on 

the topography surface along the tornado-like vortex traveling track for different tornado-like 

vortex intensity. Results for a tornado’s path deviation are compared with experimental results and 

field observations for model validation and further use. Results from field investigation (Google 

Earth and site visits) for terrain effects on tornado damage and path are presented. Tornado-like 

vortex interaction with different hill-profiles and heights are explored for terrain effects on tornado 

forces. Results show reasonable agreement with field observations and experimental results. 

1.4. Dissertation Motivation and Objectives 

In the past research, great amount of efforts has been paid for tornado forces on specific 

structures, and comparisons between tornadic wind forces and straight line wind forces applied on 

the same structure have been made as discussed later in background chapter. However, no attention 

was paid for the structure location with respect to terrain obstacles and terrain effects on tornado 

damage and forces exerted on that structure. For civil engineers, near-surface characteristics for 

tornado-terrain interaction are very important because most of the damage and life losses happen 

within the first 50 meters above the ground level. Therefore, investigations for the terrain effects 

on tornado damage and path is sought here. The objectives of this dissertation are built to fill the 
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literature gaps with the required pieces of information and are divided into the following three 

objectives:- 

Objective 1: Investigate the influence of terrain (e.g. hills) on tornado damage 

Three tornadoes, Tuscaloosa, AL (04/27/2011), Parrish, AL (04/27/2011) and Mayflower, 

AR (04/27/2014) are considered to achieve this task. The software Google Earth is employed to 

track the tornado damage. This task is divided to three different parts. 

 Investigate the effects of hills on tornado damage on both sides of a hill (i.e. windward and 

leeward sides of the hill). 

 Evaluate tornado damage for a region surrounded by hills on the tornado path. 

Objective 2: Investigation of different terrain effects on tornado damage intensity and path  

A tornado hit central area of Arkansas (Mayflower and Vilonia, 04/272014) is investigated. 

A team from UA has surveyed the hit places few days after the events. There is a wide variety of 

different terrain configurations, flat, water surface and hilly terrain, in that region. Therefore, it is 

considered for assessing terrain effect on tornado damage intensity and path. 

 Investigate influence of hilly terrain on tornado ground-level damage intensity. 

 Investigate the influence of gaps in ridgeline on tornado path change. 

Objective 3: Simulate tornado-terrain interaction numerically using CFD and validated the 

model for future investigation of terrain effects on tornado damage and path deviation.  

A CFD code presented in Selvam and Millet (2002 and 2003) is modified to model a 

tornado interaction with real terrain data hills in 3D domain as shown in Figure1.4. Rankine 

Combined Vortex Model (RCVM) is utilized to represent tornado wind field, and the Navier–
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Stokes equation is approximated by the finite elements method (FEM) in a terrain following 

coordinate system. This task is approached by the following phases.  

 Validate the computer model by a comparison with wind tunnel and field data.    

 Visualize flow field velocities and pressure for tornado-terrain interaction using various 

visualization techniques. 

 Utilize the computer model to examine the following subtasks. 

o Measure tornado forces on a building sheltered by different topographical shapes. 

o Investigate the sheltering zone on the leeward side of a rounded hill by the computer 

model and compare the results to field observations. 

o Compare the sheltering efficiency for a rounded hill and a triangular hill (topography 

shape effect on sheltering). 

 

Figure 1.4 A 3D view of tornado-terrain interaction. 
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2. BACKGROUND 

2.1. Introduction 

Tornadoes are one of the strongest winds on earth and more likely cause significant damage 

if they pass through a heavily occupied area. 

Although tornadoes occur across the world, the US experiences the most number of 

tornadoes in the world every year. Tornadoes in the US are annual events. Every year, an average 

of more than 1,200 tornadoes kills at least 60 people, injures an average of 1,500 and causes over 

$400 million in economic damage (NWS, 2010). This means that tornadoes are the most 

significant US severe weather threat in two phases: life losses and properties losses. In 2011, there 

was an infrequent deadly activity for tornadoes in the United States with more than 1,600 tornadoes 

documented across the country, and this is more than any other documented year except 2004 

(NOAA, 2011). 2011 was an exceptional year in terms of the greatest daily tornadoes occurrence 

(2011, 27 April) NOAA (2011). The documented damage costs from seven individual tornadoes 

on that day were high and exceeded $1billion. Total damage cost from tornadoes and severe 

weather outbreaks is estimated to have been more than $28billion in 2011 (Tornadoes, 2011). This 

number has not been greater in terms of property damage from tornadoes in a single year since 

tornadoes damage documenting was started. The economic damage costs from the two 2011 events 

(Joplin, MO and Tuscaloosa, AL tornadoes) are ranked as the top ten natural disaster losses for the 

US (Tornadoes, 2011).  

Due to tornadoes huge losses, frequency and devastation, the year of 2011 attracts many 

scientists and researchers to develop a better understanding for tornadoes.  
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The main objective of this chapter is to discuss the available tornado knowledge in general 

and provide the state of the art for tornado-terrain interaction. The tornado phenomenon has been 

investigated by three main approaches: Numerical simulations, experimental simulations and field 

investigations. In this review, all these approaches are reviewed, but more focus is paid to 

numerical simulations and field (post damage) investigations.  

2.1.1. Layout of the Chapter  

First, the nature of tornado and tornado formation are discussed. Then, research work 

concerning tornado damage investigations is presented. Next, development in computer models 

for tornado simulation is discussed. Then, some important and recent experimental works are 

mentioned. Finally, summarized analysis emphasizing what the literature is lacking is presented 

in the end of the chapter.  

2.2.    The Nature of Tornadoes  

Tornadoes are one of the fiercest storms in the globe. A basic description for tornado is 

that tornado is a narrow vortex of air that extends from the base of a thunderstorm to the earth 

surface. Tornadoes cannot be seen due to the fact that air is invisible, unless moisture is carried by 

the wind to form a dark. When the pressure inside the vortex drops, the moisture condenses out of 

moist air due to drop of the temperature. The vortex must be in touch with both the ground surface 

and the parent cloud base to be classified as a tornado (NOAA, 2010a). 

Tornadoes change velocity directions and magnitudes frequently, and the tornado’s size 

does not necessarily represents the tornado’s strength. Huge size tornadoes might be weak, and 

some of the least size tornadoes might be the most destructive ones. Usually tornadoes move 

from southwest toward northeast; however, tornadoes can travel in any direction and change 



13 
 

their direction unexpectedly. Even though there is no limitation for tornado radius size, the 

average observed or recorded size for tornado diameter is about 300 ft (90 meters) (DOE-US, 

2002). Also, tornado trace path length average is just about a few miles/ kilometers, however; the 

longest observed tornado path is more than 200 miles (322 km). Although tornado translational 

velocity may vary from zero up to 130 mph (209 km/h), the average recorded translational 

velocity is about 55 mph (88 km/h). The maximum tangential velocity of a tornado is assessed to 

surpass 550 mph (885 km/h) relying on radars observation for a few events, and this is 

considered as the highest speed of all windstorm phenomena NOAA (2010a).  

2.3. Tornado Formation 

 Even though tornadoes occurrence is unpredicted, tornadoes are usually associated with 

the thunderstorms occurrence. Also, tornadoes can be associated with tropical storms and 

hurricanes when moving over land. When the vortex is formed over the water, it is identified as 

waterspout. If the waterspout reached shore areas, it can cause an extensive damage (NWS, 

2010). 

Generally, the often time at which tornadoes may occur is during the spring and summer 

in the central latitudes of northern and southern hemispheres as reported in Snow (2014).  Figure 

2.1 shows the Tornado Alley and illustrates the conditions under which tornado more likely 

might be formed. The first stage of tornado forming is horizontal spinning wind which is then 

forced by updraft wind to form the vertical rotating wind, a tornado, as shown in Figure 2.2.   

Even though the aforementioned information states certain conditions for a tornado formation, 

there is still huge unknown facts regarding the tornadoes generation. Identifying the proper 

environment which can lead to produce thunderstorms and severe weather is not easy, and 
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tornado can only be developed by the existing of a specific combination of conditions 

(temperature, moisture, etc.) which are very difficult to be predicted and identified (Brooks and 

Dotzek, 2008). Even though thunderstorms might lead to tornado generation sometimes, 

statistics show that only about 5% of thunderstorms become severe and only about 1% produce 

tornadoes (NOAA, 2010b). 

Tornadoes are formed when there are very violent storms, and the moisture level is at its 

highest level in these storms. These conditions usually happen when cold and warm fronts 

coincide, and then the warm air is enforced up toward higher layers quickly causing strong 

updrafts of air. The strong updrafts create a low pressure region in the lower level of the cloud, 

and that leads to suck in warmer air from below to replace the updraft. The updrafts is 

strengthened by the warm air which rushes up, and that adds more rotation energy to the soaring 

air into a rotating spiral as mentioned in Doswell III (2011). 

Thunderstorms are identified as the major cause for tornado (NWS, 2011a), however; it is 

important to recognize that not all the spinning thunderstorms will lead to tornadoes formation. 

As aforementioned, there are certain environment conditions necessary to form the tornado, and 

if these conditions do not coincide the thunderstorms, then no tornado is formed. Therefore, 

understanding tornado formation has been a challenge for researchers and scientists. 
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Figure 2.1 Tornado Formation in Tornado Alley taken from Tornadoes (2012). 

 

 

 

 

Figure 2.2 Tornado formation taken from NWS (2010). 

2.4. Tornado Damage Investigation 

Tornado damage investigation is a method which has been developed to estimate 

tornadoes intensity and evaluate tornado damage levels. Different approaches have been used to 

Prior to thunderstorms 

formation, winds velocity 

changes with height. This 

leads to an invisible, 

horizontal spinning air in 

the lower atmosphere. 
 

Thunderstorm updraft 

angles the horizontal 

rotating air to vertical. 

A rotation area of 2-6 

miles wide ranges over 

most of the storm and 

then guides tornado. 
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achieve the purpose of this method. First, an airplane and a good quality camera are used to 

follow the tornado damage. Then, tornado damage is evaluated based on a comparison with 

damage indicators and linked with a straight line wind gust velocity to evaluate the tornado 

intensity. Also, a ground survey is used to document structures damage due to tornado and then 

the damage is evaluated, and the tornado damage is rated as aforementioned.   

  The basic elements in this investigation are the images and photographs. Therefore, 

quality and multidimensionality of the images are very important to have better interpretation for 

tornado behavior and damage estimation. However, this has been very limited due to high cost 

associated with conduction the field investigation and due to difficulties to integrate the data 

(images and photos). Data integration issues are the scale, angle and direction of the image. 

However, in recent days, the development of satellites and images processing have led to have 

software, i.e. Google Earth, that provide two and three dimensional images from any angle at 

different time. Therefore, the limitation is almost eliminated. 

Fujita and his group (Fujita et al. 1967) were the first group who started this idea (tornado 

post damage investigation). They recommended using and gathering aerial photographs in order 

to provide a tornado damage database. Several other works (Fujita et al. 1970, 1976; Fujita 1981, 

1989) were conducted similarly utilizing the same technique to evaluate tornado damage. Fujita 

and his group employed such photographs to evaluate tornado damage, compose damage paths, 

and relate tornado trace patterns to tornado near-surface dynamics. Aerial oblique photographs 

were critical in identifying cyclical marks (vortex rotating signature on the ground), or lines trace 

of debris deposition for many damage paths of tornadoes. These marks are utilized by Fujita to 

conclude that there were multiple vortices which are linked to the parent tornadic circulation. 

Aerial vertical photographs, stereo image pairs as well as oblique aerial photographs were all 
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used by Fujita (1989) to document an uncommon (F4) tornado happened on 21 July 1987 in 

Wyoming. This Wyoming tornado traveled over a complex terrain at elevations that ranged from 

approximately 2380 to 3270 m above sea level. Fujita was able to locate the tornado’s starting 

point and ending point as well as calculate the length and spatially varying width for that 

tornado. Identifying this data would have been very difficult, if not impossible, without the 

utilizing of aerial photographs as reported by Fujita (1989). 

Metha et al. (2008) utilized remote-sensing to assess windstorm damage and to follow up 

the recovering process. Karstens et al. (2013) used freely available photos by National Weather 

Service (NWS) to determine tornado effects in both Tuscaloosa- Birmingham and Joplin on 

directions of tree falling. They compared aerial photo observations with analytical models and 

concluded that there is strong near surface tornado radial wind causing the tree falling. Karstens 

recommended doing further research to distinguish between tornado and rear-flank downdraft 

effects on trees falling. 

Selvam and Ahmed (2013) have investigated the tornado-terrain interaction effects on 

tornado damage by considering two deadly tornadoes in Tuscaloosa (04/27/2011) and Joplin 

(05/22/2011). Google Earth is employed to track the tornado damage and terrain effects on 

tornado’s path and damage level. They observed that tornadoes caused much damage when they 

traveled uphill, and less damage was noticed downhill. Also, they found that hills show 

sheltering capabilities. Here sheltering means, the ability of the structure to reduce wind velocity 

on its leeward side, as illustrated in details in chapter four.  

Although the utilization of aerial photographs has richened our knowledge about tornado, 

there are still many limitations and complexities associated with this work. This work requires a 
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lot of efforts for photo integration and scaling as well as time and money. Also, the photos need 

to be taken from close to vertical view for better interpretation. In addition to the limitations, no 

clear connection has been made between tornado damage and terrain influence on tornado 

damage in the literature. The development in technology eliminates some of these limitations, 

and software like Google Earth nowadays are capable of providing multidimensional images at 

different times so that tornado tracking is easier and more economic than the past days. 

2.5.   Tornado Wind Field Models  

Tornado wind field model is a mathematical model that governs the wind velocities in the 

numerical domain to approximately represent a real life tornado, and also this model needs to 

satisfy the Navier-Stokes equations. In the literature, there are quite a good number of numerical 

models which can be consider to represent tornadoes. However, there are few of these models do 

satisfy the Navier-Stokes equations. Some of these models are the Rankine Combined Vortex 

Model (RCVM), Burgers-Rott Vortex (BRV) and Sullivan Vortex (SV). Each of these models has 

advantages and drawbacks. A detailed comparison is provided by Millet (2003) and Alrasheedi 

(2012).  

Rankine Combined Vortex Model (RCVM) (Rankine, 1882) is utilized in our numerical 

simulator. This model comprises of two different flow fields as shown in Figure 2.3.  The forced 

vortex region (inner flow field), the tangential velocity increases linearly from the center of the 

rotation to the maximum inner core radius (Rmax). The free vortex region (outer flow fields), 

outside the range of the maximum inner core radius (Rmax) the tangential velocity diminishes 

inversely with the increasing of the distance (R) from the center of rotation. Equations represented 

the two field are shown below.  

𝑉𝜃 = 𝛼. 𝑅     𝑖𝑓 𝑅 ≤ 𝑅𝑚𝑎𝑥                                                      (2.1) 
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 𝑉𝜃 =
𝛼.𝑅𝑚𝑎𝑥

2

𝑅
    𝑖𝑓 𝑅 > 𝑅𝑚𝑎𝑥                                                  (2.2) 

Where 𝑉𝜃 is the tangential velocity, 𝛼 is a rotational constant, r is the distance from the center of 

the tornado and Rmax is the tornado radius where the maximum tangential velocity occurs.  

 

Figure 2.3 Rankine combined vortex model. 

This model has been first introduced for tornado 2D simulation program by McDonald 

and Selvam (1985) and then Selvam and Millet (2003) have developed this program to simulate 

tornado in 3D.  

2.6. Tornado-Structure Interaction Using Computer Model 

Computer models have been developed to study tornado genesis and tornado-structure 

interaction in the last three decades due to great advancement in computer software and 

hardware. Computer models are utilized for different interests (e.g. meteorological and 

engineering researches). Tornado has been modeled as a stationary vortex as well as non-

stationary vortex without any interaction with structures for the purpose of studying tornado 
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outbreak and tornado characteristics. However, the focus of this section is the interaction of a 

non-stationary tornado with structures.  

Even though several researchers have modeled tornado numerically, Selvam and his 

research group at University of Arkansas have the major contribution in developing tornado-

structure interaction models. Selvam et al. (2002) provided a review for tornado-structure 

interaction models until 2002. Tornadoes simulations have been done mainly in 2D with circular 

cylinder and 3D with cubical buildings as illustrated in the next subsections. 

2.6.1. Tornado-Structure Interaction (2D) 

Vortex interaction with a circular cylinder in 2D has been conducted by Selvam et al. 

(2002). They concluded that tornado forces are about 5 times less than forces found in (Wen, 

1975). In Selvam et al. (2002), direct simulation method is applied to model the turbulence in the 

CFD simulation. The model was validated by comparing forces coefficients when the tornado 

was far away from the circular cylinder. At this time only the straight-line wind was acting and 

the force coefficients were similar to those found in the literature. Recently, Selvam and Gorecki 

(2012a) studied the influence of the different ratios of tornado radius to circular cylinder radius 

on the tornado forces. They found that the tornado forces depend on the size of the building. 

When the building size is decreasing, comparing to the tornado size, the forces are increasing. 

The study was conducted up to ratio of an 8:1. Ragan et al. (2012) have done similar study to 

Selvam and Gorecki (2012a), but the study was up to ratio of 30:1. They concluded that the 

tornado forces tend to be constant when tornado to cylinder ratio is more than 18:1. Strasser and 

Selvam (2015) studied the effect of a 2D vortex impinging time on force coefficients applied on 

a circular cylinder. They concluded that there is under estimation in maximum loading when the 
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vortex and cylinder size are similar. The maximum load under estimation is negligible when the 

vortex size is greater than three times the cylinder size. Although the aforementioned studies are 

vortex-structure interaction in 2D, they reveal that there is an effect of the structure size on 

tornado forces. Therefore, terrain effects on tornado path and damage in 3D simulations need to 

be investigated.  

2.6.2. Tornado-Structure Interaction (3D)  

Selvam (2002) and Selvam and Millett (2002, 2003 and 2005) used large eddy simulation 

(LES) turbulence model by filtering the NSEs in space. Selvam (2002) used 0.1D grid spacing 

close to the building and found that the force coefficients in the x and y-directions were less than 

the SL wind loads whereas the updraft force coefficient in the z-direction was higher than the SL 

wind loads. Selvam and Millett (2002) used a fine grid spacing 0.072H and found that the force 

coefficients in the x and y direction were less than the straight boundary layer (SBL) wind loads 

which is in line with Selvam (2002). However, the force coefficient in the z-direction was almost 

twice the SBL wind loads. Selvam and Millett (2003 and 2005) used a refined grid 0.0055H 

normal to the building and the tornado approached the building with 0o and 45o degrees. They 

concluded that the translating tornado generated about 200% force on the roof and about 45% 

more on the walls compared to SBL wind loads. Sengupta et al. (2008) conducted both CFD 

simulations and laboratory experiments of different tornadoes interacting with a cubic building. 

Their tornado horizontal force coefficients were in good comparison with those obtained by 

Selvam and Millet (2005). The tornado vertical forces were found to be even greater than that 

found by (Selvam and Millet, 2005), and this difference in the force values was related to the use 

of different tornado updraft models. Sengupta et al. (2008) also noticed that the slower tornadoes 

produce greater forces on a building than the faster one. They compared their results with wind 
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load standards (ASCE 7-05) and noticed that force coefficients provided in wind load provisions 

are more than 1.5 times less than tornado force coefficients resulted from their work. 

Recently, Alrasheedi and Selvam (2011) conducted a computer study of the tornado 

impact on buildings of different plan area sizes. They reported that buildings which have planer 

area much wider than the tornado radius, the tornado force coefficients are similar to the straight 

boundary layer wind force coefficients. Selvam and Gorecki (2012b) provided more detailed 

study for the interaction between tornado and a longitudinal rectangular hill .They found that the 

hill creates a sheltering region on its leeward side. 

Even though tornado interaction with large structure is studied in Selvam and Gorecki 

(2012b), their focus was only velocity reduction on the leeward side and the difference in forces 

on windward and leeward sides is never discussed.  

 

 

2.7. Tornado Experimental (Wind Tunnel) Models 

In this section, a review for the existed wind tunnel work is presented and discussed to 

demonstrate the lack of knowledge for studying terrain effects on tornado damage and forces as 

well as the lack of providing clear comparison with real life tornado observation. 

 Several tornado simulators have been built in the last 50 years. In all these simulators, 

two main flow components were generated to produce a tornado. The first one is an updraft flow, 

and the second one is an angular flow. Different ways have been used to produce each one of 

these flows which will be discussed in the next subsections. Also, different flow rates and ratios 
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between angular and vertical flow have been implemented to produce various strength and shape 

of vortices. Although different terms have been used to define the swirl ratio mathematically, a 

general definition is the ratio of maximum tangential velocity at the circulation edge to mean 

updraft (vertical) velocity as stated by David Jones (1973). 

 Basically, the tornado simulators can be divided into two types of apparatus: close 

chamber (stationary simulator) and open chamber (translational simulator). Then, under each 

category, four or more different approaches are used to generate the tornado as discussed next.  

2.7.1. Close Chamber Simulators  

Ying and Chang (1970) were the pioneers who built the first tornado simulator which is 

shown in Figure 2.4. In this model, the circulation is produced by a rotating cylindrical screen 

and the updraft is generated by a separate exhaust fan at the center axis of the top hood opening. 

The circulation flow is controlled using three different rotating velocities for the screen, and the 

exhaust fan located far above the hood opening to reduce the fan turbulence effect on the vortex 

in the circulation domain. The vortex is visualized by using the kerosene smoke, and that shows 

that the model is working successfully. They concluded that the measured pressure is almost 

constant in the boundary layer except near the center of the vortex and that the angular velocity 

is proportional with the distance from the center of the model. The main purpose of this research 

was studying tornado near surface flow.  In Ying and Chang model, the inward flow height, 

diameter of the hood opening and exhaust fan speed were all fixed, however, only the rotating 

screen speed was changeable. Even though the model is capable to produce the vortex, there 

were limitations to examine tornadoes in details because of the fixed parameters.  
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Ward (1972) built tornado simulator similar to that built by Ying and Chang (1970), but 

in Ward model the inward flow height, exhaust fan speed and the diameter of the raising air 

column in the model are all changeable. Also, at the top opening of the chamber, Ward 

introduced new technique to represent the atmosphere condition. He used honeycomb mesh to 

straighten the air flow and prevent the effect of secondary turbulence flow of the exhaust fan. 

Ward model is shown in Figure 2.5, and this model becomes the standard referable model by 

almost all the other new models. Ward produced successfully single and multi-vortex in his 

model by applying different configuration ratio (diameter of updraft flow to height of inward 

flow). Ward concluded that a large influx of radial momentum is essential for vortex production, 

and that multi-vortex can be produced in single convergence system when the configuration ratio 

is greater than one. He also recommended further investigation to examine the effects of 

configuration ratio on pressure and velocity measurements. 

Davis-Jones (1973) re-analyzed the Ward’s output and concluded that it is not important 

to have huge radial inflow momentum to produce the vortex; however, it is necessary to have 

high volume flow rate for certain swirl ratio. Davis-Jones defines swirl ratio as stated in Equation 

(2.3). 

𝑆 ≡
𝑡𝑎𝑛𝜃

2𝑎
                                                                      (2.3) 

  Where: θ is the angle of inflow measured with respect to the radial axis, and a is the aspect 

ratio. 

𝑎 =
ℎ𝑖

𝑟𝑜
                                                                         (2.4) 

Where: hi is the height of inflow and ro is the minimum updraft radius. 
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Jischke and Parang (1974) indicated that the swirl ratio controls the vortex production in 

Ward-type simulators. Also, they stated that increasing swirl ratio beyond critical number causes 

the usual single-celled vortex to undergo a transition to a two-celled vortex configuration.   

  Church et al. (1977) at Purdue University used Ward model with modifications which 

are represented by all critical variables: depth of the inflow, the radius of updraft opening, 

updraft flow rate and the tangential velocity. They confirmed that swirl ratio control the single 

and multi-vortex formation. They also defined swirl ratio as shown below in equation (2.5). 

Their model is shown in Figure 2.6. This model demonstrates successfully the single vortex 

multi-vortex formation.     

𝑆 ≡
𝑉𝜃

2𝑉𝑟𝑎
                                                                         (2.5) 

  Where: 𝑉𝜃& 𝑉𝑟  are the angular and radial velocities of inflow respectively. 

 

Figure 2.4 Schematic illustrations for Ying and Chang apparatus 
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Figure 2.5 Vertical section of ward model 

 

Figure 2.6 Church et al. simulators schematic section   

 

 Mitsuta and Monji (1984) introduced a new approach to produce circulation. In this 

model the circulation was generated by using four small fans as shown in Figure 2.7. They 
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defined the swirl ratio as shown in Equation (3). They concluded that the radius of the vortex 

depends on the swirl ratio and it does not get affected by Reynolds number. The transition from 

single vortex to multi-vortex happened at unknown swirl ratio value. The flow was turbulent for 

both single and multi-vortex and this could be because of the turbulence of the inflow.  

 Mishra et al. (2008a & 2008b) have built another version of Ward simulator at Texas 

Tech University; however, they used blower which is connected to the top of the chamber 

through a long duct. Also, the circulation has been provided using slotted jets. The apparatus is 

illustrated in Figure 2.8. The data for tangential velocity were in good agreement with both RCV 

model and full-scale data from actual tornadoes. Also, the redial velocity data were comparable 

with the available date Spencer tornado of 1998. They also used another approach to validate 

their model by comparing pressure data from the ground of the simulator with the full scaled 

data.  

 

Figure 2.7 Mitsuta and Monji apparatus 
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Figure 2.8 Texas Tech University Simulator  

2.7.2. Open Chamber Simulators  

  The first translating tornado simulator was built by Iowa State University (ISU) research 

group (e.g. Sarkar et al. 2006, Hann et al. 2008 and Yang et al., 2011) as shown in Figure 2.9. In 

this tornado simulator, the updraft flow is generated using a huge direct drive fan. Then, the 

outflow is imparted by directed vanes through a circular duct to provide the required angular 

flow. The simulator successfully produced one-cell and two-cell vortices for a swirl ratio ranging 

from 0.08-1.14. Their experiment illustrates that the tornado simulator can be used in capturing 

the characteristics of a real tornado, and it could be a useful tool to study tornado forces on 

structures.      
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Figure 2.9 Iowa State University tornado simulator  

 

 In these entire tornado simulators, the main focus was tornado itself. Therefore, different 

geometrical parameters (e.g. aspect ratio, inward height, flow rate, rotation velocity, etc.) have 

been studied to determine the geometrical effects on the generated vortex. The most significant 

dimensionless parameter affecting the tornado outbreak and tornado structure is the swirl ratio 

which is defined in equations 2.3 to 2.5. Even though different types and dimensions of tornado 

simulators have been built, the effects of changing the updraft opening diameter and the height 

between updraft opening and inward upper edge have not been studied. It is expected that 

changing the updraft opening diameter may produce vortex of different sizes. Also, the 

adjustable height between the updraft opening and the inward upper edge may produce higher 

pressure on the ground surface. In the aforementioned wind tunnel studies, the influence of 

changing the tornado size and tornado updraft pressure on tornado forces applied on structures 

has not been investigated. In addition, the tornado-terrain interaction has not identified clearly.  
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2.8. Tornado-Terrain Interaction  

As aforementioned, tornado may strike any location. Also, it has been seen that tornado 

has been tracked in a mountain and hilly regions by Fujita and his group through post damage 

investigations. However, no attention has been paid to terrain influence on tornado 

characteristics and damage.  

Lewellen (2012) employed immerse boundary method and a modified LES model 

presented by Lewellen et al. (2008) to simulate tornado interaction with different topography.  

Figure 2.10 shows a sample simulation conducted by Lewellen (2012). He has conducted more 

than 250 simulations with different tornado characteristics (tornado swirl ratio, size, and 

translation velocity) and different topographical shape (ridges, knolls, valleys, ridge pairs, ridges 

with gaps, etc.). They stated that topography has effects on tornado near-surface flow, and they 

mainly noticed that tornado path deviates due to the presence of topographical objects.  Even 

though a lot of simulations have been conducted, no clear conclusion is provided regarding 

tornado damage difference between windward side and leeward side. Also, they did not provide 

any information for the tornado characteristics, topography dimensions and tornado deviation 

details.    
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Figure 2.10 Sample simulation for tornado-terrain interaction (taken from Lewellen 2012) 

  

 Karsten et al. (2012) utilized the ISU simulator to investigate the topography effects on 

tornado characteristics. They transport the vortex over idealized two-dimensional models of a 

ridge and an escarpment. Figure 2.11 shows the minimum negative pressure on the surface of the 

2D ridge investigated by Karsten et al. (2012). They observe that the tornado deviates from the 

center line to the left while climbing up the ridge and to the right when it moves down ridge. 

However, an explanation for why the deviation is happening has not been provided.  
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Figure 2.11 a) Cross section of the idealized 2-D ridge, b) minimum negative pressure on the 

model surface. Vortex translation is from left to right. (Taken from Karsten et al. (2012).) 

 

2.9. Summary of the Reviewed Works 

 Tornado has been a focus for different research disciplines in the last five decades. 

Tornado damage is assessed and rated by a comparison to damage indicators. Then, tornado 

severity is defined using the F and EF scales. Also, tornado is simulated extensively by wind 

tunnel simulators to understand tornado outbreak and tornado forces on structures. In addition, 

CFD is employed to simulate tornado numerically and to determine tornado forces on buildings. 

However, terrain effect on tornado has not been investigated or identify clearly. According to the 

author knowledge, there is no field survey is done to explore topography effects on a real 

tornado. In addition, terrain (ridges and hills) influence on tornado wind and forces has not even 

been touched. Therefore, tornado-terrain interaction studies are initiated to richen the knowledge. 
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In this work, field investigation using Google Earth and field survey conducted by University of 

Arkansas (UA) investigation team are utilized to determine terrain influence on tornado damage. 

Also, a computer model using CFD is developed to simulate tornado interaction with terrain and 

study this interaction in details.       
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3. COMPUTER MODELING 

3.1.  Introduction 

Tornadoes are one of the most violent phenomena in the universe. Best way to have 

better understanding for tornadoes is to study real tornadoes and collect tornado velocities and 

pressure during tornado life. Also, it is much better to determine the effects of terrain and 

structures on tornado characteristics in reality. However, these tasks are impossible right now 

and associated with high risk. The best alternatives are computer and experimental modeling. In 

this chapter, the computer modeling is discussed. Tornado-terrain interaction is a complex 

phenomenon. However, due to huge development in Computational Fluid Dynamic (CFD) in 

recent years, several attempts have been conducted to clarify and understand this phenomenon. 

CFD promises huge advantage over experimental work due to easiness and economic cost. CFD 

provides full access to wind field (details of pressure and velocities) as well as allowing a control 

of important simulation parameters. The CFD program for tornado simulation is first developed 

by McDonald and Selvam (1985) to calculate tornado forces on a building in 2D, but the main 

development to this program is done when Selvam and Millet (2003) introduced the first 3D 

translating tornado. The program simulates tornado interaction with cubic structures. The 

Navier-Stokes equations for incompressible flow were approximated by control volume method, 

which was found to be more efficient than FEM for orthogonal grid system. The turbulence was 

considered by LES. In this work the the program is modified to simulate tornado interaction with 

real terrain data or smooth shape hills and structures using finite element method which provides 

better discretization for the terrain problem as well as faster convergence with less grid size. 
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3.2. Tornado Numerical Model 

CFD is utilized to study tornado terrain interaction.  Tornado wind field model is 

considered by implementing Rankine Combined Vortex Model (RCVM) which is the simplest 

model that satisfies Navier Stokes equations (NSEs) as reported by Lewellen (1976). More 

details for RCVM can be found in Selvam (1993). Details for boundary conditions and 

implementation of RCVM can be found in Selvam and Millett (2003 & 2005). The turbulence is 

modeled utilizing Large Eddy Simulation (LES). Finite Elements Method (FEM) is used to 

approximate the NSEs. Then the approximated equations are solved using a semi-implicit 

method as explained in the following section. 

3.3. NS Equations Solution procedure 

The three-dimensional equations for an incompressible fluid using the LES turbulence 

model in general tensor notation are as follows:  

Continuity Equation: 
0, iiU

                                                                                                     (3.1)  

Momentum Equation: jijjiTijijti UUkpUUU ,,,,,, )])([()3/2/(                      (3.2)  

where : νt=(Csh)2(Sij
2/2)0.5, Sij=Ui,j+Uj,i,  h = (h1h2h3)

0.333 , and k=(νT/(Ckh))2. Empirical 

Constants: Cs=0.1, and Ck=0.094  

Where Ui, and p are the mean velocity and pressure respectively. k is the turbulent kinetic 

energy, νT is the turbulent eddy viscosity, h1, h2, and h3 are control volume spacing in the x, y, 

and z directions, respectively, and ρ is the fluid density. Here the area or volume of the element 

is used for the computation of h. A comma represents differentiation, t represents time, and i =1, 
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2 and 3 refers to variables in the x, y and z directions. For further details, one can refer to Selvam 

(1997) 

The incompressible momentum and continuity equations are solved using sequential 

solution procedures. In this work the following sequential procedure is used to solve the 

unsteady NS equations: 

1. Solve velocities using the momentum equations. 

2. Solve the pressure using the new velocities: 

]/)///(/)///(

/)///([/]///[

zzWWyWVxWUyzVWyVVxVU

xzUWyUVxUUtzWyVxUP





           (3.3) 

Here U, V and W are the velocities in the x, y and z direction, P is the pressure over 

density and Δt is the time step. At each time step the variables are solved sequentially in an 

implicit manner. The absolute sum of the residue error for each variable is reduced to certain 

convergence value say IM*JM*KM*10-5 where IM, JM and KM are the number of points in the 

x, y and z direction respectively. At the same time the iteration is repeated until the beginning 

residue of all the variables reduces to certain converged value. The sub-iteration makes sure that 

a converged solution is obtained. In the beginning of the computation the velocities are assumed 

as undisturbed values and hence the sub-iteration will be very high to reduce the error. After a 

while the number of sub-iteration could be around 5.The above sequential procedure is a general 

version of the one used by de Sampio et al. (1993) using least square FEM.  The procedure is 

also similar to Selvam and Paterson (1993) and Tamura (1995 & 1999) using FDM. The pressure 

equation is arrived by differentiating the momentum equation with respect to x, y and z and 

adding them. In the equation, higher order terms as well as the continuity equation for the current 
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time step are dropped. This eliminates the pressure correction step suggested in Selvam (1997 & 

1998) and hence is computationally efficient and also conducive for higher order elements. This 

procedure is also much stable and useful for adaptive and other techniques. When solving the 

equations by FDM or CVM using cell centered grids, the pressure values are solved in the fluid 

cell center and then the pressure is extrapolated on solid. Rather than this approach, if the 

pressure is solved over the solid body the accuracy is much better as discussed by Selvam and 

Peng (1998). The above equations are solved by FEM. Even though FEM takes more computer 

time the transport accuracy of the vortices are very high as reported in Selvam (1998) and hence 

it is preferred in this work.  Because of the large computing time, the model is parallelized by 

making subdomain in the vertical direction. The data from one processor to another is 

communicated using MPI. The detail of the parallel computing is reported in Sarkar and Selvam 

(2009). The equations are solved by preconditioned conjugate gradient (PCG). The initial time 

step used is 0.01 time unites (0.01 sec), and the computer model is ran for 90 time units and this 

takes 720hrs (30days) when serial computing (one processor) is used. However, this time is 

reduced ten times to 72hrs (3 days) when the distributed parallel computing (24 processor, MPI) 

is utilized. The processors used are dual hex-core Xeon X5670. 

3.4. Computational Domain and Grid Generation  

A terrain following grid system shown in Figure 3.1 is used here.  Different terrain 

following coordinate systems are discussed in Pielke (1984) and Selvam and Rao (1996). To 

reduce the time in grid generation, equal spacing is used in the x and y directions and almost the 

same spacing in the z-direction. The top boundary in the z-direction is kept far away from the 

ground and having the same elevation from the flat ground.  The equal spacing in the horizontal 

directions (X&Y) helps to use the program to directly consider the coordinates from the GIS 
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system for an actual complex terrain site. The ground elevation for each x and y point is provided 

as h(x,y). The desired grid spacing in the z-direction far away from the ridge is provided at one 

(x,y) point. In this study the z-spacing is kept constant. When the distance between the ground 

and the top boundary changes because of ground elevation then a proportional spacing to that of 

the flat ground spacing is used from the following relationship:  

))(/(),( 1

ff

K

ftt

K ZZhhyxhZ                                               (3.4) 

Where hf
 = Zkm

f- Z1
f   and ht = Zkm

f- h(x,y). Here the superscripts f and t refer to the 

reference height at the inflow and a height at any point in the domain respectively.    

 

Figure 3.1 Notations for terrain following grid system. 

 

3.5. Problem Geometry 

The CFD tornado model at the University of Arkansas is developed to simulate tornado 

interaction with a smooth hill or even real terrain data hill. Figure 3.2 illustrates basic parameters 

for the computational fluid domain.    
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Figure 3.2 Basic parameters for computational fluid domain. 

Where Rmax is the tornado radius, and hhill, Lhill and Whill are the height, length and width of the 

hill respectively. HDomain, LDomain and WDomain are the height, length and width of the domain 

respectively.  The hill center is located at the origin. The tornado coincides with center of the hill 

after time equals to time lag as illustrated in Figure 3.3. 
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Figure 3.3 Simulation parameters and geometry. 
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Computational domain size has great influence on tornado simulation. This means that 

the boundaries of the computational domain should be located at a distance so that there is no 

influence of the boundary conditions on the numerical solution. By choosing an optimal 

computational domain size, convergence can be achieved faster as well as computational can be 

reduced (Gorecki, 2015). Also, better choice for the domain size can lead to less number of grid 

points and less memory storage. In the same time the boundaries of the domain should be kept at 

a reasonable distance away from the hill to avoid influencing the tornado flow. Figure 3.4 shows 

the front boundary, top boundary and side boundary for the computational domain. A detailed 

study for the grid size and domain size is investigated in chapter five. All parameters used in the 

Top 

boundary 

Front 

boundary 

Side 

boundary 

Figure 3.4 Boundaries for the computational domain. 



41 
 

model are non-dimensional. The dimensionless length, velocity and time (respectively: L*, U*, 

t*) are calculated as follows: 

L*=L/Lref, U*=U/V, t*=t.V/Lref 

Where: L, U and t are length, velocity and time; Lref – referenced length equal to the height of 

the hill; V – referenced velocity, equal to the translational velocity. 

3.6. Boundary Conditions 

 For the University of Arkansas tornado simulator, boundary conditions considered to be 

one of the most important factors in generating the translating vortex. Every grid point on the 

boundary is assigned a specific velocity component so that the tornado is created. Since the vortex 

is assigned to move along the X-axis where X=0, these velocities are calculated depending on the 

tangential velocity profile of RCVM.  The computational domain used for tornado simulation is 

shown in Figure 3.5.  The velocities are specified for all six surfaces. The no-slip condition is 

implemented for the ground of the domain.  For all the vertical surfaces, the vertical velocity 

component Vz is assumed to be zero. Vx and Vy are calculated using RCVM as presented in the 

equations below. 

 

𝑉𝑥 = [𝑉𝑡𝑥 + (𝑉𝑡𝑦𝑡 − 𝑦). 𝛼]. 𝑍𝑓  𝑓𝑜𝑟 𝑟 ≤ 𝑟𝑚𝑎𝑥                                 (3.5) 

𝑉𝑥 = [𝑉𝑡𝑥 + (𝑉𝑡𝑦𝑡 − 𝑦). 𝐶]. 𝑍𝑓  𝑓𝑜𝑟 𝑟 > 𝑟𝑚𝑎𝑥                                 (3.6) 

𝑉𝑦 = [𝑉𝑡𝑦 + (𝑥 − 𝑉𝑡𝑥𝑡). 𝛼]. 𝑍𝑓  𝑓𝑜𝑟 𝑟 ≤ 𝑟𝑚𝑎𝑥                                 (3.7) 

𝑉𝑦 = [𝑉𝑡𝑦 + (𝑥 − 𝑉𝑡𝑥𝑡). 𝛼]. 𝐶. 𝑍𝑓  𝑓𝑜𝑟 𝑟 ≤ 𝑟𝑚𝑎𝑥                              (3.8) 
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Where: Vtx - x-component of Vt, Vty - y-component of Vt, C= r2
max/r

2, r2= (x-Vt.t)
2+y2,                           

Zf= u*·ln((z+z0)/z0)/ , z0 – roughness length of the ground (equal to 0.00375), u* – frictional 

velocity at certain height, determined from known velocities,  - constant, equal to 0.4, z – height 

from the ground. The details of the formulation of these equations are presented in (McDonald and 

Selvam, 1985) without the boundary layer effect. The boundary layer effect is introduced in 

Selvam (1993). 
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Figure 3.5 Boundary conditions for the computational domain. 
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3.7. Parallel Computing 

3.7.1. Why Parallel? 

  There has been a huge advancement in computer hardware technology, and computer 

processers speed have increased about 5000 times since 1970. However, in a sense of serial 

computing, there is still huge limitation since one operation is done at a time in serial computing 

process (see Figure 3.6 a). Therefore, to run a problem of tornado simulation over a complex 

terrain with reasonable accuracy (about 8 million points with equal spacing) using serial 

computing takes 720 hrs. This is a whole month to have only one set of data without any post 

processing or visualization. Therefore, the distributed parallel computing is utilized to solve the 

problem and check the performance.  A schematic illustration for how the parallel computing is 

done is presented in Figure 3.6 b.  A problem of (290x290x90) 7.569 million points is run using 

single- and multi-processor to find the optimum number of processors which provide the 

minimum run time. The results are presented in Table 3.1. It is concluded that for this specific 

problem the optimum number of processors is 24. The parallel computing is done by solving the 

pressure equation which usually takes most of the computation time. This is done by assigning 

certain number of z-plane for each processor as shown in Figure 3.7, and it is known as domain 

decomposition. The node information at edge of neighboring domain needs to be transferred 

often, and it is called boundary swapping. General data swapping between processors is 

illustrated in Figure 3.8. 

 

 

 

 



44 
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Table 3.1 Optimum CPU time for single- and multi-processor. 

Number of 

Processors 

CPU time 

(hrs) 

Speed-up 

Factor 

1 720 1 

2 379.8 1.81 

4 225 3.2 

6 166.67 4.32 

8 160 4.5 

24 72 10 

36 90 8 

 

 

Problem             CPU 

O1 O2 O3 On 

Operations sequence a 

Problem 

            CPU1 

O1 O2 O3 

Operations sequence 

On 

            CPU2 

            CPUn 

b 

Figure 3.6 a) serial computing b) parallel computing. 
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Figure 3.7 Tasks distribution in parallel computing. 

P3 P2 P1 

Figure 3.8 Data Transfer in 1D domain decomposition. Shaded circles are the ghost points and 

the circles encircled by the dashed lines are points to be moved. 
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3.7.2. Speed Up and Efficiency Study for Parallel Computing 

Two common parameters to monitor the parallel computing performance are “speed up 

and efficiency”. The speed up is defined as ratio of single processor time to the time of a certain 

number of processors (serial time/parallel time) for a specific problem. On the other hand, 

efficiency is the percentage of the speed up to the number of processors (Sarkar and Selvam, 

2009). When algorithms are designed originally for traditional serial computing may not perform 

efficiently on parallel computers. Therefore, a better approach to perform parallelism is to 

subdivide the solution domain into sub-domains and assign each sub-domain to one processor. 

This is called domain decomposition (DD) which can be done in 1D, 2D and 3D to achieve a 

better efficiency as discussed in Gropp et al. (1994). In this case, the same code is used on all 

processors. Since each processor needs data available in the neighboring sub-domains, exchange 

of data between processors is necessary. This is called communication overhead. In this work, 

1D domain decomposition is used in the Z direction as illustrated in Figure 3.7. Figure 3.9 a and 

b show the speed up and the efficiency performance of parallel computing for different number 

of processors. From Figure 3.9 a, one can see that there is slow down after the number of 

processors is more than 24 processors. As show in Table 3.2, the minimum number of planes 

assigned for each processor is 3 which requires communication with the two neighboring top and 

bottom domain for solution compilation. Three is the optimal number of planes that can provide 

better computation performance over the processors communication time. When the number of 

planes is two, then the processors communication time will govern the computation time. 
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Figure 3.9 a) Speed up b) efficiency of parallel computing 
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Table 3.2 Domain decomposition in 1D (Z axis) for parallel computing using 24 processors. 

Processor 

ID 

Start plane 

index 

End plane 

Index 

Plane for a 

Processor 

0 1 4 4 

1 5 8 4 

2 9 12 4 

3 13 16 4 

4 17 20 4 

5 21 24 4 

6 25 28 4 

7 29 32 4 

8 33 36 4 

9 37 40 4 

10 41 44 4 

11 45 48 4 

12 49 52 4 

13 53 56 4 

14 57 60 4 

15 61 64 4 

16 65 68 4 

17 69 72 4 

18 73 75 3 

19 76 78 3 

20 79 81 3 

21 82 84 3 

22 85 87 3 

23 88 90 3 

Total Number of Planes 90 
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4. TORNADO-HILL INTERACTION: DAMAGE AND SHELTERING 

OBSERVATIONS 

4.1. Introduction 

 Tornadoes occurrence is not restricted by a place or time. However, tornadoes happen 

frequently in a regain called Tornado Alley which is often not associated with a complex terrain 

– a terrain of several successive topographical configurations (hills, ridges, escarpments and 

knolls, etc.).  Therefore, it is reasonable that very less attention is paid for topography effects on 

tornado damage. However, tornado can hit a hilly terrain or even a mountain area. Tuscaloosa-

2011which is one of the deadliest tornadoes in the last fifty years grasps researchers’ attention to 

investigate the effects of a complex terrain on tornado damage. 

 In this chapter, three tornadoes (Parrish-2011, Tuscaloosa-2011 and Mayflower-2014) are 

considered to investigate the effects of topography (hills) on tornadoes damage. The analyzed 

data comprises Google Earth views, aerial images provided by Civil Air Patrol (CAP) and 

ground photos taken by University of Arkansas (UA) team. Tornado damage is investigated on 

windward and leeward sides of several hills to evaluate hills sheltering. Also, tornado damage is 

explored when a place is surrounded by hills. Damage of houses around a hill is analyzed and 

rated using EF scale to illustrate the difference between damage uphill and downhill. It is found 

that there is significant influence of hills on tornado damage, and much damage is observed on 

windward side of a hill comparing to its leeward side. Also, when a tornado crosses a hill, the 

hill provides sheltered zone on its leeward side. For the investigated hills, measurements for the 

sheltered zone on the leeward side of the hills show that the sheltered zone length is about five 

times the hill height (5h).When the tornado hits a place surrounded by hills and the distance 
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between the hills along the tornado path is almost equal to the tornado radius, the damage is 

noticed only on the top of the surrounding hills. The place which is surrounded by the hills is 

completely protected. When tornado damage is investigated around a hill, the tornado damage 

observed uphill is higher than the damage observed downhill for the same region hit by the 

tornado. More investigations to examine the effects of changing hill dimensions and shapes on 

the sheltered zone length need to be done employing computer models or experimental 

simulations. 

4.2. Background  

 Recently, a few studies have been made to investigate effects of terrain on tornado path 

and behavior after the Tuscaloosa-2011 tornado. Lewellen (2012) implemented the immersed 

boundary method and large eddy simulation (LES) to simulate tornado in 3D domain and study 

the effects of topographical shapes (ridges, knolls, valleys, ridge pairs, ridges with gaps, etc.) on 

tornado near-surface wind. For different topographical shapes, different tornado behaviors (e.g. 

path deviation and pressure values) are observed. Karstens et al. (2012) utilized the Iowa State 

University (ISU) tornado simulator to determine the effects of idealized topography (ridges and 

escarpments) on tornado path deviation. They noticed that tornadoes experience deviation from 

the center line while climbing up and down the topographical profiles.  However, the mechanism 

causing this behavior is not clear. Gorecki and Selvam (2013, 2014 & 2015) studied sheltering 

efficiency of rectangular man-made walls (rectangular prism). For a wall height equal to the 

tornado radius, they reported that the sheltering efficiency, the ability of the structure to reduce 

wind velocity on its leeward side, is almost 40%. Selvam and Ahmed (2013) employed Google 

Earth to explore terrain effects on tornado damage. Their focus was tornado damage uphill and 
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downhill as well as sheltering on the leeward sides of hills. They reported that there is no damage 

in a region surrounded by hills located on the tornado path. 

In this work, Field data for Tuscaloosa-2011, Parrish-2011 and Mayflower-2014 tornadoes is 

considered to examine effects of topography on tornado damage and sheltering. Google Earth is 

considered for vitalizing available aerial images for Tuscaloosa-2011and Parrish-2011 tornadoes. 

For Mayflower-2014, ground images arrived by University of Arkansas (UA) team and aerial 

images provided by Civil Air Patrol (CAP, 2014) are utilized to examine the topography effects 

on tornado damage and sheltering. 

 The objectives of this chapter are to examine the topography configurations (e.g. hills) 

ability on providing hill sheltering (the difference in tornado damage between the windward and 

the leeward sides) against tornado wind and to determine the difference in tornado damage uphill 

and downhill. First, the effects of a hill on tornado damage is investigated, and the damage 

difference on the windward and leeward sides of a hill is examined. Then, the sheltered zone on 

the leeward side of a hill is measured and evaluated. After that tornado damage for a region 

surrounded by hills on the tornado path is assessed. Finally, the Enhanced Fujita (EF) scale is 

utilized to evaluate tornado damage up and downhill by analyzing field data for damage around a 

hill. 

4.3. Tornado Damage on 2D-Type Hill Sides (Parrish-2011) 

 Parrish-2011 is a short life tornado; however, it has intensity of EF3. The tornado touched 

down six miles southwest Parrish, AL, and it lifted two miles southwest Bangor, AL. The total 

travelling path is almost 31 km (19 miles) in 18 minutes (approximate travelling velocity is 103 

kmh-1(64 mph)), and the maximum damaged width 0.34 km (0.2 miles) as reported by National 
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Weather Service Weather (NWS, 2011b). The tornado track (bright color between dashed 

Yellow lines) is shown in Figure 4.1 where tornado traveled from southwest to northeast. The 

terrain is rich with many hills, so it provides great environment to study terrain effects on 

tornado damage. Four sites are selected in this tornado location to examine hills sheltering 

efficiency against tornado damage. These sites are four hills labeled by notations (H1 to H4).  

Vegetation damage or houses damage are considered to show the hills sheltering. For vegetation 

damage monitoring, the undamaged or less damaged area has dark green color, and the damaged 

area is distinguished by its faded brown or gray color. The damage percentage based on ground 

observation of vegetation damage may differ from damage observed for structures. For each site, 

a close up view and the hill elevation profile are illustrated for clear discussion. In Figures 

provided in this section, tornado travels from southwest (down left corner) to northeast (upright 

corner) unless otherwise mentioned. Tornado struck Parrish, AL on Apr, 27 2011, and the 

images were available in Google Earth right the next day (Apr, 28 2011). 

 A close-up view for the site H1 is shown in Figure 4.2. From Figure 4.2, one can see that 

tornado crossed the Hill (H1) causing much damage (enclosed by the dashed yellow line) on the 

windward side of the hill (H1), while the leeward side (blue line) is almost completely protected. 

This means that the aforementioned hill has provided sheltering on its leeward side. The 

approach used in this work to identify the sheltering efficiency for the hills is by measuring the 

length of the sheltered zone on the leeward side for each hill. The height of the hill (H1) is about 

61 m (200 ft), and the elevation profile for hill (H1) is shown in Figure 4.3. The hill height is 

measured as the hill prominent height from the surrounding ground. Slope on both sides of the 

hill is very similar. This hill (H1) provided sheltered zone length of almost 305 m (1000 ft) 

measured from the yellow diamond (a point where damage is noticed to be reduced or 
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discontinued) to the end of the sheltered region where the damage is noticed again the leeward 

side of hill (H1) as shown in Figure 4.3. Beyond the sheltered region, tornado damage increases 

gradually. The sheltered zone length is measured along the tornado traveling line where the 

damage is at its maximum level. The sheltered length may vary moving toward the hill side far 

from the tornado travelling path.  

 

Figure 4.1 The tornado path of Parrish-2011 tornado show the four investigated sites (the bright 

color area is the damaged area path). 
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Figure 4.2 Close-up view for hill (H1), much damage on wind ward (the faded brown area, 

yellow line) and the protected area on the leeward (dark green, blue line). 

 

Figure 4.3 Elevation profile along the hill (H1), the protected zone is 5H. 
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 The same analysis is used for the other three sites (H2, H3 and H4) to quantify the 

outcome. Figure 4.4 is a close-up view for the site H2 showing the damaged and the protected 

areas on windward and leeward sides respectively. Height of H2 which is detected from the 

elevation profile shown in Figure 4.5 is about 61 m (200 ft). The sheltered zone length is about 

259 m (850 ft) on the leeward side. Even though the heights of the hills (H1 and H2) are the 

same and they both were hit by the same tornado, their sheltered zone lengths are different. This 

could be because of difference in slope between these hills, or it could be due to little variation in 

tornado translational velocity while interacting with terrain and structures causing damage. From 

Figures 4.6 and 4.7, one can measure the height of hill (H3) and the sheltered zone length on its 

leeward side. The height of H3 is about 30.5 m (100 ft), and the undamaged zone length is 168 m 

(550 ft). The site H4 is close to the end of the tornado track and one can see that tornado 

intensity is lessened from the amount of damage (bordered by dashed yellow line) observed on 

the windward side as illustrate in Figure 4.8. Like the aforementioned hills, this hill provides 

highly protected area on it leeward side. In the this site, the hill height is almost (27.5 m) 90 ft 

and the protected zone is about 152.5 m (500 ft). When the protected zone length is normalized 

to its hill height, the following outcome is arrived. For H1, the protected zone length is 5.0H 

where h is the hill height. Similarly, the protected zones for H2, H3 and H4 are 4.25H, 5.5H and 

5.0H respectively. Table 4.1 shows the slope on both sides of the studied hills as well as the 

length of the normalized sheltered zone. From table 4.1, one can see that there are different 

sheltered zone lengths for the same hill height when the slope varies. This means the slope of the 

hill also affects the sheltered zone length, and its effects can’t be investigated easily through field 

investigation. For the investigated sites, it observed that when the tornado crosses a hill of height 

H, the hill most probably provides protected zone of length about 5.0H on its leeward side and 
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some differences are observed due to different slopes of the investigated hills. Also, the sheltered 

length is normalized with respect to the highest hill elevation, and different length may be 

observed on the lateral sides of the hill (away from the tornado path center). The tornado core 

radius is evaluated by measuring the track width to be in range of 25 m to 45 m (82 ft to 148 ft). 

Also, the hill width average is about 1 km (0.6 miles) which is almost 29 times the tornado core 

radius. Therefore, it is hypothesized here that the hill height is greater than or equal the tornado 

core radius and that the hill shape is close to be a 2D hill. For a rectangular wall (a man-made 

hill), Gorecki and Selvam (2013, 2014 & 2015) found that the partially protected zone distance 

beyond the hill is six times the hill height. 

 

 

Table 4.1 Sheltered zone length and slope of windward and leeward side of the studied hills. 

Hill ID Windward Slope Leeward Slope 
Sheltered Zone 

Length  

H1 23% 23% 5H 

H2 28% 19% 4.25H 

H3 12% 12% 5.5H 

H4 19% 15% 5H 
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Figure 4.4 Close-up view for hill (H2), much damage on wind ward (the faded brown area, 

yellow line) and the protected area on the leeward (dark green, blue line). 

 

 

Figure 4.5 Elevation profile along the hill (H2), the protected zone is 4.25H. 
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Figure 4.6 Close-up view for hill (H3), much damage on wind ward (the faded brown area, 

yellow line) and the protected area on the leeward (dark green, blue line). 

 

 

Figure 4.7 Elevation profile along the hill (H3), the protected zone is 5.5H. 
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Figure 4.8 Close-up view for hill (H4), much damage on wind ward (the faded brown area, 

yellow line) and the protected area on the leeward (dark green, blue line). 

 

Figure 4.9 Elevation profile along the hill (H4), the protected zone is 5.0H. 
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4.4. A Place Surrounded by Hills (Tuscaloosa-2011) 

 Tuscaloosa-2011 is one of the deadliest tornado hit the United States in the last five 

decades. This tornado is rated as EF4 and results in 65 fatalities and 1500 injuries. The total 

traveling path is about 130 km (81 miles) and the maximum reported damage width is 2.4 km (1.5 

miles) as informed by NWS (2011c). The average traveling velocity for this tornado is 86 kmh-1 

(53.4 mph) (detected from NWS, 2011c).  Tuscaloosa-2011 touched down few miles southwest 

Fosters and hit Tuscaloosa, and then it lifted near the downtown of Birmingham. The tornado 

damage path is shown in Figure 4.10 (bright color between dashed Yellow lines).   

 The site S1 is selected along the tornado path as shown in Figure 4.10. S1 is a valley, an 

area of irregular shape surrounded by hills and located right on the tornado path. The projected 

dimensions of the hills surrounding S1 are presented in Figure 4.11. The summit of the hill all 

around is about 161.6 m (530 ft) above sea level, and elevation of center of the valley is about 

144.8 (475 ft) above sea level. The elevation profile of line ABC (a section in the valley and the 

surroundings hills) is illustrated in Figure 4.12. From Figure 4.12, one can see that the valley region 

is surrounded by almost 16.8 m (55 ft) height hills. From both Figures 4.11 and 4.12, one can see 

that there is no damage (shiny green color) in the valley, a region surrounded by hills, whereas 

there is much damage (faded brown color) on the surrounding hills. The maximum distance 

between hills along the tornado path is about 0.16 km (0.1 miles). The tornado core diameter is 

estimated from the tornado trace on the ground to be about 0.201 km (0.125 miles). Therefore, for 

these measured dimensions and elevations, it is observed that the tornado tends to skip the valley, 

and the damage is noticed only on the tops of surrounding hills. It is interpreted that this place is 

protected because the tornado diameter is greater than or equal the maximum width of the valley 

along the tornado path. Computer model can be utilized to explore the effect of changing the hills 
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and valley dimensions on the damage distribution. This observation could be used as an advantage 

in selecting a location for critical buildings such as hospitals and shelters to provide better lives 

saving.  

 

Figure 4.10 The tornado path of Tuscaloosa-2011 tornado show the investigated site (the bright 

color area is the damaged area path). 
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Figure 4.11 Close-up view for site (S1) on Tuscaloosa tornado’s path with detailed dimensions 

for the surrounding hills. 

 

 

Figure 4.12 An elevation profile for line ABC, at center of hills and valley. 
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4.5. Tornado Damage Uphill and Downhill (Mayflower-2014) 

 The Mayflower-2014 tornado is rated as EF4. The length of the tornado path is about 66 

km (41 miles) as reported by NWS (2014a) and the University of Arkansas damage team 

(Selvam et al.. 2014 and 2015).  The number of fatalities results from this tornado is 16. This 

tornado touchdown southwest of Lake Maumelle and passed over Mayflower and Vilonia, then it 

lifted near El Paso, AR. The damage path is shown in Figure 4.13 (NASA, 2014).  

One site is selected for detailed analysis of damage around a hill in this tornado location, and it is 

circled by yellow color (See Figure 4.14). The tornado passed over a water surface before it hit 

the selected site, so it had a considerable intensity. The Enhanced Fujita scale with examples of 

damage level for different houses illustrated in Figure 4.15 is utilized to evaluate the damage 

level for the houses in the selected hill D1. Google Earth is used to provide images and 

elevations for the selected site D1 before and after the tornado occurrence.  Figure 4.16 shows 

four houses on the investigated hill D1, and they are identified as H1-H4. The elevation profile 

for the hill along the tornado traveling path represented by line AB is shown in lower part of 

Figure 4.16. Figure 4.17 shows the elevation profile for line CD which is almost normal to the 

tornado traveling path (along the line of the houses). From elevation profiles in Figures 4.16 and 

4.17, one can see that the house (H1) is located at the point of the highest elevation of 92 m (302 

ft) above the see level. The elevations for houses (H2, H3 and H4) are 87.8 m (288 ft), 86 m (282 

ft) and 83.8 m (275 ft) above the see level respectively. By refereeing to the EF scale in Figure 

4.15, the house H1 on the top hill is damaged the most and its damage is estimated to be EF3 as 

shown in Figure 4.18. For the house H1, one can see that the roof has been detached from the 

majority of the house, and walls from the near side of the house have been destroyed and 

transported to the far side of the house. However, H2-H4 show only minimal roof damage and 
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loss of shingles as shown in Figure 4.19. An aerial view taken from east side shown in Figure 

4.19 a, shows the difference in damage between house (H1, much damage) uphill and house (H2-

H4, less damage) downhill. Figure 4.19 b is a close-up aerial view taken from the west side for 

the houses (H2-H4) which have low elevation on the leeward side and experienced less damage 

(EF1). Figure 4.20 is an aerial view for the investigated hill D1after the tornado occurrence. 

Even though this image does not have a great quality, it can still illustrate the elevation 

difference between the houses as well as the damage difference. 

  It is evident that the houses on leeward side of the hill with lower elevation experienced 

less damage as shown in Figures 4.19-4.22. The damage in houses (H2, H3 and H4) is minor 

roof damage and it is evaluated as EF1. It can be interpreted that the house H1 on top of the hill 

faced much higher wind speed, and therefore higher damage.  Therefore, it is shown that houses 

in the same region experience different level of damage. Conversely, the other houses H2-H4 are 

located at lower elevation and has faced wind of less velocity and experienced less damage. As a 

result, the uphill house experienced more damage than those of downhill. This also can be 

interpreted as that the hill provided sheltering for the houses located on the side of the hill. Wind 

tunnel or computer model is important to examine these theories for different cases and utilizes 

the outcome for improving building design standers.  
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Figure 4.13 Tornado damage path from satellite photograph (NASA, 2014).  

 

 

Figure 4.14 Close up view for the studied site near Lake Conway (NASA, 2014). 

D1  



66 
 

 

 

Figure 4.15 The Enhanced Fujita (EF) scale damage examples (Taken from Safeguard, 2009).  
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Figure 4.16 Elevation profile for the hill along tornado travel direction. 

 

 

Figure 4.17 Elevation variations along line CD normal to tornado travel direction. 
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Figure 4.18 Arial image for a severe damage for house (H1) uphill (Source CAP, 2014). 

 

Figure 4.19 a) Aerial view taken from the east side for house (H1-H4) taken from CAP (2014).  
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Figure 4.20 b) Aerial view taken from the west side for house (H2-H4) on the leeward side (low 

elevation, less damage EF1) taken from CAP (2014). 

 
Figure 4.21 Google Earth aerial view for the hill D1 after the tornado occurrence.  
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Figure 4.22 Minor damage (EF1) for the house (H3) on the leeward side (low elevation) (UA 

team photo). 

  

Figure 4.23 Minor roof damage (EF1) for the house (H4) on the leeward side (low elevation 83.8 

m (275 ft)). (UA team photo). 
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4.6. Conclusions  

 Three tornado events (Parrish-2011, Tuscaloosa-2011 and Mayflower-2014) are 

investigated using Google Earth, aerial images provided by CAP (2014) and ground 

investigations photos taken by UA team (Selvam et al. 2014 and 2015). Tornado damage is 

investigated on windward and leeward sides of several hills to evaluate hills’ sheltering. Also, 

the damage is inspected for a place surrounded by hills on the tornado path. Finally, damaged 

houses around a hill are analyzed and rated using EF scale to illustrate the difference between 

damage uphill and downhill. The following conclusions are drawn. 

 There is a significant effect of hills on tornado damage, and much damage is observed on 

windward side of a hill comparing to its leeward side. 

 When a tornado crosses a hill, the hill provides sheltered zone on its leeward side 

 Observations for the investigated hills show that the sheltered zone length on the leeward 

side of the hills is about five times the hill height (5h). 

 When the tornado hits a place surrounded by hills and the distance between the hills along 

the tornado path is less than or equal the tornado diameter, the damage is noticed only on 

the top of the surrounding hills. The surrounded place is completely protected.    

 The tornado damage observed uphill is higher than the damage observed downhill for the 

same region hit by a tornado. 

More investigations for the effects of changing hill dimensions and shapes on the sheltered 

zone distance on the leeward side need to be done utilizing computer models or experimental 

simulations. Also, the effect of changing the distance between hills surrounding a protected area 

needs to be investigated to determine if the protected area is maintained or lost. 

 



72 
 

5. TERRAIN EFFECT ON TORNADO GROUND INTENSITY AND PATH 

5.1. Introduction 

 More than 1200 tornadoes happen every year in the United States, and they are associated 

with huge life and financial losses (NWS, 2010). Therefore, a better understanding for tornado 

wind near ground is significant to lessen life and financial losses. One of the critical ways to 

build up our tornado understanding is by documenting tornado interaction with structures and 

terrain from tornado post damage investigation. Also, it is crucial to analyze these 

documentations for any potential hypothesis.    

 Usually tornado post damage investigations focus only on structures damage, with minor 

attention paid to the topography effects on tornado damage (Fujita et al. 1970, 1976; Fujita 1981, 

1989). Basically, local damage to structures, vegetation, etc. is observed and used to estimate the 

tornado maximum wind speed and the corresponding EF rating.  

 Previous investigations performed within our research group have led to a conclusion that 

hilly terrain may significantly influence the tornado damage and path. Investigation of tornado 

damage over hilly and forested regions by Selvam & Ahmed (2013) reported that when a tornado 

crosses a hill, there is much damage observed uphill comparing to that on leeward side downhill. 

3D CFD modelling reported in Gorecki & Selvam (2014 and 2015) show that a translating 

vortex will attempt to divert around the side of a short rectangular hill located perpendicular to 

the travel direction of vortex. For longer hills, the vortex is unable to divert around the side and 

must pass over the top of the hill. However, the hill distorts the vortex, which does not recover 

until it passes well beyond the hill. This produces a “sheltered” region on the downstream side of 

the hill, where the velocity magnitude reduced by 30% to 40% depending upon the location from 

the hill and the height from the hill top. Selvam et al. (2014 and 2015) performed site 
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investigations for the Mayflower tornado in 2014. Their focus was terrain effects on tornado 

damage. However, a detailed analysis for hilly terrain effects on tornado damage is not reported.   

 The main challenges for tornado post damage investigations are: unreachability for hilly 

regions, detailed evaluation of terrain elevation, coordination of damage pictures with its exact 

location and elevation, trace the tornado damaged path, proper visualization of damaged area and 

requirement for a lot of technical, laboring and financial resources. However, thanks to the 

technology development which has made these investigations much affordable and reachable 

using different computer software. Using a camera has a GPS feature, like IPhone, the picture is 

connected to the place where the picture was captured. Then, using a computer software, Google 

Earth, the damaged location is visualized in 2D and 3D views as well as in different times before 

and after the tornado occurrence. The objectives of this chapter are exploring the terrain 

influence on tornado damage, and evaluating hilly terrain effects on tornado damage ratings 

(ground level intensity). Also, terrain influence on the tornado path change is examined. 

5.2. Tools Used for the Study 

 The data analyzed in this study is mainly provided from two sources: ground images by 

University of Arkansas (UA) investigation team (Selvam et al., 2014) and Civil Air Patrol (CAP) 

images (CAP, 2014). The photos are mainly taken by an iPhone, NIKON D200 and SONY SLT-

A55V cameras which have GPS feature. Then, the photo GPS coordinates are synchronized to the 

computer using the software Google Picasa 3. The data is analyzed and interpreted using the 

software Google Earth and Google Maps.   

 In this work, tornado damage ratings provided by NWS (2014b) for the Mayflower-2014 

tornado are taken and imposed on terrain map to reveal terrain effects on tornado damage. 
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Observations are supported by photos and aerial images associated with the specific damage 

location. Also, terrain effects on tornado path is investigated.  

5.3. Tornado Facts and Details   

 On April 27-2014, at 7:06 the region of central Arkansas (Mayflower and Vilonia) was 

struck by a tornado ranking EF4 on the Enhanced Fujita (EF) intensity scale. The tornado started 

about nine miles southwest Lake Maumelle, and traveled toward northeast over Mayflower and 

Vilonia communities. Then, it loft near El Paso. 

 The tornado damage path is shown in Figure 5.1. Radar data indicates that the tornado 

formed at location “2” at 7:06 PM and travelled north-west, finally dissipating around location 

“26” at 8:02pm. The tornado resulted in sixteen fatalities (ArkansasOnline, 2014). Figure 5.1 

shows the locations and number of fatalities occurred in Mayflower-2014 tornado ( Selvam et al, 

2015). More tornado information is reported in Table 5.1. 

 There is very little documentation of tornado damage in hilly terrain, and that is due to the 

fact that hilly regions are hard to access as well as less occupied. The terrain of the tornado path is 

a mix of hilly terrain, flat terrain and water surfaces. From Figure 5.2, one can see that the EF 

ratings change along the tornado’s path as the terrain varies. The EF ratings are reported by NWS. 

Even though variation in tornado damage ratings can be liked to structure’s strength, a further step 

has been taken to investigate potential like between terrain and tornado damage. Therefore, the 

Mayflower tornado provides the best environment to explore hilly terrain effects on tornado 

damage and path (Selvam et al., 2015).  
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Table 5.1 Basic information of Mayflower-2014 tornado. 

Parameter Value Source 

Length of Damage Tract 66 km (41 miles) (NWS, 2014a) 

Max. Tornado Diameter 0.80 km (0.5 miles) (NWS, 2014b) 

Max. Damage Rating EF4 (NWS, 2014b) 

Max. Wind Speed 267-322 km/hr (166-200 mph) (NWS, 2014b) 

Avg. Translation Speed 66 km/hr (41 mph) (ARCgis, 2014) 

Fatalities 16 (ArkansasOnline, 2014) 

 

 

 

 

 

 
Figure 5.1 Mayflower-2014 tornado damage path showing the reported deaths (NWS, 2014a). 
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Figure 5.2 Tornado damage track with local EF rating indicated by gradient icons, the regions 

confined between the dashed lines have less differential elevation and higher damage. 

 

 

5.4. Significant Reduction of Tornado EF Ratings due to Interaction with Hilly Terrain.  

 Mayflower tornado path reported by (NWS, 2014b) is shown in Figure 5.2. The tornado 

moved from southwest toward northeast. In Figure 5.2, the tornado path and the damage ratings 

assigned to shown locations on the path are rotated to be aligned to the elevation profile of the 

tornado travel path as shown in the bottom of Figure 5.2. The local EF ratings assigned by the 

NWS are indicated by gradients. These gradients are imposed on the terrain map as shown in 

Figure 5.3. From Figure 5.3, one can see that terrain map complies with the elevation profile in 

Figure 5.2 and shows great diversity in the terrain along the tornado traveling path. Four regions 

(R1-R4) are selected and zoomed for better clarity and better visualization of the association of 

EF ratings with terrain. The EF ratings legend is shown also on the side of the presented Figures. 

From Figure 5.2 and Figure 5.3, one can see that the terrain and the tornado EF ratings vary a lot 

along the tornado path. Also, it is noted that wherever there is hilly terrain the damage ratings are 
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reduced (EF1 to EF2) comparing to flat region areas (EF3 to EF4). A connection between the 

tornado intensity (EF rating) and the terrain is observed, and a detailed discussion for each region 

is provided in the following subsections. 

5.4.1. Region (R1)-Hilly Terrain 

  Region (R1) shown in Figure 5.4 starts about 10 miles southeast of Lake Maumelle 

(34o46’31.9”N, 92o39’11.3”W) and ends right at Lake Maumelle (34o51’34.4”N, 92o31’18.9”W). 

The terrain in Region (R1) is very hilly (several successive hills close to each other). When the 

tornado went over this hilly terrain, one can see that the average of the EF ratings is about EF1-

EF2. Only one place is reported with EF3 rating when the tornado first touched down and went 

over low elevation between two hills. It is reported that the home of EF3 damage ratings was 

swept clear of foundations. This home had anchor bolts in place; however, these bolts were not 

secured with any nuts and washers as reported by NWS (2014a).  

 Several locations are selected to show the damage ratings in this region. A notation is 

given as R1L1 (Region number, Location number), and a photo and a position are reported for 

each location. The location R1L1 is a residential house as shown in Figure 5.5. From Figure 5.5, 

one can see that only a shade attached to the house is collapsed, and there is no damage observed 

for the main structure of the house. R1L1 is located about a half mile to the north from the wide 

hill as shown in Figure 5.6. Also, another location, R1L2, which is a one story residential house 

experienced minor damage to the roof and windows glass breaking as shown in Figure 5.7. This 

house is surrounded by small hill and experienced very less damage due to the local protection of 

the hills. The location of R1L2 on the terrain map is shown in Figure 5.8. On an average, the 

damage in region R1 is rated as (EF1-EF2) and it is about 50% less than the maximum damage 
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(EF4) caused by this tornado. It is interpreted that the hilly terrain functions like wave breaking 

wall and lessens the tornado strength.       

 
Figure 5.3 Mayflower tornado ratings imposed on terrain map along the tornado path. 

 

 
Figure 5.4 Region (R1) law EF rating associated with hilly terrain at the tornado start point, the 

damage average ratings is (EF1-EF2). 
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Figure 5.5 A house in location (R1L1) with a damage rating as EF1, only the shade attached to 

the house is collapse, taken by UA team. 

 

 
Figure 5.6 the position of selected location R1L1 at coordinates (34 47 10.1 N, 92 38 22.5 W). 
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Figure 5.7 A house in location (R1L2) with a little damage to the roof rated as EF1, taken by UA 

team. 

 
Figure 5.8 The position of selected location R1L2 at coordinates (34 47 34.2 N, 92 38 17.8 W). 

R1L2 
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5.4.2. Region (R2)-Flat Terrain and Water Surfaces 

 In region (R2) which starts at Lake Maumelle and ends right before Lake Conway as 

shown in Figure 5.9, the tornado travelled mainly over water surfaces and relatively flat terrain. 

Therefore, much higher damage is observed in this region, and the damage path is much wider. 

In this region, the damage ratings in the core part of the tornado path are EF3 to EF4 and on the 

edges, far away from the path center, are EF2 to EF1 as shown in Figure 5.9. As one can see, 

there is severe destruction caused by the tornado when it just crossed the Arkansas River in 

location R2L1 as shown in Figure 5.10. In this location, R2L1, the tornado caused very severe 

damage, and a community of several residential houses was completely destroyed. The position 

of R2L1 is reported in Figure 5.11. 

The second location selected in this region is R2L2 about a half mile northeast R2L1. Like 

R2L1, the damage in R2L2 is also EF4, and also a neighborhood of several residential houses 

was tremendously damaged and grounded as shown in Figure 5.12. The location of R2L2 in the 

terrain map is illustrated in Figure 5.13. The average damage rating in this region is about (EF3-

EF4) on the centerline of the damaged path. Some EF2 and EF1 ratings are reported on the far 

side of the damaged path centerline.  Before the tornado crossed I40, it hit an industrial 

community and severely destroyed it as shown in location R2L3 (see Figure 5.14-16). Since the 

terrain in this region is mostly flat terrain and water surfaces, it is hypothesized that the 

disturbance experienced by the tornado was at its minimal level. Therefore, the tornado caused 

much severe damage.  

 



82 
 

 
Figure 5.9 Region (R2) tornado went over flat terrain and water surfaces causing extreme 

destruction, the damage average ratings is (EF3-EF4). 

 
Figure 5.10 Severe damage in a neighborhood at location (R2L1) rated as EF4, taken by CAP 

(2014). 
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Figure 5.11 The position of selected location R1L2 at coordinates (34°55'5.54"N, 

92°27'9.68"W). 

 
Figure 5.12 Severe damage in a community at location (R2L2) rated as EF4, taken by CAP 

(2014). 
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Figure 5.13 The position of selected location R2L2 at coordinates (34°55'22.77"N, 

92°26'54.35"W). 

 
Figure 5.14 An aerial image for a metal building severely destroyed and rated as EF4 at location 

(R2L3), Taken by CAP (2014). 
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Figure 5.15 A ground photo fora metal building severely destroyed and rated as EF4 at location 

(R2L3), Taken by UA team. 

 
Figure 5.16 A metal at location (R2L3) harshly damaged, almost all the sheets are detached and 

many columns and beams are bent, Taken by UA team. 
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Figure 5.17 The position of selected location R2L3 at coordinates (34°57'5.01"N, 

92°25'27.03"W). 

5.4.3. Region (R3) a Mix of Hilly Terrain and Flat Terrain 

 The terrain in region R3 is a combination of both hilly terrain region and relatively flat 

terrain region. So it provides much better opportunity to evaluate the terrain effects on tornado 

damage. This region starts at Lake Conway and ends two miles beyond Vilonia bypass. First the 

tornado traveled over hilly terrain, and the damage rated in this region as EF1-EF2 as shown in 

Figure 5.18. Then it moved over flat terrain, and one can see that the reported damage is directly 

increased to EF3-EF4 (see Figure 5.18). The location R3L1 is selected in the hilly region. Three 

different houses are illustrated in Figures 5.19-21 showing minor damage to the roof rated as 

EF1-EF2. The position of R3L1 is shown in Figure 5.22. In the selected location R3L2, one can 

see that the damage sharply increased to have a complete community grounded when the tornado 
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traveled over the flat terrain as shown in Figures 5.23-24. The position for the selected location 

R3L2 is demonstrated in Figure 5.25.    

 

 
Figure 5.18 Region (R3) low EF rating over the hilly terrain and high EF rating associated with 

flat terrain, the damage average ratings is (EF1-EF2) for the hilly zone and (EF3-EF4) for the 

relatively flat zone. 

 
Figure 5.19 Damage in residential house rated as EF2, R3L1 taken by CAP (2014). 
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Figure 5.20 Minor damage to the residential house roof rated as EF1, R3L1 taken by CAP 

(2014). 

 
Figure 5.21 Minor roof damage rated as EF1, R3L1 taken by CAP (2014). 
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Figure 5.22 the position of selected location R2L3 at coordinates. 

 

 
Figure 5.23 A whole community destroyed due to tornado right before Vilonia bypass at R3L2. 
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Figure 5.24 Several communities destroyed due to tornado right before Vilonia bypass at R3L2. 

 
Figure 5.25 The Position of location R3L2. 
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5.4.4. Region (R3) a Mix of Hilly Terrain and Flat Terrain 

 Region R4 starts beyond Vilonia bypass and ends near El Paso. In this region, the tornado 

first travelled over flat terrain (Vilonia) and created massive destruction. Then it interacted 

consecutive hills to have the damage immediately decreased as shown in Figure 5.26. A new 

constructed school at location R4L1 heavily damaged and rated EF4 as shown in Figure 5.27. 

The location R4L1 is positioned over the flat terrain as shown in Figure 5.28. Another EF4 

location is R4L2 where almost a complete huge neighborhood is massively destroyed as shown 

in Figure 5.29. The position of location R4L2 is illustrated in Figure 5.30. Then beyond the hilly 

region in R4 (R4L3) the damage level decrease to EF1 as shown in Figure 5.31, and the position 

of this site is demonstrated in Figure 5.32. Therefore, it can be concluded from the provided 

observation that there is great influence of the hilly terrain on the tornado damage level. When 

the tornado interacts with a hilly terrain, there is great disturbance experienced by the tornado 

and the damage level is decreased. On the other hand, when the tornado moves over relatively 

flat terrain or water surface, it maintains high destructive energy and the damage level is 

increased.    
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Figure 5.26 Region (R4) tornado EF ratings decreased after tornado interacted with hilly terrain, 

the damage average ratings is (EF4) for the relatively flat zone and (EF1) for the hilly zone. 

 
Figure 5.27 A new constructed school at location R4L1 heavily damaged and rated EF4, taken 

by CAP (2014). 
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Figure 5.28 the position of the destroyed school (R4L1). 

 
Figure 5.29 A neighborhood in Vilonia (R4L2) almost completely grounded, Taken by CAP 

(2014). 
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Figure 5.30 the position of the destroyed community (R4L2). 

 
Figure 5.31 Minor damage observed at the house in location R4L3, taken by UA team. 
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Figure 5.32 the position of location R4L3. 

 

5.5. Tornado Crosses the Hill Where Lower Elevation Available 

 Tornado occurrence in a hilly area provided a rich environment to study tornado behavior 

(e.g. path changing) and effects of hill on tornado path and damage. After tornado crossed 

Vilonia moving toward El Paso, it underwent over several hills. The damage path between 

Vilonia and El Paso is shown in Figure 5.33 as a yellow line. Two points of interest (POI) are 

selected and analyzed for tornado path changing. These points are red circled in Figure 5.33, and 

notations are given as P1 and P2. These two points are imposed on the terrain map as illustrated 

in Figure 5.34. The tornado approached the hill at an angle of about 20o (see Figure 5.33), and it 

traveled about 1.25 miles along the hill and after that it changed the traveling direction at point 

(P1).  Then, it traveled for almost three miles between the two parallel hills untill it changed 

direction for the second time at Point (P2). The cross section of the two parallel hills at two 
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different locations is illustrated in Figure 5.35. From the Figure 5.35, it can be seen that the 

distance between the top of the hills is about 0.3 miles. Also, the hill on the north side has higher 

elevation of 525 ft than the hill on the south side (450-490 ft). From the analysis of the tornado 

path, it is observed that the tornado moved along the side of the hill and it changed travelling 

direction toward northeast whenever a low elevation is available. From Figure 5.34, one can see 

that there is discontinuity in the ridgeline in the location of both selected points (P1 & P2). This 

provided low elevation and preferred passage for the tornado to move through. The changes in 

elevation in the both points (P1 & P2) are shown in Figure 5.36 a and b respectively. Also, aerial 

image for tornado damage and path change over the low elevation is shown in Figure 5.37. Four 

other sites where the tornado change traveling direction are identified. Two of these are close to 

the tornado start point, southwest of Lake Maumelle. The other two sites are in the hilly region 

between Mayflower and Vilonia. Therefore, it can be concluded that tornado often moves toward 

north east and it follows the least resistance path whenever is possible through a gap in a 

ridgeline or low elevation spots. Also, one can conclude from the provided field observations 

that tornado changes travelling direction while moving along the side of a hill if a gap 

(discontinuity in the hill) is available. Furthermore, it is observed that tornado moves along the 

side of the hill of certain orientation, and that the tornado angle of attack affects the way it 

crosses the hill. In a different site in region R1, it is noticed that the tornado moved along the 

side of the hill when its angle of attack was about 26o. Ahmed and Selvam (2015a) reported that 

the tornado crosses a hill of relatively small width when the angle of attack is almost 90o. More 

investigations are required either by computer models or wind tunnel to have better 

understanding of the field observations. 
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Figure 5.33 Tornado damage path between Vilonia and Elpaso (NASA, 2014). 

 
Figure 5.34 Terrain map showing points where tornado change direction. 
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Figure 5.35 Cross section of the two parallel hills a) close to P1 b) close to P2. 

 

 
Figure 5.36 Elevation profile along lone AB a) point (P1) b) point (P2). 
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Figure 5.37 Aerial image for tornado damage and path change over the low elevation at point 

(P2) taken by (CAP, 2014). 

 

 

 

 

5.6. Conclusions 

 Damage investigation of the tornado in Mayflower, AR in April 2014, is conducted. 

Ground and aerial investigation data is gathered and analyzed using Google Earth, Google 

Terrain Maps and Google Picasa. These computer software are utilized for data synchronization 

and visualization, and the following conclusions are arrived: 

 The Damage intensity is observed to be less when the vortex travels over hilly terrain. 

The average damage rating over a hilly terrain is estimated less than EF2, while it is 

almost EF4 where the terrain is flat.  

Tornado traveling Direction 
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 The presence of several successive hills functions like protection beerier and reduce the 

tornado damage. This is clearly observed in region (R1) and parts of regions (R3 &R4) 

where the terrain is hilly. 

 When tornado travels over flat terrain or water surfaces, it maintains high devastating 

power and produces huge ruin (EF4). 

 Tornado traveling path is greatly affected by the presence of the hilly terrain, and it leads 

to alter the tornado path in certain circumstances. 

 It is detected from the observations that when tornado approaches a hill with angle of 

attack much less than a right angle, it is more likely that the tornado travels on the side of 

the hill, along the hill, rather than crossing it. 

 When travelling over hilly terrain, Tornadoes tend to find a gap and travel through it 

following the least resistance path. Six locations are identified in this tornado site.   
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6. TOPOGRAPHY EFFECTS ON TORNADO PATH DEVIATION  

6.1. Introduction 

 Tornadoes are considered a major risk for lives and the economy.  Researchers have 

investigated tornadoes in many avenues: tornado geneses, tornado forces, tornado damage, 

tornado path and direction, and tornado interaction with structures, etc. Recently few researchers 

reported from wind tunnel and computer model that when a tornado goes over a hill the path of 

the tornado deviates.  In this work further detailed study of the extent of path deviation for 

various ratios of tangential velocity to translational velocity are investigated. Wind tunnel, field 

and computer model data are investigated to examine the effects of topography on tornado path 

deviation (i.e. turns in tornado path while interacting with topography). Field data from both 

Tuscaloosa (2011) and Mayflower (2014) tornadoes is considered in this study to examine 

effects of topography on tornado path deviation. Computer model is utilized to run six different 

ratios of maximum angular velocity to translational velocity (Vϴ/Vt) (i.e.1-4, 6, 8) and study the 

effects of changing this ratio on tornado path deviation. The hill height and slope and vortex 

parameters other than (Vϴ/Vt) are kept constant. The topography shape considered in this work is 

a ridge. Results show that (Vϴ/Vt) ratio has significant influence on a tornado path deviation. As 

the ratio increases, the deviation shape changes from a straight line to single curvature then to 

double curvature. For ratio (Vϴ/Vt) =1, the deviation shape is almost a straight line. For 2≤ 

(Vϴ/Vt) <4, the deviation shape becomes a single curvature shape. When the ratio (Vϴ/Vt) ≥4, the 

deviation shape changes to double curvature. Numerical results for (Vϴ/Vt) ≥4 is qualitatively 

comparable to wind tunnel data. Therefore the computer model can be considered with some 

confidence for further application. The University of Arkansas (UA) computer model results for 

tornado path deviation shape are comparable to both experimental and field data. 
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6.2. Background 

In the literature, Early attempts have been conducted experimentally (i.e. wind tunnel) to 

understand tornado outbreak and what factors affect the tornado generation (e.g. Ward, 1972; 

Davis-Jones, 1973). A common finding is that the non-dimensional factor, swirl ratio, controls 

the tornado outbreak. Swirl ratio governs the vortex configuration (e.g. low swirl ratio associates 

with single-vortex, and high swirl ratio leads to two-cell vortex).  Furthermore, experimental 

tornado simulators are employed to measure tornado force coefficients on structures (e.g. Jischke 

& Light, 1983). 

   In the numerical endeavors, Selvam and his group (e.g. Selvam, 1993; Selvam and Millett, 

2003) have simulated tornado-structure interaction numerically. They reported tornado forces on 

different types of structures (e.g. circular cylinder and cubic building).   

However, very little research in engineering and meteorology has been conducted to understand 

tornado interaction with terrain (e.g. hills, escarpment, knolls, valleys, mountains, etc.). 

Recently, a few studies have been made to investigate effects of terrain on tornado path and 

behavior, especially after the outbreak of the Tuscaloosa tornado in 2011. Gorecki and Selvam 

(2013) studied sheltering efficiency of rectangular man-made walls (rectangular hills). For a wall 

height equal to the tornado radius, they reported that the sheltering efficiency, the ability of the 

structure to reduce wind velocity on its leeward side, is almost 40%. Selvam and Ahmed (2013) 

employed Google Earth for damage investigation of terrain effects on tornado damage. Their 

focus was tornado damage uphill and downhill as well as sheltering on the leeward sides of hills. 

They reported that there is no damage in a region surrounded by hills located on the tornado 

path. In these studies, no attention was paid to terrain effects on tornado path deviation, instead 

only damage is monitored. 
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Lewellen (2012) implemented the immersed boundary method and large eddy simulation (LES) 

to simulate tornado in 3D domain and study the effects of topographical shapes (ridges, knolls, 

valleys, ridge pairs, ridges with gaps, etc.) on tornado near-surface wind. Lewellen only 

visualized tornado path deviation due to the interaction with various topography shape, and no 

topography height effect was considered. For different topographical shapes, different path 

deviations and pressure values are observed. However, tornado radius and velocities and 

topography dimensions are not reported in Lewellen (2012). Therefore, it is not considered in 

this work for quantitative comparison. Karstens et al. (2012) utilized the Iowa State University 

(ISU) tornado simulator to determine the effects of idealized topography (ridges and 

escarpments) on tornado characteristics. They noticed that tornadoes experience deviation from 

the center line while climbing up and down the topographical shapes.  However, the mechanism 

causing this behavior is not clear yet. Many parameters are involved in the tornado-terrain 

interaction, and much more research still need to be done for better understanding of terrain 

effects on tornado damage and path deviation. 

In this work, topography effect on tornado path deviation is further investigated. First, wind 

tunnel data presented by Karstens (2012) and Karstens et al. (2012) is analyzed. Then, data 

collected from Google Earth for the Tuscaloosa-2011 tornado and from field investigation for the 

Mayflower-2014 tornado are studied to determine topography effects on tornado path deviation. 

A connection between the ratio of angular velocity and translational velocity (Vϴ/Vt) and the 

path deviation shape is noticed. Since the ratio of (Vϴ/Vt) is not directly provided for both wind 

tunnel and field data, the UA computer model is utilized to determine the effect of changing 

(Vϴ/Vt) on tornado path deviation as well as to validate the computer model by a comparison 

with the wind tunnel and field data. In addition, the model is used to explain the flow behavior 
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up and down the hill using visualization. Knowing the factors that affect tornado path and the 

possible path that tornado may follow could lead to better measurements of tornado velocities 

near the ground and better ways to track tornadoes damage. The objective of this chapter is to 

determine the topography effects on tornado path deviation. Thereof, tornado path deviation due 

to interaction with topography (ridges) using experimental and field data is analyzed. Then, a 

computer model to study the effect of changing the ratio (Vϴ/Vt) on tornado deviation shape is 

utilized. Also, the numerical results are compared with experimental data to validate the 

numerical model for further applications. Then, the computer model is utilized for visualizing the 

tornado ridge interaction and explain the reason for the deviation. The tornado path deviation is 

affected by various properties of the hill and tornado. In this work, only the velocities ratio 

(Vϴ/Vt) is varied, and the rest are kept constant. 

6.3. Wind Tunnel Observations for Tornado Path Deviation (Tornado-Ridge Interaction) 

Karstens et al. (2012) utilizes the Iowa State University (ISU) tornado simulator to study 

tornado interaction with different topographical configurations (e.g. ridges and escarpments see 

Figure 6.1). The simulator is a huge transferrable chamber with a fan and vanes to generate the 

tornado. Details of the simulator are reported in Haan et al. (2008). The wind tunnel experiment 

setup for tornado interaction with topography is presented in details in Karstens (2012). The 

ridge height is held fixed equal to 0.285 m. the tornado radius used is in range (0.23-0.56) m, so 

the simulated tornado average radius is assumed to be equal to the ridge height. The ridge profile 

is shown in Figure 6.2 a which is adopted from Karstens (2012). The maximum slope for the 

ridge is 20%. Details for the simulated angular velocity values are not reported, however, Haan 

et al. (2008) is referred to for these details. Karstens reported that translational velocity used is 

0.2 ms-1. Based on his setup for the simulator, angular velocity average is estimated to be 9 ms-1. 
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Therefore, the ratio (Vϴ/Vt) used in their simulation is almost equal to 45. The minimum 

pressure on the ridge surface is acquired while the simulated tornado interacts with the ridge. The 

minimum pressure on the ridge surface due to tornado crossing the ridge is shown in Figure 6.2 

b. From Figure 6.2 b, one can see that the tornado experiences deviation in its path while 

climbing up and down the ridge.  This deviation is defined as a double curvature deviation with 

two maximum eccentricities on both sides. The first eccentricity is almost at one third of the way 

up ridge, and the second one is at 20% of the way down ridge. Karstens reported that 

translational velocity could not be maintained constantly, and that might also affect the outcome. 

Also, the energy is provided continuously for angular momentum, while a real life tornado 

experiences energy loss due to either interaction with structure or topography causing distraction. 

The real life tornado is much more complicated including climate effects on tornado behavior. 

This might make their results differ slightly from real tornado behavior. Therefore, the 

topography effect on tornado path deviation is investigated for two real life tornadoes as 

discussed in the next section.   

 

                   

Figure 6.1 Topograghy shapes used by Karstens a) 2D ridge b) 2D escarpment, (taken from 

Karstens, 2012). 
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Figure 6.2 a) Ridge profile b) minimum pressure on ridge surface (Vϴ/Vt≈45), (taken from 

Karstens, 2012). 

 

6.4. Field Observations for Tornado Path Deviation (Tornado-Hill Interaction)  

In this section, the Google Earth damage path of Tuscaloosa-2011 tornado (Selvam and 

Ahmed, 2013), and the field data of Mayflower-2014tornado (Selvam et al., 2015) are 

considered for tornado path deviation study. In both of these tornado sites, the tornadoes 

interacted with hilly terrain (a terrain which has several consequent hills or any other 

topographical configurations in certain regions).  
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6.4.1.  Tuscaloosa-2011 Tornado 

 Tuscaloosa-2011 is considered as one of the deadliest tornadoes in the last five decades. 

The whole path of approximately 142 km (88 miles) is shown in Figure 6.3. The tornado travels 

from southwest to northeast as indicated by the yellow arrow in Figure 6.3. About 29km (18 

miles) northeast of Tuscaloosa on the tornado path, a close up view is shown in Figure 6.4. 

Figure 6.4 illustrates the tornado signature over the hilly terrain as a light brown color. Two sites 

are selected with zoomed views and elevation profiles in this hilly area. For both locations, 

notations are given as H1 (Hill1) and H2 (Hill2) respectively. The average radius of the tornado 

core is estimated about 75m (246 ft) from the damaged path using Google Earth measuring tools 

(maximum reported damaged width is about 2.4km (1.5 miles)). The tornado maximum intensity 

for Tuscaloosa-2011 is EF4 with maximum velocity of 306kmh-1 (190 mph) as reported in 

National Weather Service report (NWS, 2011c). This velocity range can be on the higher side 

because it comes from straight line wind damage estimation. The ratio of angular velocity to 

translational velocity (Vϴ/Vt) is almost (3) as detected from (NWS, 2011c). However, due to 

interaction with the hilly terrain, tornado loses energy and its intensity changes as shown in 

Figure 6.5. Figure 6.5 demonstrates tornado damage path and intensities for the same region of 

H1 and H2 mentioned above. Therefore, the ratio (Vϴ/Vt) for this specific location is estimated 

to be less than two depending on the reported intensity and average traveling speed for the 

tornado. The height of H1 is almost 21m (70 ft) as illustrated in the elevation profile in Figure 

6.6, and the maximum slope is 32%. The other hill (H2), also located on the tornado path has 

maximum height of 18m (60 ft) (See Figure 6.7).  

The damaged path in Figures 6.6and 6.7 is margined by dashed yellow arrows. From the close-

up view for H1shown in Figure 6.6, one can see that the tornado crosses the hill with no 
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curvature in its path. Also, the tornado with aforementioned intensity passes over the H2 with no 

curvature in its path as shown in Figure 6.7. In other words, there is no deviation from the 

original path as one can see from the provided data. Furthermore, Figure 6.5 confirms that 

tornado damage path (red area) is almost straight (No curvature) even though the terrain is hilly.  

In this case, the (Vϴ/Vt) ratio is estimated to be less than two, and it is interpreted to be 

connected with no curvature in the tornado path. It is also important to note that hills are very 

close to each other and with height less than 50% of tornado radius. However, no height effect is 

studied in this work. 

 

Figure 6.3 Damage path for Tuscaloosa tornado 2011 adopted from NOAA 2011. 

Tuscaloosa 
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Figure 6.4 Close-up view for a hilly terrain region 18 miles NE Tuscaloosa. 

 

Figure 6.5 Tornado intensities and damaged path for the region of H1 and H2, (NWS, 2011c). 

H1 

H2 
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Figure 6.6 Close-up view and elevation profile for the hill in location H1, (Vϴ/Vt ≈ (1-2)). Not 

much deviation noticed. 

 

Figure 6.7 Close-up view and elevation profile for the hill in location H2, (Vϴ/Vt ≈ (1-2)). Not 

much deviation. 
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6.4.2. Mayflower-2014 Tornado 

 Another tornado outbreak, Mayflower-2014, is selected for this study as shown in Figure 

6.8, an image reported by the National Aeronautics and Space Administration (NASA, 2014). 

The terrain in this area is also hilly, but data availability and quality are very limited. One 

location close to Lake Conway is studied in this site. As reported by NWS (2014a), the tornado 

intensity varies greatly in this location between EF0 to EF2. However, there are few places with 

intensity of EF3 and EF4 as reported by NWS (2014a). The point here is that tornado intensity 

changes as it interacts with terrain. Rough terrain weakens tornadoes, while smooth terrain 

strengthens tornadoes (Selvam et al., 2014). Therefore, the ratio (Vϴ/Vt) may change slightly 

depending on the terrain nature. The maximum ratio of (angular/ average translational velocity) 

for this site is estimated to be about (5). The tornado traveled about 64km (40 miles) in one hour 

as reported by NWS (2104a), so Vt is estimated to be 64kmh-1 (40mph). 

In the selected location, H3, the tornado passes over a water surface, Lake Conway, before it 

interacts with H3. Because water is considered a smooth surface, it is assumed that tornado has a 

high intensity. Figure 6.9 shows a close-up view of the damaged path around location H3. After 

passing the lake, the tornado interacts immediately with a two-dimensional hill, and then hits H3 

as shown in the topographical terrain image Figure 6.10. Therefore, it gets weakened and the 

ratio (Vϴ/Vt) decreases slightly. The two-dimensional hill height is about 37m (120 ft) and it is 

located about 0.8 km (a half mile) prior to H3. There is not enough information about the tornado 

core radius. However, estimation from the damaged path using Google Earth measuring tools 

shows that the radius is about 61m (200 ft). The NASA image is imposed on Google Earth, and 

then the tornado core radius is measured. Therefore, a tornado with estimated (Vϴ/Vt) ratio about 

(4) moves over H3. The height H3 is about 100ft as shown in the elevation profile in Figure 6.11. 
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From Figure 6.11, one can see that there is a single curvature deviation from the path center. The 

tornado starts deviating to the right while climbing uphill to reach its maximum deviation at the 

hilltop. Then, it starts back deviating to the left while climbing down.  

These two sites, Tuscaloosa-2011 tornado and Mayflower-2014 tornado, show two completely 

different cases for tornadoes crossing a hill. In each case the tornado behaves differently and has 

different deviation configuration for different estimated (Vϴ/Vt) ratios. Therefore, computer 

model is utilized to verify the theory that ratio (Vϴ/Vt) affects the tornado path deviation while 

interacting with topography (a ridge). Also, it is used to compare the computer results for 

tornado path deviation with experimental results for validation and further applications of the 

computer model. 

 

Figure 6.8 NASA image for the tornado path in Mayflower 2014. 

H3 
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Figure 6.9 A close-up view for location close to Lake Conway (Mayflower, 2014).  

 

Figure 6.10 The terrain topography around the selected location in H3 (Mayflower, AR). 

 

H3 

H3 

2D Hill 
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Figure 6.11 Elevation profile for the hill in location H3, (Vϴ/Vt ≈ 4, single curvature).  

 

6.5. Vortex Transportation on a Flat Terrain  

 The goal here is to transport the vortex along the X axis, and monitor the minimum 

pressure on the ground to study the tornado path deviation. No topography is considered for this 

purpose, and three sets of grid are considered. The grid spacing in X and Y directions are held 

fixed and equal (0.1H) for all the grids. However, spacing in the Z direction (Vertical direction) 

is varied. For grid A, equal spacing of (0.085h) is used. For the other two grids (B & C), a 

logarithmic growth factor is used with minimum grid spacing close to the ground of 0.025h and 

0.0025h respectively. The vortex is transported completely along the X axis of the domain as 

shown in Figure 6.12 a-c. Grid B shows the best vortex transportation with dissipation of 24%; 

however, it takes double the CPU time comparing to grid A, and the difference in vortex 

dissipation is only 6%. Dissipation is evaluated by measuring the vortex minimum pressure 

H3 
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width near the outlet and compare it with the one near the inlet of the domain. Even though the 

minimum grid spacing in grid C is the smallest, it is associated with the biggest numerical error. 

Since the main purpose here is monitoring the pressure on the ground and validated with the 

wind tunnel data, the grid A is considered for the rest of this study for a good accuracy and 

computational cost balance. Also, when topography is presented in the numerical domain, the 

iteration time required to achieve the convergence criteria is about five times that required when 

there is no topography. Even though (Vϴ/Vt) =3, one can see that the tornado path is almost a 

straight line in Figure 6.12, because of the flat terrain (no topography effects). 

 

 

 

 

 Table 6.1 Grid details (all grid spacing in X&Y directions uniform equal 0.1H). 

 

 

 

 

 

 Min spacing 

Z 

Max spacing 

Z 

Total point CPU time Parallel 

MPI, 24P 

Vortex 

Dissipation 

Grid A 0.085H 0.085H 290x290x90 

(7.569M) 

14 hrs 30% 

Grid B 0.025H 0.25H 290x290x90 

(7.569M) 

24 hrs 24% 

Grid C 0.0025H 0.25H 290x290x90 

(7.569M) 

35 hrs 35% 
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b 
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Figure 6.12 Minimum pressure on the domain ground (flat domain) a) grid A b) grid B c) grid C, 

(Vϴ/Vt) =3.  

 

 

6.6. Simulation Parameters    

 The tornado radius and ridge parameters used in this work are taken from Karstens 

(2012) for a better comparison between experimental and numerical simulations. However, 

details for angular to translation velocities ratio are not reported in Karstens works, so a range of 

values are considered in the model. The tornado radius is equal to ridge height, and the ridge 

profile is represented by the below Gaussian equation adopted from Karstens.   

)500/5.0( 22

. ix

i eHZ



                                                                                                                       (6.1) 

Where Zi is the height at distance xi from the center, H is the height of the ridge. 

c 
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There are several factors control and affect the tornado-terrain interaction. Some of these factors 

are; obstacle shape profile, slope of the obstacle, obstacle height, obstacle length, ratio of 

obstacle height to tornado radius, ratio of obstacle length to tornado radius and ratio of tornado 

angular velocity to translational velocity. In real life, there could be more factors involved. In 

this work, a ridge shape is used with height equal to tornado radius (rmax), width equal 30 rmax and 

slope equal 20% as illustrated in Figures 6.13 and 6.14. The shape profile of the ridge, the ratios 

of the tornado radius to both height and length of the ridge are all fixed and used similar to those 

reported in Karstens (2012).  The ratio of (Vϴ/Vt) observed from real tornado is in the range (3-

6). In this work, the ratio of angular velocity to translational velocity is varied within the range 

(1-8) to compare the results to experimental and field data as well as to verify its effects on 

tornado’s path deviation. Simulation of (Vϴ/Vt) greater than (8) is not considered in this work 

because it is associated with very high error in capturing the boundary layer. Tornado radius 

(rmax) equal to 2 units and a ridge height of 2 units are used in this work. Table 6.1 illustrates 

parameters used in the wind tunnel experiment by Karestens (2102), University of Arkansas 

(UA) numerical simulations and that estimated for field data. In Table 6.1, values of velocities 

and tornado radius for numerical and experimental simulations are normalized with respect to 

ridge height (H). Numerical domain and pressure Iso-surface of tornado approaching the ridge is 

shown in Figure 6.13. Figure 6.14a shows the grid in XZ plane but the coarseness of the grid is 

increased for vitalization purposes. Figure 6.14b is a close-up view for the grid close to the ridge 

surface with all grid points drawn. 
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Figure 6.13 Numerical domain with pressure Iso-surface approaching the ridge. 

 
 

 

Figure 6.14 a) Grid configuration in XZ plane (10 points skipped). b) A close-up view close to 

the ridge surface (all the points drawn). (Total grid point is 290x290x90) 

a 

b 
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6.7. Results Discussion of the Computer Model 

 The effect of changing the ratio (Vϴ/Vt) on tornado path deviation is investigated. Six 

different ratios (i.e.1, 2, 3, 4, 6, 8) are considered. These six parameters are mentioned in Table 

6.2 as UA1 to UA6. The coordinates, in both X and Y axis, are normalized with respect to the 

ridge height. The outcome is striking, and it shows that there is a significant effect of changing 

the ratio (Vϴ/Vt) on tornado path deviation. For ratio equal to one, the path is almost straight (no 

deviation) as shown in Figure 6.15. For ratios (2 &3), the path has tiny little bend to the left close 

to the center of the hill, then it deviates sharply to the right. This can be defined as single 

curvature as shown in Figures 6.16 & 6.17. When the ratio is greater than 4, one can see that the 

path has double curvature as shown in Figures 6.18 to 6.20. The ratio 6 is considered for 

discussion for better clarity. From Figure 6.19, one can see that tornado starts to deviate left from 

the center line while climbing up the ridge. The maximum devotion is about 0.75H when tornado 

reaches the top of the ridge. Then, it turns about 0.75H off the center line to the right as it goes 

down the ridge. After it is off the ridge, it starts to move back to the center. (Vϴ/Vt) ratio greater 

than (8) is not considered in this work due to high error in capturing the boundary layer flow. 

6.8. Comparison of Computer Model with Field and Wind Tunnel Data 

 From the aforementioned results, one can see that as the ratio (Vϴ/Vt) increases, the 

tornado path changes from straight line (no deviation) to single curvature then to double 

curvature. This gives better understanding for the mechanism responsible for this behavior as 

discussed later. 

These results explain why tornadoes have different path shapes in different situations in real life 

tornadoes. For ratio equal to one, the result is in very good agreement with tornado path over H1 
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and H2 in Tuscaloosa-2011 tornado as illustrated in Figures 6.6 & 6.7. Also, at location H3 in 

Mayflower-2014 tornado shown in Figure 6.11, the estimated average value for (Vϴ/Vt) is about 

four. Therefore, it is expected to see double curvature for the path deviation if the ratio is greater 

than or equal four. It does show single curvature which means that the actual (Vϴ/Vt) ratio in that 

specific location is less than four.   

Table 6.2 (Vθ/Vt) for experimental, numerical and real life tornado. 

 H rmax slope Vθ Vt (Vθ/Vt) 

Experimental 

Karstens (2012) 
1 1 

20% 31.6 unit/

s 
0.7 unit/s 45 

Numerical UA1 1 1 20% 1.5 unit/s 1.5 unit/s 1 

Numerical UA2 1 1 20% 1.5 unit/s 0.75 unit/s 2 

Numerical UA3 1 1 20% 1.5 unit/s 0.5 unit/s 3 

Numerical UA4 1 1 20% 1.5 unit/s 0.375 unit/s 4 

Numerical UA5 1 1 20% 1.5 unit/s 0.25 unit/s 6 

Numerical UA6 1 1 20% 1.5 unit/s 0.185 unit/s 8 

Mayflower tornado ~100ft ~200ft ~32% 190 mph 40 mph 4.75 

Tuscaloosa tornado ~60ft ~246ft ~26% 190 mph 59 mph 3.2 

 

 
Figure 6.15 Minimum pressure on 2D ridge surface for (Vϴ/Vt=1). 
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Figure 6.16 Minimum pressure on 2D ridge surface for (Vϴ/Vt=2). 

 
Figure 6.17 Minimum pressure on 2D ridge surface for (Vϴ/Vt=3).  
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Figure 6.18 Minimum pressure on 2D ridge surface for (Vϴ/Vt=4). 

 

 

Figure 6.19 Minimum pressure on 2D ridge surface for (Vϴ/Vt=6). 
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Figure 6.20 Minimum pressure on 2D ridge surface for (Vϴ/Vt=8). 

 

 

6.9. Deviation Analysis   

 In this section an explanation of why tornado deviates while interacting with topography 

is sought. First, it is important to make the terminology used here clear and easy to follow. The 

tornado is transported along the X-axis in the numerical domain as mentioned early. Therefore, 

any deviation in the tornado path is going to be either on the positive side (left) or the negative 

side (right) along Y-axis. Different 2D and 3D views are used to interpret the tornado deviation, 

and in all these views the term (left) is used whenever the tornado deviates toward the positive Y, 

and the term (right) is used whenever the tornado deviates toward the negative Y. The ratio 

(Vϴ/Vt =6) is considered in this section. The pressure contours for two slices in the YZ plane are 

drawn in 2D and 3D to make our terminology clear and show the tornado deviation. Figure 6.21 

a shows 3D view for the pressure contours for a slice in YZ plane at position (X=-5) while the 
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tornado is climbing up the ridge. From Figure 21 a, one can see the tornado tilts toward the left 

(+Y). The 2D view of the same slice is shown in Figure 21 b and it shows that there is clear 

deviation to the left. Similarly Figure 22 a and b show the tornado deviates toward the right (-Y) 

while the tornado is moving down the ridge. The pressure iso-surface for the tornado while 

climbing up the ridge and going down the ridge is illustrated in Figure 23 a and b. From Figure 

23, one can see that the tornado base is not level as long as the tornado on the ridge surface. This 

creates channeling effects and makes the tornado deviates. The velocity vectors are drawn at the 

two locations shown in Figure 23 a and b for better explanations. The velocity vectors are plotted 

in the horizontal plane (XY) as shown in Figure 24 a to visualize the guiding velocities direction 

while the tornado moving up the ridge. From Figure 24 b, one can see that velocity vectors 

toward (+Y) left (red vectors) are much more than that in the opposite direction (blue vectors), 

and that finally makes the velocity magnitude leads the tornado toward the left as shown in 

Figure24 c. On the leeward side of the ridge (Figure 25 a), one can see that the channeling effect 

is governing the flow to the right (-Y). Velocity vectors in the XY plane on the way down ridge 

are shown in Figure 25 a where the velocity vectors (red vectors) toward the left (+Y) are very 

less comparing to the ones pushing towards the right (blue vectors) as shown in Figure 25 b. 

Therefore, the tornado is guided toward the right by the resultant velocity vectors as shown in 

Figure 25 c. For low (Vϴ/Vt) ratio, the translational velocity is high, and it controls the tornado 

toward forward direction. The results for ratios greater than four are comparable to wind tunnel 

results presented by Karstens (2012). However, there is little difference in the location of the 

maximum deviation and the magnitude of these deviations due huge difference in the simulated 

ratios. Due to limitations in numerical model the simulated (Vϴ/Vt) ratio in experimental work 

could not be consider exactly. As the ratio increase, the results are more comparable to the wind 
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tunnel results. This means that the computer model is capable of generating reasonable tornado 

and can be considered for further applications and studies. 

 
 

 
Figure 6.21 tornado deviation toward the left (+Y) while climbing up the ridge a) a 3D view for 

the pressure contours of a slice in YZ plane b) a 2D view of the same slice. 
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Figure 6.22 tornado deviation toward the right (-Y) while moving down the ridge a)3D view for 

the pressure contours of a slice in YZ plane b)2D view of the same slice. 
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Figure 6.23 Pressure Iso-Surface of the tornado a) climbing up the ridge b) moving down the 

ridge. 
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Figure 6.24 Velocity vectors while climbing up the ridge a) Velocity magnitude vector for the 

whole domain  b)  close up view for velocity vectors in y direction c)  close up view for velocity 

magnitude vectors  (Vϴ/Vt=6). 
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Figure 6.25 Velocity vectors while climbing down the ridge a) Velocity magnitude vector for the 

whole domain  b)  close up view for velocity vectors in y direction c)  close up view for velocity 

magnitude vectors  (Vϴ/Vt=6). 

 

a 

b c 



131 
 

6.10. Results Summary  

 With the existing three different sources of data, it is shown that there is a connection 

between (Vϴ/Vt) ratio and tornado path deviation. First, from wind tunnel and field data (H3 on 

Mayflower-2014), it is shown that for higher velocity ratios, there is more deviation (single and 

double curvature) for similar hills. Then, from field data (H1& H2 on Tuscaloosa-2011) using 

Google Earth data, it is shown that there is not much deviation (no deviation almost a straight 

line) for low ratios for similar hills.  By using the computer model, the influence of various ratios 

are predicted and compared. The comparison shows that as the ratio (Vϴ/Vt) increases, the path 

deviation shape changes from straight line to double curvature. Figure 6.26 shows different 

tornado paths associated with its traveling speed as reported by Fujita (1989). It shows that slow 

tornado, high (Vϴ/Vt) ratio, experiences path deviations while traveling. Also, it shows that fast 

tornadoes, low (Vϴ/Vt) ratio, move in straight lines (no deviation). However, in Fujita (1989), no 

attention was paid to topography effects. In all the aforementioned results, the effect of 

topography whose height is equal to tornado radius is considered on tornado path deviation for 

various (Vϴ/Vt) ratios. However, the field data show that topography height has an effect on 

tornado path deviation. After crossing the Arkansas River 3.5 miles south west Mayflower, the 

tornado travels over almost flat terrain until it hits the interstate I40 as illustrated by Figure 6.27 

taken from Civil Air Patrol (CAP, 2014). The interstate I40 location and elevation is illustrated 

by using Google Earth as shown in Figure 6.28. As aforementioned, tornado gains energy as it 

travels over relatively flat terrain or water surface. Therefore, we hypothesize that tornado has 

high intensity before it coincides I40. However, due to low height for I40, just few meters (2 m) 

above the surrounding ground, it does not affect tornado path. The same behavior also noticed 

when the tornado with ratio (Vϴ/Vt) equal to (3) is transported over flat terrain as illustrated in 
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Figure 6.12. Further understanding of the influence of ridge height, ridge length along the 

tornado path or the influence of the slope needs to be investigated.  

 

Figure 6.26 Tornado path configuration associated with its traveling speed taken from Fujita 

(1989). 
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Figure 6.27 Tornado path at I40 showing no path deviation, (Vϴ/Vt ≥4, but low hill height) 

adopted from CAP (2014). 

 

Figure 6.28 Elevation profile for line AB at interstate I40 where it is hit by the tornado. 

Arkansas River 

I40 

A 

A 

B 
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6.11. Conclusions  

 The topography effect on tornado path deviation is studied using three data sources (i.e. 

Field Data, Wind tunnel data and Numerical simulations). The following conclusions are drawn. 

 The ratio (Vθ/Vt) significantly affects the tornado deviation shape and magnitude when 

interacts with 2D ridge.  

 The curvature changes from straight line to double curvature shape as the ratio (Vϴ/Vt) 

increases.  

 For ratio (Vϴ/Vt) =1, the deviation shape is almost a straight line. For 2≤ (Vϴ/Vt) <4, the 

deviation shape becomes a single curvature shape. When the ratio (Vϴ/Vt) ≥4, the 

deviation shape changes to double curvature. 

 For (Vϴ/Vt) <4, The UA numerical results for tornado path deviation shape are 

comparable to field data (single and no curvature). 

 The UA Numerical results for (Vϴ/Vt) >4 are comparable to wind tunnel data (double 

curvature). Therefore the computer model can be considered for further investigation. 

Only one topography configuration is considered in this study which is a ridge of height equal to 

the tornado radius. The ridge slope is 20%, and maximum considered (Vϴ/Vt) ratio is 8. More 

investigation for different ridge height and slopes need to be examined for better understanding 

of this complicated phenomenon.  
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7.  Tornado Forces on a Sheltered Building 

7.1. Introduction  

 Tornadoes are one of the major threats for life losses and economy crises in the United 

States. Therefore, much research has been going on in the last five decades to develop a better 

understanding for this complex wind. One of a great interest for researchers is tornado-structure 

interaction due to its impact on human’s lives and economy disasters. Selvam and Millett (2003) 

simulated the first translating tornado interaction with a cubical building utilizing a computer 

model and showed that tornado forces are different than straight boundary layer wind forces of 

the same velocity. Since then, several developments for understanding this complex phenomenon 

have been achieved by Selvam group. Recently, field investigation by Selvam et al (2014 and 

2015) has reported that terrain has significant effects on tornado damage (forces) and path. They 

reported that tornado damage ratings are less over hilly terrain, and the damage ratings are much 

higher over the flat regions. Gorecki and Selvam (2014 and 2015) have conducted tornado-prism 

interaction using CFD, and they presented that there is about 40% reduction in tornado velocities 

on the leeward side of the prism. From field investigation using Google Earth, Ahmed and 

Selvam (2015a) showed that hills provided sheltered zone on their leeward side when interacting 

with tornadoes. Also, they showed that houses on the leeward side of a hill close to Lake 

Conway experienced less damage than that on the windward side.  

Tornado forces on different structures have been measured and reported by wind tunnel (Haan et 

al 2008 and Yang et al 2011) and by computer model (Selvam and Millet 2003 and 2005). 

However, terrain effects on tornado forces have never been investigated, and tornado forces on a 

structure sheltered by terrain have never been measured neither by wind tunnel nor by computer 
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models. Evaluating terrain influence on tornado forces helps to understand how terrain affects 

tornado destructive ability, and it also helps to determine how much the structure factor of safety 

against tornado forces might increase if the structure is built on the leeward side of a hill or any 

other terrain profiles.  

In this chapter, tornado forces on a sheltered dome building are measured and compared with 

forces on a building directly exposed to tornado. Two terrain profiles (a rounded hill and a 

triangular hill) are considered to demonstrate terrain effects on tornado forces applied on a 

sheltered building. The objective of this chapter is to determine the terrain effects on tornado 

forces applied on a sheltered dome building. First, tornado forces on a dome building located on 

the leeward side of the terrain (a rounded hill or a triangular hill) are measured. Then, hills 

sheltering ability are evaluated by comparing the measured forces on the sheltered building with 

those on a non-sheltered building. Next, the sheltering ability for two different terrain profiles 

with four different heights is determined. Finally, the sheltered zone length and the influence of 

the building location far away from the hill on its leeward side are evaluated.  

7.2. Computer Model  

 The computer model utilized by Ahmed and Selvam (2015b) is modified to account for 

tornado interaction with multi-structures. Using terrain following grid system gives a great 

advancement to our computer model to introduce several structures in the numerical domain. A 

grid generation program is developed to generate different terrain profiles as shown in Figure 7.1 

a and b.  Tornado-like vortex wind profile is modeled by implementing Rankine Combined 

Vortex Model (RCVM) which satisfies the Navier Stokes equations (NSEs) as reported by 

Lewellen (1976). As represented by the RCVM, the tangential velocity of a tornado-like vortex 
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(Vθ) increases linearly up to the vortex radius Rmax, where R is the distance from the vortex 

center.  When R is larger than Rmax, the tangential velocity decreases exponentially. RCVM 

represents two regions: the forced vortex region (R<Rmax) and the free vortex region (R>Rmax). 

Selvam (1985) was the first one who introduced RCVM for the tornado-structure interaction 

problems. The turbulence is modeled using Large Eddy Simulation (LES). Finite Elements 

Method (FEM) is used to approximate the NSEs. Then the approximated equations are solved 

using a semi-implicit method as explained in Selvam (1997). The computer model was validated 

by comparing tornado path deviation due to interaction with terrain with both wind tunnel and 

field observation results as presented by Ahmed and Selvam (2015b).   

 

 

 

a 
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Figure 7.1 a) A building on the leeward side of a rounded hill b) A building on the leeward side 

of a triangular hill. 

7.3. Problem Geometry 

 The tornado-like vortex wind velocity field is considered by implementing Rankine 

Combined Vortex Model (RCVM). Three main parameters are used to specify the characteristics 

of the tornado. These parameters are: α is a rotational constant (the vortex strength), Rmax is the 

tornado radius where the maximum tangential velocity occurs and Vtrans is the tornado translational 

velocity. The tornado-like vortex is advanced, along x-axis, with the free stream flow. The 

translational velocity of the tornado is equal to the free stream velocity. Tornado-like vortex 

dimensional and non-dimensional parameters are demonstrated in Table 7.1. Where 𝑉𝜃 is the 

tornado-like vortex tangential velocity, and 𝑉𝜃𝑚𝑎𝑥=𝛼 . Rmax and Vmax = 𝑉𝜃𝑚𝑎𝑥+Vtrans.  

 

 

b 
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Table 7.1 Dimensional and non-dimensional parameters. 

UNITS α Rmax Utran Uθ,max Umax 

DIMENSIONLESS 1.5 2.0 1.0 3.0 4.0 

SI 1.5 (s-1) 31.3m 15.65 ms-1 46.95 ms-1 62.6 ms-1 

U.S. 1.5 (s-1) 102.65 ft. 35 mph 105 mph 140 mph 

 

 The simulated tornado-like vortex is translated along x-axis with a translational velocity, 

Vtrans, of 1.0 unit (15.65 m s-1). When the simulation starts, the tornado-like vortex is introduced 

away from the computational domain and then it slowly enters into the computational domain. 

When the tornado-like vortex is far away from the terrain, only the free stream flow is present in 

the computational domain. The total computational time of the simulation is 90 time units.  The 

schematic illustration for tornado-like vortex interaction with multi-structures is shown in Figure 

7.2 a and b.  The tornado-like vortex first interacts with the terrain then with the building on the 

leeward side of the terrain. In all the simulations, the tornado-like vortex radius is held fixed and 

equal twice the building height (Rmax=2xh). Where h is the building height. The hill height and 

the building location are varied as explained in the results section. Forces on the sheltered dome 

building are measured and reported for different cases as discussed later.   

 

Umax 

Rmax 
Utrans 

Time lag 
a 
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Figure 7.2 problem geometry for tornado-terrain interaction  a) a dome building on a leeward 

side of a rounded hill b) a dome building on a leeward side of a triangular hill. 

7.4. Results and Discussion  

7.4.1. Forces on a dome building exposed directly to the tornado-like vortex wind (no 

sheltering) 

 For evaluating whether terrain provides sheltering on its leeward side, first tornado-like 

vortex forces on a reference building need to be measured. A dome building is selected since it 

suits the terrain following coordinate system. As aforementioned, the dome building dimensions 

are selected to have the building height equals half the tornado-like vortex radius and the width 

equals twice the tornado-like vortex radius as shown in Figure7.3. Recommendations from 

Gorecki and Selvam (2014 & 2015) for numerical domain size are considered here. For side 

boundaries, they recommended that side boundaries need to be placed at least about nine times 

the tornado-like vortex radius (9Rmax). For top boundary, it is recommended to be at least about 

15Rmas from the domain bottom to sustain the tornado-like vortex strength. The numerical 

domain used in the present study is shown in Figure 7.4. Rmax is equal to two uints (Rmax=2).  

Three different heights (7.5Rmax, 15Rmax, 22.5Rmax) are explored to verify the recommended 

numerical domain height. The same grid B explained in chapter six is used here.  Figure 7.5 (a, b 

Umax 

Rmax 
Utrans 

Time lag 
b 
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and c) illustrates tornado-like vortex forces on the dome building in X, Y and Z directions 

respectively. From Figure 7.5 (a, b and c), it is shown that the influence of the upper boundary on 

the tornado-like vortex strength is negligible when height of the upper boundary is greater than 

15Rmax. Therefore, the upper boundary height is kept 15Rmax for the rest of the simulations. The 

forces calculation is done by assuming the tornado maximum velocity as a reference velocity. 

Table 7.2 presents the maximum measured forces on the dome building due to direct exposure to 

tornado-like vortex wind (not-sheltered).  

 

 

Figure 7.4 Numerical domain size used in the present study. 

Figure 7.3 Shape of the structure on the leeward side of the 

hill. 
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a 
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Figure 7.5 Tornado forces on a non-sheltered dome building a) X direction b) Y direction c) Z 

direction. 

 

Table 7.2 Tornado-like vortex forces on a non-sheltered dome building. 

Structure Type FX+ FX- FY+ FY- FZ+ 

A dome building 

(non-sheltered) 
1.42 1.1 0.12 1.52 6.53 

 

7.4.2. Tornado-like vortex forces on a dome building sheltered by a rounded hill 

 Tornado-like vortex forces on a dome building sheltered by a rounded hill (see Figure 7.6 

a) are measured and compared with those of the non-sheltered building. The same reference 

building shown in Figure 7.3 is considered. Tornado-like vortex parameters and numerical 

domain size are kept the same as aforementioned. The hill width is held fixed and equal 30Rmax. 

The hill length along tornado-like vortex traveling path (X-axis) is also kept unchanged and 

equal 10Rmax (see Figure 7.6 b). The hill height is varied from twice the building height up to 

c 
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five times the building height. For the different hill heights, sheltering ability for the rounded hill 

is evaluated by measuring tornado-like vortex forces on the reference building and comparing it 

with the non-sheltered case. The building is kept at distance equals six times tornado-like vortex 

radius (6Rmax) on the leeward side of the rounded hill as shown in Figure 7.6 b. The height of 

the rounded hill is ranged from two times the building height (H2) to five times the building 

height (H5). Results of tornado-like vortex forces exerted on the dome building when sheltered 

and non-sheltered are summarized in Table 7.3 and Figure 7.7 (a, b and c).  Figure 7.7 (a, b and 

c) presents tornado-like vortex forces on the reference building when sheltered and non-sheltered 

in X-axis, Y-axis and Z-axis respectively. Reduction in these forces is calculated as shown in 

Table 7.3. As observed from field investigation by Ahmed and Selvam (2015a), there is huge 

reduction in tornado-like vortex forces on the leeward side of the hill. The reduction ranges from 

almost 50% to 99%. These results show that terrain has a great influence on tornado-like vortex 

wind velocities as shown in Figure 7.8 and then on tornado-like vortex forces. The same method 

used and explained by Gorecki and Selvam (2014) to create the compacted slice for maximum 

velocity reduction is considered here.      
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Table 7.3 Tornado-like vortex forces on a sheltered dome building by a rounded hill. 

Structure Type FX+ FX- FY+ FY- FZ+ 

A dome building 

(non-sheltered) 
1.42 1.1 0.12 1.52 6.53 

H2 0.13 0.30 0.06 0.14 1.88 

H3 0.10 0.32 0.06 0.15 1.66 

H4 0.08 0.32 0.06 0.18 1.60 

H5 0.01 0.32 0.06 0.12 1.48 

Max reduction 99% 72% 50% 92% 77% 

Rounded 

Hill width 

The Rounded 

Hill  
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Building  

Hill Height (H) 

Hill Length along tornado traveling path 

Dome Height 

Dome 

Diameter  

6Rmax 

a 

 

b 

 

Figure 7.6 Terrain and building parameters a) 3D view b) 2D schematic view. 
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Figure 7.7 Tornado-like vortex forces on a sheltered dome building by a rounded hill a) X 

direction b) Y direction c) Z direction. 

 

Figure 7.8 Reduction in tornado-like vortex maximum velocity when interacting with a rounded 

hill. 

 

c 
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148 
 

7.4.3. Tornado-like vortex forces on a dome building sheltered by a Triangular Hill 

 In this section, the sheltering hill profile is selected to be a triangular hill as shown in 

Figure 7.9 (a and b). Tornado-like vortex forces are measured on a dome building sheltered by 

the triangular hill. Then, the measured forces are compared with those excreted on the non-

sheltered reference building. Tornado-like vortex parameters and numerical domain size are kept 

the same as that used in the previous simulations for the rounded hill. The hill width is held fixed 

and equal 30Rmax. The hill length along tornado-like vortex traveling path (X-axis) is also kept 

unchanged and equal 10Rmax (see Figure 7.9 b). The hill height is varied from twice the 

building height up to five times the building height. For the different hill heights, sheltering 

ability for the hill is evaluated by the same procedure utilized for the rounded hill. The building 

is kept at distance equals six times tornado-like vortex radius (6Rmax) on the leeward side of the 

hill as shown in Figure 7.9 b. The height of the hill is ranged from two times the building height 

(H2) to five times the building height (H5). Tornado-like vortex forces exerted on the dome 

building when sheltered and non-sheltered are illustrated in Figure 7.10 (a, b and c) and 

summarized in Table 7.4. Figure 7.10 (a, b and c) show tornado-like vortex forces on the 

building in X, Y and Z directions respectively. Reduction in these forces is calculated as shown 

in Table 7.4. The reduction ranges from almost 70% to 100%. These results show that terrain has 

significant influence on tornado-like vortex wind velocities as shown in Figure 7.11 and then on 

tornado-like vortex forces. When comparing results for both the rounded hill and the triangular 

hill sheltering abilities as presented in Tables 7.3 and 7.4, the comparison shows that both the 

rounded hill and the triangular hill provide great sheltering. However, there are slight 

differences: the rounded hill provides better sheltering for positive forces in X direction, and less 

sheltering for the negative ones. In the Y direction, the triangular is in the lead for the positive 
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forces, while both the rounded hill and the triangular hill have provided almost the same 

sheltering for the negative forces. Also, both of them have provided the same level of sheltering 

against the forces in Z direction.  

 

 

Figure 7.9 Triangular hill and building parameters a) 3D view b) 2D schematic view.  
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Table 7.4 Tornado-like vortex forces on a sheltered dome building by a hill. 

 

 

 

 

 

 

 

 

 

 

Structure Type FX+ FX- FY+ FY- FZ+ 

A dome building 

(non sheltered) 
1.42 1.1 0.12 1.52 6.53 

H2 0.18 0.23 0.05 0.32 2.44 

H3 0.13 0.18 0.05 0.20 1.5 

H4 0.09 0.18 0.05 0.19 1.3 

H5 0.01 0.18 0.04 0.17 1.4 

Max reduction 99% 84% 67% 89% 79% 

a 
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Figure 7.10 Tornado-like vortex forces on a sheltered dome building by a triangular hill a) X 

direction b) Y direction c) Z direction. 

b 

c 
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Figure 7.11Reduction in tornado-like vortex maximum velocity when interacting with a 

rectangular hill. 

 

7.4.4. Effects of building location on the tornado-like vortex forces. 

 Both the rounded hill and the triangular hill are examined to evaluate sheltering abilities 

at different locations on the leeward side. The building is placed at three different distances (six 

times the hill height (6H, 8H and 10H). Height of the terrain profiles (H) is considered to be two 

times the building height, and forces are measured on the dome building sheltered by the terrain. 

Figure 7.12-14 (a and b) Show tornado-like vortex forces on a building sheltered by a rounded 

hill (a) and a triangular hill (b) in X, Y and Z directions respectively . Also, these forces are 

summarized in Table 7.5 for the building sheltered by a rounded hill and in Table 7.6 for the 

building sheltered by a triangular hill. One can see from these results in both the Figures and the 

tables that the rounded hill provided longer sheltered zone on its leeward side than that provided 

   
   

   
   

 Z
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by the triangular hill. In the x direction, the building has experienced forces (FX+) increment by 

70% when it is moved from 6H to 10H on the leeward side of a rounded hill, whereas these 

forces increment is 320% when the building is moved from 6H to 10H on the leeward side of the 

triangular hill (see Figure 7.12 a and b). In the Y direction, when the building is moved far away 

from the rounded hill (6H to 10H), the forces (FY-) has increased by 79%, while it has magnified 

by 150% for the triangular hill sheltering. There is no forces increasing in the Z direction when 

the building place is shifted from 6H to 10H on the leeward side of the rounded hill as shown in 

Figure 7.14 a. For the triangular hill case, the forces increment in Z direction is about 45% as 

shown in Figure 7.14 b. Results of maximum velocity reduction are of great agreement with the 

measured forces on the building as shown in Figures 7.15 (a and b) and Figure 7.16 (a and b). 

Also, the Figures show that the rounded hill provides better sheltering and longer sheltered zone 

than the triangular hill of the same height. From Figure 7.15 b, one can see that the sheltered 

zone on the leeward side of the rounded hill extends to 10H in the X direction and 2H (the 

rounded hill height) in the Z direction with reduction in maximum velocity ranges from 40% to 

80%. For the triangular hill (see Figure 7.16 b), the sheltered zone is up to 6H in X direction and 

1H in the Z direction. It is anticipated that the sharp change in the rounded hill slope has great 

effects on providing better sheltering.   

Table 7.5 Tornado-like vortex forces on a building at different locations on the leeward side of a 

rounded hill. 

     Bldg. location  FX+ FX- FY+ FY- FZ+ 

6H 0.13 0.3 0.06 0.14 1.88 

8H 0.17 0.3 0.04 0.18 1.88 

10H 0.22 0.3 0.03 0.25 1.88 

Maximum force 

increment   
70% 0% -50% 79% 0% 
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Table 7.6 Tornado-like vortex forces on a building at different locations on the leeward side of a 

triangular hill. 

Bldg. location  FX+ FX- FY+ FY- FZ+ 

6H 0.18 0.23 0.05 0.32 2.44 

8H 0.41 0.25 0.05 0.56 2.4 

10H 0.75 0.20 0.05 0.80 3.5 

Maximum force 

increment   

316% -15% 0% 150% 43% 

 

 

Figure 7.12 Tornado-like vortex forces in the X direction a) a rounded hill b) a triangular hill 

a b 

a b 
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Figure 7.13 Tornado-like vortex forces in the Y direction a) a rounded hill b) a triangular hill 

 

 

 

 

Figure 7.14 Tornado-like vortex forces in the Z direction a) a rounded hill b) a triangular hill 

 

a b 
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Figure 7.15 Reduction in tornado-like vortex maximum normalized velocity when interacting 

with a rounded hill a) consolidated 2D view b) close-up view. 

 

a 

b 

 Z
 

 Z
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Figure 7.16 Reduction in tornado-like vortex maximum normalized velocity when interacting 

with a triangular hill a) consolidated 2D view b) close-up view. 

 

a 

b 

 Z
 

 Z
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7.5. Conclusion  

 Tornado-like vortex-terrain interaction is simulated using a computer model. Two 

different terrain profiles are considered with varied heights. Tornado-like vortex forces are 

measured on a dome building placed at different distances on the leeward side of the terrain. 

From results comparison and analysis, the following conclusions are arrived.    

 The Terrain obstacles reduce tornado-like vortex forces and velocities on the leeward side of 

the terrain. 

 Both the rounded hill and the triangular hill can be considered as good shelters for structures 

on their leeward side. 

 Tornado-like vortex forces applied on a structure are reduced by more than 70% when the 

structure is located within six times the hill height on the leeward side of a rounded hill or a 

triangular hill.  

 The sheltering ability for both the rounded hill and the triangular hill is increased by 25% 

when their heights is increased from H2 (twice the building height) to H5 (five time the 

building height).  

 The rounded hill provide better sheltering and longer sheltered zone than the triangular hill. 

 The sheltered zone on the leeward side of the rounded hill extends to 10H in the X direction 

and 1H (the hill height) in the Z direction with reduction in maximum velocity ranges from 

40% to 80%.  

 For the triangular hill, the sheltered zone is up to 6H in X direction and 1H in the Z direction 

with reduction in maximum velocity ranges from 40% to 60%.  
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8.  Summary and Conclusions 

8.1.  Summary of the Conducted Work 

 In this work, a field investigation through field survey and utilizing the software Google 

Earth is conducted to evaluate terrain influence on tornado damage and path. Also, a CFD 

computer model is used to simulate tornado-like vortex over a real-terrain data. Tornado-like 

vortex path deviation due to interaction with terrain is investigated and validated in a qualitative 

sense with wind tunnel results. Also, tornado-like vortex forces on a sheltered dome building are 

computed. The conclusions arrived from the conducted work are listed next.   

8.2. Conclusions 

Google Earth is employed to investigate hills effects on tornado damage. The difference 

in damage between hill’s sides (windward and leeward) is evaluated for several hills at the 

location of Parish-2011 tornado. It is observed that there is significant effects of hills on tornado 

damage. Much damage is observed on windward side of a hill comparing to its leeward side. 

When the tornado crosses the investigated hills, the hills provide sheltered zone on their leeward 

side. The measurements for the sheltered zone on the leeward side of the investigated hills show 

that the sheltered zone length is about five times the hill height (5H). Another tornado 

(Tuscaloosa-2011) is investigated for hills effects on tornado damage. It is observed that when a 

tornado hit a place surrounded by hills and the distance between the hills along the tornado path 

is less than or equals the tornado radius, the damage is noticed only on the top of the surrounding 

hills and the region surrounded by the hills is completely protected. Also, from site investigation 

for Mayflower-2014 tornado it has been shown that the tornado damage observed uphill on the 
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windward side is higher than the damage observed downhill on the leeward side for the same hill 

hit by the tornado.  

Terrain effects on tornado damage intensity are investigated at Mayflower-2014 tornado 

location. Site investigation, Google Terrain Maps and Google Earth are employed to explore 

terrain influence on tornado damage intensity. It is quantified that the presence of hilly terrain 

influences tornado damage intensity, and Damage intensity is observed to be less when the 

tornado travels over a hilly terrain. Also, Damage intensity increases when tornado travels over a 

flat terrain. In additions, Topography influences the path of the tornado. The tornado finds the 

least resistance path (gap in a ridgeline) as for as possible in passing a hill. 

CFD is utilized to develop a computer model for tornado-terrain interaction. The tornado-

like vortex is translated along X-axis of the numerical domain, and the tornado-like vortex 

pressure on the ground of the numerical domain is monitored. Different ratios of rotational to 

translational velocities (Vθ/Vt) are studied. It is concluded that the ratio (Vθ/Vt) significantly 

affects the tornado-like vortex path deviation shape and magnitude when interacts with 2D ridge 

(rounded hill). The deviation shape changes as the ratio value increases. The deviation curvature 

shape changes from straight line to double curvature shape as the ratio (Vϴ/Vt) increases. For 

ratio (Vϴ/Vt) =1, the deviation shape is almost a straight line (no deviation). For 2≤ (Vϴ/Vt) <4, 

the deviation shape becomes a single curvature shape. When the ratio (Vϴ/Vt) ≥4, the deviation 

shape changes to double curvature. The results show qualitative agreement with both field 

investigation data and wind tunnel data. For (Vϴ/Vt) <4, the UA numerical results for tornado-

like vortex path deviation shape are comparable to field data (single and no curvature). The UA 

Numerical results for (Vϴ/Vt) >4 are comparable to wind tunnel data (double curvature). 

Therefore the computer model can be considered for further investigation. 
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Finally, tornado-terrain interaction is simulated using a computer model to measure 

tornado-like vortex forces on a sheltered structure on the leeward side of the terrain profile. Two 

different hill profiles are considered with varied heights, and it is concluded that the terrain 

obstacles reduce tornado-like vortex forces and velocities on the leeward side of the hills. Also, 

both rounded hill and triangular hill can be considered as good shelters for structures on their 

leeward side. A fascinating outcome is that tornado-like vortex forces applied on a structure are 

reduced by more than 70% when the structure is located within six times the hill height on the 

leeward side of a rounded hill or a triangular hill. If the hill height is increased from H2 (two 

times the building height) to H5 (five times the building height), the tornado forces on the 

sheltered building are reduced by 25% or more for both investigated hills. The rounded hill 

provides better sheltering and longer sheltered zone than the triangular hill because of the steep 

slope of the rounded hill. The sheltered zone on the leeward side of the rounded hill extends to 

10H (ten times the hill height) in the X direction and 1H (the hill height) in the Z direction with 

more than 70% reduction in tornado forces. For the triangular hill, the sheltered zone is up to 6H 

in X direction and 1H in the Z direction with more than 70% reduction in tornado forces. 

8.3. Recommendations for Future Study  

 There are still many interesting and important ideas that are developed during the 

conduction of the study but did not explored due to time limit. Therefore, this section addresses 

most of the recommended research areas by the author based on this study and its conclusions. 

 There are still many uninvestigated tornadoes need to be explored utilizing the great features 

of Google Earth and looking for tornado-terrain integration hidden facts.  
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 Tornado deviation due interaction  with terrain is explored in this study considering a ridge 

(rounded hill) profile with a fixed height, so different terrain heights as well as terrain 

profiles effects on tornado deviation need to be explored in details.  

 Tornado forces are measured on a sheltered dome building with a fixed tornado parameters. 

First, the ratio of tornado tangential velocity to translational velocity (Vϴ/Vt) influence on 

tornado forces applied on the sheltered structure need to be investigated. Also, the influence 

of the ratio of tornado radius to the dome building height has not explored. Similarly, the 

ratio of tornado radius to hill height is another important factor needs to have its effects 

determined.  

 Tornado forces are only measured when tornado approach the hill with zero angle of attack. 

The angle of attack influence on hills sheltering needs to be investigated. 

 Tornado forces on a building completely surrounded by hills as shown in the Figure 8.1 is 

not measured and need to be done. Then, the results can be compared with field data for 

Tuscaloosa-2011 tornado.      

 Tornado forces on building right in the center of a ridgeline gap on the leeward side as shown 

in Figure 8.2 is one of the most interesting ideas and need to be explored and determined.  
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Figure 8.1 A dome building completely surrounded by hills 

 

 

 

Figure 8.2 A dome building on the leeward side of ridge line with a gap.  
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APPENDIX A: TORNADO POST DAMAGE INVESTIGATION TOOLS 

1. Introduction 

 Tornado post damage investigation represents the best way to have clear vision for 

tornado behavior while interacting with the terrain. Tornado could occur over flat terrain, city, 

mountain or hilly terrain, most of these places are very difficult to access by cars. For thorough 

investigation, it usually requires both ground and aerial investigations. The man-hour involved in 

this process is very high as well as it is time overwhelming, and finally it is very difficult to 

ingrate and interpret the collected data due to mapping and scaling issues. Therefore, alternates 

are required to develop the current state for tornado-terrain interaction. Due to the advancement 

in computer technology and images processing, several software are utilized here for tornadoes 

damage locating, visualizing, coordinating and interpreting with regards to specific terrain 

features. Mainly, these software are Google Earth, Google Picasa and Global Mapper. Also, the 

new I phone technology provides great features that the photo taken by an I-phone camera is 

associated with a GPS coordinates that can be identified by the aforementioned software. In this 

appendix, detailed description for each of the software used in this dissertation is illustrated.    

2. Google Earth 

 Google Earth is a free software which allows the user to navigate the world through a 

virtual globe and view satellite imagery, maps, terrain, 3D buildings, and much more. Google 

Earth is rich with detailed geographical content that allows the user to experience a more realistic 

view of the world, fly to his/her favorite places, search for businesses and even navigate through 
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directions. However, the focus in this section is to give general description for the software 

interface and to explain how the Google Earth is utilized for tornado post damage investigation. 

The main interface for the software is illustrated in Figure A.1. A definition and description for 

each tool bar and button are provided next.     

 

Figure A.1 Google Earth main interface and main control panels. 

 Search Bar 

 The search panel is the first tool needs to be used to create the investigated paths or 

places. In this search bar name of places or locations wanted to be fly to can be typed. Different 

formats can be inserted as shown in the table below. 

Format Example 

City, State Fayetteville, AR 

City Country Baghdad Iraq 

Number Street City State  2100 N Leverett Ave Fayetteville, AR 72703 
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Zip code or Postal code 72704 

Latitude, Longitude 36° 4'57.72"N, 94°12'44.86"W 

 Tool Bar 

Google Earth tool bar showing in Figure A.2 has several of the important features which 

serve tornado post damage investigation.  

 

 

Figure A.2 tool bar description. 1- Show/hide sidebar   2- Placemark   3-Polygon   4- Path   5- 

Image overlay   6-Tour recorder   7- Historical imagery   8- Day/Night   9- Switch between 

Earth, Sky and other plants   10- Ruler   11- Email info    12- Print   13- Save image   14- Switch 

to Google maps. 

 

 Some of the tool bar buttons relevant to the investigation work are explained in more details 

next. 

 Place a Mark (2) 

 By clinking on the place mark button , the new sub-window and a yellow place mark 

pin will appear as shown below. Then, the place name and the pin shape and color can be 

modified as need by the user from the new sub-window shown in Figure A.3.  

The place can be identified by typing a name in the Name box. There are wide range selctions 

for the place mark icons color and shapes which can be accessed by clicking on the yellow pin 

on the top right hand corner.  

The longitude and latitude boxes give the exact longitude and latitude coordinates of that 

location.  

1       2      3    4     5     6        7     8        9       10      11   12    13   14 
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 The Description tab can be used to describe the specific location. The description will 

appear when the pointer is moved over that place mark. The color of the place mark and the text 

can be modified from Style, Color tab. 

 

 

Figure A.3 Place a mark and modify its name and properties 

 

 Path, Ruler and Line (4)&(10) 

 Basically the steps to create a path or a line are same. However, a line is only two points, 

whereas a path can have unlimited number of points. Also, the path can be access by clicking the 

path button   or by clicking the ruler button  as shown in the sub-window (See Figure 

A.4). The path can be created by placing a first marker at the start point and then several points 

can be added as required to create an accurate path. After that, the last marker should be at the 
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end point. For both a line and a path, name, color and thickness as well as other properties can be 

modified from the properties window as explained above for a place mark. Also, both a line and 

a path provide a length measurements in several units (e.g. miles, kilometers, feet, inches, etc.). 

One very important sub feature for a line and a path is the elevation profile which is described 

with some details in the next subsection.       

 

Figure A.4 a line or path creation using the ruler button.  

 

 Elevation Profile 

 After a line or a path is drawn, the elevation profile for that line or path can be drawn 

next. Once a line or a path has been chosen from the Places panel, there are two ways to see its 

Elevation profile. First, click on Edit > Show Elevation Profile to have the elevation profile 

presented. The second way is by right-clicking on the desired path from the Places panel and also 

select Show Elevation Profile. An Elevation Profile for the selected line or path is going to 

show in the lower part of the Google Earth window as shown below (see Figure A.5). The 
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vertical-axis of the chart displays the elevation, and the horizontal-axis of the chart displays the 

distance. 

 

 

Figure A.5 elevation profile for a selected path. 

 

 Historical Imagery (7) 

 This feature is the most important one for tornado post damage investigation, and it can 

be accessed by clicking this button  in the tool bar. Using this feature a tornado damage path 

can be investigated by moving the date bar  to a date after and 

before the tornado occurrence time. Figure A.6 a shows a selected area right next to Arkansas 

River close to Mayflower, AR prior to the Mayflower-Tornado on April-27 2014. Figure A.6 b 

shows the same area after the tornado occurrence, and one can see the damaged region.    
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Figure A.6 A selected area right next to Arkansas River close to Mayflower, AR a) before the 

tornado occurrence on April-27 2014 b) after the tornado occurrence. 

 

a 

b 
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 Navigation Control  

To navigate through the Google Earth viewer, use the navigation tools on the right-hand 

side of the screen. 

A. The Look joystick allows to adjust the view in the 3D viewer 

from a single fixed point as if a person is turning his/her head. 

B. The Move joystick allows to move from location to location. 

C. Street viewer allows to switch to the street view. 

D. The Zoom slider allows to zoom in and out of the viewer to get a 

closer or more remote view.  

3. Photo Geotag (Google Picasa and IPhone)  

 During tornado post damage ground investigation, a high quality camera is very 

important to provide good detailed photo as well as it is so crucial to have a camera supports 

photo geotagging. The geotag is adding GPS identification for the photo. Recently, several 

companies have developed and added this feature in their products, cameras. The IPhones 5 and 

later have a good quality camera of eight megapixel as well as they support the photo geotag. 

However, using the IPhone screen does not provide good visualization and details. Therefore, it 

is essential to synchronize the photos with a computer keeping their geotag feature. Google 

Picasa is one of the best photo viewer which allows to do geotagging on Google maps as well as 

on Google Earth. The basic details for turning the photo geotag in the IPhone and how to use 

Google Picasa is illustrated next. 

 IPhone Geotag 

 To have the geotag feature activated in any IPhone, the following steps need to be 

followed. 

A 

B 

C 

 

D 
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o Go to Setting. 

o Then Privacy. 

o  Then to Location Services and make sure it is on. 

o Under location services, go to Camera to set the configuration either always or while 

using. 

 Google Picasa 

Google Picasa is a free photo viewer and manager. Its interface is shown in Figure A.7.

 

Figure A.7 Google Picasa main interface window. 

 

 

1 2 3 
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1- Folder Panel: Shows the storage folders which contain photos.  

2- Photo panel: views the selected folder photos. 

3- Geotag Panel: Shows the locations for the selected folder’s photos. Then, these photo can be 

synchronized and viewed by using either Google Earth or Google Maps. Also, It allows 

extract the location for each photo manually and then impose on the terrain map to study the 

terrain effects on the damaged location. Also, by connecting the photos locations on Google 

Earth or Google Maps, Tornado traveling path or the damage path can be accurately drawn 

and compared with available radar data.  
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APPENDIX B: TORNADO-TERRAIN INTERACTION CFD CODE INPUT FILE USER 

MANUAL AND RUN DETAILS FOR HPC MACHINE. 

1. Input File User Manual 

 The CFD code PCTT442.OUT is utilized to simulate tornado interaction with huge 

variety of terrain including but limited the followings:  a ridge, a knoll, a hill, a valley, and multi-

topographical configurations. The PCTT442.OUT program is a parallelized program which in 

the present study utilizes up to 24 processers. The benefit achieved by this process is a speed up 

of ten times the serial computation using one processer. The grid points in X, Y and Z directions 

as well as the terrain elevations are generated using a FORTRAN code which is presented in this 

appendix. Then, the basic vortex variables are combined with the generated grid in the input file, 

ctt-i.txt. The input file user manual is illustrated next.       

 

 Input File: ctt-i.txt  

 

OPEN (5, FILE='ctt-i.txt') 

First line: READ (5,*) IM, JM, KM, DTT, TTIME, TMIN, TMAX 

IM  Total number of the grid points in the X-axis. 

JM  Total number of the grid points in the Y-axis. 

KM  Total number of the grid points in the Z-axis. 

DTT  Time step. 

TTIME Total time of the computer simulation. 

TMIN  The start time to calculate the minimum pressure in the computational domain. 

TMAX  The finale time to calculate the maximum pressure in the computational domain. 
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Second line: READ (5,*) C11, C2, RAMAX, VTRAN, TLAG, ROTC, ANG, IFL2 

C11  Calculated as C11= u*/k ln((z+z0)/z0   

C2  The roughness length of the ground (usually z0=0.00375 for building)   

RAMAX Maximum inner core radius of the tornado 

VTRAN Translating velocity  

TLAG  Time lag (the time at which the center of tornado coincides with grid origin)  

ROTC  Alpha rotational constant (RAMAX*ROTC =Max tangential velocity) 

ANG   Attack Angle 

IFL2  Time step interval to write a movie file (max no. of movies 999) 

Where: 

z is the height from the ground which sets to be equal to the obstacle height (hhill) 

u* is the frictional velocity  

After the second line, the input file introduces the grid points in X, Y and Z directions. 

READ(5,*)(X(I), I=1,IM) 

READ(5,*)(Y(J), J=1,JM) 

READ(5,*)(Z(K), K=1,KM) 

Then it introduces the terrain elevations.  

DO J=1,JM 

READ(5,*)(HI(I,J), I=1,IM) 

END DO 
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 Input file example for very coarse grid. 

 This data is just presented for explanation purposes. This grid is 20x20x10. 

 

   20, 20, 11, 0.01, 90.0, 10.0, 80.0 

   0.159, 0.00375, 2.0, 1.0, 40.0, 1.5, 0.0, 200 

   -4.7500     -4.2500     -3.7500     -3.2500     -2.7500 

   -2.2500     -1.7500     -1.2500     -0.7500     -0.2500 

    0.2500       0.7500      1.2500      1.7500      2.2500 

    2.7500       3.2500      3.7500      4.2500      4.7500  

   -4.7500     -4.2500     -3.7500     -3.2500     -2.7500 

   -2.2500     -1.7500     -1.2500     -0.7500     -0.2500 

    0.2500       0.7500      1.2500      1.7500      2.2500 

    2.7500       3.2500      3.7500      4.2500      4.7500  

    0.0000      0.0500      0.1000      0.1500      0.3000 

    0.5000      0.7500      1.0000      1.4500      1.9000 

    0.0000      0.0000      0.0000      0.0791      0.2093 

    0.3077      0.3786      0.4245      0.4472      0.4472 

    0.4245      0.3786      0.3077      0.2093      0.0791 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.0967      0.2558 

    0.3761      0.4627      0.5189      0.5466      0.5466 

    0.5189      0.4627      0.3761      0.2558      0.0967 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1143      0.3023 

    0.4444      0.5468      0.6132      0.6459      0.6459 

    0.6132      0.5468      0.4444      0.3023      0.1143 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1319      0.3489 

    0.5128      0.6309      0.7076      0.7453      0.7453 

    0.7076      0.6309      0.5128      0.3489      0.1319 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1494      0.3954 

    0.5812      0.7150      0.8019      0.8447      0.8447 

    0.8019      0.7150      0.5812      0.3954      0.1494 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1670      0.4419 

    0.6496      0.7992      0.8963      0.9441      0.9441 

    0.8963      0.7992      0.6496      0.4419      0.1670 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

Line 1&2 

Grid points in Y axis 

Grid points in X axis 

Grid points in Z axis 

Terrain elevations 
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    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1670      0.4419 

    0.6496      0.7992      0.8963      0.9441      0.9441 

    0.8963      0.7992      0.6496      0.4419      0.1670 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1494      0.3954 

    0.5812      0.7150      0.8019      0.8447      0.8447 

    0.8019      0.7150      0.5812      0.3954      0.1494 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1319      0.3489 

    0.5128      0.6309      0.7076      0.7453      0.7453 

    0.7076      0.6309      0.5128      0.3489      0.1319 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1143      0.3023 

    0.4444      0.5468      0.6132      0.6459      0.6459 

    0.6132      0.5468      0.4444      0.3023      0.1143 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.0967      0.2558 

    0.3761      0.4627      0.5189      0.5466      0.5466 

    0.5189      0.4627      0.3761      0.2558      0.0967 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.0791      0.2093 
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    0.3077      0.3786      0.4245      0.4472      0.4472 

    0.4245      0.3786      0.3077      0.2093      0.0791 

    0.0000      0.0000      0.0000 

 

 Input File: ctt-i.txt for code pctt45.out ( interaction of tornado with multiple structures) 

 

OPEN (5, FILE='ctt-i.txt') 

First line: READ (5,*) IM, JM, KM, DTT, TTIME, TMIN, TMAX 

IM  Total number of the grid points in the X-axis. 

JM  Total number of the grid points in the Y-axis. 

KM  Total number of the grid points in the Z-axis. 

DTT  Time step. 

TTIME Total time of the computer simulation. 

TMIN  The start time to calculate the minimum pressure in the computational domain. 

TMAX  The finale time to calculate the maximum pressure in the computational domain. 

 

 

 

Second line: READ (5,*) C11, C2, RAMAX, VTRAN, TLAG, ROTC, ANG, IFL2 

C11  Calculated as C11= u*/k ln((z+z0)/z0   

C2  The roughness length of the ground (usually z0=0.00375 for building)   

RAMAX Maximum inner core radius of the tornado 

VTRAN Translating velocity  

TLAG  Time lag (the time at which the center of tornado coincides with grid origin)  

ROTC  Alpha rotational constant (RAMAX*ROTC =Max tangential velocity) 

ANG   Attack Angle 

IFL2  Time step interval to write a movie file (max no. of movies 999) 

Where: 

z is the height from the ground which sets to be equal to the obstacle height (hhill) 

u* is the frictional velocity, K is Von Karman constant (0.4)  

 

Third line: READ (5,*) IHS1,IHE1,IHS2,IHE2 

IHS1&IHE1 the boundary grids point between which the first structure (hill) is located 

IHS2&IHE2 the boundary grids point between which the second structure (dome) is located 

 

After the third line, the input file introduces the grid points in X, Y and Z directions. 

READ(5,*)(X(I), I=1,IM) 

READ(5,*)(Y(J), J=1,JM) 

READ(5,*)(Z(K), K=1,KM) 

Then it introduces the terrain elevations.  

DO J=1,JM 

READ(5,*)(HI(I,J), I=1,IM) 

END DO 
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 Input file example for very coarse grid. 

 This data is just presented for explanation purposes. This grid is 20x20x10. 

 

   20, 20, 11, 0.01, 90.0, 10.0, 80.0 

   0.159, 0.00375, 2.0, 1.0, 40.0, 1.5, 0.0, 200 

   5,10,11,14 

   -4.7500     -4.2500     -3.7500     -3.2500     -2.7500 

   -2.2500     -1.7500     -1.2500     -0.7500     -0.2500 

    0.2500       0.7500      1.2500      1.7500      2.2500 

    2.7500       3.2500      3.7500      4.2500      4.7500  

   -4.7500     -4.2500     -3.7500     -3.2500     -2.7500 

   -2.2500     -1.7500     -1.2500     -0.7500     -0.2500 

    0.2500       0.7500      1.2500      1.7500      2.2500 

    2.7500       3.2500      3.7500      4.2500      4.7500  

    0.0000      0.0500      0.1000      0.1500      0.3000 

    0.5000      0.7500      1.0000      1.4500      1.9000 

    0.0000      0.0000      0.0000      0.0791      0.2093 

    0.3077      0.3786      0.4245      0.4472      0.4472 

    0.4245      0.3786      0.3077      0.2093      0.0791 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.0967      0.2558 

    0.3761      0.4627      0.5189      0.5466      0.5466 

    0.5189      0.4627      0.3761      0.2558      0.0967 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1143      0.3023 

    0.4444      0.5468      0.6132      0.6459      0.6459 

    0.6132      0.5468      0.4444      0.3023      0.1143 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1319      0.3489 

    0.5128      0.6309      0.7076      0.7453      0.7453 

    0.7076      0.6309      0.5128      0.3489      0.1319 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1494      0.3954 

    0.5812      0.7150      0.8019      0.8447      0.8447 

    0.8019      0.7150      0.5812      0.3954      0.1494 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1670      0.4419 

    0.6496      0.7992      0.8963      0.9441      0.9441 

    0.8963      0.7992      0.6496      0.4419      0.1670 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

Line 1, 2&3 

Grid points in Y axis 

Grid points in X axis 

Grid points in Z axis 

Terrain elevations 
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    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1758      0.4651 

    0.6837      0.8412      0.9434      0.9937      0.9937 

    0.9434      0.8412      0.6837      0.4651      0.1758 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1670      0.4419 

    0.6496      0.7992      0.8963      0.9441      0.9441 

    0.8963      0.7992      0.6496      0.4419      0.1670 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1494      0.3954 

    0.5812      0.7150      0.8019      0.8447      0.8447 

    0.8019      0.7150      0.5812      0.3954      0.1494 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1319      0.3489 

    0.5128      0.6309      0.7076      0.7453      0.7453 

    0.7076      0.6309      0.5128      0.3489      0.1319 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.1143      0.3023 

    0.4444      0.5468      0.6132      0.6459      0.6459 

    0.6132      0.5468      0.4444      0.3023      0.1143 

    0.0000      0.0000      0.0000 

    0.0000      0.0000      0.0000      0.0967      0.2558 

    0.3761      0.4627      0.5189      0.5466      0.5466 

    0.5189      0.4627      0.3761      0.2558      0.0967 

    0.0000      0.0000      0.0000 
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    0.0000      0.0000      0.0000      0.0791      0.2093 

    0.3077      0.3786      0.4245      0.4472      0.4472 

    0.4245      0.3786      0.3077      0.2093      0.0791 

    0.0000      0.0000      0.0000 

   

2. FORTRAN Code For Grid Generation 
C     PROG. Terrain.F, Jan. 16, 2014 
      PARAMETER(NX=300) 
      DIMENSION RA(NX),X(NX),Y(NX),Z(NX),RB(NX),RZ(NX),HI(NX,NX) 
      OPEN(2,FILE='bu2d-3D.txt') 
      OPEN(3,FILE='hillshape.plt') 
C.....Generate grid points in X-axies before the hill 
      HX=0.1     !grid spacing within the hill range 
      NXB=1./0.1 
      H=0.1 
      RB(1)=0.0 
      RB(2)=H        !specify the first grid spacing 
      I1=2 
      FAC=1.0        !identify the growth factor 
      DO I=1,300 
      I1=I1+1 
      IF(I.GT.40)FAC=1.05 
      IF(I.GT.60)FAC=1.1 
      H=H*FAC 
      IF(H.GT.1)H=1.    !specify maximum grid spacing 
      RB(I1)=RB(I1-1)+H 
      IF(RB(I1).GT.9)GO TO 100 
      END DO 
100   NP=I1 
C.....Generate grid points in X-axies beyond the hill 
      H=0.1 
      RA(1)=0.0 
      RA(2)=H 
      I1=2 
      FAC=1.0 
      DO I=1,300 
      I1=I1+1 
      IF(I.GT.40)FAC=1.05 
      IF(I.GT.60)FAC=1.1 
      H=H*FAC 
      IF(H.GT.1)H=1. 
      RA(I1)=RA(I1-1)+H 
      IF(RA(I1).GT.9)GO TO 200 
      END DO 
200   NP1=I1 
C.....Set X- POINTS BEFORE BUILDING 
      I3=0 
      DO I=1,NP 
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      X(I)=-RB(NP-I+1)-(NXB*HX*0.5) 
      Y(I)=X(I) 
      I3=I3+1 
      END DO 
C.....Set X-POINTS FOR BUILDING 
      DO I=1,NXB 
      X(NP+I)=X(NP)+I*HX 
      Y(I)=X(I) 
      I3=I3+1 
      END DO 
C.....Set X-POINTS BEYOND BUILDING 
      DO I=2,NP1 
      X(NP+NXB+I-1)=X(NP+NXB)+RA(I) 
      Y(I)=X(I) 
      I3=I3+1 
      END DO 
      IM=I3  ! total number of points in X-axies 
      JM=IM  ! total number of points in Y-axies 
C.....GNERATE POINTS IN Z-axies 
      HZ=0.05 
      RZ(1)=0.0 
      RZ(2)=HZ 
      I1=2 
      FAC=1.0 
      DO I=1,300 
      I1=I1+1 
      IF(I.GT.32)FAC=1.05 
      IF(I.GT.60)FAC=1.1 
      HZ=HZ*FAC 
      IF(HZ.GT.1)HZ=1. 
      RZ(I1)=RZ(I1-1)+HZ 
      IF(RZ(I1).GT.10)GO TO 300 
      END DO 
300   NPZ=I1 
      Z(1)=0.0 
      Z(2)=0.005 
      Z(3)=0.0112 
      Z(4)=0.0191 
      Z(5)=0.0288 
      Z(6)=0.05 
      I2=6 
      NZB=I2 
      DO I=2,NPZ 
      Z(NZB+I-1)=Z(NZB)+RZ(I) 
      I2=I2+1 
      END DO 
      KM=I2     ! total number of points in Z-axies 
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      HH=2      ! Hill height 
      LH=22     ! Hill width 
      DO J=1,JM 
      DO I=1,IM 
      HI(I,J)=0.0 
      YH=Y(J) 
      XH=X(I) 
      SF=1          ! identify the slope on both sides of the hill 
      IF(ABS(YH).GE.LH)THEN 
      SF=(LH+8-ABS(YH))*0.125 
      END IF 
      IF(SF.LT.0)THEN 
      SF=0 
      END IF 
      IF(XH.LE.16.0.and.XH.GE.-16.0) then 
      HI(I,J)=HH*exp(-0.1*XH**2)*SF          !hill profile 
      END IF 
      END DO 
      END DO 
C      WRITE(2,*)IM,JM,KM 
      WRITE(2,*)IM,JM,KM 
      WRITE(2,20)(X(I),I=1,IM) 
      WRITE(2,20)(Y(I),I=1,JM) 
      WRITE(2,20)(Z(K),K=1,KM) 
      DO J=1,JM 
      WRITE(2,20)(HI(I,J),I=1,IM) 
      END DO 
20    FORMAT(5(F10.4,2X)) 
      IFILE1=4 
C     Write to TECPLOT for Visulization 
      write(IFILE1,*)'VARIABLES = "X","Y","Z"' 
      write(IFILE1,*)'ZONE I=',IM, ',J=',JM,',K=',KM, ',F=POINT' 
      do k=1,km 
      do j=1,jm 
      do i=1,im 
      Z1=HI(I,J)+Z(K) 
      write(IFILE1,*)x(i),Y(j),Z1 
      end do 
      end do 
      end do 
      STOP 
      END 
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3. TECPLOT- Converting ASCII to Binary 

The following code is a Windows batch file (pre.dat). The first line is just a default command for 

the batch file. The second line specifies the loop start (1), the loop increment (1) and the loop 

end (100). The third line start the program preplot.exe to convert the files which start with 

(mv**.plt) from ascii to binary as (m**.plt). the fourth line sets the time increment for the loop 

in millisecond (W 5000). 

@echo off 
FOR /L %%G IN (1,1,100) DO ( 
start preplot.exe mv%%G.plt m%%G.plt  
ping 192.0.2.2 -n 1 -w 5000 > nul 
) 

4. HPC Computers 

1- Create a new account 

All students, faculty and staff of the University of Arkansas, Fayetteville are eligible to create an 

account on the AHPCC clusters. A new account request must be sponsored by a member of 

faculty or staff (usually a major professor or adviser) if a student wants to apply for an account. 

The link below can be followed to log in with a UofA credentials and complete the online 

request form.  

 Internal User Account Request 

 https://hpc.uark.edu/account-request/  

Accounts are usually activated within 24 hours of the sponsor approval. 

2- Log in to your account 

 Use SSH software 

 Host name (razor.uark.edu) or (stargate.uark.edu)  

 User name (your UARK email ID) e.g. nsa001@uark.edu the ID is nsa001  

 Password is your UARK email Password 

 

https://hpc.uark.edu/account-request/internal
https://hpc.uark.edu/account-request/
http://stargate.uark.edu/
mailto:nsa001@uark.edu
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3- Rules 

 *ALL* jobs must be submitted through the job scheduler.  Execution of jobs from the 

command line is not allowed. 

  Jobs should be run in your scratch directory (/fasttmp/nsa001 on Star and 

/scratch/nsa001 on Razor). 

4- Environment Modules 

Using “module” to set proper paths: 

  Common Commands: 

 “module list” - shows currently loaded apps 

 “module avail” - apps available on system 

 “module load” - loads a new app into your path 

 “module unload” - removes an app from path 

 “module switch” - exchanges one for another 

5- Compiling and Executing a Basic Program 

 C Various Compilers Available: 

● “gcc” and “icc” for C source 

● “g++” and “icpc” for C++ source 

● “gfortran” and “ifort” for Fortran source 

 Compilers “wrapped” for MPI parallel apps 

● “mpicc” for C source 

● “mpicxx” for C++ source 

● “mpif90” for Fortran source 

 OpenMP Directives Available 
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●Gnu (gcc, g++, and gfortran) use “-fopenmp” 

● Intel (icc, icpc, and ifort) use “-openmp” 

6- Compilation of program pctt44.out and pctt45.out 

To compile the parallel code, the mpif77 compiler is used. In the computational mechanics 

lab computer, the compiler mpif77 can be used directly with three levels of optimization.  

Example: 

mpif77 –o1 pctt45.f  

The optimization level (o1) can be (o2) or (o3) to provide shorter computation time depends 

on the compiled problem. 

In the HPC computers, the same exact compiler is utilized, but two models need to be loaded 

to the system before compilation as shown below. 

 - module load intel/14.0.3 

- module load impi/5.0.0 

Then, the compiler can be used: mpif77 –o3 pctt45.f  

7- File Transfer between Users  

The available way to transfer files and data between users is by using the SORAGE 

directory as shown below.  

User1:rps 

Move the required file (tor.txt) to his STORAGE directory (e.g. cp tor.txt /storage/rps) 

User2:nsa001  

Copy the required file from user1 storage to his own home or scratch directory (e.g. cp 

/storage/rps/tor.txt /home/nsa001)  
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8- Creating a job script 

To create a job script you have to save the below lines (1-15) in a file with an extension 

of (.pbs) (e.g. , RUN.pbs). The description for each line is given below.  

1. #PBS -N MPI-test.job  

2. #PBS -q mem96GB12core   

3. #PBS -o MPI-test.output.$PBS_JOBID  

4. #PBS -j oe 

5. #PBS -l nodes=2:ppn=12  

6. #PBS -l walltime=40:00 

7.  

8. module load intel/14.0.3 

9. module load impi/5.0.0 

10.  

11.  

12. cd /home/nsa001/Hill2 

13. NP=$(wc -l < $PBS_NODEFILE) 

14.  

15. mpirun -np $NP -machinefile $PBS_NODEFILE ./pctt44.out 

 Explanation for each line 

1. Names the job MPI-test.job in scheduler output such as showq and qstat  

2. Puts the job into the short12core queue. (See the queues  

http://hpc.uark.edu/hpc/support/queues.html page for information on other job queues)  

http://hpc.uark.edu/hpc/support/queues.html
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3. Puts all output into the file MPI-test.output.$PBS_JOBID. Note: This file contains output 

that in an interactive job would be printed to the screen.  

4. Puts stderr, error output, and stdout, standard output, into the same file (MPI-

test.output.$PBS_JOBID)  

5. Requests 1 compute nodes with 12 cores per node for a total of 12 cores  

6. Sets the maximum runtime of the job to 10 minutes. If the job runs more than 10 minutes, 

it will be killed. (The format is walltime=DD:HH:MM:SS)  

7. Blank line  

8. Loud a module 

9. Loud a module 

10. Blank line  

11. Blank line  

12. On beginning execution, cd to the directory that the script was submitted from  

13. Calculate how many MPI threads will be used by multiplying nodes times cores per node.  

14. Blank line  

15. Executes the program MPI-test by calling mpirun with the calculated NP and using the 

machine file automatically set by PBS, the file $PBS_NODEFILE which contains a list 

of the hosts that the scheduler has allocated to the job.  

9- Queue command summary 

qsub - submit a job to the queue (e.g. , qsub RUN.pbs) 

qdel - delete a job from the queue 

showq - show the current state of the queue (-u <userid> 

qstat - show the current state of a job (-f option <jobid>) 



196 
 

pbsnodes – check state of a compute node (<node>) 

showstart – check the start time of a queued job 

10- Some useful Linux commands used in a typical session: 

● “pwd” - lists your current location on system 

● “cd” - changes to a different directory 

● “cp” - copies a file to another name or location 

● “mv” - moves or renames a file 

● “grep” - searches for specific words or strings 

● “diff” - compares two files to show differences 

● “tar” - archive and unarchive source files 

● “man” - help/usage for all system commands 

● “exit” - terminate ssh session 

● who – list users logged on 

● pwd – present working directory 

● ls – list files (-l, -a, -t, -r, -h; * . [ ]) shows content of current directory 

● df – disk free 

● mount – what file systems are mounted and how 

● date 

● wc – word count (-l to count lines) 

● cat – show contents of a file 

● touch – create a file/change modification time 

● nano – simple file editor vi – more powerful editor 
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11- vi Editor Commands 

 General Startup 

 To use vi: vi filename 

 To exit vi and save changes: ZZ   or  :wq 

 To exit vi without saving changes: :q! 

 To enter vi command mode: [esc] 

Counts: A number preceding any vi command tells vi to repeat that command that many times. 

Cursor Movement 

 h       move left (backspace) 

 j       move down 

 k       move up 

 l       move right (spacebar) 

 [return]   move to the beginning of the next line 

 $       last column on the current line 

 0       move cursor to the first column on the current line 

 ^       move cursor to first nonblank column on the current line 

 w       move to the beginning of the next word or punctuation mark 
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 W       move past the next space 

 b       move to the beginning of the previous word or punctuation mark 

 B       move to the beginning of the previous word,ignores punctuation 

        e       end of next word or punctuation mark 

        E       end of next word, ignoring punctuation 

        H       move cursor to the top of the screen  

        M       move cursor to the middle of the screen 

        L       move cursor to the bottom of the screen  

Screen Movement 

       G        move to the last line in the file 

       xG       move to line x 

       z+       move current line to top of screen 

       z        move current line to the middle of screen 

       z-       move current line to the bottom of screen 

       ^F       move forward one screen 

       ^B       move backward one line 
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       ^D       move forward one half screen 

       ^U       move backward one half screen 

       ^R       redraw screen      (Does not work with VT100 type terminals) 

       ^L      redraw screen   (Does not work with Televideo terminals) 

Inserting 

       r        replace character under cursor with next character typed 

       R        keep replacing character until [esc] is hit 

       i        insert before cursor 

       a        append after cursor 

       A        append at end of line 

       O        open line above cursor and enter append mode 

12- Recourses  

For more information it’s recommended to visit the following websites. 

 http://hpc.uark.edu/hpc/support.html  

 Cluster documentation is available here: 

http://hpc.uark.edu/hpc/support.html 

 Especially helpful to new users is the Quick start Cluster Tutorial: 

http://hpc.uark.edu/hpc/support/razor_cluster_tutorial.html 

 Another useful link is the CI-TRAIN Lecture Series page: 

http://www.ci-train.org/training/lectureseries.html 

 

http://hpc.uark.edu/hpc/support.html
http://hpc.uark.edu/hpc/support.html
http://hpc.uark.edu/hpc/support/razor_cluster_tutorial.html
https://urldefense.proofpoint.com/v1/url?u=http://www.ci-train.org/training/lectureseries.html&k=t8cWouLHMWKnKZhAFQUeVA%3D%3D%0A&r=izQxwCGShVtZK%2FsegPxJ1w%3D%3D%0A&m=js0cT%2BsBAUweMQoskXayrB9LmMzmOyB%2B26on8O1RFa0%3D%0A&s=198beccfbf8776035820bcb4eb3d0c3565469c6536a1f8ba22a1e98c3cde98b5
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APPENDIX C : HEXAHEDRAL ELEMENT JACOBEAN MATRIX 

1. Hexahedral Element Jacobean Matrix 

 Finite elements method (FEM) is used to approximate the flow governing equations. 

Different element shapes are resulted in the terrain following grid system. For the region over 

flat terrain (no hill), the elements have orthogonal cubic shape as shown in Figure C.1 a, whereas 

the elements shape is non-orthogonal over the terrain region. The derivation of the Jacobean 

matrix for both orthogonal and non-orthogonal elements is presented in the following sections. 

Also, the FORTRAN code for calculating the Jacobean determinant and inverse is presented. 

Form the derivation steps for calculating the Jacobean matrix determinate, one can see that there 

are about thirty mathematical operations when the element is in the terrain region while these 

operations are reduced in an elegant way to three operations when there is no terrain. The 

percentage of the elements over no terrain region is about 70%. Therefore, using this reduced 

calculations for this huge percent of the elements reduce the computational time enormously.  

 

 

 

 

 

 

Figure C.1 Elements shapes over different regions of the numerical domain a) orthogonal 

hexahedral element (no terrain) b) non-orthogonal hexahedral element over the hill region. 

a b 
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Hexahedral Element Shape Functions  

𝑁1 =
1

8
(1 − 𝜉)(1 − 𝜂)(1 − 𝜇) 

 𝑁2 =
1

8
(1 + 𝜉)(1 − 𝜂)(1 − 𝜇), 

𝑁3 =
1

8
(1 + 𝜉)(1 + 𝜂)(1 − 𝜇) 

𝑁4 =
1

8
(1 − 𝜉)(1 + 𝜂)(1 − 𝜇) 

𝑁5 =
1

8
(1 − 𝜉)(1 − 𝜂)(1 + 𝜇)   

 𝑁6 =
1

8
(1 + 𝜉)(1 − 𝜂)(1 + 𝜇) 

𝑁7 =
1

8
(1 + 𝜉)(1 + 𝜂)(1 + 𝜇) 

𝑁8 =
1

8
(1 − 𝜉)(1 + 𝜂)(1 + 𝜇) 

Coordinates  

𝑋 = 𝑋1𝑁1 + 𝑋2𝑁2 + 𝑋3𝑁3 + 𝑋4𝑁4 + 𝑋5𝑁5 + 𝑋6𝑁6 + 𝑋7𝑁7 + 𝑋8𝑁8 

𝑌 = 𝑌1𝑁1 + 𝑌2𝑁2 + 𝑌3𝑁3 + 𝑌4𝑁4 + 𝑌5𝑁5 + 𝑌6𝑁6 + 𝑌7𝑁7 + 𝑌8𝑁8 

𝑍 = 𝑍1𝑁1 + 𝑍2𝑁2 + 𝑍3𝑁3 + 𝑍4𝑁4 + 𝑍5𝑁5 + 𝑍6𝑁6 + 𝑍7𝑁7 + 𝑍8𝑁8 

Jacobean Matrix 

𝐽 =

[
 
 
 
 
 
 
𝜕𝑋

𝜕𝜉

𝜕𝑌

𝜕𝜉

𝜕𝑍

𝜕𝜉
𝜕𝑋

𝜕𝜂

𝜕𝑌

𝜕𝜂

𝜕𝑍

𝜕𝜂
𝜕𝑋

𝜕𝜇

𝜕𝑌

𝜕𝜇

𝜕𝑍

𝜕𝜇]
 
 
 
 
 
 

= [

𝐽11 𝐽12 𝐽13

𝐽21 𝐽22 𝐽23

𝐽31 𝐽32 𝐽33

] 

𝐽 =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁4

𝜕𝜉

𝜕𝑁5

𝜕𝜉

𝜕𝑁6

𝜕𝜉

𝜕𝑁7

𝜕𝜉

𝜕𝑁8

𝜕𝜉
𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

𝜕𝑁4

𝜕𝜂

𝜕𝑁5

𝜕𝜂

𝜕𝑁6

𝜕𝜂

𝜕𝑁7

𝜕𝜂

𝜕𝑁8

𝜕𝜂
𝜕𝑁1

𝜕𝜇

𝜕𝑁2

𝜕𝜇

𝜕𝑁3

𝜕𝜇

𝜕𝑁4

𝜕𝜇

𝜕𝑁5

𝜕𝜇

𝜕𝑁6

𝜕𝜇

𝜕𝑁7

𝜕𝜇

𝜕𝑁8

𝜕𝜇 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑌3

𝑌4

𝑌5

𝑌6

𝑌7

𝑌8

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8]
 
 
 
 
 
 
 

 

Hexahedral Element 
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𝜕𝑁𝑖=1−8

𝜕𝜉
=

−1

8
(1 − 𝜂)(1 − 𝜇),

1

8
(1 − 𝜂)(1 − 𝜇),

1

8
(1 + 𝜂)(1 − 𝜇),

−1

8
(1 + 𝜂)(1 − 𝜇),

−1

8
(1 − 𝜂)(1

+ 𝜇),
1

8
(1 − 𝜂)(1 + 𝜇),

1

8
(1 + 𝜂)(1 + 𝜇),

−1

8
(1 + 𝜂)(1 + 𝜇)   

𝜕𝑁𝑖=1−8

𝜕𝜂
=  

−1

8
(1 − 𝜉)(1 − 𝜇),

−1

8
(1 + 𝜉)(1 − 𝜇),

1

8
(1 + 𝜉)(1 − 𝜇),

1

8
(1 − 𝜉)(1 − 𝜇),

−1

8
(1 − 𝜉)(1

+ 𝜇),
−1

8
(1 + 𝜉)(1 + 𝜇),

1

8
(1 + 𝜉)(1 + 𝜇),

1

8
(1 − 𝜉)(1 + 𝜇)     

𝜕𝑁𝑖=1−8

𝜕𝜇
=  

−1

8
(1 − 𝜉)(1 − 𝜂),

−1

8
(1 + 𝜉)(1 − 𝜂),

−1

8
(1 + 𝜉)(1 + 𝜂),

−1

8
(1 − 𝜉)(1 + 𝜂),

1

8
(1 − 𝜉)(1

− 𝜂),
1

8
(1 + 𝜉)(1 − 𝜂),

1

8
(1 + 𝜉)(1 + 𝜂),

1

8
(1 − 𝜉)(1 + 𝜂) 

For the Element shown 

[
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑌3

𝑌4

𝑌5

𝑌6

𝑌7

𝑌8

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 0
𝑎 0 0
𝑎
0
0
𝑎
𝑎
0

𝑏
𝑏
0
0
𝑏
𝑏

0
0
𝑐
𝑐
𝑐
𝑐]
 
 
 
 
 
 
 

  

𝐽11 = 
𝑎

8
[(1 − 𝜂)(1 − 𝜇) + (1 + 𝜂)(1 − 𝜇) + (1 − 𝜂)(1 + 𝜇) + (1 + 𝜂)(1 + 𝜇)] 

𝐽11 = 
𝑎

8
[1 − 𝜇 − 𝜂 + 𝜂𝜇 + 1 − 𝜇 + 𝜂 − 𝜂𝜇 + 1 + 𝜇 − 𝜂 − 𝜂𝜇 + 1 + 𝜇 + 𝜂 + 𝜂𝜇] =

𝑎

8
[4] 

𝐽12 = 
𝑏

8
[(1 + 𝜂)(1 − 𝜇) − (1 + 𝜂)(1 − 𝜇) + (1 + 𝜂)(1 + 𝜇) − (1 + 𝜂)(1 + 𝜇)] 

𝐽12 = 
𝑏

8
[1 − 𝜇 + 𝜂 − 𝜂𝜇 − 1 + 𝜇 − 𝜂 + 𝜂𝜇] = 0 

𝐽13 =
𝑐

8
[−1(1 − 𝜂)(1 + 𝜇) + (1 − 𝜂)(1 + 𝜇) + (1 + 𝜂)(1 + 𝜇) − (1 + 𝜂)(1 + 𝜇)] 

𝐽13 = 0 

𝐽21 = 
𝑎

8
[−1(1 + 𝜉)(1 − 𝜇) + (1 + 𝜉)(1 − 𝜇) − (1 + 𝜉)(1 + 𝜇) + (1 + 𝜉)(1 + 𝜇)] 

𝐽21 = 0 

𝐽22 = 
𝑏

8
[(1 + 𝜉)(1 − 𝜇) + (1 − 𝜉)(1 − 𝜇) + (1 + 𝜉)(1 + 𝜇) + (1 − 𝜉)(1 + 𝜇)] 

Z 

X 

Y 

b 

a 

c 

1 

3 

4 

5 

6 7 

8 

2 
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𝐽22 = 
𝑏

8
[1 − 𝜇 + 𝜉 − 𝜉𝜇 + 1 − 𝜇 − 𝜉 + 𝜉𝜇 + 1 + 𝜇 + 𝜉 + 𝜉𝜇 + 1 + 𝜇 − 𝜉 − 𝜉𝜇] =

𝑏

8
[4] 

𝐽23 =   
𝑐

8
[−1(1 − 𝜉)(1 + 𝜇) − (1 + 𝜉)(1 + 𝜇) + (1 + 𝜉)(1 + 𝜇) + (1 − 𝜉)(1 + 𝜇)] 

𝐽23 = 0 

𝐽31 =  
𝑎

8
[−1(1 + 𝜉)(1 − 𝜂) − (1 + 𝜉)(1 + 𝜂) + (1 + 𝜉)(1 − 𝜂) + (1 + 𝜉)(1 + 𝜂)] 

𝐽31 = 0 

𝐽32 = 
𝑏

8
[−1(1 + 𝜉)(1 + 𝜂) − (1 − 𝜉)(1 + 𝜂) + (1 + 𝜉)(1 + 𝜂) + (1 − 𝜉)(1 + 𝜂)] 

𝐽32 =  0 

𝐽33 =  
𝑐

8
[(1 − 𝜉)(1 − 𝜂) + (1 + 𝜉)(1 − 𝜂) + (1 + 𝜉)(1 + 𝜂) + (1 − 𝜉)(1 + 𝜂)] 

𝐽33 =  
𝑐

8
[1 − 𝜂 − 𝜉 + 𝜉𝜂 + 1 − 𝜂 + 𝜉 − 𝜉𝜂 + 1 + 𝜂 + 𝜉 + 𝜉𝜂 + 1 + 𝜂 − 𝜉 − 𝜉𝜂] 

𝐽33 =  
𝑐

8
[4] 

∴ 𝐽 =

[
 
 
 
 
 
1

2
𝑎 0 0

0
1

2
𝑏 0

0 0
1

2
𝑐]
 
 
 
 
 

 

∴ det(𝐽) =
𝑎𝑏𝑐

8
 

For non-orthogonal Hexahedral Element (in the middle of the hill) 

𝐽 =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁4

𝜕𝜉

𝜕𝑁5

𝜕𝜉

𝜕𝑁6

𝜕𝜉

𝜕𝑁7

𝜕𝜉

𝜕𝑁8

𝜕𝜉
𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

𝜕𝑁4

𝜕𝜂

𝜕𝑁5

𝜕𝜂

𝜕𝑁6

𝜕𝜂

𝜕𝑁7

𝜕𝜂

𝜕𝑁8

𝜕𝜂
𝜕𝑁1

𝜕𝜇

𝜕𝑁2

𝜕𝜇

𝜕𝑁3

𝜕𝜇

𝜕𝑁4

𝜕𝜇

𝜕𝑁5

𝜕𝜇

𝜕𝑁6

𝜕𝜇

𝜕𝑁7

𝜕𝜇

𝜕𝑁8

𝜕𝜇 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑌3

𝑌4

𝑌5

𝑌6

𝑌7

𝑌8

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8]
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[
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑌3

𝑌4

𝑌5

𝑌6

𝑌7

𝑌8

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 0
𝑎 0 0
𝑎
0
0
𝑎
𝑎
0

𝑏
𝑏
0
0
𝑏
𝑏

0
0
𝑐1

𝑐2
𝑐2

𝑐1]
 
 
 
 
 
 
 

  

 

𝐽11 = 
𝑎

8
[(1 − 𝜂)(1 − 𝜇) + (1 + 𝜂)(1 − 𝜇) + (1 − 𝜂)(1 + 𝜇) + (1 + 𝜂)(1 + 𝜇)] 

𝐽11 = 
𝑎

8
[1 − 𝜇 − 𝜂 + 𝜂𝜇 + 1 − 𝜇 + 𝜂 − 𝜂𝜇 + 1 + 𝜇 − 𝜂 − 𝜂𝜇 + 1 + 𝜇 + 𝜂 + 𝜂𝜇] =

𝑎

8
[4] 

𝐽12 = 
𝑏

8
[(1 + 𝜂)(1 − 𝜇) − (1 + 𝜂)(1 − 𝜇) + (1 + 𝜂)(1 + 𝜇) − (1 + 𝜂)(1 + 𝜇)] 

𝐽12 = 
𝑏

8
[1 − 𝜇 + 𝜂 − 𝜂𝜇 − 1 + 𝜇 − 𝜂 + 𝜂𝜇] = 0 

𝐽13 =
1

8
[−𝐶1(1 − 𝜂)(1 + 𝜇) + 𝐶2(1 − 𝜂)(1 + 𝜇) + 𝐶2(1 + 𝜂)(1 + 𝜇) − 𝐶1(1 + 𝜂)(1 + 𝜇)] 

𝐽13 =
(𝐶2 − 𝐶1)

8
[(1 + 𝜇 − 𝜂 − 𝜂𝜇) + (1 + 𝜇 + 𝜂 + 𝜂𝜇)] =

(𝐶2 − 𝐶1)

8
[(2 + 2𝜇)] 

𝐽21 = 
𝑎

8
[−1(1 + 𝜉)(1 − 𝜇) + (1 + 𝜉)(1 − 𝜇) − (1 + 𝜉)(1 + 𝜇) + (1 + 𝜉)(1 + 𝜇)] 

𝐽21 = 0 

𝐽22 = 
𝑏

8
[(1 + 𝜉)(1 − 𝜇) + (1 − 𝜉)(1 − 𝜇) + (1 + 𝜉)(1 + 𝜇) + (1 − 𝜉)(1 + 𝜇)] 

𝐽22 = 
𝑏

8
[1 − 𝜇 + 𝜉 − 𝜉𝜇 + 1 − 𝜇 − 𝜉 + 𝜉𝜇 + 1 + 𝜇 + 𝜉 + 𝜉𝜇 + 1 + 𝜇 − 𝜉 − 𝜉𝜇] =

𝑏

8
[4] 

𝐽23 =   
𝑐

8
[−𝐶1(1 − 𝜉)(1 + 𝜇) − 𝐶2(1 + 𝜉)(1 + 𝜇) + 𝐶2(1 + 𝜉)(1 + 𝜇) + 𝐶1(1 − 𝜉)(1 + 𝜇)] 

𝐽23 = 0 

𝐽31 =  
𝑎

8
[−1(1 + 𝜉)(1 − 𝜂) − (1 + 𝜉)(1 + 𝜂) + (1 + 𝜉)(1 − 𝜂) + (1 + 𝜉)(1 + 𝜂)] 

𝐽31 = 0 

𝐽32 = 
𝑏

8
[−1(1 + 𝜉)(1 + 𝜂) − (1 − 𝜉)(1 + 𝜂) + (1 + 𝜉)(1 + 𝜂) + (1 − 𝜉)(1 + 𝜂)] 
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𝐽32 =  0 

𝐽33 =  
1

8
[𝐶1(1 − 𝜉)(1 − 𝜂) + 𝐶2(1 + 𝜉)(1 − 𝜂) + 𝐶2(1 + 𝜉)(1 + 𝜂) + 𝐶1(1 − 𝜉)(1 + 𝜂)] 

𝐽33 =  
1

8
[𝐶1(2 − 2𝜉) + 𝐶2(2 + 2𝜉)] 

∴ 𝐽 =

[
 
 
 
 
 
1

2
𝑎 0

(𝐶2 − 𝐶1)

8
[(2 + 2𝜇)]

0
1

2
𝑏 0

0 0
1

8
[𝐶1(2 − 2𝜉) + 𝐶2(2 + 2𝜉)]]

 
 
 
 
 

 

 

∴ det(𝐽) =
1

16
𝑎𝑏[𝐶1(1 − 𝜉) + 𝐶2(1 + 𝜉)] 

For non-orthogonal Hexahedral Element (on the side of the hill) 

𝐽 =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁4

𝜕𝜉

𝜕𝑁5

𝜕𝜉

𝜕𝑁6

𝜕𝜉

𝜕𝑁7

𝜕𝜉

𝜕𝑁8

𝜕𝜉
𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

𝜕𝑁4

𝜕𝜂

𝜕𝑁5

𝜕𝜂

𝜕𝑁6

𝜕𝜂

𝜕𝑁7

𝜕𝜂

𝜕𝑁8

𝜕𝜂
𝜕𝑁1

𝜕𝜇

𝜕𝑁2

𝜕𝜇

𝜕𝑁3

𝜕𝜇

𝜕𝑁4

𝜕𝜇

𝜕𝑁5

𝜕𝜇

𝜕𝑁6

𝜕𝜇

𝜕𝑁7

𝜕𝜇

𝜕𝑁8

𝜕𝜇 ]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑌3

𝑌4

𝑌5

𝑌6

𝑌7

𝑌8

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8]
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
𝑋1 𝑌1 𝑍1

𝑋2 𝑌2 𝑍2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7

𝑋8

𝑌3

𝑌4

𝑌5

𝑌6

𝑌7

𝑌8

𝑍3

𝑍4

𝑍5

𝑍6

𝑍7

𝑍8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0 0 0
𝑎 0 0
𝑎
0
0
𝑎
𝑎
0

𝑏
𝑏
0
0
𝑏
𝑏

0
0
𝑐1

𝑐2
𝑐3

𝑐4]
 
 
 
 
 
 
 

  

 

𝐽11 = 
𝑎

8
[(1 − 𝜂)(1 − 𝜇) + (1 + 𝜂)(1 − 𝜇) + (1 − 𝜂)(1 + 𝜇) + (1 + 𝜂)(1 + 𝜇)] 

𝐽11 = 
𝑎

8
[1 − 𝜇 − 𝜂 + 𝜂𝜇 + 1 − 𝜇 + 𝜂 − 𝜂𝜇 + 1 + 𝜇 − 𝜂 − 𝜂𝜇 + 1 + 𝜇 + 𝜂 + 𝜂𝜇] =

𝑎

8
[4] 

𝐽12 = 
𝑏

8
[(1 + 𝜂)(1 − 𝜇) − (1 + 𝜂)(1 − 𝜇) + (1 + 𝜂)(1 + 𝜇) − (1 + 𝜂)(1 + 𝜇)] 
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𝐽12 = 
𝑏

8
[1 − 𝜇 + 𝜂 − 𝜂𝜇 − 1 + 𝜇 − 𝜂 + 𝜂𝜇] = 0 

𝐽13 =
1

8
[−𝐶1(1 − 𝜂)(1 + 𝜇) + 𝐶2(1 − 𝜂)(1 + 𝜇) + 𝐶3(1 + 𝜂)(1 + 𝜇) − 𝐶4(1 + 𝜂)(1 + 𝜇)] 

𝐽13 = [
(𝐶2 − 𝐶1)

8
(1 + 𝜇 − 𝜂 − 𝜂𝜇) +

(𝐶3 − 𝐶4)

8
(1 + 𝜇 + 𝜂 + 𝜂𝜇)] 

𝐽21 = 
𝑎

8
[−1(1 + 𝜉)(1 − 𝜇) + (1 + 𝜉)(1 − 𝜇) − (1 + 𝜉)(1 + 𝜇) + (1 + 𝜉)(1 + 𝜇)] 

𝐽21 = 0 

𝐽22 = 
𝑏

8
[(1 + 𝜉)(1 − 𝜇) + (1 − 𝜉)(1 − 𝜇) + (1 + 𝜉)(1 + 𝜇) + (1 − 𝜉)(1 + 𝜇)] 

𝐽22 = 
𝑏

8
[1 − 𝜇 + 𝜉 − 𝜉𝜇 + 1 − 𝜇 − 𝜉 + 𝜉𝜇 + 1 + 𝜇 + 𝜉 + 𝜉𝜇 + 1 + 𝜇 − 𝜉 − 𝜉𝜇] =

𝑏

8
[4] 

𝐽23 =   
1

8
[−𝐶1(1 − 𝜉)(1 + 𝜇) − 𝐶2(1 + 𝜉)(1 + 𝜇) + 𝐶3(1 + 𝜉)(1 + 𝜇) + 𝐶4(1 − 𝜉)(1 + 𝜇)] 

𝐽23 = [
(𝐶4 − 𝐶1)

8
(1 + 𝜇 − 𝜉 − 𝜉𝜇) +

(𝐶3 − 𝐶2)

8
(1 + 𝜇 + 𝜉 + 𝜉𝜇)] 

𝐽31 =  
𝑎

8
[−1(1 + 𝜉)(1 − 𝜂) − (1 + 𝜉)(1 + 𝜂) + (1 + 𝜉)(1 − 𝜂) + (1 + 𝜉)(1 + 𝜂)] 

𝐽31 = 0 

𝐽32 = 
𝑏

8
[−1(1 + 𝜉)(1 + 𝜂) − (1 − 𝜉)(1 + 𝜂) + (1 + 𝜉)(1 + 𝜂) + (1 − 𝜉)(1 + 𝜂)] 

𝐽32 =  0 

𝐽33 =  
1

8
[𝐶1(1 − 𝜉)(1 − 𝜂) + 𝐶2(1 + 𝜉)(1 − 𝜂) + 𝐶3(1 + 𝜉)(1 + 𝜂) + 𝐶4(1 − 𝜉)(1 + 𝜂)] 

 

∴ 𝐽 =

[
 
 
 
 
 
1

2
𝑎 0 [

(𝐶2 − 𝐶1)

8
(1 + 𝜇 − 𝜂 − 𝜂𝜇) +

(𝐶3 − 𝐶4)

8
(1 + 𝜇 + 𝜂 + 𝜂𝜇)]

0
1

2
𝑏 [

(𝐶4 − 𝐶1)

8
(1 + 𝜇 − 𝜉 − 𝜉𝜇) +

(𝐶3 − 𝐶2)

8
(1 + 𝜇 + 𝜉 + 𝜉𝜇)]

0 0  
1

8
[𝐶1(1 − 𝜉)(1 − 𝜂) + 𝐶2(1 + 𝜉)(1 − 𝜂) + 𝐶3(1 + 𝜉)(1 + 𝜂) + 𝐶4(1 − 𝜉)(1 + 𝜂)]]

 
 
 
 
 

 

 

∴ det(𝐽) =
𝑎 × 𝑏

32
× [𝐶1(1 − 𝜉)(1 − 𝜂) + 𝐶2(1 + 𝜉)(1 − 𝜂) + 𝐶3(1 + 𝜉)(1 + 𝜂) + 𝐶4(1 − 𝜉)(1 + 𝜂)] 
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 FORTRAN code for calculating the Jacobean determinant and inverse 

SUBROUTINE STDM(XX,H,B,DET,R,S,T,NEL) 
      INTEGER NEL,I,J,K 
      DOUBLE PRECISION B(3,8),XX(3,8),H(8),P(3,8),XJ(3,3),XJI(3,3) 
     &,R,S,T,RP,SP,TP,RM,SM,TM,DUM,DET 
C     PROGRAM TO EVALUVATE THE STRAIN-DISPLACEMENT TRANSFORMATION 
C     MATRIX B AT POINT (R,S,T) FOR A BRICK8 ELEMENT 
C 
      RP=1.0+R 
      SP=1.0+S 
      TP=1.0+T 
      RM=1.0-R 
      SM=1.0-S 
      TM=1.0-T 
C.....INTERPOLATION FUNCTIONS 
C.....AT THIS STAGE NO NEED FOR H? 
      H(1)=0.125*RM*SM*TM 
      H(2)=0.125*RP*SM*TM 
      H(3)=0.125*RP*SP*TM 
     H(4)=0.125*RM*SP*TM 
      H(5)=0.125*RM*SM*TP 
      H(6)=0.125*RP*SM*TP 
      H(7)=0.125*RP*SP*TP 
      H(8)=0.125*RM*SP*TP 
C.....NATURAL COORDINATE DERIVATIVES OF THE INTERPOLATION FUNCTIONS 
C..... 1. WITH RESPECT TO R 
      P(1,1)=-0.125*SM*TM 
      P(1,2)=-P(1,1) 
      P(1,3)=0.125*SP*TM 
      P(1,4)=-P(1,3) 
      P(1,5)=-0.125*SM*TP 
      P(1,6)=-P(1,5) 
      P(1,7)=0.125*SP*TP 
      P(1,8)=-P(1,7) 
C..... 2. WITH RESPECT TO S 
      P(2,1)=-0.125*RM*TM 
      P(2,2)=-0.125*RP*TM 
      P(2,3)=-P(2,2) 
      P(2,4)=-P(2,1) 
      P(2,5)=-0.125*RM*TP 
      P(2,6)=-0.125*RP*TP 
      P(2,7)=-P(2,6) 
      P(2,8)=-P(2,5) 
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C..... 3. WITH RESPECT TO T 
      P(3,1)=-0.125*RM*SM 
      P(3,2)=-0.125*RP*SM 
      P(3,3)=-0.125*RP*SP 
      P(3,4)=-0.125*RM*SP 
      P(3,5)=-P(3,1) 
      P(3,6)=-P(3,2) 
      P(3,7)=-P(3,3) 
      P(3,8)=-P(3,4) 
c....EVALUATE THE JACOBIAN MATRIX AT POINT (R,S) 
      DO 30 I=1,3 
      DO 30 J=1,3 
      DUM=0.0 
      DO 20 K=1,8 
   20 DUM=DUM+P(I,K)*XX(J,K) 
   30 XJ(I,J)=DUM 
c      write(6,*)nel,r,s,t 
c      write(6,3)((xx(i,j),j=1,3),i=1,3) 
c      write(6,3)((xj(i,j),j=1,3),i=1,3) 
3     format(9(1x,f5.3)) 
C.....COMPUTE THE DETERMINANT OF THE JACOBIAN MATRIX AT POINT (R,S,T) 
C.....COMPUTE THE ADJOINT MATRIX OF XJ 
      XJI(1,1)=XJ(2,2)*XJ(3,3)-XJ(3,2)*XJ(2,3) 
      XJI(2,1)=-XJ(2,1)*XJ(3,3)+XJ(3,1)*XJ(2,3) 
      XJI(3,1)=XJ(2,1)*XJ(3,2)-XJ(3,1)*XJ(2,2) 
      XJI(1,2)=-XJ(1,2)*XJ(3,3)+XJ(3,2)*XJ(1,3) 
      XJI(2,2)=XJ(1,1)*XJ(3,3)-XJ(3,1)*XJ(1,3) 
      XJI(3,2)=-XJ(1,1)*XJ(3,2)+XJ(3,1)*XJ(1,2) 
      XJI(1,3)=XJ(1,2)*XJ(2,3)-XJ(2,2)*XJ(1,3) 
      XJI(2,3)=-XJ(1,1)*XJ(2,3)+XJ(2,1)*XJ(1,3) 
      XJI(3,3)=XJ(1,1)*XJ(2,2)-XJ(2,1)*XJ(1,2) 
      DET=0.0 
      DO 31 I=1,3 
31    DET=DET+XJ(1,I)*XJI(I,1) 
      IF(DET.GT.0.00000001) GO TO 40 
      WRITE(*,2000)NEL 
2000  FORMAT('ERROR, ZERO OR NEGETIVE JACOBIAN DET. FOR ELEMENT=',I6) 
      PRINT *,DET 
      STOP 
C.... COMPUTE INVERSE OF THE JACOBIAN MATRIX 
   40 DUM=1./DET 
      DO 41 J=1,3 
      DO 41 I=1,3 
41    XJI(I,J)=XJI(I,J)*DUM 
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C.....EVALUATE GLOBAL DERIVATIVE OPERATOR B 
      DO 50 I=1,3 
      DO 50 J=1,8 
50    B(I,J)=XJI(I,1)*P(1,J)+XJI(I,2)*P(2,J)+XJI(I,3)*P(3,J) 
c     DUM=0.0 
c     DO 55 K=1,3 
c55    DUM=DUM+XJI(I,K)*P(K,J) 
c50    B(I,J)=DUM 
      RETURN 
      END 
      SUBROUTINE STDM2(H,P,R,S,T) 
      DOUBLE PRECISION H(8),P(3,8),R,S,T,RP,SP,TP,RM,SM,TM 
C     PROGRAM TO EVALUVATE THE STRAIN-DISPLACEMENT TRANSFORMATION 
C     MATRIX B AT POINT (R,S,T) FOR A BRICK8 ELEMENT 
c     get H & P matrix for storage 
C 
      RP=1.0+R 
      SP=1.0+S 
      TP=1.0+T 
      RM=1.0-R 
      SM=1.0-S 
      TM=1.0-T 
C.....INTERPOLATION FUNCTIONS 
C.....AT THIS STAGE NO NEED FOR H? 
      H(1)=0.125*RM*SM*TM 
      H(2)=0.125*RP*SM*TM 
      H(3)=0.125*RP*SP*TM 
      H(4)=0.125*RM*SP*TM 
      H(5)=0.125*RM*SM*TP 
      H(6)=0.125*RP*SM*TP 
      H(7)=0.125*RP*SP*TP 
      H(8)=0.125*RM*SP*TP 
C.....NATURAL COORDINATE DERIVATIVES OF THE INTERPOLATION FUNCTIONS 
C..... 1. WITH RESPECT TO R 
      P(1,1)=-0.125*SM*TM 
      P(1,2)=-P(1,1) 
      P(1,3)=0.125*SP*TM 
      P(1,4)=-P(1,3) 
      P(1,5)=-0.125*SM*TP 
      P(1,6)=-P(1,5) 
      P(1,7)=0.125*SP*TP 
      P(1,8)=-P(1,7) 
C..... 2. WITH RESPECT TO S 
      P(2,1)=-0.125*RM*TM 
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      P(2,2)=-0.125*RP*TM 
      P(2,3)=-P(2,2) 
      P(2,4)=-P(2,1) 
      P(2,5)=-0.125*RM*TP 
      P(2,6)=-0.125*RP*TP 
      P(2,7)=-P(2,6) 
      P(2,8)=-P(2,5) 
C..... 3. WITH RESPECT TO T 
      P(3,1)=-0.125*RM*SM 
      P(3,2)=-0.125*RP*SM 
      P(3,3)=-0.125*RP*SP 
      P(3,4)=-0.125*RM*SP 
      P(3,5)=-P(3,1) 
      P(3,6)=-P(3,2) 
      P(3,7)=-P(3,3) 
      P(3,8)=-P(3,4) 
      RETURN 
      END 
      SUBROUTINE STDM3(XX,H,B,H8,P8,DET,N1) 
      INTEGER N1,NDF,I,J 
      DOUBLE PRECISION B(3,8),XX(3,8),H(8),H8(8,8),P8(3,8,8),RJ(3) 
     &,DET,DX,DY,DZ 
c     GET H & B FOR HEXAHEDRAL ELEMENT -RECTANGULAR SYSTEM-AXIS CONCIDES 
      NDF=8 
      DX=XX(1,2)-XX(1,1) 
      DY=XX(2,4)-XX(2,1) 
      DZ=XX(3,5)-XX(3,1) 
      DET=DX*DY*DZ/8. 
      RJ(1)=2./DX 
      RJ(2)=2./DY 
      RJ(3)=2./DZ 
c 
      DO I=1,NDF 
      H(I)=H8(I,N1) 
      END DO 
      DO J=1,NDF 
      DO I=1,3 
      B(I,J)=RJ(I)*P8(I,J,N1) 
      END DO 
      END DO 
      RETURN 
      END 
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2. Finite Element Numbering and Assembling 

 Solving a large system of type Ax=b is computationally expensive. A numbering system 

depending on the geometric connection between the elements is established to reduce the 

computational cost. Only the upper triangle is stored. The location of the adjacent points is the 

main function for the numbering system. For example, each point on the east side is numbered 

two and the west is numbered three. Table 1 illustrates the location and number for each point in 

geometric and IJK systems. Then the north and south side is numbered accordingly. However, 

because only the upper triangle is considered, some shifting is done in the middle layer as shown 

in Figure C.2. The joints numbers for the 3-D element’s faces are shown in Figure C.3. In Figure 

C.2, T,B and M represent the top layer, middle layer and bottom layer respectively as the color is 

corresponded to each layer in the 3-D shape in Figure C.4.      

The assembling of global matrix from the element matrix and the matrix multiplication are done 

for the fourteen points in the upper triangle as shown the code below. The lower triangle 

elements are not stored but connected to the upper triangle elements as shown in table2. Table 3 

shows the upper triangle of the stiffness matrix.   
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Figure C.2 Elements assembly. 
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Table C.1 numbering system according to the center point location. 

ijk (i+1)jk I(j+1)k (i+1) (j+1)k (i-1) (j+1)k 

MC ME MN MNE MNW 

1 2 3 4 5 

ij(k+1) (i+1)j(k+1) (i-1)j(k+1) i(j+1)(k+1) i(j-1)(k+1) 

TC TE TW TN TS 

6 7 8 9 10 

(i+1) (j-1)(k+1) (i-1)(j+1)(k+1) (i-1)(j-1)(k+1) (i+1)(j-1)(k+1)  

TNE TNW TSW TSE  

11 12 13 14  
 

4 3 

2 1 

8 7 

6 5 

B T 

Figure C.3 Element faces. 

Figure C.4 ELEMENTS 3-D SHAPE. 
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Element Stiffness Matrix 

 

Table C.2 relation between the lower and upper triangle elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 9 11 

8 6 7 

13 10 14 

5 3 4 

A(IW,j,k,2) 1 2 

A(IW,JS,k,4) A(i,JS,k,3) A(IE,JS,k,5) 

A(IW,JN,KB,14) A(i,JN,KB,10) A(IE,JN,KB,13) 

A(IW,j,KB,7) A(i,j,KB,6) A(IE,j,KB,8) 

A(IW,JS,KB,11) A(i,JS,KB,9) A(IE,JS,KB,12) 
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Table C.3 The upper triangle of the stiffness matrix. 

 

 

 

C.....ASSEMBLE THE RHS-HERE F IS FORMULATED AS A*D=F TERM 

IE=I+1, JN=J+1, IE=I-1, JS=J-1, KT=K+1, KB=K-1 

C.....FOR POINT 1 

      A(I,J,K,1)= A(I,J,K,1)+SM(1,1) 

      A(I,J,K,2)= A(I,J,K,2)+SM(1,2) 

      A(I,J,K,4)= A(I,J,K,4)+SM(1,3) 

      A(I,J,K,3)= A(I,J,K,3)+SM(1,4) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 1 2 3 4 6 7 9 11

2 1 2 5 3 4 8 6 7 12 9 11

3 1 5 3 8 6 12 9

4 1 2 3 4 10 14 6 7 9 11

5 1 2 5 3 4 13 10 14 8 6 7 12 9 11

6 1 5 3 13 10 8 6 12 9

7 1 2 10 14 6 7

8 1 2 13 10 14 8 6 7

9 1 13 10 8 6

10 1 2 3 4 6 7 12 9

11 1 2 5 3 4 8 6 7 12 9 11

12 1 5 3 8 6 12 9

13 1 2 3 4 10 14 6 7 9 11

14 1 2 5 3 4 13 10 14 8 6 7 12 9 11

15 1 5 3 13 10 8 6 12 9

16 1 2 10 14 6 7

17 1 2 13 10 14 8 6 7

18 1 13 10 8 6

19 1 2  3 4

20 1 2 5 3 4

21 1 5 3

22  1 2 3 4

23 1 2 5 3 4

24 1 5 3

25 1 2

26 1 2

27 1
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      A(I,J,K,6)= A(I,J,K,6)+SM(1,5) 

      A(I,J,K,7)= A(I,J,K,7)+SM(1,6) 

      A(I,J,K,11)= A(I,J,K,11)+SM(1,7) 

      A(I,J,K,9)= A(I,J,K,9)+SM(1,8) 

C.....FOR POINT 2 

      A(IE,J,K,1)= A(IE,J,K,1)+SM(2,2) 

      A(IE,J,K,3)= A(IE,J,K,3)+SM(2,3) 

      A(IE,J,K,5)= A(IE,J,K,5)+SM(2,4) 

      A(IE,J,K,8)= A(IE,J,K,8)+SM(2,5) 

      A(IE,J,K,6)= A(IE,J,K,6)+SM(2,6) 

      A(IE,J,K,9)= A(IE,J,K,9)+SM(2,7) 

      A(IE,J,K,12)= A(IE,J,K,12)+SM(2,8) 

      C.....FOR POINT 3 

      A(I,JN,K,1)= A(I,JN,K,1)+SM(3,3) 

      A(I,JN,K,13)= A(I,JN,K,13)+SM(3,5) 

      A(I,JN,K,10)= A(I,JN,K,10)+SM(3,6) 

      A(I,JN,K,6)= A(I,JN,K,6)+SM(3,7) 

      A(I,JN,K,8)= A(I,JN,K,8)+SM(3,8) 

C.....FOR POINT 4 

      A(IE,JN,K,2)= A(IE,JN,K,2)+SM(4,3) 

      A(IE,JN,K,1)= A(IE,JN,K,1)+SM(4,4) 

      A(IE,JN,K,10)= A(IE,JN,K,10)+SM(4,5) 

      A(IE,JN,K,14)= A(IE,JN,K,14)+SM(4,6) 

      A(IE,JN,K,7)= A(IE,JN,K,7)+SM(4,7) 

      A(IE,JN,K,6)= A(IE,JN,K,6)+SM(4,8) 

C.....FOR POINT 5 

      A(IW,JN,K,1)= A(IW,JN,K,1)+SM(5,5) 

      A(IW,JN,K,2)= A(IW,JN,K,2)+SM(5,6) 
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      A(IW,JN,K,4)= A(IW,JN,K,4)+SM(5,7) 

      A(IW,JN,K,3)= A(IW,JN,K,3)+SM(5,8) 

C.....FOR POINT 6 

      A(I,J,KT,1)= A(I,J,KT,1)+SM(6,6) 

      A(I,J,KT,3)= A(I,J,KT,3)+SM(6,7) 

      A(I,J,KT,5)= A(I,J,KT,5)+SM(6,8) 

C.....FOR POINT 7 

      A(I,J,KT,1)= A(I,J,KT,1)+SM(7,7) 

C.....FOR POINT 8 

      A(I,J,KT,2)= A(I,J,KT,2)+SM(8,7) 

      A(I,J,KT,1)= A(I,J,KT,1)+SM(8,8) 

 

      RHS=A(I,J,K,1)*X(I,J,K)+A(I,J,K,2)*X(IE,J,K)+ 

     &A(I,J,K,3)*X(I,JN,K)+A(I,J,K,4)*X(IE,JN,K)+ 

     &A(I,J,K,5)*X(IW,JN,K)+A(I,J,K,6)*X(I,J,KT)+ 

     &A(I,J,K,7)*X(IE,J,KT)+A(I,J,K,8)*X(IW,J,KT)+ 

     &A(I,J,K,9)*X(I,JN,KT)+A(I,J,K,10)*X(I,JS,KT)+ 

     &A(I,J,K,11)*X(IE,JN,KT)+A(I,J,K,12)*X(IW,JN,KT)+ 

     &A(I,J,K,13)*X(IW,JS,KT)+A(I,J,K,14)*X(IE,JS,KT)+ 

C 

     &A(IW,J,K,2)*X(IW,J,K)+ A(I,JS,K,3)*X(I,JS,K)+ 

     &A(IW,JS,K,4)*X(IW,JS,K)+ A(IE,JS,K,5)*X(IE,JS,K)+ 

     &A(I,J,KB,6)*X(I,J,KB)+A(IE,J,KB,8)*X(IE,J,KB)+ 

     &A(IW,J,KB,7)*X(IW,J,KB)+A(I,JN,KB,10)*X(I,JN,KB)+ 

     &A(I,JS,KB,9)*X(I,JS,KB)+A(IE,JN,KB,13)*X(IE,JN,KB)+ 

     &A(IW,JN,KB,14)*X(IW,JN,KB)+ A(IW,JS,KB,11)*X(IW,JS,KB) 

     &+A(IE,JS,KB,12)*X(IE,JS,KB) 
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3. Area Calculation Check 

Area calculation is an important factor in computing wind or tornado forces on the structure. 

After the pressure is calculated by solving the Navier Stokes equations, it is multiplied by the 

calculated area to determine the forces. In this section, a simplified geometry as shown in Figure 

C.5 is utilized to show the area and area component calculation.  
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Figure C.5 Simple geometry utilized for area calculation check. 
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Table C.4 points’ indices and coordinates. 

point Index Coordinates 

 I J K X Y Z 

1 1 1 1 -2 -1 1 

2 1 2 1 -2 0 1 

3 1 3 1 -2 1 1 

4 2 1 2 -1 -1 1.5 

5 2 2 2 -1 0 1.5 

6 2 3 2 -1 1 1.5 

7 3 1 3 0 -1 2 

8 3 2 3 0 0 2 

9 3 3 3 0 1 2 

10 4 1 2 1 -1 1.5 

11 4 2 2 1 0 1.5 

12 4 3 2 1 1 1.5 

13 5 1 1 2 -1 1 

14 5 2 1 2 0 1 

15 5 3 1 2 1 1 

 

For point 5: 

DX=(X(I+1)-X(I-1))/2. (Calculate the surface length along the X axis) 

  = (0-(-2))/2=1 

DY=(Y(J+1)-Y(J-1))/2. (Calculate the surface length along the Y axis) 

  = (1-(-1))/2= 1  

 

 

 

 

Projected view for selected area 
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(Calculate the average elevation for the corner Z1) 

Z1=(HI(I-1,J-1)+HI(I,J-1)+HI(I,J)+HI(I-1,J))/4. 

   = (1+1.5+1.5+1)/4=1.25  

Z2=(HI(I,J-1)+HI(I+1,J-1)+HI(I+1,J)+HI(I,J))/4. 

   = (1.5+2+2+1.5)/4=1.75 

Z3=(HI(I,J)+HI(I+1,J)+HI(I+1,J+1)+HI(I,J+1))/4. 

  = (1.5+2+2+1.5)/4=1.75  

Z4=(HI(I-1,J)+HI(I,J)+HI(I,J+1)+HI(I-1,J+1))/4. 

  = (1+1.5+1.5+1)/4=1.25  

 

Z31=Z3-Z1 (Calculate the elevation difference for vector 13) 

  =0.5  

Z24=Z2-Z4 (Calculate the elevation difference for vector 24) 

   =0.5 

DX2=DX*DX 

   =1*1=1 

DY2=DY*DY 

   =1*1=1 

Z1=(Z24+Z31)*(Z24+Z31) 

    = (0.5+0.5)*(0.5+0.5)=1 

Z2=(Z31-Z24)*(Z31-Z24) 

  =0 

AZ(I,J)=SQRT(DY2*Z1+DX2*Z2+4.*DX2*DY2)/2.(Total Area) 

Z1 Z2 

Z3 Z4 

P 
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                =(1*1+1*0+4*1*1)0.5/2=1.118 

AX=DY*(Z24+Z31)/2. (Area component in X direction) 

  =1*(0.5+0.5)/2=0.5 

AY=DX*(Z31-Z24)/2. (Area component in Y direction) 

  =0.5*(0.5-0.5)/2=0 

AZ=DX*DY (Area component in Z direction) 

  =1*1=1 

For point 11: 

DX=(X(I+1)-X(I-1))/2. 

  = (2-(0))/2=1 

DY=(Y(J+1)-Y(J-1))/2. 

  = (1-(-1))/2= 1  

Z1=(HI(I-1,J-1)+HI(I,J-1)+HI(I,J)+HI(I-1,J))/4. 

   = (2+1.5+1.5+2)/4=1.75  

Z2=(HI(I,J-1)+HI(I+1,J-1)+HI(I+1,J)+HI(I,J))/4. 

   = (1.5+1+1+1.5)/4=1.25 

Z3=(HI(I,J)+HI(I+1,J)+HI(I+1,J+1)+HI(I,J+1))/4. 

  = (1.5+1+1+1.5)/4=1.25  

Z4=(HI(I-1,J)+HI(I,J)+HI(I,J+1)+HI(I-1,J+1))/4. 

  = (2+1.5+1.5+2)/4=1.75  

Z31=Z3-Z1 

  =-0.5  

Z24=Z2-Z4 
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  =-0.5 

DX2=DX*DX 

   =1*1=1 

DY2=DY*DY 

   =1*1=1 

Z1=(Z24+Z31)*(Z24+Z31) 

    = (-0.5+-0.5)*(-0.5+-0.5)=1 

Z2=(Z31-Z24)*(Z31-Z24) 

  =0 

AZ(I,J)=SQRT(DY2*Z1+DX2*Z2+4.*DX2*DY2)/2. 

                =(1*1+1*0+4*1*1)0.5/2=1.118 

AX=DY*(Z24+Z31)/2. 

  =1*(-0.5+-0.5)/2=-0.5 

AY=DX*(Z31-Z24)/2. 

  =0.5*(-0.5--0.5)/2=0 

AZ=DX*DY 

  =1*1=1 

 Vector Cross product for Area Calculation  

𝐴𝑟𝑒𝑎 =
1

2
(13 × 42) =

1

2
(

13
→×

42
→) 

1(X1,Y1,Z1), 2(X2,Y2,Z2), 3(X3,Y3,Z3), 4(X4,Y4,Z4) 

𝑍31 = 𝑍3 − 𝑍1 

𝑍24 = 𝑍2 − 𝑍4 
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𝐴𝑟𝑒𝑎 = [
𝑖 𝑗 𝑘

𝐷𝑥 𝐷𝑦 𝑍31
𝐷𝑥 −𝐷𝑦 𝑍24

] 

 

 

= (𝐷𝑦𝑍24 + 𝐷𝑦𝑍31)𝑖 + (𝐷𝑥𝑍31 − 𝐷𝑥𝑍24)𝑗 − (𝐷𝑥𝐷𝑦 + 𝐷𝑥𝐷𝑌)𝑘 

=
1

2
√𝐷𝑦2(𝑍24 + 𝑍31)2 + 𝐷𝑥2(𝑍31 − 𝑍24)2 − 4(𝐷𝑥𝐷𝑦)2 
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