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ABSTRACT 

As reuse of municipal water resource recovery facility (WRRF) effluent becomes vital to 

augment diminishing fresh drinking water resources, concern exists that conventional barriers 

may prove deficient and the upcycling of contaminants of emerging concern (CECs) could prove 

harmful to human health and aquatic species if more effective and robust treatment barriers are 

not in place. 

There are no federal Safe Drinking Water Act (SDWA) regulations in place specifically 

for direct potable reuse (DPR) of WRRF effluent. Out of necessity, some states are developing 

their own DPR reuse regulations. Currently, reverse osmosis (RO) is the default full advanced 

treatment (FAT) barrier for CEC control. However, the potential exists for tight thin-film 

composite (TFC) nanofiltration (NF) membranes to provide acceptable CEC rejection efficacies 

for less capital, operations and maintenance (O&M), energy, and waste generated. 

Recognizing the inherent complexity of CEC rejection by membranes, this research 

program was designed to elucidate the vital predictive variables influencing the rejection of 96 

CECs found in municipal WRRF effluents. Each of the CECs was cataloged by their intended 

use and quantitative structure activity relationship (QSAR) properties, and measured in 

secondary effluent samples from WRRFs in Texas and Oklahoma. These secondary effluent 

samples were then processed in bench-scale, stirred, dead-end pressure cells with water treatment 

industry-specified TFC NF and RO membranes.  

A multi-level, multi-variable model was developed to predict the probable rejection 

coefficients of CECs with the studied NF membrane. The model was developed from variables 

selected for their association with known membrane rejection mechanisms, CEC-specific QSAR 

properties, and characteristics of the actual solute matrix. R statistics software version 3.1.3 was 



 

utilized for property collinearity analysis, outlier analysis, and regression modeling. The Pearson 

correlation method was utilized for selection of the most vital predictor variables for modeling. 

The resulting Quantitative Molecular Properties Model (QMPM) predicted the NF rejection 

CECs based on size, ionic charge, and hydrophobicity. Furthermore, the QMPM was verified 

against a CEC rejection dataset published by an independent study for a similar commercially 

available TFC NF membrane. 
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CHAPTER 1 - INTRODUCTION  

Record drought, shrinking water supply alternatives, and growing water demand from 

population centers across the arid West and Coastal Southeast United States (US) have combined 

to thrust municipal wastewater potable reuse to the forefront as a vital solution to augment public 

water supplies (Tisdale 2015). Tisdale (2015) reported capital expenditures for potable reuse 

infrastructure in the US will exceed $11 billion over the next decade. Augmentation of fresh 

water supplies with reuse water is a significant component of recent state water plan updates for 

California, Texas, and Oklahoma (CSWRCB 2014; TWDB 2015; ODEQ 2015). 

Tchobanoglous et al. (2015) reported 30% of all wastewater collected in California could 

be used for either direct potable reuse (DPR) or indirect potable reuse (IPR) projects by 2020. 

The State of California recently updated its Department of Health Title 22 code with the 

following statement:  

DPR is defined as the planned introduction of reuse water either directly into a 
public water system or into a raw water supply immediately upstream of a water 
treatment plant (WTP). If DPR can be demonstrated to be safe and feasible, the 
State Board’s goal of reusing 2 million ac-ft/yr (or 1.8 BGD) by 2025 will be 
achieved. (CDPH 2011) 
 
As reuse of municipal wastewater becomes vital to augment diminishing fresh drinking 

water resources, the presence of contaminants of emerging concern (CECs) have become a major 

concern (EPA 2014). CECs are water soluble contaminants suspected to exist in the water cycle 

that can have an adverse effect on human health (EPA 2014). CECs in water resource recovery 

facility (WRRF) effluent include pharmaceuticals and personal care products such as hormones, 

antibiotics, stimulants, surfactants, preservatives, artificial sweeteners, and caffeine (Spellman 

2014). Agricultural pesticide and herbicide CECs, designed to disrupt metabolic processes, have 

also been found in WRRF effluents.  
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With implementation of DPR, public water supply (PWS) managers and regulators are 

faced with new water treatment challenges (NRC 2012). The public is concerned that 

conventional barriers may prove deficient, and the upcycling of CECs could prove harmful to 

human health if more effective and robust treatment barriers are not in place (ODEQ 2015). 

WRRFs were not historically designed for the target removal of CECs (WEF 2012; Lemanik et 

al. 2007). Although WRRF unit processes can contribute to removal of CECs, validating 

effective removal has proven a challenge due to the extremely low concentrations (nanograms 

per liter, ηg/L) and relatively high cost of analysis (Snyder et al. 2003). Degradation and sorption 

in the bioreactors, precipitation through clarification, steric exclusion through tertiary filtration, 

and disinfection/oxidation likely decrease the amount of CECs present, though there remains 

considerable uncertainty regarding the recalcitrant trace residual in WRRF effluent (Watts et al. 

2016; Snyder et al. 2005).  

A new, robust multi-barrier treatment approach must be taken to successfully implement 

DPR for augmentation of PWS (Tchobanoglous et al. 2015; McDonald et al. 2015; Gerrity et al. 

2013a). Bench-scale studies indicate that RO and NF membrane-based process technologies 

show potential as an effective barrier for rejection of CECs from lab-synthesized samples 

(Bellona et al. 2004; Drewes et al. 2006; Kimura et al. 2003; Linden et al. 2012; Ngheim et al. 

2004; Dang et al. 2015; Schafer et al. 2003; Snyder et al. 2004; Tchobanoglous et al. 2015; 

Westerhoff et al. 2005; Yangali-Quintanilla et al. 2011; Yoon et al. 2007). However, more 

industry-relevant study is needed to validate RO and NF rejection of recalcitrant CECs from 

WRRF secondary effluents (Mohammad et al. 2015; Salveson et al. 2016; Watts et al. 2016).  

IPR with environmental buffer has been practiced for decades in the US, Europe, 

Australia, and Singapore. As of 2015, there were only three reported full-scale DPR PWS 
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systems in operation (Tisdale 2015; Gerrity et al. 2013b). Since 1968, the Windhoek, Namibia, 

DPR system has utilized a multi-barrier treatment approach that does not include RO membranes 

(Rodriguez et al. 2009). In 2014, Wichita Falls, Texas, implemented a seasonal-use full-scale 

DPR system that includes RO membranes for control of dissolved solutes (Jones and Sober 

2014; Nix and Schreiber 2015). Commissioned in 2013, the Big Spring, Texas, DPR facility 

provides up to 2.5 million gallons per day (MGD) of highly treated year-round reuse supply to 

the WTP (Sloan 2013). A process flow diagram of this new DPR facility is presented in Figure 

1-1. The DPR treatment process train includes WRRF tertiary treatment, microfiltration (MF) 

membranes, reverse osmosis (RO) membranes, and an advanced oxidation process (AOP) prior 

to blending with the conventional WTP raw surface water (SW) supply.  

 

 

Figure 1-1: Big Spring, Texas, Direct Potable Reuse Facility (commissioned in 2013) 

 

With the lack of experience for CEC control in PWS, the default approach to 

implementing the best available technology (BAT) can be overly conservative and costly (ODEQ 
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2015). RO in the two existing US DPR treatment facilities has trended as the default BAT for 

CEC control (Sloan 2013; Nix and Schreiber 2015). RO represents a major capital and 

operations and maintenance (O&M) cost not typical of conventional water treatment 

technologies (Watts et al. 2016; ODEQ 2015; Jones et al. 2014). Further, an RO system produces 

a brine reject waste that can result in additional treatment and disposal challenges (Watts et al. 

2016; ODEQ 2015; Jones et al. 2014; Wickramasinghe and Jones 2013). The default RO 

approach to CEC control may be questioned if we consider commercially available thin film 

composite (TFC) NF membranes (Watts et al. 2016; Jones and Sober 2014). Potentially, these 

TFC NF membranes can provide similar CEC rejection efficacies as RO for less capital, O&M, 

power, and waste generated (Watts et al. 2016; Jones and Sober 2014; Jones et al. 2014). 

Currently, no federal or state regulations exist specifically for DPR (Tchobanoglous et al. 

2015). Although the US Environmental Protection Agency (EPA) recently published the first 

edition of “Guidelines for Water Reuse,” no federal Safe Drinking Water Act (SDWA) 

regulations are in place for DPR drinking water systems (US EPA 2012). Out of necessity, some 

states are developing their own DPR regulations (TWDB 2015; ODEQ 2015; CSWRCB 2014a). 

State regulators and PWS managers have turned to water industry advisory boards and 

committees to provide the knowledge and tools to identify the BAT and where to apply them in 

the water use cycle (Tchobanoglous et al. 2015; TWDB 2015; ODEQ 2015; CSWRCB 2014a). 

This research is needed to validate the NF and RO rejection of recalcitrant CECs 

occurring in typical WRRF secondary effluents. Furthermore, a primary objective is to conceive 

and develop a sound practical decision science tool (i.e., model), derived from the quantitative 

structure-activity relationship (QSAR) properties of CECs and membrane rejection mechanisms, 
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for regulators and PWS managers to utilize when selecting the BAT to implement for DPR 

applications.  
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CHAPTER 2 - LITERATURE REVIEW 

2.1  Potable Reuse  

PWS in the US have historically originated from fresh (i.e., low dissolved solids) 

groundwater and surface water, but population growth, arid climate, and extended drought are 

stressing these supplies in some regions (Tchobanoglous et al. 2015). The US Southwest has 

experienced spells of prolonged, severe drought throughout its history (Cayan et al. 2010). 

Recent climate studies indicate significant risk for a 35-year or longer mega drought by 2100 in 

this region (Cook et al. 2015).  

New strategies are needed to help meet water demands and develop more sustainable 

water supplies. One such strategy is planned potable reuse, in which treated municipal 

wastewater is utilized to augment PWS (CSWRCB 2014; TWDB 2015; ODEQ 2015; McDonald 

et al. 2015). At present, planned potable reuse in the US involves either IPR where treated 

wastewater is introduced into an environmental buffer (e.g., groundwater aquifer, surface water 

reservoir, lake, or river) before blended water is introduced into a PWS, or DPR where highly 

treated wastewater is introduced without environmental buffer into a PWS (Tchobanoglous et al. 

2015). In recent years, WRRF reuse in Texas (e.g., Big Spring and Wichita Falls) has expanded 

from non-potable reuse and IPR to DPR applications (Sloan 2013; Nix and Schreiber 2015). 

2.1.1 Applications 

Planned IPR with an environmental buffer between wastewater reclamation and drinking 

water treatment is not a new approach to PWS (McDonald et al. 2015). Planned full-scale IPR 

has been implemented successfully in the US, Europe, Australia, and Singapore (Rodriguez et al. 

2009). Rodriguez (2009) reported that in the US, California has the most planned IPR systems 

with over 40 years of successful operation. Other US states with operating full-scale IPR systems 
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include Arizona, Colorado, Texas, Nevada, Florida, Virginia, and Georgia (Rodriguez et al. 

2009; Gerrity et al. 2013b).  

Several European countries, including Belgium, England, and Switzerland, utilize a 

planned IPR approach to provide PWS (Rodriguez et al. 2009; Gerrity et al. 2013b; Ryan 2016). 

Israel leads the world with reuse of more than 78 percent of its total municipal wastewater (i.e., 

287 of 366 MGD); however, to date, Israel’s reuse has been for non-potable applications as 

required to meet agricultural and industrial water supply demands (Tirosh and Eting 2016). In 

response to severe drought, Queensland, Australia, implemented three advanced treatment 

systems (over 600 MGD in combined capacity) in 2008 with the intent to reclaim wastewater to 

augment the public water supply portfolio. Due to public opposition, these systems have been 

relegated to date for non-potable and emergency use IPR applications only (Rodriguez et al. 

2009; Gerrity et al. 2013b; Ryan 2016). Since 2000, Singapore has successfully implemented 

four operating full-scale IPR systems with a combined capacity of over 50 MGD (Rodriguez et 

al. 2009; Gerrity et al. 2013b). As such, the planned IPR approach to potable reuse is widely 

practiced in the US and internationally. 

The DPR approach to potable reuse, where advanced barrier treatment technology is 

utilized to replace the environmental buffer and shorten the reuse cycle time, is not widely 

practiced. Although several systems are reported to be in planning or permitting, there are only 

three full-scale (two year-round and one seasonal) DPR systems in operation world-wide for 

public drinking water supply (Gerrity et al. 2013b; Tisdale 2015). In operation since 1968, with 

several upgrades since original commissioning, Windhoek, Namibia (Africa), maintains a DPR 

system that provides up to 35 percent of the total potable water supply portfolio (Gerrity et al. 

2013b). The Windhoek treatment process train, as diagramed in Figure 2-1, includes multiple 
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barriers designed for a variety of contaminants. Reverse osmosis membranes are not utilized 

treatment barriers for the Windhoek DPR system.  

The Big Spring, Texas, DPR system, commissioned in 2013, provides year-round reuse 

supply of up to 2.5 MGD (Gerrity et al. 2013b; Sloan 2013). As shown in Figure 2-1, the Big 

Spring DPR process train includes series membrane treatment with RO and an advanced 

oxidation process (AOP) prior to conventional drinking water treatment. In response to severe 

drought in 2014, Wichita Falls, Texas, commissioned a seasonal use full-scale DPR system with 

up to 5 MGD capacity to augment the potable water supply (Jones and Sober 2014; Nix and 

Schreiber 2015). Similar to Big Spring, the Wichita Falls treatment train, diagramed in Figure 2-

1, also includes series membrane process units with RO barriers prior to conventional water 

treatment. Another US DPR project is for the resort community of Cloudcroft, New Mexico. 

Stalled in implementation and not yet in operation, the Cloudcroft treatment train with a planned 

capacity of 100,000 gallons per day (gpd) is designed with RO membranes and AOP barriers 

(Gerrity et al. 2013b; Edwards 2014; NMED 2014). RO membranes are trending as a barrier 

treatment technology for US-based DPR systems.  
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Windhoek, Namibia (Africa) 

 

Big Spring, Texas 

 

Wichita Falls, Texas 

 

Figure 2-1: Full-Scale Operating Direct Potable Reuse Treatment Trains 
Ref. Gerrity (2013b), Sloan (2013), Jones (2014), Nix (2015) 
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2.1.2 Concern with DPR 

To help offset the public “yuk” and “toilet-to-tap” factor associated with potable reuse of 

municipal wastewater, the water industry has responded accordingly with recent action by the 

Water Environment Federation (WEF). Founded in 1928, WEF is a leading organization of 

engineers and water industry stakeholders in the field of municipal wastewater and water reuse 

(WEF 2012). The term “water resource recovery facility” (WRRF), rather than “wastewater 

treatment plant” (WWTP), was adopted by the WEF Board of Trustees in July 2012 (WEF 

2012). “WEF changing WWTP to WRRF is the kind of thing we need to sustain ourselves. It 

focuses on the concept of a renewable resource rather than waste. Words are powerful; they 

motivate people,” said Julian Sandino, a vice president and water practice leader with the 

international consulting firm CH2M Hill (WEF 2012). 

While the focus of engineered treatment systems for potable reuse projects begins with 

minimizing the risk associated with wastewater pathogens, non-regulated trace organic 

contaminants, referred to as CECs, have become important considerations for treatment system 

design (Dickenson and Drewes 2008; Gerrity et al. 2013a; EPA 2014; Tchobanoglous et al. 

2015). CECs can be defined as unregulated chemical solutes potentially found in effluent 

discharges and surface waters at trace levels, nanograms per liter (ηg/L), that may or may not 

have an impact on human health (EPA 2015a; US BOR 2009). The majority of the well-studied 

CECs have been classified as biodegradable to some degree (Rattier et al. 2014). Therefore, the 

first critical treatment barrier for CEC mitigation is a biological wastewater treatment process. 

Water quality monitoring from wastewater-receiving streams, however, indicates that a single 

treatment barrier for CECs is not adequate to prevent downstream contamination (Gerrity et al. 

2013b; Kolpin et al. 2002). As both public and regulatory concern grows over CECs in the water 
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cycle, the use of advanced treatment barrier systems following biological treatment is 

increasingly common at WRRFs to remove the recalcitrant CECs (Al-Rifai et al. 2011; Gomez et 

al. 2012; Sloan 2013). 

2.2 CEC Occurrence 

To understand the occurrence of CECs in municipal wastewater, it is helpful to first 

consider their origin and intended use. 

2.2.1 Origin and Intended Use 

There are approximately 13,500 chemical manufacturing facilities in the US owned by 

more than 9,000 companies (Spellman 2014). Over 84,000 chemicals, as inventoried by the EPA 

under the Toxic Substances Control Act (TSCA), are in use today with approximately 700 new 

chemicals added each year (EPA 2014). Water-soluble organic chemicals, or CECs, enter the 

water cycle through rainfall runoff or disposal to municipal wastewater collections systems 

(Tchobanoglous et al. 2015). These CECs can be generally characterized by the following 

intended use classifications (Anderson et al. 2010; CDPH 2011; NRC 2012; Luo et al. 2014; 

MDH 2015): 

1. Endocrine Disrupting Compounds (EDCs) 

2. Pharmaceuticals 

3. Stimulants 

4. Preservatives 

5. Artificial sweeteners 

6. Pesticides 

7. Flame retardants 

Each of these CEC classifications is further characterized in Table 2-1.  
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Table 2-1: CEC Intended Use Characterization 

CEC Classification Sub-classification CEC Classification Sub-classification 

4-nonylphenol EDC Surfactant Primidone Pharmaceutical Anti-seizure 

4-tert-Octylphenol EDC Surfactant Sulfachloropyridazine Pharmaceutical Antibiotic 

Andorostenedione EDC Steroid hormone Sulfadiazine Pharmaceutical Antibiotic 

Bisphenol-A (BPA) EDC Plasticizer Sulfadimethoxine Pharmaceutical Antibiotic 

Estradiol EDC Estrogen hormone Sulfamerazine Pharmaceutical Antibiotic 

Estrone EDC Estrogen hormone Sulfamethazine Pharmaceutical Antibiotic 

Ethinyl Estradiol - 17α EDC Contraceptive Sulfamethizole Pharmaceutical Antibiotic 

Norethisterone EDC Steroid hormone Sulfamethoxazole Pharmaceutical Antibiotic 

Progesterone EDC Steroid hormone Sulfathiazole Pharmaceutical Antibiotic 

Testosterone EDC Male hormone Theophylline Pharmaceutical Anti-asthmatic 

Acetaminophen Pharmaceutical Analgesic Warfarin Pharmaceutical Cardio 

Albuterol Pharmaceutical Anti-asthmatic 1,7-Dimethylxanthine Stimulant Caffeine degradate 

Amoxicillin Pharmaceutical Antibiotic Caffeine Stimulant - 

Atenolol Pharmaceutical Cardio Cotinine Stimulant Nicotine degradate 

Azithromycin Pharmaceutical Antibiotic Theobromine Stimulant Caffeine degradate 

Bendroflumethiazide Pharmaceutical Anti-hypertension Butylparaben Preservative Anti-microbial 

Bezafibrate Pharmaceutical Cardio Ethylparaben Preservative Antifungal 

Butalbital Pharmaceutical Analgesic Isobutylparaben Preservative Antibacterial/fungal 

Carbadox Pharmaceutical Antibiotic Methylparaben Preservative Antibacterial/fungal 

Carbamazepine Pharmaceutical Anti-seizure Propylparaben Preservative Antibacterial/fungal 

Carisoprodol Pharmaceutical Muscle relaxer Triclosan Preservatives Antibacterial 

Chloramphenicol Pharmaceutical Antibiotic Trimethoprim Preservatives Antibacterial 

Cimetidine Pharmaceutical Cardio Acesulfame-K Sweetener Sugar substitute 

Dehydronifedipine Pharmaceutical Cardio Sucralose Sweetener Sugar substitute 

Diazepam Pharmaceutical Anti-anxiety 2,4-D Pesticide Herbicide 

Diclofenac Pharmaceutical Anti-inflammatory Atrazine Pesticide Herbicide 

Dilantin Pharmaceutical Anti-seizure Bromacil Pesticide Herbicide 

Erythromycin Pharmaceutical Antibiotic Chloridazon Pesticide Herbicide 

Flumeqine Pharmaceutical Antibiotic Chlorotoluron Pesticide Herbicide 

Fluoxetine Pharmaceutical Antidepressant Clofibric Acid Pesticide Herbicide 

Gemfibrozil Pharmaceutical Cardio Cyanazine Pesticide Herbicide 

Ibuprofen Pharmaceutical Analgesic DACT Pesticide Atrazine degradate 

Iohexal Pharmaceutical X-ray contrast DEA Pesticide Atrazine degradate 

Iopromide Pharmaceutical X-ray contrast DEET Pesticide Mosquito repellant 

Ketoprofen Pharmaceutical Anti-inflammatory DIA Pesticide Atrazine degradate 

Ketorolac Pharmaceutical Anti-inflammatory Diuron Pesticide Herbicide 

Lidocaine Pharmaceutical Analgesic Isoproturon Pesticide Herbicide 

Lincomycin Pharmaceutical Antibiotic Linuron Pesticide Herbicide 

Lopressor Pharmaceutical Cardio Metazachlor Pesticide Herbicide 

Meclofenamic Acid Pharmaceutical Anti-inflammatory Propazine Pesticide Herbicide 

Meprobamate Pharmaceutical Anti-anxiety Quinoline Pesticide Herbicide feedstock 

Naproxen Pharmaceutical Analgesic Simazine Pesticide Herbicide 

Nifedipine Pharmaceutical Cardio TCEP Flame Retardant Fabric coating 

Oxolinic acid Pharmaceutical Antibiotic TCPP Flame Retardant Fabric coating 

Pentoxifylline Pharmaceutical Blood thinner TDCPP Flame Retardant Fabric coating 

Phenazone Pharmaceutical Analgesic    

Sources: Anderson et al. 2010; CDPH 2011; NRC 2012; Eaton et al. 2012; Luo et al. 2014; MDH 2015 
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2.2.2 Occurrence in WRRF Effluents 

Municipal WRRF primary and secondary effluents have been found to contain trace 

levels of CECs (Purdom et al. 1994; Folmar et al. 1996; Harries et al. 1997; Rodgers-Gray et al. 

2000; Drewes et al. 2006; Behera et al. 2011; Luo et al. 2014). Primary effluent (PE) indicates 

water treated by physical processes (e.g., primary clarification) associated with WRRF primary 

treatment, while SE indicates water treated by biological processes (e.g., activated sludge) 

associated with WRRF secondary treatment (Tchobanoglous et al. 2014). Table 2-2 shows the 

detectable concentrations of CECs and the variability in biodegradability observed between PE 

and SE treated municipal wastewater effluents. 

Table 2-2: CEC Occurrence in Wastewater Effluent 

CEC 
Range in Primary Effluents                        

(ηg/L) 
Range in Secondary Effluents                                   

(ηg/L) 

17α-Ethynyl Estradiol ND – 13 ND - 7.5 
17β-Estradiol ND – 150 ND - 43 
4-t-Octylphenol 100 - 13,000 ND - 1,300 
Bisphenol A 40 -100 ND - 17,300 
Estriol ND – 802 ND - 18 
Estrone 7.3 -132 ND - 108 
Nonylphenol 1,300 - 343,000 ND - 9,100 
Testosterone 24 -180 ND 
Acetaminophen 3,540 – 10,234 ND - 27 
Atenolol 5,113 – 11,239 261 – 5,911 
Carbamazepine 43 – 127 40 - 74 
Diclofenac 59 -243 13 - 49 
Gemfibrozil 101 – 318 26-Sep 
Ibuprofen 1,599 – 2,853 15 - 75 
Ketoprofen 81 – 286 ND - 37 
Lincomycin 3,095 – 19,401 1,437 – 21,278 
Naproxen 1,360 – 5,033 37 - 166 
Sulfamethazine ND – 343 ND - 408 
Sulfamethoxazole 79 – 216 20 - 162 
Caffeine 1,608 – 3,217 ND - 60 
Triclosan 247 – 785 79 - 149 
Trimethoprim 101 – 277 13 - 154 
Atrazine 20 – 28,000 4 - 730 
Clofibric acid ND – 65 ND - 6 
DEET 2,560 – 3,190 610 – 1,580 
Diuron 30 – 1,960 2 – 2,530 
TCEP 60 – 500 60 – 2,400 
TCPP 180 – 4,000 100 – 21,000 
ND = Below analytical detection limit 

Source: Drewes  et al. 2006; Behera et al. 2011; Luo et al. 2014 
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Table 2-2 shows SE may contain recalcitrant (i.e., non-biodegraded fraction) 

concentrations of natural and synthetic endocrine disruptors, pharmaceuticals, personal care 

products, and pesticides in the nanogram per liter (ηg/L) range with some surfactant phenols, 

pharmaceuticals, and flame retardants in the microgram per liter (µg/L) range (Drewes et al. 

2006; Behera et al. 2011; Luo et al. 2014). Table 2-2 also reveals that the biological processes 

associated with secondary treatment are effective for at least partial removal of most CECs.  

The occurrence of CECs in municipal wastewater effluents is not new (Tchobanoglous et 

al. 2015). It is reasonable to assume that as long as pharmaceuticals, personal care products, and 

pesticides have been in use, these products and their metabolites have contributed to the effluent 

trace contaminant load.  However, our ability to analyze and detect trace amounts of these CECs 

in water is new and evolving (Eaton and Haghani 2012; Vanderford et al. 2012; Tchobanoglous 

et al. 2015). 

The City of Norman, Oklahoma (Norman), in conjunction with Eurofins Eaton Analytical 

of Monrovia, California, conducted an IPR Study to consider potential WTP impacts from the 

augmentation of Lake Thunderbird surface water supply with SE from the Norman WRRF 

(Crowley and Mattingly 2009). To prepare for the study, Norman conducted an analytical survey 

for a study set of 96 (Norman 96) CECs in SE discharged from the WRRF.  

The Norman 96 was selected based on review of occurrence data from gray literature 

surveys conducted by WateReuse Association (WRA), National Water Research Institute 

(NWRI), EPA, US Geological Survey (USGS), and the US Bureau of Reclamation (BOR). The 

data reflected a compilation of CECs suspected to occur in WRRF effluents that could be 

analyzed by an established standard method with acceptable precision and accuracy. The 

“Framework for Direct Potable Reuse” released in 2015 by the WRA, NWRI, WEF, and 
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American Water Works Association (AWWA), recommends 13 (see Appendix A) of the 

Norman 96 CECs to be considered as control indicators when planning DPR projects 

(Tchobanoglous et al. 2015). As such, the Norman 96 appears to be a relatively comprehensive 

CEC study set. 

Table 2-3 shows that CEC concentrations in the Norman WRRF SE range from non-

detection to well above minimum reportable level (MRL). The higher concentration CECs 

include pharmaceuticals for control of infection, blood pressure, cholesterol, pain, seizures, and 

anxiety. Some of the estrogen-based hormones (e.g., estrone) were detected, but the testosterone-

based hormones were non-detectable. Perhaps most revealing were the relatively high 

concentrations of artificial sweeteners (e.g., acesulfame-K, sucralose). It is apparent such 

compounds do not biodegrade (or biosorb) in the WRRF bioreactor. These data suggest artificial 

sweeteners may be an ideal control indicator with which to monitor breakthrough integrity for 

future membrane-based DPR treatment process trains. Unlike the artificial sweeteners, caffeine 

is evidently biodegradable as concentrations were only slightly detectable. Also, pesticides were 

found in the SE at recalcitrant trace residual (Crowley and Mattingly 2009).  
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Table 2-3: Norman 96 Survey in WRRF Secondary Effluent 

Compound 
Effluent 
(ηg/L) 

MRL             
(ηg/L) 

Compound 
Effluent 
(ηg/L) 

MRL          
(ηg/L) 

4-nonylphenol - semi quantitative ND 100 Primidone 170 5 

4-tert-Octylphenol 78 50 Sulfachloropyridazine ND 5 

Andorostenedione ND 5 Sulfadiazine ND 5 

Bisphenol-A (BPA) ND 10 Sulfadimethoxine ND 5 

Estradiol ND 5 Sulfamerazine ND 5 

Estrone 130 5 Sulfamethazine 12 5 

Ethinyl Estradiol - 17 alpha ND 5 Sulfamethizole ND 5 

Norethisterone ND 5 Sulfamethoxazole 1,300 5 

Progesterone ND 5 Sulfathiazole 33 5 

Testosterone ND 5 Theophylline ND 20 

Acetaminophen ND 5 Warfarin ND 5 

Albuterol ND 5 1,7-Dimethylxanthine 42 10 

Amoxicillin (semi-quantitative) 4,600 20 Caffeine 60 5 

Atenolol 300 5 Cotinine 42 10 

Azithromycin ND 20 Theobromine ND 10 

Bendroflumethiazide ND 5 Butylparaben ND 5 

Bezafibrate ND 5 Ethylparaben ND 20 

Butalbital 54 5 Isobutylparaben ND 5 

Carbadox ND 5 Methylparaben ND 20 

Carbamazepine 400 5 Propylparaben 24 5 

Carisoprodol 130 5 Triclosan 43 10 

Chloramphenicol ND 10 Trimethoprim 1,000 5 

Cimetidine ND 5 Acesulfame-K 4,100 20 

Dehydronifedipine 82 5 Sucralose 49,000 100 

Diazepam ND 5 2,4-D ND 5 

Diclofenac 93 5 Atrazine 16 5 

Dilantin 130 20 Bromacil ND 5 

Erythromycin 220 10 Chloridazon ND 5 

Flumeqine ND 10 Chlorotoluron ND 5 

Fluoxetine 90 10 Clofibric Acid ND 5 

Gemfibrozil 550 5 Cyanazine ND 5 

Ibuprofen ND  10 DACT ND 5 

Iohexal ND 10 DEA 11 5 

Iopromide 270 5 DEET ND 10 

Ketoprofen 150 5 DIA 100 5 

Ketorolac ND 5 Diuron ND 5 

Lidocaine 370 5 Isoproturon ND 100 

Lincomycin 15 10 Linuron ND 5 

Lopressor 1,200 20 Metazachlor ND 5 

Meclofenamic Acid ND 5 Propazine ND 5 

Meprobamate 460 5 Quinoline ND 5 

Naproxen ND 10 Simazine 220 5 

Nifedipine 34 20 TCEP 830 10 

Oxolinic acid ND 10 TCPP 510 100 

Pentoxifylline ND 5 TDCPP 530 100 

Phenazone 5.6 5    
ηg/L = nanograms per liter.  

ND = Non-detetectable. MRL = Minimum reportable level, EPA Method MS/MS/LS-ESI. 

Source: Crowley and Mattingly 2009 
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2.3 Human Health Criterion 

CECs and their associated degradates represent a challenge for regulators to establish 

human health based criterion due to the limited scientific knowledge regarding acute and chronic 

health effects (Tchobanoglous 2015). There is limited public record of CEC human health effects 

from ingestion of reuse water supply reported by epidemiology and toxicology studies. 

2.3.1 Epidemiology 

Epidemiological studies assess the measurable difference in disease incidence between 

human populations exposed to a given set of conditions as compared to populations experiencing 

less exposure (Tchobanoglous 2015). One limitation to epidemiology studies for establishing 

human health criterion for the control of trace CECs in public water supply is the difficulty in 

assessing or differentiating the incremental risks from background exposure to other 

environmental sources such as food and pharmaceuticals that can be influenced by genetics and 

socio-economics (Tchobanoglous 2015). An epidemiological study of the Windhoek DPR 

system concluded that differences in diarrheal disease prevalence was associated with socio-

economic factors, not the source of water supply (Rodriguez et al. 2009). An epidemiological 

study of the Montebello, California, IPR project concluded no evidence existed that the reuse 

water had an adverse effect on liver cancer incidence, mortality, or infectious disease outcome 

(Rodriguez et al. 2009). Another epidemiology study of the same California IPR project 

concluded no significant association between reuse water and adverse birth outcomes, including 

19 categories of birth defects, over a 10-year period (Rodriguez et al. 2009). 

2.3.2 Toxicology 

Animal or cellular toxicology dose-response testing is another approach to human health 

risk assessments for I/DPR projects. A drawback to this approach is the dose levels tend to be 
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orders of magnitude greater than human ingestion levels from drinking water. As such, the 

observed dose-response relationship must be extrapolated to low dose potentially giving rise to 

overly conservative public health criterion (Tchobanoglous 2015). Chronic toxicology testing 

with rats and mice was conducted for DPR demonstration projects in Denver, Tampa, and 

Singapore. All three animal toxicology studies concluded no adverse reproductive, 

developmental, or carcinogenic outcomes from lifetime consumption of reuse water over two 

generations (Lauer 1993; Rodriguez et al. 2009). Cellular mutagenic studies, utilizing the Ames 

test with bacteria Salmonella typhimurium, were conducted for a variety of source waters in San 

Diego, Tampa, Potomac, Orange County, and Montebello (Nellor et al. 1995). In general, 

mutagenic activity was observed (in declining order) for wet weather surface water, dry weather 

surface water, recycled water, and ground water. High false positive mutagenic activity was 

reported for finished drinking waters due to disinfecting residuals (Nellor et al. 1995). 

2.3.3 Suggested CEC Criterion 

In recognition of the lack of human health based criterion related to reuse water supply, 

the National Water Research Institute (NWRI) convened an independent advisory panel (IAP) to 

develop a list of recommended CECs, based on collective knowledge, to be considered as 

performance monitoring protocol for DPR systems (NWRI 2013). The IAP suggested risk-based 

human health criterion for the control of 13 CECs in DPR applications is provided in Table 2-4. 
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Table 2-4: NWRI Risk-Based Human Health Criterion 

CEC 
Criterion 

(ηg/L) 
Rationale 

Ethinyl estradiol MRL: 5 Should evaluate its presence in 

source water 17-β-estradiol MRL: 5 

Estrone 320 Surrogate for steroids 

Cotinine 1,000 
Surrogate for low MW ionic 

CECs 
Primidone 10,000 

Dilantin 2,000 

Meprobamate 200,000  
Occurs frequently at ηg/L level 

Atenolol 4,000 

Carbamazepine 10,000 Unique structure 

Sucralose 150,000,000 
Surrogate for hydrophilic 

neutral CECs 

TCEP 5,000 CEC of interest 

DEET 200,000 
Common CEC in highly treated 

effluents 

Triclosan 50,000 CEC of interest 

Source: NWRI (2013) 

 

2.4 CEC Regulatory Framework for DPR 

Despite the rapidly increasing interest in potable reuse, no jurisdictions have established 

CEC regulations for DPR projects (Tchobanoglous et al. 2015). The EPA has discussed the 

status of potable reuse in its “2012 Guidelines for Water Reuse,” but has not prepared minimum 

standards or other documents establishing a baseline for the design of DPR facilities and projects 

(EPA 2012). In fact, EPA states in the 2012 Guidelines: “Water reclamation and reuse standards 

in the US are the responsibility of state and local agencies – there are no federal regulations for 

reuse.”  

Unplanned reuse of treated wastewater effluent as a PWS is common practice in many of 

the nation’s PWS systems, with some drinking WTPs using water with a large fraction 

originating as wastewater effluent from upstream communities, especially under low-flow 
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effluent dominated conditions (NRC 2012). The following sections summarize the potable reuse 

regulatory status of the EPA and all US primacy states with active CEC control initiatives related 

to potable reuse or prominent DPR projects. 

2.4.1 Federal Framework 

The US SDWA, as amended in 1996, requires EPA to publish a list every five years of 

currently unregulated contaminants that may pose risks for drinking water (80 CFR 6076, EPA 

2015b).  EPA uses the Unregulated Contaminant Monitoring Rule (UCMR) program to collect 

data for contaminants suspected to be present in PWS as required to generate a Contaminant 

Candidate List (CCL). The 1996 SDWA Amendments provide the following for UCMR 

database generation:  

• Monitoring by large systems and a representative sample of public water systems 

serving less than or equal to 10,000 people 

• Storing analytical results in a National Contaminant Occurrence Database (NCOD) 

The EPA CCL is a list of contaminants that are currently not subject to any proposed or 

promulgated national primary drinking water regulations (NPDWR), but are known or 

anticipated to occur in PWS and may require subsequent regulation under the EPA SDWA (EPA 

2012). Since first announced in 1998, four CCLs have been published by the EPA in the Federal 

Register. CCL1 listed 60 contaminants. No regulatory action was determined for nine and 51 

were carried forward. CCL2 listed the 51 carried forward contaminants. No regulatory action 

was determined for 11, two were promulgated, and 38 were carried forward (EPA 2015b). CCL3 

listed 116 (104 chemicals and 12 microbial). A summary of the NCOD occurrence data for the 

UCMR3 is provided in Appendix A (EPA 2015b). No regulatory action was determined for four, 

two were promulgated, and 100 were carried forward from CCL3 (EPA 2015b,c).  
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With publication of Draft CCL4 in 2015, the total list of carried forward and new 

includes 100 chemical and 12 microbial contaminants (EPA 2015c). The CCL4 list of chemical 

contaminants is provided in Appendix A (EPA 2015c). The SDWA identifies three criteria to 

determine whether a CCL contaminant may require regulation: 

1. The contaminant may have an adverse effect on human health. 

2. The contaminant is known to occur or there is substantial likelihood that the contaminant 

will occur in PWS with a frequency and at levels of public health concern. 

3. In the sole judgement of the Administrator, regulation of such contaminant presents a 

meaningful opportunity for health risk reduction for persons served by PWS. 

If the EPA determines that these three statutory criteria are met and makes a final determination 

to regulate a contaminant, the agency has 24 months to publish a proposed Maximum 

Contaminant Level Goal (MCLG) and NPDWR (EPA 2012). Following comment period, the 

agency has 18 months to publish and promulgate a final MCL and NPDWR.  

Since the first CCL, the EPA has promulgated NPDWR MCLs for three herbicide CECs 

as indicated in Table 2-5. 

Table 2-5: CEC MCLs - NPDWRa 

CEC Intended Use NPDWR MCL 

Atrazine herbicide 3,000 ηg/L 

2, 4-Dichlorophenoxyacetic herbicide 70,000 ηg/L 

Simazine herbicide 4,000 ηg/L 

aAdapted from EPA 2012, 2015b,c 
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2.4.2 State Framework 

Activity related to the control of CECs for I/DPR by the states has been on an as-needed 

basis. The following discussion focuses on activity by the states known to be developing CEC-

specific regulatory control or that have DPR projects in implementation phase or operational. 

2.4.2.1 California 

Out of necessity, California has been a leader in the research and planning of IPR and 

DPR options. The Orange County Water District and Los Angeles County Sanitation Districts 

have led the effort for IPR over the last several decades to supplement groundwater supplies 

(CSWRCB 2014a,b). This practice has been utilized for decades for saltwater intrusion barriers, 

but is now being adapted for groundwater supply augmentation (Crook 2010). The City of San 

Diego is nearing the end of a multi-year process to demonstrate the feasibility of IPR to augment 

surface water supplies through a large-scale pilot treatment facility (CSWRCB 2014b). They 

have also implemented a long-term, high-profile public education program to gain acceptance of 

the proposed augmentation of surface water by IPR (CSWRCB 2014b). Due to the increase in 

interest of reuse of municipal WRRF effluents, the State of California is developing regulations 

to govern IPR and DPR systems and the control of CECs (CAEPA 2006; CDPH 2011). 

2.4.2.1.1 Groundwater IPR 

The California Department of Public Health (CDPH) published groundwater recharge 

regulations under Title 22 in 2011 and has since updated these draft regulations several times, 

most recently on May 30, 2014 (CDPH 2011, CSWRCB 2014a). On June 30, 2014 the 

California legislature directed that these rules be adopted on an emergency basis. The regulations 

represent a working understanding of requirements for the use of reuse water to recharge potable 

groundwater supplies. These regulations also represent a starting point in the development of 
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regulations for surface water augmentation IPR and likely development of DPR regulations. Key 

provisions of the groundwater IPR regulations include: 

1. Minimum retention times within the aquifer 

2. Limits on reuse water contribution (RWC), with initial limit of 20% and 

provisions for increasing contribution in step-wise fashion subject to maximum of 

75% with continued successful operation 

3. Reuse water must be treated with full advanced treatment (FAT), defined to 

include RO (with 99% salt rejection) and an AOP process 

4. Monitoring protocol for identified indicator CECs 

5. Aquifer retention time shall not be less than 2 months prior to withdrawal 

2.4.2.1.2 Surface Water IPR 

The legislature has directed the CDPH and the California State Water Resources Control 

Board (CSWRCB) to adopt regulations for surface water augmentation with IPR by December 

31, 2016. No draft regulations are currently available, but an advisory group has been named, 

and they in turn have made recommendations for selection of an expert panel to advise the 

CDPH in developing criteria (CSWRCB 2014a). 

2.4.2.1.3 Direct Potable Reuse 

The legislature has also directed the CDPH and CSWRCB to investigate and report to on 

the feasibility of developing regulatory criteria for DPR (CSWRCB 2014a). A public review 

draft report is due September 1, 2016. The final DPR report is scheduled for December 31, 2016 

(CSWRCB 2014a).  

CDPH formed a CEC Expert Advisory Group in 2012 that is working with the CSWRCB 

to develop a list of CECs for monitoring and bioassay testing. As reported at the May 2014 
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CWRCB Meeting, 15 CECs as shown in Table 2-6 were adopted for monitoring of WRRF 

effluents (CSWRCB 2014b). 

Table 2-6: California CEC Monitoring List for DPR 

Bisphenol-A 17-beta estradiol 
Bis (2-ethylhexyl) phthalate (BEHP) Galaxolide (HHCB) 
Butylbenzyl phthalate (BBP) Ibuprofen 
Bifenthrin PBDE -47 and -99 
Chlorpyrifos Permethrin 
Diclofenac PFOS 
Estrone p-Nonylphenol 
Estradiol Trisclosan 

Source: CSWRCB 2014b 

 

2.4.2.2 Texas 

Texas has PWS systems practicing both IPR and DPR, but has no regulations specifically 

designed for these projects (TWDB 2015). The Texas Commission on Environmental Quality 

(TCEQ) and Texas Water Development Board (TWDB) have exercised control of IPR through 

discharge permitting conditions and water rights provisions. These include groundwater injection 

(El Paso), river transport and withdrawal followed by artificial wetland treatment (North Texas 

Municipal Water District and Tarrant Regional Water District), and water accounting programs 

within several reservoirs (Trinity River Authority) subject to significant effluent discharges. 

According to the 2012 Texas State Water Plan, water reuse will provide approximately 1.53 

million acre-feet per year of water supply statewide by the year 2060 and will meet 

approximately 18% of the projected water needs. However, TWDB reports there is significantly 

more potential for development of water reuse as a water management strategy than is currently 

include in the state water plan. Much of this potential is likely to be realized as more reuse 
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projects are implemented and progress is made in communicating the advantages, benefits and 

safety of potable reuse to the public (TWDB 2015).  

Three DPR projects (without environmental buffer) have been authorized, with at least 

one additional project (El Paso) in development and review. One of these projects (Colorado 

River Municipal Water District, in Big Spring) has been in operation since April 2013, while a 

second (City of Wichita Falls) began production in early July of 2014. The third DPR project, in 

Brownwood, has been authorized for construction (Sloan 2013; Jones and Sober 2014; Nix and 

Schreiber 2015). 

Over the course of reviewing and approving the three DPR projects, TCEQ has 

developed some internal consensus-based standards it applies for such projects. The overarching 

goal is to consistently and conservatively meet the requirements of the SWDA (McDonald et al. 

2015). Key features required for DPR projects to date include: 

1. Approximate “doubling” of SWTR pathogen inactivation is required: 8-log for 

viruses (9-log if chloramine disinfection is utilized), 6-log for Giardia and 5.5-log for 

Cryptosporidium using multiple barriers. This inactivation includes subsequent 

surface water treatment if applicable, but does not recognize any credit from upstream 

WRRF treatment processes. Higher requirements could be imposed if the source 

water is at risk of elevated pathogen levels compared to sources tested for recent DPR 

proposals. 

2. Critical treatment processes require continuous online monitoring with provisions for 

automatic shutdown if treatment goals for acute health protection are jeopardized. A 

storage buffer could be required if satisfactory real-time monitoring cannot be 

achieved. 
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3. Continuous monitoring of flows and calculation of blend ratio is required to maintain 

reuse water fraction within established limit for system. 

4. Advanced pilot testing is required to demonstrate extended satisfactory performance. 

5. Industrial pretreatment program is subject to review to identify potential public health 

vulnerabilities. 

Approved blending ratios have varied and no standard limit is established. It is 

anticipated that up to 50% of blended finished water could be approved from a reuse water 

source without special measures beyond those applied to other DPR projects (TWDB 2015). 

Out of necessity, the TWDB recently took the lead to bring together several industry and 

academic experts to form advisory committees, similar to California, and develop the “2015 

Direct Potable Reuse Resource Document” to provide public water systems with information on 

the practice, risks, benefits, and potential guidelines for potable reuse (McDonald et al. 2015). 

The TWDB identified 51 CECs for monitoring where public water systems are planning DPR 

augmentation with WRRF secondary or tertiary effluents. As provided in Table 2-7, this list of 

51 was derived from the 90th percentile measured occurrence from the EPA NCOD for CCL3 

(McDonald et al. 2015). 
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Table 2-7: Texas CEC List for DPR Systems 

CEC Usage CEC Usage 

17α-estradiol hormone Meprobamate tranquilizer 

17β-estradiol hormone Metoprolol cardio med 

4-Nonylphenol surfactant Naproxen pain med 

4-Octylphenol surfactant o-Hydroxy atorvastatin cardio med 

Bisphenol A plasticizer Primidone anti-seizure 

cis-Testosterone hormone Propanolol cardio med 

Diethylstilbestrol hormone Prozac antidepressant 

Estrone hormone Salicylic acid pain med 

Ethinyl Estradiol hormone Sulfamthoxazole antibiotic 

Progesterone hormone Warfarin cardio med 

Testosterone hormone Zocor cardio med 

Acetaminophen pain med Caffeine stimulant 

Atenolol cardio med Triclocarban preservative 

Azithromycin antibiotic Triclosan preservative 

Carbamazepine anti-seizure Trimethoprim preservative 

Ciprofloxacin antibiotic Sucralose sweetener 

Diclofenac pain med Clofibric acid pesticide 

Dilantin anti-seizure DEET pesticide 

Erythromycin antibiotic Methylisothio-cyanate pesticide 

Flurosemide diuretic TCDPP flame retardant 

Gemfibrozil cardio med TCEP flame retardant 

Ibuprofen pain med TCPP flame retardant 

Iopromide radiology agent Musk ketone fragrance 

Ketoprofen pain med NDMA DBP 

Lipitor cardio med PFOA non-stick coating 

17α-estradiol hormone   

Source: TWBD 2015    

 

2.4.2.3 Oklahoma 

According to a July 2015 report to the state legislature, the Oklahoma Department of 

Environmental Quality (ODEQ) has commissioned a water quality standards and technology 

work group comprised of a cross-section of industry stakeholders (ODEQ 2015). The work 

group is charged with: 

1. Providing information regarding historical and ongoing research related to potable 

reuse 
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2. Drafting regulations and guidelines for IPR and DPR 

3. Identifying challenges and questions that need to be addressed related to 

implementation of potable reuse in Oklahoma 

4. Developing recommendations for a process and revised timeline for establishing 

indirect and direct potable reuse regulations in Oklahoma 

ODEQ identified “Category 1” with three sub-categories to address reuse involving 

potable applications. Category specific recommendations from the July 2015 report for each 

reuse category are described in the following paragraphs (ODEQ 2015). 

2.4.2.3.1 Category 1a - DPR 

If necessary, until specific DPR guidance is developed, DPR projects should be 

considered on a case-by-case basis under the variance process, similar to what has been done in 

other states (e.g., Texas). Initiation of guidelines development was deferred until 2016 to allow 

the work group to take advantage of resources being utilized for IPR initiatives (ODEQ 2015). 

2.4.2.3.2 Category 1b – IPR (Surface Water) 

The stakeholder group defined surface water IPR as the use of reclaimed water for 

potable purposes by intentionally discharging municipal wastewater to a surface water supply 

source such as a lake or river. The mixed reuse and natural surface water then receives additional 

treatment before entering the drinking water distribution system. Definition of what, if any, 

additional water quality or treatment requirements are needed remains in progress. However, the 

general approach that is currently being pursued includes the definition of a “default” best 

alternative treatment (BAT) advanced treatment scheme that, if implemented, would receive 

approval without the need for site specific modeling studies. The default BAT advanced 

treatment scheme currently under consideration includes: 
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1. Source control 

2. Pretreatment for reverse osmosis 

3. Reverse osmosis 

4. Ultraviolet disinfection with advanced oxidation process (AOP) 

Treatment schemes (e.g., NF) other than the default BAT scheme would require the 

applicant to demonstrate (e.g., pilot treat) compliance with surface water quality standards and 

requirements still to be determined (ODEQ 2015).  

2.4.2.3.3 Category 1c – IPR (Groundwater) 

Development of Category 1c reuse guidance documents are planned following the 

development of guidance for Category 1a and Category 1b (ODEQ). 

2.4.2.4 New Mexico 

The New Mexico Environment Department (NMED) has approved construction of a 

DPR project in Cloudcroft, a remote resort town in the southeastern part of the state, but does not 

have published regulations for potable reuse (EPA 2012). The Cloudcroft project has been 

subject to lengthy delays and is understood to not yet be operational (NMED 2014). NMED 

governs non-potable uses with the “Guidance Document on Above Ground Use of Reclaimed 

Domestic Wastewater” and indicates their highest classification, Class 1A, reuse wastewater may 

be used for any purpose except direct consumption, food handling and processing, and spray 

irrigation of food crops (NMED 2007). The document also specifies other uses of reuse 
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wastewater not included will be evaluated on a case-by-case basis by NMED to determine the 

appropriate water quality classification for the given use (NMED 2007). 

2.4.2.5 Arizona 

Arizona currently does not have regulations specific to IPR or DPR, but in 2013, they 

established the Steering Committee on Arizona Potable Reuse (SCAPR 2013) with the following 

goals to advance potable reuse in the state: 

1. Identify impediments 

2. Define a common terminology 

3. Gather best practices, state of the industry information, and case studies 

4. Track California and Texas efforts 

5. Create Advisory Panels 

6. Conduct a scoping process to provide recommendations to the Arizona Department of 

Environmental Quality (ADEQ) and the Arizona Department of Water Resources 

(ADWR) 

7. Develop a road map to I/DPR in Arizona 

2.4.3 CEC Regulatory Summary 

The EPA provides potable reuse regulation directly for CEC control through the setting 

of NPDWR standard. To date, MCLs have been established for only three pesticide CECs. EPA 

provides potable reuse regulation indirectly for CEC control through the CCL program and 

“2012 Guidelines for Water Reuse.”  Table 2-8 summarizes the CEC control regulatory status for 

the states reviewed with ongoing DPR activity.  
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Table 2-8: State Regulatory Summary for CEC Control 
 

 

 

State 

Indirect Potable Reuse (IPR) 
Direct Potable Reuse 

(DPR) 
Groundwater 

Augmentation 

Surface Water 

Augmentation 

California 
Regulated: 

CEC monitoring 

In development: 

planned for 2016 

In development:  

planned for 2016 

Texas 

Case-by-case: 

1 system in 

operation 

 

No CEC control 

other than  

WRRF TPDES 

 

Case-by-case: 

CEC monitoring 

2 systems in operation; 

1 system in 

implementation 

Oklahoma 
In development: 

planned for 2017 

In development: 

planned for 2016 

In development: 

planned for 2016 

New Mexico Case-by-case Case-by-case 

Case-by-case: 

1 system in 

implementation 

Arizona 

Case-by-case: 

1 system in 

operation 

In development Under consideration 

Sources: EPA, CDPH, CEPA, CSWRCB, TCEQ, TWDB, ODEQ, OWRB, NMED, ADEQ, SCAPR 

 

Out of critical necessity to meet water demand, several cases are indicated in Table 2-8 

where DPR systems are in operation or implementation prior to the establishment of regulations 

for CEC control. For regulation to catch up with necessity, states are now under advisement from 

stakeholder committees consisting of academia, engineers, industry consultants, and PWS 

managers to provide the vital knowledge required for the control of CECs in I/DPR applications. 

Direction is required for what CECs to monitor, what CEC treatment levels to achieve, and what 

treatment technologies (i.e. BAT, FAT) are best suited for the control of CECs (SCAPR 2013; 

NWRI 2013; CSWRCB 2014a,b; TWDB 2015; ODEQ 2015; Tchobanoglous et al. 2015; 

McDonald et al. 2015). 
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2.5 Best Available Technology for CEC Control 

BAT is a term introduced by the EPA when the SWDA was passed in 1974 to assist PWS 

managers with selecting and implementing the best water treatment process technology or 

technologies to comply with the new act (EPA 2015a,c; Jones 1990). Although PWS managers 

have since adopted a multi-barrier approach to meet the increasingly stringent water quality 

criteria of the SDWA and subsequent amendments, they face new treatment challenges (e.g., 

CECs) with implementation of DPR programs (Tchobanoglous et al. 2015). BAT in addition to 

conventional treatment barriers will be required to meet these new treatment challenges (TWDB 

2015; ODEQ 2015).  

2.5.1 Regulatory BAT 

Although the federal government has opted thus far not to develop DPR regulations, the 

EPA has identified membrane filtration as a BAT for I/DPR in the “Guidelines for Water Reuse” 

(EPA 2012). RO is identified in this document as an effective treatment barrier for CEC control.   

California, Washington, and Florida require RO membrane treatment for IPR systems 

prior to direct injection of reclaimed water into an aquifer utilized for potable supply (CDPH 

2011; WSL 2007; FDEP 2014). For PWS considering DPR, Texas has identified six multi-

barrier treatment schemes, five with membranes (TWDB 2015). In Oklahoma, RO membrane 

treatment has been identified as BAT in the default advanced barrier approach for PWS 

considering IPR (ODEQ 2015).   

2.5.2 Industry BAT 

Gerrity et al. (2013b) reported the findings of a world-wide survey of multi-barrier 

process trains for the whole gamut of planned and unplanned potable reuse applications. Both 

IPR and DPR application examples are cited. This survey identified only one international and 
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two US-based DPR systems world-wide that are in operation (Gerrity et al. 2013). Integrated 

membrane systems using MF followed by RO membranes are the adopted industry standard for 

IPR applications via direct injection into an aquifer (Drewes et al. 2006; Asano et al. 2007; NRC 

2012). In the absence of established DPR-specific regulations, both operational DPR PWS in 

Texas (Big Spring and Wichita Falls) have adopted an advanced barrier approach including an 

integrated membrane system with RO membranes followed by an advanced oxidation process 

(AOP) in complement with conventional barriers (TWDB 2015). In the “Framework for Direct 

Potable Reuse” recently published by AWWA, WEF, NWRI, and Water Reuse Research 

Foundation, RO membranes and AOP are recommended final barriers in an integrated treatment 

scheme to achieve advanced water treatment (AWT) for DPR application. In general, where RO 

membranes are used, finished water is of higher quality than conventionally treated waters with 

respect to total organic carbon (TOC), total dissolved solids (TDS), and trace CEC; however, 

regulators, public health professionals, and practitioners have not reached consensus as to the 

appropriate framework and governing BAT parameters for potable reuse (Tchobanoglous et al. 

2015). 

2.5.3 Membrane Classification 

Membranes are man-made proprietary separation materials that provide a physical barrier 

in which structural parameters such as pore size, molecular weight cutoff (MWCO), surface 

charge (zeta potential), and hydrophobicity (contact angle) are designed for the rejection of target 

constituents or contaminants such as CECs and their QSAR properties (Wickramasinghe and 

Jones 2013; Abolmaali et al. 2015). Figure 2-2 illustrates the membrane filtration spectrum by 

process separation classification, pore size, MW, and relative size of common materials. 
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Figure 2-2: Membrane Filtration Spectrum 

 

Membranes are classified according to their respective pore size, MWCO, and 

transmembrane pressure (TMP). The pore size for a membrane quantifies the general size of 

individual opening or void. MWCO is an approximate size of molecule that will be excluded 

from passing through the membrane. TMP is the driving force required to force the solution 

through the membrane. A general classification of membranes according to these parameters is 

presented in Table 2-9 (Jonsson 1985; Bellona et al. 2004; Asano et al. 2007; Wickramasinghe 

and Jones 2013; EPA 2014; Abolmaali et al. 2015).  
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Table 2-9: Membrane Classifications for Water Treatment 

Membrane 
Classification 

Typical 
TMP  

Range 
(psi) 

MWCO              
(Da) 

Pore Size Range                 
(µm) 

Typical 
Target 

Contaminants 

Microfiltration 
(MF) 

15 - 60 ND 0.1 - 1.0 

TSS, 
bacteria, 
Giardia, 
Crypto 

Ultrafiltration   
(UF) 

30 - 100 ≥ 103 0.01 - 0.1 virus 

Nanofiltration   
(NF) 

50 - 150 ≥ 200 ND 
CEC: EDC, 
pesticides, 

PPCP 
Reverse Osmosis 

(RO) 
100 – 1,000 < 200 ND TDS, salts 

Source: Jonsson 1985; Bellona 2004; Asano 2007; EPA 2014; Wickramasinghe 2013; Abolmaali 2015 

ND = nondefinable 

 

As shown in Table 2-9, membrane treatment processes are distinguished by the size of 

contaminants removed. Microfiltration (MF) and ultrafiltration (UF) remove suspended solids 

via steric exclusion based on the size of the membrane pores relative to the particulate matter. 

NF and RO membranes, which do not have definable pores, remove dissolved solids (i.e. solutes) 

and are thereby industry classified by MWCO (EPA 2014). 

TMP can be energy intensive. The osmotic pressure alone for desalination of ocean 

water, with 30,000 mg/L total dissolved solids (TDS), is over 300 psi. Osmotic pressure 

combined with TMP, an RO desalination system pressure can approach 1,000 psi 

(Wickramasinghe and Jones 2013; Abolmaali et.al 2015). 

MWCO is a high pressure (e.g., NF and RO) membrane-specific parameter that is often 

applied for selection of the appropriate membrane for solute separation. The industry accepted 

practice for membrane MWCO identification is the minimum solute MW that is retained or 

rejected by 90% or greater. Often, the MWCO for salt-rejecting membranes, such as NF, are 

determined with freshly-prepared membrane coupons in idealized, pH buffered, salt solutions 
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(typically CaCl2, NaCl, Na2SO4 and MgSO4) (Lin et al. 2007). A comparison of MWCO and 

atomic force microscopy for assessing the mean pore diameter of membranes found excellent 

agreement for low-MWCO membranes, like NF (Bowen and Doneva 2000). However, it has also 

been shown that solvent-membrane interactions affect the MWCO determination for NF 

membranes of equivalent pore size but varying membrane composition (Zwijnenberg et al. 

2012). Therefore, while the manufacturer-supplied MWCO is useful in the initial screening of 

membranes, a complete analysis of the system (i.e., solvent, solute for separation, membrane 

properties) is necessary for optimized separation applications. 

Membrane surface charge is quantified by zeta potential. Manufacturers design modern 

TFC NF and RO membranes with a negative surface charge to resist fouling. Because many 

CECs in reuse water are also charged, the negative membrane surface charge enhances the 

rejection of ionic CECs. A membrane surface with a high affinity for water is called hydrophilic, 

while those with a low affinity are called hydrophobic. The contact angle provides a measure of 

hydrophobicity of a membrane surface. For hydrophobic membranes, the contact angle will have 

a value greater than 90º, whereas the hydrophilic membranes will have a contact angle value less 

than 90º (Yangali-Quintanilla et al. 2011; Wickramasinghe and Jones 2013; Abolmaali et al. 

2015).  

Membrane materials generally utilized for water treatment include cellulose acetates, 

synthetic polymers (polyamides and polytetrafluoroethylene), and ceramics (Seader et al. 2011; 

Abolmaali et al. 2015). Commercially available membranes in use today for DPR applications 

are polymeric hollow-core fibers for low pressure removal of suspended solids and TFC for high 

pressure rejection of dissolved solids (Drewes et al. 2001; Asano et al. 2007; Al-Rifari et al. 

2011; EPA 2014; Jones and Sober 2014; McDonald et al. 2015; Abolmaali et al. 2015). 
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Manufacturers of newer proprietary TFC membranes can add chemical functionality such as 

sulfonic or carboxylic acid groups in order to improve target CEC rejection while allowing for 

thinner membranes and a decrease in system pressure requirements (Bellona et al. 2004; Asano 

et al. 2007).  

Series membrane system configurations utilizing low-pressure (LP) membranes in series 

with high-pressure (HP) membranes are the water industry standard for the treatment of reuse 

source waters such as WRRF effluent, brackish water, and seawater (Drewes et al. 2001; Asano 

2007; Wickramasinghe and Jones 2013; Sloan 2013; Nix and Schreiber 2015). LP membranes 

serve as the best pretreatment to remove constituents attributable to HP fouling. The LP 

membranes are typically designed in a submerged vacuum (described previously) or pressure 

modular configuration, whereas operating pressures required for HP membranes dictate spiral-

wound pressure module configurations (Asano et al. 2007). 

2.6 NF Advantages over RO 

There has been abundant work to verify the best membrane separation system to achieve 

the treatment objective for the least required energy and least waste generated (Bellona et al. 

2008; Bellona et al. 2012; Jones and Kruger 2013; Jones et al. 2014; Abolmaali et al. 2015; 

ODEQ 2015; Watts et al. 2016). RO represents a major capital and O&M expense not seen with 

conventional PWS treatment technologies. For PWS source water applications of TDS < 2,000 

mg/L, required TMP for RO is typically 100 psi or more than NF. This translates into more 

energy requirements and higher pressure classifications for process pumps, pipes, and valves. An 

RO system also produces a brine reject waste that can represent new treatment and disposal 

challenges to a PWS. 
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Previous side-by-side pilot testing of NF and RO membranes at a WRRF in California 

(Bellona et al., 2008) observed nearly identical water recovery rates (>80%), TOC rejection rates 

(>98%), ammonia rejection rates (>93%), and rejection of UV absorbing organics (>90%). Using 

a DOW Filmtec NF-90 membrane filtration system, pilot performance indicated a significant 

cost-savings (due to higher operating permeate fluxes) for full-scale water recycling with NF as 

opposed to conventional RO membrane filtration. A critical economic comparison of the two 

processes for full-scale potable reuse implementation estimated between $55,000 and $188,000 

annual cost savings when operating NF membranes (instead of RO) at permeate fluxes between 

17 and 25.5 LMH (Bellona et al. 2012).   

Three commercially available NF and RO membranes by Dow Filmtec, Toray, and GE 

Osmonics were pilot tested by Jones et al. (2014) in parallel for implementation of a new 4 MGD 

series membrane WTP in Alabama. Both NF and RO were verified to meet treatment 

performance objectives. Based on pilot testing results, it was determined total capital cost could 

be reduced by $2.2 million and annual energy cost reduced by $55,000 with implementation of 

NF rather than RO. An ancillary reject waste treatment process was required with the RO option. 

The reject waste processing was not required with the NF option as reject was determined 

acceptable for discharge to the WRRF (Jones et al. 2014).   

An additional economic consideration for selection of ion-rejecting membrane is the cost 

of concentrate treatment and disposal. Where RO rejects both mono- and multivalent ions, NF 

rejects only the multivalent ions. An ongoing alternative water supply study for an Oklahoma 

community estimated that RO concentrate disposal from a planned new DPR facility would 

require $14 million for the construction of up to 2 MGD of RO reject conveyance and disposal 

via deep-well injection (Watts et al. 2016). Due to the high initial capital costs of RO concentrate 
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management, this project is currently evaluating NF as an alternative to RO that would produce a 

less saline concentrate that could be safely discharged to the WRRF or a receiving stream (Watts 

et al. 2016). 

The default RO FAT approach to CEC control for DPR may be questioned if we consider 

new commercially available tight (i.e., MWCO ≤ 200 Da) TFC NF membranes. Tight TFC NF 

membranes may provide acceptable CEC rejection efficacies for less capital, O&M, power, and 

waste generated (Bellona et al. 2008; Bellona et al. 2012; Jones and Kruger 2013; Jones et al. 

2014; Abolmaali et al. 2015; ODEQ 2015; Watts et al. 2016). 

2.7 Reported CEC Removal 

The following section reviews previous literature on reported CEC removal by WRRF 

biological and membrane treatment barriers. 

2.7.1 Degradation and Sorption by WRRF 

A conventional WRRF, required to meet National Primary Discharge Elimination System 

(NPDES) secondary standards, is the first barrier treatment in a reuse system and typically 

includes a liquid treatment process train consisting of physical, biological, and chemical units 

(Tchobanoglous et al. 2014; Kolpin et al. 2002). Primary treatment typically includes screening, 

grit removal, and primary clarification. Secondary treatment typically includes a biological 

reactor and disinfection process. The biological process can range from a fixed-film reactor for 

biochemical oxygen demand (BOD) removal to suspended-growth activated sludge for BOD 

removal and ammonification to a biological nutrient removal (BNR) process that includes 

anaerobic/anoxic/aerobic swing zones for BOD removal, ammonification, nitrification, de-

nitrification, and phosphorus removal. In the event the NPDES permit requires disinfection, 

chlorination/de-chlorination or ultra-violet (UV) oxidation is typically employed. Additional 
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biodegradation (or digestion) can be provided in the solids treatment processing via either 

aerobic or anaerobic digester units followed by dewatering, drying, and/or stabilization prior to 

land application, landfill, or otherwise terminal application. 

Previous work has been performed to provide a comprehensive description of the 

behavior of CECs in WRRF processes (Luo et al. 2014; Rattier et al. 2014; Gerrity et al. 2013; 

Dickenson and Drewes 2008; Drewes et al. 2006; Birkett and Lester 2003). Three main removal 

pathways for CECs were identified: 

1. Biodegradation and sorption to the mixed liquor suspended solids (MLSS) 

2. Additional biodegradation through extended solids retention time (SRT) in 

suspended-growth reactors and the solids destruction digesters 

3. Oxidation in the disinfection process 

CECs with relatively high (>2.0) octanol-water partitioning coefficients (Kow) may sorb 

to MLSS before significant degradation occurs (Johnson and Sumpter 2001; Holbrook et al. 

2002). As such, sorption to biosolids has been found to be a significant CEC removal 

mechanism. Many studies have examined the removal of CECs by sorption to biosolids by 

comparing influent, effluent, and solids concentrations of CECs. The highest concentration of 

CECs were found in the biosolids at concentrations 1,000 times greater than that found in the 

influent (Holbrook et al. 2002; Clara et al. 2004).  

Biodegradation of CECs has also been demonstrated. Study of WRRFs has revealed 

impressive CEC removal at SRT values greater than 10 days and food to microorganism (F:M) 

ratios of 0.2 – 0.3 kg BOD5/kg TSS∙day. It was reported that the relatively low F:M ratio requires 

the microorganisms to be more selective, thereby improving CEC removal performance (Lee et 

al. 2003; Kreuzinger et al. 2004). 
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Oxidation for removal of CECs by chlorination (30% to 82%) has been found more 

effective than UV (<1 to 52%), thereby indicating disinfection processes not subject to 

transmissivity may be more effective for CEC removal in secondary effluents and UV 

disinfection more suitable for tertiary effluents (Luo et al. 2014). Table 2-10 shows that a 

comprehensive evaluation of several secondary treatment WRRFs for the removal of CECs 

revealed overall efficiencies ranging from 5% to 99% (Drewes et al. 2006; Behera et al. 2011; 

Luo et al. 2014).  

As shown previously in Table 2-2, and below in Table 2-10, others have reported varying 

degrees of CEC biodegradability between WRRF primary and secondary treatment (Drewes et 

al. 2006; Behera et al. 2011; Oppenheimer et al. 2011; Luo et al. 2014). 
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Table 2-10: CEC Removal by WRRF Secondary Treatment 

CEC 
 

Hydro 
Classificationa 

Range in Primary 
Effluents                                     

(ng/L) 

Range in Secondary 
Effluents                                   

(ng/L) 

Removal 
Efficiencyb 

(%) 
17α-Ethynyl Estradiol HB-N ND – 13 ND - 7.5 100 
17β-Estradiol HB-N ND – 150 ND - 43 100 
4-t-Octylphenol HB-N 100 - 13,000 ND - 1,300 48.4 
Bisphenol A HB-N 40 -100 ND - 17,300 81.1 
Estriol HB-N ND – 802 ND - 18 100 
Estrone HB-N 7.3 -132 ND - 108 87.1 
Nonylphenol HB-N 1,300 - 343,000 ND - 9,100 60.4 
Testosterone HB-N 24 -180 ND 100 
Acetaminophen HL-N 3,540 – 10,234 ND - 27 99.9 
Atenolol HL-N 5,113 – 11,239 261 – 5,911 64.5 
Carbamazepine HB-N 43 – 127 40 - 74 < 10 
Diclofenac HB-I 59 -243 13 - 49 81.4 
Gemfibrozil HB-N 101 – 318 9 - 26 92.3 
Ibuprofen HB-I 1,599 – 2,853 15 - 75 98.2 
Ketoprofen HB-N 81 – 286 ND - 37 94.2 
Lincomycin HL-I 3,095 – 19,401 1,437 – 21,278 < 10 
Naproxen HB-N 1,360 – 5,033 37 - 166 95.7 
Sulfamethazine HL-I ND – 343 ND - 408 13.1 
Sulfamethoxazole HL-I 79 – 216 20 - 162 51.9 
Caffeine HL-N 1,608 – 3,217 ND - 60 99.2 
Triclosan HB-I 247 – 785 79 - 149 79.6 
Trimethoprim HL-I 101 – 277 13 - 154 69 
Sucralose HL-N 14,000 – 49,000 15,000 – 43,000 < 10 
Atrazine HB-N 20 – 28,000 4 - 730 12.5 
Clofibric acid HB-N ND – 65 ND - 6 93.6 
DEET HB-N 2,560 – 3,190 610 – 1,580 61.9 
Diuron HB-N 30 – 1,960 2 – 2,530 48.5 
TCEP HB-N 60 – 500 60 – 2,400 < 10 
TCPP HB-N 180 – 4,000 100 – 21,000 < 10 
ND = Below analytical detection limit 

Sources: Drewes 2006; Behera 2011; Oppenheimer 2011; Luo 2014; ACS 2015, ChemAxon 2015; Yangali-Quintanilla 2010 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 
bCalculated average values 

In summary, reported data proves that WRRF secondary treatment is effective for 

removal of some CECs. Best performance was seen with biological reactors optimized for 10-

day or greater SRT and lower than typical F:M ratios. For WRRF secondary treatment process 

trains optimized for CEC removal, efficiencies greater than 50% should be anticipated for EDCs, 

stimulants, and most pharmaceuticals. However, the literature indicates less than 50% removal 

efficiencies can be expected from WRRF secondary treatment for preservatives, flame 

retardants, pesticides, artificial sweeteners, and some pharmaceutical antibiotics. 



  43 

2.7.2 Rejection by NF and RO 

The following section reviews previous literature on reported CEC rejection for bench, 

pilot, and full-scale NF and RO membranes. In some cases results represent the total rejection 

efficacy of an NF/RO membrane in series following an MF/UF membrane. 

Appleman et al. (2013) reported the results of a bench-scale study comparing a loose NF 

membrane (NF270) to three granular activated carbon (GAC) adsorption columns for the 

removal of eight perfluorinated (PFA) compounds ranging in MW from 214 to 400 g/mole. The 

testing used lab-synthesized PFA compounds in DI water as well as in a simulated ground water 

matrix. Virgin membrane as well as membranes fouled with humic acids were employed. The 

membrane experiments revealed that greater than 93% removal can be obtained for all of the 

selected PFA compounds including the shortest chain compound. The data revealed that the 

presence of natural organic matter (NOM) did not have a negative effect on the rejection of PFA 

compounds (Appleman et al. 2013).   

Yangali-Quintanilla (2010) conducted a bench-scale with two Dow Filmtec NF 

membranes using synthetically contaminated water. The CEC rejection results and 

corresponding hydrophobicity classification are provided in Table 2-11.   
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Table 2-11: Bench-Scale CEC Rejection by NF Membranes 

CEC Classificationa 
NF 90b 

(%) 
NF 200c 

(%) 

17β-estradiol HB-N 92.7 80.6 

Bisphenol-A HB-N 91.5 50.4 

Estrone HB-N 93 92.2 

Nonylphenol HB-N 91.3 91.7 

Acetaminophen HL-N 75.2 68.5 

Carbamazpine HB-N 91.3 78.8 

Ibuprofen HB-I 96.2 77.3 

Metronidazole HL-N 83.5 53.7 

Naproxen HB-I 96.2 76.8 

Phenacetin HL-N 80 50.4 

Phenazone HL-N 85.9 60.4 

Sulfamethoxazole HL-I 94.5 61.6 

Caffeine HL-N 84.8 62.7 

Atrazine HB-N 95.7 88.6 

Source: Yangali-Quintanilla 2010 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic 
b NF90: MWCO = 200 Da; c NF200: MWCO = 300 Da 

 

Drewes et al. (2006) studied the rejection of synthetic water spiked with CECs in a pilot 

study using a single-stage Koch 2540 TFC-HR spiral wound element, an RO membrane with 

full-scale installations in service for I/DPR. The pilot feed water was an effluent organic matter 

matrix representing both a common makeup of secondary treated effluents (after MF) and a 

consistent background quality throughout the test run. The synthetic matrix was prepared with 

secondary effluent from a local WRRF in Colorado. The secondary effluent was microfiltered 

and then concentrated to a 3:1 ratio using a Dow FilmTec XLE RO membrane. After a feed 
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blank was taken for background control, the target CECs were spiked from the stock solution to 

the feedwater in a SST drum and mixed overnight. During the pilot RO operation, the recovery 

rate was established at 90.2%. To season the element, 20L of feedwater was passed through the 

element and allowed to stabilize overnight. After 180L of additional feedwater was passed 

through the membrane vessel, final samples were taken from the permeate and reject. Total 

rejection was observed for the estrogen-based CECs. The phenol-based CECs were rejected at 

99%. Table 2-12 shows that the rejection of CECs from the spiked water matrix during pilot 

testing. 

Table 2-12: Pilot-Scale CEC Rejection by RO 

CEC 

Spiked 
EfOM 

Feedwater 
(ng/L) 

Koch TFC-HR 

Permeate 
(ng/L) 

Reject            
(ng/L) 

Removal 
(%) 

Nonylphenol 6,958 86.1 8,814 98.8 
4-t-Octylphenol 812 11.1 1,053 98.6 
Bisphenol A 80,720 689.4 115,042 99.1 
17β-Estradiol 21.9 ND 28.9 100 
Estrone 43.2 ND 57.5 100 

17α-Ethinylestradiol 25 ND 42.5 100 
Source: Drewes et al. 2006 
ND = non-detectable 

 

 
Snyder et al. (2004) evaluated the rejection of CECs for tertiary effluent in a full-scale 

MF/RO integrated membrane operating system (MOS). Facility I, as it is known, is currently in 

operation with a RO capacity of 12 MGD. The process train for Facility I consists of a typical 

WRRF secondary effluent followed by MF/RO and includes grit removal, primary clarification, 

activated sludge biological treatment through a sequence of anoxic and aerobic swing zones, 

secondary clarification, tertiary dual-media filtration (anthracite/sand), chloramine disinfection, 

and MF in series with RO. The MF/RO finished water is used for aquifer storage and recovery 
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(ASR) via direct injection. Full-scale testing occurred over a 48-hr period using RO Train #4 

with a process capacity of 1.0 MGD. The RO feedwater was nitrified/denitrified tertiary filtered 

water that was pH adjusted to 6.3 using sulfuric acid, microfiltered (Siemens Memcor MF), and 

dosed with an antiscalent (Hypersperse, GE Betz). The process train operated with an overall 

recovery rate of 85%. The RO MOS design was a three-stage configuration of Koch TFC-H 

Magnum spiral-wound elements (24-10-5) loaded with a specific flux of 0.07 gfd/psi (Snyder et 

al. 2004). 

Sampling of the full-scale RO MOS demonstrated rejection below the detection limit for 

the suite of CECs tested. The tested CECs in these evaluations are all considered hydrophobic, 

with low Kow values in the range of 3.13 to 5.28. Their molecular weights vary from 266-340 Da 

and therefore represent a size well above the MWCO of the tested Koch RO membrane. 

Therefore, hydrophobic/hydrophobic interactions between solutes and membrane as well as 

steric exclusion were determined responsible for the high removal efficiencies observed for this 

suite of CECs. Based on the CECs rejection results reported in Table 2-13, the research group 

concluded RO is an effective barrier for CECs in reuse application (Snyder et al. 2004). 

Table 2-13: Full-Scale CEC Rejection by MF/RO Series Membranes 

CEC 

Feedwater (MF Permeate) RO Permeate 
Removal             

(%) 
C1                   

(ng/L) 
C2                   

(ng/L) 
C3                   

(ng/L) 
P1                       

(ng/L) 
P2                       

(ng/L) 
P3                       

(ng/L) 

Nonylphenol 208 441 766 ND 33 ND 100 

4-t-Octylphenol 13 14 61 ND ND ND 100 

Testosterone 4.6 3.8 4.7 ND ND ND 100 

Estrone 4.7 6.6 23.3 ND ND ND 100 
        
Source: Snyder et al. 2004 

ND = non-detectable 
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The BOR and 14 Southern California PWS partners evaluated WRRF secondary effluent 

for suitability for I/DPR application and conducted a demonstration study to verify membrane 

technology as an effective barrier for CEC control (USBOR 2009; Snyder et al. 2007). Table 2-

14 shows the rejection results of 36 CECs for the demonstrated NF and RO membranes.  

 
Table 2-14: CEC Rejection Demonstration by NF and RO Membranes 

CEC 
NF 
(%) 

RO             
(%) 

CEC 
NF 
(%) 

RO 
(%) 

Andorostenedione 50-80 >61 Iopromide >80 >99 
Estradiol 50-80 N/A Lindane (a-BHC) 50-80 N/A 
Estriol 50-80 N/A Meprobamate 50-80 >99 
Estrone 50-80 >95 Naproxen 20-50 >99 
Ethinyl Estradiol 50-80 N/A Pentoxifylline 50-80 >96 
Oxybenzone >80 >93 Sulfamethoxazole 50-80 >99 
Progesterone 50-80 N/A Caffeine 50-80 >99 
Testosterone 50-80 N/A Triclosan >80 >97 
Acetaminophen 25-50 >90 Trimethoprim 50-80 >99 
Carbamazepine 50-80 >99 Atrazine 50-80 N/A 
Diazepam 
(Valium) 

50-80 N/A DDT >80 N/A 

Diclofenac 50-80 >97 DEET 50-80 >95 
Dilantin 50-80 >99 Metazachlor 50-80 N/A 
Erythromycin >80 >98 TCEP 50-80 >91 
Fluoxetine 
(Prozac) 

>80 >96 Benzo(a)pyrene >80 >90 

Gemfibrozil 50-80 >99 Fluorene >80 N/A 
Hydrocodone 50-80 >98 Galaxolide 50-80 >98 
Ibuprofen (Advil) 50-80 >99 Musk Ketone >80 N/A 
Source: USBOR 2009; Snyder et al. 2007 

N/A: Not Available 

 

The EPA has released the results of an extensive literature review of published studies of 

the effectiveness of various treatment technologies for CECs (EPA 2014). In response to 

emerging concerns about the possible impacts of pharmaceuticals, hormones, detergents, and 

other chemicals on human health and aquatic organisms, the EPA searched over 400 publications 

that referenced treatment of CECs. About 100 of those sources contained treatment information 

which was entered into the database. The EPA compiled and summarized the results reported by 
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researchers in the last five years. The research occurred primarily in the US, Canada, and 

Europe. Although the EPA database includes results from over 400 publications on the subject, 

there were fewer than 10 operating RO membrane units, zero full-scale, and only 13 bench-scale 

NF membrane units from which to report CEC rejection efficacies (EPA 2014). A query of the 

database specific to full-scale membrane rejection yielded the data for 51 CECs as provided in 

Table 2-15. 

 
Table 2-15: Full-Scale CEC Rejection by RO Membranes 

CEC  (% / #) CEC  (% / #) 

17α-estradiol  23 / 1 Meprobamate  99 / 5 
Andorostenedione  81 / 1 Monensin  90 / 1 
Bisphenol A  33 / 2 Nalidixic acid  25 / 1 
Diethylstilbestrol  65 / 1 Naproxen  73 / 5 
Equilin  31 / 1 Norfloxacin  90 / 1 
Estradiol  65 / 2 Pentoxifylline  98 / 2 
Estrone  77 / 4 Primidone  98 / 1 
Ethinyl Estradiol  19 / 1 Roxithromycin  88 / 1 
Oxybenzone  75 / 7 Sulfachloropyridazine  12 / 1 
Testosterone   75 / 2 Sulfamethazine  19 / 1 
Acetaminophen   64 / 4 Sulfamethizole  17 / 1 
Carbadox  35 / 1 Sulfamethoxazole  81 / 5 
Carbamazepine  84 / 6 Sulphasalazine   89 / 1 
Cephalexin  85 / 1 Caffeine   66 / 5 
Ciprofloxacin  98 / 1 Triclosan   95 / 4 
Diazepam (Valium)  58 / 1 Trimethoprim   95 / 5 
Diclofenac  97 / 4 Atraton   5 / 1 
Dilantin  99 / 5 DEET  93 / 6 
Enfroflaxacin  83 / 1 Metolachlor   14 / 1 
Erythromycin  99 / 4 TCPP   98 / 1 
Fluoxetine (Prozac)  90 / 4 TDCPP  89 / 1 
Gemfibrozil  84 / 5 Tri(chloroethyl) phosphate   97 / 6 
Hydrocodone  98 / 4 Alachlor   6 / 1 
Ibuprofen (Advil)  91 / 4 Galaxolide  99 / 3 
Iopromide  87 / 6 Musk Ketone   85 / 3 
Lincomycin  80 / 1    

Source: EPA 2014. http://water.epa.gov/scitech/swguidance/ppcp/results.cfm. Reported rejection rates are reported Average 

Rejection % / # units. 
No NF membrane units reporting 
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2.8 NF Membrane Rejection Theory 

This section reviews previous work relative to membrane rejection theory for the control 

of CECs in I/DPR applications. Specifically, an understanding of relative CEC QSAR properties 

and membrane rejection mechanisms is necessary for modeling purposes.  

2.8.1 Physiochemical Properties of CECs (QSAR) 

The American Chemical Society (ACS) maintains and catalogues an authoritative 

collection of disclosed chemical substance information in a registry by Chemical Abstracts 

Service Number, or CASN (ACS 2015; ChemAxon 2015). The CAS Registry is maintained by 

the ACS CAS Division. Currently, the CAS Registry identifies more than 81 million organic and 

inorganic substances, with physiochemical and/or structural characterization information about 

each substance. The registry is updated with approximately 15,000 additional new substances 

annually (ACS 2015). A tool for the molecular characterization of CECs, the CAS Registry 

maintains QSAR properties such as molecular weight, size, ionic charge, ionizing and 

partitioning coefficients, polarity, and solubility. 

2.8.1.1 Molecular Weight  

Molecular weight (MW) of a compound is the sum of the mass of each constituent atom. 

Atomic weight of a substance is the average atomic mass for an element. Atomic weights of the 

atoms are available from the periodic table and can be summed to obtain molecular weight. MW 

of a substance is measured in the unit grams/mole (g/mole). 

2.8.1.2 Molecular Surface Area 

Molecular and polar surface area are usually expressed in units of square angstroms (Å2). 

Molecular surface area (MSA) can be defined as the surface area of a molecule that is accessible 

to a solvent (ChemAxon 2015). MSA was first described by Lee and Richards (1971) and is 
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sometimes called the Lee-Richards surface area. However, MSA is typically calculated using the 

“rolling ball” algorithm developed by Shrake and Rupley (1973).  

2.8.1.3 Net Electrical Charge 

The electrical charge of a CEC is generated when the compound of ions, atoms, or 

molecules includes a total number of electrons that is not equal to the total number of protons, 

giving the compound a net positive (+) or negative (-) electrical charge (ACS 2015). When the 

number of electrons and protons are in equilibrium, the compound has no charge and is referred 

to as neutral (0). Since all ions are charged, they are attracted to opposite electric charges and 

repelled by like charges. In chemical terms, if a neutral atom loses one or more electrons, it has a 

net positive charge. If an atom gains electrons, it has a net negative charge. The net charge of an 

ionizable atom is zero, or neutral, at a certain pH. This pH is referred to the isoelectric point 

(ChemAxon 2015).  

2.8.1.4 Acid Dissociation Constant (pKa) 

The Acid Dissociation Constant (pKa) value of a CEC is a quantitative measurement of a 

chemical compound’s acidity in solution (Schwarzenbach et al. 2003; Benjamin and Lawler 

2013). The pKa is derived from the equilibrium constant for the acid’s dissociation reaction, Ka. 

 pKa = -log10 Ka = pH + log10 (conjugate acid/conjugate base)           Eq. (2.1) 

An organic conjugate acid is a species formed by the reception of a proton (e.g., 

hydrogen ion); conversely, an organic conjugate base is a species formed by the removal of a 

hydrogen ion from an acid. The lower the pKa value, the stronger the acid. The higher the pKa, 

the weaker the acid. Very strong acids have pKa values less than zero, while weak acids 

generally have pKa values between 0 and 9 (Schwarzenbach et al. 2003; Benjamin and Lawler 

2013). 
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2.8.1.5 Octanol-Water Partition Coefficient 

The octanol-water partition coefficient (Kow) can been utilized to quantify the 

hydrophobicity of a CEC (Yangali-Quintanilla et al. 2011). Organic compound Kow values are 

defined as the ratio of the compound’s concentration in a known volume of n-octanol to its 

concentration in a known volume of water after the octanol and water have reached equilibrium 

(EPA 2015a). Expressed another way, Kow is a dimensionless concentration ratio whose 

magnitude expresses the distribution of a compound between n-octanol (a non-polar solvent) and 

water (a polar solvent). The higher the Kow, the more non-polar the compound. And, the lower 

the Kow, the more polar the compound. Log Kow values are generally inversely related to CEC 

solubility and directly proportional to MW (Schwarzenbach et al. 2003; Benjamin and Lawler 

2013). 

A high log Kow is a relative indicator of the CEC tendency to come out of aqueous 

solution and adsorb to a solid medium such as a filter medium or membrane. Generally, CECs 

with log Kow values less than 2.0 are considered hydrophilic (HL), or having a relatively high 

affinity for water, whereas CECs with log Kow values greater than or equal to 2.0 are considered 

hydrophobic (HB), or having a relatively low affinity for water (Schwarzenbach et al. 2003; 

Yangali-Quintanilla et al. 2011; Benjamin and Lawler 2013). 

2.8.1.6 Octanol-Air Partition Coefficient 

The octanol–air partition coefficient, Koa, is defined as the ratio of solute concentration in 

air versus octanol solvent when the octanol–air system is at equilibrium (Li et al. 2006). Koa has 

been used extensively for describing the partitioning of organic compounds between air and 

solute organic phase. Koa has a strong temperature dependence, which can be described by 

Log Koa = A + (ΔHoa)/(2.303RT) Eq. (2.2) 
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where A is the intercept; ΔHoa is the enthalpy change involved in octanol-to-air transfer of a 

chemical, R is the ideal gas constant, and T is absolute temperature (Schwarzenbach et al. 2003). 

This temperature dependence is important for assessing the potential long-range transport of 

CECs. As such, Koa has been shown to be a key QSAR property pertinent to the long-term Great 

Lakes contamination potential of CECs, where relatively soluble CECs are subject to transport in 

colder climates (Wren 1991; Mac et al. 1993).  

Koa can also be expressed as a function of the Kow and air-water partition constant (Kaw), 

known as Henry’s law constant (Schwarzenbach et al. 2003). 

Koa = Kow / Kaw  Eq. (2.3) 

Henry’s law is one of the ideal gas laws formulated by the British chemist William Henry 

in 1803 and can be expressed for dilute solutions as a function of the solubility of a gas in a 

liquid and the partial pressure of the gas subjected to the liquid (Schwarzenbach et al. 2003; 

Benjamin and Lawler 2013). Various forms of Henry’s law exist. For assessing the equilibrium 

distribution of a given CEC in an air-water system, the dimensionless form below will be 

assumed for standard atmospheric pressure and a given temperature. 

Kaw = Ca/Cw = KH/RT  Eq. (2.4) 

where Ca is the equilibrium concentration in the air phase and Cw is the equilibrium 

concentration in the water phase. Similar to Kow, as discussed previously, the value of Kaw for a 

given CEC has been observed to generally decrease with increased water solubility (Yangali-

Quintanilla et al. 2011).  

2.8.1.7 Polarizability (α) 

An induced dipole is generated by partial charges of a CEC molecule that has a tendency 

to alter the external electric field (Miller and Savchik 1979). This phenomenon is referred to as 
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polarizability, α. An empirical equation for the calculation of the average molecular 

polarizability, α, was developed by Miller and Savchik (1979):  

α = (4/N) [ƩAґA]2 (Å3)   Eq. (2.5) 

where ґA represents the sum of atomic hybrid components of α, N is the total number of electrons 

in the molecule, and A represents all atoms (A = 1, 2, 3…), and is expressed as cubed angstroms, 

Å3. The ACS maintains polarizability values for each recorded chemical compound as a QSAR 

molecular property within the CAS Registry database (ACS 2015). 

2.8.1.8 Water Solubility 

The solubility of a CEC in water may be defined as the maximum amount, or 

concentration, of the compound that will dissolve in pure water at a specified temperature (EPA 

2015a). Above this concentration, the water is considered a super-saturated aqueous solution. 

Generally speaking, water solubility is the extent to which a CEC will dissolve in water. Log 

water solubility (Sw) is typically inversely related to MW. Aqueous concentrations are usually 

stated in terms of mass per volume or weight ratios (e.g., mg/L, µg/L, or ηg/L).  

2.8.2 Rejection Mechanisms 

Bellona et al. (2004) conducted a comprehensive literature review of previous work to 

identify the rejection mechanisms and factors affecting rejection of organic solutes (i.e., CECs) 

by NF/RO membranes. The authors reported the following key CEC physical-chemical 

properties affect rejection: 

1. Molecular weight (MW) and size (length and width) 

2. Ionic charge (neutral, +, or -), as a function of the acid disassociation constant (pKa) 

3. Hydrophobicity (HB or HL), as a function of the octanol-water coefficient (log Kow) 
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Bellona also reported the following key membrane mechanisms affect rejection: 

1. Steric exclusion (as a function of MWCO) 

2. Electrostatic surface charge exclusion or adsorption (as a function of zeta potential) 

3. Hydrophobic/hydrophilic adsorption, as a function of contact angle 

The authors also concluded that tight NF membranes (with MWCO ≤ 200 Da) exhibit 

similar membrane rejection properties as RO and are preferred over open NF membranes (with 

MWCO >200 to 400 Da) for CEC control.  Furthermore, the membrane skin for most TFC 

membranes is designed by the manufacturer to carry a negative charge to minimize fouling 

attributable to the adsorption of negatively charged solutes present in feed waters as it relates to 

the electrostatic charge rejection mechanism. This negative charge (i.e., zeta potential) for most 

membranes has been observed to become increasingly more negative as feed water pH is 

increased. Based on this phenomenon, the authors concluded that increased pH in the solute feed 

water led to increased rejection rate of ionic charged CECs with modern TFC membranes 

(Bellona et al. 2004). 

Another study of CEC rejection phenomena by Linden et al. (2012) reported the key 

solute parameters that determine how effectively a membrane will reject a given CEC are its 

molecular weight, its dissociation constant (pKa), its hydrophobicity (expressed as partitioning 

constant log Kow), and its ionic charge (+, -, or neutral). Additional study determined the key 

rejection mechanisms of the membrane include the MWCO, pore size, surface charge (zeta 

potential), roughness, and hydrophobicity (Bellona et al. 2004).  

Sanches et al. (2013) found that size exclusion (MWCO) and membrane surface charge 

(zeta potential) are the most relevant rejection mechanisms of select TFC NF membranes that 

impact CEC rejection efficiency with only minor contributions from hydrophobic interactions. 
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The CEC properties of MW, charge, and polarizability correlated best with the observed 

rejection. The research group observed the rejection of eight model CECs, including hormones 

and pesticides, in synthetic water with a bench-scale cross-flow test apparatus and commercially 

available GE Osmonics DK Series NF membranes with a MWCO range of 150-300 Da.  

Kimura et al. (2003) reported negatively charged CECs are effectively rejected by NF 

and RO membranes because of electrostatic repulsion by the negatively charged membranes, 

whereas neutral CECs are removed based on the molecular size of the CEC and the MWCO of 

the membrane. This finding was based on the observed rejection potential of an NF membrane 

(zeta potential = -11mV: MWCO = 200 Da) and an RO membrane (zeta potential = -10mV; 

MWCO = 100 Da) for selected CECs. The cross-flow bench test apparatus included two 

commercially available membranes (NF: Hydranautics ESNA; RO: Dow Film-Tec XLE). Both 

membranes showed a >90% rejection for negatively charged CECs, whereas the RO membrane 

outperformed the NF membrane for neutral CECs, removing 99% of BPA. These experiments 

were conducted with three target CECs spiked in synthetic model waters in the absence of DOC 

from WRRF secondary effluent. When the authors lowered their model CEC concentrations in 

the laboratory prepared sample matrix to simulate the concentrations typically occurring in a 

WRRF secondary effluent matrix, the performance of both membranes declined but could not be 

explained by the molecular weights of the analytes. The authors further reported this work 

supports the need not only for membrane performance studies to be run at environmentally 

relevant levels of target CECs but also for further investigation into the combined effects of 

molecular size and membrane affinity (Kimura et al. 2003). 

Ngheim et al. (2002) conducted research using a bench-scale experimental rejection 

program, apparatus, and membranes identical to Schafer et al. (2003). This study reported on the 



  56 

variable effects of differing water matrices. In addition to matrix solutions of MilliQ DI water 

and carbonate buffer, matrix solutions were also supplemented separately with 10 mg/L doses of 

NOM, fulvic acid, and SE. The authors reported that the adsorption rejection mechanism was 

only slightly reduced due to the presence of competing organics in the matrix; however, the 

overall rejection remained high (80-100%) for estrone, thereby suggesting steric exclusion was 

the major rejection mechanism (Ngheim et al. 2002). 

Yoon et al. (2006) utilized a bench-scale stainless steel dead-end stirred-cell filtration 

apparatus (SEPA ST, Osmonics) to study the NF rejection of 52 EDC and PPCP compounds in 

four lab spiked samples, one with DI matrix and three with source (not WRRF secondary 

effluent) water matrix. The three source water samples were pre-filtered to remove any 

particulate matter prior to spiking with the select CECs. The commercially available 

Hydraunatics ESNA NF membrane tested was reported with a MWCO of 600 Da and zeta 

potential of -10.6 mV. The 52 CECs were characterized for their QSAR properties of size, 

hydrophobicity, and polarity. Experiments were performed at environmentally relevant spiked 

CEC concentrations ranging typically from 2 to <250 ng/L. Results showed that the NF 

membrane rejection mechanisms were steric/size exclusion, hydrophobic adsorption, and 

electrostatic repulsion. The authors reported a general separation trend was observed due to 

hydrophobic adsorption as a function of octanol-water partition coefficient (log Kow) between the 

hydrophobic CECs and hydrophobic membrane. Among the CECs observed with <100% 

rejection, the hydrophobic neutral CECs with log Kow >2.8 generally exhibited <50% rejection, 

while hydrophobic neutral CECs with log Kow <2.8 showed rejection of >75%. The authors also 

reported that NF rejection performance was observed to be better in the synthetic DI matrix than 
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the three source water matrix samples. This led to the author’s hypothesis that the synthetic water 

had the least competition among CECs for membrane adsorption sites. 

In follow-up to their 2006 study, Yoon et al. (2007) conducted additional research with 

the same SEPA dead-end bench-scale apparatus and Hydranautics NF membrane. The objective 

of this study was to further investigate the CEC-to-membrane hydrophobic relationship for 27 

select CECs with a range of octanol-water partition coefficients (log Kow) from -2.1 to 4.77. This 

study confirmed the hydrophobic adsorption relationship observed from the previous study in 

that CEC rejection by NF membranes generally increases with CEC log Kow (or degree of 

hydrophobicity). 

Dang et al. (2015) conducted follow-up research utilizing the bench-scale cross-flow 

experimental conditions identical to the previous paper (Dang et al. 2014). This study 

investigated the rejection of two biodegradable phytoestrogens: geneistein and formononetin. 

These lab-synthesized compounds were found to strongly adsorb initially to the membranes, but 

at steady-state conditions, the rejections reduced to less than 50% for the loose NF270 

membrane. The authors reported that size exclusion, adsorption, and convection are key rejection 

mechanisms, while electrostatic repulsion was reported as the most significant rejection 

mechanism (Dang et al. 2015).  

Schafer et al. (2003) researched rejection of the highly biodegradable natural hormone, 

estrone, by eight different NF and RO membranes from Koch and Trisep. Experiments were 

carried out in bench-scale batch mode with lab-synthesized samples of MilliQ DI and carbonate 

matrix with a target ethanol concentration of 100 ηg/L. Rejection by these membranes ranged 

from 80% for the XN-40 to 100% for all remaining membranes. The authors concluded that size 
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exclusion and adsorption are the major rejection mechanisms for both membrane types (Schafer 

et al. 2003). 

Wintgens et al. (2002) studied 11 different bench-scale commercially available NF 

membranes for the rejection of bisphenol-A (BPA) and nonylphenol (NP) from a landfill 

leachate matrix following pretreatment by a membrane bioreactor (MBR). Observed rejection 

rates of the two CECs ranged from 70% to 100% for the 11 NF membranes. The authors 

confirmed membrane contact angle was an indicator for the hydrophobicity of a membrane, 

whose influence on NP rejection was evident. As reported, a membrane with low contact angle 

(<50º) is considered hydrophilic, while a membrane with a high contact angle (>50º) is 

considered hydrophobic. As observed for the study data set, rejection was greater with the 

hydrophilic membranes than with the hydrophobic membranes. (Wintgens et al. 2002). 

To elucidate key factors governing the rejection of trace organic contaminants, the 

research team of Dang et al. (2014) reported the results of a bench-scale study on the removal of 

16 hydrophilic and hydrophobic solutes, consisting of EDCs and PPCPs, by a MWCO = 300 NF 

membrane (Dow-Filmtec NF270) and LPRO (Hydranautics ESPA2) membrane using a SST 

cross-flow apparatus. Synthesized samples of the solutes at a target concentration of 25 µg/L 

were lab prepared with a matrix of methanol and DI water. Experiments were conducted at pH 

values of 4.7, 7, and 11.  All tested pH values were above the isoelectric point of the membranes, 

which ranged from 3.5 to 4, indicating the membranes were negatively charged at all test 

conditions. The authors utilized the QSAR property Log D to correlate solute hydrophobicity 

rather than Log Kow. A solute with a Log D value of 3 or higher was determined hydrophobic. In 

general, the rejection of charged compounds was better than neutral compounds at all tested pH 

conditions. However, 4-tert-butylphenol, bisphenol A, 4-tert-octylphenol, and triclosan were 
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rejected at less than 50% rejection which was attributed to adsorption and subsequent diffusion 

through the membrane. The cross-flow apparatus allowed mass balance calculation to estimate 

adsorption levels of the solutes. Adsorption levels of the hydrophobic solutes ranged 14% to 

94% for the NF270 and 79% to 94% for ESPA2, whereas the hydrophilic solutes ranged 0 to 

32% and 0 to 12%, respectively. A good correlation was observed between rejection and MW for 

hydrophilic neutral and charged species (Dang et al. 2014).  

Several studies have reported a correlation between the rejection of hydrophobic CECs 

and their affinity for the membrane, expressed as log Kow (Agenson et al. 2002; Agenson et al. 

2003; Van der Bruggen et al. 2002). The authors reported that rejection of hydrophobic CECs by 

NF membranes increased linearly with increasing log Kow values, indicating that hydrophobic 

interactions between the CEC and membrane were the dominant rejection mechanism for CECs 

with MW close to or less than the MWCO. 

The phenomenon of low-molecular-weight solute rejection by porous and semi-porous 

membranes is well documented (Fane et al. 1983; Xu and Lebrun 1999). Dissolved organic 

matter has been experimentally shown to be a significant driver of MF and UF membrane 

fouling (Howe and Clark 2002). A well-known example of this phenomenon is the fouling of 

sterilization membranes in the pharmaceutical industry by product proteins that are smaller than 

the nominal membrane pore size. Adding hydrophilic coatings to MF membranes surfaces has 

been demonstrated to reduce the rate of protein fouling (Loh et al. 2009). For UF of organic 

protein solutions, investigations have concluded that by manipulating the electrostatic 

interactions between the low-MW organic solute and the charged membrane with solution pH, 

the membrane flux rate and subsequent protein rejection can be tuned (Musale and Kulkarni 

1997). This tuning effect with variable solution pH can be amplified by membrane surface 



  60 

doping. Acrylic acid nanobrushes grafted to NF membranes have been shown to improve the 

rejection of soluble sugars at pH greater than 7 (Himstedt et al. 2011). Recent testing with 

charged UF membranes indicated that rejection of reactive dye tracers is greatest with the most 

negatively-charged dye molecules (Chen et al. 2015). Thus, electrostatic interactions between 

charged solutes and membranes, as well as solution pH, can play a significant role in membrane 

fouling and solute rejection performance. 

Feed water matrix composition can have a significant effect upon CEC rejection with NF 

and RO membranes (Schafer et al. 2001; Nghiem et al. 2002; Majewska-Nowak et al. 2002). 

Schafer and Ngheim reported that estrone samples prepared with a WRRF SE matrix showed 

poorer rejection rates from eight NF/RO membranes than the same estrone concentration 

samples prepared with synthetic matrix. The main driving mechanism for the removal estrone, 

which has a high log Kow of 3.13, was determined hydrophobic sorption by the NF membrane. 

The authors concluded that the competition for adsorption sites by other CECs in the SE matrix 

resulted in the poorer rejection rates. Conversely, Majewska-Nowak et al. (2002) found that 

pesticides such as atrazine could adsorb to the organic matter in a WRRF secondary effluent 

matrix, thereby increasing the rejection rate of the NF as a result of increased size and 

electrostatic interaction. 

Boussu et al. (2007) conducted a bench-scale cross-flow study of the rejection of 13 

spiked CECs in synthetic matrix with three commercially available membranes manufactured by 

GE Osmonics and Nitto-Denko. The membranes were reported to have MWCOs of 200, 260, 

and 310 Da; with contact angles of 47, 44, and 70º; and with zeta potentials of -13, -17, and -15 

mV, respectively. Two of the NF membranes were characterized as hydrophilic, while the other 
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NF membrane was characterized as hydrophobic. Based on the results, Boussu concluded the 

following: 

1. CEC rejection was inversely related to MWCO. 

2. Ionic charged CECs were best rejected by the membrane with the highest zeta 

potential. 

3. Neutral charged CECs were best rejected by the hydrophilic membranes. 

Yangali-Quintanilla (2010) studied the rejection of 17 model CECs with two Dow Film-

Tec TFC NF membranes (NF-90: MWCO = 200 Da, contact angle = 58º, zeta = -48 mV; NF-

200: MWCO = 300 Da, contact angle = 37.5º, zeta = -10.8 mV). Synthetic matrix test samples 

were spiked with stock solutions of CECs. To simulate environmentally relevant CEC 

concentrations reported in actual reuse water, the CEC concentration of the prepared feed water 

ranged from 6.5 to 65 µg/L. Rejection test runs were performed with two SEPA CF II (GE 

Osmonics) bench-scale stainless steel dead-end cells operated in parallel. Based on rejection 

results and correlation/modeling of the physical-chemical interactions between solute and 

membrane, the author concluded that the CEC rejection mechanisms of NF membranes are 

MWCO, surface charge, and hydrophobicity.  

Sanches et al. (2013) reported that the use of synthetic waters is a suitable strategy to 

“unravel” the individual correlation of specific physical-chemical properties and membrane 

rejection mechanisms. However, this approach is not accurate enough to model the removal of 

CECs in actual natural matrices and recommended future study with actual reuse water. 

In summary, research shows the predominant NF and RO mechanisms for rejection of 

CECs are steric exclusion, electrostatic interaction, and hydrophobicity. 
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2.9 NF Membrane Rejection Modeling 

With an understanding of NF rejection theory gained from the previous section, this 

section shifts focus to the review of previous rejection modeling efforts. Emanating from this 

work, three different approaches are seen for the modeling of solute rejection by NF and RO 

membranes. 

Plakas and Karabelas (2012) conducted a review of the removal of pesticides by NF and 

RO membrane processes starting from the early history to recent work on modeling the removal. 

The authors summarized the types of published models for solute rejection, including Spiegler-

Kedem-based irreversible thermodynamic models, mass transport hydrodynamic Fick’s-based 

models, and regression-based QSAR models along with their advantages and disadvantages in a 

simple tabular form, as provided below in Table 2-16. The authors concluded that all three 

considered modeling approaches could be utilized for the rejection of pesticides since membrane 

rejection is mostly attributable to size exclusion. However, the authors stated for predicting 

rejection of solutes smaller than membrane MWCO, the QSAR-based approach would be most 

suitable for modeling rejection mechanisms other than size exclusion. The authors cited other 

such rejection mechanisms included electrostatic interactions and hydrophobicity (Plakas and 

Karabelas 2012).   
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    Source: Plakas and Karabelas 2012 

 

Table 2-16: NF/RO Models for Predicting Solute Rejection  

Models Advantages Disadvantages 

Irreversible film theory 

thermodynamics  

(Spiegler-Kadem) 

1. No rejection mechanism or 

solute molecular structure input 

(membrane treated as a “black 

box”). 

2. Ideal for RO desalination 

application. 

 

 

1. Highly dependent on driving 

forces (pressure and 

concentration gradient), which 

restricts practical application. 

2. Unrealistic assumptions must be 

made. 

3. System must be in equilibrium to 

be applicable. 

 

Mass transport  

hydrodynamic  

(Fick’s Law) 

1. Simple models provide 

estimates for technically 

demanding separations. 

2. Linearization facilitates rapid 

calculations. 

 

1. Valid only for high rejection 

membranes. 

2. Variation of the solute mass 

transfer coefficients with 

different water qualities and 

operating conditions and intrinsic 

membrane properties constrains 

model portability to other 

systems. 

3. Mainly applicable to single-

solute compounds. 

4. Solute mass transfer coefficients 

depend on the test unit scale, 

limiting the model accuracy in 

membrane scale-up. 

 

QSAR-based regression 

 

 

1. Easy to use. 

2. No application of physical laws 

or transport phenomena, thus 

overcoming complexity. 

3. Accurate statistics estimates 

based on mechanisms and solute 

properties. 

4. Valid models regardless of 

rejection performance of 

membranes tested. 

 

1. Specific; applicable in the range 

of experimental conditions 

employed for development. 

2. Changes in membrane properties 

as a result of fouling, or swelling, 

influence model accuracy. 
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Bellona et al. (2004) reported that many attempts have been made with little success to 

model the process performance of membrane separations in order to optimize membrane 

applications. To predict inorganic constituent (e.g. salts) mass transfer through high pressure 

membranes, the authors report modeling attempts have included irreversible thermodynamics, 

fate and transport, linear homogeneous solution-diffusion, film theory, and statistical-mechanical 

theory. One successful organic solute retention model, developed by Williams et al. (1999), 

utilized a modified solute-diffusion adsorption equation to describe the sorption and partitioning 

of chlorinated phenols in RO and NF membranes. The solution-diffusion equation, however, is 

not as applicable to newer generation TFC RO and NF membranes since the contribution of 

solute/membrane interaction is not considered nor is steric exclusion a primary rejection 

mechanism. Bellona (2004) reported that although past modeling theory has shown promise in 

describing the separation of components during specialized membrane processes, the need for a 

truly predictive rejection model based on membrane and solute properties is urgent. With their 

review of such properties, the authors created a rejection diagram to predict degrees of high 

pressure membrane rejection as high, moderate, or poor. 

Ngheim et al. (2004) studied the rejection of estradiol, estrone, progesterone, and 

testosterone spiked at 100 ηg/L in a synthetic matrix. Two negatively charged TFC NF 

membranes (Dow/Filmtec NF270 and NF90) were utilized with the cross-flow bench-scale 

apparatus. They also developed mechanistic hydrodynamic (i.e. Fick’s Law) models for 

predicting solute rejection. The authors acknowledged that the thermodynamic (i.e. SK) 

approach is more appropriate for modeling RO performance, but the hydrodynamic approach is 

better suited for modeling NF performance. Radiolabeled hormone samples were prepared in DI 

water from purchased stock solutions in ethanol and were measured using a scintillation counter 
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with a detection limit of 0.5 ηg/L. The pore radius of NF90 was determined to be 0.34 nm while 

the pore radius of NF270 was determined to be 0.42 nm.  Based on the MW of the hormones 

tested (270 to 315 g/mol) the authors estimated a Stokes radius of 0.5 nm. The experimental 

results suggest (performed at pH 6) the steady state removal was as low as 90%, although 

initially the removal was 100%. The authors hypothesized that a combination of adsorption and 

steric exclusion caused the initial removal. However, with time, the adsorption mechanism was 

exhausted (much like carbon adsorption), leaving only steric exclusion. They also hypothesized 

that these hormones pass through the membranes by a diffusion mechanism via a sequence of 

“make and break” bonding (Ngheim et al. 2004).  

Ahmad et al. (2009) presented results of experimental work and modeling performed to 

study rejection of atrazine and dimethoate by Dow/Filmtec NF90 polyamide nanofiltration 

membranes. The contaminant solutions were synthesized in the laboratory at mg/L level to 

simulate chemical spill conditions. No solvent matrix data were presented for the solutions. It is 

not clearly stated, but it seems a single solution was prepared that contained both pesticides. The 

membrane rejection tests were performed using a 300 mL stirred cell from Sterlitech SST bench-

scale membrane coupon test apparatus. The experiments were performed in dead-end batch 

mode. The experimental data were used to derive fitting parameters for the SK thermodynamics 

model. For the SK model, the authors assumed that the retention of a solute through the 

membrane is a function of three parameters: specific hydraulic permeability (solvent flux), local 

solute permeability (solute flux), and reflection coefficient (a measure of portion of the 

membrane through which solute cannot be transferred). Rejection versus flux and rejection 

versus pressure data were presented in the paper along with prediction by SK model. Observed 

permeate flux versus pressure did not match the predicted values from SK model. There was 
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agreement between the model predictions and observed data; however, the model generated data 

was utilized to estimate the fitting parameters (Ahmad et al. 2009). 

QSAR molecular properties based regression models are based on the assumption that 

similar molecules behave similarly (Silva et al. 2013). Li and Colosi (2012) proposed that a 

QSAR model could be used to predict the rejection of as-yet uncharacterized emerging 

contaminants of regulatory interest. Another study used a QSAR model to rank CECs found in 

environmental waters, including their parent compounds, metabolites, and transformation 

products, to select the most relevant compounds to be considered as monitoring indicators in 

drinking water treatment systems (Delgado et al. 2012). 

Sanches et al. (2013) developed statistical, multivariate, regression-based models to 

describe the rejection of CECs by a commercially available TFC NF membrane. A group of 37 

rejection values, generated from eight CEC profiles analyzed over five runs with three 

discounted anomalies, were utilized to develop the models. The models were developed to 

correlate rejection attained during NF membrane experiments with specific QSAR molecular 

property descriptors of the target CECs. Statistical regression analysis was applied to model 

rejection through best-fit linear correlations of the multiple input parameters. Specific input 

parameters considered were QSAR properties of the CECs: MW, log of the distribution 

coefficient at pH 7.4 (log D), dipole moment, pKa, water solubility, molar volume, and 

polarizability. Additional CEC size parameters considered were molecular length, molecular 

width, and molecular depth as generated by 3-D visualization software for chemical structures 

(www.jmol.org). Iterative stepwise elimination (Boggia et al. 1997) and the Martens uncertainty 

test (Forina et al. 2004) were used to select the best-fit QSAR properties to model. The authors 

concluded that the developed models have good descriptive capability and contributed to an 
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overall comprehension of rejection of the CECs studied. Size exclusion and electrostatic 

interactions with minor contribution from hydrophobic interaction were the three modeled 

mechanisms. Since the models were calibrated with only eight CECs in synthetic matrix 

samples, the authors acknowledged that more comprehensive modeling with additional CECs in 

reuse matrix waters is necessary to extend this research (Sanches et al. 2013). 

Yangali-Quintanilla (2010) utilized QSAR analysis to quantify compound rejection by a 

NF membrane in terms of CEC physical-chemical properties and membrane rejection 

mechanisms. The QSAR model was constructed using the internal experimental data described 

previously for synthetic waters. The model was internally validated using measures of goodness 

of fit and prediction, and subsequently was validated with external data. The QSAR model 

verified that steric exclusion and log Kow are the most important variables that influence 

rejection. Using QSAR to describe CEC rejection was later improved and extended with the use 

of non-linear artificial neural network (ANN) models. Use of ANN models based on QSAR 

equations was an important tool to predict rejection of neutral CECs by NF and RO membranes 

with standard errors of estimation close to 5% and regression coefficients, R2, of 0.97. The 

ANN-QSAR models demonstrated that rejection of neutral CECs by NF and RO membranes is 

controlled more by size exclusion and less by hydrophobic interaction.  

Fujioka et al. (2014a,b) developed and validated a mathematical model based on 

irreversible thermodynamic principles (SK) for predicting removal of N-nitrosamines by spiral-

wound RO membrane. The modeling approach included subdividing the membrane surface into 

layers and determining rejection behavior for each section similar to a finite element approach. 

Pilot testing was conducted using a three-stage membrane pilot using ESPA2-4040 elements 

from Hydranautics. The pilot was operated in a loop where the concentrate stream and the 
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permeate streams were returned to the feed tank. The feed solution was made using DI matrix 

spiked with stock solutions of nitrosamines, NaCl, CaCl2, and HCO3 were added to simulate 

treated wastewater conditions. Three different fluxes were tested (10, 20, and 30 l/m2h). The 

rejection of higher molecular weight nitrosamines were 90% or higher at all fluxes. The rejection 

of the lower molecular weight nitrosamines varied with flux and ranged from 31% to 54%. A 

strong correlation was observed between boron removal and NDMA removal thereby suggesting 

boron could be a potential surrogate indicator for nitrosamines. Elevated temperature was 

reported to lower the removal of NDMA. However, pH was not found to have a strong effect on 

removal of NDMA. The authors reported model predicted rejections correlated well with 

observed rejection results (Fujioka et al. 2014a,b). 

Shamansouri and Bellona (2013) conducted research to develop and validate a model for 

predicting rejection of a study set of 67 nonionic (i.e., neutral charged) CECs by Dow/Filmtec 

NF270 NF membranes. Predictive models explored for best fit with the observed rejection data 

were an SK irreversible thermodynamic transport model and a hybrid QSAR-based regression 

model with fitting parameters for flux and CEC diffusion. The test apparatus utilized for the 

experimental work was a bench-scale cross-flow configuration. Test conditions included 

constant temperature (18 C), pH (6.3), and steady-state influent flow rate. Solute sample matrix 

was synthesized with DI water. Pressure was varied between 10 and 200 psi to produce 5 

incremental flux conditions ranging from 10-120 l/m2h. Sixteen of the 67 compounds tested 

showed significant deterioration of rejection performance between the 2 hour and 24 hour run 

times, indicating adsorption saturation. These 16 compounds were scrubbed from the data set for 

model development. Eighty percent of the remaining results were used to develop the model 

while the other 20% (11 CECs) were used for internal model validation. The SK model could not 
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be validated to produce acceptable predictive results. The SK approach was determined to not 

correlate well (R2 < 0.8) with CECs rejected by mechanisms other than steric exclusion. The 

hybrid QSAR model proved to correlate well (R2 > 0.9) between predicted and observed 

rejection of the validation set of 11 CECs (Shamansouri and Bellona 2013). 

Mohammad et al. (2015) conducted a comprehensive review on recent advancements in 

NF membranes that characterized the latest commercially available models from GE Osmonics, 

Dow-Filmtec, Koch, Nitto-Denko, TriSep, Synder, and Toray. The authors provided discussion 

on predictive modeling, fabrication, applications, operations, fouling, and future prospects for 

NF membranes. The research team stated that  

the overwhelming majority of NF predictive rejection models to date are 
inadequate because they have been developed with idealized solutions typically 
containing only 2, 3, or sometimes 4 solutes. If accurate modeling of concentrated 
multi-solute solutions realistic of industrial processing is to become commonplace 
then more effort needs to be placed into modeling systems of real industrial 
relevance (Mohammad et al. 2015). 

2.10 Needed Study 

There are three primary areas of needed study: 

1. Determine the recalcitrant CECs in typical WRRF SE.  

2. Determine NF and RO rejection efficacies for the recalcitrant CECs in SE matrix. 

3. Develop a practical predictive modeling tool to assist regulators, engineers and 

PWS managers with CEC control for I/DPR applications. 

Whether planned or unplanned, IPR is in practice world-wide. DPR systems are currently 

operating in Africa and Texas. Many state water plans have identified billions of dollars in 

capital infrastructure for the implementation of I/DPR systems over the next decade. As PWS 

portfolios take on more reuse water, conventional treatment barriers may prove deficient and the 

upcycling of CECs could be harmful to human health if more effective and robust treatment 
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barriers are not in place. PWS managers are looking for guidance from regulators and industry. 

For now, EPA has opted to leave it to the states for that guidance. State regulators are looking to 

industry advisory committees to provide the knowledge and tools to identify what CECs to 

monitor and what barrier treatment technologies to implement for CEC control. This need is 

critical and immediate. 

With the lack of knowledge, the default approach can be an overly-conservative and cost-

prohibitive design. RO is trending in planned and recently implemented DPR systems as the 

default FAT barrier for CEC control. NF has many advantages over RO including lower system 

pressure, less energy consumed, and less waste generated. An extensive literature review 

performed by EPA in 2014 of over 400 publications on control of CECs found zero full-scale 

and only 13 bench-scale NF studies from which to gather knowledge. Review of the 13 and 

subsequent studies revealed the NF rejection study of spiked CECs in lab-synthesized matrix 

solutions. Although this approach may provide a fundamental understanding of rejection theory, 

it is not representative of I/DPR conditions for NF rejection of recalcitrant CECs occurring in 

WRRF effluent matrices. 

To achieve the study objectives of this research, PE and SE samples will be collected 

from WRRFs in Texas and Oklahoma. SE samples will be processed by bench-scale 

commercially available TFC NF and RO membranes in parallel. All samples will be analyzed by 

a CCL EPA-certified lab for the Norman 96 set of CECs. The Norman 96 CECs will be 

characterized by intended use and physiochemical properties. Results will be analyzed to verify 

rejection performance and develop a practical QSAR-based predictive modeling tool. 
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CHAPTER 3 - METHODS 

3.1 Overview  

Research was conducted to develop a practical modeling tool for regulators and PWS 

managers to predict the rejection of recalcitrant CECs from typical municipal WWRF secondary 

effluents for I/DPR applications by commercially available NF.   

To determine membrane rejection for the recalcitrant CEC trace residual following 

secondary treatment, actual SE was collected from three full-scale operating WRRFs. The 

collected SE samples were processed through bench-scale dead-end TFC NF and RO 

membranes, and analyzed by a certified laboratory to ascertain actual occurring CECs in the 

WRRF effluent and their respective rejection coefficients across the membranes. Prior to and 

concurrent with processing the collected SE through the membranes, the CEC concentrations 

were determined for the SE of each of the three WRRF biological treatment systems. The 

membranes evaluated under this research represent tertiary, or advanced, treatment unit 

processes that could potentially be implemented downstream of a secondary activated sludge 

biological process for reuse application.  

Ultimately, the reduction (e.g., rejection coefficient) of recalcitrant CECs that can be 

effectively removed from actual SE by TFC NF membrane processes with a MWCO of 200 and 

negative surface charge was determined. The observed NF rejection coefficients were then 

correlated with researched molecular properties of the CECs and membrane removal 

mechanisms to develop a QMPM to predict organic solute rejection from secondary effluents 

with similar TFC NF membranes for planned I/DPR applications.   
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3.2 WRRF Descriptions 

Actual municipal WRRF secondary effluent was collected from the following three 

facilities downstream of the respective biological process but upstream of any disinfection or 

tertiary treatment. 

3.2.1 North Texas (NTX) WRRF 

The City of Garland, Texas, owns and operates two tertiary WRRFs (Rowlett Creek and 

Duck Creek) to treat flows from their Dallas/Fort Worth suburb population of 235,000 residents 

(Sober 2016). Secondary effluent for this research was collected from the Rowlett Creek WRRF, 

a fixed-film trickling filter and suspended-growth activated sludge (TF/AS) facility, permitted to 

treat 24 MGD. The TCEQ administers a Texas Pollutant Discharge Elimination System 

(TPDES) permit which dictates the monthly average effluent limits from Rowlett Creek to a 

carbonaceous biochemical oxygen demand (cBOD) of 10 mg/L, total suspended solids (TSS) of 

15 mg/L, and seasonal ammonia nitrogen limits of 5 mg/L (December through March) and 2 

mg/L (April through November). Effluent is discharged to the East Fork of the Trinity River and 

ultimately to the Trinity River. There is no reuse practice at this time for the NTX facility. 

However, during dry summer months and periods of drought, the river flow consists primarily of 

WRRF effluent. As such, the performance of the Rowlett Creek WRRF is critical to the Trinity's 

health and usefulness as a drinking water source for those downstream. 

Figure 3-1 illustrates the NTX process flow diagram (PFD) of the Rowlett Creek facility, 

which consists of influent screening, grit removal, primary clarification, trickling filters, 

intermediate clarification, activated sludge, final clarification, tertiary traveling bridge sand 

filters, chlorine disinfection, and effluent pumping.  
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Figure 3-1: NTX PFD 

3.2.2 Southwest Oklahoma (SOK) WRRF 

The City of Lawton, Oklahoma, owns and operates a tertiary TF/AS plant to treat flows 

from their southwest Oklahoma population of 85,872 residents (Graves et al. 2015). The Lawton 

WRRF currently treats an average daily flow of 10 MGD with average daily effluent water 

quality of 3 mg/L cBOD, 9 mg/L TSS, and 0.2 mg/L ammonia nitrogen. Effluent is discharged to 

Nine Mile Creek in the Red River watershed; however, up to 5 MGD is dedicated for reuse by 

the Public Service Company of Oklahoma (PSO) for their industrial cooling towers. 

Figure 3-2 illustrates the PFD of the Lawton facility, which consists of influent screening, 

grit removal, primary clarification, trickling filters, intermediate clarification, activated sludge, 

final clarification, UV disinfection, and tertiary anthracite filtration. 
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Figure 3-2: SOK PFD 

3.2.3 Central Oklahoma (COK) WRRF 

The City of Norman, Oklahoma, owns and operates a WRRF to treat flows from their 

Oklahoma City suburb and major University population of over 100,000 residents (Kruger et al. 

2013). The Norman WRRF is a conventional suspended-growth activated sludge (AS) facility, 

permitted to treat 12 MGD. The ODEQ administers an Oklahoma Pollutant Discharge 

Elimination System (OPDES) permit which dictates the monthly average effluent limits from the 

WRRF to a cBOD of 13 mg/L, TSS of 30 mg/L, and ammonia nitrogen limits of 4.1 mg/L. 

Effluent is discharged to the Canadian River in the Arkansas River watershed. The Norman 

WRRF provides seasonal reuse to the University of Oklahoma for irrigation of the Jimmie 

Austin Golf Course. 



  75 

Figure 3-3 illustrates the PFD of the Norman facility, which consists of influent 

screening, grit removal, primary clarification, conventional activated sludge, final clarification, 

UV disinfection, and post aeration.  

 

Figure 3-3: COK PFD 

3.2.4 WRRF Operational Data 

Where available, monthly operating reports (MORs) were collected during the sampling 

interval. Notably, MOR data collected at the WRRFs such as cBOD, TSS, ammonia nitrogen, 

and total phosphorus were typically measured on a 24-hour composite sample and reported 

weekly. CEC research samples were taken on the same day as the MOR composite samples if the 

WRRF staff did not measure it daily. Typical MOR data included DO, pH, cBOD/COD, 

TSS/VSS, and ammonia nitrogen. Also, where available, additional standard operating procedure 

(SOP) data relative to the WRRF secondary process was collected during the sample period such 
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as solids retention time (SRT) and mixed liquor suspended solids (MLSS). Collected WRRF 

operational data is provided in Appendix B. 

3.3 Sampling Program 

During 18 sampling events in the summer months, 108 samples were collected from the 

three WRRFs. Sampling program tasks involved collecting, preserving, packaging, and shipping 

samples for analysis. Primary objectives of the sampling program included: 

• Collecting representative I/DPR source water samples from full-scale WRRFs 

• Collecting multiple samples over time during base-flow dry-weather conditions when 

CEC concentrations are generally greatest 

• Collecting samples to assess actual recalcitrant CEC remaining in the SE following 

full-scale WRRF biological degradation 

• Collecting SE samples for bench-scale NF and RO membrane rejection analysis of 

the recalcitrant CECs 

3.3.1 Sampling Schedule and Target Conditions 

To capture base-flow, dry-weather conditions, the sampling period occurred during the 

summer of 2014 over six weeks from July through August. Samples were collected weekly if 

target conditions were acceptable for sample collection. If target conditions were not ideal, 

sampling was deferred to the following week. The target conditions for sampling were as 

follows: 

• Plant flow of no more than average day 

• No storm event within seven days 

• Not during a daily diurnal peak 

• Sample on or near the day that samples were taken for regulatory reporting 
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3.3.2 WRRF Sampling Locations 

Sampling locations for each WRRF represented the combined effluent from all operating 

liquid process trains downstream of the biological process. The SE samples were collected from 

combined final clarifier effluents, but prior to any tertiary treatment or disinfection. Sampling 

locations were illustrated previously in the WRRF PFDs (Figures 3-1, 3-2, and 3-3) and are also 

shown on the plant site aerials in Figures 3-4, 3-5, and 3-6. 

 

Figure 3-4: NTX WRRF Site Aerial (Google Maps) 
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Figure 3-5: SOK WRRF Site Aerial (Google Maps) 
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Figure 3-6: COK WRRF Site Aerial (Google Maps) 
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3.3.3 Sample Collection, Preservation, and Handling 

As defined in this section, sample collection, preservation, and handling protocol was 

followed in accordance with guidelines provided by the following references: Snyder et al. 2003; 

ASTM 2006; Rice and Bridgewater 2012; Vanderford et al. 2012. Grab samples were collected 

in amber glass bottles with preservatives, chilled to target temperature below 6°C but above 

freezing, and analyzed within 30 days of sampling. 

3.3.3.1 Collection Protocol 

Grab sampling was the site collection method utilized for this research. Sampling 

equipment included a 950 ml wide-mouth amber glass packer attached to an 8-24 ft. telescoping 

fiberglass swing pole. Collection equipment was cleaned thoroughly before use with non-

antibacterial detergents and rinsed well with lab-provided Type 1 (ASTM D1193) laboratory 

reagent grade DI water after detergent wash. No wetted collection equipment was made of 

Tygon, polyethylene, or other such plastics. Notably, detergents and plastics can be a source of 

interference in the analysis of CECs. The final rinse of collection samplers was with a methanol 

rinse. The collection bottle was submerged into the SE collection boxes to mid-depth and filled 

completely. Care was taken that the mouth of the bottle did not come into contact with anything 

other than the sample water. Collected SE in the glass packer was transferred to the lab-provided 

amber glass bottles. Using indelible ink, all samples were clearly marked with appropriate 

identifying information as provided in Appendix B. 

3.3.3.2 Preservation Protocol 

As samples were transferred to the amber glass bottles provided by the laboratory, 

sodium omadine and ascorbic acid were utilized to inhibit CEC biodegradation and oxidation 

between sampling and analysis. The samples were refrigerated until ready for shipping overnight 
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to the membrane bench-test facility or to the laboratory for CEC analysis. Ice or gel packs were 

utilized to target a temperature below 6°C during shipping. Sample collection data forms, kit 

order forms, and chain-of-custody forms were prepared for shipping, placed in sealed bag, and 

placed in the shipping cooler on top of the packing material as identified in Appendix B. 

Samples were shipped via FedEx next day service. Samples were promptly removed from the 

coolers and refrigerated below 6°C, but above freezing, until analysis. All lab analyses were 

performed within 30 days of sampling. 

3.3.3.3 Handling Protocol 

Analytes being measured at ηg/L (i.e., parts per trillion) levels are prone to contamination 

(or interference) from handling. Nitrile gloves were worn at all times when handling samples. 

Gloves were changed between each sample location. Care was taken not to touch or breathe 

directly into samples or equipment. On the day of sampling, contact with pharmaceuticals, 

pesticides, or personal care products that may contaminate samples was avoided. A field control 

blank sample of DI water was collected, shipped, and analyzed. Potential sample interference 

from mishandling could occur from any one or more of the following common utilized 

substances: 

1. Soaps and detergents, including antibacterial cleansers 

2. DEET (insect repellent) 

3. Weed killers 

4. Fragrances (perfume, cologne, after shave, etc.) 

5. Caffeine and sweeteners 

6. Prescription and over-the counter medications 

7. Tobacco  

8. Sunscreen 
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Table 3-1 identifies the 108 samples that were collected and shipped to the destinations as 

identified in Appendix B for testing and analysis.  

Table 3-1: Sample Shipping List 

WRRF 
No. of 

Sampling 
Events 

40 ml SE 
samples to 
Laboratory 

(EEA) 

1 liter 
samples to 

NF/RO 
Testing 

(GE 
Osmonics 

40 ml 
NF/RO 

permeate 
samples 

to 
Laboratory 

(EEA) 

SOK 6 12 12 12 

COK 6 12 12 12 

NTX 6 12 12 12 

TOTAL 18 36 36 36 

 

3.4 Bench Scale Testing 

SE samples collected from the three study WRRFs were dead-end bench-tested with NF 

and RO membranes at GE Osmonics’ purpose-built test laboratory facility in Minnetonka, 

Minnesota. SE and NF/RO permeate samples were analyzed for CEC content by Eurofins Eaton 

Analytical (EEA) of Monrovia, California. 

3.4.1 Test Apparatus 

Figure 3-7 illustrates that the bench-scale testing apparatus consisted of flat-sheet 

membrane coupons secured in stirred dead-end permeation cells. Figure 3-8 depicts three SEPA 

ST (Sterlitech Corp., Kent, Wash.) model HP4750, 316 stainless steel, high-pressure stirred cells 

that operated in parallel for each permeate process run. Regulated high-pressure high-purity 
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nitrogen (>99.9%) gas was utilized for driving head. Table 3-2 shows the apparatus 

specifications.  

 

Figure 3-7: Membrane Bench Test Apparatus – Schematic 

Source: Sterlitech Corp, WA 
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Figure 3-8: Membrane Bench Test Apparatus – As Tested 

 
Table 3-2: Test Apparatus Specifications 

Parameter Specification 

  
Membrane Coupon Diametera 49 mm (1.93 in) 

Active Membrane Areaa 14.6 cm2 (2.26 in2) 

Batch Process Volumea 300 mL 

Constant TMP (Pressure Head)a DK: 65 psi; AG: 145 psi  

Specific Flux Rangea 10 -12 GFD 

Sample Temperaturea 20ºC ± 0.5 

Sample pHa 7.0 – 7.5 (no sample adjustment) 

Pressure Inlet 1/4 inch FNPT 

Permeate Outlet 1/8 inch 316SST tubing 

 
Wetted Materials of Construction: 
    Cell Body 
    O-Rings and Gaskets 
    Stir Bar 

 
316 SST 
Buna-N 

PTFE-coated magnet 

 
Cell Dimensions: 
    Body Diameter 
    Top Width (w/ clamp) 
    Bottom Width (w/ clamp) 
    Height 

 
 

5.1 cm (2.0 in) 
10.2 cm (4.0 in) 

13.3 cm (5.25 in) 
22.1 cm (9.5 in) 

  
    Sources: GE Osmonics; Sterlitech 
    a As tested & verified 
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3.4.2 Membrane Properties 

Two commercially available polyamide TFC membranes (GE Osmonics) were selected 

for this research: DK Series (manufactured in California) and AG Series (manufactured in 

Minnesota). The TFC laminate for both membranes includes a polyester backing, a polysulfone 

UF layer, a proprietary layer to adjust Zeta potential, and an engineered steric exclusion 

polyamide NF or RO layer (Abolmaali et al. 2015). For this research, flat sheet coupons were cut 

from this TFC laminate and utilized in the bench-scale testing, whereas for full-scale application 

modules, this TFC laminate is spiral wound with a feed spacer mesh and impermeable envelope. 

The selection of the test membranes was based on: (1) a qualitative steric rejection 

assessment of CECs with a MW of more than 150 g/mol by membranes with a MWCO between 

100 and 200 Daltons, and (2) their established performance in full-scale applications. Appendix 

B provides manufacturer data sheets for both commercially available full-scale membrane 

modules. In addition to membrane data provided by the manufacturer, membrane physical 

property testing was performed by the National Science Foundation (NSF) Membrane Applied 

Science and Technology (MAST) Research Center at the University of Arkansas (Fayetteville) 

Cato Springs Laboratory (Wickramasinghe R. 2015). Appendix B provides MAST lab results. 

Table 3-3 provides the relevant test membrane properties as required for QSAR analyses and the 

rejection modeling of the recalcitrant CEC residual that was performed subsequently in Chapter 

4. Both test membranes were found to have contact angles less than 90º and are thereby 

considered hydrophilic (Yangali-Quintanilla 2010).  
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Table 3-3: Test Membrane Properties 

Test Membrane 
MWCO 

(Da) 
Zeta Potentiala 

(mV) 
Contact Angle 

(degrees) 

    
AG Series RO 100 -20 23 

DK Series NF 200 -12 20 

    
Sources: GE Osmonics, NSF MAST Research Center at University of Arkansas 
a Zeta Potential at neutral pH 

 

3.4.3 Membrane Testing Protocol 

Permeate runs were processed in parallel for all three WRRF SE sample events with the 

select DK (RO) membrane coupons. Subsequently, permeate runs were processed in parallel for 

all three WRRF SE sample events with the select AG (NF) membrane coupons. This process 

operating sequence was repeated for all sample events. Each permeate run was eight hours in 

duration. A total of 18 membrane permeate runs were processed. Table 3-4 details the batch 

process operating sequence for each permeate run.  
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Table 3-4: Bench-Scale Batch Process Operating Sequence 

Process Sequence Procedure 

  
Rinse and load Rinse SEPA cells with DI water and load fresh membrane coupons. 

Conditioning Load 300 ml of standard salt solution (2,000 mg/L NaCl for AG and 2,000 mg/L 
MgSO4 for DK) and process 100 ml of permeate to waste (225 psi for AG and 110 
psi for DK). 

Pre-compaction Rinse SEPA cells with DI, load 300 ml of DI and process 100 ml permeate to waste 
(225 psi for AG and 110 psi for DK). 

Ripening Load 300 ml of SE sample and process 150 ml permeate to waste at standard 
operating conditions: constant-rate TMP (145 psi for AG and 65 psi for DK); 
declining-rate flux (12-10 GFD). 

Verification Verify membrane operation over batch ripening run is within specification. Record 
volume or weight collected every 10 g/10 ml to verify flux is within specification. 
Collect 5-10 ml of permeate in graduated cylinders and record run time to determine 
flux.  

Rinse Rinse SEPA cells with DI, load 300 ml DI, and process 20 ml permeate to waste. 

Permeate Run Load 300 ml of SE sample and process to 100 ml permeate at standard operating 
conditions for TMP (145 or 65 psi)  and flux (12-10 GFD): 

1. Waste first 20 ml permeate (verify flux is within specification as defined 
above), 

2. Collect next 40 ml permeate sample for CEC analysis (verify flux is within 
specification as defined above), 

3. Collect last 40 ml permeate sample for CEC analysis (verify flux is within 
specification as defined above). 

Breakdown/Clean Remove membrane coupons and rinse cells with methanol and DI. 

Package and Ship Prepare samples, label, package, complete manifests, and ship for CEC analysis by 
EEA as detailed previously. 

  
Sources: Abolmaali et al. 2015 
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3.5 Analytics 

Collected WRRF SE samples, as well as the NF and RO permeate test samples, were 

analyzed for CEC content at EEA of Monrovia, California.  

3.5.1 Laboratory 

As shown in Appendix B, EEA is certified by EPA and 46 states as an accredited lab for 

Test Methods 539 and 1964 (US EPA 2010; US EPA 2007). Furthermore, EEA recently served 

as a co-principal investigator on a Water Research Foundation project that evaluated over 20 

analytical methods for CEC analysis in water (Vanderford et al. 2012). That research validated 

US EPA Methods 539 and 1964 as the best overall methods for precision and accuracy of CEC 

analysis. Subsequently, the EPA requires these validated methods for analysis and reporting of 

CECs as required by the UCMR3 program.   

3.5.2 Analytical Methods and Equipment 

Methods 539 and 1964 provided quantitative data on the suite of 96 CECs being 

investigated for this research. These methods involved online pre-concentration followed by 

liquid chromatograph separation and series mass spectrometry (LS-MS-MS) with electrospray 

ionization (ESI) in positive and negative modes. Instrumentation included an atmospheric 

pressure ionization API 5000 LC-MS-MS in connection with a Dionex Ultimate 3000 HPLC 

system. 

For the utilized methods, Eaton and Haghani report:  

Appropriate mass transitions for each CEC analyte were determined by direct 
infusion of each analyte. Multiple mass transitions were used for each analyte to 
ensure unequivocal compound identification. A sample was injected into the 
HPLC through a ten port switching valve. Analytes were concentrated onto an 
Oasis HLB solid phase extraction column and the matrix diverted to waste. The 
valve position was then changed and the target analytes were refocused on an 
analytical column and then separated and eluted into the mass spectrometer, using 
an acidic eluent for positive mode and basic eluent for negative mode to gain 
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sensitivity on the mass spectrometry. Measurements of mass intensity were then 
determined using ESI in positive and negative mode, depending on whether the 
CEC has an affinity to protonate or de-protonate in high voltage creating an 
ionized adduct specie with negative or positive charge to be guided by electrical 
gradient through the MS filter quads. In general, a CEC containing nitrogen (N) 
will trend toward ESI positive, whereas a CEC with a carboxylic group (COOH) 
will trend toward ESI negative. All standards, test samples, and quality control 
(QC) samples were processed in the same manner. (Eaton and Haghani 2012) 

3.5.3 Minimum Reportable Levels 

Minimum reportable levels (MRLs) represent the lowest calibration point for the test 

method, typically limited by the instrumentation. The utilized test methods MRL for the subject 

96 CECs ranged from 5 to 100 ηg/L. The test suite of 96 CECs with corresponding analytical 

LC-MS-MS ESI mode and MRL is provided in Table 3-5. 
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Table 3-5: CEC Test Suite Analytical Mode  
and Minimum Reportable Level 

CEC 
Analytical 

Mode 
MRL             
(ηg/L) 

CEC 
Analytical 

Mode 
MRL          
(ηg/L) 

1,7-Dimethylxanthine ESI + 10 Ibuprofen ESI - 10 

2,4-D ESI - 5 Iohexal ESI - 10 

4-nonylphenol ESI - 100 Iopromide ESI - 5 

4-tert-Octylphenol ESI - 50 Isobutylparaben ESI - 5 

Acesulfame-K ESI - 20 Isoproturon ESI + 100 

Acetaminophen ESI + 5 Ketoprofen ESI + 5 

Albuterol ESI + 5 Ketorolac ESI + 5 

Amoxicillin ESI + 20 Lidocaine ESI + 5 

Andorostenedione ESI + 5 Lincomycin ESI + 10 

Atenolol ESI + 5 Linuron ESI + 5 

Atrazine ESI + 5 Lopressor ESI + 20 

Azithromycin ESI + 20 Meclofenamic Acid ESI + 5 

Bendroflumethiazide ESI - 5 Meprobamate ESI + 5 

Bezafibrate      ESI +  5 Metazachlor ESI + 5 

Bisphenol-A (BPA) ESI - 10 Methylparaben ESI - 20 

Bromacil ESI + 5 Naproxen ESI - 10 

Butalbital ESI - 5 Nifedipine ESI + 20 

Butylparaben ESI - 5 Norethisterone ESI + 5 

Caffeine ESI - 5 Oxolinic acid ESI + 10 

Carbadox ESI + 5 Pentoxifylline ESI + 5 

Carbamazepine ESI + 5 Phenazone ESI + 5 

Carisoprodol ESI + 5 Primidone ESI + 5 

Chloramphenicol ESI - 10 Progesterone ESI + 5 

Chloridazon ESI + 5 Propazine ESI + 5 

Chlorotoluron ESI + 5 Propylparaben ESI - 5 

Cimetidine ESI + 5 Quinoline ESI + 5 

Clofibric Acid ESI - 5 Simazine ESI + 5 

Cotinine ESI + 10 Sucralose ESI - 100 

Cyanazine ESI + 5 Sulfachloropyridazine ESI + 5 

DACT ESI - 5 Sulfadiazine ESI + 5 

DEA ESI + 5 Sulfadimethoxine ESI + 5 

DEET ESI + 10 Sulfamerazine ESI + 5 

Dehydronifedipine ESI + 5 Sulfamethazine ESI + 5 

DIA ESI + 5 Sulfamethizole ESI + 5 

Diazepam ESI + 5 Sulfamethoxazole ESI + 5 

Diclofenac ESI - 5 Sulfathiazole ESI + 5 

Dilantin ESI + 20 TCEP ESI + 10 

Diuron ESI + 5 TCPP ESI + 100 

Erythromycin ESI + 10 TDCPP ESI + 100 

Estradiol ESI - 5 Testosterone ESI + 5 

Estrone ESI - 5 Theobromine ESI + 10 

Ethinyl Estradiol - 17 alpha ESI - 5 Theophylline ESI + 20 

Ethylparaben ESI - 20 Triclosan ESI - 10 

Flumeqine ESI + 10 Trimethoprim ESI + 5 

Fluoxetine ESI + 10 Warfarin ESI - 5 

Gemfibrozil ESI - 5    
MRL = Minimum reportable level 
EPA Analytical Method: MS/MS/LS-ESI (+ or -) 

Source: Eurofins Eaton Analytical, Inc. 
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3.6 Data Analysis 

Each of the selected CECs was classified by use and cataloged by their quantitative 

chemical properties, cited from literature and scientific databases as identified in Chapter 4. 

Rejection coefficients (R = 1 – C/C0) were also determined for each of the 940 discrete generated 

data events (CECs measured).  

With the end-goal to develop a novel, but practical, CEC rejection model for the studied 

commercially available NF membrane, this research program was designed to elucidate the vital 

predictive variables influencing the rejection of CECs in municipal reclaimed secondary effluent 

samples. As such, a multi-level, multi-variable model was developed to predict the probable 

rejection coefficient (R) of each CEC with the studied NF membrane. The model was developed 

from predictor variables selected for their association with known membrane removal 

mechanisms for organic solutes (size-exclusion, electro-static interactions, hydrophobicity, etc.), 

CEC-specific chemical properties based on QSAR, and wastewater quality characteristics of the 

actual SE matrix. R statistics software version 3.1.3 was utilized for property collinearity 

analysis, outlier analysis, and regression modeling. The Pearson correlation method was utilized 

to select the most vital predictor variables for modeling. The resulting QMPM, as presented in 

Chapter 4, was then successfully developed to predict the NF rejection of more than 90 CECs. 

Furthermore, the QMPM was verified against a CEC rejection dataset published by an 

independent study for a similar commercially available NF membrane (Yangali-Quintanilla 

2010).  
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CHAPTER 4 - RESULTS AND MODELING 

4.1 Overview 

The rejection of CECs by NF or RO membranes is a developing reuse treatment 

application to remove trace anthropogenic, recalcitrant organic contaminants from WRRF 

secondary effluents. As described previously in Chapter 2, many laboratory studies to date have 

identified rejection mechanisms for CECs across RO membranes that can be classified by either 

steric exclusion or surface interactions. A 2007 laboratory-scale, stirred-membrane-cell study 

identified hydrophobic adsorption and size exclusion as the predominant mechanisms for NF 

membrane rejection of 27 different CECs (Yoon et al. 2007). However, multiple studies have 

found solution matrix pH, and consequently electrostatic attraction/repulsion, are the most 

important predictors for CEC rejection by NF and RO membranes (Lin and Lee 2014; Yangali-

Quitanilla 2010; Ozaki et al. 2008).  

Recognizing the inherent complexity of CEC membrane rejection models, this research 

program was designed to elucidate the vital predictive variables influencing the rejection of more 

than 90 CECs in municipal reclaimed secondary effluent samples. Each of the selected CECs 

was cataloged by their intended use and QSAR properties (cited from literature and scientific 

databases) and measured in treated effluent samples (taken over multiple weeks) from three 

WRRFs in Texas and Oklahoma. These effluent samples were then filtered in bench-scale, 

stirred, dead-end membrane test cells with commercially available water treatment industry 

specified NF (DK) and RO (AG) membranes as provided by GE Osmonics (Minnetonka, 

Minnesota). As detailed in Chapter 3, the manufacturer-specified MWCO for the NF and RO test 

membranes were 200 and 100 Daltons, respectively. Both membranes were also analyzed by 
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atomic force microscopy (AFM) and determined to be hydrophilic with negative zeta potential 

surface charges of -12 and -20 mV, respectively (Wickramasinghe 2015). 

A multi-level, multi-variable model was developed to predict the probable rejection 

coefficient (Rp = 1 – C/C0) of a CEC in reclaimed secondary effluent with the studied industry-

specified commercially available thin-film composite NF (MWCO 200) membrane. The model 

was developed from predictor variables selected for their association with known membrane 

removal mechanisms for dissolved organic solutes (size-exclusion, electro-static interactions, 

hydrophobicity, etc.), CEC-specific chemical properties based on QSAR properties, and matrix 

characteristics of the treated samples. The developed QMPM was then successfully applied to an 

independent database to verify the modeled mechanisms governing the rejection (by NF) of the 

selected CECs.  

4.2 QSAR Properties Characterization 

The study set of 96 CECs was classified in Chapter 2 by the seven intended use 

classifications of EDCs, pharmaceuticals, stimulants, preservatives, artificial sweeteners, 

pesticides, and flame retardants. Within each intended use classification, each of the 96 CECs is 

characterized as follows by the physical-chemical QSAR properties: MW, PSA, ionic charge at 

neutral pH, partitioning constants (e.g., pKa, Kow, Koa), polarizability (α), and solubility (Sw). 

Based on these QSAR properties, each of the 96 CECs was further classified as hydrophobic-

neutral (HB-N), hydrophobic-ionic (HB-I), hydrophilic-neutral (HL-N), or hydrophilic-ionic 

(HL-I). 

4.2.1 Endocrine Disrupting Compounds 

EDCs can be defined as both natural and synthetic exogenous estrogens, anti-androgens, 

and agents that interfere with the production, release, transport, metabolism, action or otherwise 
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elimination of natural hormones in the body responsible for the maintenance of homeostasis and 

the regulation of developmental processes (Spellman 2014). Disrupting the endocrine system can 

occur in various ways. Some chemicals can mimic a natural hormone, “fooling” the body into 

over-responding to the stimulus (e.g., a growth hormone that results in increased muscle mass) or 

responding at inappropriate times (e.g., producing insulin when it is not needed). Other EDCs 

can block the effects of a hormone from certain receptors. Still others can directly stimulate or 

inhibit the endocrine system, causing overproduction or underproduction of hormones. 

Significant published literature has suggested that wildlife species have suffered adverse 

health effects after exposure to EDCs in the aquatic environment. Examples include reproductive 

problems in wood ducks from Bayou Meto, Arkansas (White and Hoffman 1995); embryonic 

deformities in Great Lakes fish-eating birds (i.e., gulls, terns, and cormorants) (Peakall and Fox 

1987); feminization and embryonic mortality in lake trout and salmonids in the Great Lakes 

(Mac and Edsall 1991; Mac et al. 1993; Leatherland 1993); developmental effects in Great Lakes 

snapping turtles (Bishop et al. 1991); abnormalities of sexual development in Lake Apopka 

alligators (Guilette et al. 1995); reproductive failure in mink and otter from the Great Lakes area 

(Wren 1991); and reproductive impairment in the Florida Panther (Facemire et al. 1995). In each 

of these cited cases, detectable concentrations of EDCs were reported in the animals or in their 

environment.  

Characterization of the CEC study set reveals 10 CECs that can be classified as EDCs. 

Table 4-1 provides a review of the CAS Registry for the subject EDCs identified the QSAR 

properties.  
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Table 4-1: EDC QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 
Koa 

α 
(Å3) 

Sw 
(mg/L) 

Hydro 
Classa 

 

            
Androstenedione 
 (C19H26O2)  

63-05-8 286.4 34.14 0  2.75 8.57 32.71 65.97 HB-N  

Norethisterone 
 (C20H26O2) 

68-22-4 298.4 37.30 0  3.22 10.6 34 7.04 HB-N  

Progesterone 
 (C21H30O2) 

57-83-0 314.5 34.14 0  4.15 9.45 36.4 8.81 HB-N  

Testosterone 
 (C19H28O2) 

58-22-0 288.4 37.30 0  3.37 10.16 33.26 23.4 HB-N  

4-Nonylphenol 
 (C15H23KO) 

25154-52-3 220.5 23.06 0 10.3 5.74 8.62 27.21 7 HB-N  

4-tert-Octylphenol 
 (C14H22O) 

140-66-9 206.3 20.23 0 10.2 4.69 9.02 25.63 31.63 HB-N  

Bisphenol-A 
 (C15H16O2) 

80-05-7 228.3 40.46 0 9.78 4.04 12.75 26.59 120 HB-N  

Estradiol 
 (C18H24O2) 

50-28-2 272.4 40.46 0 10.3 3.75 12.84 31.31 3.9 HB-N  

Estrone 
 (C18H22O2) 

53-16-7 270.4 37.30 0 10.3 4.31 10.94 30.76 30 HB-N  

17α-Ethinyl 
Estradiol 
 (C20H24O2) 

57-63-6 296.4 40.46 0 10.3 3.9 13.16 33.9 11.3 HB-N  

Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

Table 4-1 QSAR properties show that all studied EDCs have a MW greater than 200 

g/mol, MSA greater than 400 Å2, a neutral charge, α ranging from 26 to 36 Å3, and tend to be 

basic in nature with high pKa values greater than 9. In addition, the studied EDCs appear to have 

a relatively low affinity for water with a high (> 2.0) partitioning constant (log Kow) and low 

water solubility. As such, the ten analyzed EDCs can be classified as HB-N. 

4.2.2 Pharmaceuticals 

Characterization of the CEC study set reveals 49 of the 96 are classified as 

pharmaceuticals, representing the largest use classification. Abundant study over the last 10 

years shows the bioaccumulation and toxicity of fisheries in WRRF effluent-dominated Texas 

streams with pharmaceutical exposure at or below 1 µg/L, a common trigger for environmental 

assessments (Brooks 2014; Brooks et al. 2005).   
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Review of the CAS Registry reveals the QSAR properties characterization for the 49 

pharmaceuticals as provided in Table 4-2. The analyzed pharmaceutical CECs were found to be 

both neutral and ionic charged (positive and negative). The 20 neutral charged pharmaceutical 

CECs, shown in Table 4-2a, consist of a wide range of medicinal applications: pain relief, anti-

seizure, muscle relaxers, anxiety suppressors, antidepressants, cardiovascular, radiocontrast 

tracers, and anti-inflammatory. The neutral charged pharmaceutical CECs also possess high 

variability in size, solubility, polarity, and hydrophobicity. 
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Table 4-2a: Pharmaceuticals (neutral charge) QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 
Koa 

α 
(Å3) 

Sw 
(mg/L) 

Hydro 
Classa 

 

            
Acetaminophen 
 (C8H9NO2) 

103-90-2 151.2 49.33 0 9.46 0.27 11.04 15.82 30,400 HL-N  

Butalbital 
 (C11H16N2O3) 

77-26-9 224.3 75.27 0 8.48 1.59 12.46 22.56 1,700 HL-N  

Carbamazepine 
 (C15H12N2O) 

298-46-4 236.3 46.33 0 15.96 2.45 10.81 26.95 17.66 HB-N  

Carisoprodol 
 (C12H24N2O4) 

78-44-4 260.3 90.65 0 15.06 2.36 9.90 26.69 201 HB-N  

Dehydronifedipine 
 (C17H16N2O6) 

67035-22-7 344.3 108.63 0 3.47 3.15 14.51 34.67 5.56 HB-N  

Diazepam 
 (C16H13ClN2O) 

439-14-5 284.7 32.67 0 2.92 2.82 9.65 30.32 50 HB-N  

Dilantin 
 (C15H12N2O2) 

57-41-0 252.3 58.20 0 9.47 2.47 11.85 27.12 178.6 HB-N  

Fluoxetine 
 (C17H18F3NO) 

54910-89-3 309.3 21.26 0  3.93 9.26 30.44 60.28 HB-N  

Gemfibrozil 
 (C15H22O3) 

25812-30-0 250.3 46.53 0 4.42 4.39 11.08 27.93 4.96 HB-N  

Iohexal 
 (C19H26I3N3O9) 

66108-95-0 821.1 199.89 0 11.73 -1.95 23.91 57.82 106.5 HL-N  

Iopromide 
 (C18H24I3N3O8) 

73334-07-3 791.1 168.66 0 11.1 -0.44 24.34 55.37 23.75 HL-N  

Ketoprofen 
 (C16H14O3) 

22071-15-4 254.3 54.37 0 3.88 3.61 12.18 28.01 51 HB-N  

Ketorolac 
 (C15H13NO3) 

74103-06-3 255.3 59.30 0 3.84 2.28 13.18 26.84 572.3 HB-N  

Meprobamate 
 (C9H18N2O4) 

57-53-4 218.3 104.64 0  0.93 8.82 21.22 4,700 HL-N  

Naproxen 
 (C14H14O3) 

22204-53-1 230.3 46.53 0 4.19 2.99 11.04 26.39 15.9 HB-N  

Nifedipine 
 (C17H18N2O6) 

21829-25-4 346.3 107.77 0  1.82 13.73 33.98 357.5 HL-N  

Pentoxifylline 
 (C13H18N4O3) 

6493-05-6 278.3 75.51 0  0.23 11.93 27.12 7,700 HL-N  

Phenazone 
 (C11H12N2O) 

60-80-0 188.2 23.55 0 0.37 1.22 7.95 20.89 10,000 HL-N  

Primidone 
 (C12H14N2O2) 

125-33-7 218.3 58.20 0 11.5 1.12 9.01 23.07 500 HL-N  

Warfarin 
 (C19H16O4) 

81-81-2 308.3 63.60 0 5.63 3.52 9.65 33.26 17 HB-N  

            
Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 

 

The 11 positive charged pharmaceutical CECs, shown in Table 4-2b, consist of a 

narrower range of medicinal applications: respiratory, antibiotics, cardiovascular, anxiety, 

gastrointestinal, and local anesthetic. The antibiotic CECs of this class are uniquely characterized 

as relatively large with MW greater than 400 g/mol, low solubility, highly polar, and 
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hydrophobic with log Kow values less than 2.0.  Conversely, the remaining positive charged 

pharmaceutical CECs are generally characterized with MW in the 200-400 g/mol range, high 

solubility, and hydrophyllic. 

Table 4-2b: Pharmaceuticals (positive charge) QSAR Properties 

CEC CASN 
MW 
(g/mol) 

PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 
Kow 

log 
Koa 

   α 
(Å3) 

Sw 
(mg/L) 

Hydro 
Classa 

           
Albuterol 
 (C26H44N2O10S) 

51022-70-9 72.72 406.0 1 10.12 0.64 14.22 26.58 300,000 HL-I 

Atenolol 
 (C14H22N2O3) 

29122-68-7 84.58 440.4 1 14.08 0.16 16.41 29.09 13,300 HL-I 

Azithromycin 
 (C38H72N2O12) 

83905-01-5 180.08 1284.6 1.8  4.02 30.68 79.01 0.06 HB-I 

Bendroflumethiazide 
 (C15H14F3N3O4S2) 

73-48-3 118.36 505.9 0.1 9.04 1.7 11.54 35.91 108 HL-I 

Cimetidine 
 (C10H16N6S) 

51481-61-9 88.89 369.6 0.3  0.4 13.81 25.89 10,500 HL-I 

Diltiazem 
 (C22H26N2O4S) 

42399-41-7 59.08 612.2 0.604 8.18 2.79 17.15 44.82 12.3 HB-I 

Erythrommycin 
 (C37H67NO13) 

114-07-8 193.91 1222.4 1.2 8.38 3.06 29.71 75.76 0.52 HB-I 

Lidocaine 
 (C14H22N2O) 

137-58-6 32.34 424.0 1 7.75 2.84 10.71 27.64 4,100 HB-I 

Lincomycin 
 (C18H37CIN2O7S) 

154-21-2 122.49 624.5 1 7.97 -0.3 21.11 41.49 92.19 HL-I 

Lopressor 
 (C15H25NO3) 

51384-51-1 50.72 474.7 1 9.67 1.76 13.12 30.34 16,900 HL-I 

Trimethoprim 
 (C14H18N4O3) 

738-70-5 105.51 431.2 0.6 7.16 1.28 12.92 29.76 400 HL-I 

           
Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 

 

The 18 negative charged pharmaceutical CECs, shown in Table 4-2c, consist mostly of 

antibiotics but also anti-inflammatory and respiratory medicinal metabolites. The negative CECs 

of this pharmaceutical class are characterized as relatively small with MW less than 400 g/mol, 

moderate solubility, polar, and mostly HL-I.   

 

  



  99 

Table 4-2c: Pharmaceuticals (negative charge) QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 
Koa 

α 
(Å3) 

Sw 
(mg/L) 

Hydro 
Classa 

           
Amoxicillin 
 (C16H25N3O8S) 

26787-78-0 365.4 132.96 -0.33 3.23 0.87 19.86 35.52 3,433 HL-I 

Bezafibrate 
 (C19H20CINO4) 

41859-67-0 361.8 75.63 -1 3.83 4.25 17.31 36.89 1.22 HB-I 

Carbadox 
 (C11H10N4O4) 

6804-07-5 262.2 100.56 -0.02 0.78 -1.37 19.36 25.35 14,800 HL-I 

Chloramphenicol 
 (C11H12Cl2N2O5) 

56-75-7 323.1 112.70 -0.25 7.59 0.88 17.17 27.82 2,500 HL-I 

Diclofenac 
 (C14H11Cl2NO2) 

15307-86-5 296.1 49.33 -1 4 4.26 14.22 29.03 2.37 HB-I 

Flumequine 
 (C14H12FNO3) 

42835-25-6 261.3 57.61 -1 6 1.6 12.56 24.74 2,186 HL-I 

Ibuprofen 
 (C13H18O2) 

15687-27-1 206.3 37.30 -1 4.85 3.84 9.18 23.65 21 HB-I 

Meclofenamic 
 (C14H11Cl2NO2) 

644-62-2 296.1 49.33 -1 3.7 6.09 15.30 28.93 30 HB-I 

Oxolinic acid 
 (C13H11NO5) 

14698-29-4 262.2 76.07 -1 5.58 1.35 14.71 24.68 3.2 HL-I 

Sulfachloropyridazine 
 (C10H9ClN4O2S) 

80-32-0 284.7 97.97 -1 6.6 0.85 10.39 26.59 7,000 HL-I 

Sulfadiazine 
 (C10H10N4O2S) 

68-35-9 250.3 97.97 -0.65 6.99 0.39 8.1 24.59 77 HL-I 

Sulfadimethoxine 
 (C12H14N4O4S) 

122-11-2 310.3 116.43 -0.58 6.91 1.26 13.9 29.7 343 HL-I 

Sulfamerazine 
 (C11H12N4O2S) 

127-79-7 264.3 97.97 -0.59 6.99 0.52 8.29 26.35 202 HL-I 

Sulfamethazine 
 (C12H14N4O2S) 

57-68-1 278.3 97.97 -0.51 6.99 0.65 8.29 28.1 1,500 HL-I 

Sulfamethizole 
 (C9H10N4O2S2) 

144-82-1 270.3 97.97 -0.65 6.71 0.21 12.51 25.13 1,050 HL-I 

Sulfamethoxazole 
 (C10H11N3O3S) 

723-46-6 253.3 98.22 -1 6.16 0.79 11.30 24.16 610 HL-I 

Sulfathiazole 
 (C9H9N3O2S2) 

72-14-0 255.3 85.08 -0.54 6.93 0.98 11.67 24.19 373 HL-I 

Theophylline 
 (C7H8N4O2) 

58-55-9 180.2 69.30 -0.1 7.82 -0.77 10.12 16.13 7,360 HL-I 

           
Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 

 

4.2.3 Stimulants 

Characterization of the CEC study set reveals the QSAR properties for four stimulants as 

provided in Table 4-3. The analyzed stimulants include caffeine and metabolites of caffeine, 

nicotine, and chocolate. This group of CECs is readily classified as small with MW less than 

200, low polarity, high solubility, and HL-N. 
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Table 4-3: Stimulants QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 

Koa 
α 

(Å3) 
Sw 

(mg/L) 
Hydro 
Classa 

           
1,7-Dimethylxanthine 
 (C7H8N4O2) 

611-59-6 180.2 67.23 0 10.76 -0.39 9.76 16.06 4,149 HL-N 

Caffeine 
 (C8H10N4O2) 

58-08-2 194.2 58.44 0  -0.07 8.77 17.87 2,632 HL-N 

Cotinine 
 (C10H12N2O) 

486-56-6 176.2 33.20 0  0.07 9.94 19.11 999,000 HL-N 

Theobromine 
 (C7H8N4O2) 

83-67-0 180.2  0 9.28 -0.77 8.40 16.05 330 HL-N 

           
Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 

 

4.2.4 Preservatives 

Characterization of the CEC study set reveals the QSAR properties for eight 

preservatives as provided in Table 4-4. This group of CECs includes preservatives for food and 

personal care products and can be generally characterized as relatively small with MW less than 

400, low polarity, moderately soluble, and mostly HB-N. 

Table 4-4: Preservatives QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 

Koa 
α 

(Å3) 
Sw 

(mg/L) 
Hydro 
Classa 

           
Quinoline 
 (C9H7N) 

91-22-5 129.2 12.89 0 4.5 2.13 6.2 17.08 6,110 HB-N 

Butylparaben 
 (C11H14O3) 

94-26-8 194.2 46.53 0 8.5 3 10.0 20.88 207 HB-N 

Ethylparaben 
 (C9H10O3) 

120-47-8 166.2 46.53 0 8.5 2.03 9.18 17.2 885 HB-N 

Isobutylparaben 
 (C11H14O3) 

4247-02-3 194.2 46.53 0 8.5 2.92 9.86 20.88 224 HB-N 

Methylparaben 
 (C8H8O3) 

99-76-3 152.2 46.53 0 8.5 1.67 8.79 15.37 2,500 HL-N 

Propylparaben 
 (C10H12O3) 

94-13-3 180.2 46.53 0 8.5 2.55 9.62 19.04 500 HB-N 

Triclocarban 
(C13H9Cl3N2O) 

101-20-2 315.6 41.13 0 11.42 4.93 13.63 29.78 0.65 HB-N 

Triclosan 
 (C12H7Cl3O2) 

3380-34-5 289.5 29.46 -0.14 7.68 4.98 11.45 26.96 10 HB-I 

           
   Compiled from: ACS 2015, ChemAxon 2015 
    a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 
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4.2.5 Artificial Sweeteners 

Characterization of the CEC study set reveals the QSAR properties for two artificial 

sweeteners as provided in Table 4-5. This group of CECs includes widely utilized products (e.g., 

Splenda) by the food and beverage industry for low to no-calorie consumption. As evidenced by 

the relatively high concentrations seen in Table 4-5, these products are resistant to bio-

degradation in WRRF biological processes. This group is characterized as small with MW less 

than 400, highly soluble, and HL-N. 

Table 4-5: Artificial Sweeteners QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 
Koa 

α 
(Å3) 

Sw 
(mg/L) 

Hydro 
Classa 

           
Acesulfame-K 
 (C4H4KNO4S) 

55589-62-3 201.2 78.79 0 2 -0.69 ND 13.29 1,000,000 HL-N 

Sucralose 
 (C12H19Cl3O8) 

56038-13-2 397.6 128.84 0 11.9 -0.47 15.79 32.65 22,800 HL-N 

           
Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 

 

4.2.6 Pesticides 

Characterization of the CEC study set reveals the QSAR properties for 18 pesticides as 

provided in Table 4-6. This group generally includes agents designed to inhibit, incapacitate, or 

otherwise terminate plant and animal life (Spellman 2014). As such, this group of CECs is of 

particular concern in public water supplies for human consumption. All 18 of the analyzed 

pesticides can be characterized to be relatively small with MW less than 300 g/mol, low to 

moderate solubility, and hydrophobic neutral. Five of the 18 pesticides, however, can be 

characterized as chloraminated (NHCl) compounds with high solubility and are HL-N.  
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Table 4-6: Pesticides QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 
Koa 

Α 
(Å3) 

Sw 
(mg/L) 

Hydro 
Classa 

           
Atrazine 
 (C8H14ClN5) 

1912-24-9 215.7 62.73 0  2.61 9.63 21.19 214 HB-N 

Bromacil 
 (C9H13BrN2O2) 

314-40-9 261.1 49.41 0 9.95 2.11 10.39 21.65 815 HB-N 

Chloridazon 
 (C10H8ClN3O) 

1698-60-8 221.7 58.69 0  1.14 9.0 21.65 3,585 HL-N 

Chlorotoluron 
 (C10H13ClN2O) 

15545-48-9 212.7 32.34 0 13.53 2.41 10.64 21.83 329 HB-N 

Cyanazine 
 (C9H13ClN6) 

21725-46-2 240.7 86.52 0  2.22 12.20 22.91 170 HB-N 

DACT 
 (C3H4ClN5) 

3397-62-4 145.6 90.71 0 3.58 0.32 8.11 12.11 42,000 HL-N 

DEA 
 (C6H10ClN5) 

6190-65-4 187.6 76.72 0 3.38 1.51 8.71 17.55 2,593 HL-N 

DEET 
 (C12H17NO) 

134-62-3 191.3 20.31 0  2.18 8.25 22.29 666 HB-N 

DIA 
 (C5H8ClN5) 

1007-28-9 173.6 76.72 0 3.41 1.15 8.47 15.73 6,160 HL-N 

Diuron 
 (C9H10Cl2N2O) 

330-54-1 233.1 32.34 0 13.18 2.68 10.37 22.02 42 HB-N 

Isoproturon 
 (C12H18N2O) 

34123-59-6 206.3 32.34 0 13.5 2.57 11.2 23.63 65 HB-N 

Linuron 
 (C9H10Cl2N2O2) 

330-55-2 249.1 41.57 0 11.94 2.68 9.79 22.77 75 HB-N 

Metazachlor 
 (C14H16ClN3O) 

67129-08-2 277.8 38.13 0 1.84 2.98 9.77 28.81 430 HB-N 

Metolachlor 
 (C15H22ClNO2) 

51218-45-2 283.8 29.54 0  3.45 9.33 30.46 530 HB-N 

Propazine 
 (C9H16ClN5) 

139-40-2 229.7 62.73 0 3.17 2.61 9.66 23.02 8.6 HB-N 

Simazine 
 (C7H12ClN5) 

122-34-9 201.7 62.73 0 3 1.78 9.59 19.37 6.2 HL-N 

2,4-D 
 (C8H6Cl2O3) 

94-75-7 221.0 46.53 0 2.81 2.5 8.65 19.13 677 HB-N 

Clofibric Acid 
 (C10H11ClO3) 

882-09-7 214.6 46.53 0 3.37 2.9 8.6 20.8 583 HB-N 

           
Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 

4.2.7 Flame Retardants 

This group of CECs that have been detected in secondary effluents include chlorinated 

alkyl-phosphates that are typically applied to manufactured textiles, such as clothing and linens, 

in order to inhibit, suppress, or prevent the spread of fire. While the eco-toxic and human health 

effects of aqueous flame retardants are not clear, California has listed tris-2-chloroethyl 

phosphate (TCEP) among carcinogens and reproductive toxins since 1992 (CAEPA 2006). 
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Flame retardants have been shown to resist biodegradation and oxidation in treated effluents 

(Westerhoff et al. 2005). With their resistance to conventional WRRF treatment processes and 

relative abundance in the hydrosphere, it is apparent that alternative treatments for control of this 

group of CECs is required (Watts and Linden 2009).  

Characterization of the CEC study set reveals the QSAR properties for three flame 

retardants as provided in Table 4-7. This group of CECs as relatively large (with MW > 350 

g/mol) and neutral. Although log Kow values slightly greater than 2.0 are reported by ACS for 

this group of CECs, solubility is reported as moderate to high.  

Table 4-7: Flame Retardants QSAR Properties 

CEC CASN 
MW 

(g/mol) 
PSA 
(Å2) 

Charge 
pH 7.0 
(mV) 

pKa 
log 

Kow 
log 
Koa 

Α 
(Å3) 

Sw 
(mg/L) 

Hydrophobicity 
Classa 

           
TCEP 
 (C6H12Cl3O4P) 

115-96-8 285.49 44.76 0  2.11 5.31 23.06 7,000 HB-N 

TCPP 
 (C9H18Cl3O4P) 

13674-84-5 327.6 44.76 0  3.36 8.20 28.46 1,200 HB-N 

TDCPP 
 (C9H15Cl6O4P) 

13674-87-8 430.9 44.76 0  4.28 10.62 34.29 7 HB-N 

           
Compiled from: ACS 2015, ChemAxon 2015 
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charge 

4.3 Rejection Analysis 

For the study set of 96 CECs, 82 were detected above the corresponding MRL in the 

primary effluent. The 14 undetected CECs either did not exist at measurable concentration in the 

WRRF influent or were effectively removed by the WRRF primary treatment gravity separation 

barriers. Most relevant to this DPR research, 18 of the studied 96 CECs were 100% removed by 

full-scale WRRF biological treatment. Conversely, 64 of the 96 studied CECs were found to 

exist in the secondary effluent at recalcitrant residual concentrations above MRL. 

Of the 3,456 discrete analytic events, CEC detections above MRL were discovered in 

almost a third of the data set, as provided in Appendix C, or a total of 926 discrete occurrences. 
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Table 4-8 provides the distribution of CEC detections. This distribution clearly reveals a high to 

low profile across samples, thereby indicating a cursory assessment of the relative effectiveness 

of WRRF biological, bench-scale NF, and bench-scale RO as absolute barriers for the removal of 

CECs from the potential reuse supply. 

Table 4-8: CEC Detections 

PE = primary effluent, SE = secondary effluent, NF = Nanofiltration permeate, RO = reverse osmosis permeate 

For each of the 482 discrete SE to permeate events, observed rejection coefficients, R, 

were calculated across corresponding treatment barrier samples according to the following 

formula: 

R = 1 − (C�/C	)    Eq. (4.1) 

Cp = concentration of CEC in membrane permeate sample 

C0 = concentration of CEC in SE sample 

In most cases, a CEC detected in SE samples was not detected in permeate. In these 

cases, Cp was taken to be zero, yielding R = 100%. This was interpreted as 100% removal of a 

detectable chemical (concentrations greater than its MRL, in ηg/L). Recalcitrant CECs were, in 

most cases, rejected by NF and to a greater degree by RO as indicated in the following 

discussion for each of the CEC intended use classifications.  

 

Sample COK SOK NTX 

PE 158 142 144 

SE 111 116 127 

NF 36 27 48 

RO 8 1 8 
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4.3.1 Observed Rejection 

Rejection analyses of the EDCs, as indicated in Table 4-9, revealed that most natural 

human hormones existing in the primary effluent samples were readily removed to below MRL 

by the WRRF biological processes. Estrone was the only natural human hormone not fully 

biodegraded; NF effectively rejected approximately half the remaining fraction and RO rejected 

all remaining fraction. The other two recalcitrant EDCs were 4-tert-Octylphenol (surfactant) and 

BPA (plasticizer), for which both membranes were found to be very effective barriers. All three 

EDCs detected in NF permeate samples have a MW just above the NF MWCO and are classified 

HB-N, suggesting steric exclusion and hydrophobic sorption as the predominant rejection 

mechanisms. 17α-Ethinyl Estradiol (contraceptive) was not detected in the primary effluent 

samples, while 4-Nonylphenol (surfactant) was discounted from the dataset due to lab 

interference as detected in control blanks. 



  106 

Table 4-9: EDC Rejection 

 
CEC 

 
Molecular 

Weight 
(g/mol) 

 Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 

Max  
R 

Mean 
R 

           
4-tert-Octylphenol 
(C14H22O) 

206  HB-N  88% 92% 90% 100% 100% 100% 

4-Nonylphenol 
(C15H23KO) 

221  HB-N  Discounted due to lab interference 

Bisphenol-A 
(C15H16O2) 

228  HB-N  95% 95% 95% 100% 100% 100% 

Estrone 
(C18H22O2) 

270  HB-N  38% 62% 46% 100% 100% 100% 

Estradiol  
(C18H24O2) 

272  HB-N     100% removed by WRRF biological treatment 

Androstenedione 
(C19H26O2)  

286  HB-N  100% removed by WRRF biological treatment 

Testosterone 
(C19H28O2) 

288  HB-N     100% removed by WRRF biological treatment 

17α-Ethinyl  
Estradiol (C20H24O2) 

296  HB-N  Not detected in primary effluent 

Norethisterone 
(C20H26O2) 

298  HB-N     100% removed by WRRF biological treatment 

Progesterone 
(C21H30O2) 

315  HB-N     100% removed by WRRF biological treatment 

           
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

All but one of the 20 studied neutral-charged pharmaceuticals were detected in SE 

samples at concentrations above MRL. Phenazone (analgesic) was not detected in the primary 

effluent samples. Table 4-10a shows that both NF and RO were very effective barriers for the 

rejection of this group of CECs. With a neutral charge, this group of CECs is likely rejected by 

steric exclusion and some hydrophobic sorption, although the 100% exclusion of Acetaminophen 

(MW = 151 g/mol) by the NF test membrane suggests molecular PSA may be a better QSAR 

indicator than MW for steric exclusion. Table 4-2a also indicates that Acetaminophen has a 

molecular PSA of 223Å2.  
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Table 4-10a: Pharmaceuticals (neutral) Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

 
Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 

Max  
R 

Mean 
R 

           
Acetaminophen 
 (C8H9NO2) 

151  HL-N  100% 100% 100% 100% 100% 100% 

Phenazone 
 (C11H12N2O) 

188  HL-N  Not detected in primary effluent 

Meprobamate 
 (C9H18N2O4) 

218  HL-N  89% 100% 99% 100% 100% 100% 

Primidone 
 (C12H14N2O2) 

218  HL-N  100% 100% 100% 100% 100% 100% 

Butalbital 
 (C11H16N2O3) 

224  HL-N  100% 100% 100% 100% 100% 100% 

Naproxen 
 (C14H14O3) 

230  HB-N  85% 100% 98% 100% 100% 100% 

Carbamazepine 
 (C15H12N2O) 

236  HB-N  85% 97% 94% 100% 100% 100% 

Gemfibrozil 
 (C15H22O3) 

250  HB-N  100% 100% 100% 100% 100% 100% 

Dilantin 
 (C15H12N2O2) 

252  HB-N  100% 100% 100% 100% 100% 100% 

Ketoprofen 
 (C16H14O3) 

254  HB-N  100% 100% 100% 100% 100% 100% 

Ketorolac 
 (C15H13NO3) 

255  HB-N  100% 100% 100% 100% 100% 100% 

Carisoprodol 
 (C12H24N2O4) 

260  HB-N  100% 100% 100% 100% 100% 100% 

Pentoxifylline 
 (C13H18N4O3) 

278  HL-N  100% 100% 100% 100% 100% 100% 

Diazepam 
 (C16H13ClN2O) 

285  HB-N  100% 100% 100% 100% 100% 100% 

Warfarin 
 (C19H16O4) 

308  HB-N  100% 100% 100% 100% 100% 100% 

Fluoxetine 
 (C17H18F3NO) 

309  HB-N  63% 100% 89% 100% 100% 100% 

Dehydronifedipine 
 (C17H16N2O6) 

344  HB-N  100% 100% 100% 100% 100% 100% 

Nifedipine 
 (C17H18N2O6) 

346  HL-N  100% 100% 100% 100% 100% 100% 

Iopromide 
 (C18H24I3N3O8) 

791  HL-N  100% 100% 100% 100% 100% 100% 

Iohexal 
 (C19H26I3N3O9) 

821  HL-N  100% 100% 100% 100% 100% 100% 

           
a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

All but one of the 11 studied positive-charged pharmaceuticals were detected above MRL 

in secondary effluent samples. With characteristically high MW (e.g., antibiotics) and positive-
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charge, as seen in Table 4-10b, this group of CECs was highly rejected by both tested 

membranes by steric and electrostatic exclusion. 

Table 4-10b: Pharmaceuticals (positive) Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

 
Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 

Max  
R 

Mean 
R 

           
Lidocaine 
 (C14H22N2O) 

234  HB-I  100% 100% 100% 100% 100% 100% 

Albuterol 
 (C26H44N2O10S) 

239  HL-I  100% 100% 100% 100% 100% 100% 

Cimetidine 
 (C10H16N6S) 

252  HL-I  78% 100% 97% 100% 100% 100% 

Atenolol 
 (C14H22N2O3) 

266  HL-I  90% 100% 98% 100% 100% 100% 

Lopressor 
 (C15H25NO3) 

267  HL-I  100% 100% 100% 100% 100% 100% 

Trimethoprim 
 (C14H18N4O3) 

290  HL-I  94% 100% 99% 100% 100% 100% 

Diltiazem 
 (C22H26N2O4S) 

415  HB-I  100% 100% 100% 100% 100% 100% 

Bendroflumethiazide 
 (C15H14F3N3O4S2) 

421  HL-I  Not detected in primary effluent 

Lincomycin 
 (C18H37CIN2O7S) 

461  HL-I  100% 100% 100% 100% 100% 100% 

Erythrommycin 
 (C37H67NO13) 

734  HB-I  100% 100% 100% 100% 100% 100% 

Azithromycin 
 (C38H72N2O12) 

749  HB-I  92% 100% 99% 99% 100% 100% 

           
           a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

The group of 18 negative-charged pharmaceuticals was found with the most variable 

occurrence of the studied CECs. Table 4-10c indicates that eight were not detected in primary 

effluent samples and two were fully removed through WRRF biological treatment. The seven 

recalcitrant negative-charged pharmaceuticals were found to be highly rejected by both test 

membranes, via steric and electrostatic exclusion. Only the hydrophilic Sulfamethoxazole 

(antibiotic) was detected in any membrane permeate samples. 
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Table 4-10c: Pharmaceuticals (negative) Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

 
Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 

Max  
R 

Mean 
R 

           
Theophylline 
 (C7H8N4O2) 

180  HL-I  100% 100% 100% 100% 100% 100% 

Ibuprofen 
 (C13H18O2) 

206  HB-I  100% removed by WRRF biological treatment  

Sulfadiazine 
 (C10H10N4O2S) 

250  HL-I  100% 100% 100% 100% 100% 100% 

Sulfamethoxazole 
 (C10H11N3O3S) 

253  HL-I  83% 98% 91% 99% 100% 100% 

Sulfathiazole 
 (C9H9N3O2S2) 

255  HL-I  100% 100% 100% 100% 100% 100% 

Flumequine 
 (C14H12FNO3) 

261  HL-I  Not detected in primary effluent 

Carbadox 
 (C11H10N4O4) 

262  HL-I  Not detected in primary effluent 

Oxolinic acid 
 (C13H11NO5) 

262  HL-I  Not detected in primary effluent 

Sulfamerazine 
 (C11H12N4O2S) 

264  HL-I  Not detected in primary effluent 

Sulfamethizole 
 (C9H10N4O2S2) 

270  HL-I  Not detected in primary effluent 

Sulfamethazine 
 (C12H14N4O2S) 

278  HL-I  Not detected in primary effluent 

Sulfachloropyridazine 
 (C10H9ClN4O2S) 

285  HL-I  Not detected in primary effluent 

Meclofenamic 
 (C14H11Cl2NO2) 

296  HB-I  Not detected in primary effluent 

Diclofenac 
 (C14H11Cl2NO2) 

296  HB-I  100% 100% 100% 100% 100% 100% 

Sulfadimethoxine 
 (C12H14N4O4S) 

310  HL-I  100% 100% 100% 100% 100% 100% 

Chloramphenicol 
 (C11H12Cl2N2O5) 

323  HL-I  100% removed by WRRF biological treatment 

Bezafibrate 
 (C19H20CINO4) 

362  HB-I  100% removed by WRRF biological treatment 

Amoxicillin 
 (C16H25N3O8S) 

365  HL-I  100% 100% 100% 100% 100% 100% 

           a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

Representing caffeine and associated degradates of caffeine, nicotine, and chocolate, the 

stimulants group was somewhat surprisingly found to be recalcitrant. All studied stimulants were 

characterized previously as HL-N with relatively low molecular weights, thereby suggesting a 

possible challenge for NF membrane rejection. However, as indicated below in Table 4-11, the 

stimulants group were highly rejected by both test membranes with only one NF permeate 
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sample indicating an 11 ηg/L occurrence of caffeine, albeit considerably below the MRL of 500 

ηg/L.    

Table 4-11: Stimulants Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

 
Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 

Max  
R 

Mean 
R 

           
Cotinine 
 (C10H12N2O) 

176  HL-N  100% 100% 100% 100% 100% 100% 

Theobromine 
 (C7H8N4O2) 

180  HL-N  100% 100% 100% 100% 100% 100% 

1,7-Dimethylxanthine 
 (C7H8N4O2) 

180  HL-N  100% 100% 100% 100% 100% 100% 

Caffeine 
 (C8H10N4O2) 

194  HL-N  70% 100% 97% 100% 100% 100% 

           a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

The preservatives group of CECs were QSAR-characterized as having relatively low 

MW and mostly HB-N. Generally, such properties suggest the predominant membrane rejection 

mechanism for this group may be more sorption and less exclusion.  

Notably, as evidenced in Table 4-12, five of the eight studied preservatives were found to 

be 100% removed by WRRF biological treatment. Of the three recalcitrant preservatives, results 

indicated the two largest, Triclocarban and Triclosan, were highly rejected by both test 

membranes, with the ionic analyte in the group (Triclosan) fully rejected. The other recalcitrant 

preservative, Quinoline, represents the smallest analyte (MW = 129 g/mol) in the study set of 96 

CECs. Rejection analysis revealed moderate (89%) removal of Quinoline by both membranes.   
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Table 4-12: Preservatives Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

 
Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 

Max  
R 

Mean 
R 

           
Quinoline 
 (C9H7N) 

129  HB-N  56% 100% 89% 56% 100% 89% 

Methylparaben 
 (C8H8O3) 

152  HL-N  100% removed by WRRF biological treatment 

Ethylparaben 
 (C9H10O3) 

166  HB-N  100% removed by WRRF biological treatment 

Propylparaben 
 (C10H12O3) 

180  HB-N  100% removed by WRRF biological treatment 

Butylparaben 
 (C11H14O3) 

194  HB-N  100% removed by WRRF biological treatment 

Isobutylparaben 
 (C11H14O3) 

194  HB-N  100% removed by WRRF biological treatment 

Triclosan 
 (C12H7Cl3O2) 

290  HB-I  100% 100% 100% 100% 100% 100% 

Triclocarban 
 (C13H9Cl3N2O) 

316  HB-N  80% 100% 95% 63% 100% 93% 

           a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

Table 4-13 shows that the artificial sweeteners study group included two HL-N CECs. 

This group of CECs was found to be fully recalcitrant in the WRRF SE. Results indicated the 

larger sweetener, Sucralose, was highly rejected by both test membranes by steric exclusion. 

However, the smaller Acesulfame-K (MW = 201) was only rejected at 56% by the NF 

membrane. 

Table 4-13: Artificial Sweeteners Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

 
Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 
Max  

R 

Mean 
R 

           
Acesulfame-K 
 (C4H4KNO4S) 

201  HL-N 
 

8% 98% 56% 100% 100% 100% 

Sucralose 
 (C12H19Cl3O8) 

398  HL-N  99% 100% 99% 100% 100% 100% 

           a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

 

Similar to artificial sweeteners, the flame retardants were found to be highly recalcitrant 

in the WRRF SE. Table 4-14 shows that this group of CECs is QSAR-characterized as moderate 
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size and HB-N. Mean rejection by NF of this group ranged from 55% for the smallest, TCEP, to 

89% for the largest, TDCPP, whereas the tighter RO test membrane proved to be a highly 

effective barrier to this group of CECs. 

Table 4-14: Flame Retardants Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

 
Hydro 
Classa 

 
 

Nanofiltration 

 
Reverse Osmosis 

  
Min  

R 
Max  

R 
Mean 

R 
Min  

R 
Max  

R 
Mean 

R 
           
TCEP 
 (C6H12Cl3O4P) 

285  HB-N  8% 97% 55% 95% 100% 99.5% 

TCPP 
 (C9H18Cl3O4P) 

328  HB-N  29% 100% 81% 100% 100% 100% 

TDCPP 
 (C9H15Cl6O4P) 

431  HB-N  77% 100% 89% 100% 100% 100% 

           
           a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

Table 4-15 identifies that the pesticides group of 18 CECs were QSAR-characterized as 

relatively low to moderate in size, with MW ranging from 146 to 284 g/mol, and of neutral 

charge. Three of the 18 were not detected in the primary effluent, while 2 of the pesticides were 

found to be fully removed by the WRRF biological processes. The remaining 13 pesticides were 

found to be recalcitrant CECs in the secondary effluents. With the exception of Atrazine, the NF 

test membrane proved to be most effective (92-100%) for rejection of the nine hydrophobic 

pesticides and slightly less effective (74-89%) for rejection of the four hydrophilic species. 

Notably, the tighter RO membrane was found to fully reject all recalcitrant pesticides regardless 

of hydrophobicity.  



  113 

Table 4-15: Pesticides Rejection 

 
CEC 

Molecular 
Weight 
(g/mol) 

Hydro 
Classa 

 
 

Nanofiltration 
 

Reverse Osmosis 

 
Min  

R 
Max  

R 
Mean 

R 
Min  

R 
Max  

R 
Mean 

R 
           
DACT 
 (C3H4ClN5) 

146  HL-N  18% 100% 84% 100% 100% 100% 

DIA 
 (C5H8ClN5) 

174  HL-N  20% 100% 74% 100% 100% 100% 

DEA 
 (C6H10ClN5) 

188  HL-N  13% 100% 80% 100% 100% 100% 

DEET 
 (C12H17NO) 

191  HB-N  84% 100% 97% 100% 100% 100% 

Simazine 
 (C7H12ClN5) 

202  HL-N  76% 100% 89% 100% 100% 100% 

Isoproturon 
 (C12H18N2O) 

206  HB-N  Not detected in primary effluent 

Chlorotoluron 
 (C10H13ClN2O) 

213  HB-N  100% removed by WRRF biological treatment 

Clofibric Acid 
 (C10H11ClO3) 

215  HB-N  100% removed by WRRF biological treatment 

Atrazine 
 (C8H14ClN5) 

216  HB-N  10% 89% 68% 100% 100% 100% 

2,4-D 
 (C8H6Cl2O3) 

221  HB-N  64% 100% 92% 100% 100% 100% 

Chloridazon 
 (C10H8ClN3O) 

222  HL-N  Not detected in primary effluent 

Propazine 
 (C9H16ClN5) 

230  HB-N  Not detected in primary effluent 

Diuron 
 (C9H10Cl2N2O) 

233  HB-N  100% 100% 100% 100% 100% 100% 

Cyanazine 
 (C9H13ClN6) 

241  HB-N  100% 100% 100% 100% 100% 100% 

Linuron 
 (C9H10Cl2N2O2) 

249  HB-N  100% 100% 100% 100% 100% 100% 

Bromacil 
 (C9H13BrN2O2) 

261  HB-N  100% 100% 100% 100% 100% 100% 

Metazachlor 
 (C14H16ClN3O) 

278  HB-N  100% 100% 100% 100% 100% 100% 

Metolachlor 
 (C15H22ClNO2) 

284  HB-N  100% 100% 100% 100% 100% 100% 

           a Hydrophobicity Class: HL = Hydrophilic, HB = Hydrophobic, N = Neutral, I = Ionic charged 

4.3.2 NF Rejection Coefficient Outliers 

Under the assumption that every non-complete CEC removal (R < 100%) by the NF test 

membrane was statistically an outlier for the general data population, rejection (R), as a function 

of a CEC and its properties, is not a normally-distributed dataset; thus, subpopulations of the 

CEC rejection data were further analyzed for statistical outliers. Subsets of the data were 

populated for each of the selected CECs. Standard boxplot analysis for each such CEC are shown 
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in Appendix C. This analysis demonstrated that rejection was consistent throughout the dataset 

(with well-defined lower- and upper-quartiles) for most CECs. This is to be expected. The 

fundamental assumption of QSAR is that the behavior of an analyte (in this case, rejection by NF 

membranes) will be a function of the properties of that analyte; therefore, each CEC should have 

a repeatable rate of rejection with repeated membrane filtration testing. However, for 12 cases of 

CEC detection, removal varied significantly despite the analyte and membrane properties 

remaining constant. Table 4-16 shows a complete list of the identified statistical outliers.  

Table 4-16: Identified Outliers for Observed NF Rejection of CECs 

OUTLIER ANALYTE 
SAMPLE 
SOURCE 

OBSERVED 
REJECTION 

1 2,4-D Lawton 64% 

2 Atrazine Garland 9% 

3 BPA Garland -13% 

4 Caffeine Garland 70% 

5 Cimetidine Garland 78% 

6 DACT Garland 18% 

7 DEA Lawton 13% 

8 DIA Garland 35% 

9 Fluoxetine Norman 63% 

10 Quinoline Garland 56% 

11 Triclosan Garland -8% 

12 Triclosan Norman -7% 

 

In three of the 12 outlier cases, the reported analyte concentration was greater in the 

membrane permeate than in the secondary effluent, resulting in negative coefficients. 

Subsequently, outliers, negative coefficients, and cases where a chemical was not detected in 
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secondary effluent (i.e., R = 100% through WRRF primary and secondary treatment) were 

removed for development of the NF rejection model.   

4.4 Nanofiltration Rejection Model 

A multi-level, multi-variable model was developed to predict the probable rejection of a 

CEC in reclaimed secondary effluent with the studied NF membrane. The model was developed 

from predictor variables selected for their association with known membrane removal 

mechanisms for dissolved organic solutes, CEC-specific chemical properties based on QSAR 

properties, and matrix characteristics of the secondary effluent. The developed QMPM was then 

successfully applied to an independent CEC rejection database for model validation.  

4.4.1 Pearson Correlation Analysis 

As previously discussed, three predominant mechanisms for rejection of organic solutes 

by nano-porous membranes are steric (size) exclusion, electrostatic repulsion, and hydrophobic 

sorption. A variety of potential predictors for CEC rejection by NF was tested in categories 

according to descriptors for matrix quality and CEC-specific QSAR-based chemical properties.  

Chemical properties were selected for analysis for their potential relationship to these 

known removal mechanisms for the rejection of dissolved organic compounds by NF membrane 

filtration, including: 

1. Electrostatic surface interactions 

2. Size-exclusion 

3. Hydrophobicity/Hydrophilicity 

Table 4-17 lists the variables tested for significance in predicting the rejection of CECs 

by NF. Values for each chemical-specific property were compiled from existing online databases 

(US EPA EPI Suite v.2, ChemAxon: www.chemicalize.org). 



  116 

Table 4-17: QSAR Properties Tested for Predicting the Rejection of CECs by NF 

 

 

Previous efforts to build predictive models for regulated pesticide rejection by NF of 

drinking waters (Sanches et al. 2013) have highlighted the complexity of the underlying 

phenomena governing micropollutant rejection, requiring multivariate statistical analysis. Each 

of the listed predictor variables in Table 4-17 were evaluated individually for statistical 

significance in predicting the rejection of the 96 CEC study set. Initially, each variable was 

systematically compared to another to determine incidences of collinearity. Figure 4-1 is a 

graphical representation of a Pearson Correlation Matrix for the predictor variables evaluated 

from Table 4-17. 
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Figure 4-1: Pearson Correlation Matrix for QSAR Properties of the Examined CECs 

The color intensity and the size of the circles, represented in Figure 4-1, are proportional 

to the Pearson correlation coefficients. Large, dark blue circles are indicative of strong, positive 

correlations between variables. Large, dark red circles are indicative of strong, negative (or 

inverse) correlations between variables. Examining the correlation coefficients among the 

partitioning coefficients, the value of Kow is collinear with Kaw, while independent of Koa in the 

CEC study dataset. This was somewhat surprising given that Koa also describes the ratio of 

Kow/Kaw. As expected, Kaw displays some collinearity and dependence with Koa. Therefore, for 
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the purposes of developing a QMPM, both Kow and Koa (Kow/Kaw) were evaluated as potential 

predictors of CEC selectivity with NF. 

Steric measures (molecular size descriptors) also correlated with three of the four 

partitioning properties, thereby demonstrating that the size and shape of an organic molecule 

does have a significant impact on the partitioning behavior of that molecule. CEC polar surface 

area (PSA), a measure of the molecular surface area occupied by polar atoms (e.g., O and N for 

many CECs), revealed limited collinearity with Koa (Kow/Kaw) and therefore is an independent 

predictor. Nevertheless, MW was preserved for QMPM development in order to evaluate the 

potential MWCO of the studied NF membrane. 

Parameters that can be used to describe the polarity of the studied CECs, charge at neutral 

pH and solubility constant (S) in water, were determined to be independent of the partitioning 

coefficient Kow. Molecular polarizability (α) was also found to have limited association with 

either solubility or charge at neutral pH.  

From the Pearson Correlation analysis, an initial set of independent QSAR parameters 

was selected for model development:  

1. Log Kow 

2. Log Koa (Kow/Kaw) 

3. Molecular Charge at Neutral pH 

4. Molecular Weight 

5. Polar Surface Area 

6. Polarizability 
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4.4.2 Model Predictor Variables 

The following predictor variables had the lowest mutual dependence and best collinearity 

with the predominant rejection mechanisms of the NF test membrane: size exclusion, 

hydrophobic sorption, and electrostatic surface interactions.  

4.4.2.1 Molecular Weight 

As previously discussed, one approach to assessing the absolute MWCO of a membrane 

is to plot the rejection coefficients of many solutes of varying molecular weight. 

 

Figure 4-2: MW versus Observed Rejection 
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In Figure 4-2, the dashed line represents the observed molecular weight rejection 

threshold for the studied NF membrane above which nearly complete rejection of CECs was 

observed. For smaller molecular weight CECs (< 330 g/mol), observed rejection ranged from 0 

to 100%. With a clear molecular weight rejection cutoff established for the tested membrane, it 

was apparent that a QSAR-based CEC rejection model would be most useful in predicting the 

variability in rejection of the smaller CECs (with molecular weight < 330 g/mol). 

4.4.2.2 Molecular Charge at Neutral pH 

Electrostatic repulsion and attraction of dissolved CECs by the charged membrane 

surface (with a negative zeta potential) can be described by the molecular charge at the neutral 

pH of the sampled matrix (for the purposes of safe stream discharge or water reuse, typical 

reclaimed municipal effluents will have a pH between 7 and 8). By plotting the molecular 

surface charge density (C/m2) of each CEC versus its observed rejection coefficient, a clear 

delineation can be observed in Figure 4-3 between the rates of rejection of charged and neutral 

species. With the exception of four observations, charged CECs (positive or negative) at neutral 

pH were removed by 90% or more (for greater than 1-log rejection). However, neutral CECs 

(solutes with zero surface charge density at pH =7) could potentially see less efficient rejection 

by the tested NF membrane. As recently observed by Chen et al. (2015), the CECs furthest away 

from their isoelectric point in neutral pH reclaimed waters have the greatest probability of NF 

rejection. 
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Figure 4-3: Surface Charge Density versus Observed Rejection 

To assess the expected percent rejection of charged/ionic CECs, frequency distributions 

were plotted for observed NF rejection (excluding observations for nonionic, or neutral, CECs).  

Figure 4-4 shows the frequency of observed rejection coefficients for negatively charged CECs. 

With few exceptions, negatively charged CECs were rejected fully (R = 1.00) by the NF test 

membrane, and the 1st-quartile, median, and 3rd-quartile observed R were all 1.00 for these 

compounds. 

-1.0 -0.5 0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Charge at Neutral pH, C/m
2

R
e
je

c
ti
o
n

 C
o
e

ff
ic

ie
n
t



  122 

 

Figure 4-4: Frequency Distribution of NF Rejected Negative CECs 

Similarly, positive-charged CECs were also rejected fully (R = 1.00) by the NF test 

membrane, and the 1st-quartile, median, and 3rd-quartile observed R were all 1.00 for these 

compounds. Figure 4-5 illustrates the frequency of observed R for positively charged CECs.  
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Figure 4-5: Frequency Distribution of NF Rejected Positive CECs 

4.4.2.3 Phase Partitioning 

Having identified that the greatest variation in observed NF rejection could be explained 

by small molecular weight CECs with neutral surface charges at pH =7, hydrophobic sorption 

was next examined as potential predictors. Solute hydrophobicity has been previously described 

by phase partition coefficients like Kow. However, for this dataset, neither Kow nor the log of Kow 

was found to be a statistically significant predictor, in itself, of CEC rejection by NF. 

Other phase partitioning constants, either empirical or model-derived, were considered as 

well, including the air-water partitioning coefficient (Kaw). Individually, these partitioning 

0

10

20

30

40

0.900 0.925 0.950 0.975 1.000

R

F
re

q
u
e
n

c
y

Positively Charged CECs



  124 

coefficients were also ruled out as strong predictors of CEC rejection coefficients due to lack of 

correlation with the observed rejection dataset. However, an obvious trend was identified when 

the ratio of log Kow to log Kaw was examined for its relationship to observed CEC rejection. As 

evidenced by Figure 4-6, for log Kow/Kaw greater than 17, all cases had an observed rate of 

rejection greater than 100%. 

 

Figure 4-6: NF Rejection as a Function of log (Kow/Kaw) 
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rejection coefficients as a function of CEC log (Kow/Kaw) has a negligible slope, and an intercept 

of 0.99. Thus, the minimum predicted rejection with NF of smaller, charged CECs with log 

(Kow/Kaw) > 17 is expected to be 100%.  

4.4.3 NF Rejection Model 

Having characterized the variability in CEC rejection by NF as a function of small 

molecular weight, neutrally charged at pH =7, and having a log Kow/Kaw less than 17, a clear 

taxonomy for CEC selectivity with NF was formed. Figure 4-7 allows for classification of the 

likelihood for CEC rejection by NF by steric, electrostatic, and hydrophobic/hydrophilic 

mechanisms.  
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Figure 4-7: Quantitative Molecular Properties Model 

As defined, the Bin 4 CECs (i.e., small, neutral, hydrophilic) had the greatest variability 

in observed rejection coefficients with the tested NF membrane. However, as seen in Figure 4-8, 

this subset of data remains heavily weighted by occurrences of complete, or nearly complete, 

rejection.  
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Figure 4-8: Distribution of Bin 4 CEC Rejection Coefficients 

To better predict the rate of rejection of CECs that are less selective for NF, a regression 

model was fit to the subset of Bin 4 data where R<99% (excluding cases of 100% rejection). The 

resulting model applies the variable function log (Kow/Kaw) to quantify the trend in increasing 

CEC rejection by NF with increasing Kow/Kaw. Notably, the Bin 4 equation includes both 

hydrophobic and steric rejection functions. 
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Where: 

 β1, β2 = model coefficients 

 PSA = polar surface area 

 R = predicted CEC rejection by NF 

The best-fit model parameter and corresponding summary statistics for the Bin 4 linear 

regression model are provided in Table 4-18 below. Summary statistics were calculated using 

statistical software (R v.3.1.1). Table 4-18 lists the estimated parameter coefficients and standard 

errors. The p-value was the test statistic used to assess the significance of the estimated mean in 

relationship to the null hypothesis (that the true mean is actually 0). A p-value less than 0.05 was 

considered highly significant, with 95% confidence.  

Table 4-18: Summary Statistics for Bin 4 Equation 

Parameter 
Estimated 
Mean 

Standard 
Error 

p-value 

β1 0.05301 0.01520 0.0011 

β2 0.16502 0.07720 0.0380 

 

4.4.4 Model Validation 

With a predictive NF rejection model for Bin 4 CECs, a comparison of the predicted NF 

rejection of incompletely removed (Bin 4) CECs to observed NF rejection is a useful exercise for 

assessing model validity. Figure 4-9 shows a side-by-side comparison of observed Bin 4 CECs 

rejection, with the studied NF membrane, and model-predicted rejection.   
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Figure 4-9: Observed (mean) Rejection for 10 Bin 4 CECs vs. Model Predicted 

For all ten Bin 4-CECs examined, the QMPM slightly under-predicts the rate of NF 

rejection. This result was expected, considering the mean observed CEC rejection includes cases 

where rejection was 99% or more. The average under-prediction for each of the 10 CECs was 

20% of the observed mean rejection coefficient. From a design and treatment selection 

perspective, this consistent under-prediction by the QMPM provides a necessary factor-of-safety 

when assessing the viability of NF to meet potential treatment and regulatory requirements for 

filtrate concentrations of monitored CECs. 

4.5 Model Verification 

The close proximity of modeled and observed CEC rejection for the Bin 4 CECs 

highlights the potential utility of this predictive QMPM model. For further validation, an 
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independent dataset for bench-scale NF rejection testing of CECs in purified water was selected 

for comparison. Yangali-Quintanilla published a dataset in 2010 that was collected from a 

similar bench-scale, membrane pressure cell testing apparatus. Although, a continuous cross-

flow was applied to the membrane coupon, rather than dead-end operation. The NF membrane 

utilized by Yanagali-Quintanilla was very similar to the GE Osmonics DK membrane used for 

this research: commercially available (Dow-Filmtec NF-90), thin-film polyamide composite 

hydrophilic membrane with MWCO of 200 Da and negative zeta potential. However, relative to 

this thesis research, Yangali-Quintanilla’s NF rejection study represents an idealized system for 

observing CEC rejection. The relative purity of the Yangali-Quintanilla water matrix makes it an 

applicable test case for the universality of the QMPM. 

Yangali-Quintanilla’s (2010) data set included the following QMPM Bin 4 CECs: 

• Phenacetin (log Kow/Kaw=9.6) 

• Atrazine (log Kow/Kaw=9.6) 

• Metronidazole (log Kow/Kaw=9.14) 

• Caffeine (log Kow/Kaw=8.77) 

• Phenazone (log Kow/Kaw=7.95) 

• 4-Nonylphenol (log Kow/Kaw=9.37) 

• Ibuprofen (log Kow/Kaw=9.18) 

The constituents highlighted in bold were not present in the study set of 96 CECs 

analyzed in samples from Garland, Lawton, and Norman. For comparison, Figure 4-10 plots the 

observed CEC rejection with NF by Yangali-Quintanilla and subsequent predicted CEC rejection 

for these Bin 4 constituents.  
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Figure 4-10: Observed Bin 4 CEC rejection (by NF) versus model-predicted CEC rejection 
for Yangali-Quintanilla (2010) data set. Red dashed lines depict upper and lower 95% 

confidence intervals on the regression line. 

Despite testing the NF membrane in a different filtration mode (cross-flow vs. dead-end) 

with artificially spiked CECs in ideal, laboratory-grade water, the QMPM also under-predicts 

Yangali-Quintanilla’s observed Bin 4 CEC rejection coefficients by 20%. As previously 

discussed, CECs that would be classified as Bin 4 according to QSAR are the most challenging 

to remove by tight TFC NF membranes. As such, some factor of safety (FOS) would be prudent. 

The utility of a predictive rejection model which provides a FOS for the most poorly rejected Bin 
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4 CECs is that it provides a conservative tool for assessing NF as treatment technology for 

potable reuse applications where numerical criteria for CECs in produced water are a likely 

eventual reality. 

As opposed to a priori models of NF rejection, the QMPM is independent of membrane- 

or solution-specific properties. Thus, the developed model can be used to screen or select CECs 

that could be classified as Bin 4 contaminants and therefore most challenging to NF filtration. 

For I/DPR applications of NF, the window of CECs that must be analyzed for prior to design and 

monitored for during full-scale operation is reduced to the Bin 4 CECs that resist WRRF removal 

and are known to exist in the treated effluent water matrix.  

The conservatism of the developed QMPM can be attributed to discounting the 100% NF 

rejection observations in the modeled data set for Bin 4 CECs. While it can be argued that this 

approach artificially lowers the predicted rejection of CECs by NF, the goal of this work was not 

to develop a multi-parameter, membrane-specific, fundamental mechanism model (which would 

provide inherently greater prediction precision), but to synthesize a simple, universal, CEC 

rejection prediction and screening tool. The ultimate success of the QMPM will depend on future 

application and improvement through NF pilot- and full-scale testing, and consequently the 

adoption of the QMPM by engineers and regulators for screening and selection of CECs for NF 

process monitoring during potable reuse water production. 

As previously discussed, the QMPM is a departure from fundamental, first-principles-

based solute rejection models for RO. Models based on SK theory and Fick’s Law have been 

proven useful for developing a complete mass-balance of single solutes in an idealized 

membrane filtration system, typical of RO desalination applications. The complexity of 

predicting rejection of a mixed-liquor of trace organic solutes (i.e., CECs) in a constantly-
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changing water matrix such as a reclaimed wastewater requires a more robust, universal 

modeling approach than fixed-film theory can provide. The Yangali-Quintanilla data set was 

purposely selected to validate the universality of the QMPM for conservative prediction of 

observed CEC rejection. By selecting chemical-specific QSAR prediction parameters, rather than 

membrane-specific properties, the QMPM can consistently predict the minimum rejection 

coefficient for recalcitrant trace organic wastewater contaminants regardless of the quality of the 

water matrix being filtered. While the QMPM is not a ‘black box’ solution and can be adapted to 

predict NF rejection of future CECs after identifying the solute’s bin classification based on 

QSAR properties, it does not consider changes in membrane properties, such as irreversible 

fouling and swelling, due to aging and continued use. As such, the best application of the QMPM 

will be as a decision science screening tool for developing a priority list of CECs for testing and 

monitoring during NF application for I/DPR. 
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CHAPTER 5 - CONCLUSIONS AND FUTURE WORK  

The objective of this research was to elucidate the recalcitrant CEC rejection performance 

of a commercially available tight thin-film composite (GE Osmonics DK) NF membrane in 

parallel with and relative to a typical water industry specified (GE Osmonics AG) RO membrane 

with actual secondary effluents from three WRRFs where the PWS managers are currently 

considering the addition of reuse water to their water supply portfolio. And, ultimately, the 

objective was to conceive and develop a novel but practical decision science tool, derived from 

CEC QSAR properties and membrane rejection mechanisms, for regulators, PWS managers, and 

designers to utilize when selecting barrier treatment technologies for the implementation of 

potable reuse systems. 

5.1 Rejection Conclusions 

Nanofiltration of WRRF SE was observed to meet published and regulated human health 

criterion for the CEC study set. As provided in Table 5-1, a factor of safety (FOS) greater than 

30 was achieved for all CEC analytes. The FOS for CECs regulated by the US EPA NPDWR for 

potable water supply ranged from 125 to 2,059. The following discussion summarizes the 

observed rejection coefficients by CEC intended use classification. 

  



  135 

Table 5-1: Human Health Criterion Factor of Safety with NF 

CEC 

Human Health 

Criteriona 
(ηg/L) 

Observed NF Reuse Supply 
NF 

Factor of Safety 
Minimum 

(ηg/L) 
Mean 
(ηg/L) 

Maximum 
(ηg/L) 

Ethinyl estradiol 5 Not detected in PE -- 

17-β-estradiol 5 Not detected in SE -- 

Estrone 320 ND ND ND 64 

Cotinine 1,000 ND ND ND 100 

Primidone 10,000 ND ND ND 2,000 

Dilantin 2,000 ND ND ND 100 

Meprobamate 200,000  ND < 5 9 22,222 

Atenolol 4,000 ND < 5 27 148 

Carbamazepine 10,000 5 12 19 526 

Sucralose 150,000,000 ND < 100 160 937,500 

TCEP 5,000 ND 92 160 31 

DEET 200,000 ND < 5 21 9,524 

Triclosan 50,000 ND 9 35 1,429 

2,4-D MCL: 70,000 ND 6 34 2,059 

Atrazine MCL: 3,000 ND 11 24 125 

Simazine MCL: 4,000 ND 11 31 129 

aAdapted from NWRI, US EPA NPDWR. 

MCL = maximum contaminant level. ND = not detected. PE = primary effluent. SE = secondary effluent. 

 

For the study set of 96 CECs, 82 were detected above the corresponding MRL in the 

primary effluent. The 14 undetected CECs either did not exist at measurable concentration in the 

WRRF influent or were effectively removed by the WRRF primary treatment gravity separation 

barriers. Of significant relevance for potable reuse applications, 18 of the studied 96 CECs were 

fully (100%) removed by full-scale WRRF biological treatment. Conversely, 64 of the 96 studied 
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CECs were found to exist in the SE at recalcitrant residual concentrations above MRL. Of the 

recalcitrant CECs, mean rejection by the tested NF was 90% or higher for 53 of the 64. The other 

11 CECs were rejected at a range from 46% to 89%. Notably, the tested RO membrane fully 

(100%) rejected all but 2 of the 64 recalcitrant CECs: Quinoline (89%) and Triclocarban (93%). 

Rejection analyses of the EDCs revealed that most natural human hormones were readily 

removed to below MRL by the WRRF biological processes. Estrone was the only natural human 

hormone not fully biodegraded, and NF effectively rejected approximately half the remaining 

fraction. The other two recalcitrant EDCs were 4-tert-Octylphenol (surfactant) and BPA 

(plasticizer), for which the NF membrane was found to be a very effective barrier rejecting 90% 

to 95%. All three EDCs detected in NF permeate samples have a MW above the NF MWCO and 

are classified hydrophobic neutral, suggesting steric exclusion and hydrophobic sorption as the 

predominant rejection mechanisms.  

NF proved very effective for the rejection (84% to 100%) of neutral-charged 

pharmaceuticals. With a neutral charge, this group of CECs is likely rejected by steric exclusion 

and some hydrophobic sorption, although the 100% exclusion of Acetaminophen (MW = 151 

g/mol) by the NF test membrane was evidence molecular PSA may be a better QSAR indicator 

than MW for steric exclusion. With characteristically high MW (e.g., antibiotics) and ionic 

charge, the positive-charged pharmaceuticals were highly rejected (97% to 100%) by the tested 

NF membrane by steric and electrostatic exclusion. The recalcitrant negative-charged 

pharmaceuticals were also found to be highly rejected (97% to 100%) by the NF test membranes, 

via steric and electrostatic exclusion. 

Representing caffeine and associated degradates of caffeine, nicotine, and chocolate, the 

stimulants group was somewhat surprisingly found to be in recalcitrant non-biodegraded trace 
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occurrence in secondary effluent samples. All studied stimulants were characterized as 

hydrophilic-neutral with relatively low molecular weights, thereby suggesting a possible 

challenge for NF membrane rejection. However, all stimulants but caffeine (97%) were rejected 

fully by the NF test membranes.    

The preservatives group of CECs were QSAR characterized as relatively low MW and 

mostly hydrophobic neutral. Generally, such properties suggest the predominant membrane 

rejection mechanism for this group may be more sorption and less exclusion. Five of the eight 

studied preservatives were found to be 100% removed by WRRF biological treatment. Of the 

three recalcitrant preservatives, results indicated the two largest, Triclocarban and Triclosan, 

were highly rejected (95 to 100%) by the NF test membrane, with the ionic analyte (Triclosan) 

fully rejected. The third recalcitrant preservative, Quinoline, represented the smallest analyte 

(MW = 129 g/mol) in the study set of 96 CECs. Rejection analysis revealed good (89%) removal 

of Quinoline by the NF membrane. 

The studied artificial sweeteners group included two hydrophilic neutral CECs. As 

suspected, this group of CECs was found to be resistent to biodegradation by the WRRFs and 

fully recalcitrant. Results indicated the larger sweetener, Sucralose, was highly rejected (99 to 

100%) by the NF test membrane by steric exclusion. However, the smaller Acesulfame-K was 

rejected at 56%. 

Similar to artificial sweeteners, the flame retardants were found to be highly recalcitrant 

in the WRRF secondary effluents. This group of CECs is QSAR characterized as moderate size 

and hydrophobic neutral. Mean rejection by NF of this group ranged from 55% for the smallest 

to 89% for the largest analyte.  
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The pesticides group of 18 CECs were QSAR characterized as relatively low to moderate 

in size, with MW ranging from 146 to 284 g/mol, and of neutral charge. Three of the 18 were not 

detected in the primary effluent, while two of the pesticides were found to be fully removed by 

the WRRF biological processes. The remaining 13 pesticides were found to be recalcitrant CECs 

in the secondary effluents. With the exception of Atrazine, the NF test membrane proved to be 

highly effective (92-100%) for rejection of the nine hydrophobic pesticides and slightly less 

effective (74-89%) for rejection of the four hydrophilic species. 

5.2 Modeling Conclusions 

A multi-level, multi-variable model was developed to predict the probable rejection 

coefficient (R = 1 – C/C0) of recalcitrant CECs in secondary effluent with the studied NF 

membrane. The model was developed from predictor variables selected for their association with 

known membrane rejection mechanisms for organic solutes (size-exclusion, electro-static 

interactions, and hydrophobicity), CEC-specific chemical properties based on QSAR, and 

wastewater matrix characteristics of the samples. The resulting QMPM, as presented in Figure 5-

1, was then successfully applied and verified to evaluate the mechanisms governing the rejection 

(by NF) of the studied recalcitrant CECs.  
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Figure 5-1: NF Quantitative Molecular Properties Model (QMPM) 

Similar to other decision science tools released by the EPA for compliance with rules of 

the SDWA (e.g. SWTR, DBPR), a “bin” approach was adopted for development of the QMPM. 

Each of the four bins represents a unique set of conditions consisting of CEC QSAR properties 

and membrane rejection mechanisms. Figure 2 shows the respective bin classifications for the 

Norman 96. 
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Figure 5-2: Bin Classification of Norman 96 

 

For Bin 1, steric exclusion represents the predominant NF rejection mechanism. The 

model predicts 100% rejection of the larger CECs with a MW greater than or equal to 330 g/mol. 

A total of 10 CECs from the study set fell in Bin 1. Examples of large CECs captured by Bin 1 

include antibiotics from the pharmaceuticals classification. With Bin 2, steric and electrostatic 

exclusion are the predominant rejection mechanisms. From the study set, a total of 30 CECs with 

a MW ranging 130-330 g/mol and an ionic charge (positive or negative) at neutral pH were fully 

rejected in Bin 2. These CECs consisted of the ionic pharmaceuticals and the preservative 

Triclosan. 

For Bins 3 and 4, including over half the CEC study set, steric exclusion and hydrophobic 

sorption are the rejection mechanisms. The model predicts neutral charged CECs with a MW 

ranging 130-330 g/mol and hydrophobic, log (Kow/Kaw) > 17, in nature will be rejected fully 

(100%) in Bin 3 by the hydrophilic NF test membrane, whereas the Bin 4 hydrophilic-neutral 

CECs with log (Kow/Kaw) ≤ 17 were not fully rejected in many cases by the tested NF membrane. 
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As such, the QMPM predicts Bin 4 CECs are rejected at a rate as determined by the Equation 

5.1. 

R = 0.05301 log (Kow/Kaw) + 0.16502 log (PSA)  Eq (5.1) 

Where: 

 PSA = polar surface area 

 R = Bin 4 predicted CEC rejection by NF 

The QMPM-predicted rejection coefficients were validated against the observed data set. 

Furthermore, the QMPM was verified against the hydrophilic-neutral CEC data set reported by 

Yangali-Quintanilla in 2010. CECs that would be classified as Bin 4 according to QSAR are the 

most challenging to remove by tight TFC NF membranes. As such, some FOS would be prudent. 

A predictive rejection model which provides a FOS for the less highly rejected Bin 4 CECs is 

useful because it provides a conservative tool for assessing NF as treatment technology for 

I/DPR applications where numerical criteria for CECs in produced water are a likely eventual 

reality. 

5.3 Future Work 

The exhaustive literature review performed by EPA in 2014 of over 400 publications 

shows that zero full-scale and only 13 bench-scale NF membrane units were found from which 

to report CEC rejection. With the lack of knowledge, the default approach can be an over-

conservative and cost-prohibitive design. Currently, RO in existing I/DPR treatment facilities is 

the default FAT barrier for CEC control. RO represents a major capital and O&M expense not 

seen with conventional technologies. Further, an RO system produces a brine reject waste that 

can represent new treatment/disposal challenges. However, the default RO approach to CEC 

control may be questioned if we consider new commercially available tight (i.e., MWCO ≤ 200 
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Da) TFC NF membranes. Tight NF membranes may provide suitable CEC rejection efficacies 

for less capital, O&M, power, and waste generated. Clearly, more research is required to 

ascertain if tight NF membranes can be acceptable FAT barriers for CEC control in potable reuse 

systems. 

More research is required to assess the NF membrane sorption rejection mechanism of 

recalcitrant hydrophilic-neutral CECs in actual secondary effluents. Some bench-scale research 

has reported that NF membrane rejection can be overestimated if the sorption mechanism of a 

fresh membrane is not allowed to reach equilibrium (Kimura et al. 2003). Other bench-scale 

research has studied the sorption equilibrium effect and reported only nominal differences (i.e., 

<1 to 5%) in CEC rejection with and without adsorption equilibrium (Yangali-Quintanilla 2010). 

This researcher also reported a fouled NF membrane could produce higher hydrophilic-neutral 

CEC rejection coefficients than a fresh membrane. For bench-scale testing, a cross-flow 

apparatus must be utilized if the sorption mass is to be determined. However, bench-scale testing 

cannot simulate the sorption rejection recovery effect of a pilot or full-scale NF membrane 

following backwash, maintenance clean, or clean-in-place. As such, NF pilot or full-scale testing 

to research the rejection of recalcitrant hydrophilic-neutral CECs is recommended. 

Regarding future work in NF predictive modeling, Mohammad and his research team 

reported that 

… the overwhelming majority of NF predictive rejection models to date are 
inadequate because they have been developed with idealized solutions typically 
containing only 2, 3, or sometimes 4 solutes. If accurate modeling of 
concentrated multi-solute solutions realistic of industrial processing is to become 
common place then more effort needs to be placed into modeling systems of real 
industrial relevance. (Mohammad et al. 2015)  
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As such, future work is recommended with WRRF secondary effluent matrices (not 

synthetic lab solutions) and recalcitrant occurring (not spiked) CECs at environmentally relevant 

ηg/L concentrations. 

And finally, more work is required to determine human health criterion based MCLs for 

high-risk CECs. Treatment goals should be based on human health, rather than setting treatment 

goals as full (100%) rejection of MRL as established by the latest analytical methods. Complete 

removal of all chemicals is impractical (Tchobanoglous et al. 2015). 
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Table A-1: Recommended CEC Control Indicators for DPR Systems 

CEC Criterion Rationale 

Atazine 3 ug/L 

NPDWS MCL 
 

2,4-D 
(dichlorophenooxyacetic) 

70 ug/L 

Methoxychlor 40 ug/L 

Simazine 4 ug/L 

Perfluorooctanoic acid 0.4 ug/L U.S. EPA health 
advisory Perfluorooctane sulfonate 0.2 ug/L 

Perchlorate 6 ug/L CDPH MCL 

1,4-Dioxane 1 ug/L 
CSWRCB 
notification 

Ethinyl estradiol None yet, but MCL 
will approach MRL 

(low ng/L) 

Evaluate presence 
in source water 17β-estradiol 

Cotinine 1 ug/L 

Surrogate for low 
MW CECs 

Primidone 10 ug/L 

Phenyltoin 2 ug/L 

Meprobamate 200 ug/L Occurs frequently at 
ng/L level Atenolol 4 ug/L 

Carbamazepine 10 ug/L Unique structure 

Estrone 320 ng/L 
Surrogate for 

steroids 

Sucralose 150,000 ug/L 
Surrogate for 

neutral solutes w/ 
moderate MW 

Tris (2-Carboxyethyl 
phosphine) hydrochloride 

5 ug/L 
MDH 2015 

guidance value N,N-diethyl-meta-
toluamide 

200 ug/L 

Triclosan 2,100 ug/L 
NRC 2012 risk-

based action level 
Source: WRRF 2015; NWRI 2013 
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Table A-2: UCMR3 NCOD Summary (U.S. EPA, June 2015) 
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Table A-3: Draft CCL4 – Chemical Contaminant List 

Compound CASRN Compound CASRN 

1,1,1,2-
Tetrachloroethane 

630-20-6 Captan 133-06-2 

1,1-Dichloroethane 75-34-3 Chlorate 14866-68-3 

1,2,3-Trichloropropane 96-18-4 Chloromethane 74-87-3 

1,3-Butadiene 106-99-0 Clethodim 110429-62-4 

1,4-Dioxane 123-91-1 Cobalt 7440-48-4 

17 alpha-Estradiol 57-91-0 
Cumene 
hydroperoxide 

80-15-9 

1-Butanol 71-36-3 Cyanotoxins N/A 

2-Methoxyethanol 109-86-4 Dicrotophos 141-66-2 

2-Propen-1-ol 107-18-6 Dimethipin 55290-64-7 

3-Hydroxycarbofuran 16655-82-6 Disulfoton 298-04-4 

4,4-Methylenedianiline 107-77-9 Diuron 330-54-1 

Acephate 30560-19-1 Equilenin 517-09-9 

Acetaldehyde 75-07-0 Equilin 474-86-2 

Acetamide 60-35-5 Erythromycin 114-07-8 

Acetochlor 34256-82-1 Estradiol 50-28-2 

ESA acid 187022-11-3 Estriol 50-27-1 

Acetochlor OA acid 194992-44-4 Estrone 53-16-7 

Acrolein 107-02-8 Ethinyl Estradiol 57-63-6 

Alachlor ESA acid 142363-53-9 Ethoprop 13194-48-4 

Alachlor OA acid 171262-17-2 Ethylene glycol 107-21-1 

alpha-
Hexachlorocyclohexane 

319-84-6 Ethylene oxide 75-21-8 

Aniline 62-53-3 Ethylene thiourea 96-45-7 

Bensulide 741-58-2 Fenamiphos 22224-92-6 

Benzyl chloride 100-44-7 Formaldehyde 50-00-0 

Butylated 
hydroxyanisole 

2501316-5 Germanium 7440-56-4 
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Table A-3: Draft CCL4 – Chemical Contaminant List (Cont.) 

Compound CASRN Compound CASRN 

Halon 1011 74-97-5 n-Propylbenzene 103-65-1 

HCFC-22 75-45-6 o-Toluidine 95-53-4 

Hexane 110-54-3 Oxirane, methyl- 75-56-9 

Hydrazine 302-01-2 
Oxydemeton-
methyl 

301-12-2 

Manganese 7439-96-5 Oxyfluorfen 42874-03-3 

Mestranol 72-33-3 PFOS 1763-23-1 

Methamidophos 10265-92-6 PFOA 335-67-1 

Methanol 67-56-1 Permethrin 52645-53-1 

Methyl bromide 74-83-9 Profenofos 41198-08-7 

MTBE 1634-04-4 Quinoline 91-22-5 

Metolachlor 51218-45-2 RDX 121-82-4 

Metolachlor ESA acid 171118-09-5 sec-Butylbenzene 135-98-8 

Metolachlor OA acid 152019-73-3 Tebuconazole 107534-96-3 

Molinate 2212-67-1 Tebufenozide 112410-23-8 

Molybdenum 7439-98-7 Tellurium 13494-80-9 

Nitrobenzene 98-95-3 Thiodicarb 59669-26-0 

Nitroglycerin 55-63-0 Thiophonate-methyl 23564-05-8 

N-Methyl-2-pyroidone 872-50-4 
Tolulene 
diisocyanate 

26471-62-5 

NDEA 55-18-5 Tribufos 78-48-8 

NDMA 62-75-9 Triethylamine 121-44-8 

NDPA 621-64-7 TPTH 76-87-9 

N-Nitrosodimethylamine 86-30-6 Urethane 51-79-6 

NPYR 930-55-2 Vanadium 7440-62-2 

Nonylphenol 25154-52-3 Vinclozolin 50471-44-8 

Norethindrone 68-22-4 Ziram 137-30-4 

Source: Federal Register, Vol.80, No.23, Wed, February 4, 2015 
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Exhibit B-1: WRRF Operational Data 
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Exhibit B-1: WRRF Operational Data 
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Exhibit B-2: Sample Naming Convention 

 

 

 

 

  



  166 

Exhibit B-3: Laboratory Sampling and Packaging Instructions 
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Exhibit B-3: Laboratory Sampling and Packaging Instructions (Cont.) 
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Exhibit B-3: Laboratory Sampling and Packaging Instructions (Cont.) 
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Exhibit B-3: Laboratory Sampling and Packaging Instructions (Cont.) 
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Exhibit B-4: Sample Shipping Destinations 
 

Osmonics Membrane Test Samples: 

GE Osmonics Water & Process Technologies 

5951 Clearwater Drive 

Minnetonka, MN 55343 

 

Eurofins Laboratory Analysis Samples Destination: 

Eurofins Eaton Analytical, Inc. 

750 Royal Oaks Drive, 

Monrovia, CA 91016 
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Exhibit B-5: Nanofiltration (NF) Membrane (DK) Manufacturer Data Sheet 
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Exhibit B-5: Nanofiltration (NF) Membrane (DK) Manufacturer Data Sheet (Cont.) 
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Exhibit B-6: Reverse Osmosis (RO) Membrane (AG) Manufacturer Data Sheet 

 



  174 

Exhibit B-6: Reverse Osmosis (RO) Membrane (AG) Manufacturer Data Sheet (Cont.) 
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties 

1. DK (NF) 

      a)  AFM 

b) Contact Angle 
c) Surface Zeta Potential 

2. AG (RO) 

      a)  AFM 

b)  Contact Angle 

c) Surface Zeta Potential 
 

1) DK – Nanofiltration Membrane 

a) Atomic Force Microscopy (AFM) 

 

Area Size of measurement Roughness, Rq (nm) 
Normal (gray) 2 μm 4.1 

1 μm 5.03 
500 nm 3.81 

Purple 2 μm 12.1 
1 μm 10.5 

500 nm 7.12 
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties (Cont.) 

Normal Area 
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties (Cont.) 

Purple Area  
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties (Cont.) 

b) Contact Angle (~20-25°) 

 

c) Surface Zeta Potential 
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties (Cont.) 

2) AG – Reverse Osmosis Membrane 

a) Atomic Force Microscopy (AFM) 

 

Area Size of measurement Roughness, Rq (nm) 
Flat (gray) 2 μm 7.66 

1 μm 5.69 
500 nm 3.31 

Stripe 2 μm 28.3 
1 μm 9.81 
500 nm 6.03 
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties (Cont.) 

Flat area (gray) 
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties (Cont.) 

Stripe area 
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Exhibit B-7: UA MAST Lab Results – Test Membrane Properties (Cont.) 

b) Contact Angle (~23-30°) 

 

c) Surface Zeta Potential 
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Exhibit B-8: Eurofins Eaton Analytical Certifications 
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Exhibit B-8: Eurofins Eaton Analytical Certifications (Cont.) 

Certifications 

 

Every assignment you entrust to us will be performed to the highest possible standards. Eaton 

Analytical meets the stringent certification requirements in 50 states and territories, and is accredited 

by the NELAC Institute (TNI) and ISO/IEC17025. 

Each year our laboratories are audited by many organizations including the states in which we are 

certified, as well as the American National Standards Institute, US Air Force, US Army Public Health 

Command, and the United States Environmental Protection Agency. 

For a copy of our current certification in a particular state, please look at the list of states and 

territories. Click on a link in the list to download the information in Adobe Acrobat (PDF) format. 

 

 

Monrovia, CA South Bend, IN 

• Alabama.pdf 

• Arizona.pdf 

• Arkansas.pdf 

• California.pdf 

• Colorado.pdf 

• Connecticut.pdf 

• Delaware.pdf 

• Florida.pdf 

• Georgia.pdf 

• Hawaii LT2.pdf 

• Hawaii.pdf 

• Alabama.pdf 

• Alaska.pdf 

• Arizona.pdf 

• Arkansas.pdf 

• California.pdf 

• Colorado Radiochemistry.pdf 

• Colorado.pdf 

• Connecticut.pdf 

• Delaware.pdf 

• Florida.pdf 

• Georgia.pdf 
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• Idaho.pdf 

• Illinois.pdf 

• Indiana.pdf 

• Kansas.pdf 

• Kentucky.pdf 

• Louisiana.pdf 

• Maine.pdf 

• Maryland.pdf 

• Massachusetts.pdf 

• Michigan.pdf 

• Mississippi.pdf 

• Montana.pdf 

• Nebraska.pdf 

• Nevada.pdf 

• New Hampshire.pdf 

• New Jersey.pdf 

• New Mexico.pdf 

• New York.pdf 

• North Carolina.pdf 

• North Dakota.pdf 

• Oregon.pdf 

• Pennsylvania.pdf 

• Puerto Rico.pdf 

• Rhode Island.pdf 

• South Carolina.pdf 

• South Dakota.pdf 

• Tennessee.pdf 

• Texas.pdf 

• Utah.pdf 

• Vermont.pdf 

• Virginia.pdf 

• Washington.pdf 

• Wisconsin.pdf 

• Wyoming.pdf 

• Hawaii.pdf 

• Idaho.pdf 

• Illinois Micro.pdf 

• Illinois.pdf 

• Indiana Micro.PDF 

• Indiana.pdf 

• Iowa.pdf 

• Kansas.pdf 

• Kentucky.pdf 

• Louisiana.pdf 

• Maine.pdf 

• Maryland.pdf 

• Massachusetts.pdf 

• Michigan.pdf 

• Minnesota.pdf 

• Mississippi.pdf 

• Missouri.pdf 

• Montana.pdf 

• Nebraska.pdf 

• Nevada.pdf 

• New Hampshire.pdf 

• New Jersey.pdf 

• New Mexico.pdf 

• New York.pdf 

• North Carolina.pdf 

• North Dakota.pdf 

• Ohio.pdf 

• Oklahoma.pdf 

• Oregon.pdf 

• Pennsylvania.pdf 

• Puerto Rico.pdf 

• Rhode Island.pdf 

• South Carolina.pdf 

• South Dakota.pdf 
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• ALL EPA ICR Approval.pdf 

• UCMR Aeromonas Approval.pdf 

• Legionella Certificate.pdf 

• UCMR CLO4.pdf 

• UCMR2 Approval.pdf 

• ISO certificate of Accreditation.pdf 

• UCMR3 Approval.pdf 

• Soil Certificate.pdf 

  

• Fresno Service Center.pdf 

• Inland Empire Service Center.pdf 

• Sacramento Service Center.pdf 

  

• Monrovia ELAP.pdf 

• Monrovia NELAP.pdf 

• Tennessee.pdf 

• Texas.pdf 

• Utah.pdf 

• Vermont.pdf 

• Virginia.pdf 

• Washington.pdf 

• West Virginia.pdf 

• Wisconsin.pdf 

• Wyoming.pdf 

  

• UCMR3 - Approval.pdf 

• NELAP Approval.pdf 
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Exhibit B-8b: EEA Sample Certifications – US EPA UCMR3, California, Texas 
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Exhibit B-8b: EEA Sample Certifications – US EPA UCMR3, California, Texas (Cont.) 
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Exhibit B-8b: EEA Sample Certifications – US EPA UCMR3, California, Texas (Cont.) 
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APPENDIX C 

Exhibit C-1: COK CEC Analytical Results 

Exhibit C-2: SOK CEC Analytical Results 

Exhibit C-3: NTX CEC Analytical Results 

Exhibit C-4: Modeled Rejection Coefficients by CEC Analyte 
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Exhibit C-1: COK CEC Analytical Results 
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Exhibit C-2: SOK CEC Analytical Results 
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Exhibit C-3: NTX CEC Analytical Results 
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