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ABSTRACT 

Reconstituted specimens are often utilized to characterize engineering properties of 

cohesive soils. A series of undrained triaxial tests were conducted on reconstituted soil 

specimens to evaluate 1) the influence of stress path, 2) the intrinsic shear strength behavior, and 

3) the small-strain characteristics. The stress path tests were conducted on kaolinite specimens 

reconstituted from slurries with water content values of one and one-half times the liquid limit of 

the soil (1.5LL). To evaluate the intrinsic undrained shear strength and the intrinsic small-strain 

properties, the triaxial tests were performed on kaolinite and illite specimens that were 

reconstituted at two levels of slurry water content of 1.5LL and three times the corresponding 

liquid limit of the soil. Bender elements were employed with the triaxial device to measure shear 

wave velocity during the triaxial tests that were performed to evaluate the small-strain 

characteristics.  

The stress-strain behavior of the normally consolidated kaolinite specimens was similar 

to the typical behavior of the overconsolidated specimens. Identical stress-strain behavior was 

observed from the stress paths tests at the same orientation of the principal stresses. A new 

interpretation method was proposed to normalize the undrained shear strength values of the 

overconsolidated specimens based on the concept of void index. By utilizing this method, better 

correlation was obtained between the undrained shear strength values and the intrinsic shear 

strength line. The values of the shear wave velocity and shear modulus were also normalized to 

the void index to evaluate the intrinsic small-strain characteristics. The values of both the shear 

wave velocity and the shear modulus did not normalize with respect to the void index values.  

As discussed herein, the triaxial compression test and the reduced triaxial extension test 

are adequate to represent the different loading and unloading conditions in the field. Unlike 



previous recommendations of preparing soil slurries at water contents of 1.25 times the liquid 

limit, soil slurries should be prepared at water content values of at least 3LL. By preparing soil 

slurries with a water content of 3LL, undrained shear strength and small-strain characteristics 

that are in better agreement with those for natural soils will be obtained.  
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 Introduction 

 Chapter Overview 

Reconstituted soil specimens are commonly utilized to characterize the geotechnical 

properties of natural soils. The compression, strength, and small-strain properties of reconstituted 

kaolinite and illite soils are introduced in this document. Specifically, four main items including: 

1) shear strength parameters and stress-strain relationships under different loading conditions, 2) 

intrinsic undrained shear strength behavior, 3) small-strain stiffness, and 4) fabric anisotropy of 

illite and kaolinite soils are discussed. The aforementioned properties were determined by 

performing Ko-consolidated, undrained, triaxial tests with shear wave velocity measurements. 

The equipment, test materials, and methodology that were utilized to perform the experimental 

program are also described herein. The measured parameters were analyzed by utilizing the 

principles of soil mechanics and then compared with literature values to gain insight into the 

measured behavior of the reconstituted soils.  

This chapter is divided into three sections. 1) An overview of the research project is 

described in Section 1.2. 2) The motivation for this research is presented in Section 1.3. 3) The 

organization of the entire dissertation is presented in Section 1.4.  

 Project Description and Objectives 

 The hypothesis of this research included 1) stress-strain and soil moduli parameters may 

be evaluated by performing triaxial testing under different loading conditions and 2) these 

parameters may be utilized to characterize the engineering behavior of reconstituted soils. The 

three main objectives of this research were to 1) explore the relationship between the stress path 

and the shear strength parameters of various cohesive soils, 2) examine the intrinsic shear 

strength behavior of various cohesive soils, and to 3) examine the intrinsic small-strain behavior 

and fabric anisotropy of various cohesive soils. The flow chart of the research plan is presented 



2 

in Figure 1.1. Several tasks were completed to evaluate the hypothesis of this research, as 

described below.   

 A series of Ko-reconsolidated, undrained, triaxial compression and extension tests were 

performed under different loading conditions on kaolinite specimens that were 

reconstituted at initial water content of the slurry (ws) of one and one-half times the liquid 

limit (1.5LL) of the soil. 

 A series of Ko-reconsolidated, undrained, triaxial compression tests were conducted on 

kaolinite and illite specimens that were reconstituted at sw  levels of 1.5LL and three 

times the liquid limit (3LL) to explore the intrinsic shear strength characteristics. 

 Small-strain shear modulus values were determined for kaolinite and illite specimens 

during the reconsolidation and shearing stages of the triaxial compression tests. These 

values were computed based on the shear wave velocity values that were measured by 

utilizing bender elements. The specimens for this scope of work were reconstituted at sw  

values of 1.5LL and 3LL. 

 The values of shear wave velocity were compared with the shear wave velocity values 

that were obtained by utilizing bender elements within a constant rate of strain 

consolidation device.  

 Problems associated with the test methods were discussed and new test procedures were 

proposed.  
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Figure 1.1. The flow chart of the research plan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol Definitions 
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TC= Triaxial Compression Test 
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 Benefits to Geotechnical Engineering 

Characterization of the shear strength of soil for engineering practice requires applying 

various stress paths to soil to represent loading field conditions. Based on the concept of stress 

path, different site characterization and design methods have been developed to account for 

different orientations of the major, minor, and intermediate principal stress states. These methods 

have been developed because the use of conventional triaxial testing has often led to either 

unsafe or over-conservative designs. The shear strength parameters, as obtained from controlled 

stress path triaxial testing, will aid in the solution of many instu stress path related problems. 

Furthermore, limited amounts of triaxial compression testing data are currently available to 

evaluate the parameters for advanced constitutive models. The data obtained from this research 

will be analyzed and compared to develop an understanding of the testing techniques required to 

represent certain field conditions. Moreover, these data will be useful to develop or validate 

advanced constitutive models. 

A better understanding of the engineering behavior of the reconstituted soils will aid in 

the quantification and characterization of the engineering behavior of the natural soils. Few 

studies have investigated the correlations between the initial water content of a given slurry and 

the engineering characteristics of the reconstituted soils that were developed from the slurry. 

Specifically, the intrinsic shear strength of reconstituted specimens that were overconsolidated 

during the triaxial testing has not been previously evaluated. Furthermore, the influence of the 

initial water content of the slurry and fabric anisotropy on the small-strain behavior of 

reconstituted soil specimens has been studied by a limited number of researchers. Recommended 

sw  levels, that should be considered when reconstituting specimens of cohesive soils for shear 

strength small-strain measurements, will be provided. More representative values of shear 
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strength and small-strain characteristics of corresponding natural soils will be obtained as the 

result of this study by using the recommended slurry reconstitution procedures. 

 Dissertation Organization 

The results from this research are described in seven chapters of this dissertation. The 

organization of the dissertation is described in this chapter (Chapter 1). A review the related 

literature, describing fundamental aspects of stress path, reconstituted soils, and small-strain 

measurements, is presented in Chapter 2. The contents of Chapters 4 through 6 have been 

submitted for publication. Information about the submissions is described below. The main 

conclusions drawn from the research are presented in Chapter 7.  

A technical paper about the effect of the stress path on 1) the stress-strain behavior and 2) 

the shear strength characteristics of reconstituted low plasticity kaolinite soil, as obtained from a 

comprehensive triaxial testing program, is presented in Chapter 4. The paper was submitted to 

Soils and Foundations. The full reference is: Mahmood, N. S. and Coffman, R. A., (2017). “The 

Effects of Stress Path on the Characterization of Reconstituted Low Plasticity Kaolinite.” Soils 

and Foundations, Under Review, Manuscript Number: SANDF-D-17-00352-R1. 

The observed relationships between the initial water content of the slurry and the 

corresponding shear strength characteristics of reconstituted kaolinite and illite soils, is presented 

in Chapter 5. The paper was submitted to Quarterly Journal of Engineering Geology and 

Hydrogeology. The full reference is: Mahmood, N. S. and Coffman, R. A., (2018a). “Intrinsic 

shear strength behavior of reconstituted kaolinite and illite soils.” Quarterly Journal of 

Engineering Geology and Hydrogeology, Under Review, Manuscript Number: qjegh2018-056-

R1. 
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The shear wave velocity and small-strain shear stiffness of reconstituted kaolinite and 

illite specimens were investigated by utilizing triaxial apparatus instrumented with bender 

elements. The results obtained from this investigation were documented in a technical paper 

which is presented in Chapter 6. The paper was submitted to the Geotechnical Testing Journal. 

The full reference is: Mahmood, N. S. and Coffman, R. A., (2018b). “Small-strain of 

Reconstituted Soils: The Effect of Slurry Water Content.” Geotechnical Testing Journal, Under 

Review, Manuscript Number: GTJ-2018-0098-R1. 
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 Literature Review 

 Chapter Overview 

A review of literature on the key areas of the research is presented in this chapter. 

Specifically, consideration is given to the stress-strain behavior and small-strain properties of 

cohesive soils under different loading conditions in undrained triaxial testing.  An overview of 

the concept and the importance of stress path in triaxial testing, as well as the effects of stress 

path on the measurements engineering parameters is presented in Section 2.2. The engineering 

behavior of reconstituted soils, is discussed in Section 2.3. A description of the small-strain soil 

measurements and a discussion of the influences of stress history and fabric anisotropy on these 

measurements are presented in Section 2.4. 

 Stress Path in Triaxial Testing 

Historically, triaxial testing has been the most utilized test method for reliable 

measurements of stress-strain relationships for soil. One of the factors that influences the stress-

strain relationships, as obtained from triaxial testing, is the applied stress path. The concept and 

importance of stress path are presented in Section 2.2.1. The methods for applying stress paths 

during triaxial tests are discussed in Section 2.2.2. The effects of stress path on shear strength 

parameters are discussed in Section 2.2.3. The influences of stress path on 1) developed 

constitutive models and on 2) soil moduli are discussed in Sections 2.2.4 and Section 2.2.5, 

respectively.  

 The Concept and Importance of Stress Path 

By definition, the stress path is the line that is developed by recording the direction and 

magnitude of the three principal stresses as a function of time during the consolidation and 

shearing stages of a triaxial test (Lambe 1967). Soil deformation during loading is mainly due to 

sliding between soil particles. Therefore, this deformation is highly irrecoverable and is 
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significantly dependent on the stress path (Lade and Duncan 1976). The amount of shear strength 

anisotropy, for a given soil, is influenced by the stress path that the soil experiences. Shear 

strength anisotropy is an important factor that may have significant effects on shear strength 

properties. In nature, anisotropic consolidation occurs during sedimentation of soil; this process 

is known as the inherent anisotropy. Examinations of the structure of clay samples following 

one-dimensional consolidation have led to the realization that clay particles tend to be oriented 

perpendicularly with respect to the direction of the major principal stress. Therefore, any change 

in the directions of the principal stress will affect the compressibility and shear strength of the 

clay (Hanse and Gibson 1949, Duncan and Seed 1966). 

In addition to the inherent anisotropy, another form of anisotropy occurs as a result of the 

rotation of the three principal stresses during consolidation and shear. This rotation of the 

principal stresses is known as stress induced anisotropy (Hanse and Gibson 1949, Atkinson et al. 

1987, Prashant and Penumadu 2005). It has been recognized by many researchers that different 

loading conditions encountered in the field result in a rotation of the principal stresses during 

shear (Figure 2.1). Therefore, the selected stress paths utilized during laboratory testing must be 

selected to represent the insitu loading conditions. Heave of soil at the bottom of an excavation, 

for instance, has been shown to be reproduced using triaxial extension tests while the bearing 

capacity of an embankment has been modeled by using a combination of plan strain active 

(PSA), plan strain passive (PSP), and direct simple shear (DSS) tests. For instance, the Earth 

Retaining Structures Manual (2007) distributed by the Federal Highway Administration (FHWA) 

states that triaxial extension tests should be conducted to evaluate the shear strength parameters 

in cases such as 1) deep excavations in soft clays or 2) soils in the passive zone. The manual also 
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states that the value of shear strength for soil in the passive zone is typically lower than the value 

of shear strength for soil in the active zone.  

 
Figure 2.1. Orientation of the principal stresses and typical in situ modes of failure 

(modified from Ladd and Foott 1974). 

Many different design methods have been employed to evaluate the stress-strain behavior 

of a given soil element soil when the soil is subjected to loading or unloading (e.g., Davis and 

Poulos 1968, Simons and Som 1970, Davis and Poulos 1972, Coffman et al. 2010). These 

methods have been developed to account for stress changes, in the field, that require 

representative laboratory obtained soil parameters, as obtained from laboratory stress path tests. 

Simons and Som (1970) stated that the modulus of elasticity value should be determined from an 

appropriate stress path to take in account the field stress conditions for settlement analyses. 

 In most design cases, the triaxial compression test (conventional triaxial) has been used 

to evaluate the undrained shear behavior of clay because of the simplicity and expediency of this 

test compared with other controlled stress path tests (Bishop and Henkel 1962, Kulhawy and 
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Mayne 1990, Bayoumi  2006). In the conventional triaxial compression test, the axial stress 

increased while the confining stress remains constant. However, the directions of the stresses 

induced by this test are not always representative of the directions of the principal stresses in the 

field. 

Ladd and Foott (1974) stated that the undrained shear strength values obtained from PSA 

were greater than those obtained from DSS and the values obtained from the DSS were greater 

than those obtained from PSP. As described in Ladd and Foott (1974), the methods that have 

been commonly used in design to evaluate shear strength of soil have tended to self-compensate. 

Specifically, high values of undrained strength (su) that resulted from high levels of strain rate 

during the tests were compensated by the low su values that resulted from sample disturbance. 

This compensating error cannot to be controlled, so conservative or unsafe values of su may be 

mistakenly utilized for the design.  

The SHANSEP (Stress History and Normalized Soil Engineering Properties) method, as 

based on the concept of normalization of the undrained shear strength (𝑠𝑢) with respect to the in 

situ vertical effective stress (𝜎′𝑣𝑐), has been utilized to ensure the use of representative values of 

undrained shear strength. As shown in Figure 2.2, the undrained shear strength is observed to 

increase with an increase in the over consolidation ratio (OCR). This relationship between the 

OCR and the undrained shear strength was formulated by the SHANSEP equation (Equation 

2.1). This method was established by conducting a series of triaxial compression, triaxial 

extension, or direct simple shear tests, in addition to consolidation tests. Historically, the 

undrained shear strength has been characterized by using this procedure.  

𝑠𝑢

𝜎′𝑣𝑐
= 𝑆(𝑂𝐶𝑅)𝑚 (after Ladd and Foott 1974) Equation 2.1 
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Within Equation 2.1, S is the normalized undrained strength ratio for the respective stress 

paths at OCR=1 and m is the slope of the regression line for the respective stress paths. 

 
Figure 2.2. Undrained shear strength from three shear tests with different modes of shearing 

(data from Lefebrve et al. 1983, reproduced from Ladd 1991). 

 Stress Path Methods in Triaxial Testing 

 Triaxial testing is widely used, within the laboratory, to evaluate the strain-strain and 

strength properties of various soil types. One of the factors that influences the stress-strain and 

strength relationships obtained from triaxial testing is the applied stress path during the 

consolidation and shearing stages. Recent advances in the triaxial testing apparatus have led to 

stress path dependent triaxial tests being easier to conduct (Parry 2004, Holtz et al. 2011). The 

consolidation stage may consist of either isotropic or anisotropic consolidation (Bishop and 

Henkel 1962). Isotropic consolidation is achieved by applying equal vertical and horizontal 

effective stresses while anisotropic consolidation is achieved when the vertical effective stress is 
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greater than the horizontal effective stress. The purpose of the consolidation stage is to restore 

the original stress conditions before the sample is sheared.  

Based on the assumption that the lateral stresses that are produced in the laboratory are 

the same as that in the field, the original field conditions, during the deposition process of natural 

soils, may be better represented using Ko-consolidation, (Hansen and Gibson 1949).  

Consolidation and reconsolidation may also be required to achieve certain overconsolidation 

values. Ladd and Foott (1974) recommended that soil specimens be reconsolidated to 

consolidation pressures that exceed the in situ preconsolidation pressures (σ′c) by one and one-

half to four times to eliminate the effects of sampling disturbance. Baldi et al. (1988) mentioned 

that 1) a suitable stress path must be selected to reconsolidate soil samples and that 2) the 

selected stress path should depend on the in situ effective stress, the overconsolidation ratio, and 

the clay type.  

According to Salazar and Coffman (2014), during the shearing stage of triaxial testing, 

the specimen may be sheared in triaxial compression or triaxial extension by increasing or 

decreasing one or more of the three principal stresses. Accordingly, as listed in Table 2.1, there 

are six stress paths: conventional triaxial compression (CTC), reduced triaxial compression 

(RTC), triaxial compression (TC), conventional triaxial extension (CTE), reduced triaxial 

extension (RTE), and triaxial extension (TE).  

Table 2.1. Shearing methods during triaxial compression and extension tests (modified from 

Salazar and Coffman 2014). 

Triaxial Compression Triaxial Extension 

Test Axial Stress, σa Cell Pressure, σc Test Axial Stress, σa Cell Pressure, σc 

CTC Increase Constant CTE Constant Increase 

RTC Constant Decrease RTE Decrease Constant 

TC Increase by ∆σa Decrease by 1/2∆σa TE Decrease by 1/2∆σc Increase by ∆σc 
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Except for the Ko-consolidated specimens with Ko values greater than one, the major 

principal stress acts in the vertical direction and the minor principal stress acts in the horizontal 

direction at the end of consolidation stage. During the triaxial compression tests, the orientation 

of the principal stresses does not change during the shearing stage. The term “reorientation” of 

principal stresses was introduced by Duncan and Seed (1966) to describe the change in the state 

of stress when the orientation of the principal stresses, at the end of shearing stage, did not 

coincide with the orientation of the principal stresses prior to shearing. During triaxial extension 

testing, increasing the horizontal stress during the shearing or decreasing the vertical stress may 

cause the major principal stress to act in the horizontal direction and the minor principal stress to 

act in the vertical direction. Therefore, the principal stresses will be reoriented by 90 degrees at 

the end of shearing stage (Duncan and Seed 1966).  

 Effect of Stress Path on Shear Strength Parameters 

The stress path that a sample is subjected to is one of the major factors that has a 

significant influence on both drained and undrained shear strength parameters. Based on the 

results from one of the earliest series of triaxial extension tests on clay, which were performed by 

Hirschfield (1958), the values of undrained strength (su) of extension tests were 20 to 25 percent 

less than those obtained from compression tests. More recently, Ladd and Foott (1974) reported 

that the shear strength values from the triaxial extension test (TE) were 10 to 25 percent less than 

those from (PSP) tests. Some examples of previous work concerning the effect of stress path on 

undrained shear strength values are presented in Table 2.2. Furthermore, the reported values of 

undrained shear strength were observed to decrease with an increase in the vertical stress level. 

Bishop (1966) attributed the lower values of undrained strength, that were obtained from triaxial 

extension tests, to differences in the amount of excess pore water pressure that developed during 

shearing. 
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Table 2.2. Undrained shear strength from compression and extension tests. 

su(compression) /su(Extension) Reference Clay Type 

1.25 Duncan and Seed (1966) San Francisco Bay Mud 

2.13 Ladd et al. (1971) Resedimented Boston Blue Clay 

2.5 Bjerrum et al. (1972) Normally Consolidated Clay 

1.75 to 3.78 Bjerrum (1973) Bangkok Clay 

1.2 Parry and Nadarajah (1974) Fulford Clay 

1.74 to 1.90 Moniz (2009) Resedimented Boston Blue Clay 

According to Bishop and Henkel (1962), Bishop (1966), and Lambe (1967), the drained 

shear strength parameters c′ and ′ can be calculated from the undrained triaxial tests with pore 

water pressure measurements. Parry (2004) stated that there has been conflicting evidence 

presented in the available data regarding the effect of stress path on ′ values. A few researchers 

have indicated that the effect of the stress path on the drained shear strength is insignificant. 

Duncan and Seed (1966) and Gens (1983) reported that the effective angle of internal friction in 

compression (′c) and the effective angle of internal friction in extension (′e) are approximately 

equal. Many other researchers (e.g. Parry 1960, Saada and Bianchanini 1977) reported that ′c is 

less than ′e by a few degrees. Atkinson et al. (1990) investigated the effect of stress history and 

stress path on kaolinite samples. Based on the Atkinson et al. (1990) results, the critical state 

lines for compression and extension test were symmetrical about p′ axis and the ′c values were 

significantly less than ′e values. Parry (2004) attributed the difference in the results to the 

instability of the sample during shearing in extension tests.   

As discussed by Skempton (1954), the orientation of the principal stresses influences the 

amount of pore water pressure developed during shearing. The pore pressure parameter Af, 

which represents the relationship between the change in pore pressure (u) and the change in 
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principal stresses (1 and 3) at failure, can be determined from pore pressure measurements 

at failure, as presented in Equation 2.2.   

𝐴𝑓 =
∆𝑢

(∆𝜎1 −  ∆𝜎3)
 (after Skempton 1954) Equation 2.2 

The pore pressure parameter Af is highly influenced by the stress history and principal 

stresses directions (Figure 2.3). Stipho (1978) reported that Af values decreased with the increase 

in the stress anisotropy. Furthermore, Af values obtained from compression tests were 

considerably greater than those obtained from extension tests (Simons and Som 1970).  It has 

been shown by many researchers that the effective stress path and consequently the effective 

strength parameters are independent of the total stress path. Wroth (1984) reported that the 

difference between CTC and TC tests is only in terms of excess pore water pressure response 

(u), and that difference will not affect effective stress path (Figure 2.4). 

 
Figure 2.3. Pore water pressure parameter for compression and extension tests 

(reproduced from Simons and Som 1970). 
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Figure 2.4. Total and effective stress paths from CTC and TC tests (reproduced from 

Wroth 1984). 

 Stress Path Influences on Developed Constitutive Models 

Constitutive models are essential for numerical simulations of geotechnical problems 

such as ground deformation, slope and tunnels stability, and excavations. As mentioned in 

Hashash et al. (2002), over the last few decades, many constitutive models have been formulated 

based on elasto-plasticity theory to predict stress-strain behavior of soils during shearing (from 

the initial stress condition to the critical state condition). The loading conditions play a 

significant role in obtaining a realistic prediction of soil behavior using these models. Utilizing 

the classic elastoplastic theory and the critical state concept for soil, as defined by Roscoe et al.  

(1958) and later referred by Roscoe and Burland (1968), the Modified Cam Clay model (MCC) 

was developed to represent clay behavior. More recently, advanced soil models, such as MIT-E3 

(Whittle and Kavvadas 1994) and S-CLAY1 (Wheeler et al. 2003), were developed to account 

for soil anisotropy and structure destruction. Lade (2005) mentioned that most of the current 

research related to constitutive modeling has focused on the effect of anisotropy and stress path. 

Only a few of the aforementioned constitutive models were established based on 

comprehensive laboratory data (Wheeler et al. 2003). If laboratory data are available, 

constitutive parameters are typically obtained from triaxial tests. Therefore, these acquired 

parameters include shear strength parameters and soil moduli values. Most of the constitutive 
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models that were developed based on triaxial data were derived from conventional triaxial 

compression tests. The parameters from these tests are simple and provide only limited 

information. Therefore, there is still a lack of knowledge about the performance of the developed 

constitutive models when the soil is subjected to different loading conditions (Bayoumi 2006). 

Bryson and Salehian (2011) evaluated the performance of four constitutive models in predicting 

the behavior of medium plasticity remolded clay. As described by Bryson and Salehian (2011), 

the 3-SKH and Cam Clay models were the most suitable for predicting the stress-strain behavior 

of the remolded clay under different stress paths. 

 Effect of Stress path on Soil Moduli 

Soil moduli including: shear modulus (G), Young’s modulus (E), bulk modulus (K), and 

constrained modulus (M), are essential in the evaluation of soil deformation and stress 

distribution in a soil mass by using elastic solutions. These values can be determined from either 

field or laboratory tests. As shown in Figure 2.5, there are three types of the modulus of the 

elasticity which may be determined from triaxial testing: the initial tangent modulus (Ei), the 

tangent modulus (Et), and the secant modulus (Es). Simons and Som (1970) reported that 

modulus of elasticity for isotropically consolidated samples are significantly less than those for 

Ko-consolidated samples due to the effect of disturbance. Skempton and Hankel (1957) reported 

that large strain modulus of elasticity for extension is higher than that for compression. Clayton 

and Heymann (2001) also indicated that the stiffness at large strain for extension tests performed 

on London clay are higher than those for compression tests (Figure 2.6).  
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Figure 2.5. Definition of Ei, Et, and Es from triaxial testing (from Lambe and Whitman 

1969, Atkinson 2000). 

 

 

Figure 2.6. Degradation of vertical Young’s modulus for specimens tested in triaxial 

compression and extension (from Clayton 2011). 
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The decrease in soil stiffness with increasing strain, is well known as stiffness 

degradation. Soil moduli as obtained from small shear strain (<10-3%), including modulus of 

elasticity (Eo), constrained modulus (M) and shear modulus (Go), are of great importance for 

estimating response of structures to dynamic loads, soil improvement, and liquefaction 

assessment (Hardin and Drnevich 1972, Woods and Partos 1981, Clayton 2011). However, 

measurements of small-stain stiffness utilizing triaxial tests with conventional external strain 

measurements may not be accurate because there are many sources of error in the measurement 

of small strain including seating, bedding, and alignment errors (Baldi et al. 1988). 

 Problems Associated with the Triaxial Extension Test 

Recent advances in triaxial testing equipment, including load system control and stress 

strain measurements, have led to ease in conducting stress path dependent triaxial tests. 

However, there are some problems associated with the triaxial extension test that may prevent 

utilizing results obtained from the triaxial extension test in practice (Wu and Kolymbas 1991, 

Parry 2004). Specifically, the development of necking during shearing in extension test, may 

cause significant errors in the test results. Many researchers have argued that the greatest 

shortcoming of the triaxial test is the stress-strain nonuniformity that exists along the 

longitudinal direction of the sample due to the restriction of the sample ends. Necking during the 

test causes the shear stress levels to peak, which invalidates the data because of the inaccurate 

calculation of the cylindrical area. Sheahan (1991) reported that as the strain rate increased, the 

cross-sectional area decreased due to the effect of added dilation at high strain rates. Liu (2004) 

also reported that the necking associated with triaxial extension tests increased with an increase 

in the specimen height to the diameter ratio. Therefore, polished and lubricated end platens have 

been used to reduce the effect of ends restriction (Stipho 1978, Sheahan 1991, Liu 2004). 
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The deviatoric stress during shearing stage is calculated from the axial load and the 

average cross-sectional area. The conventional method to determine the corrected cross-sectional 

area (Ac) for a given value of axial strain, ε, and an initial average cross-sectional area of the 

specimen (Ao) is presented in Equation 2.3. This equation, as suggested in ASTM D4767 (2011), 

is limited because it only relies upon the axial strain measurements. 

𝐴𝑐 =
𝐴𝑜

(1 −  𝜀)
 ASTM D4767 Equation 2.3 

This conventional procedure relies on the assumption of uniform radial deformation 

throughout the sample. However, as illustrated in Figure 2.7, the radial deformation at the ends 

of the specimen is resisted by the end restraint. Therefore, this procedure provides imprecise 

determination of the sample cross-sectional area, specifically when failure occurs at large levels 

of strain (Bishop and Henkel 1962). As discussed in Scholey (1996), many localized 

measurements have been used to measure the radial deformation (such as local strain probes and 

digital imaging techniques). One of the digital imaging techniques consists of using small board 

cameras, within the triaxial cell, to measure the change in volume of the specimen (Salazar and 

Coffman 2015).  

Another source of errors in triaxial extension tests is caused by the friction between the 

loading piston and the bearings within the top cap of the triaxial cell. Many methods have been 

attempted to eliminate the effect of piston friction. According to Bishop and Henkel (1962) the 

amount of this friction is between one to five percent of the applied axial load. Therefore, this 

friction may be a significant contribution of the load for soft samples. Race and Coffman (2011) 

utilized an internal load cell placed between the top platten and the loading piston to measure the 

applied axial force inside the triaxial cell to avoid the effect of piston friction. 



21 

 

Figure 2.7. The effect of end restraint the radial deformation a specimen in triaxial testing 

a) Extension and b) Compression (reproduced from Bishop and Henkel 1962). 

 Reconstituted Soils 

Natural and laboratory prepared specimens are used for laboratory testing to study and 

characterize the geotechnical properties of the field soils. According to the values of the initial 

water content that is used to mix the slurry (ws), the laboratory prepared specimens can be 

categorized into: 1) “remolded” (Olson 1962), ws values less than or slightly above the liquid 

limit of the soil (LL); 2) “reconstituted” (Burland 1990), ws from one (1) to one and one-half 

(1.5) times the LL; and 3) “sedimented”, sw  greater than two times the LL (Olson 1962).To form 

a reconstituted structure, Burland (1990) suggested that the water content of the mixed slurry 

should be between 1 and 1.5 times the liquid limit of the soil. The slurry is often consolidated in 

a slurry consolidometer to a certain consolidation stress that is related to the in-site effective 

stress (Henkel 1956, Olson 1962, Burland 1990).  

Because of the way the reconstituted specimens are prepared, various fabrics may result, 

which may raise a question whether these specimens accurately duplicate the field soil 

properties. As documented by Allman and Atkinson (1992), sedimentation and aging of intact 

soils in the ground produced soils with void ratios higher than those for the reconstituted soils. 

According to Mitchell and Soga 2005, comprehensive investigation of the engineering behavior 
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of laboratory prepared specimens will result in better characterization of the properties of natural 

soils. The values of the initial water content of the slurry that are utilized to reconstitute cohesive 

soils may have significant effects on the compression and shear strength behavior of the soils due 

to the influence of sw  on the soil fabric. The term “intrinsic” was introduced by Burland (1990) 

to describe the properties for specimens that were reconstituted within the aforementioned water 

content values. Burland (1990) further reported that the shear strength and compressibility of 

reconstituted soils may be utilized to develop a reference framework to correlate the laboratory 

obtained properties from reconstituted soils with those from the intact soils.  

 Fabric of Reconstituted Soils 

Previous studies (e.g., Olson 1962, Martin and Ladd 1978, Carrier and Beckman 1984) 

have shown that using different levels of initial water content )( sw  to remold or reconstitute soil 

specimens will affect the mechanical behavior of the specimens due to the significant changes in 

the soils structure. As describe by Mitchell and Soga (2005), soil structure is composed of fabric 

and bonding (interparticle force system). The term fabric refers to the arrangement of particles 

and the arrangement of pore space within a given soil. The term fabric, however, has been used 

interchangeably with the term structure. As presented in Figure 2.8, clay particles may have a 

flocculated (random arrangement) fabric or dispersed (parallel arrangement) fabric (Mitchell and 

Soga 2005).  
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                                               (a)                                                        (b) 

Figure 2.8. Typical particle arrangement of cohesive soils: a) flocculated fabric, and b) 

dispersed fabric (from Mitchell and Soga 2005). 

According to Olson (1962), Burland (1990), and Prashant and Penumadu (2007), soil 

fabric has been shown to play an essential role in the engineering behavior of clayey soils. Soil 

fabric can vary considerably as a result of using different water content values to reconstitute 

clay soils. Olson (1962) indicated that laboratory prepared specimens, at water content less than 

or slightly above liquid limit, may not represent the natural deposition process. Moreover, Olson 

(1962) mentioned that specimens at these low levels of water content will have dispersed 

microfabric and exhibit intrinsic properties of overconsolidated clayey soil regardless of the level 

of overconsolidation within the specimen. Olson (1962) also indicated that sedimentation of 

specimens from slurries with sw  values higher than two times the respective liquid limit will 

produce specimens with flocculated fabric. To obtain more representative specimens, Olson 

(1962) reported that the water content of the mixed slurry should be at least two times the liquid 

limit. However, sedimentation of specimens at such high water content requires an extended 

period of time. Moreover, it has been shown that these specimens are often difficult to extrude 

and trim. Therefore, the following researchers: Henkel (1956), Parry (1960), Bryson and 

Salehian (2011), Tiwari and Ajmera (2011), Zhao and Coffman (2016), Zhao et al. (2017), and 

Zhao et al. (2018) have instead prepared reconstituted clay specimens at lower water content 

values.  
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 Intrinsic Compression Behavior 

The results from many studies (e.g. Carrier and Beckman 1984, Cerato and Lutenegger 

2004, Hong et al. 2010) indicated that both initial void ratio and compression behavior of 

reconstructed soils were affected by the initial water content. As shown in Figure 2.9, the 

compression curves of specimens prepared at a higher initial water content lied above the 

compression curves of the specimens prepared at a lower initial water content. Based on the 

results from these studies, increasing the initial water content of the slurry tended to increase the 

initial void ratio and to increase the compressibility of the reconstituted clays for a given vertical 

effective stress.  

 

Figure 2.9. Compression curves of reconstituted Baimahu Clay at different initial water 

contents of the slurry (from Hong et al. 2010). 

Many previous studies (e.g., Burland 1990, Hong et al. 2010, Tiwari and Ajmera 2011, 

Al Haj and Standing 2015) have indicated that the shape of the compression curve that was 

obtained from odometer tests conducted on reconstituted soils was different than the typical 

shape of the compression curve for natural soils. The shapes of the compression curve (as 
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presented previously in Figure 2.9), that were observed by these studies, tended to slightly 

concave upwards in a pattern similar to that for soft clays. Burland (1990) reported that intrinsic 

properties of the reconstituted soils were inherent and independent of the soil structure. 

Furthermore, the compression curves of different reconstituted clays with sw  values of 1.25 LL 

can be normalized by using the void index )( vI , as presented in Equations 2.4 and 2.5.  

*

*
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c

v
C

ee
I


                                                            Burland (1990)                     Equation 2.4

*

1000

*

100

* eeCc                                                        Burland (1990)                      Equation 2.5          

Within Equations 2.4 and 2.5,
*

100e and 
*

1000e are the void ratio of the reconstituted clay 

corresponded to vertical stress levels of 100 and 1000 kPa respectively;
*

cC is the intrinsic 

compression index.  

When laboratory measurements are not available, Equations 2.6 and 2.7 can be used to 

estimate the 
*

100e  and 
*

cC  respectively, based on the values of the initial void ration at the liquid 

limit ( Le ), as suggested by Burland (1990).  

32*

100 016.0089.0679.0109.0 LLL eeee                 Burland (1990)                          Equation 2.6 

04.0256.0*  Lc eC                                                   Burland (1990)                          Equation 2.7  

As shown in Figure 2.10, the normalized compression lines for three clays exhibited identical 

relationships. The normalized curves were represented by a unique line which was descried by 

Burland (1990) as the intrinsic compression line (ICL), as presented in Equation 2.8. In Equation 

2.8, v   is the vertical effective stress in kPa. 

3)(log015.0log285.145.2 vvvI                      Burland (1990)                            Equation 2.8    
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Figure 2.10. Intrinsic compression lines for three clays obtained by normalizing the 

compression curves to the void index (reproduced from Burland 1990). 

As described by Burland (1990), the intrinsic properties of the reconstituted soils were 

inherent and should be independent of the natural state or structure of the soil. Therefore, if a 

given soil was disturbed and then reconstituted many times, the compression curves of the 

reconstituted specimens from this soil at each time would be identical when the specimens was 

reconstructed at the same ws values. However, based on the results from (Cerato and Lutenegger 

2004), the ICL lines for 35 natural clays, that were reconstituted at ws of 1.25, were not identical. 

As shown in Figure 2.11, poor correlation was observed between the ICL and the normalized 

compression curves for these clays. Cerato and Lutenegger (2004) attributed the difference in the 

compression behavior to the difference in the mineralogical compositions of the soils. The 

intrinsic compression index 
*

cC  (slope of the linear portions of the loading curves) was greater 

for kaolinite and illite than for montmorillonite soil. Furthermore, Cerato and Lutenegger (2004) 
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indicated that the degree to which the ws affected the compression behavior was also dependent 

on the soil mineralogy.   

 

Figure 2.11. Normalized compression curves for natural clays (from Cerato and 

Lutenegger 2004). 

 Intrinsic Undrained Shear Strength Behavior 

Based on previous research on reconstituted soils, the stress-strain behavior of these soils 

was significantly affected by the sw  levels (Henkel 1962, Burland 1990, Allman and Atkinson 

1992, Chandler 2000, Hong et al. 2013).  As documented by Allman and Atkinson (1992), at the 

same specific volume and water content, the undrained shear strength values of the intact 

samples were from 10 to 15 times greater than those for reconstituted soils. Allman and Atkinson 

(1992), attributed the higher values of the undrained shear strength for the intact soils to the 

aging of the naturally sedimented specimens. The pattern of behavior, during shearing of the 

normally consolidated reconstituted specimens, was different from the typical behavior that has 

been observed for normally consolidated soils. As described by Olson (1962), slurried specimens 
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that were prepared at sw  values less than or slightly above the liquid limit exhibited shear 

strength characteristics similar to the typical characteristics of the overconsolidated clay soils. 

Therefore, Olson (1962), suggested that a water content values of at least two times the liquid 

limit should be utilized to prepare the slurry.  

Furthermore, as reported by Burland (1990) and Atkinson et al. (1987), postpeak shear 

planes were observed to develop in one-dimensional consolidated kaolinite specimens regardless 

of whether the soil was normally consolidated or overconsolidated. The difference in the 

magnitude of the shear induced pore water pressure during shear may explain the unusual 

behavior of normally consolidated specimens during shear. As discussed by Cerato and 

Lutenegger (2004), the double layer may have not completely been developed around the 

particles of the flocculated soils that were reconstituted at low values initial water content. 

Therefore, the particles may absorb additional water during shear, depending on the initial water 

content of the specimens )( ow .  

Previous researchers have reported that the undrained shear strength values of the 

reconstituted soils decreased with increasing levels of the sw (Chandler 2000, Hong et al. 2013, 

Al Haj and Standing 2015). As observed by Hong et al. (2013), the undrained shear strength 

values, obtained from isotropic consolidation undrained triaxial compression tests, decreased 

with the increasing values of the initial water content (Figure 2.12).    
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Figure 2.12. Undrained shear strength values as a function of initial water content (from 

Hong et al. 2013). 

Following a normalization procedure that was similar to Burland (1990), the values of the 

undrained shear strength were normalized to the values of the vI  that corresponded to the 

vertical effective stress values prior to shear. The intrinsic shear strength behavior was 

introduced by Chandler (2000) to describe the relation between the sw  and the undrained shear 

strength of the reconstituted soils. As shown in Figure 2.13, the normalized line was defined by 

Chandler (2000) as the intrinsic strength line )( LISu . However, this line was not unique for a 

given soil type, but it was developed based on a single value of 0.33 of the undrained shear 

strength ratio )( *

suR , which is defined as the ratio of the undrained shear strength of the 

reconstituted soil )( *

us  to the preshear vertical effective stress )( vc . As presented in Figure 2.14, 

similar procedure was successfully utilized by Hong et al. (2013) to normalize the values of the 

undrained shear strength, obtained from isotropically consolidated undrained triaxial tests that 

were conducted on of an illitic soil. However, Hong et al. (2013) utilized the values of effective 

isotropic consolidation stress instead of the values of vertical effective stress to determine the vI  

values.  
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Figure 2.13. Normalized undrained shear strength and intrinsic strength line (from 

Chandler 2000). 

 

Figure 2.14. Normalized values of undrained shear strength obtained from isotropically 

consolidated undrained triaxial testes (from Hong et al. 2013). 
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 Small-Strain Moduli of Reconstituted Soils 

As previously mentioned, measurements of soil moduli by utilizing triaxial tests, with 

conventional external strain measurements, may not be accurate because of the errors that have 

been associated with these measurements. Alternately, bender elements and piezoelectric disks 

have been previously utilized to determine soil moduli based on the seismic wave velocity 

measurements. A brief description of the shear wave velocity measurements by utilizing bender 

elements technique is presented in Section 2.4.1. The effect of stress history and fabric 

anisotropy are discussed in Section 2.4.2 and Section 2.4.3, respectively.  

 Bender Elements Technique   

During the last few decades, bender elements (BE) have been utilized to measure shear 

wave velocities for different types of soils. The BE technique has provided an inexpensive and 

reliable alternative to study small-strain soil properties (Clayton 2011). The velocity of a shear 

wave that travels through a soil specimen is computed by measuring the travel time of the wave 

from the transmitter BE to the receiver BE. As described in Equations 2.9, soil moduli Go may be 

related to shear wave velocity ( sV ) by utilizing the total mass density of the soil (ρ).   

2

so VG    Richart et al. 1970       Equation 2.9 

Bender elements have been employed within open odometer, floating wall 

consolidometer, and constant-rate-of-strain consolidometer devices to examine small-strain soil 

properties during consolidation. Some researchers (e.g., Fam and Santamarina 1995, Jovicic and 

Coop 1998, Kang et al. 2014) have incorporated bender elements within the top and bottom 

plates of an oedometer to measure shear waves in the vertical direction. As presented in Figure 

2.15, bender elements have also been installed in the horizontal direction (Jamiolkowski et al. 

1995, Kang et al. 2014, Zhao and Coffman 2016, Zhao et al. 2017) to acquire horizontally 
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propagated shear waves. Recently, a back-pressure saturated, constant rate-of-strain, 

consolidation device, with bender elements (BP-CRS-BE) was developed at the University of 

Arkansas by Zhao and Coffman (2016), as shown in Figure 2.16. Velocities of two types of shear 

waves were measured by utilizing the BP-CRS-BE device: 1) horizontally propagated-vertically 

polarized shear waves (
HVsV ,

), and 2) horizontally propagated-horizontally polarized shear waves 

(
HHsV ,

).  

 

 

Figure 2.15. Bender elements installed in the vertical and horizontal directions within an 

oedometer device (after Kang et al. 2014). 
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Figure 2.16. Photograph and schematic of bender elements within BP-CRS-BE device in 

the a) horizontal orientation, and b) vertical orientation (after Zhao et al 2017). 

The bender elements technique has also been utilized within the triaxial apparatus (e.g., 

Viggiani and Atkinson 1995, Jovicic and Coop 1998, Gasparre and Coop 2006, Finno and Kim 

2012, Choo 2013, Salazar and Coffman 2014) in different orientations, as presented in Figure 

2.17. As discussed by Viggiani and Atkinson (1995) and Jovicic and Coop (1998), valuable 

measurements of small-strain stiffness were obtained by utilizing bender elements within the 

triaxial apparatus because of the different loading conditions that can be applied by the triaxial 

apparatus during the consolidation and shearing stages. 

                     
                                                                          (a)                          

                        
                                                                          (b) 

A. Alumimum loading cap. B. Porous stone.   C. Soil sample.   D. Horizontal bender element.   

E. Polyoxymethylene slide bar.   F. Vertical bender element.   

 

FIG. 1. Photograph and schematic of BE within the fabricated Polyoxymethylene slide bars in the 

(a) horizontal orientation, and (b) vertical orientation. 
 

 

A 

F 

D 

E 

B 

C 
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Figure 2.17. Schematic of a triaxial specimen instrumented with bender elements in the a) 

horizontal orientation, and b) vertical orientation (after Finno and Kim 2012). 

 Effect of Stress History on Small-Strain Behavior 

The term “recent stress history” was first introduced by Atkinson et al. (1990) to describe 

the current applied stress path that has a direction different than the direction of the previous 

stress path. Atkinson et al. (1990) showed that the recent stress history has an impact on small-

strain stiffness during consolidation and shearing stages of the triaxial tests. Simons and Som 

(1970) reported that the modulus of elasticity for isotropically consolidated samples are less than 

those obtained from Ko consolidated samples, due to the effect of disturbance. The relationship 

between shear modulus, specific volume (v), current effective stress (p′), and overconsolidation 

ratio (Ro) is provided in Equation 2.10 (Atkinson 2000).  

𝐺𝑜

𝑝𝑎
= 𝐴 (

𝑝′

𝑝𝑎
)

𝑛

𝑅𝑜
𝑚 Atkinson (2000) Equation 2.10 
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Within Equation 2.10, pa is the atmospheric pressure; A, n, and m are material 

parameters. Amorosi et al. (1999) and Choo et al. (2013) showed that stress history during 

consolidation stage in triaxial testing has a significant effect on stiffness degradation during 

shear. 

Although there have been many studies to investigate the effect of recent stress history on 

small-strain stiffness and the degradation of small-strain stiffness during shear, conflicting data 

has been presented in these studies (Finno and Cho 2011). Based on the experimental work 

performed by Atkinson et al. (1990), Zdravkovic (1996), and Lings et al. (2000), recent stress 

path has a strong impact on small-strain stiffness during shear. Similar observations were 

obtained from bender element tests on completely decomposed granite performed by Wang and 

Ng (2004). The shear modulus values measured in triaxial extension tests were about sixty 

percent higher than those measured in triaxial compression tests. Furthermore, Wang and Ng 

(2004) showed that the Go value increased as the void ratio decreased and the mean effective 

stress increased. Likewise, Santagata (2008) reported that the small-strain stiffness, for 

sedimented Boston Blue Clay from undrained triaxial tests, was highly influenced by the recent 

stress history. In contrast to aforementioned results, Clayton and Heymann (2001) showed that 

the recent stress history in undrained triaxial tests has insignificant influences on the small-strain 

stiffness. Based on the small-strain results obtained from triaxial tests with bender elements, as 

conducted by Finno and Cho (2011) on lightly over consolidated samples, the stress path 

direction had no effect on small-strain stiffness at very small levels of shear strain (less than 

0.001 percent).  However, the direction of the stress path had a strong effect on the small-strain 

stiffness when the small-strains were measured by utilizing local small-strain measurements 

which detected shear strain greater than 0.002 percent. Finno and Cho (2011) also showed that 



36 

effect of stress path on the small-strain stiffness decreased as the shear strain increased, as shown 

in Figure 2.18.    

 

Figure 2.18. Secant shear modus degradation of constant mean normal stress compression 

(CMS), reduced constant mean normal stress (CMSE), and anisotropic unloading (AU) 

stress paths (from Finno and Cho 2011). 

 Fabric Anisotropy 

As previously presented, using different levels of initial water content )( sw  to 

reconstitute specimens from cohesive soils will affect the initial void ratio, fabric, and initial 

water content )( ow  of the prepared specimens. The effect of void ratio and fabric of cohesive 

soils on the small-strain stiffness has been well documented in the previous studies.  As reported 

by Atkinson et al. (1990), Lings et al. (2000), Clayton (2011), Finno and Cho (2011), small-

strain stiffness increased with decreasing values of void ratio. Furthermore, Equation 2.11 was 

proposed by Hardin and Blandford (1989) to correlate shear modulus of a given soil to the 

inherent properties and state of stress of the soil. 
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              (after Hardin and Blandford 1989)                 Equation 2.11 
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Within Equation 2.11, Gmax is the small-strain shear modulus of soil; S is a non-

dimensional material constant representing the fabric anisotropy; OCR is overconsolidation ratio; 

k is an empirical constant depends on the soil plasticity index; Pa is the atmospheric pressure; n 

=0.5 is non-dimensional material constant; p  is the effective stress; and F (e) is the void ratio 

function, 27.03.0)( eeF  . 

Previous studies on soil anisotropy (e.g., Duncan 1966, Mitchell 1972, Martin and Ladd 

1978, Jovicic and Coop 1998) have indicated that anisotropy of soil fabric occurred during 

deposition of soil particles (inherent anisotropy) or as a result of change in the stress conditions 

(stress-induced anisotropy). The importance of soil fabric as a factor influencing the small-strain 

stiffness has been discussed and illustrated by previous researchers (e.g, Hardin and Brandford 

1989, Jovicic and Coop 1998, Zhao et al. 2017). The inherent anisotropy was determined to have 

a significant effect on the small-strain behavior, while the stress induced anisotropy was found to 

slightly affect this behavior (Jovicic and Coop 1998).  The inherent fabric anisotropy for 

cohesive soils was essentially caused by the large strain levels during one-dimensional 

deposition (Jovicic and Coop 1998). 

 Bender elements can be installed in different positions within the specimen. As shown in 

Figure 2.19, velocities of three types of shear waves were measured from these positions: 1) 

vertically propagated-horizontally polarized shear waves )( ,VHsV , 2) horizontally propagated-

horizontally polarized shear waves )( ,HHsV , and 3) horizontally propagated-vertically polarized 

shear waves  )( ,HVsV . For a given soil specimen, at the same stress state, different values of the 

three aforementioned types of shear wave velocities may be measured as a result of fabric 

anisotropy. Accordingly, different values of the shear modulus may be calculated for the 

specimens from these three types of shear wave velocities (Jovicic and Coop 1998, Yamashita et 
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al. 2005, Kang et al. 2014, Zhao et al. 2017). Kang et al. (2014) reported that the 
HVsHHs VV ,, /  ratio 

was around 1.20, for reconstituted kaolinite soil. As also reported by Yamashita et al. (2000), the 

HVsHHs VV ,, / ratio was between 1.05 and 1.13 for Toyoura sand and Kussharo sand, respectively.  

 

Figure 2.19. Different positions of bender elements within triaxial specimens and the 

corresponding shear wave velocity measurements (from Yamashita et al., 2000). 

Previous research (e.g., Jovicic and Coop 1998, Lings et al. 2000, Yimsiri and Soga 

2000, Cho and Finno 2010) has demonstrated that one-dimensionally deposited soils will 

essentially experience cross anisotropy ( ),, VHsHVs VV  . As also documented by Yamashita et al. 

(2000), insignificant difference between the Vs,HV and Vs,VH values was observed for sandy soils. 

In contrast to the aforementioned observations, the amount of fabric anisotropy of natural clays 

that have been observed by Pennington et al. (1997) and Lee et al. (2008) indicated that the 
HVsV ,

 

values were greater than the 
VHsV ,

 values.  Pennington et al. (1997) reported that for natural Gault 

clay, the 
VHsHVs VV ,, /   ratio was around 1.17, while the 

HVsHHs VV ,, /  ratio was around 1.2. Similarly, 
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for reconstituted kaolinite soil, Kang et al. (2014) observed that the 
VHsHVs VV ,, /  ratio was around 

1.14.  

As a result of fabric anisotropy, the shear modulus has been found to be inherently 

anisotropic (Pennington et al. 1997). The values of stiffness anisotropy (also known as modulus 

ratio), refers to the ratio of shear modulus in the horizontal direction (GHH) to the shear modulus 

in the vertical direction (GVH), ranged from 1.2 to 1.7 for normally and lightly overconsolidated 

soils, as obtained from laboratory bender elements tests. For the overconsolidated soils, the 

stiffness anisotropy was greater than two (Roesler 1979, Jamiolkowski et al. 1995, Lings et al. 

2000, Kang et al. 2014, Zhao et al. 2017). The modulus ratio )/( VHHH GG  that was measured by 

Pennington et al. (1997) for reconstituted Gault clay was around 1.5.  

As reported by Jovicic and Coop (1998), the 
VHHH GG /  of natural clays was greater than 

the 
VHHH GG /  of reconstituted soils. The values of  VHHH GG /  for natural London clay ranged from 

1.5 to 1.7, while the values of VHHH GG /  for the reconstituted London clay ranged from 1.24 to 

1.33 (Jovicic and Coop 1998). Nash et al. (1999) reported that the values of the VHHH GG /  for 

anisotropically consolidated specimens were between 1.5 and 1.9. For isotropically consolidated 

specimens, the values of  VHHH GG /  that were measured by Nash et al. (1999) were between 1.45 

and 1.52.       
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 Materials and Testing Procedures 

 Chapter Overview 

A description of the material properties, equipment, and procedures that were utilized to 

perform the experimental program are contained within this chapter. Specifically, the properties 

of the soils that were utilized to prepare the specimens for the experimental program are 

described in Section 3.2. The methods that were followed to form fully-saturated, reconstituted, 

specimens are presented in Section 3.3. The advanced triaxial equipment that were used to 

investigate the stress-strain and strength properties of the reconstituted soils is discussed in 

Section 3.4. The methods and procedures to perform the triaxial compression and triaxial 

extension test are described in Section 3.5. Additionally, a description of the bender elements 

tests along with the procedures to perform the tests are presented in Section 3.6.  

 Soil Properties  

Kaolinite and illite soils were selected and used for sample preparation throughout the 

study. Kaolinite was selected 1) due to the high permeability when compared with other cohesive 

soils and 2) to compare with other available data in the literature (Jafroudi 1983). The high 

permeability reduced the time required to obtain primary consolidation and also provided a more 

homogenous distribution of pore water pressure through the specimen. Specifically, KaoWhite-

S, a commercially available product that is produced by Thiele Kaolin Company in Sandersville, 

Georgia, was used. The Kaowhite-S product had G.E. The kaolinite soil had a brightness values 

between 88 and 90 percent and a pH value from 6.5 to 8.0 (Theile 2016). Illite soil was obtained 

from the Knight Hawk Coal Company of Percy, Illinois. The illite soil was ground by utilizing a 

commercially available mechanical grinder. The soil was then sieved using the Number 200 

sieve (nominal opening size of 0.075 mm). The portion of the illite soil that passed the sieve was 

used for the specimens preparation.  
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Shear strength, consolidation, small-strain modulus, and unsaturated soil information of 

these two types of the kaolinite and illite soils have been studied at the University of Arkansas to 

determine the parameters of these soils and to provide the input data for the numerical modeling 

(Zhao and Coffman 2016, Zhao et al.  2017, Zhao et al. 2018). The index properties of the 

kaolinite and illite soils are summarized in Table 3.1. The kaolinite and illite soils were 

classified, according to the Unified Soil Classification System (ASTM D2487, 2011), as Low 

Plasticity Silt (ML) and Low Plasticity Clay (CL), respectively. 

Table 3.1. Properties of kaolinite and illite soils. 

Property Kaolinite Illite 

Liquid limit 31.5 46.7 

Plastic limit 28.1 23.6 

Clay size fraction (<0.002 mm) 47.2 46.5 

Specific gravity, Gs 2.67 2.69 

 

 Specimens Preparation  

Laboratory prepared specimens were used throughout the study, instead of naturally 

deposit soils, to obtain high-quality, fully-saturated soil specimens. The specimens were prepared 

from slurries in accordance with the procedure that was reported in Zhao and Coffman (2016), 

Zhao et al. (2017), and Zhao et al. (2018). The kaolinite and illite soils were formed by mixing 

the powdered soils with de-ionized, de-aired, water. The slurries were prepared at two different 

water content values. For the slurries that were used to form kaolinite specimens, for the stress 

path triaxial tests, the slurries were initially mixed at water content of 1.5LL. The slurries that 

were utilized to form kaolinite and illite specimens to investigate the intrinsic shear strength and 

intrinsic small-strain behavior were initially mixed at two water content values of 1.5LL and 

3LL. 

 For the kaolinite soil, each slurry was manually mixed with a spatula for three minutes. 

The slurry was then allowed to settle for one minute, and was then remixed for one additional 
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minute. For illite soil, the slurry was first mixed with a spatula for two minutes. The slurry was 

then mixed by utilizing a mechanical dispersion device for five minutes.  

 Following mixing, the slurry was consolidated in a double drained, 1.5 inch (3.81 

centimeter) inside diameter, acrylic, static weight, slurry consolidometer (Figure 3.1). The 

consolidometer was designed to simulate the Ko-consolidation of natural soils. Before the 

consolidometer was assembled, a piece of filter paper was placed on the top of the porous stone 

that was located in the bottom plate. The slurry consolidometer was then assembled by securing 

the acrylic tube in position between the top and bottom plates. The slurry was poured into the 

consolidometer through a 0.5-inch aperture plastic funnel. For the illite soil, it was necessary to 

continuously tap the funnel against the top of the consolidometer to aid in the flow of the slurry 

into the consolidometer. A piece of filter paper was placed onto the porous stone that was located 

in the piston. This piece of filter paper was initially moisturized to help keep the filter paper in 

place after inverting the piston and while pushing the piston into the consolidometer tube. The 

slurry was allowed to consolidate, in a double drained condition, under a constant overburden 

pressure of 30 psi (207 kPa). The overburden pressure was achieved by placing sufficient static 

weight onto the loading piston. The axial deformation of the sample during consolidation was 

measured by utilizing an electronic dial gauge that was attached to a laboratory stand. 

The amount of time required for completion of primary consolidation was calculated 

using the square root of time procedure, as described by Taylor (1948). After primary 

consolidation was completed, one specimen was extruded at a time (two total specimens) from 

each consolidometer. The consolidated specimens were cut using a wire saw to develop a length 

to diameter ratio of two for each specimen. After extrusion of a given specimen from the 

consolidometer, the specimen properties: length, diameter, and weight were measured, and 
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trimmings were collected to obtain the initial water content and the corresponding phase diagram 

measurements for each of the soil specimens. 

 
Figure 3.1. Photograph of a slurry consolidometer. 

 Triaxial Equipment 

Using advanced, automated, triaxial equipment, a series of Ko-consolidated, undrained, 

triaxial compression ( UTCCKo ) and Ko-consolidated, undrained, triaxial extension ( UTECKo ) 

tests with pore water pressure measurements were conducted on the laboratory prepared kaolinite 

and illite specimens. GEOTAC (Geotechnical Test Acquisition Control) equipment and software 

were utilized to perform these tests and to record the collected data. The equipment, as illustrated 

in Figure 3.2, was comprised of 1) a triaxial chamber, 2) an automated load frame with a direct 

current displacement transducer (DCDT) and a 100 pound (444 N) external load cell, 3) a 

DigiFlow automated pump (155 ml), filled with silicon oil, to control and measure the cell 
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pressure, and 4) a DigiFlow automated pump (75 ml), filled with deionized water, to control and 

measure the backpressure as well as to control the pore water pressure.  

 

Figure 3.2. The main parts of the triaxial equipment. 

The details of the triaxial chamber are illustrated in Figure 3.3. The axial stress was 

measured inside the triaxial cell with an internal load cell to eliminate the effect of piston friction 

and piston uplift. By utilizing a vacuum top cap connection (as described in Race and Coffman 

2011 and in Salazar and Coffman 2014), the loading piston was connected to the top platten to 

allow for the application of a downward or upward axial force. To prevent damage to the internal 

electronics, silicon oil (5cSt) was utilized, instead of water, as the confining fluid. The GEOTAC 

software named TruePath-SI, Version 1.0.1 was utilized to control the aforementioned 

equipment and to collect the data from all of the tests. The measured data were recorded and 
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stored by the associated data acquisition system. The data were then analyzed using spreadsheet 

tools. 

 
Figure 3.3. Photograph of the triaxial chamber (after Salazar and Coffman 2014). 
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 Triaxial Testing Procedures 

The triaxial compression tests were conducted in accordance with ASTM D4767 (2011). 

Because there is no standard for triaxial extension tests, these tests were conducted following the 

procedures described by Parry (1960) and Bishop and Henkel (1962). The specimens were 

mounted into the triaxial chamber using the wet method described in ASTM D4767 (2011). 

Saturated porous stones were located between the top and the bottom of the specimen and the top 

and bottom platens. Likewise, pieces of filter paper were placed between the top and bottom 

surfaces of the specimens and the porous stones. To ensure no fluid connectivity between the cell 

fluid and the pore fluid, the specimen was encompassed by two latex, non-lubricated membranes 

(condoms) and two rubber o-rings were used at each end of the specimen to connect the 

membranes to the top and bottom platens.  

A back pressure of at least 40 psi (276 kPa) was used to saturate each specimens and to 

achieve a pore pressure parameter (B) value greater than 0.95. After the back pressure saturation 

stage was completed, Ko-strain controlled consolidation, with a strain rate of 0.2 percent per 

hour, was utilized to consolidate each specimen. To maintain zero lateral strain during the 

consolidation stage, the GEOTAC software continually adjusted the axial force and cell pressure 

based on the feedback from the change in volume as measured by the pore water pump. The 

specimens were initially reconsolidated within the triaxial cell under the Ko conditions to 

maximum vertical stress levels of 45, 60, and 120 psi (310, 414, and 828 kPa, respectively). As 

recommended by SHANSEP procedure, the maximum vertical effective stress levels represent 

1.5, 2 and 4 times the vertical effective stress that was used to pre-consolidate the soil slurry 

within the slurry consolidometer. The overconsolidated specimens were then allowed to swell 

under the Ko conditions to the vertical effective consolidation stresses that was required to 

achieve the prescribed OCR values, as listed in Table 3.2. 
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Table 3.2. Stresses associated with the triaxial testing consolidation and overconsolidation 

processes. 

Maximum Vertical Consolidation Stress 

within the Triaxial Cell ('v,max)* 

Pre-shear Vertical Effective Stress ('vc) 

OCR=1 OCR=2 OCR=4 OCR=8 

[kPa] [kPa] [kPa] [kPa] [kPa] 

310 310 155 78 39 

414 414 207 103 52 

828 828 414 207 103 

              * Pre-consolidated to 276 kPa in the slurry consolidometer 

 

To investigate the effect of stress path on the shear strength characteristics, the kaolinite 

specimens were overconsolidated to four OCR values of 1, 2, 4, and 8. These specimens were 

then sheared by following one of four stress paths:  triaxial compression (TC), reduced triaxial 

compression (RTC), triaxial extension (TE), or reduced triaxial extension (RTE), as previously 

presented in Figure 2.1.  For the kaolinite and illite specimens that were used to investigate the 

intrinsic shear strength and intrinsic small-strain behavior, the specimens were overconsolidated 

to achieve two OCR values of one and eight. These specimens were then sheared by following 

the prescribed standard procedure of the triaxial compression test. 

 Bender Element Tests   

To investigate the small-strain properties of the reconstituted soils during triaxial testing, 

the triaxial apparatus was instrumented with bender elements to measure the shear wave velocity 

in the specimens. Specifically, vertically-propagated, horizontally-polarized shear waves were 

passed through the specimens during consolidation and shearing stages of the triaxial tests. The 

top and bottom platens of the triaxial device, that included bender elements, were developed at 

the University of Arkansas by Salazar and Coffman (2014). As shown in Figure 3.4, the top and 

bottom platens were integrated with two types of transducers 1) bender elements to measure 

shear waves, and 2) bender disks to measure compression waves (the bender disks were not used 

in this test program). The piezoelectric platens were used by Salazar and Coffman (2014) to 
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measure shear wave and compression wave velocities in dry Ottawa sand. To measure shear 

wave velocity in saturated cohesive soils, however, some modifications were made to the top 

platen to prevent leakage through the platen. These modifications will be discussed in Chapter 6.    

 
Figure 3.4. Photograph and schematics of the (b) piezoelectric-integrated top platen with 

vacuum and (b) piezoelectric-integrated bottom platen (from Salazar and Coffman 2014). 

For each kaolinite and illite soil type, four triaxial tests, with bender elements, were 

performed on the respective specimens (initially prepared at two ws values of 1.5LL and 3LL). 
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Following the same prescribed reconsolidation procedure, the specimens were Ko-reconsolidated 

to a maximum vertical effective stress of 60 psi (414 kPa). The overconsolidated specimens were 

then allowed to swell to achieve an OCR value of eight prior to shear. The specimens were then 

sheared following the standard triaxial compression test stress path. 

The velocity of the shear waves that traveled through the specimen was determined 

following a procedure presented by Brignoli et al. (1996). The transducer at the bottom end was 

excited, and the developed shear waves were received by the transducer at the top end; the travel 

time was also recorded. The distance of propagation was calculated by subtracting the embedded 

length of the bender elements from the total length of the sample at the time of excitation. Axial 

deformation measurements were used to determine the length of the specimen at any time during 

the test. Assuming that the specimens represented an infinite, isotropic, and elastic medium, the 

measured shear wave velocity )( sV , along with the total mass density of the soil )( , were then 

used to calculate the small-strain shear modulus, as previously presented Equation 2.9. 

There have been several different interpretation methods to determine the travel time 

obtained from piezoelectric measurements, as described in Viggiani and Atkinson (1995), 

Alvarado and Coop (2012), and Salazar and Coffman (2014). The use of time domain or frequency 

domain have been employed by previous studies to determine the travel time. In this testing 

program, several excitation frequencies were generated to determine the optimum frequency of the 

input signal that provided a clear output signal. A frequency of 10 kHz was utilized. 
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 The Effects of Stress Path on the Characterization of Reconstituted Low 

Plasticity Kaolinite 

 Chapter Overview 

Stress-strain and shear strength characteristics of reconstituted kaolinite specimens were 

evaluated by conducting undrained triaxial compression and undrained triaxial extension tests 

with pore pressure measurements. The triaxial tests were conducted on kaolinite specimens that 

were Ko-reconsolidated to four levels of over-consolidation ratios. The specimens were sheared 

in the undrained condition by following four different stress paths. The effect of stress path on 

soil characterizations was thoroughly demonstrated and evaluated. For practical purposes, this 

evaluation is essential to select adequate soil parameters to characterize the shear strength 

parameters and to validate constitutive models for a clay soil deposit subjected to different 

loading conditions.  

This chapter contains a research description and a summary (Section 4.1 through Section 

4.3), an introduction on the concept and applications of stress path (Section 4.4), a description of 

the test specimens and procedures (Section 4.5), the findings of this project (Section 4.6), and a 

description of the implementations and conclusions (Section 4.7 and Section 4.8, respectively). 

The paper enclosed in this chapter has been submitted to Soils and Foundations Journal. The full 

reference is: Mahmood, N. S., and Coffman, R. A., (2017). “The Effects of Stress Path on the 

Characterization of Reconstituted Low Plasticity Kaolinite.” Soils and Foundations, (Under 

Review, Manuscript Number: SANDF-D-17-00352-R1).  
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 Abstract 

It is often necessary to apply a stress path, which is representative of the field conditions 

that a given soil element experiences, to evaluate the deformation and strength characteristics of 

a soil deposit. A comprehensive triaxial testing program was performed, by utilizing advanced 

triaxial testing equipment, to explore the effect of the stress path on 1) the stress-strain behavior 

and 2) the shear strength characteristics of reconstituted low plasticity kaolinite soil. Undrained 

triaxial compression and triaxial extension tests were conducted on Ko-consolidated specimens at 

overconsolidation ratios of 1, 2, 4, and 8; one of the four different stress paths was followed 

during shearing. The testing procedure that was utilized to conduct the stress-controlled triaxial 

tests is presented herein.  

The behavior of the normally consolidated specimens during shear was similar to the 

typical behavior of overconsolidated clay soils. The stress-strain behavior, as obtained from the 

triaxial compression and reduced triaxial compression, was almost identical. Likewise, the stress-

strain behavior, as obtained from the triaxial extension and reduced triaxial extension stress 

paths, was almost identical. The behavior of the soil was observed to be highly influenced by the 

reorientation of the principal stresses (compression and extension values were dissimilar). The 

values of effective friction angle, as obtained from the extension tests, were from 20 to 35 

percent lower than the effective friction angle values that were obtained from the compression 

tests. The undrained shear strength values, as measured during the compression tests, were 11 to 
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38 percent greater than the those measured in the extension tests. The axial strain values, at 

failure, from the extension tests were determined to be 0.3 to 5.0 percent greater than those 

obtained from the compression tests. As discussed herein, for practical purposes, a testing 

program that includes triaxial compression tests along with reduced triaxial extension tests is 

adequate to represent loading or unloading in the field, respectively.  

Keywords: Triaxial testing methods; Reconstituted soils; Stress path; Stress-strain behavior; Pore 

pressure; Site characterization 

 Introduction 

Triaxial testing is widely used, within the laboratory, to evaluate the strength and strain 

properties of various soil types. The method of increasing or decreasing the principal stresses on 

a given sample, commonly referred to as a stress path, has been shown to play a significant role 

when evaluating the strength and strain properties of clay soils (Lambe 1967). For many 

geotechnical problems, such as those related to: passive earth pressure, excavation support, and 

slope stability, the major and minor principal stress states are switched due the field loading 

conditions. Based on the concept of stress path, many site characterization and design methods 

have been developed to account for the various orientations of the major, minor, and 

intermediate principal stress states. For instance, one procedure, identified by the acronym 

SHANSEP (Stress History and Normalized Soil Engineering Properties), was developed by Ladd 

and Foott (1974) and later modified by Ladd and DeGroot (2003) to evaluate the undrained shear 

strength of clay. The SHANSEP procedure was developed because data from triaxial 

compression test often led to either unsafe or over-conservative designs.  

Many other methods have also been used to predict the stress-strain response of a given 

soil deposit when the soil deposit is subjected to foundation loading or to loading induced by 
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excavations (e.g., Davis and Poulos 1968, Simons and Som 1970, Davis and Poulos 1972, 

Coffman et al. 2010). These other methods were developed to account for changes in the stress 

state within the soil deposit. For these methods, representative soil parameters, as obtained from 

laboratory stress path tests, were required to determine the field loading conditions. Furthermore, 

the utilization of stress path tests has received additional attention in recent years. This increased 

level of attention has been associated with only limited amounts of triaxial compression testing 

data being available to evaluate the parameters for advanced constitutive models. As discussed in 

Lade (2005) and Bryson and Salehian (2011), most of the current research related to advanced 

constitutive modeling has focused on the effect of anisotropy and stress path.  

During the shearing stage of triaxial tests, the soil specimen may be sheared in triaxial 

compression or triaxial extension by increasing or decreasing one or more of the three principal 

stresses. As described by Lambe (1967) and Ladd and Varallyay (1965), there are four stress 

paths that represent most of the common field loading conditions: triaxial compression (TC), 

reduced triaxial compression (RTC), triaxial extension (TE), and reduced triaxial extension 

(RTE).  During the shearing stage of the TC and RTE tests, the cell pressure is maintained while 

the axial stress is increased for the TC tests or decreased for the RTE tests. For the other two 

types of tests (RTC and TE), the specimens are sheared by maintaining the axial stress and 

decreasing the cell pressure for the RTC tests or increasing the cell pressure for the TE tests. The 

term “R”, as used in the prescribed acronyms, has previously been used to describe the tests that 

were performed by reducing the cell pressure (RTC tests) or reducing the axial stress (RTE tests) 

during the shearing stage (Salazar and Coffman 2014, Salazar et al. 2017, Zhao et al. 2018). The 

term “reorientation” of principal stresses was introduced by Duncan and Seed (1966) to describe 

the change in the state of stress when the orientation of the principal stresses, at the end of 
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shearing stage, did not coincide with the orientation of the initial principal stresses. During 

triaxial compression, the orientation of the principal stresses at the end of shearing stage is the 

same as the orientation of the principal stresses at the beginning of the shearing stage. However, 

during triaxial extension testing, decreasing the vertical stress or increasing the horizontal stress 

during the shearing may cause the major principal stress to act in the horizontal direction and the 

minor principal stress to act in the vertical direction. Therefore, the principal stresses will be 

reoriented by 90 degrees at the end of shearing stage (Duncan and Seed 1966).  

The stress path that a specimen undergoes is one of the major factors that influences both 

the drained and undrained shear strength parameters for a given soil. Over the past few decades, 

the relationship between the effective friction angle ( ' ), as measured from undrained triaxial 

tests with pore water pressure measurements, and the stress path has been controversial. A few 

researchers have indicated that the effect of the stress path on the effective shear strength is 

insignificant. For example, Duncan and Seed (1966) and Gens (1983) reported that the effective 

angle of internal friction in compression (
comp' ) and the effective angle of internal friction in 

extension ( ext' ) are approximately equal. Other researchers (e.g., Parry 1960, Saada and 

Bianchanini 1977, Rossato et al. 1992) reported that 
comp'  is less than ext'  by several degrees. 

Based on the results presented in Atkinson et al. (1990), the critical state lines for the 

compression and extension tests were symmetrical about the mean effective stress (p′) axis; the 

comp'  values were significantly less than ext'  values. Parry (2004) attributed the difference in the 

comp' and ext'  results to the instability of the specimen in extension tests due to the rapid 

development of necking near failure. Based on the results from other studies (e.g., Ladd and 

Foott 1974, Parry and Nadarajah 1974, Moniz 2009), the values of undrained strength (su) of 

extension tests were 10 to 25 percent less than those obtained from compression tests. As 
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discussed by Skempton (1954), the reorientation of the principal stresses influenced the amount 

of pore water pressure developed during the shearing stage of the triaxial test, thereby affecting 

the measured strength. 

According to Olson (1962), Burland (1990), and Prashant and Penumadu (2007), the 

arrangement of particles and arrangement of pore space within a given soil, commonly referred 

to as the microfabric, has also been shown to play an essential role in the engineering behavior of 

clayey soils. Soil microfabric can vary considerably as a result of using different water content 

values to “reconstitute” (Burland 1990) clay soils. To form a reconstituted structure, Burland 

(1990) suggested that the water content of the mixed slurry should be between 1 to 1.5 times the 

liquid limit of the soil. The term “intrinsic” was introduced by Burland (1990) to describe the 

properties for specimens that were reconstituted within the aforementioned water content values. 

Burland (1990) further reported that shear strength and compressibility of reconstituted soils may 

be utilized to develop a reference framework to correlate obtained properties with those from 

intact soils.  

Olson (1962) indicated that laboratory prepared specimens, at water content less than or 

slightly above liquid limit, may not represent the natural deposition process. Moreover, Olson 

(1962) mentioned that these specimens will have dispersed microfabric and exhibit intrinsic 

properties of overconsolidated clayey soil regardless of the level of overconsolidation within the 

specimen. To obtain more representative specimens, Olson (1962) reported that the water content 

of the mixed slurry should be at least two times the liquid limit. However, sedimentation of 

specimens at such high water content requires an extended period of time. Moreover, it has been 

shown that these specimens are often difficult to extrude and trim. Therefore, the following 

researchers: Henkel (1956), Parry (1960), Bryson and Salehian (2011), Tiwari and Ajmera 
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(2011), Zhao and Coffman (2016), Zhao et al. (2017), and Zhao et al. (2018) have instead 

prepared reconstituted clay specimens at lower water content values.  

To date, data obtained from historic TC tests have been 1) utilized to determine the 

stress-strain behavior, and then 2) used as inputs for constitutive models. TC tests have 

specifically been used because of the simplicity and expediency of the TC test as compared with 

other tests (Bishop and Henkel 1962, Kulhawy and Mayne 1990, Prashant and Penumadu 2004). 

Relatively few studies (e.g., Ladd and Varallyay 1965, Simons and Som 1970, Wroth 1984) have 

reported the results from undrained RTC or TE tests. Furthermore, problems associated with 

previous triaxial extension test results have prevented the use of the results (Wu and Kolymbas 

1991, VandenBerge et al. 2015). Specifically, development of necking during shearing in 

extension tests (Sheahan 1991, Liu 2004), inaccurate determination of the cross-sectional area 

during shearing (Scholey et al. 1996, Salazar and Coffman 2015), and friction between the 

loading piston and the bearings within the top cap of the triaxial cell (Bishop and Henkel 1962, 

Race and Coffman 2011) have all resulted in testing errors within previously obtained triaxial 

extension test results.  

Recent advances in the triaxial testing apparatus, including servo-controlled loading 

systems to control the stress-strain measurements, have led to a reduction in the amount of 

testing errors associated with the triaxial extension test. These advances have also led to stress 

path dependent triaxial tests being easier to conduct. The results from an experimental study on 

the effects of the change in the magnitudes and/or orientations of the principal stresses on 

parameters including: shear strength, stress-strain behavior, and excess pore water pressure 

development in reconstituted low plasticity kaolinite, under undrained triaxial testing conditions, 

are presented herein. A procedure to perform stress-controlled triaxial testes is also presented. A 
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total of four series of triaxial compression and triaxial extension tests were conducted on 

kaolinite specimens that were reconstituted in the laboratory at water content values of 1.5 times 

the liquid limit of the kaolinite soil. The data obtained from these tests were analyzed and 

compared to develop an understanding of the testing techniques required to represent certain 

field conditions. Moreover, these data will be useful to develop or validate kaolinite-based 

constitutive models.     

 Testing Program 

 The main objective of the testing program, that is presented herein, was to determine the 

effect of stress path on the shear strength characteristics of saturated, reconstituted, low plasticity 

kaolinite. A flow chart of the testing program is shown in Figure 4.1. As shown in the flow chart 

of the testing program, the specimens were Ko- consolidated to various levels of OCR and then 

sheared by following one of four stress paths: TC, RTC, TE, or RTE. The angle of reorientation 

of the principal stress between the compression tests and the extension tests was 90 degrees. 

During the shearing stage, either the axial stress ( a ) or the cell pressure ( c ) was changed to 

produce the required total stress paths (Figure 4.2).  

 Test Material and Specimens Preparation 

To obtain high-quality, fully-saturated, reconstituted, soil specimens, laboratory prepared 

specimens were created and utilized. Kaolinite soil was selected 1) due to the high value of 

permeability and 2) to compare with other available data in the literature (Jafroudi, 1983, Zhao 

and Coffman, 2016, Zhao et al., 2018). The high value of permeability of the kaolinite reduced  
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Figure 4.1. Flow chart of the testing program. 

 
Figure 4.2. Total stress paths that were followed to shear the samples. 

the amount of time required to obtain primary consolidation and also provided a more 

homogenous distribution of pore water pressure through the specimen. Specifically, KaoWhite-

S, a commercially available product that is produced by The Thiele Kaolin Company in 

Sandersville, Georgia, was utilized. This type of kaolinite has been extensively used at the 

University of Arkansas to study the strength, consolidation, and small-strain stiffness of 
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laboratory prepared soils (Coffman et al. 2014, Zhao and Coffman 2016, Zhao et al. 2017, Zhao 

et al. 2018). The kaolinite soil had a liquid limit of 32 percent, a plastic limit of 28 percent, and a 

clay size fraction (<0.002 mm) of 47 percent.  

The specimens were prepared in accordance with the procedure that was reported in Zhao 

and Coffman (2016), Zhao et al. (2018), and Zhao et al. (2018). Specifically, the kaolinite slurry 

was prepared at a water content of 1.5 times the liquid limit of the kaolinite by manually mixing 

dry powdered kaolinite with deaired, deionized, water. The slurry was mixed together with a 

spatula for three minutes. The slurry was then allowed to settle for one minute, and was then 

remixed again for one additional minute. Following mixing, the slurry was poured into a 3.81 

centimeter inside diameter slurry consolidometer, and was allowed to consolidate, in a double 

drained condition, under a constant vertical stress of 207 kPa that was applied to the soil by static 

weight.  

The time for primary consolidation was calculated according to the square root of time 

procedure, as described by Taylor (1948). After primary consolidation was completed, one 

specimen was extruded at a time (two total specimens) from each consolidometer. The 

consolidated specimens were cut using a wire saw to develop a length to diameter ratio of two 

for each specimen. After extrusion of a given specimen from the consolidometer, the specimen: 

length, diameter, and weight were measured, and trimmings were collected for initial water 

content and phase diagram measurements for each of the soil specimens. 

  Triaxial Testing  

Using advanced, automated, triaxial equipment, a series of Ko-consolidated, undrained, 

triaxial compression ( UTCCKo ) and Ko-consolidated, undrained, triaxial extension ( UTECKo ) 

tests, with pore water pressure measurements, were conducted on the laboratory prepared 
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kaolinite specimens. GEOTAC (Geotechnical Test Acquisition Control) equipment and software 

were utilized to perform these tests and to record the data. The equipment was comprised of a 

triaxial chamber, an automated load frame, and two pumps that were used to control and 

measure: stresses, strains, cell pressure, and pore pressure within the soil specimen during the 

tests. The axial stress was measured inside the triaxial cell with an internal load cell to eliminate 

the effect of piston friction. The triaxial compression tests were conducted in accordance with 

ASTM D4767 (2011). Because there is no standard for triaxial extension tests, these tests were 

conducted following the procedures described by Parry (1960) and Bishop and Henkel (1962). 

The data from all of the tests were recorded and stored by the associated data acquisition system.  

The individual specimens were mounted within the triaxial chamber using the wet 

preparation method as described in ASTM D4767 (2011). Two saturated porous stones were 

placed at the top and the bottom of the specimen. Filter paper was placed between the top and 

bottom surfaces of the specimen and the porous stones. To ensure no fluid connectivity between 

the cell fluid and the pore fluid, the specimen was encompassed by two latex, non-lubricated 

membranes (condoms) and two rubber o-rings were used at each end of the specimen to clamp 

the membranes to the top and bottom platens located above and below the specimen, 

respectively. By utilizing a vacuum top cap connection (as previously described by Race and 

Coffman, 2011 and in Salazar and Coffman, 2014), the loading piston was connected to the top 

platten to allow application of a downward or upward axial force. To prevent damage to the 

internal electronics, silicon oil (5cSt) was utilized, instead of water, as the confining fluid. A 

back pressure of at least 276 kPa was used to saturate each specimen and to achieve a pore 

pressure parameter (B) value greater than 0.95.  
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After the back pressure saturation stage was completed, strain-controlled consolidation, 

with a strain rate of 0.2 percent per hour, was utilized to consolidate each specimen. The 

GEOTAC software controlled the axial force and the cell pressure, to maintain zero lateral strain, 

based on the feedback from the change in the pore water volume. As listed in Table 4.1, for each 

overconsolidation ratio (1, 2, 4, and 8), the specimens were initially re-consolidated within the 

triaxial cell under the Ko-conditions to maximum vertical effective stress values of 310, 414, and 

828 kPa and then overconsolidated to the respective OCR levels. As recommended by the 

SHANSEP procedure, the stress levels represented 1.5, 2, and 4 times the vertical effective stress 

that was used to pre-consolidate the kaolinite slurry within the slurry consolidometer. The Ko 

values were measured for the specimens during the consolidation and the overconsolidation 

processes. After consolidating each of the specimens to the required level of vertical effective 

stress, each specimen was then sheared, under undrained conditions, at an axial strain rate of 0.5 

percent per hour. A total of 48 specimens (12 specimens per stress path) were required to 

develop the four stress paths at the various levels of OCR (as previously presented in Figure 4.1).  

Table 4.1. Stresses associated with the triaxial testing consolidation and overconsolidation 

processes. 

Maximum Vertical Consolidation 

Stress ('v,max), kPa 

Pre-shear Vertical Effective Stress ('vc), kPa 

OCR=1 OCR=2 OCR=4 OCR=8 

310 310 155 78 39 

414 414 207 103 52 

828 828 414 207 103 
 

Although, the GEOTAC software controlled all stages of the test: seating, back pressure 

saturation, consolidation, and shear, inherent shearing procedures were only available within the 

GEOTAC software for the TC and RTE tests. Following these two stress paths, the cell pressure 

was maintained and the axial stress was altered by moving the loading piston downward for TC 

or upward for RTE (strain-controlled) with a constant strain rate of 0.5 percent per hour. To 
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measure the plastic failure, these tests were continued until 15 percent axial strain was reached. 

The other two types of tests (RTC and TE) were stress-controlled tests. For these tests, the 

principal stresses were changed by manually controlling the loading piston and the cell pressure 

by utilizing the “manual mode” within the GEOTAC software program.  For the RTC and TE 

tests, when the cell pressure was changed by 
c  for each step, the deviatoric stress was also 

simultaneously changed by 
d  to maintain a constant axial stress (Equation 4.1). The initial 

change in the cell pressure, for the first step in each of the stress-controlled tests, was estimated 

based on the maximum deviatoric stress and shearing duration of the corresponding, previously 

completed, strain-controlled compression and extension tests (i.e. TC and RTE). The rate of 

strain was monitored every hour and c was adjusted to maintain an axial strain rate of 0.5 

percent per hour. However, once the failure was approached and due to the stress softening, 

excessive levels of strain rate (2.5 to 6 percent per hour) were imposed by the system to maintain 

the target stresses over the period of the stress increment. Therefore, the stress-controlled tests 

were stopped at that point and stress-strain data were not considered for these large levels of 

strain rate. Also, for this reason maximum deviatoric stress was considered as a failure criterion 

for all the tests. Similar failure criterion for stress-controlled tests was also considered by Parry 

and Nadarajah (1974).    

A

AA pc

cd

)( 
                     Equation 4.1 

where Ac was the area of the specimen top cap; Ap was the area of the piston; A was the 

corrected area of the specimen at the test step; and c was positive when cell pressure increased 

and negative when the cell pressure decreased.   
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 Test Results and Discussion 

The behavior of the undrained kaolinite, as obtained from the triaxial tests using the four 

stress paths, is discussed herein. Specifically, for completeness, four main parts including: 1) 

shear strength parameters, 2) stress-strain relationships, 3) Young’s Modulus, and 4) pore water 

pressure response are discussed. These parameters are also compared with literature values to 

gain insight into the measured behavior of the kaolinite soil.    

 Shear Strength Parameters 

Effective stress paths, for each series of the tests, in terms of mean effective stress 

)
3

'2'
'( cap

 
 and deviatoric stress )''( caq   , are shown in Figure 4.3. To determine the 

effective cohesion ( 'c ) and the effective friction angle ( ' ) values, failure envelopes were 

developed based on the peak principal stress difference (PPSD) that were observed for each 

stress path. The specimens that were sheared along compression stress paths (TC and RTC) 

followed identical effective stress paths, however the specimens reached different maximum 

deviatoric stress values. Similar behavior was also noticed for the specimens sheared along 

extension stress paths (TE and RTE).  

The effective stress paths for the OCR=1 tests initially decreased in 'p  during shearing 

(indicating contractive behavior), but before reaching the peak principal stress difference, the 

stress paths changed direction and began to move to the right (indicating dilative behavior) until 

the failure envelope was reached. This pattern of behavior, during shearing stage, has typically 

not been observed for naturally occurring, normally consolidated, clay soil types. However, this 

behavior was in agreement with prior studies conducted on reconstituted clays (Parry 1960 and 

Olson 1962). On the other hand, the effective stress paths for the overconsolidated specimens 

followed the typical behavior of overconsolidated clays. The stress path moved to the right 
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during shear (dilative behavior) then bent downward or upward for compression and extension, 

respectively, after reaching the failure envelope.  

 
Figure 4.3. Cambridge effective stress paths of the triaxial compression and triaxial 

extension tests on reconstituted kaolinite: a) OCR= 1, b) OCR= 2, c) OCR= 4, d) OCR= 8. 

The variations of the 'c  and '  values, as a function of the overconsolidation ratio, are 
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values for normally consolidated soils (Holtz et al. 2011), however those values may also 

indicate that the behavior of the normally consolidated reconstituted kaolinite is similar to the 

behavior of the overconsolidated specimens. It was clear that 'c  values and '  values obtained 

from the compression tests (TC and RTC) were similar. Comparable values were also obtained 

from the extension (TE and RTE) tests; albeit, there was a difference in the cohesion values for 

the extension tests at low levels of OCR and in the friction angle values for the compression tests 

at high levels of OCR. Based on these observations, for the specimens that were consolidated to 

the same vertical effective stress and sheared following the same mode (compression or 

extension), the effective stress path was independent of the change in the magnitude of the 

principal stresses. Similar results were reported by Simons and Som (1970) and Wroth (1984). 

The change in the stress path, as associated with reorientation of the principal stresses 

(from compression to extension), had a significant effect on the effective shear strength 

parameters. As shown in Figure 4.4, the c' values obtained from the extension tests were greater 

than those obtained from the compression tests by 8 to 34 kPa (almost four times as great for all 

levels of OCR). However, as indicted by Ladd and Varallyay (1965), the cohesion intercept has 

been shown to be difficult measure accurately. The relationships between the effective internal 

friction angle and the OCR, for the different stress paths are shown in Figure 4.5. The values of 

'  for extension tests were 20 to 35 percent less than those for corresponding compression tests. 

Similar results and findings regarding the values from extension tests being less than the values 

obtained from compression tests were reported by Parry (1960) and Saada and Bianchanini 

(1977).  
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Figure 4.4. Variation of the effective cohesion, as a function of OCR, for the different stress 

paths. 

 
Figure 4.5. Variation of the effective internal friction angle, as a function of OCR, for the 

different stress paths. 
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overconsolidation ratio (OCR) exhibited similar stress-strain behavior when normalized with 

respect to the pre-shear vertical effective stress, as shown in Figure 4.6. As prescribed by the 

SHANSEP procedure, it is useful to estimate the amount of increase in the undrained shear 

strength, for clays that exhibit normalized behavior, as a function of overconsolidation ratio. The 
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at OCR=1) and m (the slope of the regression line for the respective stress paths), are presented 

in Figure 4. 7 for the various stress paths. The four stress paths exhibited similar normalized 

behavior; increased levels of overconsolidation produced increased levels of normalized 

undrained shear strength. Although the values of m parameter are, typically, larger for extension 

tests than for compression tests (Ladd and DeGroot 2003), the values of m obtained from the 

four stress paths were similar. The measured values for the m parameter (0.54 to 0.56) were 

smaller than the typical value of 0.8 (Ladd 1991, Jamiolkowski et al. 1985) for silt soils. 

Likewise, with one exception for RTE tests, the measured values for the S parameter (0.26 to 

0.28) were larger than the typical value of 0.25 (Ladd 1991) for most silt soils. These findings 

were in agreement with Ladd (1991), which organic clays and silts had more scattered 

normalized shear strength than inorganic clays.  

 
Figure 4.6. Normalized deviatoric stress, as a function of axial strain, for the TC tests at 

OCR=1. 
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Figure 4.7. Normalized undrained shear strength values from the SHANSEP procedure. 

The measured undrained shear strength values obtained from the compression tests were 

11 to 38 percent greater than the undrained shear strength values obtained from the extension 

tests. As described by Bishop (1966), the lower values of the undrained strength that were 

obtained from the triaxial extension tests may be attributed to the difference in the amount of 

excess pore water pressure that developed during shearing. Overall, the normalized undrained 

shear strength values that were measured during the stress-controlled tests (i.e RTC and TE) 

were higher than those measured in strain-controlled tests (i.e TC and RTE). These higher values 

that were obtained from the stress-controlled tests may be attributed to the high rate of strain that 

developed during the shearing stage when the specimens yielded.  

  Stress-Strain Relationships  
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TE was similar to the TC and RTE stress paths, respectively, with higher magnitudes of 

deviatoric stress )(q  and higher values of axial strain at failure )( , fA being observed for the RTC 

 
Figure 4.8. Variation of deviatoric stress as a function of axial strain for different stress 

paths: a) OCR= 1, b) OCR= 2, c) OCR= 4, d) OCR= 8. 
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stress path that was tested, the strain at failure tended to decrease as a function of increasing the 

amount of maximum consolidation stress. The overconsolidation ratio had an insignificant effect 

on the amount of axial strain at failure. As shown in the photographs presented in Figure 4. 9, 

postpeak shear planes were observed for all of the tests regardless of whether the soil was 

normally consolidated or overconsolidated. As reported by Burland (1990) and Atkinson et al. 

(1987), shear planes were observed to develop in one-dimensional consolidated kaolinite 

specimens.  

 
Figure 4.9. Photographs of the kaolinite samples after triaxial testing showing the failure 

planes associated with the: a) TC, b) RTC, c) TE, d) RTE stress paths for an OCR=1. 

As presented in Figure 4.10, larger axial strain values were required for the extension 

tests to mobilize the peak resistance and the postpeak strain softening than were required for the 

mobilization to occur in the compression tests. The average values of the axial strain at failure 

)( , fA , for the extension tests, were between 0.3 and 5 percent greater than those for the 

compression tests. For the compression tests, the 
fA, values for the RTC tests were between 0.5 

and 3.6 percent greater than the axial strain values at failure for the TC tests. For the extension 

tests, the 
fA, values for the RTE tests were between 0.1 and 2.4 percent greater than those for the 

TE tests. As described in the previous section, higher deviatoric stresses and axial strains, which 

(a) (b) (c) (d)
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were obtained from the stress-controlled tests, may be attributed to the high rate of strain of the 

stress-controlled tests when the specimens yielded. This attribution was also documented in the 

results from the previous studies on stress rate effects (e.g., Bjerrum 1969, Sheahan 1991, 

Sheahan et al. 1996). From the aforementioned studies, the deviatoric stress at failure has been 

shown to decrease with the increasing strain rate.  

 
Figure 4.10. Average values of axial strain at failure for different stress paths, as a function 

of OCR. 

  Young’s Modulus  

The variations of undrained secant Young’s modulus, as normalized to the vertical 
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axial strain axis to facilitate a comparison between the extension and compression test results. 

Because the axial strain was measured by employing conventional external measurements, the 

undrained Young’s modulus values were only determined for axial strain levels above 0.1 

percent. Based on the observed variations of the undrained Young’s modulus, as a function of 
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normally consolidated specimens. For these specimens, at an axial strain level of 0.1 percent, the 

values of the normalized undrained Young’s modulus for the extension tests were 2 to 2.5 times 

larger than the values of the normalized undrained Young’s modulus for the compression tests. 

These values were in agreement with Atkinson et al. (1990), where the small strain stiffness was 

observed to increase as a result of the change in the direction of the stress path (from 

compression, during consolidation stage, to extension).  Furthermore, the Young’s modulus 

values that were obtained from tests conducted on the normally consolidated specimens, as 

determined from the compression tests, were consistently smaller than the Young’s modulus 

values of the overconsolidated specimens.  

For the overconsolidated specimens, the normalized modulus curves did not exhibit a 

normalized behavior. In addition, there was no clear trend of the modulus variations with the 

increase in the overconsolidation ratio. As described by Hardin and Blandford (1989) and 

Jamiolokwski et al. (1994), the initial undrained Young’s modulus values were dependent on 

both the pre-shear effective consolidation stress and the overconsolidation ratio. For the 

overconsolidated specimens, as the overconsolidation ratio increased, the pre-shear effective 

consolidation stress decreased. Therefore, it was not a simple task to isolate the effect of the 

overconsolidation ratio from the effect of the pre-shear effective stress levels.  
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Figure 4.11. Normalized secant Young’s modulus relations for: a) OCR= 1, b) OCR= 2, c) 

OCR= 4, and d) OCR= 8. 

  Excess Pore Water Pressure Response 

The variations of excess pore water pressure )( eu , that were developed during shearing, 

as normalized to the vertical consolidation stress, for the different stress paths, are shown in 

Figure 4.12. Because the excess pore water pressure was generated by a combination of the 
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changes in the shearing stress and the changes in the mean total stress, the changes in excess pore 

water pressure that were developed during shear may not be considered as a unique behavior of 

the soil, under the applied stress path. The initial portion of the pore pressure response, for all of 

the stress paths, changed rapidly over small levels of axial strain. This rapid change in the excess 

pore pressure may also explain the shape of the effective stress paths for the normally 

consolidated (OCR=1) specimens that were previously presented in Figure 4.3.  

For the TC tests that were performed on the normally consolidated specimens, the excess 

pore water pressure increased during the shearing stage (indicating contractive behavior) until 

the PPSD was reached and then the values dropped slightly. The excess pore water pressure 

values, for the TC tests that were conducted on the overconsolidated specimens, showed an 

initial contractive response and then the pore pressure response changed from a slightly 

contractive behavior to a slightly dilative behavior. For the stress-controlled RTC tests, where 

the shearing was associated with a decrease in the cell pressure, a sharp decrease in the amount 

of excess pore water pressure was observed without an initial contractive response.  

An excess pore pressure response that was larger in magnitude than the response obtained 

from the TC tests was generated during the RTC tests. This difference in pore pressure response 

was because the shearing during RTC tests was associated with decreasing cell pressure. The 

general shapes of the variation of the shear induced pore water pressure, that were developed 

during the triaxial extension tests, were similar regardless of the induced amount of the 

overconsolidation. As observed by previous researcher, the shear stress-strain and strength 

characteristics were highly influenced by the shear induced pore water pressure (Skempton,1954, 

Ladd and DeGroot, 2003). Therefore, difference in the magnitude of the measured excess pore 
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water pressure during shear may have caused the slight variation of the stress-strain relationships 

that were obtained from the different stress paths (as shown previously in Figure 4.8). 

 
Figure 4.12. Normalized excess pore water pressure relations for: a) OCR= 1, b) OCR= 2, 

c) OCR= 4, and d) OCR= 8. 
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 Implementations for Practice  

As presented in the previous test results section, for the same orientation of the principal 

stress, the shear strength properties and failure conditions did not differ greatly regardless of 

which of the stress paths were utilized to shear the specimens. However, when the orientation of 

the principal stresses was altered, the corresponding stress paths were different. Even though the 

observed normalized excess pore pressure profiles were different between TC and RTC tests, 

geotechnical analyses conducted with shear strength values obtained from TC tests will not differ 

greatly from analyses based on the values obtained from RTC tests. Likewise, even though the 

observed normalized excess pore pressure profiles were different between TE and RTE tests, 

geotechnical analyses conducted with shear strength values obtained from TE tests will not differ 

greatly from analyses based on the values obtained from RTE tests. Both the effective and the 

undrained shear strength parameters were affected by the reorientation of the principal stresses. 

When comparing the results from the compression and extension tests, lower values of shear 

strain at failure and lower initial stiffness values were measured by the compression tests. Based 

on these results, if the TC or RTC tests were utilized to obtain shear strength values for a design 

where the TE or RTE were more representative of the field conditions, then the compression data 

overestimate the shear strength and lead to an unconservative design. Moreover, TE or RTE tests 

data will be essential to develop new constitutive models or to validate existing constitutive 

models that have previously been developed based on only TC or RTC data.  

 Conclusions 

Undrained triaxial compression and triaxial extension tests were performed on kaolinite 

specimens to study the influence of the stress path on the corresponding shear strength 

properties. The specimens were reconstituted at values of water content that were slightly greater 

than the liquid limit. Based on the findings, similar stress-strain behavior was observed for the 
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stress paths that had the same orientation of the principal stresses. The stress-strain behavior, 

however, was found to be different when the orientation of the principal stresses was changed. In 

general, strength and deformation properties generated from the TC tests corresponded closely to 

those generated from the RTC tests. The same correspondence was also observed between TE 

test data and RTE test data. For simplicity and practicality, TC test results may be utilized when 

compression tests are required, and RTE test results may be utilized when extension tests are 

required. TC tests data should not be used when extension data are required for design. Likewise, 

RTE test results should not be used when compression data are required for design. These test 

types are recommended because strain-controlled testing is much easier to perform than the 

stress-controlled testing. Regardless of which test is utilized, an internal load cell should be used 

to measure the axial load to remove the effects of piston uplift and piston friction. 

The reorientation of the principal stresses (from compression to extension) had 

significant effects on the effective and undrained shear strength properties. The measured values 

of '  were lower for the extension tests than for the compression tests by approximately 20 to 35 

percent. The obtained undrained shear strengths values that were collected from the compression 

tests were greater than those obtained from the extension tests by 11 to 38 percent. The amounts 

of axial strain at failure, as measured from the extension tests, were 0.3 to 5.0 percent greater 

than those as measured from the compression tests. The amount of the initial stiffness for 

normally consolidated specimens, as evaluated from the undrained secant Young’s modulus 

values, were 2 to 2.5 times larger for extension tests than for compression tests. The variation in 

the undrained Young’s modulus values for the overconsolidated specimens showed no obvious 

trend with the changes in stress path.  Moreover, the initial portion of the excess pore water 

pressure response for all of the stress paths changed rapidly as a function of axial strain until the 
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yield point was reached. Therefore, any parameters that are utilized to characterize the shear 

strength of soil or to validate constitutive models should account for the dependence of the 

reorientation of the principal stress state. 
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 Intrinsic Shear Strength Behavior of Reconstituted Kaolinite and Illite Soils 

 Chapter Overview 

The effect of slurry water content on the shear strength behavior of reconstituted soils 

was introduced and discussed. Specifically, undrained triaxial compression tests were performed 

on kaolinite and illite soil specimens to evaluate the relationship between the slurry water content 

values and the corresponding shear strength parameters. The influence of the slurry water content 

on the soil fabric and the compression behavior of the reconstituted soils was also introduced and 

discussed. A new method was proposed to normalize the undrained shear strength values of 

overconsolidated soils based on the concept of the intrinsic shear strength line. Using this 

proposed method, void index values were determined from the intrinsic swelling line rather than 

from the intrinsic compression line. Better correlation between the undrained shear strength 

values, for the overconsolidated specimens, and the intrinsic shear strength line was obtained by 

using the proposed normalization method. It was recommended to prepare soil slurries at water 

content of three times the corresponding liquid limit of the soil. 

 An introduction including the research description and summary is included as Section 

5.1 through Section 5.3. A literature review of the intrinsic shear strength characteristics is 

included in Section 5.4. The materials and the experimental program are presented in Section 

5.5. The results obtained from the triaxial tests are documented in Section 5.6. The paper 

enclosed in this chapter has been submitted within Quarterly Journal of Engineering Geology 

and Hydrogeology. The full reference is: Mahmood, N. S., and Coffman, R. A., (2018a). 

“Intrinsic Shear Strength Behavior of Reconstituted Kaolinite and Illite Soils.” Quarterly 

Journal of Engineering Geology and Hydrogeology, (In Review, Manuscript Number: 

qjegh2018-056-R1). 
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 Abstract 

The initial water content that is utilized to reconstitute cohesive soils, into a slurry (ws), 

may have significant effects on the compression and shear strength behavior of any given soil. 

The effects are due to the influence of the ws on the soil fabric. A series of Ko-reconsolidated, 

undrained, triaxial compression tests were conducted on reconstituted kaolinite and reconstituted 

illite specimens to explore the relationship between ws values and the corresponding shear 

strength characteristics. The soil specimens were created from a slurry mixture at two levels of 

ws; ws values of one and one-half (1.5) and three (3.0) times the corresponding liquid limit of 

each soil type were investigated. The intrinsic compression, swelling, and shear strength lines 

were established from the test results. When sheared from the same level of post consolidation 

vertical stress, the undrained shear strength values of the specimens with ws values of 3.0 times 

the liquid limit were from five to 16 percent lower than those of the specimens with ws of 1.5 

times the liquid limit. The effective cohesion tended to increase by increasing the value of ws. 

The values of the effective friction angle () were found to be independent of the ws values.  

A new method is proposed herein to provide a better correlation between the normalized 

values of the undrained shear strength for overconsolidated specimens and the “intrinsic shear 

strength line.” Using this proposed method, void index values were determined from the intrinsic 

swelling line rather than from the intrinsic compression line. As discussed herein, reconstituting 

a low plasticity kaolinite soil at ws values of 1.5 times the liquid limit may not be appropriate for 
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evaluating of the intrinsic shear strength characteristics. However, the illite soil appeared to be 

less affected than kaolinite soil by an increase in the ws values. These finding were based on the 

observed soil fabric and the undrained shear strength behavior. 

Keywords: Reconstituted soils; Slurry water content; Intrinsic behavior; Triaxial testing; Stress 

path; Undrained shear strength 

 Background 

Laboratory prepared specimens are often utilized to characterize the engineering behavior 

of natural soils. These prepared specimens basically prepared by mixing natural soil with water 

to form a slurry of the given soil. The slurry is often consolidated, in a slurry consolidometer, to 

a certain consolidation stress that is related to the in-site effective stress (Henkel 1956, Olson 

1962, Burland 1990, Chandler 2000, Hong et al. 2013, Zhao et al. 2018, Mahmood and Coffman 

2017). Previous studies (e.g., Olson 1962, Martin and Ladd 1978, Carrier and Beckman 1984) 

have shown that using different levels of slurry water content (ws) to “remold” (Olson 1962) or 

“reconstitute” (Burland 1990) soil specimens will affect the mechanical behavior of these 

specimens due to the significant changes in the structure of the soil. This aforementioned soil 

structure is composed of “fabric”, the pattern that is produced from particles shape and 

arrangement, and “bonding”, the interparticle forces in the system. As per Lambe and Whitman 

(1969), clay partials may have a flocculated (random arrangement) structure or dispersed 

(parallel arrangement) structure.  

The term “intrinsic” was introduced by Burland (1990) to describe specimens that were 

reconstituted at ws values between one to one and one-half times the liquid limit (LL) of the 

given soil.  Burland (1990) reported that the intrinsic properties of the reconstituted soils were 

inherent and independent of the soil structure. Furthermore, the compression curves for different 
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reconstituted clays prepared with ws values of one and one-quarter (1.25) times the LL can be 

normalized by using the void index ( vI ), as presented in Equation 5.1.  
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                                      Burland (1990)                                 Equation 5.1          

where 
*

100e and 
*

1000e are the void ratio of the reconstituted clay that corresponded to 

vertical effective stress (σv) levels of 100 and 1000 kPa, respectively. As described in Burland 

(1990), the normalized curves (in the σv -Iv space) were expressed by using one unique curve 

called the intrinsic compression line (ICL). By using the Iv values and the ICL, Burland (1990) 

reported that shear strength and compressibility of reconstituted soils may be utilized as a 

reference framework for the corresponding intact natural soils.  

It has been well documented that the stress-strain behavior of reconstituted soils was 

significantly affected by ws values (e.g., Henkel 1962, Burland 1990 Allman and Atkinson 1992, 

Chandler 2000, Hong et al. 2013).  As described by Olson (1962), slurried specimens that were 

prepared at ws values less than or slightly above the LL exhibited shear strength characteristics 

that were similar to the typical characteristics of overconsolidated soils. Therefore, Olson (1962), 

suggested that slurry water content values of at least two times the LL should be utilized to 

prepare slurry samples. It has also been reported that the undrained shear strength of 

reconstituted soils decreased with increased levels of ws (Chandler 2000, Hong et al. 2013, Al 

Haj and Standing 2015). Like the ICL that was introduced by Burland (1990), Chandler (2000) 

introduced the concept of intrinsic shear strength behavior to describe the relation between sw and 

the undrained shear strength of the reconstituted soils (𝑠𝑢
∗). Specifically, Chandler (2000) 

followed a normalization procedure that was similar to that of Burland (1990). By using this 

procedure, the 𝑠𝑢
∗  values were normalized to Iv values that corresponded to vertical effective 
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stress values after consolidation and prior to shear (σvc). The normalized line (in the 𝑠𝑢
∗-Iv space) 

was defined by Chandler (2000) as the intrinsic strength line ( LISu ). The LISu  was not unique 

for a given soil type, but the line was developed based on a single value of the undrained shear 

strength ratio )( *

suR of 0.33. 
*

suR  was defined by Chandler (2000) as the ratio of the obtained 𝑠𝑢
∗  

value to the corresponding σvc value. A similar procedure was successfully utilized by Hong et 

al. (2013) to normalize the undrained shear strength values, as obtained from isotropically 

consolidated, undrained, triaxial tests that were conducted on an illitic soil.  

Emphasis has been placed on the relationship between the compression properties and the 

slurry water content of the reconstituted soils (on the ICL). A relatively limited number of studies 

(e.g., Chandler 2000, Hong et al. 2013, Al Haj and Standing 2015) have investigated the 

correlations between the ws and 𝑠𝑢
∗  values (on the LISu ). Furthermore, based on the literature 

that was examined, a relationship between Iv and 𝑠𝑢
∗  values, as obtained from specimens that 

were overconsolidated during the triaxial test procedure, has not been previously evaluated. 

 Materials and Methods 

Consolidated-undrained triaxial compression tests were performed on reconstituted 

kaolinite and illite specimens that were each reconstituted at two different levels of slurry water 

content (1.5 or 3.0 times the LL). The purpose of this experimental program was to evaluate and 

compare the intrinsic shear strength properties of the reconstituted kaolinite and illite specimens. 

Specifically, the triaxial tests were conducted at overconsolidation ratio (OCR) values of one and 

eight to evaluate the effect of the OCR on the intrinsic compression and intrinsic shear strength 

behavior of the reconstituted specimens. The materials and the experimental program are 

presented herein. Furthermore, the procedures that were followed to normalize the compression, 

swell, and undrained shear strength values are presented. 
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  Materials and Specimen Preparation 

A commercially available kaolinite soil (KaoWhite-S) from the Thiele Kaolin 

Company in Sandersville, Georgia was utilized in this study. Likewise, an illite soil, as obtained 

from the Knight Hawk Coal Company of Percy, Illinois, was also utilized in this study. The 

index properties of the kaolinite and illite soils are summarized in Table 5.1. Shear strength, 

consolidation, and small-strain modulus properties of these two types of soils have been 

previously studied at the University of Arkansas 1) to determine the parameters of these soils and 

2) to provide the input data for numerical modeling purpose (Zhao and Coffman 2016, Zhao et 

al. 2017, Mahmood and Coffman 2017, Zhao et al. 2018). The kaolinite and illite soils were 

classified, according to the Unified Soil Classification System (ASTM D2487, 2011), as Low 

Plasticity Silt (ML) and Low Plasticity Clay (CL), respectively.  

Table 5.1. Properties of kaolinite and illite soils. 

Property Kaolinite Illite 

Liquid limit 31.5 46.7 

Plastic limit 28.1 23.6 

Clay size fraction (<0.002 mm) 47.2 46.5 

Specific gravity, Gs 2.67 2.69 
 

The kaolinite and illite slurries were formed by mixing the dry powdered soils with de-

ionized, de-aired, water. The slurry preparation procedure followed the laboratory preparation 

method that was reported in Zhao and Coffman (2016), Zhao et al. (2017), and Zhao et al. 

(2018).  Each soil type was prepared at water content values of one and one-half times the liquid 

limit ( sw = 1.5LL) and three times the liquid limit ( sw = 3LL) of the corresponding soil type. 

Each slurry was then preconsolidated in a double drained, 3.81 cm inside diameter slurry 

consolidometer. The soil slurry inside the consolidometer was subjected to a constant vertical 

stress of 207 kPa that was applied to the slurry specimens by means of static weight. After 

primary consolidation was completed in the slurry consolidometer, two specimens, each with a 
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length to diameter ratio of two, were extruded from each consolidometer and then mounted into 

the triaxial cells. The length, diameter, and mass of each of the specimens were measured and 

reported prior to mounting the specimens into the triaxial cell. To examine the influence of the ws 

level on the fabric of the prepared specimens, scanning electron microscope images were 

measured on each type of the specimens extruded from the slurry consolidometer.  

 Normalization Procedures 

To evaluate the intrinsic compression behavior of the prepared specimens, the 

compression curves were normalized by the void index, by using Equation 5.1, as previously 

presented. The values of 
*

1000e were estimated by extrapolating the virgin compression line of the 

compression curves to vertical effective stress values of 1000 kPa. The intrinsic compression 

lines of the two soils were then compared with the ICL proposed by Burland (1990), as presented 

in Equation 5.2.  

3)(log015.0log285.145.2 vvvI                     Burland (1990)                   Equation 5.2 

Similar procedure was used to normalize the swell curves. Values of void ratio during 

swelling were used in Equation 1, as previously presented, to determine the Iv values. The 

normalized swell curve for each soil (in the σv -Iv space) was referred as the intrinsic swelling 

line (ISL). The propose of the developed ISL was to explore a more representative procedure to 

normalize the undrained shear strength values for specimens that were overconsolidated during 

the triaxial tests.  

To represent the undrained shear strength values of the overconsolidated specimens as a 

function of Iv, two procedures were followed to determine the Iv values that corresponded to the 

σvc values. In the first procedure, the Iv values were determined by following the same steps that 

were suggested by Chandler (2000) to develop the LISu of normally consolidated specimens. As 
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presented in Figure 5.1, Chandler (2000) used the void index from the ICL (IICL) at the 

corresponding level of σvc. In the second procedure, the relationship between the undrained 

shear strength values, for the overconsolidated specimens, and the Iv values were determined by 

utilizing the ISL for each specimen. Specifically, for each specimen, the void index was 

determined from the ISL (IISL) at the corresponding level of σvc. 

 
Figure 5.1. A schematic illustration of the determination of Iv values, corresponded to the 

σ’vc value, from the ICL and from the ISL. 

 Testing Methods 

A series of Ko-consolidated, undrained, triaxial compression tests, with pore water pressure 

measurements ( UTCCKo ), were performed on the aforementioned slurry consolidometer prepared 

specimens by utilizing advanced triaxial equipment. The triaxial tests were conducted in 

accordance with ASTM D4767 (2011). The individual specimens were mounted within the triaxial 

chamber using the wet preparation method, as described in ASTM D4767 (2011). The top and 

bottom platens of the triaxial device were instrumented with piezoelectric transducers that were 
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developed at the University of Arkansas (Salazar and Coffman 2014) to investigate the small-strain 

properties of the specimens (small-strain data are not included within this paper). After the back 

pressure saturation stage of the test was completed, each specimen was reconsolidated, under the 

Ko-condition, to the required maximum vertical effective stress.   

To investigate the influence of the vertical effective stress on the undrained shear 

strength, the specimens were reconsolidated and then overconsolidated according to the 

reconsolidation procedure that was similar to the procedure recommended by Ladd and Foott 

(1974). Three different levels of maximum vertical effective stress ( max,v  ), equal to 310, 414, or 

828 kPa, were utilized to reconsolidate each of the previously prepared specimens. The 

aforementioned max,v   levels represented one and one-half, two, and four times the vertical 

effective stress value that was used to preconsolidate the slurries within the slurry 

consolidometer. After the required max,v   level was reached, the overconsolidated specimens were 

allowed to swell under Ko-conditions to achieve an OCR value of eight prior to shear. The Ko 

values were measured for the specimens during the consolidation and the over-consolidation 

processes. After consolidation for the normally consolidated specimens and overconsolidation 

for the overconsolidated specimens, the specimens were sheared at axial strain rate of 0.5 percent 

per hour under undrained conditions. A total of 24 triaxial tests were performed (12 tests were 

performed for each soil type).  

  Results and Discussion 

The effect of the ws values on 1) the fabric of laboratory prepared kaolinite and illite soil 

types and 2) on the engineering behavior of these soils during the performed undrained triaxial 

compression tests, are discussed herein. Specifically, four main findings are presented and 

discussed: 1) soil fabric, 2) the characteristics of the compression and swell behavior, 3) the 
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effective shear strength parameters, and 4) the undrained shear strength behavior. The findings 

are also compared with information from the literature. For simplicity, the specimens that were 

prepared from slurries at ws =1.5LL and ws =3LL, are hereinafter referred to as K1.5LL and 

K3LL for kaolinite, respectively, and as I1.5LL and I3LL for illite, respectively. Likewise, the 

NC and OC terms were added to indicate if the triaxial test was performed on normally 

consolidated or overconsolidated soil, respectively. A summary of the measured initial soil 

properties and the triaxial test results is presented in Table 5.2. As is common, and as was 

previously presented in this manuscript, the asterisk was used, throughout the paper, to identify 

the intrinsic parameters for the reconstituted soils.  

  Soil Fabric 

The typical soil fabric of the reconstituted kaolinite and illite soils, as observed using the 

scanning electron microscope images, is presented in Figure 5.2. Visual examination of these 

images indicated that the fabric of the kaolinite specimens was affected by an increased level of 

ws.  The fabric of the kaolinite specimens at ws = 3LL was more homogenous than the fabric of 

the kaolinite specimens at ws =1.5LL. The fabric of the kaolinite specimens with lower ws was 

characterized by more open and randomly aggregated areas. For the kaolinite specimens at 

ws=3LL and for the illite specimens at both values of ws (1.5LL and 3LL), the observed fabrics 

were well-oriented; these fabrics were similar to the typical fabric observed for one-dimensional, 

normally consolidated, flocculated, clays that were reported in Cotecchia and Chandler (1997) 

and Fearon and Coop (2000). 
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Table 5.2. Summary of initial physical soil properties and triaxial tests values. 

Soil Specimen LL

ws  
OCR 

’v,max 

[KPa] 

wo 

[%] 
T  

[kN/m3] eo 
*

suR  

*

us  

[kPa] 

    310 31.4 18.0 0.89 0.299 92.7 

Kaolinite K1.5LL-NC 1.5 1 414 31.4 18.0 0.90 0.286 118.3 

    828 30.6 18.1 0.88 0.256 212.1 

    310 38.7 17.4 1.07 0.277 85.8 

Kaolinite K3LL-NC 3 1 414 38.3 17.4 1.06 0.238 98.6 

    828 39.0 18.0 1.00 0.241 199.7 

    310 31.3 17.6 0.93 0.871 31.7 

Kaolinite K1.5LL-OC 1.5 8 414 31.2 18.0 0.89 0.782 39.1 

    828 31.7 18.0 0.90 0.756 75.8 

    310 37.5 17.6 1.01 0.782 30.4 

Kaolinite K3LL-OC 3 8 414 38.4 17.9 1.00 0.671 37.3 

    828 39.0 18.1 0.99 0.763 73.7 

    310 37.7 17.9 1.00 0.253 78.5 

Illite I1.5LL-NC 1.5 1 414 35.2 17.6 0.99 0.312 128.9 

    828 35.8 17.4 1.03 0.285 235.4 

    310 42.6 17.0 1.17 0.225 69.9 

Illite I3LL-NC 3 1 414 42.1 17.0 1.16 0.286 118.5 

    828 42.6 17.0 1.18 0.270 223.3 

    310 37.0 16.9 1.11 1.663 64.2 

Illite I1.5LL-OC 1.5 8 414 36.6 17.5 1.02 1.752 90.6 

    828 35.9 17.7 0.99 1.570 131.9 

    310 40.1 17.0 1.13 1.592 61.5 

Illite I3LL-OC 3 8 414 39.8 17.1 1.12 1.654 85.5 

    828 42.6 17.0 1.18 1.580 133.1 

oTo ew ,,  are initial water content, total unit weight, and initial void ratio of the specimens after being removed 

from the slurry consolidometer following preconsolidation, respectively. 
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Figure 5.2. Scanning electron microscope images of the reconstituted soils: a) kaolinite, 

ws=1.5LL, b) kaolinite, ws=3LL, c) illite, ws=1.5LL, d) illite, ws= 3LL. 

  Characteristics of the Compression and Swell Behavior 

The typical compression and swelling curves for the kaolinite and illite specimens are 

shown in Figure 5.3. The two soils followed similar patterns during the compression and 

swelling stages. The shape of the compression curves was similar to the typical shape of other 

compression curves for medium to stiff natural clays (Cotecchia and Chandler, 1997). However, 

the shape of the observed curves was in disagreement with the generally observed shape from 

oedometer obtained curves from reconstituted soils (Burland 1990, Hong et al. 2010, Tiwari and 

Ajmera 2011, Yin and Miao 2013, Al Haj and Standing 2015). The shape of the compression 

curves that was observed by these aforementioned previous studies on reconstituted soils tended 

a b

c d
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to be slightly concave upward, in a pattern similar to that for soft clay soils. There were marked 

differences in the size of the specimens, the loading rate, and the lateral confinement between the 

triaxial tests in this study and the oedometer tests from the previous studies. The measured 

curves from the triaxial tests in this study matched those obtained from the constant rate-of-strain 

consolidation test performed by Zhao and Coffman (2016). Similar to the observations that were 

documented by Zhao and Coffman (2016), both the initial void ratio and the compression 

behavior were highly affected by the water content of the slurry. The compression curves of the 

specimens with a higher slurry water content ( sw =3LL) lied above the compression curves of the 

specimens with a lower slurry water content ( sw =1.5LL). This observation also matched the 

observations from other previous studies (e.g. Carrier and Beckman 1984, Cerato and 

Lutenegger 2004, Hong et al. 2010) in which it was determined that increasing the water content 

of the slurry tended to increase the initial void ratio and to increase the compressibility of the 

reconstituted clays for a given change in the vertical effective stress values.  

 
Figure 5.3. Typical compression and swelling curves for: a) kaolinite, and b) illite soil 

specimens. 
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In general, the illite specimens were more compressible than the kaolinite specimens, as 

shown by higher measured values of intrinsic compression index, 
*

cC (the slope of the linear 

portion of the loading curves). The average measured value of the 
*

cC parameter was 0.15 for 

kaolinite and 0.40 for illite. The average measured value of the intrinsic swelling index, 
*

sC (the 

slope of the linear portions of the unloading curves) was higher for kaolinite (0.032) than for 

illite (0.011). This observation, of the 
*

sC value being greater for kaolinite than for illite, may 

imply that the illite specimens were more structured than the kaolinite specimens and, therefore, 

the bonding reduced the amount of swelling (Gasparre and Coop 2008). Furthermore, the 

difference between the void ratio of the compression curves for the illite soil tended to decrease 

with increased levels of the applied vertical effective stress. As described by Cerato and 

Lutenegger (2004) and Hong et al. (2013), the difference in the compression behavior between 

kaolinite and illite may be attributed to the difference in the mineralogical compositions.  

As shown in Figure 5.4, the intrinsic compression lines that were obtained for the two 

soils exhibited similar behavior as the ICL that was obtained by using Equation 5.2, as 

previously presented. Based on a comparison of the results that are shown in Figure 5.4, the ICL 

that was proposed by Burland (1990) may be applicable for specimens that are reconstituted at ws 

values of up to three times the liquid limit of the soil. Moreover, based on a comparison of the 

intrinsic compression lines of the kaolinite soil to the Burland (1990) ICL, the Burland (1990) 

ICL equation may be applicable for low plasticity silts. The swell curves that were normalized by 

using the parameter vI  are also presented in Figure 5.4. The swell curves seem to be more of a 

function of soil type; the slope of the normalized swelling curves was steeper for kaolinite soil 

type than for illite soil type.  
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Figure 5.4. Variation void index, as a function of vertical effective stress, for the laboratory 

prepared: a) kaolinite, and b) illite soil specimens. 

  Effective Shear Strength Parameters 

Effective stress paths, for the normally consolidated and for the overconsolidated 

specimens, are shown in Figure 5.5. The effective stress paths were represented in terms of 

Cambridge mean effective stress (p) and deviatoric stress (q), as presented in Equations 5.3 and 

5.4, respectively.   

          
3

'2'
' cap

 
                                                                                                  Equation 5.3 

          
caq ''                                                                                                         Equation 5.4 

Within Equations 5.3 and 5.4, a   and c  were the effective axial stress and the effective 

confining pressure, respectively. For the same types of specimens that were sheared at different 

levels of vertical effective stress, the effective cohesion ( 'c ) and the effective friction angle ( ' ) 

values were determined from the failure envelopes that were plotted through the peak principal 

stress difference (PPSD) value that was observed for each stress path.  
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Figure 5.5. Cambridge effective stress paths for the triaxial compression tests performed on 

the reconstituted kaolinite and illite specimens: a) kaolinite-NC, b) illite-NC, c) kaolinite-

OC, d) illite-OC. 
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followed stress paths that were characterized by contractive behavior from the beginning of the 

shearing stage. The contractive behavior was observed to be greater for the illite specimens.   

  The effective stress paths for the kaolinite and illite overconsolidated specimens followed 

the typical behavior of overconsolidated soils during the shearing stage. The stress paths 

increased in 'p  (indicating dilative behavior) then bent downward after reaching the PPSD. The 

pattern of behavior, during shearing of the normally consolidated K1.5LL, was different from the 

typical behavior that has been observed for normally consolidated soils (Mitchell and Soga 

2005). However, similar behavior has been previously reported for the reconstituted soils (e.g., 

Parry 1960, Olson 1962, Mahmood and Coffman 2017).   

The deviatoric stress-axial strain curves for all the triaxial tests are presented in Figure 

5.6. Except for the overconsolidated K3LL, the same general shape of deviatoric stress-axial 

strain curves was observed for all the specimens during the shearing stage. The behavior was 

characterized by an increase in the deviatoric stress until a peak, followed by strain softening 

behavior. This behavior was similar to the typical behavior of overconsolidated clays, as 

described by Mitchell and Soga (2005). Furthermore, at high levels of axial strain, the stress-

strain curves of the specimens with lower values of sw tended to converge with the curves for the 

specimens with higher values of ws. Postpeak shear planes were observed to develop during 

shearing within both the normal consolidated specimens and the overconsolidated specimens, 

regardless of the ws values. These planes may explain the peak deviatoric stress values that were 

observed for the normally consolidated specimens, which might not otherwise be expected for 

the normally consolidated specimens. Similar findings regarding the stress-strain behavior of 

one-dimensionally, normally consolidated, reconstituted clays were reported by Atkinson et al. 

(1987) and Burland (1990). 
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Figure 5.6. Variation of deviatoric stress, as a function of axial strain, for the reconstituted 

kaolinite and illite specimens: a) kaolinite-NC, b) illite-NC, c) kaolinite-OC, d) illite-OC. 
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specimens with sw =1.5LL, the 
fa,  values were from 0.9 to 4.8 percent for the illite specimens 

and from 4.9 to 13.0 percent for the kaolinite specimens. The low levels of the axial strain at 

failure for the illite specimens may support the claim that the illite specimens were more 

“structured” than the kaolinite specimens. This was in agreement with a description of the typical 

behavior of structured soils that has been presented in the literature (e.g., Coop et al. 1995, 

Kavvadas and Amorosi 2000). Larger values of 
fa, were observed for the overconsolidated 

specimens, which may be attributed to the lower level of vertical effective stress that was applied 

to these specimens as compared to the level of the vertical effective stress that was maintained on 

the normally consolidated specimens. 

Variations within the measured excess pore water pressure (
eu ), as normalized by the 

vertical consolidation stress for the different stress paths, are presented in Figure 5.7. For the 

triaxial tests that were conducted on the NC specimens, the shear induced excess pore water 

pressure values of the K1.5LL and I1.5LL specimens were consistently smaller than the shear 

induced excess pore water pressure values of the K3LL and I3LL specimens, respectively. For 

the NC specimens, the excess pore water pressure continued to increase (contractive behavior) 

during the shearing stage, with the exception of the K1.5LL specimens. For the K1.5LL 

specimens, the excess pore water pressure values initially increased, in the same manner as the 

other NC specimens, and then the values decreased slightly before the PPSD was reached. The 

observed “strong” contractive behavior for the NC I3LL specimens, as observed from the pore 

water pressure response that was also observed from the shape of the stress path, may be 

attributed to the “rigid body sliding” following the formation of the shear planes (Burland 1990). 

An initial contractive behavior was observed, from the excess pore water pressure response, for 

all of the overconsolidated specimens then the excess pore pressure response changed to that of a 
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dilative behavior. The differences in the magnitude of the shear induced excess pore water 

pressure values that were observed during shearing may explain the variation in the shape of the 

effective stress paths that were previously described and presented in Figure 5.5.  

 
Figure 5.7. Normalized excess pore water pressure relationships for: a) kaolinite-NC, b) 

illite-NC, c) kaolinite-OC, d) illite-OC. 
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increase as a function of an increase in the amount of the ws. Effective cohesion intercept values 

are typically not measured for naturally occurring, normally consolidated, soils (Holtz et al. 

2011). Moreover, values for cohesion intercept have been shown to be difficult measure 

accurately from undrained triaxial testing (Ladd and Varallyay 1965). Cohesion intercept values 

were measured and reported in this study because the behavior of the reconstituted normally 

consolidated kaolinite specimens were similar to the typical behavior of overconsolidated 

specimens. In addition to the observed values of cohesion intercept, the observed change in the 

values of ' , due to an increase in the values of ws, was from -6 to +11 percent. Unlike the 

cohesion intercept being dependent upon ws, the '  values were independent of ws (Figure 5.8b). 

 
Figure 5.8. Variation of a) effective cohesion, c', and b) effective internal friction angle, ', 

as a function of the normalized slurry water content. 
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ws (K3LL-NC and I3LL-NC), were from 5.0 to 16.0 percent lower than those of the specimens 

with lower values of sw  (K1.5LL-NC and I1.5LL-NC). For the overconsolidated specimens, the 

*

us values of the K3LL-OC and I3LL-OC specimens were from 0.5 to 5.5 percent less than the 
*

us

values for the K1.5LL-OC and I1.5LL-OC. Following the preconsolidation process in the slurry 

consolidometer, the increased levels of ws produced specimens with higher void ratio values and 

higher initial water content (wo), which led to the decrease in the 
*

us  values.  

 
Figure 5.9. Undrained shear strength values for: a) kaolinite, b) illite. 
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normalization procedure was also applied to 
*

us  values that were obtained from Ko-consolidated 

undrained triaxial tests that were conducted on K1.5LL specimens (Figure 5.11), at two other 

OCR levels (OCR= 2 and OCR= 4); the data from these OCR levels were obtained from 

Mahmood and Coffman (2017). The new normalized data, for the overconsolidated specimens, 

were in a better agreement with the ISuL. Furthermore, by utilizing this procedure the R2 value 

for the all of the normalized data increased to 0.90.  

 

 
Figure 5.10. The relationship between void index, as obtained from ICL, and undrained 

shear strength values. 
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Figure 5.11. The relationship between void index, as obtained from intrinsic swelling lines 

for the OC specimens, and undrained shear strength values. 
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*
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1 to 1.5LL, that was recommended by Burland (1990) may not be appropriate to reconstitute low 

plasticity kaolinite soils. The difference in the magnitude of the shear induced excess pore water 

pressure between the kaolinite specimens that were prepared at different ws values may have 

caused the observed variations of the stress-strain and strength characteristics behavior of these 

different specimens. As discussed by Cerato and Lutenegger (2004), the diffuse double layer 

may have not completely been developed around the particles of the flocculated soils that were 

reconstituted at low slurry water content values. Therefore, the particles may have absorbed 

additional water during shear, depending on the initial water content of the specimens. The low 

values of the wo for the K1.5LL specimens, as compared to those for the other specimens, as 

previously listed in Table 2, confirms this assumption.  

 
Figure 5.12. The relation between void index, as obtained from intrinsic swelling lines for 

the OC specimens, and undrained shear strength ratio. 
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 Conclusions 

Undrained triaxial compression tests were performed on reconstituted kaolinite and illite 

specimens to study the influence of the slurry water content on the corresponding intrinsic shear 

strength properties. The slurry water content was observed to affect the compression behavior, 

effective shear strength parameters, and undrained shear strength for the reconstituted soils. The 

intrinsic compression lines of both reconstituted soil type were established and found to be the 

same as the ICL that was proposed by Burland (1990). Following the same procedure used to 

establish the ICL, ISL was successfully established for each soil. The ISL was identical for each 

soil that was reconstituted at different sw and unloaded from the same level of the maximum 

effective stress.  

The kaolinite soil that was reconstituted at ws of 1.5LL may not represent the intrinsic 

behavior because the fabric of the soil and the shear strength characteristics were different than 

those observed for kaolinite soil that was reconstituted at a ws value of 3LL. Based on these 

observations, a low plasticity soil that was reconstructed at ws value from 1 to 1.5LL, as 

recommended by Burland (1990), may not exhibit the intrinsic properties that were described by 

Burland (1990). While the effective cohesion tended to increase with increasing values of the ws, 

the values of '  were determined to be independent of the levels of ws. The 
*

us  values for the 

specimens with ws of 3LL were from 5 to 16 percent lower than the 
*

us  values for the specimens 

with sw  of 1.5LL. A better correlation between the normalized values of 
*

us and the LISu  for the 

overconsolidated specimens was obtained by using the values of the vI  from the ISL instead of 

the values of the vI  from ICL. The differences in the shear strength behavior was determined to 

be caused by the differences in the shear induced excess pore water pressure response.  
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 Small-strain of Reconstituted Soils: The Effect of Slurry Water Content 

 Chapter Overview 

The influence of the slurry water content on the small-strain properties of reconstituted 

kaolinite and illite soils were investigated by performing shear wave velocity measurements. 

Vertically-propagated, horizontally-polarized shear wave velocity measurements were obtained 

by utilizing bender elements within triaxial testing equipment. To quantify the amount of fabric 

anisotropy, the triaxial shear wave velocity measurements were compared to horizontally-

propagated, vertically-polarized, shear wave velocity measurements that were obtained by 

utilizing bender elements within a consolidation device. The values of the shear wave velocity 

and shear modulus were normalized to the void index to examine the intrinsic small-strain 

properties. The values of both shear wave velocity and shear modulus did not normalize with 

respect to the void index procedure. It was recommended to utilize a water content of the slurry 

of at least three times the liquid limit of the soil to obtain small-strain characteristics for 

reconstituted soils that are in better agreement with those for natural soils.  

This chapter contains a research description, additional results, and a summary (Section 

6.1 through Section 6.4), an introduction on small-strain characteristics (Section 6.5), a 

description of the test specimens and procedures (Section 6.6 and Section 6.7, respectively), the 

findings of this project (Section 6.8), and a description of the conclusions and recommendations 

(Section 6.9).  The paper enclosed in this chapter has been submitted within the Geotechnical 

Testing Journal. The full citation of this document is: Mahmood, N. S. and Coffman, R. A., 

(2018b). “Small-strain of reconstituted soils: The effect of slurry water content.” Geotechnical 

Testing Journal, (Under Review, Manuscript Number: GTJ-2018-0098-R1). 
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 Additional Results not Included in the Aforementioned Manuscript 

The measured values of shear wave velocity and shear modulus, for the two soils during 

the shearing stage, are presented in Figure 6.1. Because external axial strain measurements were 

utilized to measure the axial strain values, modulus degradation at small axial strain levels could 

not be measured. There was no clear trend of the variation of shear wave velocity with the vertical 

effective stress. The increase and decrease in the vertical effective stress levels during shear may 

have caused the variable trend of the measured shear wave velocity values. However, the values 

of the shear modulus tended to decrease, during shearing, before failure was reached. As 

previously observed during the reconsolidation stage, the values of the shear modulus for the 

specimens with sw of 3LL were less than those for the specimens with sw  of 1.5LL. The decrease 

in shear modulus with the increasing sw values may be attributed to the same factors (grater eo 

and wo values for the specimens with sw of 3LL) that were believed to have affected the shear 

wave velocity as a result of increasing sw  during reconsolidation, as previously presented.  

The shear modulus values that were obtained from tests conducted on the normally 

consolidated specimens, as determined from the bender element measurements, were 1.4 to 2.5 

times the values of the shear modulus for the overconsolidated specimens. However, the difference 

in the shear modulus values between the normally and overconsolidated specimens cannot be 

solely explained by the change in the OCR values because it was not possible to isolate the effect 

of the overconsolidation ratio from the effect of the vertical effective stress prior to shear. As the 

overconsolidation ratio increased from 1 to 8, the pre-shear effective vertical stress decreased from 

414 to 51.75 kPa.  
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Figure 6.1. The results of small-strain values during the shearing stage: (a) shear wave 

velocity- vertical effective stress relationships for kaolinite, (b) shear modulus- axial strain 

relationships for kaolinite, (c) shear wave velocity- vertical effective stress relationships for 

illite, and (d) shear modulus- axial strain relationships for illite. 

Two main phenomena that may have led to the inconsistent and, therefore, not reliable 

shear modulus-axial strain relationships. First, as observed by Mahmood and Coffman (2018a) 

postpeak shear planes were developed in all of the normally and overconsolidated specimens. 
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These planes caused non-uniformity of the specimens and discontinuity in the travel paths of the 

shear wave, thereby affecting the shear modulus. Second, alignment errors may have resulted from 

tilting of both the specimen and the top platen during shear.   

 Small-strain Characteristics of Reconstituted Soils: The Effect of Slurry Water 

Content 
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 Abstract 

The influences of slurry water content (ws) and fabric anisotropy, on the small-strain 

behavior of reconstituted kaolinite and illite specimens were investigated. Bender elements were 

employed, within triaxial testing equipment, to obtain vertically-propagated, horizontally-

polarized, shear wave velocity measurements, and corresponding shear modulus, during the 

consolidation of eight triaxial tests. The soils were initially prepared at water content values of 

one and one-half (1.5x) and three (3x) times the respective liquid limit for each soil type. At the 

same level of overconsolidation ratio and vertical effective stress, the specimens with lower ws 

values were from 1.1 to 2.1 times stiffer than those with higher ws values. The shear wave 

velocity and shear modulus data were normalized to the void index by following a procedure that 

was similar to procedures that have previously been used to normalize compression and 

undrained shear strength data. Unique “intrinsic” relationships for shear wave velocity or shear 

modulus, independent of soil fabric, were not observed during this study.  

Inherent fabric anisotropy was also assessed by comparing the aforementioned triaxial 

shear wave velocity data to measurements of horizontally-propagated, vertically-polarized, shear 
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wave velocity that were obtained by utilizing bender elements within a consolidation device. The 

amount of fabric anisotropy was dissimilar and the characteristics of the cross-anisotropic fabric 

was not observed for the specimens. The amount of inherent fabric anisotropy ranged from 0.63 

to 0.97 for the kaolinite and illite specimens with ws values of 1.5x the liquid limit, and ranged 

from 1.13 to 1.21 for kaolinite specimens with ws values of 3x the liquid limit. During the 

shearing stage, inconsistent and unreliable relationships were obtained for the shear wave 

velocity-vertical effective stress behavior and shear modulus-axial strain behavior. As discussed 

herein, the ws level should be considered when reconstituting specimens of cohesive soils for 

small-strain determination. 

Keywords: Shear Wave Velocity, Shear Modulus, Bender Elements, Reconstituted Soils, Slurry 

Water Content, Intrinsic Behavior, Fabric Anisotropy 

 Introduction 

Accurate measurements of soil moduli are essential for geotechnical analyses when 

computing deformations and stress distributions in a soil mass by utilizing numerical methods 

and advanced constitutive models. Various field and laboratory testing methods have been 

employed to determine elastic shear modulus, at small strains, based on the measurements of 

shear wave velocity through the soil. During the last few decades, bender elements have been 

used extensively within odometer (e.g., Jamiolkowski et al. 1995; Fam and Santamarina 1995; 

Kang et al. 2014; Zhao and Coffman 2016) and triaxial devices (e.g., Viggiani and Atkinson 

1995; Jovicic and Coop 1998; Gasparre and Coop 2006; Choo et al. 2013; Salazar and Coffman 

2014) to measure shear wave velocities. This technique has proven to be an inexpensive and 

reliable means of studying dynamic soil properties (Clayton 2011).  
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 The effect of 1) void ratio and 2) fabric of cohesive soils on the small-strain stiffness has 

been well documented in previous studies.  As reported by Atkinson et al. (1990), Lings et al. 

(2000), Clayton (2011), and Finno and Cho (2011), small-strain stiffness was observed to 

increase with decreasing values of void ratio. The importance of soil fabric, as a factor 

influencing the small-strain stiffness, has also been discussed and illustrated (e.g., Hardin and 

Brandford 1989; Jovicic and Coop 1998; Kang et al. 2014; Zhao et al. 2017).  Based on the 

results from many studies (e.g., Olson 1962; Martin and Ladd 1978; Carrier and Beckman 1984; 

Burland 1990; Cerato and Lutenegger 2004; Mahmood and Coffman 2018a), the use of different 

levels of slurry water content )( sw  to “reconstitute” (Burland 1990) cohesive soils will affect the 

initial void ratio, soil fabric, and initial water content )( ow  of the prepared specimens. As 

described by Olson (1962), specimens reconstituted at sw  values less than or slightly above the 

liquid limit (LL), will have dispersed fabric and the particles will be well-orientated in directions 

perpendicular to the direction of deposition. Olson (1962) also indicated that sedimentation of 

specimens from slurries with sw  values higher than two times (2x) the liquid limit will produce 

specimens with a flocculated fabric. 

The “void index (Iv)” concept was introduced by Burland (1990) to normalize 

compression curves of reconstituted soils that have been prepared from soil slurries at sw  values 

between 1x and 1.5x the liquid limit of the soil. Burland (1990) also introduced the intrinsic 

compression line (ICL) to describe the “intrinsic” compression behavior that was independent of 

the initial structure of the reconstituted soils. Based on the described concept, several studies 

have attempted to correlate the Iv concept to different engineering related soil properties to obtain 

properties of intact soils. In particular, normalized relationships have been successfully 

established between void index and undrained shear strength (Chandler 2000; Hong et al. 2013; 
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Mahmood and Coffman 2018a), between void index and swelling curves (Mahmood and 

Coffman 2018a), and unsuccessfully established between void index and hydraulic conductivity 

(Zeng et al. 2011). 

Previously, reconstituted specimens have been used to characterize the small-strain 

behavior of cohesive soils (e.g., Viggiani and Atkinson 1995; Jung et al. 2012; Trhlikova 2012; 

Choo 2013; Zhao and Coffman 2016). The values of sw  that have been used in the 

aforementioned studies ranged from 0.7x to 2x the corresponding liquid limit of the soil. The 

majority of these studies focused on the effects of overconsolidation ratio, stress path, void ratio, 

and fabric anisotropy on the small-strain behavior of the reconstituted soils. The previous studies 

also focused on the difference in the small-strain stiffness behavior between reconstituted and 

intact soils. Except for the research that was performed by Zhao et al. (2017), the effect of sw  

levels on small-strain stiffness and stiffness anisotropy of reconstituted soils was not previously 

addressed in the literature.    

Based on past studies related to soil anisotropy (Duncan and Seed 1966; Mitchell 1972; 

Martin and Ladd 1978; Jovicic and Coop 1998), anisotropy of the soil fabric occurs during 

deposition of soil particles (inherent anisotropy) or as a result of changes in the stress conditions 

(stress-induced anisotropy). Different shear wave velocity values have been measured from 

different waves propagation directions depending on the installation position of the bender 

elements within the specimen, and as a result of fabric anisotropy (Jovicic and Coop 1998; 

Yamashita et al. 2005; Kang et al. 2014; Zhao et al. 2017). Moreover, different shear modulus 

values have been calculated from the corresponding shear wave velocity measurements. 

According to Roesler (1979), Jamiolkowski et al. (1995), Lings et al. (2000), Kang et al. (2014), 

and Zhao et al. (2017), the values of bender elements acquired stiffness anisotropy, as referred to 
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as the ratio of shear modulus in the horizontal direction to the shear modulus in the vertical 

direction, ranged from 1.2 to 1.7 for normally and lightly overconsolidated soils. For 

overconsolidated soils, the stiffness anisotropy was greater than 2.0. Furthermore, as reported by 

Jovicic and Coop (1998) and Zhao et al. (2017), during the Ko-reconsolidation process, the effect 

of stress-induced fabric anisotropy on small-strain stiffness was insignificant when compared 

with the effect of inherent fabric anisotropy. 

A comprehensive understanding of the influence of 1) the slurry water content and 2) the 

fabric anisotropy of reconstituted soils on the small-strain characteristics has not been 

demonstrated in the reviewed literature. Furthermore, the relationships between the shear wave 

velocity and the corresponding shear modulus of reconstituted soils and the void index concept 

has not been evaluated. To evaluate these concepts, a series of undrained triaxial compression 

tests, with measurements of vertically-propagated, horizontally-polarized shear wave velocity, 

were performed on reconstituted kaolinite and illite specimens. The soils were initially mixed at 

respective water content values of 1.5x and 3x the liquid limit of the respective soil type. The 

values of shear wave velocity and shear modulus of these specimens were measured during the 

Ko-reconsolidation and shearing stages. The relationships between the void index and 1) the 

shear wave velocity measurements and 2) the shear modulus measurements are discussed. The 

values of the vertically-propagated shear wave velocity are also compared with the horizontally-

propagated shear wave velocities that were previously measured by Zhao et al. (2017) to 

evaluate the fabric anisotropy of the reconstituted soils. 

 Test Specimens  

Kaolinite and illite soil types were used to determine the effect of the slurry water content 

on the small-strain properties of these soils. KaoWhite-S, a commercially available kaolinite soil, 
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and illite soil obtained from the Knight Hawk Coal Company of Percy, Illinois were utilized in 

this experimental program. These types of kaolinite and illite soils have been used previously at 

the University of Arkansas to evaluate shear strength, compression, and small-strain stiffness of 

reconstituted soils (Coffman et al. 2014; Zhao and Coffman 2016; Mahmood and Coffman 2017; 

Zhao et al. 2017, Zhao et al. 2018; Mahmood and Coffman 2018a). The index properties of the 

utilized soils are presented in Table 6.1. The kaolinite and illite soils were classified as Low 

Plasticity Silt (ML) and Low Plasticity Clay (CL), respectively, according to the Unified Soil 

Classification System (ASTM D2487-2017).  

Table 6.1. Properties of kaolinite and illite soils (from Mahmood and Coffman, 2018a). 

Property Kaolinite Illite 

Liquid limit 31.5 46.7 

Plastic limit 28.1 23.6 

Clay size fraction (<0.002 mm) 47.2 46.5 

Specific gravity, Gs 2.67 2.69 

 

The specimens were prepared according to the method that was described by Zhao and 

Coffman (2016). Each powdered form of the kaolinite and illite soil was mixed with de-ionized, 

de-aired water to form a slurry at two different levels of water content (1.5x and 3x the 

corresponding liquid limit of the soil). The slurries were then pre-consolidated in a double drained, 

3.81 cm, inside diameter, acrylic, static weight, slurry consolidometer under a constant vertical 

stress of 207kPa. After primary consolidation was completed for the pre-consolidation process, 

two specimens were extruded from each consolidometer. Each extruded specimen was trimmed to 

develop a specimen with a length to diameter ratio of two and then placed into the triaxial device.  

 Testing Apparatus and Methods 

Advanced, automated, triaxial equipment, with pore water pressure measurements, were 

utilized to perform Ko-consolidated, undrained, triaxial compression tests )( UTCCKo  on the 

prepared specimens, in accordance with ASTM D4767-2011. Each specimen was reconsolidated, 
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under the Ko-condition, to a maximum vertical effective stress )( max,v   of 414 kPa, which 

represented two times the pre-consolidation stress of the slurry within the slurry consolidometer. 

The overconsolidated specimens were allowed to swell, under the Ko-conditions, to achieve an 

overconsolidation ratio (OCR) of eight (8) prior to shear. After reconsolidating the specimens to 

the required levels of vertical effective stress and OCR, the specimens were sheared in an 

undrained condition at an axial strain rate of 0.5 percent per hour. A total number of eight triaxial 

tests were performed on the prepared specimens (four tests were performed for each soil type). 

 The top and bottom platens of the triaxial device were instrumented with piezoelectric 

transducers that were developed at the University of Arkansas (Salazar and Coffman 2014). As 

shown in Figure 6.2, the top and bottom platens were integrated with two types of transducers: 1) 

bender elements to measure shear waves, and 2) bender disks to measure compression waves 

(bender disks were not used in this testing program). Similar piezoelectric platens were previously 

used by Salazar and Coffman (2014) to measure shear wave and compression wave velocities in 

dry Ottawa sand. Modifications were made to the Salazar and Coffman (2014) top platen to prevent 

leaking through the top platen that was observed during earlier triaxial tests. It was determined that 

the leak occurred due to the drainage ports and the wire feed port. The leak from the drainage ports 

was eliminated by utilizing a pair of O-rings, a metal tube, and a union to connect each drainage 

port to the corresponding drainage tube (Figure 6.2). To eliminate the leak through the wire feed 

port, high vacuum grease was injected into the cavity between the stainless steel insert and the 

acrylic platen.  
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Figure 6.2. Photograph of inverted top platen with the details of the drainage tube 

attachment. 

 The velocity of the shear waves that traveled through the specimen was determined 

following the procedure presented by Brignoli et al. (1996). The bender element located in the 

bottom platen was excited, and the developed shear waves were received by the bender element 

located in the top platen. The travel time during sending and receiving was recorded. The distance 

of propagation was calculated by subtracting the embedded length of the bender elements from the 

total length of the specimen at the time of excitation. Axial deformation measurements were used 

to determine the length of the specimen at any time during the test. Assuming that the specimens 

represented an infinite, isotropic, and elastic medium, the measured shear wave velocity )( sV , along 

with the total mass density of the soil )( , were then used to calculate the small-strain shear 

modulus )( BEG , as presented in Equation 6.1 (Richart et al. 1970). 

2

sBE VG                               Richart et al. (1970)                                    (Equation 6.1) 

A. Bender element

B. Porous ring

C. Stainless steel insert

D. Wire feed port

E. Bender disk

B

A

C

D

E

F

H

I

J

F. Drainage port

G. Steel tube (1/8 inch) placed into (F)

H. O-ring

I. Union (1/8 inch pipe taper threads to

1/8 inch single ferrule threads)

J. Drainage tube

G
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Because there have been several different interpretation methods to determine the travel 

time, as obtained from piezoelectric measurements (for example, by using the time or frequency 

domains of the signals, as described in Atkinson 1995, Alvarado and Coop 2012, and Salazar and 

Coffman 2014), several excitation frequencies were used to determine the optimum frequency of 

the input signal (10kHz) that provided a clear output signal.  

 Test Results and Discussion 

The small-strain stiffness values that were determined for the laboratory prepared kaolinite 

and illite specimens, as obtained from shear wave velocity measurements are discussed herein.  

Specifically, three main items: 1) intrinsic compression and swelling behavior; 2) shear wave 

velocity measurements and shear modulus determination during reconsolidation; and 3) fabric 

anisotropy are discussed and compared with literature values. For simplicity, the specimens that 

were prepared from slurries at sw values of 1.5x and 3x the corresponding liquid limit of the soil, 

are hereinafter referred to as K1.5LL and K3LL for kaolinite, respectively, and as I1.5LL and I3LL 

for illite, respectively. A summary of the initial values for the specimens is presented in Table 6.2.  

Table 6.2. Summary of initial physical soil properties. 

Soil Specimen LL

ws  
OCR 

’v,max 

[kPa] 

wo 

[%] 
T  

[kN/m3] eo cC  

Kaolinite K1.5LL-NC 1.5 1 414 31.4 18.0 0.90 0.124 

Kaolinite K3LL-NC 3 1 414 38.3 17.4 1.06 0.132 

Kaolinite K1.5LL-OC 1.5 8 414 31.2 18.0 0.89 0.122 

Kaolinite K3LL-OC 3 8 414 38.4 17.9 1.00 0.135 

Illite I1.5LL-NC 1.5 1 414 35.2 17.6 0.99 0.402 

Illite I3LL-NC 3 1 414 42.1 17.0 1.16 0.433 

Illite I1.5LL-OC 1.5 8 414 36.6 17.5 1.02 0.400 

Illite I3LL-OC 3 8 414 39.8 17.1 1.12 0.432 

oTo ew ,,  are initial water content, total unit weight, and initial void ratio of the specimens after being removed 

from the slurry consolidometer following pre-consolidation, respectively. 
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 Intrinsic Compression and Swelling Behavior  

Typical compression and swelling curves for the kaolinite and illite specimens, as obtained 

from the Ko-reconsolidation stage during the triaxial tests, are presented in Figure 6.3. The values 

of the initial void ratio and the compression index were affected by the increase in sw values. The 

values of the initial void ratio for the specimens that were reconstituted at sw  values of 3LL were 

between 10 and 18 percent greater than those for the specimens that were reconstituted at sw  

values of 1.5LL. Similarly, the values of the compression index )( cC  for the specimens with sw

equal to 3LL were between eight and 18 percent greater than the cC  values for the specimens with 

sw equal to 1.5LL.  Similar observations regarding the variation of oe  and cC  values at different 

sw  values were reported by Carrier and Beckman (1984), Burland (1990), Cerato and Lutenegger 

(2004), and Hong et al. (2010).  

 
Figure 6.3. Compression relationships for the reconstituted soils: (a) typical compression 

and swelling curves, (b) void index as a function of vertical effective stress. 
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To evaluate the intrinsic compression behavior of the reconstituted specimens, the 

compression curves were normalized using the void index )( vI  concept that was proposed by 

Burland (1990), as is presented as Equation 6.2. 

*

1000

*

100

*

100

ee

ee
Iv




                             Burland (1990)                                    (Equation 6.2) 

In Equation 6.2,  *

100e and *

1000e corresponded to the void ratio of the reconstituted soil at 

vertical effective stress ( v  ) levels of 100 and 1000 kPa, respectively. The *

1000e  values were 

determined by extrapolating the straight line portions of the version compression curves in Figure 

6.3a to an effective stress of 1000 kPa. The void index was also utilized to normalize the swelling 

curves, as described in Mahmood and Coffman (2018a). Using Equation 3, as proposed by Burland 

(1990), the intrinsic compression curves of the two soils exhibited almost identical relationships 

with respect to the Burland (1990) ICL.  

3)(log015.0log285.145.2 vvvI                Burland (1990)                   (Equation 6.3) 

The well-normalized compression curves for the specimens with ws values of 3LL may 

indicate that the use of the ICL is applicable to normalize the compression curves for the specimens 

that are reconstituted at sw  levels above the 1.25LL level that was recommended by Burland 

(1990). The shape of the intrinsic compression lines for the kaolinite specimens, which was 

identical to the ICL, may also indicated that the use of the ICL is applicable for normalization of 

the compression behavior of low plasticity silts. 

 Shear Wave Velocity and Shear Modulus during Reconsolidation  

The values of the shear wave velocity and shear modulus, during the reconsolidation stage 

of the triaxial tests, are presented in Figure 6.4. The same general shape of the shear wave velocity-

vertical effective stress curves was observed for the kaolinite and illite soils, regardless of the sw  
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values. The behavior was characterized by increasing shear wave velocity with increasing vertical 

effective stress during loading, followed by decreasing shear wave velocity with decreasing 

vertical effective stress during unloading. The change of the shear wave velocity during loading 

and unloading was associated with the change in the void ratio values from consolidation of the 

soil.   

At similar levels of effective stress, during reconsolidation, the specimens that were 

reconstituted from ws values of 1.5LL had higher values of shear wave velocity than the specimens 

that were reconstituted from ws values of 3LL. The shear wave velocity values for the K1.5LL 

specimens were between 20 and 41 percent higher than those for the K3LL specimens. Similarly, 

the shear wave velocity values for the I1.5LL specimens were between seven and 14 percent higher 

than those for the I3LL specimens. The slower shear wave velocities that were measured for the 

specimens that were reconstituted at higher ws were attributed to the 1) higher initial void ratio and 

2) higher initial water content (wo) of these specimens prior to reconsolidation in the triaxial testing 

device. Increasing level of ws led to slower measured values of shear wave velocity because shear 

waves do not propagate through water. The additional water that was present occupied the void 

space and separated the particles, thereby slowing the measured shear wave velocity. Moreover, 

the influence of ws on the shear wave velocity was greater for kaolinite soil than for illite soil. As 

reported by Mahmood and Coffman (2018a), more changes in the fabric were observed for 

kaolinite soil than for illite soil as a result of increased ws values. As also indicated by Zhao et al. 

(2017) and Mahmood and Coffman (2018a), the influence of the ws on the shear wave velocity, 

stress-strain behavior, and strength characteristics of the kaolinite soil was more significant than 

the influence of ws on the same characteristics of the illite soil.  
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Figure 6.4. Small strain results obtained from bender elements during reconsolidation and 

overconsolidation: (a) shear wave velocity-vertical effective stress relationships, (b) shear 

wave velocity-axial strain relationships. 

The shear modulus-axial strain relations followed the same trend of the shear wave 

velocity-effective stress relations during loading and unloading. The shear modulus within the 

shear modulus-axial strain curves was observed to increase with increasing axial strain during 

loading, then a sharp decrease was observed in the shear modulus during unloading.  The BEG  

values for K1.5LL specimens were from 1.7 to 2.1 higher than the BEG  values for the K3LL 

specimens. Likewise, the I1.5LL specimens were from 1.1 to 1.4 higher than the I3LL specimens. 

The observation that the specimens with lower sw  values were stiffer than those with higher sw  

values was in agreement with the results of the observed undrained shear strength that were 

obtained by Mahmood and Coffman (2018a).  

 As shown in Figure 6.5, the values of shear wave velocity and shear modulus were 

normalized as a function of Iv. The values of Iv that were used to normalize these curves were 

determined from the ICL of each specimen, as previously presented in Figure 6.3, at the 
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corresponding vertical effective stress. The same general shape of the Vs-Iv curves and 
BEG -Iv 

curves was observed for the two soils during the re-consolidation and swelling stages. However, 

unlike the historic ability of the void index normalization procedure to produce a unique 

relationship between Iv and compression or undrained shear strength, the void index normalization 

procedure was unable to produce a unique relationship between the sV and vI values. Likewise, 

the shear modulus data did not appear to normalize within the shear modulus-void index space. As 

previously described, there were other factors affecting shear wave velocity and small-strain 

stiffness beside the void ratio that was accounted for in the void index value in Equation 6.2. The 

difference in the initial water content of the specimens, as well as the difference in the fabric 

between the specimens, that were initially prepared at different levels of slurry water content, 

appeared to dominate the values of shear wave velocity. This difference in fabric was not 

completely captured in the void ratio values that were used to calculate the void index values.  

 
Figure 6.5. Normalized small-strain results: (a) shear wave velocity as a function of void 

index, (b) shear modulus as a function of void index. 
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 Fabric Anisotropy   

The values of the shear wave velocity during the reconsolidation stage were compared with 

the values of shear wave velocity that were obtained from a back-pressure saturated, constant rate-

of-strain, consolidation device, with bender elements (BP-CRS-BE) that were measured by Zhao 

and Coffman (2016). As shown in Figure 6.6, the values of horizontally propagated-vertically 

polarized shear wave velocity )( ,HVsV , as obtained by utilizing the BP-CRS-BE device, were 

compared with the values of vertically propagated-horizontally polarized shear wave velocity 

)( ,VHsV  that were measured in this study.   

The difference in the velocity between the vertically-propagated shear waves and the 

horizontally-propagated shear waves indicated that the reconstituted specimens from both soils 

had inherent fabric anisotropy. However, the amount of the inherent anisotropy was dissimilar. 

For the K1.5LL specimens, the amount of fabric anisotropy (
HVsV ,

/
VHsV ,

) ranged from 0.89 to 0.97 

at the corresponding levels of applied vertical effective stress. Likewise, for the I1.5LL specimens, 

the (
HVsV ,

/
VHsV ,

) ratio ranged from 0.63 to 0.74. The observation that the K1.5LL and I1.5LL 

specimens had higher values of vertically-propagated shear wave velocity than horizontally-

propagated shear wave velocity was in direct contrast with that of Yamashita et al. (2005), Choo 

et al. (2013), and Kang et al. (2014). The higher values of 
VHsV ,

 may be attributed to the dispersed 

fabric of the 1.5LL specimens that was created within the slurry consolidometer. Within the 

dispersed fabric, the contact areas between the faces of the particles along the vertical direction 

were much greater than the contact areas between the edges of the particles along the direction of 

prefered orientation. Therefore, the shear waves propagated faster in the vertical direction.  
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Figure 6.6. Comparison of the values of shear wave velocity values obtained from bender 

elements in the triaxial apparatus and BP-CRS-BE device, during Ko-reconsolidation, for: 

(a) kaolinite, and (b) illite. 

When comparing the values of 
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 to the values of 
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 for the K3LL specimens, the 

amount of fabric anisotropy (
HVsV ,
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) ranged from 1.13 to 1.21. Although previous studies (e.g., 

Jovicic and Coop 1998; Lings et al. 2000; Yimsiri and Soga 2000; Cho and Finno 2010) have 

indicated that one-dimensionally deposited soils will essentially experience cross anisotropy 

)( ,, VHsHVs VV  , perfect cross anisotropic fabric was not observed for the specimens that were 

reconstituted from a slurry, at high slurry water content values. The fabric anisotropy of natural 

clays that have been observed by Pennington et al. (1997) and Lee et al. (2008) have led to the 

indication that the values of  
HVsV ,

 were greater than the values 
VHsV ,

. Similar observations being 

obtained for the K3LL samples )( ,, VHsHVs VV  implies that reconstitution of soils at water content 

levels of at least 3LL may produce a soil fabric that is similar to the fabric of naturally sedimented 

soils.  
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 Conclusions 

Based on the results of triaxial compression tests, with shear wave velocity measurements, 

the ws was determined to be a significant parameter that influenced the compression behavior, 

shear wave velocity, shear modulus, and fabric anisotropy of the reconstituted soils. During Ko-

reconsolidation, the values of the shear wave velocity of the specimens, that were initially 

reconstituted with lower slurry water content, were from 7 to 41 percent higher than those that 

were reconstituted at higher slurry water content. The decrease in shear wave velocity, as a 

function of increasing ws, was believed to be caused by the higher initial void ratio and higher 

initial water content of the specimens. Furthermore, the specimens with lower ws values were from 

1.1 to 2.1 stiffer than those with higher ws values. Following the same procedures that were used 

by Mahmood and Coffman (2018a) to normalize the compression and undrained shear strength 

values, the values of shear wave velocity and shear modulus were normalized by utilizing the 

corresponding values of the void index. The normalized curves did not appear to normalize with 

respect to the Iv procedure.  

The amount of inherent fabric anisotropy for specimens prepared at ws of 1.5LL ranged 

from 0.89 to 0.97 for the kaolinite and from 0.63 to 0.74 for illite. However, the amount of inherent 

fabric anisotropy was between 1.13 and 1.21 for kaolinite specimens prepared at ws of 3LL. These 

observations indicated that the fabric anisotropy characteristics of the natural soils could not be 

reproduced by reconsidering kaolinite and illite soils prepared at sw  of 1.5 LL. As documented 

herein, the ws levels should be considered when reconstituting specimens of cohesive soils for 

small-strain measurements. Furthermore, the small-strain behavior of reconstituted kaolinite and 

illite soils cannot be simply quantified by reconstituting the soils at slurry water content values 

that range from 1 to 1.5 times the liquid limit of the soil, as suggested by Burland (1990). 
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Therefore, a water content of the slurry of at least 3LL is recommended to obtain small-strain 

characteristics of reconstituted soils that are more representative of the small-strain characteristics 

of natural soils.   
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 Conclusions and Recommendations 

 Chapter Overview 

A description of the conclusions drawn from the findings of the research project, and 

recommendations for further research on reconstituted soils are contained in this chapter. 

Specifically, the contributions from the research project, as discussed in this document, are 

presented in Section 7.2. The conclusions drawn from the results obtained from this testing 

program, as described previously in Chapters 4 through 6, are provided in Section 7.3. 

Recommendations for additional work are presented in Section 7.4.  

 Selected Contributions from this Research Project 

The purpose of this research project was to evaluate the compression, shear strength, and 

small-strain properties of reconstituted kaolinite and illite. The primary contributions of the 

research project are described briefly in this section. The stress path testing program consisted of 

utilizing advanced triaxial testing equipment to evaluate stress-strain and strength characteristics 

of reconstituted soils subject to different loading conditions. The need for advanced testing was 

associated with data from conventional triaxial testing being used for site characterization. The 

use of conventional triaxial data has often led to either unsafe or over-conservative designs. The 

primary contribution of this scope of the research was the development of an understanding of 

the testing techniques that are required to represent certain loading conditions in the field. 

Furthermore, the collected stress path testing data will be useful in the development or validation 

of advanced constitutive models. Using the new data, models that account for the various 

orientations of the principal stresses can be developed. 

Historically, reconstituted specimens have been conveniently utilized to evaluate shear 

strength and small-strain behavior of cohesive soils. However, few studies have investigated the 

relationship between the slurry water content and 1) the intrinsic shear strength and 2) the 
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intrinsic small-strain behavior of the created soil specimens. Through the work described herein, 

a new method to normalize the intrinsic undrained shear strength values, using the void index 

concept, was introduced for overconsolidated specimens. Recommended values of slurry water 

content that should be used to prepare slurries of cohesive soils for triaxial testing and bender 

element measurements were also developed. These recommended levels of water content will 

produce reconstituted specimens with shear strength and small-strain soil properties that are in 

better agreement with shear strength and small-strain properties for natural soil specimens.  

 Conclusions of Intrinsic Properties of Reconstituted Soils  

The conclusions drawn from the observations of the reconstituted soil properties are 

contained in this section.  Conclusions related to the effect of stress path on 1) the stress-strain 

behavior and 2) the shear strength characteristics of reconstituted low plasticity kaolinite soil are 

documented in Section 7.3.1. The conclusions drawn from the triaxial testing program that was 

performed to evaluate the intrinsic shear strength behavior of reconstituted illite and kaolinite 

soils, are discussed in Section 7.3.2. Conclusions related to the 1) small-strain stiffness, and 2) 

fabric anisotropy of reconstituted illite and kaolinite soils are described in Section 7.3.  

 Conclusions Regarding the Effects of Stress Path 

A triaxial testing program was performed on reconstituted low plasticity kaolinite soil to 

determine the effects of the magnitudes and orientations of the principal stresses on parameters 

including: shear strength, stress-strain behavior, and excess pore water pressure development. 

The stress-strain behavior, as obtained from the TC and RTC stress paths, was found to be 

almost identical as shown previously in Figure 4.8 on page 77. Likewise, the stress-strain 

behavior, as obtained from the TE and RTE stress paths, was found to be almost identical. As 

presented in Table 7.1, the effective friction angle ( ' ) values, as obtained from the extension 
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tests, were from 20 to 35 percent lower than the '  values that were obtained from the 

compression tests. Likewise, the measured undrained shear strength values (su), as obtained from 

the extension tests, were from 11 to 38 percent lower than the su values that were obtained from 

the compression tests.  

Table 7.1. Effective shear strength parameters for the different stress paths. 

 TC  RTC  TE  RTE 

OCR 

c  

[kPa] 

  

[degree]  

c  

[kPa] 

  

[degree]  

c  

[kPa] 

  

[degree]  

c  

[kPa] 

  

[degree] 

1 10.6 17.7  12.1 17.5  36.8 13.5  27.6 13.9 

2 7.2 18.1  7.1 18.8  22.7 14.2  14.9 14.4 

4 2.4 19.6  5.0 19.9  18.8 15.6  18.1 14.9 

8 0.8 20.7  1.4 20.4  15.5 17.0  18.1 15.6 
 

The axial strain values, at failure, that were obtained from the extension tests were 

determined to be 0.3 to 5.0 percent greater than the axial strain values, at failure, that were 

obtained from the compression tests. For normally consolidated specimens, the values of 

undrained secant Young’s modulus obtained from the compression tests were from two to two 

and one-half times greater than the values obtained from the extension tests. For 

overconsolidated specimens, there was no clear relationship between the undrained secant 

Young’s modulus and the axial strain. Additionally, for all of the stress paths, the excess pore 

water pressure changed rapidly, as a function of axial stress, until the peak principle stress level 

was reached. For practical purposes, a series of TC tests along with a series of RTE tests are 

adequate to characterize the strength properties for cohesive soils when only the magnitude of 

the principal stresses is changed without a change in the orientation of the principal stresses. 

Furthermore, shear strength parameters, as obtained from these stress path tests, should be 

utilized to develop or validate soil constitutive models.  
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 Conclusions Regarding Intrinsic Shear Strength  

The intrinsic shear strength properties of reconstituted soils were evaluated by 

performing a series of triaxial compression tests on reconstituted kaolinite and illite specimens 

that were each reconstituted at two different levels of slurry water content (1.5 or 3.0 times the 

LL). A new method was proposed to normalize the undrained shear strength values for the 

overconsolidated specimens based on the void index concept. It was observed that compression 

behavior and undrained shear strength behavior for the reconstituted specimens were highly 

dependent on the level of the slurry water content. The ICL for each soil type was identical to the 

ICL that was proposed by Burland (1990). For each soil type, the intrinsic swell lines for all of 

the specimens were similar when the specimens were unloaded from the same level of the 

maximum stress, regardless of the slurry water content value that was used.  

The undrained shear strength values of the specimens with ws= 1.5LL were from 5 to 16 

percent lower than the undrained shear strength values of the specimens with ws = 3LL. The 

effective cohesion tended to increase as a function of increasing amount of ws while the values of 

the effective friction angle values were independent of the ws values. By utilizing the proposed 

normalization method, the normalized undrained shear strength values for the overconsolidated 

specimens were in a better agreement with the ISuL. The kaolinite soil was more affected than 

the illite soil by an increase in the ws values. Based on the observed soil fabric and the undrained 

shear strength values, reconstituting a low plasticity kaolinite soil at ws =1.5 LL is not 

appropriate to evaluate the intrinsic shear strength behavior of this soil. Soil slurries should be 

prepared at water content values of at least three times the corresponding liquid limit of the soil 

to obtain undrained shear strength characteristics that are in better agreement with undrained 

shear strength characteristics for natural soils.  
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 Conclusions Regarding Small-Strain Measurements of Reconstituted Soils 

The effects of the slurry water content and the soil fabric on the small-strain properties of 

reconstituted kaolinite and illite soils were investigated by performing triaxial tests with bender 

element measurements. Values of shear wave velocity and shear modulus were normalized by 

utilizing the concept of void index. The major observations are summarized below. 

1) At the same level of overconsolidation ratio and vertical effective stress, the Vs values for 

the kaolinite and illite specimens with ws=1.5LL were from 7 to 41 percent greater than the 

Vs values for the specimens with ws=3LL. Accordingly, the shear modulus values for the 

kaolinite and illite specimens prepared at ws=1.5LL were from 1.1 to 2.1 times greater than 

the shear modulus values for the kaolinite and illite specimens prepared at ws=3LL. 

2) Unique intrinsic relationships for Vs-Iv or GBE-Iv were not observed for the normalized 

values because the small-strain properties were highly dependent on the soil fabric. 

3) Cross anisotropic characteristics of the fabric ( ),, VHsHVs VV   were not observed for the 

kaolinite specimens that were prepared at ws values of 3LL. When comparing the values 

of 
HVsV ,

, as obtained by utilizing the BP-CRS-BE device, to the values of 
VHsV ,

, the amount 

of fabric anisotropy (
HVsV ,

/
VHsV ,

) ranged from 1.13 to 1.21.  

4) The inherent fabric anisotropy ranged from 0.63 to 0.97 for the kaolinite and illite 

specimens with ws=1.5 LL, and ranged from 1.13 to 1.21 for the kaolinite specimens with 

ws=3LL.  

5) The ws level should be considered when reconstituting cohesive soil specimens for small-

strain measurements. Soil slurries should be prepared at water content values of at least 

three times the corresponding liquid limit of the soil to obtain small-strain characteristics 

that are in better agreement with small-strain characteristics for natural soils. 
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 Recommendations for Future Work 

Recommendations for further research, related to the intrinsic properties of the 

reconstituted soils, are summarized below.  

1. Preparation and testing of reconstituted soils with various values of slurry water content 

is recommended for further examination of the findings of this research. The 

recommended slurry water content levels are one, two, and four times the liquid limit of 

the soil. By utilizing these levels of slurry water content, compression and shear strength 

characteristics different than those obtained from this research project are expected.  

2. Preparation and testing of other soil types should be performed to examine the effect of 

mineralogy and plasticity index on the intrinsic soil properties that were investigated in 

this research project. The recommended soil types including, but not limited to, 

montmorillonite and high plasticity kaolinite.  

3. The obtained experimental data should be utilized to review and assess previous empirical 

equations to calculate the coefficient of lateral earth pressure at rest (Ko). Specifically, the 

effect of 1) slurry water content, 2) OCR, and 3) shear strength parameters should be 

investigated when evaluating the ability of these empirical equations to predict the Ko 

values of reconstituted soils. 

4. A comprehensive image analysis of the scanning electron microscope images should be 

performed to quantify the influence of the ws level on the fabric of the reconstituted soils. 

Examples of image analyses to quantify soil fabric are described in Frost and Wright 

(1993).     

5. Local strain measurements, such as LDVT, should be incorporated within the triaxial 

device to measure axial strain and radial strain at small-strain range (from 0.001 to 0.1 

percent) during the consolidation and shearing stages of the triaxial tests.   
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6. Two additional sets of bender elements should be incorporated within the triaxial device. 

The first set should include two horizontally oriented bender elements to measure 

horizontally-propagated, vertically polarized shear wave velocity.  The second set should 

include two vertically oriented bender elements to measure horizontally-propagated, 

horizontally polarized shear wave velocity.  The propose of these sets is to evaluate fabric 

anisotropy within the same soil specimen.  

7. The obtained experimental data may be utilized to developed new constitutive models to 

predict the behavior of reconstituted soils when subjected to different loading conditions. 

The developed models should account for the dependence of the compression and shear 

strength parameters on the soil structure and on the applied stress path.  

8. The parameters that were obtained from this research project may be utilized to 

investigate the validity of selected constitutive models. The selected constitutive models 

to be validated may include, but are not limited to, 1) Modified Cam Clay (MCC) that 

was developed by Roscoe and Burland (1968), 2) MIT-E3 (Whittle and Kavvadas 1994), 

and 3) S-CLAY1 (Wheeler et al. 2003). The MCC model has been widely used with 

numerical and analytical methods in geotechnical engineering (Lade 2005). The MIT-E3 

model and S-CLAY1 model were developed to account for soil anisotropy and soil 

structure (Whittle and Kavvadas 1994; Wheeler et al. 2003). 
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 Triaxial Testing Data 

A.1. Chapter Overview 

Continued in this appendix are 1) the initial values and the physical properties of the 

specimens and 2) the triaxial tests values, and 3) the bender elements measurements, as obtained 

from the laboratory testing program.  

A.2. Specimen Properties  

Contained in this section are 1) data collected during specimen preparation within the 

slurry consolidometer, and 2) initial physical properties of the specimens. The specimens were 

pre-consolidated by utilizing a slurry consolidometer. The time-consolidation curves for the 

prepared slurries were developed from the data collected during the pre-consolidation process. 

The time-consolidation curves for the kaolinite specimens that were used for the controlled stress 

path triaxial tests are presented in Figure A.1. The time-consolidation curves for the kaolinite and 

illite specimens that were used for the triaxial tests with bender element measurements are 

presented in Figure A.2.  

The initial properties of the specimens were measured after the specimens were removed 

from the slurry consolidometer following the pre-consolidation process. A summary of the initial 

properties of the specimen, that were used for the controlled stress path triaxial tests, is presented 

in Table A.1. The initial properties of the specimens that were used for the triaxial tests with 

bender element measurements are presented in Table A.2. 
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Figure A.1. Time-consolidation curves for the kaolinite specimens that were used for the 

stress path tests. 
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Table A.1. The initial properties of the specimen used for the stress path triaxial tests. 
    Consolidometer  Specimen 

Test OCR 

’v,max 

[kPa] No. 

Slurry 

Height, [cm] 

 
Length 

[cm] 

w 

[%] 
T  

[kN/m3] 

S 

[%] e 

  310 3 26.9  7.67 31.4 18.0 94.20 0.89 

TC 1 414 3 26.9  7.87 31.4 18.0 93.15 0.90 

  828 7 27.1  7.84 30.6 18.0 92.84 0.88 

  310 7 27.1  7.65 31.5 18.0 93.45 0.90 

TC 2 414 8 27.4  7.85 31.8 18.2 91.30 0.93 

  828 8 27.4  7.90 31.2 18.0 92.56 0.90 

  310 9 22.5  7.59 31.6 18.1 90.72 0.93 

TC 4 414 9 22.5  7.62 31.3 18.2 94.97 0.88 

  828 13 22.1  7.82 31.5 18.1 94.50 0.89 

  310 10 22.8  7.86 31.3 18.1 89.86 0.93 

TC 8 414 13 22.1  7.65 31.2 18.0 93.60 0.89 

  828 10 22.8  7.98 31.7 18.0 94.04 0.90 

  310 34 22.5  7.52 31.6 18.2 95.88 0.88 

RTC 1 414 39 22.1  7.92 31.3 17.9 91.84 0.91 

  828 39 22.1  7.59 30.5 18.0 92.54 0.88 

  310 34 22.5  7.65 31.5 17.9 92.42 0.91 

RTC 2 414 43 22.9  7.80 31.4 18.1 94.20 0.89 

  828 41 22.2  7.98 32.0 18.0 94.93 0.90 

  310 43 22.9  7.92 31.2 18.1 94.66 0.88 

RTC 4 414 44 22.8  7.34 32.2 18.0 94.48 0.91 

  828 45 22.1  7.75 31.7 18.1 95.10 0.89 

  310 45 22.1  7.87 31.7 17.9 93.01 0.91 

RTC 8 414 60 22.6  7.89 31.7 18.2 96.18 0.88 

  828 60 22.6  7.82 30.5 18.3 95.81 0.85 

  310 46 23.4  7.98 30.6 18.1 93.91 0.87 

TE 1 414 48 21.9  7.98 31.8 18.0 94.34 0.90 

  828 48 21.9  7.80 31.3 18.1 94.97 0.88 

  310 54 22.5  7.62 31.5 18.0 94.50 0.89 

TE 2 414 49 23.1  7.90 30.1 18.2 93.45 0.86 

  828 55 22.1  7.80 31.7 18.2 96.18 0.88 

  310 54 22.5  7.54 30.1 18.2 94.55 0.85 

TE 4 414 53 21.2  7.82 31.4 18.0 94.20 0.89 

  828 53 21.2  7.82 30.1 18.2 94.55 0.85 

  310 55 22.1  8.03 31.2 18.0 93.60 0.89 

TE 8 414 46 23.4  7.72 31.9 18.2 95.70 0.89 

  828 47 22.7  7.98 30.6 18.0 92.84 0.88 

  310 21 22.5  7.72 30.6 18.0 92.84 0.88 

RTE 1 414 23 22.5  7.98 31.1 18.1 94.36 0.88 

  828 18 22.8  7.62 31.3 18.0 93.90 0.89 

  310 18 22.8  7.85 30.7 18.1 94.22 0.87 

RTE 2 414 23 22.5  7.73 31.4 18.2 95.27 0.88 

  828 19 22.2  7.80 30.4 17.8 90.19 0.90 

  310 21 22.5  7.65 30.9 18.1 93.75 0.88 

RTE 4 414 24 20.8  7.80 31.5 17.8 91.42 0.92 

  828 22 22.7  7.44 31.5 17.9 92.42 0.91 

  310 24 20.8  7.76 31.5 18.0 93.45 0.90 

RTE 8 414 25 22.4  7.67 31.3 18.0 88.91 0.94 

  828 25 22.4  7.98 31.3 17.9 92.86 0.90 

eSw T ,,,  are water content, total unit weight, degree of saturation, and void ratio of the specimens respectively. 
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Figure A.2. Time-consolidation curves for the a) kaolinite and b) illite specimens that were 

utilized for the triaxial tests with bender element measurements. 

 

Table A.2. The initial properties of the specimen used for the triaxial tests with bender 

elements. 
    Consolidometer  Specimen 

Test OCR 

’v,max 

[kPa] No. 

Slurry 

Height, [cm] 

 
Length 

[cm] 

w 

[%] 
T  

[kN/m3] 

S 

[%] e 

  310 3 26.9  7.67 31.4 18.0 94.20 0.89 

K1.5LL-NC 1 414 3 26.9  7.87 31.4 18.0 93.15 0.90 

  828 7 27.1  7.84 30.6 18.0 92.84 0.88 

  310 59 32.1  7.98 38.7 17.4 96.6 1.07 

K3LL-NC 1 414 63 33.4  8.01 38.3 17.4 96.5 1.06 

  828 59 32.1  7.72 37.7 18.0 100.0 1.00 

  310 10 22.8  7.86 31.3 18.1 89.86 0.93 

K1.5LL-OC 8 414 13 22.1  7.65 31.2 18.0 93.60 0.89 

  828 10 22.8  7.98 31.7 18.0 94.04 0.90 

  310 63 33.4  7.62 37.5 17.6 99.1 1.01 

K3LL-OC 8 414 67 31.7  7.80 37.4 17.9 99.9 1.00 

  828 67 31.7  7.90 37.4 18.1 100.0 0.99 

  310 I1 34.5  7.80 37.7 17.9 100.0 1.00 

I1.5LL-NC 1 414 I1 34.5  7.59 35.2 17.6 95.6 0.99 

  828 I2 33.4  7.66 37.8 17.4 98.7 1.03 

  310 I5 41.5  7.87 42.6 17.0 97.9 1.17 

I3LL-NC 1 414 I5 41.5  7.62 42.1 17.0 97.6 1.16 

  828 I7 38.4  7.84 42.6 17.0 97.1 1.18 

  310 I2 33.4  7.55 38.9 16.9 94.3 1.11 

I1.5LL-OC 8 414 I3 34.3  7.61 36.6 17.5 96.5 1.02 

  828 I4 32.6  7.92 35.9 17.7 97.5 0.99 

  310 I7 38.4  8.10 40.1 17.0 95.5 1.13 

I3LL-OC 8 414 I8 43.2  7.62 39.8 17.1 95.6 1.12 

  828 I9 42.8  7.72 42.6 17.0 97.1 1.18 

eSw T ,,,  are water content, total unit weight, degree of saturation, and void ratio of the specimens respectively. 
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A.3. Triaxial Tests Data  

Included in this section are the results obtained from the triaxial tests that were performed 

on the kaolinite and illite specimens. The triaxial tests data, for the specimens that were used for 

the controlled stress path triaxial tests are summarized in Table A.3 and Table A.4. The results of 

the triaxial tests with bender element measurements that were conducted on kaolinite and illite 

specimens are summarized in Tables A.5 and Table A.6. The triaxial test data are also presented 

as 1) deviatoric stress as a function of axial strain, 2) excess pore water pressure as a function of 

axial strain, 3) Mohr circle, and 4) Cambridge p-q stress path, as recommended by ASTM D4767 

(2011).  
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Table A.3. Summary of triaxial test values as obtained from the stress path testing program. 
   Triaxial Tests Values at Failure 

 

Specimen Values (after shearing) 

Test OCR 

’v,max 

[kPa] Ko 

’v,f 

[kPa] 

’c,f 

[kPa] 

’d,f 

[kPa] 

 ,f 

[%] 

ue,f 

[kPa] 

 

w 

[%] 
T  

[kN/m3] 

S 

[%] e 

  310 0.715 354.50 169.10 185.40 7.28 44.90 
 

29.8 18.6 98.2 0.81 

TC 1 414 0.714 479.85 243.15 236.70 8.27 49.21 
 

27.8 18.5 92.8 0.80 

  828 0.681 871.25 447.02 424.23 7.03 110.82 
 

27.1 19.1 100.0 0.72 

  310 0.785 235.76 114.71 121.06 8.52 -9.32 
 

29.5 18.5 96.1 0.82 

TC 2 414 0.761 322.90 155.22 167.68 6.02 -2.60 
 

29.3 18.4 94.3 0.83 

  828 0.785 638.19 324.58 313.61 5.73 -2.36 
 

28.1 19.1 100 0.74 

  310 0.777 181.10 84.95 96.14 8.88 -32.74 
 

30.1 17.1 82.0 0.98 

TC 4 414 0.872 242.61 118.49 124.12 9.00 -37.79 
 

29.9 18.6 97.4 0.82 

  828 0.773 382.91 183.91 199.00 5.52 -27.19 
 

29.1 19.1 100 0.75 

  310 0.912 116.74 53.31 63.42 8.77 -23.25 
 

31.0 17.8 91.0 0.91 

TC 8 414 0.856 149.96 71.69 78.27 8.03 -29.57 
 

29.9 18.2 93.9 0.85 

  828 0.914 287.25 135.58 151.67 8.28 -42.10 
 

28.7 18.8 98.2 0.78 

  310 0.700 358.14 180.82 177.32 9.92 -120.26 
 

28.8 18.8 98.6 0.78 

RTC 1 414 0.729 487.72 238.45 249.27 10.22 457.76 
 

27.8 18.6 95.2 0.78 

  828 0.698 868.45 453.37 415.08 8.76 -300.70 
 

27.3 19.3 100 0.71 

  310 0.889 248.13 119.13 129.00 9.35 -134.89 
 

30.3 18.7 100 0.80 

RTC 2 414 0.892 349.43 176.03 173.40 7.36 -162.78 
 

28.6 18.7 96.7 0.79 

  828 0.844 668.73 337.42 331.31 8.33 -274.65 
 

30.0 19.4 100.0 0.74 

  310 1.043 200.17 93.43 106.73 8.34 -142.94 
 

29.8 18.4 95.9 0.83 

RTC 4 414 0.874 257.19 121.03 136.16 8.59 -167.28 
 

29.5 18.5 96.1 0.82 

  828 0.876 409.60 194.22 215.38 8.20 -256.84 
 

28.0 18.8 98.4 0.76 

  310 1.060 126.81 55.51 71.30 9.90 -117.81 
 

30.3 18.3 95.2 0.85 

RTC 8 414 1.000 163.12 75.62 87.50 9.30 -148.08 
 

30.1 18.7 99.2 0.81 

  828 0.952 296.38 138.38 158.00 9.60 -290.58 
 

29.5 19.0 99.9 0.77 

  310 0.683 92.37 280.46 -188.08 -11.09 95.70 
 

29.4 18.9 99.87 0.78 

TE 1 414 0.662 138.65 379.84 -241.19 -11.59 133.43 
 

29.1 18.9 100.0 0.77 

  828 0.667 298.40 649.51 -351.11 -9.76 261.17 
 

28.8 19.4 99.87 0.72 

  310 0.831 65.28 198.17 -132.89 -10.66 77.05 
 

29.9 19.3 106.4 0.75 

TE 2 414 0.980 102.02 261.32 -159.30 -10.12 85.32 
 

30.1 19.0 103.0 0.78 

  828 0.902 215.20 476.57 -261.37 -10.40 168.84 
 

30.2 19.3 107.5 0.75 

  310 1.024 37.05 120.05 -83.00 -9.22 31.33 
 

29.7 18.7 99.1 0.80 

TE 4 414 0.963 48.33 172.38 -124.05 -10.18 59.83 
 

30.8 18.9 99.8 0.80 

  828 0.975 143.20 344.37 -201.17 -10.60 94.17 
 

29.8 19.3 98.4 0.75 

  310 0.906 13.04 93.86 -80.82 -9.18 22.85 
 

30.2 18.4 97.1 0.83 

TE 8 414 0.985 28.24 120.12 -91.88 -9.41 35.31 
 

29.8 18.4 95.9 0.83 

  828 1.107 67.77 208.01 -140.24 -11.18 59.06 
 

29.5 19.2 98.7 0.75 

  310 0.675 94.57 257.78 -163.21 -9.77 -65.73 
 

29.5 19.2 105.0 0.75 

RTE 1 414 0.686 141.33 358.49 -217.16 -10.02 -93.85 
 

28.1 18.8 97.4 0.77 

  828 0.676 313.92 657.24 -343.33 -10.78 -176.23 
 

26.8 19.1 99.4 0.72 

  310 0.630 70.74 187.99 -117.26 -13.04 -81.11 
 

29.1 18.7 98.4 0.79 

RTE 2 414 0.877 108.11 246.09 -137.98 -11.26 -114.54 
 

28.8 18.7 97.3 0.79 

  828 0.844 225.73 470.84 -245.11 -10.52 -195.15 
 

27.2 19.0 98.1 0.74 

  310 0.725 35.64 127.37 -91.73 -10.77 -131.34 
 

29.9 18.5 96.2 0.83 

RTE 4 414 0.879 51.63 171.91 -120.28 -11.27 -160.82 
 

30.0 18.7 100.0 0.80 

  828 0.919 147.36 344.90 -197.54 -12.27 -340.73 
 

28.3 18.5 94.5 0.80 

  310 0.977 17.43 100.78 -83.35 -10.28 -70.98 
 

30.0 18.2 94.2 0.85 

RTE 8 414 1.040 28.24 119.25 -91.01 -10.02 -102.05 
 

29.6 17.2 97.6 0.81 

  828 0.980 71.91 208.07 -136.17 -11.77 -201.10 
 

28.7 18.6 95.8 0.80 
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Table A.4. The effective shear strength parameters as obtained from the controlled stress 

path triaxial tests. 

 TC  RTC  TE  RTE 

OCR 

c  

[kPa] 

  

[degree]  

c  

[kPa] 

  

[degree]  

c  

[kPa] 

  

[degree]  

c  

[kPa] 

  

[degree] 

1 10.6 17.7  12.1 17.5  36.8 13.5  27.6 13.9 

2 7.2 18.1  7.1 18.8  22.7 14.2  14.9 14.4 

4 2.4 19.6  5.0 19.9  18.8 15.6  18.1 14.9 

8 0.8 20.7  1.4 20.4  15.5 17.0  18.1 15.6 

 

Table A.5. Summary of the triaxial test values as obtained from the triaxial tests with bender 

element measurements. 
  Triaxial Tests Values at Failure 

 

Specimen Values (after shearing) 

Test OCR 

’v,max 

[kPa] 

’v,f 

[kPa] 

’c,f 

[kPa] 

’d,f 

[kPa] 

 ,f 

[%] 

ue,f 

[kPa] 

 

w 

[%] 
T  

[kN/m3] 

S 

[%] e 

  310 354.50 169.10 185.40 7.28 44.90 
 

29.8 18.6 98.2 0.81 

K1.5LL-NC 1 414 479.85 243.15 236.70 8.27 49.21 
 

27.8 18.5 92.8 0.80 

  828 871.25 447.02 424.23 7.03 110.82 
 

27.1 19.1 100.0 0.72 

  310 169.63 41.19 128.44 4.73 2.66 
 

28.1 16.9 77.9 0.96 

K3LL-NC 1 414 258.87 77.67 181.20 2.23 -8.51 
 

29.5 18.2 89.3 0.88 

  828 384.70 120.93 263.78 3.93 -26.98 
 

27.4 17.9 86.8 0.84 

  310 116.74 53.31 63.42 8.77 -23.25 
 

31.0 17.8 91.0 0.91 

K1.5LL-OC 8 414 149.96 71.69 78.27 8.03 -29.57 
 

29.9 18.2 93.9 0.85 

  828 287.25 135.58 151.67 8.28 -42.10 
 

28.7 18.8 98.2 0.78 

  310 154.73 31.83 122.90 3.18 4.98 
 

35.5 18.0 99.8 0.95 

K3LL-OC 8 414 254.81 83.75 171.06 4.83 -18.46 
 

34.8 18.5 99.8 0.93 

  828 389.50 123.27 266.23 4.93 -29.99 
 

28.9 17.5 85.1 0.91 

  310 265.99 108.91 157.08 1.32 67.63 
 

31.0 18.5 99.1 0.84 

I1.5LL-NC 1 414 450.66 192.89 257.77 0.15 23.16 
 

29.0 19.9 99.5 0.78 

  828 841.87 371.07 470.80 0.68 103.41 
 

25.1 20.5 99.4 0.68 

  310 169.63 41.19 128.44 4.73 2.66 
 

28.7 18.2 98.7 0.78 

I3LL-NC 1 414 258.87 77.67 181.20 2.23 -8.51 
 

29.3 18.5 97.1 0.81 

  828 384.70 120.93 263.78 3.93 -26.98 
 

25.0 18.9 93.7 0.72 

  310 226.40 86.60 139.80 1.71 100.51 
 

31.3 18.5 100.0 0.84 

I1.5LL-OC 8 414 383.00 146.00 237.00 0.95 74.95 
 

29.5 19.1 99.7 0.80 

  828 762.73 316.14 446.59 2.13 274.66 
 

26.1 19.4 98.0 0.72 

  310 154.73 31.83 122.90 3.18 4.98 
 

31.9 18.1 97.4 0.88 

I3LL-OC 8 414 254.81 83.75 171.06 4.83 -18.46 
 

30.3 18.7 99.3 0.82 

  828 389.50 123.27 266.23 4.93 -29.99 
 

25.0 18.9 93.7 0.72 
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Table A.6. Shear strength parameters for kaolinite and illite soils as obtained from the 

triaxial tests with bender element measurements. 

Test OCR 

’v,max 

[kPa] 

c  

[kPa] 

  

[degree] 
*

suR  

*

us  

[kPa] 

  310   0.299 92.7 

K1.5LL-NC 1 414 10.62 17.69 0.286 118.3 

  828   0.256 212.1 

  310   0.277 85.8 

K3LL-NC 1 414 18.31 17.55 0.238 98.6 

  828   0.241 199.7 

  310   0.871 31.7 

K1.5LL-OC 8 414 0.85 20.70 0.782 39.1 

  828   0.756 75.8 

  310   0.782 30.4 

K3LL-OC 8 414 4.26 18.47 0.671 37.3 

  828   0.763 73.7 

  310   0.253 78.5 

I1.5LL-NC 1 414 7.79 21.98 0.312 128.9 

  828   0.285 235.4 

  310   0.225 69.9 

I3LL-NC 1 414 9.40 23.38 0.286 118.5 

  828   0.270 223.3 

  310   1.663 64.2 

I1.5LL-OC 8 414 13.07 27.43 1.752 90.6 

  828   1.570 131.9 

  310   1.592 61.5 

I3LL-OC 8 414 13.34 26.09 1.654 85.5 

  828   1.580 133.1 
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Figure A.3. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=1 and ’v,max=310 kPa.  
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Figure A.4. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=1 and ’v,max=414 kPa.  
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Figure A.5. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=1 and ’v,max=828 kPa.  
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Figure A.6. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=2 and ’v,max=310 kPa.  
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Figure A.7. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=2 and ’v,max=414 kPa.  
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Figure A.8. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=2 and ’v,max=828 kPa.  
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Figure A.9. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=4 and ’v,max=310 kPa.  
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Figure A.10. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=4 and ’v,max=414 kPa.  
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Figure A.11. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=4 and ’v,max=828 kPa.  
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Figure A.12. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=8 and ’v,max=310 kPa.  
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Figure A.13. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=8 and ’v,max=414 kPa.  
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Figure A.14. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TC 

test at OCR=8 and ’v,max=828 kPa.  
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Figure A.15. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=1 and ’v,max=310 kPa.  
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Figure A.16. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=1 and ’v,max=414 kPa.  
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Figure A.17. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=1 and ’v,max=828 kPa.  
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Figure A.18. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=2 and ’v,max=310 kPa.  
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Figure A.19. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=2 and ’v,max=414 kPa.  
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Figure A.20. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=2 and ’v,max=828 kPa.  
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Figure A.21. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=4 and ’v,max=310 kPa.  
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Figure A.22. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=4 and ’v,max=414 kPa.  
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Figure A.23. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=4 and ’v,max=828 kPa.  
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Figure A.24. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=8 and ’v,max=310 kPa.  
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Figure A.25. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=8 and ’v,max=414 kPa.  
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Figure A.26. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTC 

test at OCR=8 and ’v,max=828 kPa.  
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Figure A.27. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=1 and ’v,max =310 kPa.  
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Figure A.28. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=1 and ’v,max =414 kPa.  
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Figure A.29. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=1 and ’v,max=828 kPa.  
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Figure A.30. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=2 and ’v,max=310 kPa.  
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Figure A.31. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=2 and ’v,max=414 kPa.  
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Figure A.32. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=2 and ’v,max=828 kPa.  
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Figure A.33. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=4 and ’v,max=310 kPa.  
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Figure A.34. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=4 and ’v,max=414 kPa.  
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Figure A.35. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=4 and ’v,max=828 kPa.  
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Figure A.36. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=8 and ’v,max=310 kPa.  
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Figure A.37. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=8 and ’v,max=414 kPa.  
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Figure A.38. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the TE 

test at OCR=8 and ’v,max=828 kPa.  
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Figure A.39. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=1 and ’v,max =310 kPa.  
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Figure A.40. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=1 and ’v,max =414 kPa.  

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

S
h
e
a
r 

S
tr

e
ss

, 
t
, [

k
P

a
]

Normal Stress,  ', [kPa]

'1'3

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-16 -14 -12 -10 -8 -6 -4 -2 0

E
x
ce

ss
 P

o
re

 W
a
te

r 
P

re
ss

u
re

, 
u

e
 , 

[k
P

a
]

Axial Strain,  A, [%]

-400

-300

-200

-100

0

100

200

300

0 100 200 300 400 500 600 700

D
e
v
ia

to
ri

c 
S

tr
e
ss

, q
, 

[k
P

a
]

Mean Effective Stress, p', [kPa]

-400

-300

-200

-100

0

100

200

-16 -14 -12 -10 -8 -6 -4 -2 0

D
e
v
ia

to
ri

c 
S

tr
e
ss

, 
d

 , 
[k

P
a
]

Axial Strain,  A,  [%]

σ’         = 414 kPa

PPSD-RTE

v,max

OCR=1

(a)                                                                       (b)

(c)                                                                       (d)



207 

 
Figure A.41. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=1 and ’v,max=828 kPa.  
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Figure A.42. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=2 and ’v,max=310 kPa.  
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Figure A.43. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=2 and ’v,max=414 kPa.  
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Figure A.44. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=2 and ’v,max=828 kPa.  
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Figure A.45. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=4 and ’v,max=310 kPa.  
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Figure A.46. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=4 and ’v,max=414 kPa.  
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Figure A.47. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=4 and ’v,max=828 kPa.  
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Figure A.48. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=8 and ’v,max=310 kPa.  

0

50

100

150

200

0 50 100 150 200

S
h

e
a
r 

S
tr

e
ss

, t
, [

k
P

a
]

Normal Stress, ', [kPa]

'1'3 -150

-125

-100

-75

-50

-25

0

25

50

0 50 100 150 200

D
e
v
ia

to
ri

c 
S

tr
e
ss

, q
, 

[k
P

a
]

Mean Effective Stress, p', [kPa]

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

-16 -14 -12 -10 -8 -6 -4 -2 0

E
x

ce
ss

 P
o

re
 W

a
te

r 
P

re
ss

u
re

, 
u

e
 , 

[k
P

a
]

Axial Strain,  A,  [%]

-150

-130

-110

-90

-70

-50

-30

-10

10

30

50

-16 -14 -12 -10 -8 -6 -4 -2 0

D
e
v

ia
to

ri
c 

S
tr

e
ss

, 


d
 , 

[k
P

a
]

Axial Strain,  A,  [%]

σ’         = 310 kPa

PPSD-RTE

OCR=8
v,max

(a)                                                                       (b)

(d)                                                                       (c)



215 

 
Figure A.49. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=8 and ’v,max=414 kPa.  
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Figure A.50. a) Deviatoric stress as a function of axial strain, b) excess pore water pressure 

as a function of axial strain, c) Mohr circle, and d) Cambridge p-q stress path for the RTE 

test at OCR=8 and ’v,max=828 kPa.  
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A.4. Shear Wave Velocity and Shear Modulus Results  

Included in this section are the results obtained from the triaxial tests, with bender 

element measurements, that were performed on kaolinite and illite soil specimens. These results 

include: 1) measured shear wave velocity as a function of axial stress, 2) shear modulus as a 

function of axial strain, 3) measured shear wave velocity as a function of void index, 4) shear 

modulus as a function of void index, and 5) shear modulus as a function of excess pore water 

pressure.  
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Figure A.51. The small-strain values for reconstituted illite (I1.5LL): a) shear wave 

velocity-vertical effective stress relationship, b) shear modulus-axial strain relationship, c) 

shear wave velocity as a function of void index, and d) shear modulus as a function of void 

index.  
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Figure A.52. The small-strain values for reconstituted kaolinite (K1.5LL): a) shear wave 

velocity-vertical effective stress relationship, b) shear modulus-axial strain relationship, c) 

shear wave velocity as a function of void index, and d) shear modulus as a function of void 

index.  
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Figure A.53. The small-strain values for reconstituted illite (I3LL): a) shear wave velocity-

vertical effective stress relationship, b) shear modulus-axial strain relationship, c) shear 

wave velocity as a function of void index, and d) shear modulus as a function of void index.  

 

 

 

60

80

100

120

140

160

180

10 100 1000

S
h

e
a

r 
W

a
v

e
 V

e
lo

ci
ty

, 
V

s
, [

m
/s

] 

Vertical Effective Stress,  'v, [kPa]

Illite, I3LL

0

10

20

30

40

50

60

0.1 1 10 100

S
h

e
a

r 
M

o
d

u
lu

s,
 G

B
E
, 

[M
P

a
] 

Axial Strain,  a, [%]

U
nl

o
ad

in
g

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

10 100 1000

V
o

id
 I

n
d

e
x

, 
I v

Shear Wave Velocity, Vs, [m/s] 

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

10 100

V
o

id
 I

n
d

e
x

, 
I v

Shear Modulus, GBE , [MPa] 

(a)                                                                       (b)

(c)                                                                       (d)



221 

 

Figure A.54. The small-strain values for reconstituted kaolinite (K3LL): a) shear wave 

velocity-vertical effective stress relationship, b) shear modulus-axial strain relationship, c) 

shear wave velocity as a function of void index, and d) shear modulus as a function of void 

index.  
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Figure A.55. Shear modulus-excess pore water pressure relationships, during shearing 

stage, for the kaolinite specimens.  

 

Figure A.56. Shear modulus-excess pore water pressure relationships, during shearing 

stage, for the illite specimens.  
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