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Abstract 

The implementation of 0.7 in. (17.8 mm), Grade 270 (1860), low-relaxation prestressing 

strands in construction is slow regardless of its advantages over the use of 0.6 in. (15.2 mm) and 

0.5 in. (12.7 mm) strands.   The limited research data and unavailable design guidelines partially 

account for the slow utilization.  This study measured transfer and development length, and 

evaluated applicable strand spacing of 0.7 in. (17.8 mm) prestressing strands for 24 pretensioned 

concrete beams.  Each beam contained one prestressing strand or two prestressing strands placed 

at spacing of 2.0 in. (51 mm).  The beams were fabricated with high strength, conventional 

concrete or high strength, self-consolidating concrete.  The concrete compressive strengths 

varied from 5.9 ksi to 9.8 ksi (40.7 MPa to 67.6 MPa) at 1 day, and from 9.2 ksi to 13.4 ksi (63.4 

MPa to 92.4 MPa) at 28 days.  Transfer lengths were determined using concrete surface strains 

along with the 95% Average Maximum Strain method.  Initial strand end-slips were also 

measured for predicting transfer length at release using an empirical formula.  The development 

lengths were determined by conducting bending tests with different embedment lengths. 

Experimental results indicated ACI 318 and AASHTO specifications are applicable to 

predict transfer length of 0.7 in. (17.8 mm) strands at release and at 28 days.  A coefficient of 

2.38 was the most appropriate value to estimate transfer length at release from initial strand end-

slip.  Concrete compressive strength had little effect on the measured development lengths.  The 

ACI 318 and AASHTO equations significantly over-predicted the measured development 

lengths.  The use of strand spacing of 2.0 in. (51 mm) has no significant effect on the measured 

transfer end development lengths.  Two simple equations were proposed to predict transfer 

length and development lengths of 0.7 in. (17.8 mm) prestressing strands.  
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db  : strand diameter 
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Ld  : development length 

ACI 318 : American Concrete Institute Building Code Requirements for Structural 
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N-CC : normal strength, conventional concrete 
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 : INTRODUCTION AND RESEARCH OBJECTIVES CHAPTER 1

 Introduction 1.1

This chapter aims at giving fundamental definitions regarding conventional concrete, 

self-consolidating concrete, and pretensioned concrete members.  The calculations of transfer 

length and development length for pretensioned concrete members using the current 

specifications are addressed.  In addition, the use of these specifications and possible issues 

relating to different strand diameters are discussed in detail.  Finally, the research objectives and 

testing program are given at the end of this chapter. 

 Conventional Concrete 1.1.1

A fresh conventional concrete (CC) mixture requires external or internal vibration 

procedures to attain proper consolidation.  This task may be noisy, time-consuming, and increase 

labor costs.  In addition, bug holes or voids often occur on the surfaces of pretensioned concrete 

members.  If these voids occur at the interface of prestressing strands and surrounding concrete, 

they may reduce the bond strength between the prestressing strands and the concrete which 

decreases the shear strength and moment capacity of pretensioned concrete members. 

 Self-Consolidating Concrete 1.1.2

Self-Consolidating Concrete (SCC), also known as Self-Compacting Concrete, was first 

developed in Japan in 1980s (Okamura and Ouchi 2003; Okamura et al. 2000) due to lack of 

skilled workers.  SCC is an improvement of the CC by adjusting the mix designs and adding 

superplasticizers to create a highly flowable and non-segregating concrete.  The fluidity is 

measured by slump flow rather than slump as CC and the typical slump flow is between 25 in. – 
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30 in. (650 mm – 750 mm).  The flow rate is measured by T20 (T500) parameter which is the time 

to achieve slump flow of 20 in. (500 mm).  SCC can be placed and filled formwork by its own 

weight without vibrating, and flows through congested reinforcement regions and confined 

spaces without segregating or bleeding.  The fresh properties of SCC are an important 

improvement when compared to CC while the hardened SCC properties can maintain all the 

mechanical properties and durability characteristics. 

 Pretensioned Concrete 1.1.3

Pretensioned concrete members are widely used in a variety types of structures including 

bridges, buildings, and parking garage structures.  Pretensioned concrete is a form of reinforced 

concrete.  However, pretensioned concrete members include an initial compressive force to 

mitigate internal tensile stresses due to applied loads and to reduce cracking (Gilbert and 

Mickleborough 1990).  In order to increase the effectiveness of using pretensioned concrete 

members, high grade strands or tendons (Grade 250 or Grade 270) are used instead of 

reinforcement rebar (Grade 60).  The initial compressive force is created by the following 

procedures.  The strands are tensioned between two fixed abutments and anchored.  After placing 

the formwork, concrete is cast around the prestressing strands.  Once the concrete achieves the 

required compressive strength, the prestressing strands are cut or released, and the tension force 

is transferred to the concrete as an axial compressive force.  The prestress force is transferred by 

the bond between the prestressing strands and the surrounding concrete. 

 Transfer Length 1.1.4

In pretensioned concrete members, transfer length is the required length to transfer the 

effective prestress from the prestressing strands to concrete as shown in Figure 1.1.  The transfer 
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length estimation affects structural design which includes the allowable stress at release, and 

shear strength and moment capacity during service (Russell and Burns 1993; Mitchell et al. 

1993; Russell and Burns 1997).  A short transfer length can increase tensile and compressive 

stresses at release.  A long transfer length can affect shear strength and moment capacity.  The 

design codes have similar definitions of transfer length, but there are slight differences in terms 

of calculation.  AASHTO (2012) proposes that transfer length can be taken as 60db (where db is 

strand diameter).  ACI 318 (2011) proposes a transfer length of 50db (where db is strand 

diameter) for shear design specifications or can be estimated using Eq. 1.1. 

1
3t pe bL f d=        (1.1) 

where Lt is transfer length (in.), db is strand diameter (in.), fpe is the effective stress in the 

prestressing steel after losses (ksi). 

 

Figure 1.1 – Transfer and development length diagram. 
(Note: Lt = transfer length; Ld = development length; fpe = effective stress in the prestressing steel 
after losses; fps = average stress in prestressing steel at the time for which the nominal resistance 

of member is required or specific strand stress) 
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 Development length 1.1.5

The development length is the required length for prestressing strands to develop fps 

(where fps is the average stress in prestressing steel at the time for which the nominal resistance 

of member is required or specific strand stress) under ultimate stage as illustrated in Figure 1.1. 

The member is able to achieve nominal moment capacity in the region beyond the development 

length.  If the required development length is shorter than the predicted development length by 

current codes, the member exhibits flexural failure under ultimate stage which show visible 

warning before collapsed.  Otherwise, the member tends to exhibit bond failure if the required 

development length is greater than the predicted development length.  These assessments are 

based on an assumption that the member is adequately designed for shear.  The bond failure is 

due to the prestressing strands do not have enough length to develop the bond with the adjacent 

concrete.  This failure type is unpredictable and unacceptable in the design of pretensioned 

concrete members. 

The codes have several equations to predict development length of 0.5 in. (12.7 mm) and 

0.6 in. (15.2 mm) prestressing strands.  Technically, development length is a summation transfer 

length (Eq. 1.1) and flexural bond length (Eq. 1.2).  The ACI 318 (2011) development length 

equation is shown in Eq. 1.3.  AASHTO (2012) proposes a similar equation to estimate 

development length but including a  multiplier κ to account for high shear effects as shown in 

Eq. 1.4.  A κ of 1.6 is used for members having the depth greater than 24 in. (610 mm), 

otherwise, κ receives a value of 1.0.  In the latter case, the AASHTO equation is identical with 

the ACI 318 equation. 

( )b ps pe bL f f d= −       (1.2) 
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( )1
3d pe b ps pe bL f d f f d= + −      (1.3) 

2
3d ps pe bL f f dκ  = − 

 
     (1.4) 

Where Lb = flexural bond length; Ld is development length (in.); db is strand diameter (in.); fpe is 

the effective stress in the prestressing steel after losses (ksi); fps is the average stress in 

prestressing steel at the time for which the nominal resistance of member is required or specific 

strand stress (ksi); κ is a multiplier. 

 Prestressing Strand 1.1.6

In the United States, 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) prestressing strands are 

dominant while 0.7 in. (17.8 mm) prestressing strands were first used in practice in 2008 

(Morcous et al. 2010).  A 0.7 in. (17.8 mm) strand has a cross-sectional area of 0.294 in.2 (189.7 

mm2).  Accordingly, tensioning a 0.7 in. (17.8 mm) strand to 0.75fpu (where fpu is the ultimate 

strength of prestressing strand) results in a prestress force of 60 kip (265 kN) which is 35% and 

92% greater than the corresponding force of a 0.6 in. (15.2 mm) and 0.5 in. (12.7 mm) strand, 

respectively.  This increase of prestress force can enhance shear strength and moment capacity, 

decrease girder depth, or reduce the required number of strands in the girder. 

ACI Committee 323 (1963) proposed minimum strand spacing of 4db (where db is strand 

diameter) center-to-center for the strand diameters varying from 3/8 in. (9.5 mm) to 0.5 in. (12.7 

mm).  For instance, minimum spacing of 0.5 in. (12.7 mm) strands was 2.0 in. (51 mm).  

Accordingly, transfer length and development length were predicted using Eq. 1.1 and Eq. 1.3, 

respectively.  In 1988, the Federal Highway Administration (FHWA) issued a memorandum that 

forbade the use of 0.6 in. (15.2 mm) strands when this type of strand was started using in 
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construction.  The FHWA also included a multiplier of 1.6 for the development length equation 

as a safety factor when researchers reported the measured development lengths were greater than 

the predicted development length for several pretensioned concrete members (Buckner 1995; 

Lane and Rekenthaler Jr 1998).  The strand spacing requirement of 4db (where db is strand 

diameter) was maintained until 1996 when the FHWA made a number of changes to 

accommodate the use of 0.6 in. (15.2 mm) strands to the current codes (Lane and Rekenthaler Jr 

1998).  The changes included the reduction of the minimum SS of 0.5 in. (12.7 mm) strands to 

1.75 in. (44 mm), and the establishment minimum SS of 2.0 in. (51 mm) for 0.6 in. (15.2 mm) 

strands.  These spacing values were approximately to 3.5db (where db is strand diameter).  

Cousins et al. (1994) and Deatherage et al. (1994) determined that the use of strand spacing of 

1.75 in. (44 mm) for 0.5 in. (12.7 mm) strands had no effect on transfer and development length, 

and resulted in no splitting cracks.  The sufficiency of using 0.6 in. (15.2 mm) strands at spacing 

of 2.0 in. (51 mm) was confirmed by a number of studies (Russell and Burns 1996; Russell and 

Burns 1997; Shahawy et al. 1992; Gross and Burns 1995; Barnes et al. 1999). 

The changes of strand spacing requirements were adapted and maintained to the current 

ACI 318 specifications (2011) without modifying the transfer and development length equations.  

AASHTO also adapted changes regarding the strand spacing requirements.  However, AASHTO 

(2012) uses a transfer length of 60db (where db is strand diameter) instead of Eq. 1.1, and 

includes a  multiplier κ for development length equation as mentioned in previous section. 

The Pacific Street Bridge and the Oxford South Bridge in Omaha, Nebraska were the two 

first bridges using 0.7 in. (17.8 mm) prestressing strands fabricate pretensioned concrete bridge 

girders.  The current ACI 318 and AASHTO specifications regarding transfer length, 

development length, and SS are only valid for 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) strands.  
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Therefore, a limited number of studies have been conducted to evaluate mechanical properties 

and bond strength (Morcous et al. 2012; Hatami et al. 2011; Dang et al. 2014a), and to determine 

these parameters for the two bridges in Nebraska and for research recommendations as presented 

in section 2.6 in this chapter.  

 Objectives 1.2

The use of 0.7 in. (17.8 mm) prestressing strands has advantages over the use of 0.5 in. 

(12.7 mm) and 0.6 in. (15.2 mm) strands.  However, the lack of design specifications and limited 

research data prevent its use (Morcous et al. 2012).  This project focused on investigating the 

bond performance of 0.7 in. (17.8 mm) strands on pretensioned members cast with CC and SCC.  

The project’s main objective was to verify if the contemporary specifications of transfer length 

and development length are applicable for 0.7 in. (17.8 mm) strands.  Concrete compressive 

strength has been recognized as a major factor affecting the bond behavior.  Thus, there are two 

other objectives were included in this project.  The first objective was to measure transfer and 

development lengths of 0.7 in. (17.8 mm) strands cast with a wide range of concrete compressive 

strengths.  The second objective was to examine the effect of concrete compressive strength on 

transfer and development lengths. 

 Testing Program 1.3

The testing program included four tasks: 

Task 1: Concrete mixture development 

Four concrete mixtures were designed.  The two conventional concrete mixtures 

consisted of normal strength, conventional concrete (N-CC) and high strength, conventional 
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concrete (H-CC) which had targeted compressive strengths of 9 ksi (62.1 MPa) and 13 ksi (89.6 

MPa) at 28 days, respectively.  The two self-consolidating concrete mixtures included normal, 

self-consolidating concrete (N-SCC) and high strength, self-consolidating (H-SCC) which had 

targeted compressive strengths of 8 ksi (55.2 MPa) and 10 ksi (69.0 MPa) at 28 days, 

respectively. 

Task 2: Beam fabrication 

Twenty-four pretensioned concrete beams were cast with the designed concrete mixtures 

and different number of prestressing strands as outlined in Table 1.1.  The beam had a cross-

section of 6.5 in. by 12.0 in. (165 mm by 305 mm) and a length of 18 ft (5.5 m). 

Table 1.1 – Pretensioned concrete beams 

Concrete 
mixture 

Number of 
strand Beam designation Number of 

beams 

Targeted concrete 
strength at 1 day 

(ksi) 

Targeted concrete 
strength at 28 

days (ksi) 
N-CC 1 (S) N-CC-S1 – N-CC-S4 4 6 9 
H-CC 1 (S) H-CC-S1 – H-CC-S4 4 9 13 
H-CC 2 (D) H-CC-D1 – H-CC-D4 4 9 13 

N-SCC 1 (S) N-SCC-S1 – N-SCC-S4 4 6 8 
H-SCC 1 (S) H-SCC-S1 – H-SCC-S4 4 8 10 
H-SCC 2 (D) H-SCC-D1 – H-SCC-D4 4 8 10 
(Note: 1 ksi = 6.895 MPa) 
 

Task 3: Measure transfer length 

Transfer lengths at release, and at 7, 14, 21, 28 days were determined for all pretensioned 

beams using concrete strain profiles which were measured using DEMEC gauge.  The transfer at 

release was also determined using the measured strand end-slips. 

Task 4: Measure development length 

Development length was determined by conducting bending tests with different 

embedment lengths.  The tests were performed once the beams achieve 28 days of age. 
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 : LITERATURE REVIEW CHAPTER 2

 Introduction 2.1

This chapter presents fundamental information on the bond strength between prestressing 

strands and concrete and pull-out tests to quantify the bond.  Research on the transfer length and 

development length using CC and SCC are also addressed.  Benefits and applications of 0.7 in. 

(17.8 mm) strands are shown at the end of this chapter. 

 Elements of Bond 2.2

Strand bond can be defined as the shearing stress at the interface between prestressing 

strand and the surrounding concrete which ensures the transferring of prestress force from the 

strands to the concrete.  In other words, the bond ensures the prestressing strand and concrete 

work as a composite material under external loading.  When tensile stress occurs in the strand, it 

typically moves in the same direction as the applied force.  The relative movement of the strand 

will be prevented by the bond of the two materials.  If the bond is inadequate to prevent the 

movement, a bond failure will occur due to excessive slippage of the prestressing strand.  Janney 

(1954) determined that the bond between prestressing strand and concrete can be addressed by 

three following factors: (1) adhesion, (2) Hoyer’s effect, and (3) mechanical interlock. 

Adhesion is the chemical bond between a strand and concrete, and it is formed when 

fresh concrete hardens.  The bond due to adhesion is valid if there is no relative movement of the 

strand and concrete as shown in Figure 2.1.  Along the length of a prestressed concrete member, 

the bond is resisted by adhesion, excluding the transfer zone (see Figure 1.1) because the strand 
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immediately slips into the concrete specimen when it is released.  Therefore, the adhesion has no 

significant contribution to the bond in the transfer zone. 

 

Figure 2.1 – Adhesion bond. 
(Note: The figure was adapted from Russell and Burns (1993)) 

 

Hoyer’s effect is the friction force produced by the outward radial pressure when the 

prestressed strand expands to its original diameter.  When the strand is tensioned and anchored 

between two abutments on a prestressing bed, the strand length increases due to elongation and 

the strand diameter decreases due to Poisson’s effect.  The strand tends to expand back to its 

original diameter when released from the abutments as shown in Figure 2.2.  However, the 

expansion is resisted by the adjacent hardened concrete.  Therefore, a wedging effect develops 

between the strand and the concrete that produces radial pressure on the concrete and creates 

large frictional forces.  Therefore, the Hoyer’s effect significantly contributes to the bond stress 

in the transfer zone. 
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Figure 2.2 – Hoyer’s effect. 
(Note: The figure was adapted from Russell and Burns (1993)) 

 

Mechanical interlock is the resistance to movement generated by the helical shape of the 

seven-wire strands which is similar to the surface deformations on a reinforcing bar.  When 

concrete hardens, the concrete forms around the prestressed strand and between the grooves in 

the wire.  During release, the strand untwists and the concrete ridges formed between the strand’s 

wires resist these movements as shown in Figure 2.3.  Therefore, mechanical interlock is an 

important factor contributing to the bond stress within the transfer zone.  In addition, the 

mechanical interlock is also a dominant factor accounting for the bond within flexural bond 

zone. 

 

Figure 2.3 – Mechanical interlock. 
(Note: The figure was adapted from Russell and Burns (1993)) 
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 Pull out Test 2.3

Many pull-out tests have been developed to assess strand bond including the Moustafa 

Pull-out Bond Test, the Post Tensioning Institute (PTI) Bond Test, and the North American 

Strand Producers Bond Test (hereafter referred as NASP) (Russell and Paulsgrove 1999a; 

Russell and Paulsgrove 1999b; Russell and Brown 2004).  The NASP was a modification of the 

PTI Bond Test.  This test was performed on mortar in order to increase dimensional stability and 

reduce shrinkage when compared to the PTI test which used only a cement and water mixture 

(mortar contains cement, fine aggregate, and water).  The NASP test was evaluated as the most 

reproducible and repeatable test to assess and qualify the bond properties of prestressing strands 

through four rounds of testing (Ramirez and Russell 2008).  During the fourth round of testing 

(Russell 2006), the mortar strength was limited to 4.75 ± 0.25 ksi (32.7 ± 1.7 MPa) at the time of 

testing (24 ± 2 hours after casting) to reduce pull-out force variation.  The latest version of the 

NASP is known as the Standard Test for Strand Bond (STSB) which has the same testing 

specifications as the NASP.  The STSB was adapted as the Standard Test Method for Evaluating 

Bond of Seven-Wire Steel Prestressing Strand by ASTM A1081 (2012).  Researchers have 

indicated that the NASP/STSB pull-out forces not only provide a reliable assessment of bond 

properties but also present a good correlation with transfer length (Ramirez and Russell 2008). 

Minimum thresholds for NASP Bond Test pull-out force for different strand diameters 

were established as shown in Table 2.1 (Ramirez and Russell 2008; Hatami et al. 2011; Morcous 

et al. 2012).  The table includes absolute minimum pull-out values as well as average minimum 

pull-out values.  The bond strength is considered adequate if testing results satisfy two 

conditions; the pull-out force of at least six specimens is equal to or larger than the minimum 

recommended average pull-out force, and no specimen exhibits a pull-out value less than the 
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minimum pull-out force.  The minimum thresholds of 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) 

strands were established based on the correlation of the pull-out forces and the transfer length 

predicted by the codes.  The minimum thresholds of 0.7 in. (17.8 mm) strands were determined 

based on the proportional of strand diameters. 

Table 2.1 – Minimum requirement for different strand diameters in NASP test 
Strand diameter (in) Average pull out force (lb) Minimum pull out force (lb) 

0.5 ≥ 10500 ≥ 9000 
0.6 ≥ 12600 ≥ 10800 
0.7 ≥ 14700 ≥ 12600 

(Note: 1 in. = 25.4 mm; 1 lb = 4.448 N) 

 Research on Bond of Prestressing Strand in Conventional Concrete 2.4

A number of studies have been conducted to evaluate the adequacy of transfer length and 

development length for 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) strands.  Several equations of 

transfer and development length were proposed as which were a function of concrete 

compressive strengths at 1 day and at 28 days. 

 Zia and Moustafa (1977) 2.4.1

Zia and Moustafa (1977) conducted an extensive literature review of transfer length and 

development length to verify the adequacy of the ACI 323 equations (1963) by collecting 

experimental data of previous studies.  The ACI equations of transfer length, flexural bond 

length, and development length have not changed from 1963.  It was determined that the earlier 

studies of transfer length underestimated the actual values.  The authors proposed an equation to 

estimate transfer length as shown in Eq. 4.1.  This equation was applicable to concrete 

compressive strengths from 2 ksi (13.8 MPa) to 8 ksi (55.2 MPa) at release, and was more 
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conservative than the ACI 323 equations.  For the proposed development length equation (Eq. 

4.2), the flexural bond length was increased by 25% in comparison to the ACI 323 equations. 

1.5 4.6si
t b

ci

fL d
f

= −
′

       (4.1) 

( )1.5 4.6 1.25si
d b su se b

ci

fL d f f d
f

= − + −
′

    (4.2) 

where Lt is transfer length (in.); Ld is development length (in.); f’ci is concrete strength at 1 day 

(ksi); fse is the effective strand stress (ksi); fsi is the initial strand stress (ksi); fsu is the specific 

strand stress (ksi); db is strand diameter (in.). 

 Mitchell et al. (1993) 2.4.2

Mitchell et al. (1993) measured transfer length and development length for twenty-two 

pretensioned beams to examine the effect of concrete compressive strength.  The compressive 

strengths varied from 3.05 ksi (21.0 MPa) to 7.25 ksi (50.0 MPa) at release and 4.5 ksi (31.0 

MPa) to 12.9 ksi (88.9 MPa) at 28 days.  The study used three kinds of strand diameters: 3/8 in. 

(9.5 mm) stress-relieved strands having ultimate strength of 263 ksi (1813 MPa), 0.5 in. (12.7 

mm) and 0.62 in. (15.7 mm) low-relaxation strands having ultimate strength of 276 ksi (1903 

MPa) and 260 ksi (1793 MPa), respectively.  The authors concluded that the measured transfer 

lengths and development lengths had a strong correlation with concrete compressive strength.  

Eq. 4.3 was proposed to predict transfer length at release which was shorter than the proposed 

transfer length for evaluating shear strength and nominal moment capacity (Eq. 4.4).  The 

proposed development length equation is shown in Eq. 4.5. 

350t b
ci

L d
f

=
′

       (4.3) 
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L f d f f d
f f

= + −
′ ′

    (4.5) 

where Lt is transfer length (in.); f’ci is concrete compressive strength at 1 day (ksi); f’c is concrete 

compressive strength at 28 days (ksi); fse is the effective stress in the prestressing steel after 

losses (ksi); fsi is the initial strand stress (ksi); fps is the average stress in prestressing steel at the 

time for which the nominal resistance of member is required (ksi); db is strand diameter (in.). 

 Cousins et al. (1990a; 1993; 1990b) 2.4.3

In 1980s, epoxy-coated strands were developed by Florida Wire & Cable Co. to improve 

the corrosion resistance.  These strands were used for pretensioned members in adverse 

environments.  Cousins et al. (1990a; 1993; 1990b) investigated transfer length and development 

length for un-coated and coated, Grade 270 (1860), low-relaxation strands.  To coat the strands, a 

grit-impregnated epoxy was used with various densities.  The coated strands included high 

coated strands, medium coated strands, and low coated strands.  The pretensioned beams had 

cross-sections of 4 in. by 4 in. (100 mm by 100 mm) and 5 in. by 8 in. (125 mm by 200 mm) and 

contained one single prestressing strand.  For the 0.5 in. (12.7 mm) strands, twenty-six transfer 

length tests and thirteen development length tests were performed.  For the 0.6 in. (15.2 mm) 

strands, eleven transfer length tests and nine development length tests were conducted.  The 

experimental results showed that the measured transfer length of coated strands was shorter than 

the transfer length predicted by ACI 318 (2011).  However, ACI 318 was not conservative to 

predict transfer length for the un-coated strands.  Similarly, development length of un-coated 
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strands was longer than that of coated strands for the same strand diameter, and greater than the 

development length predicted by ACI 318. 

 Logan (1997) 2.4.4

Logan (1997) evaluated the variation in the bond performance of prestressing strands 

produced by different manufacturers.  The study collected 0.5 in. (12.7 mm) prestressing strands 

from six pretensioned concrete producers from various locations of North America.  The strand 

quality was classified by the Moustafa Bond Test.  Strands having pull-out forces greater than 36 

kip (160 kN) were considered as high quality strands, and strands having pull-out forces less than 

12 kip (53 kN) were considered as low quality strands.  Ten pretensioned beams were cast for 

each kind of strand to measure transfer length and development length.  The measured transfer 

length and development lengths were significantly different.  The measured transfer and 

development lengths of the high quality strands were shorter those predicted by ACI 318.  

However, the measured transfer lengths of the poor quality strands was greater than the transfer 

length predicted by ACI 318.  Also, for the beams containing the poor quality strands, the 

measured development lengths were greater than that predicted by ACI 318.  These beams failed 

by bond without visible warning. 

 Rose and Russell (1997) 2.4.5

Rose and Russell (1997) examined the effect of strand surface conditions on transfer 

length.  Their study examined 0.5 in. (12.7 mm), Grade 270 (1860), low-relaxation strands with 

various strand surface conditions: as-received, cleaned, silane treated, and weathered.  For the as-

received condition, the strands were collected from three different manufacturers.  The cleaned 

surface was achieved by washing strands with acid, rinsing with water, and drying.  The silane 
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treated surface was prepared in a similar way to the cleaned surface, but included an additional 

step of evenly spraying with silane.  The weathered surface was attained by cleaning strands and 

placing them in an environmental chamber of 73.4oF (23oC) and 75% of relative humidity for 3 

days.  Transfer lengths were estimated by measuring strand end slips at release of prestressing 

strands.  It was concluded that the weathered strands exhibited the shortest transfer length, and 

the silane treated strands showed the longest transfer length.  Transfer length results of cleaned 

strands and as-received strands did not show significant differences. 

 Ramirez and Russell (2008) 2.4.6

Ramirez and Russell (2008) conducted an extensive study to investigate the effects 

concrete compressive strength on transfer and development length.  The 0.5 in. (12.7 mm) and 

0.6 in. (15.2 mm), Grade 270 (1860), low-relaxation strands with various surface conditions were 

used in the study.  The concrete strengths varied from 4.0 ksi (27.6 MPa) to 10.0 ksi (68.9 MPa) 

at 1 day, and from 6.0 ksi (41.4 MPa) to 15.0 ksi (103.4 MPa) at 28 days.  Thirty-two rectangular 

beams and 4 I beams were cast with 0.5 in. (12.7 mm) strands, and 11 rectangular beams and 4 I 

beams were cast with 0.6 in. (15.2 mm) strands.  The study determined a strong correlation in 

which the increase of concrete compressive strength can shorten transfer length and development 

length.  For transfer length, the proposed equation included concrete compressive strength at 1 

day as shown in Eq. 4.6.  When the concrete strength at release is 4 ksi (27.6 MPa), the proposed 

transfer length is equal to the transfer length predicted by AASHTO, 60db (where db is strand 

diameter).   In addition, the equation included a minimum value of transfer length, 40db (where 

db is strand diameter), to guarantee a reasonable consideration of transfer length in design.  For 

development length, the proposed equation included concrete compressive strength at 28 days as 
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shown in Eq. 4.7.  This equation provided a minimum development length of 100db (where db is 

strand diameter). 
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   (4.7) 

where Lt is transfer length (in.); Ld is development length (in.); f’ci is concrete compressive 

strength at 1 day (ksi); f’c is concrete compressive strength at 28 days (ksi); db is strand diameter 

(in.). 

 Research on Bond of Prestressing Strand in SCC 2.5

 Benefit of SCC 2.5.1

Benefits of SCC can be classified into three categories: cost-effectiveness, environmental 

and safety improvement, and enhancement of aesthetics.  In terms of cost-effectiveness, SCC 

accelerates the speed of construction since it can be placed more rapid than CC.  In addition, 

SCC can fill restricted areas and congested reinforcement sections.  The placement of SCC does 

not require mechanical vibration which reduces the requirements of skilled workers.  In terms of 

environmental and safety improvement, SCC eliminates the use of vibrators during concrete 

placement which reduces the noise exposures and increases jobsite safety.  The use of SCC also 

decreases fall hazards by reducing the number of workers standing on the form during placement 

and consolidation.  Regarding enhancement of aesthetics, SCC improves the surface finish with 

little or without remedial surface work.  The SCC flows in forms by its own weight which can be 

placed and consolidated in complex shapes and architectural concrete components. 
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 Engineering Properties 2.5.2

For SCC, the fresh properties are important and different from the other types of 

concrete.  The fresh properties of SCC mixture are characterized by three primary properties: (1) 

filling ability, (2) stability, and (3) passing ability. 

Filling ability refers to the ability to fill the formwork of concrete mixture.  This ability is 

characterized by two parameters: slump flow and T20 (T500).  The slump flow test is used to 

determine the horizontal flow property of SCC without obstructions (ASTM C1611 2014).  This 

test is similar to the slump test of CC (ASTM C143 2012).  However, instead of measuring the 

falling height of concrete as in the slump test, the slump flow test measures the spreading 

diameter of the fresh concrete mixture.  The ACI Committee 237 (2007) specifies a common 

range of slump flow for SCC of 18 in. - 30 in. (450 mm - 750 mm).  The required slump flow 

depends on the particular application, but a range of slump flow of 24 in. - 27 in. (610 mm - 689 

mm) is appropriate for the most applications (Koehler and Fowler 2007).  During the slump flow 

test, the time for the fresh concrete mixture to spread to 20 in. (500 mm) is measured.  This 

parameter is referred to the T20 (T500) which measures the flow rate of SCC.  A high T20 (T500) 

indicates the fresh concrete mixture has high viscosity and good stability.  A fresh mixture 

having T20 (T500) less than 2 seconds has low viscosity and greater than 5 seconds has high 

viscosity (ACI Committee 237 2007).  Generally, a T20 (T500) value in a range of 2 – 7 seconds is 

appropriate for most applications (Koehler and Fowler 2007). 

After the slump flow test is conducted, the slump flow paddy is observed and assigned a 

number from 0 to 3 which represents the stability of the concrete mixture.  This number is 

termed as Visual Stability Index (VSI) (ASTM C1611 2014).  A VSI value of 0 is assigned for a 

highly stable concrete, 1 is assigned for a stable concrete, 2 is assigned for an unstable concrete, 
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and 3 is assigned for highly unstable concrete.  A VSI value from 0 – 1 is acceptable in practice 

(Koehler and Fowler 2007).  To assist the VSI assignment, ASTM C1611 (2014) provides four 

figures which illustrate the stability of concrete mixture corresponding with each VSI value. 

Passing ability is the ability of the concrete to flow through restricted areas without 

blocking.  This ability ensures the fresh concrete mixture will flow through reinforcement and 

narrow spaces within the formwork.  The passing ability is measured by the J-Ring test (ASTM 

C1621 2014) which operates in the same manner as the slump flow test.  For the test, a 12 in. 

(300 mm) diameter ring consisting of 16 equally spaced bars is placed around the slump cone as 

shown in Figure 2.4 and Figure 2.5.  The difference between slump flow without the J-Ring and 

with the J-Ring is calculated.  A difference greater than 2 in. (51 mm) indicates poor passing 

ability. 

 

Figure 2.4 – Filling concrete in the 
inverted mold (ASTM C1621 2014). 

 

Figure 2.5 – J-Ring flow after lifting the mold 
(ASTM C1621 2014). 

 

 Previous Research on Bond of Prestressing Strand in SCC 2.5.3

Several studies have been implemented to investigate the bond performance of 

prestressing strands in SCC.  In particular, transfer length and development length of 
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pretensioned concrete members using SCC were compared with those using CC.  The 

applicability of ACI 318 and AASHTO specifications were also addressed. 

2.5.3.1 Girgis and Tuan (2005) 

Girgis and Tuan (2005) investigated the bond strength of 0.6 in. (15.2 mm) prestressing 

strands with SCC and measured transfer length of pretensioned bridge girders including NU-

1100, NU-900, and NU-1350.  These girders were cast with SCC and 0.6 in. (15.2 mm) 

prestressing strands.  In particular, the Moustafa Bond Test was used to examine the bond 

strength.  Eighteen strand specimens were pulled out of a large block of SCC.  Test data 

indicated the use of viscosity-modifying admixtures (VMA) in SCC significantly reduced the 

bond strength at early age which increased transfer lengths at release.  The measured transfer 

length at release of the girders using SCC were up to 50% greater than those using CC due to 

low the bond strength of SCC.  At 28 days, however, the measured transfer lengths of the girders 

using SCC were shorter than those using CC.  In other words, SCC had higher bond strength 

than CC at 28 days. 

2.5.3.2 Larson et al. (2007) 

Larson et al. (2007) conducted an experimental program to measure transfer length and 

development length of fifteen full-scale pretensioned concrete beams using SCC and 0.5 in. (12.7 

mm) prestressing strands placed at different locations within the beams.  In particular, five 

bottom-strand beams were cast with SCC having compressive strengths of 5.0 ksi (34.5 MPa) at 

1 day and 7.5 ksi (51.8 MPa) at 28 days.  Six top-strand beams were cast with SCC having 

compressive strengths of 3.6 ksi (24.8 MPa) at release and 7.0 ksi (48.1 MPa) at 28 days.  Four 

T-beams were cast with SCC having compressive strengths of 5.0 ksi (34.5 MPa) at release and 

8.0 ksi (54.8 MPa) at 28 days.  Transfer lengths were estimated by measuring initial strand end-
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slip and Guyon’s empirical formula (1953) with a bond stress distribution coefficient of 2.0.  The 

test data indicated ACI 318 (2011) and AASHTO (2012) specifications are adequate to predict 

transfer length at release and 21 days.  Development lengths were quantified by conducting 

bending texts for all beams.  It was concluded that ACI 318 and AASHTO specifications are 

conservative to predict development length for the proposed SCC mixtures and specimen 

geometries. 

2.5.3.3 Boehm et al. (2010) 

Boehm et al. (2010) measured transfer length and development length for six full-scale 

AASHTO Type I pretensioned girders using 0.5 in. (12.7 mm) prestressing strands.  Three types 

of concrete mixtures were used: (i) moderate-strength CC mixture, (ii) moderate-strength SCC 

mixture, and (iii) high-strength SCC mixture.  The moderate-strength concrete and high-strength 

concrete had compressive strengths of 5.0 ksi (34.5 MPa) and 10.0 ksi (68.9 MPa) at 1 day, 

respectively.  Two girders were cast for each type of concrete.  The measured transfer lengths 

showed that there was no significant difference in bond strength between moderate-strength SCC 

and moderate-strength CC.  Transfer lengths measured on high-strength SCC were shorter than 

those measured on moderate-strength SCC and CC due to the effect of concrete compressive 

strength.  Development length tests were conducted for all the girders by performing bending 

tests with different embedment lengths.  A bridge deck was placed on the top of the girder.  The 

test data indicated ACI 318 (2011) and AASHTO (2012) specifications are conservative to 

predict development length pretensioned concrete members using SCC. 

2.5.3.4 Staton et al. (2009) 

Staton et al. (2009) measured the transfer length of 20 pretensioned concrete beams cast 

with SCC and high-strength CC (HSC) and 0.6 in. (15.2 mm) prestressing strands.  Eight beams 
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were cast with SCC using Type I cement (SCC-I) and having compressive strengths of 7.76 ksi 

(52.5 MPa) at 1 day and 12.24 ksi (84.4 MPa) at 28 days.  Six beams were cast with SCC using 

Type III cement (SCC-III) and having compressive strengths of 7.54 ksi (52.0 MPa) at 1 day and 

11.42 ksi (78.7 MPa) at 28 days.  The remaining beams were cast with HSC having compressive 

strengths of 9.22 ksi (63.6 MPa) at 1 day and 12.38 ksi (85.4 MPa) at 28 days.  Transfer lengths 

were measured at release, and at 3, 5, 7, 14, and 28 days.  The study showed the measured 

transfer lengths of SCC-I and HSC were similar at 28 days, and were slightly greater than SCC-

III.  In addition, the measured transfer lengths for all pretensioned beams were approximately 

60% of those predicted by ACI 318 (2011) and AASHTO (2012). 

2.5.3.5 Floyd et al. (2011a) 

Floyd et al. (2011a) conducted an extensive experimental program to investigate 

development length of 20 pretensioned concrete beams cast with SCC and high-strength 

concrete.  Transfer lengths of these beams were measured by Staton et al. (2009) as presented in 

Section 2.5.3.4.  Development length was determined by performing bending tests with different 

embedment lengths.  The authors indicated that SCC-III and HSC had similar development 

lengths and slightly shorter than those of SCC-I.  ACI 318 (2011) and AASHTO (2012) equation 

overestimated more than 60% of the measured development lengths of all beams. 

2.5.3.6 Myers et al. (2012) 

Myers et al. (2012) evaluated transfer length and development length of 0.5 in. (12.7 mm) 

prestressing strands cast with CC and SCC.  In particular,  four concrete mixtures were used: (1) 

normal-strength CC having compressive strengths of 4.81 ksi (33.2 MPa) at 1 day and 5.73 ksi 

(39.5 MPa) at 28 days, (2) high-strength CC having compressive strengths of 5.67 ksi (39.1 

MPa) at 1 day and 8.48 ksi (58.5 MPa) at 28 days, (3) normal-strength SCC having compressive 
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strengths of 5.66 ksi (39.0 MPa) at 1 day and 6.95 ksi (47.9 MPa) at 28 days, and (4) high-

strength SCC having compressive strengths of 6.33 ksi (43.6 MPa) at 1 day and 9.25 ksi (63.8 

MPa) at 28 days.  Three pretensioned concrete beams were fabricated for each type of concrete.  

The measured transfer lengths of girders using SCC and CC showed no significant difference.  

The measured transfer lengths were shorter for the beams high-strength concrete including CC 

and SCC.  Development length was determined by performing bending tests with different 

embedment lengths.  The test results indicated ACI 318 (2011) and AASHTO (2012) 

specifications are conservative to predict development length for pretension concrete beams 

using CC and SCC. 

 Research on Bond of 0.7 in. (17.8 mm) Prestressing Strand  2.6

 Benefit of 0.7 in. (17.8 mm) strand 2.6.1

The use 0.7 in. (17.8 mm), Grade 270 (1860), prestressing strands has advantages over 

the use of 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) strands.  A 0.7 in. (17.8 mm) strand has a 

cross-sectional area of 0.294 in.2 (189.7 mm2).  Accordingly, tensioning a 0.7 in. (17.8 mm) 

strand to 0.75fpu (where fpu is the ultimate strength of prestressing strand) results in a prestress 

force of 60 kip (265 kN) which is 35% and 92% greater than the corresponding force of a 0.6 in. 

(15.2 mm) and 0.5 in. (12.7 mm) strand, respectively.  This increase in prestress force can 

increase moment capacity, decrease girder depth, or reduce the required number of strands in the 

girder. 

Economic benefits are also realized by using 0.7 in. (17.8 mm) strands in bridge girders.  

For instance, to achieve the same flexural capacity of a beam using 0.6 in (15.2 mm) strands, 

fewer 0.7 in. (17.8 mm) strands and chucks are required.  Akhnoukh (2008) suggested that a 
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girder using 0.7 in (17.8 mm) strands and a concrete compressive strength of 15 ksi (103 MPa) 

can reduce by 14% of  the material costs in comparison to a girder containing 0.6 in. (15.2 mm) 

strands and a concrete compressive strength of 8 ksi (55 MPa).  In addition, the use of large 

diameter strands increases moment capacity, therefore fewer girders are required per span which 

directly decreases construction budget and construction time. 

 Application of 0.7 in. (17.8 mm) strand in bridge construction 2.6.2

2.6.2.1 Pacific Street Bridge, Omaha, NE, USA 

The Pacific Street Bridge (2008) is the first bridge in the world using 0.7 in (17.8 mm) 

strands for pretensioned concrete girders (Schuler 2009).  The bridge consists of six traffic lanes 

with a total width of 108-ft 8-in. (33.1 m).  This bridge has two identical spans of 98 ft (29.9 m).  

Each span consists of ten NU-900 girders which are spaced at 10-ft 8-in. (3.3 m).  The bridge 

supported a continuous deck that was 8 in. (200 mm) thick and composed of concrete having a 

compressive strength of 5.0 ksi (34.5 MPa) at 28 days.  Thirty-six 0.6 in. (15.2 mm) mono 

strands was post-tensioned along the deck. 

The bridge was constructed using twenty 98-ft 4-in. (30.0 m) long NU-900 bridge girders 

which were fabricated at Coreslab Structures, Omaha.  These girders were cast using high 

performance concrete having compressive strengths of 7.0 ksi (48.3 MPa) at 1 day and 10.0 ksi 

(68.9 MPa) at 28 days.  Each girder contained thirty 0.7 in. (17.8 mm), Grade 270 (1860) 

prestressing strands which were spaced at 2.0 in. (51 mm) horizontally and 2.5 in. (64 mm) 

vertically.  These strands were tensioned up to 0.64fpu (where fpu is the ultimate strength of 

prestressing strand).  A full-scale test was conducted at the PKI Structural Laboratory of the 
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University of Nebraska-Lincoln in 2007 to study the girders performance before constructing the 

project. 

A 40 ft (12.2 m) long NU-900 girder was fabricated for the Pacific Street Bridge project 

(Morcous et al. 2011b).  This girder used concrete having a compressive strengths of 6.7 ksi 

(46.2 MPa) at 1 day and 8.0 ksi (55.2 MPa) at 28 days.  Twenty-four 0.7 in. (17.8 mm) strands 

were placed at 2.2 in. (56 mm) horizontally and 2.25 in. (57 mm) vertically, and tensioned to 

0.75fpu (where fpu is the ultimate strength of prestressing strand).  The measured transfer length 

was 35 in. (890 mm) which was equal to the predicted transfer length by ACI 318 and less than 

the transfer length predicted by AASHTO (2012).  The development length predicted by 

AASHTO equation was 14 ft (4.3 m) which was included a multiplier of 1.6 for the beam having 

a depth greater than 24 in. (610 mm).  The bending test using the predicted development length 

indicated that AASHTO equation is applicable and conservative to estimate development length 

of 0.7 in. (17.8 mm) strands. 

2.6.2.2 Oxford South Bridge, Omaha, NE, USA 

The Oxford South Bridge was constructed in the spring of 2012 and completed in the fall 

of 2013 (Morcous et al. 2013).  The bridge includes five spans: 110 ft (33.5 m), 110 ft (33.5 m), 

140 ft (42.7 m), 110 ft (33.5 m), 110 ft (33.5 m).  This bridge has two traffic lanes with a total 

width of 32 ft (9.8 m).  There were two design plans developed for the bridge.  The preliminary 

design had 4 NU-1600 girders spaced at 9 ft (2.7 m).  The 140 ft (42.7 m) span girder used forty-

two 0.6 in. (15.2 mm) strands, and the 110 ft (33.5 m) included twenty-six 0.6 in. (15.2 mm) 

strands.  The revised design used NU-1350 girders and 0.7 in. (17.8 mm) strands instead of NU-

1600 girders and 0.6 in. (15.2 mm) strands.  The use of NU-1350 girders increased the vertical 
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clearance by 10 in. (250 mm), and the use of 0.7 in. (17.8 mm) decreased the required number of 

prestressing strands. 

The NU-1350 girder contained thirty-four 0.7 in. (17.8 mm), Grade 270 (1860) 

prestressing strands for the 140 ft (42.7 m) span, and twenty-four 0.7 in. (17.8 mm), Grade 270 

(1860) prestressing strand for the 110 ft (33.5 m) span.  These strands were spaced at 2.0 in. by 

2.0 in. (51 mm by 51 mm), and tensioned to 0.75fpu (where fpu is the ultimate strength of 

prestressing strand).  SCC was used for all girders.  In particular, the 140 ft (42.7 m) girders used 

concrete which had compressive strengths of 7.0 ksi (48.3 MPa) at 1 day and 9.0 ksi (62.1 MPa) 

at 28 days.  The 110 ft (33.5 m) used concrete which had compressive strengths of 6.0 ksi (41.4 

MPa) at 1 day and 8.0 ksi (55.2 MPa) at 28 days. 

Morcous et al. (2014) measured transfer length in three girder ends of the NU-1350 110 ft 

(33.5 m) girders.  Transfer length was determined by measuring concrete surface strains along 

with 95% average maximum strain (AMS) method.  The measured transfer lengths at release and 

at 14 days were 32 in. (813 mm) and 36 in. (915 mm), respectively.  The transfer length at 14 

days was approximately with the transfer length predicted by ACI 318 (50db = 35 in. (890 mm)), 

and less than the length predicted by AASHTO (60db = 42 in. (1070 mm)).  At the end of 

girders, there were no visible cracks at the transfer zone and in the area between prestressing 

strands due to the use of 0.7 in. (17.8 mm) strands at a pacing of 2 in. by 2 in. (51 mm by 51 

mm). 

 Previous Research on Bond of 0.7 in. (17.8 mm) strand 2.6.3

Several studies using 0.7 in. (17.8 mm), Grade 270 (1860), prestressing strands have been 

conducted.  These studies can be categorized into three groups: (1) mechanical and bond 

properties (Morcous et al. 2012; Dang et al. 2014a; Hatami et al. 2011), (2) the required strand 
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spacing (Vadivelu 2009; Maguire et al. 2013; Morcous et al. 2014; Arab 2012), and (3) transfer 

length, development length, and shear capacity (Morcous et al. 2011b; Morcous et al. 2013; 

Patzlaff et al. 2012; Morcous et al. 2011a; Morcous et al. 2010; Song et al. 2013; Akhnoukh 

2008). 

2.6.3.1 Morcous et al. (2012) 

Morcous et al. (2012) examined the mechanical properties and bond strength of 0.7 in. 

(17.8 mm), Grade 270, low-relaxation strand.  The mechanical properties of 0.7 in. (17.8 mm) 

strands were first mentioned by the ASTM A416 in 2006 (ASTM A416 2012).  According to the 

code, a 0.7 in. (17.8 mm) strand has a cross-sectional area of 0.294 in.2 (189.7 mm2), a minimum 

breaking strength of 79.4 kips (353.2 kN), a minimum load at 1% extension of 71.5 kips (318.1 

kN), and a minimum extension at failure of 3.5%.  These properties were verified by testing 102 

strand specimens obtained from two manufacturers.  Experimental results indicated that all 

strand specimens met the ASTM A416 (2012) requirements of breaking strength and elongation.  

The study also proposed an equation to estimate the strain-stress relationship of 0.7 in. (17.8 

mm) strands as shown in Eq. 4.8. 
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where Q = 0.02; K = 1.03; R = 7.33; fps = is the ultimate stress; fpy = is the yielding stress; εp is 

strain of prestressing stress; Ep = is modulus of elasticity. 

The authors investigated the bond strength of 0.7 in. (17.8 mm) strands which were tested 

on mortar and concrete.  For the mortar, the researchers performed three NASP tests to 
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determine the NASP pull-out forces.  It was noted that only four strand specimens were tested to 

achieve a NASP pull-out force instead of six specimens as stated by the NASP protocol (Russell 

2006).  All three NASP pull-out forces were excessive the minimum thresholds of 0.7 in. (17.8 

mm) strand as mentioned in Table 2.1.  For concrete, the researchers performed six NASP tests 

on concrete which had compressive strengths of 4.0 ksi - 10.0 ksi (27.6 MPa - 69.0 MPa).  The 

experimental results showed that NASP pull-out force had a high correlation with concrete 

compressive strength.  The authors proposed an equation shown in Eq. 4.9 to estimate the NASP 

pull-out force of 0.7 in. (17.8 mm) strands cast in concrete.  Noting that the difference in NASP 

pull-out forces of 0.7 in. (17.8 mm) strands cast on concrete and mortar was not addressed. 

0.77
01 6.96 ciP f ′=      (4.9) 

where P01 is the pull-out force corresponding with a free-end slip of 0.1 in. (2.5 mm) (kip); f’ci is 

concrete compressive strength at 1 day (ksi). 

2.6.3.2 Vadivelu (2009) and Song et al. (2013) 

Vadivelu (2009) investigated the applicability of using a strand spacing of 2 in. by 2.0 in. 

(51 mm by 51 mm) as the minimum spacing for 0.7 in. (17.8 mm), Grade 270 (1860) strands.  

One full-scale finite element models of AASHTO Type I was made using the ABAQUS 

software.  This model used 0.7 in. (17.8 mm) strands with strand spacing of 2.0 in. by 2.0 in. (51 

mm by 51 mm).  In these models, concrete and strands were considered as linear materials.  The 

concrete had a compressive strength of 8.0 ksi (55.2 MPa), the modulus of elasticity of 5100 ksi 

(35165 MPa), and a Poisson’s ratio of 0.18.  The strand was Grade 270 (1860), the modulus of 

elasticity of 28500 ksi (195500 MPa), and a Poisson’s ratio of 0.27.  The analytical investigation 

indicated the transition zone between the web and bottom flange of the girder using 0.7 in. (17.8 

mm) strands was susceptible to cracking. 
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The experimental program was conducted by Vadivelu (2009) and Song et al. (2013) to 

evaluate the analytical investigation as mentioned above.  One full-scale AASHTO Type I girder 

which had a span of 56 ft (18.5 m) was fabricated with 12 – 0.7 in. (17.8 mm) prestressing 

strands.  The strands were placed at spacing of 2.0 in. by 2.0 in. (51 mm by 51 mm) and 

tensioned to 0.75fpu (where fpu is the ultimate strength of prestressing strand).  This girder used 

high strength concrete which had a compressive strength of 10 ksi (69.0 MPa) at 1 day and 14.2 

ksi (97.9 MPa) at 28 days.  The average measured transfer length at release was 21.2 in. (540 

mm) which was approximately 30db (where db is strand diameter).  This measured transfer length 

was shorter than the predicted transfer length using ACI 318 and AASHTO equation. 

2.6.3.3 Morcous et al. (2011a) 

This study evaluated transfer length, development length and end-zone cracking of two 

full-scale NU-900 girders using 0.7 in. (17.8 mm), Grade 270 (1860) prestressing strands 

(Morcous et al. 2011a).  Each girder had different number of strands, strand spacing, and 

concrete compressive strength.  Transfer length was measured using concrete surface strains 

along with AMS method (Russell and Burns 1996).  Development length was measured by 

performing bending tests in which the development length predicted by AASHTO equation was 

used as the tested embedded length. 

The first girder had a length of 40 ft (12.1 m), and contained twenty-four 0.7 in. (17.8 

mm), Grade 270 (1860) prestressing strands tensioned to 0.75fpu (where fpu is the ultimate 

strength of prestressing strand).  These strands were spaced at 2.25 in. (57 mm) vertically and at 

2.2 in. (56 mm) horizontally.  The end-zone reinforcement included 8 No. 6 (19 M), Grade 60 

(420) bars which were spaced at 2 in. (51 mm) along a length of 8 in. (200 mm) at the girder 

ends.  The girder was cast with SCC which had compressive strengths of 6.0 ksi (41.4 MPa) at 1 
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day and 8.0 ksi (55.2 MPa) at 28 days.  The measured transfer length was approximately 35 in. 

(890 mm) which was approximately with the transfer length predicted by ACI 318 (2011) and 

shorter than the transfer length predicted by AASHTO (2012).  The first girder had visible cracks 

at the web and the top flange after detensioning the prestressing strands. 

The second girder had the same length and cross section with the first girder.  This girder 

contained thirty 0.7 in. (17.8 mm), Grade 270 (1860) prestressing strands tensioned to 0.66fpu 

(where fpu is the ultimate strength of prestressing strand).  This prestress was slightly less than 

the prestress in the first girder because of the limited capacity of the prestressing bed.  However, 

these strands were placed at spacing of 2.0 in. by 2.0 in. (51 mm by 51 mm).  The end-zone 

reinforcement consisted of 4 No. 6 (No. 19), Grade 60 (420) bars which were spaced at 2 in. (51 

mm) along a length of 8 in. (200 mm) at the girder ends.  The second girder was cast with high 

strength concrete which had compressive strengths of 12.0 ksi (82.7 MPa) at 1 day and 15.0 ksi 

(103.4 MPa) at 28 days.  The measured transfer length was 27 in. (690 mm) which was 30% 

shorter than that of the first girder.  The reduction in the measured transfer length in the second 

girder can be attributed to the effect of concrete compressive strength.  The second girder had no 

visible cracks as the first girder. 

For development length, both girders were able to achieve the nominal flexural strength 

by using the development length predicted by AASHTO (2012) as the tested embedment length.  

The study indicated the AASHTO specifications are adequate to predict transfer length and 

development length of 0.7 in. (17.8 mm) prestressing strands. 

2.6.3.4 Patzlaff et al. (2012) 

This study examined the effect of confining reinforcement, and measured transfer length, 

development length, and shear strength of pretensioned girders using 0.7 in. (17.8 mm), Grade 
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270 strands (Patzlaff et al. 2012).  The experimental investigation included fabrication and 

testing of 8 T-girders and 3 NU-1100 girders.  Transfer length was measured using concrete 

surface strains along with the AMS method.  Development was measured for all girders by 

performing bending tests with the predicted development length by AASHTO equation. 

The T-girders had an overall depth of 24 in. (610 mm) and were 28 ft (8.53 m) in length.  

These girders were cast with high strength concrete which had compressive strengths of 8.7 ksi - 

9.6 ksi (60.0 MPa - 66.2 MPa) at 1 day, and 9.0 ksi - 13.5 ksi (62.1 MPa - 93.1 MPa) at 28 days.  

Each girder contained 6 – 0.7 in. (17.8 mm), Grade 270 (1860) prestressing strands which were 

tensioned to 0.75fpu (where fpu is the ultimate strength of prestressing strand).  These strands were 

place into two rows with a strand spacing of 2 in. by 2.0 in. (51 mm by 51 mm).  The 

confinement reinforcement was varied for each beam.  The measured transfer lengths at release 

varied from 19 in. to 25 in. ((475 mm to 625 mm), and the average transfer length was 23.3 in. 

(532 mm).  It was concluded that the amount and distribution of confinement reinforcement had 

no significant influence on transfer length. 

The NU-1100 girders had an overall depth of 43.3 in. (1,100 mm) and were 40-ft (12.19 

m) in length.  These girders were cast with SCC which had compressive strengths of 7.8 ksi (54 

MPa) at 1 day and 10.0 ksi (69.0 MPa) at 28 days.  Each girder contained 34 – 0.7 in. (17.8 mm), 

Grade 270 (1860) prestressing strands which were tensioned up to 75% of the ultimate strength.  

These strands were placed at spacing of 2.0 in. by 2.0 in. (51 mm by 51 mm).  The confinement 

reinforcement was placed according to requirement of 2008 Nebraska Department of Roads and 

Bridge Operations and AASHTO LRFD 4th.  Transfer length measurements were not conducted 

for the I-girders. 
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Bending tests were used to evaluate development length for all T-girders and NU-1100 

girders.  The development length predicted by AASHTO equation was used as the embedded 

length for the bending tests.  A multiplier of 1.6 was used because the depths of these girders 

were greater than 24 in. (610 mm).  The experimental results indicated that all girders achieved 

the nominal moment capacity by using the predicted development length.  The authors 

determined the amount of confinement reinforcement had no effect on the moment capacity, but 

the distribution of confinement reinforcement enhanced the ductility of pretensioned girders. 

2.6.3.5 Maguire et al. (2013) 

The study presented the structural performance of 2 double-Tee girders using high 

strength concrete, welded wire reinforcement, and 0.7 in. (17.8 mm), Grade 270 (1860) 

prestressing strands (Maguire et al. 2013).  Two full-scale 50 ft (15.24 m) in length double-Tee 

girders were used to measure transfer length, development length, and shear strength.  These 

girders used SCC which had compressive strength of 12.0 ksi (83.0 MPa) at 1 day and 15.0 ksi 

(103.0 MPa) at 28 days.  Ten 0.7 in. (17.8 mm) prestressing strands were placed at spacing of 2 

in. by 2.0 in. (51 mm by 51 mm) in each single-Tee of the girders.  The strands were tensioned 

up to 0.60fpu (where fpu is the ultimate strength of prestressing strand) of the ultimate stress 

instead of 0.75fpu due to the limited capacity of prestressing bed. 

Transfer length was measured using concrete surface strains along with the AMS method.  

However, the concrete strain profiles were measured at the top flange of the double-Tee girders 

instead of at the centroid of prestressing strands due to the presence of forms at the time of 

release.  The average measured transfer length at release was 16.5 in. (419 mm) which was less 

than the transfer length predicted by ACI 318 (2011) and AASHTO (2012) equation, 35 in. (889 

mm) and 42 in. (1067 mm), respectively.  Bending tests were used to determine development 
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length.  The development length predicted by AASHTO was used as the tested embedment 

lengths.  Experimental results indicated that the AASHTO equation is adequate to predict 

development length of 0.7 in. (17.8 mm) strands. 

2.6.3.6 Arab (2012) 

This study used the finite element method to investigate an applicable spacing of 0.7 in. 

(17.8 mm), Grade 270 (1860) prestressing strands (Arab 2012).  The prestressing strands were 

modeled as small elements which were accommodated in concrete host elements using two 

techniques: (1) embedment technique and (2) extrusion technique.  For the embedment 

technique, the strand was modeled as truss elements which were only in compression or tension.  

The displacement of the truss elements was dependent on the transitional degree of freedom of 

the host elements.  For the extrusion technique, the strand was modeled as solid elements which 

were able to slip in the host elements.  The slippage of the prestressing strand was dependent on 

the friction between the prestressing strand and the adjacent concrete.  Friction coefficients of 0.7 

and 1.4 were used for the embedment technique.  Based on the proposed techniques, the effects 

of strand spacing and the amount of confinement reinforcement on the transfer length were 

investigated on two finite element models: (1) a single prestressing strand embedded at the center 

of a rectangular prism, (2) a group of nine prestressing strands embedded at the center of a larger 

rectangular prism.  The analytical results were compared with experimental results collected 

from Akhnoukh’s study (2008). 

The first finite element model aimed at evaluating the transfer length predicted by 

AASHTO equation and the effect of confinement reinforcement on transfer length of 0.7 in. 

(17.8 mm) prestressing strands.  A single of prestressing strand was placed at the center of a 

prism specimen of 7 in. by 7 in. by 96 in. (178 mm by 178 mm by 2438 mm).  Four prism 
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specimens were modeled with different amounts of confinement reinforcement.  The 

confinement reinforcement consisted of No.3 bars which spaced at 3 in. (76 mm), 6 in. (152 

mm), 9 in. (229 mm), and 12 in. (305 mm), respectively.  The concrete which had compressive 

strengths of 3.0 ksi (20.7 MPa) at 1 day was used for all specimens.  The analytical results 

achieved from the embedment technique and the extrusion technique were similar to the 

experimental results of Akhnoukh’study (2008).  It was determined that the amount of 

confinement reinforcement had no significant effect on transfer length, and the average 

anticipated transfer length varied from 24 in. (610 mm) to 42 in. (1,067 mm) which is shorter 

than or equal to the transfer length predicted by AASHTO (2012). 

The second finite element model investigated applicable strand spacing of 0.7 in. (17.8 

mm) strands using the extrusion technique with different friction coefficients of 0.7 and 1.4.  A 

group of nine prestressing strands were modeled with different strand spacing and different 

amounts of confinement reinforcement.  The prism specimens were 11 in. by 11 in. by 240 in 

(280 mm by 280 mm by 6096 mm).  The prestressing strands were placed at spacing of 2.8 in. by 

2.8 in. (71 mm by 71 mm) which is equivalent to four times the strand diameter, and 2.0 in. by 

2.0 in. (51 mm by 51 mm) which is currently using for 0.6 in. (15.2 mm) strands.  The concrete 

had compressive strengths of 8.0 ksi (55.2 MPa) at 1 day.  The analytical results indicated that 

the difference in amount of confinement reinforcement had no effect on transfer length.  For 

strand spacing, it was determined that 0.7 in. (17.8 mm) prestressing strands can be placed at 

spacing of 2.0 in. by 2.0 in. (51 mm by 51 mm) for concrete having compressive strengths of 

10.0 ksi (68.9 MPa) or greater at the time of releasing of the strands. 
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 Conclusion 2.7

The ACI 318 and AASHTO specifications of transfer length, development length, strand 

spacing were established based on experimental results of pretensioned girders cast with 0.5 in. 

(12.7 mm), Grade 250 (1760) prestressing strands and CC.  These specifications were revised 

when 0.6 in. (15.2 mm), Grade 270 (1860) strands were used in pretensioned members.  The 

revised specifications are used in current practice.  A number of studies have been performed to 

confirm the adequacy of the current specifications for 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) 

strands.  However, limited research has been conducted to investigate the applicability of the 

current specifications for 0.7 in. (17.8 mm), Grade 270 (1860) prestressing strands. 

In terms of concrete, SCC is a recent development in concrete industry, and has more 

advanced features than CC.  Several studies have been conducted to investigate the bond strength 

of prestressing strands with SCC which may be greater, comparable, or lower than with CC.  

This study provides a unique investigation regarding the transfer length, development length, and 

applicable strand spacing of 0.7 in. (17.8 mm) prestressing strands.  Both CC and SCC which 

have a wide range of compressive strengths are investigated.  Therefore, the results of this study 

will further the application of SCC and 0.7 in. (17.8 mm) prestressing strands in bridge 

construction. 

Several studies have investigated transfer length, development length, and applicable 

spacing of 0.7 in. (17.8 mm) strands as discussed in the introduction section.  Most of these 

studies were conducted on the members having a depth equal to or greater than 24 in. (610 mm) 

which include a multiplier of 1.6 for the development equation.  This study represented for the 

members having a depth less than 24 in. (610 mm) in which the development length equation 

would not include the multiplier.  The measured transfer lengths for these members may be 
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longer than for the members having a depth equal to or greater than 24 in. (610 mm) (Russell and 

Burns 1993). 
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 : EXPERIMENTAL PROGRAM CHAPTER 3

 Introduction 3.1

The experimental program consisted of five tasks.  Task 1 focused on designing four 

concrete mixtures including two normal strength and two high strength concrete mixtures.  Task 

2 aimed at quantifying the strand surface conditions using STSB.  Task 3 consisted of fabricating 

24 pretensioned concrete beams using the designed concrete mixtures.  Task 4 measured transfer 

lengths for all beams at release, and at 7, 14, 21, and 28 days.  Strand end-slip was also measured 

to determine transfer length at release.  The final task concentrated on determining development 

length by conducting bending tests after the beams had reached 28 days of age. 

 Mix design 3.2

 Overview 3.2.1

High strength concrete is widely used in bridge construction.  Russell et al. (1997) 

recommended the concrete compressive strength used for bridge girders should be greater than 8 

ksi (55.2 MPa).  The researchers also indicated that the use of 0.7 in. (17.8 mm) prestressing 

strands at spacing of 2.0 in. by 2.0 in. (51 mm by 51 mm) and concrete compressive strength of 

10 ksi (69.0 MPa) in bulb-tee girder (BT-72) results in the longest span and the most cost-

effective design compared to the use of 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) strands.  

Morcous et al. (2011a) determined that the use of 0.7 in. (17.8 mm) prestressing strands and high 

strength concrete presents significant enhancements in bridge construction.  These enhancements 

include increasing moment capacity, lengthening girder span, or extending girder spacing. 
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 Mixture proportions 3.2.2

Four concrete mixtures were designed to cast the pretensioned concrete beams.  All 

concrete mixtures had compressive strength at 28 days greater than 8 ksi (55.2 MPa) as 

recommended (Russell et al. 1997).  These mixtures included: (1) normal strength, conventional 

concrete (N-CC), (2) high strength, conventional concrete (H-CC), (3) normal strength, self-

consolidating concrete (N-SCC), and (4) high strength, self-consolidating concrete (H-SCC).  

The normal strength group (N-CC and N-SCC) had targeted compressive strengths of 6 ksi (41.4 

MPa) at 1 day and 9 ksi (62.1 MPa) at 28 days. For H-SCC, the targeted compressive strengths 

were 8 ksi (55.2 MPa) at 1 day and 10 ksi (69.0 MPa) at 28 days.  For H-CC, the targeted 

compressive strengths were 9 ksi (62.1 MPa) at 1 day and 13 ksi (89.6 MPa) at 28 days.  The 

mixture proportions and concrete compressive strengths are presented in Table 3.1. 

Table 3.1 – Concrete mixtures 
Material H-CC N-CC H-SCC N-SCC 
Cement (lb/yd3) 700 700 825 775 
Coarse aggregate (lb/yd3) 1678 1678 1406 1406 
Fine aggregate (lb/yd3) 1454 1363 1392 1485 
Water (lb/yd3) 245 280 330 310 
Water / Cement ratio 0.35 0.40 0.4 0.4 
High range water reducer (fl oz/cwt) 5 – 6 5 – 6 9 – 10 9 – 10 
Targeted compressive strength at 28 days (ksi) 13 9 10 8 
(Note: 1 yd3 = 0.765 m3; 1 lb = 0.454 kg; 1 cwt = hundred weight = 100 lb; 1 fl oz = 29.57 mL; 1 
ksi = 6.895 MPa) 
 

For CC group (N-CC and H-CC), which had slumps of 9 in. to 10 in. (230 mm to 250 

mm), a mechanical vibrator was used to ensure proper consolidation.  For SCC group (N-SCC 

and H-SCC), the mixtures were able to flow and fill the form without needing vibrator.  Several 

tests were conducted to evaluate the filling ability, passing ability, and segregation resistance of 

the fresh concrete mixtures as shown in Table 3.2.  The test results were compared with the 

recommended thresholds of SCC used for prestressed concrete bridge members (Khayat and 
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Mitchell 2009).  The filling ability was determined by slump flow test (ASTM C1611 2014) and 

T20 (T500) (ASTM C1611 2014).  The slump flow varied from 22 in. to 26 in. (560 mm to 660 

mm).  The lower bound of slump flow was slightly less than the recommended range of 23.5 in. 

– 29.0 in. (600 mm – 740 mm).  The T20 (T500) was in a range of 2.0 – 4.0 seconds which showed 

a good agreement with the recommended range of 1.5 – 6.0 seconds.  The passing ability was 

determined by the J-Ring test (ASTM C1621 2014).  The J-Ring test results varied from 0 in. to 

2.5 in. (0 mm to 64 mm) which was within the recommended range of 0 – 3 in. (0 – 75 mm).  For 

the segregation resistance, the Visual Stability Index (VSI) varied from 0 to 1 which indicated 

that the fresh SCC mixtures showed no evidence of segregation and little to no evidence of 

bleeding. 

Table 3.2 – Concrete properties 

Beam 
Fresh concrete properties 

Slump flow 
(in.) 

T20 or T500  
(sec) 

J-Ring 
(in.) 

Slump flow – 
J-Ring (in.) VSI 

N-SCC-S1 and N-SCC-S2 26 2 24.5 1.5 1 
N-SCC-S3 and N-SCC-S4 24 2 23 1 0 
H-SCC-S1 and H-SCC-S2 22 5 20 2 1 
H-SCC-S3 and H-SCC-S4 25 2 23.5 1.5 1 
H-SCC-D1 and H-SCC-D2 24 2 21.5 2.5 1 
H-SCC-D3 and H-SCC-D4 25 1 25 0 0 
Khayat and Mitchell (2009) 23.5 – 29 1.5 – 6 21.5 – 26 0 – 3 0 – 1 
ACI 237 (2007) 18 – 30 2 – 5 N/A N/A 0 – 1 
(Note: N/A = not available; T20 or T500= time required for the slump flow to reach a diameter of 
20 in. or 500 mm; VSI = visual stability index; 1 in. = 25.4 mm) 

 Concrete compressive strengths 3.2.3

The concrete compressive strengths at release of prestressing strands (approximately 1 

day), at 28 days, and at the times of conducting bending tests are summarized in Table 3.3.  The 

average compressive strengths of each concrete mixture are presented in Figure 3.1.  The 

columns indicate the measured concrete compressive strengths, and the cross lines represent the 

targeted concrete strengths.  In particular, the average concrete strengths at release varied from 
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approximately 5.9 ksi (40.7 MPa) to 9.8 ksi (67.6 MPa).  The concrete compressive strengths at 

28 days were slightly smaller or greater than the targeted strengths for all concrete mixtures.  The 

variation ranged from -2% to 15%.  The concrete compressive strengths at the times of 

conducting bending tests were measured to determine the nominal moment capacity for each 

beam.  These compressive strengths were by 0% to 9% higher than the strengths at 28 days. 

Table 3.3 – Concrete compressive strengths 

Beam Concrete compressive strengths 
f’ci (ksi) f’c (ksi) f’ct (ksi) 

N-CC-S1 and N-CC-S2 5.9 9.3 9.7 
N-CC-S3 and N-CC-S4 6.6 9.7 10.5 
H-CC-S1 and H-CC-S2 9.5 13.7 14.2 
H-CC-S3 and H-CC-S4 8.9 13.2 12.8 
H-CC-D1 and H-CC-D2 9.7 12.3 13.9 
H-CC-D3 and H-CC-D4 9.9 13.3 13.8 
N-SCC-S1 and N-SCC-S2 5.8 8.8 9.1 
N-SCC-S3 and N-SCC-S4 6.1 9.6 9.7 
H-SCC-S1 and H-SCC-S2 8.1 11.0 11.4 
H-SCC-S3 and H-SCC-S4 7.8 10.4 10.7 
H-SCC-D1 and H-SCC-D2 7.7 10.2 10.6 
H-SCC-D3 and  H-SCC-D4 8.1 10.6 10.0 

(Note: f’ci = concrete compressive strength at release; f’c = concrete compressive strength at 28 
days; f’ct = concrete compressive strength at time of testing; 1 ksi = 6.895 MPa) 
 

 

Figure 3.1 – Average concrete compressive strengths. 
(Note: The number in each column represents the time at which concrete compressive strength 
was measured; T = at the time of conducting bending tests; 1 ksi = 6.895 MPa) 
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 Beam specimen testing 3.3

 Beam fabrication 3.3.1

Twenty-four pretensioned concrete beams were cast at the Engineering Research Center 

(ENRC).  Each beam had a cross-section of 6.5 in. by 12 in. (165 mm by 305 mm) and a length 

of 18 ft (5.5 m).  The beams were cast with one or two 0.7 in. (17.8 mm), Grade 270 (1860) 

prestressing strands.  For the beams using one prestressing strand (Figure 3.2), the strand was 

placed at a distance of 10 in. (254 mm) and two No. 5 (No. 16) reinforcing bars were placed at a 

distance of 2 in. (51 mm) from the top fiber of the beam.  For the beams using two prestressing 

strands (Figure 3.3), the strands were placed at a distance of 10 in. (254 mm) from the top fiber 

of the beam and at spacing of 2 in. (51 mm) from center-to-center.  Two No. 6 (No. 19) 

reinforcing bars were placed at a distance of 2 in. (51 mm) from the top fiber of the beam.  The 

placement of reinforcing bars aimed at controlling the anticipated tensile stresses which may 

induce cracks on the top fiber of the beams at release. 

 

Figure 3.2 – Section properties of the beams using one prestressing strand 
(Note: 1 in. = 25.4 mm; 1 ft = 305 mm; No. 5 = No. 16; 0.7 in. strand = 17.8 mm strand) 
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Figure 3.3 – Section properties of the beams using two prestressing strands 
(Note: 1 in. = 25.4 mm; 1 ft = 305 mm; No. 6 = No. 19; 0.7 in. strand = 17.8 mm strand) 

 

The shear reinforcement was designed according to ACI 318 specifications (2011).  Each 

beam had different amount of required shear reinforcement due to the variation of concrete 

compressive strengths.  In this study, however, the shear reinforcement was selected identically 

for all beams to decrease fabrication time as shown in Figure 3.2 and Figure 3.3.  Shear 

reinforcement consisted 0.25 in. (6.4 mm) smooth bars spaced at 6.0 in. (152 mm) and 3 in. (76 

mm) along the entire beam length for the beams using one and two prestressing strands, 

respectively. 

Prior to casting, the prestressing strand was tensioned to 0.75fpu (where fpu is the ultimate 

strength of prestressing strand), 202.5 ksi or 1396 MPa.  At the dead end, the prestressing strands 

were anchored by chucks as shown in Figure 3.4.  At the live end, the prestressing strands were 

tensioned using hydraulic actuator as shown in Figure 3.5.  Thin plastic sheets were placed 

inside the forms to facilitate the removal of the forms and to hold the moisture as the concrete 

cured in the forms as shown in Figure 3.6.  A pair of beams was simultaneously cast on a 50 ft 

(15.24 m) prestressing bed using one concrete batch of 0.9 yd3 (0.7 m3) as shown in Figure 3.7.  

Therefore, the concrete compressive strength was identical for each pair of beams (Table 3.3). 
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Figure 3.4 – Anchor prestressing strand using 
chucks (dead end). 

 

Figure 3.5 – Tension prestressing strands 
using hydraulic actuator (live end). 

 

 

Figure 3.6 – Beam preparation. 

 

Figure 3.7 – Casting concrete. 

 Transfer length measurements 3.3.2

After removing forms, approximately 20 hours after casting the concrete, target points 

were glued onto the surface of the beams at the level of prestressing strand as shown in Figure 

3.8 and Figure 3.9.  The first point was placed at 1 in. (25 mm) from the beam end and the 

subsequent points were spaced at 4 in. (102 mm) for the first 60 in. (1524 mm).  The concrete 

strains were obtained using the Demountable Mechanical Strain Gauge (DEMEC).  The initial 

reading was taken two hours after the target points were affixed to the concrete.  Three 4 in. by 8 
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in. cylinders (102 mm by 204 mm) were tested to evaluate the concrete compressive strength 

before release of the prestressing strand.  The prestressing strand was gradually detensioned 24 

to 26 hours after casting and moved to a storage area at ENRC.  The sequential readings were 

conducted immediately after release, and at 7, 14, 21 and 28 days. 

 

Figure 3.8 – Attachment of target points. 
(Note: Lf is the end of the free portion of strand; 1 in. = 25.4 mm) 

 

 

Figure 3.9 – Transfer length measurement.  (1) The attachment of target points on the surface of 
a pre-tensioned concrete beam after removing the form; (2) A set of target points at spacing of 4 

in. (100 mm); (3) The use of mechanical strain gauge to measure concrete strains. 
 

The gradual detensioning technique was used instead of the flame cut (or sudden transfer) 

because of two reasons.  Firstly, transfer lengths of 0.7 in. (17.8 mm) prestressing strands were 

measured on the pretensioned concrete beams which had a relatively small cross-section in 
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comparison to full-scale bridge girders.  The use of gradual detensioning technique reduces the 

shock of transferring energy in the prestressing strand to the beam.  Secondly, the gradual 

detensioning technique does not yield the worst case for release of the prestressing strand 

(Russell and Burns 1993), but it reduces the damage to the bond between the prestressing strand 

and the adjacent concrete at the live end of the beam.  After detensioning the prestressing strand 

to an age of 28 days, there were no cracks on the top fiber of the beams.  The concrete adjacent 

the prestressing strand had no sign of splitting cracks. 

Concrete strains were measured two times independently for each side of the beam ends.  

The DEMEC readings were recorded at a precision of 10 microstrains.  In total, four sets of 

concrete strains were attained for each beam end.  The measured concrete strains were averaged 

after using a three point moving average (see Eq. 3.1) to smooth the data.  The attained concrete 

strain profiles were used along with the 95% Average Maximum Strain (AMS) method to 

determine transfer length for each specimen (Russell and Burns 1997; Oh and Kim 2000).  A 

detail explanation regarding the utilization of the three point moving technique and the AMS 

method was given by Gross and Burns (1995) and Russell and Burns (1993).  It should be noted 

that two smoothed data points were missing due to the application of smoothing technique.  

These points were at the beginning and ending of a set of target points which were located at 1 

in. (25 mm) and 61 in. (1,550 mm) from the beam end. 

1 1

3
smoothed i i i
i

ε ε εε − ++ +
=       (3.1) 

where εi-1, εi, εi+1 are the raw data at i-1, i, i+1 measurement, respectively; smoothed
iε  is the 

smoothed data point at i measurement. 

The use of AMS method relies on the determination of constant strain plateau.  As shown 

in Figure 3.10, G1 is the initial point of the constant strain plateau, and G2 and G3 are two 
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consecutive points of G1.  Point G1 was manually determined which based on the change in 

slopes of the concrete strain profile.  In general, there is a significant change in slope between the 

G1G2 and G1G3 line.  Therefore, the concrete strain profile can be divided into two plateaus: (1) 

the constant strain plateau, and (2) the linear strain plateau. 

 

Figure 3.10 – Determination of transfer length. 
(Note: Lt = transfer length; AMS = average maximum strain; ILT = initial linear trend; 1 in. = 

25.4 mm) 
 

Figure 3.10 illustrates the transfer length determination.  The following steps were used 

to determine transfer length: 

Step 1: Plot the concrete strain profile along the beam length. 

Step 2: Determine the constant strain plateau to calculate the AMS value. 

Step 3: Draw the 95% AMS line.  This is the horizontal line passing through the 95% 

AMS value. 

Step 4: Draw the initial linear trend (ILT) line.  The ILT line passes through the origin 

and is the best-fit trend line of target points within the transfer zone. 

Step 5: Determine the intersection of the 95% AMS line and the ILT line.  Transfer 

length is the distance from the beam end to the intersection point. 
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Previous studies used the distance from the beam end to intersection of the concrete strain 

profile with the 95% AMS line as the defined transfer length (Gross and Burns 1995; Staton et 

al. 2009; Floyd et al. 2011b; Dang et al. 2014b).  The advantage of using the ILT in determining 

transfer length is to reduce the effect of strain fluctuation near the end of transfer zone (Meyer et 

al. 2002) and to give more precise and consistent results (Carroll 2009).  Each target point within 

the transfer zone has the same contribution in defining the ILT line.  The use of the intersection 

of the 95% AMS line and the ILT line has been implemented to estimate transfer length in 

several studies (Morcous et al. 2011b; Maguire 2009; Patzlaff 2010; Morcous et al. 2013; 

Morcous et al. 2014) and has been applied in this study. 

 Strand end-slip measurement 3.3.3

In order to measure strand end-slip, a metal clamp was attached to the prestressing strand 

as shown in Figure 3.11.  The initial and subsequent readings were conducted at the same time 

concrete surface strains were measured.  The nominal end-slip (δn) was computed as the 

difference between the initial reading and the subsequent reading.  Initial strand end-slip (δ) was 

determined by subtracting the elastic shortening (ES) of the free strand portion from the nominal 

end slip using Eq. 3.2 and 3.3. 

pj f

p

f L
ES

E
=        (3.2) 

n ESδ δ= −        (3.3) 

where ES is the elastic shortening of the free portion of strand; Lf the length of the free portion of 

strand as shown in Figure 3.8; fpj is the jacking stress; Ep is the modulus of elasticity of 

prestressing strand; δn is the nominal strand end-slip; δ is the initial strand end-slip. 
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Figure 3.11 – End-slip measurement. 

 Development length measurements 3.3.4

Bending test was used to evaluate development length of prestressing strands.  A 

concentrated load was applied to the beam at a given distance from the beam end and increased 

until the beam failed.  This distance is defined as the embedment length as shown in Figure 3.12.  

The determination of development length is an iterative procedure in which the beams are tested 

with different embedment lengths.  The selection of initial embedment length may base on the 

development length predicted by the codes or by prior studies.  In this study, the initial 

embedment length was approximately 50% to 60% of the predicted development length using 

ACI 318 equation.  This was based on recommendations of study conducted by Floyd et al. 

(2011a) which used 0.6 in. (15.2 mm) prestressing strands and SCC. 
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Figure 3.12 – Bending test setup. 
(Note: P = concentric force; Le = embedment length; 1 ft = 305 mm) 

 

Three cylinders were tested to evaluate the concrete compressive strength before 

conducting the bending tests (Table 3.3).  The strain compatibility method was used to calculate 

fps (where fps is average stress in prestressing steel at the time for which the nominal resistance of 

member is required).  This value varied from 0.970fpu to 0.989fpu as shown in Table A.7.  The 

AASHTO (2012) Refined method was used to predict prestress losses and calculate the effective 

strand stress (fpe) at 28 days as summarized in Table A.4, Table A.5, and Table A.6.  The 

effective strand stress ranged from 0.639fpu to 0.688fpu.  These stress values were used to 

calculate the nominal moment capacity shown in Table A.7 and the predicted transfer and 

development lengths using ACI 318 or AASHTO equations as summarized in Table A.8. 

The failure mode of a bending test was used to determine whether the tested embedment 

length is longer than the required development length.  The required development length is the 

shortest embedment length at which the tested specimens exhibited flexural failure.  The flexural 

failure is characterized by three requirements: (1) the measured moment capacity is equal or 

greater than the nominal moment capacity, (2) the prestressing strand experiences no slippage 

before the beam achieves the nominal moment capacity, and (3) the specimen exhibits large 

deformation before collapse.  The third requirement is based on the ductile requirement of 

designing flexural members which need to show visible warning before collapse.  The bond 



51 

failure was defined as the prestressing strand was slipped before the specimen achieved nominal 

moment capacity regardless of the measured moment and the specimen deflection.  This was 

since the strand slippage is a sign of losing bond between the prestressing strand and concrete.  

The failure of PCMs due to losing bond strength is unpredictable and sudden. 

Two bending tests were conducted for each beam as illustrated in Figure 3.12.  

Therefore, a total of 48 bending tests were performed for 24 pretensioned concrete beams.  Initial 

tests were started with N-SCC-S beams and following tests were conducted for H-SCC-S, H-

SCC-D, N-CC-S, H-CC-S, and H-CC-D beams.  During a bending test, the strand slippage, beam 

deflection at the loading position, and hydraulic pressure were continuously monitored.  In 

particular, the strand slippage was quantified using a linear variable differential transformer 

(LVDT) and the beam deflection was measured using a linear cable encoder (LCE) as shown in 

Figure 3.13.  Hydraulic pressure was monitored using a pressure transducer connected to the 

hydraulic system.  These devices were connected to a data acquisition system which transferred 

the received data to a computer. 
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Figure 3.13 – Bending test frame. 

(Note: LVDT = linear variable differential transformer; LCE = linear cable encoder) 
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 : TRANSFER LENGTH RESULTS CHAPTER 4

This chapter presents the measured transfer lengths and strand end-slips of 24 

pretensioned concrete beams.  The beams were fabricated with conventional concrete and self-

consolidating concrete.  The concrete strengths at 1 day ranged from 5.9 ksi to 9.8 ksi (40.7 MPa 

to 67.6 MPa).  Transfer lengths were determined using concrete surface strains along with the 

Average Maximum Strain method.  Initial strand end-slips were also measured for predicting 

transfer length at release using an empirical formula.  Experimental results indicated ACI 318 

and AASHTO specifications are applicable for estimating transfer length of 0.7 in. (17.8 mm) 

strands at release and at 28 days.  A coefficient of 2.38 was the most appropriate value for 

estimating transfer lengths at release from initial strand end-slips. 

 Measured transfer lengths 4.1

Figure 4.1 shows the determination of transfer lengths at the live end of beam N-CC-2 at 

release and at 28 days.  As shown in the figure, the concrete strain profiles fluctuated near the 

end of transfer zone, so it was not suitable to use this region for determining transfer length.  The 

ILT line, however, best represents that strain measured by the target points within the transfer 

zone.  The measured transfer length using this technique may be more or less than that using the 

first technique which used the distance from the beam end to intersection of the concrete strain 

profile with the 95% AMS line as the defined transfer length.  The differences are dependent 

upon the fluctuation of the concrete strain profiles.  The determination of transfer lengths for 

remaining beams is shown in Appendix B.1. 
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Figure 4.1 – Determination of transfer length at release at the live end of beam N-SCC-2. 
(Note: Lt = transfer length; 1 in. = 25.4 mm) 

 

The measured transfer lengths at release at the live ends and the dead ends of 24 

pretensioned concrete beams are shown in Figure 4.2.  In general, there was no significant 

difference in the transfer lengths measured at the live ends and the dead ends.  The measured 

transfer lengths were shorter than the transfer length predicted by ACI 318 (2011) and AASHTO 

(2012), 50db = 35 in. (890 mm) and 60db = 42 in. (1067 mm), respectively.  As shown in the 

figure, the transfer length predicted by Eq. 1.1 and AASHTO were approximately 42 in. (1067 

mm).  Therefore, the ACI 318 and AASHTO equations of transfer length are applicable for 0.7 

in. (17.8 mm) prestressing strands cast with CC and SCC which had compressive strengths at 

release varied from 5.9 ksi to 9.2 ksi (40.7 MPa to 63.4 ksi).  The measured transfer length at 7, 

14, 21, and 28 days for all beams are summarized in Table B.1and Table B.2. 
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Figure 4.2 – Transfer length at release at the live ends and dead ends of 24 pretensioned concrete 
beams. 

(Note: db = strand diameter; 1 in. = 25.4 mm) 

 Statistical transfer lengths 4.2

For a given beam group, the measured transfer lengths were assumed to be normally 

distributed.  This assumption was applicable for the beams using the same type of prestressing 

strands and casting procedures.  Figure 4.3 shows the normal distribution of transfer lengths 

obtained from N-CC-S beams which had an average concrete compressive strength of 6.3 ksi 
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(43.2 MPa) at 1 day.  A least squares estimation was used to calculate the lower bound and upper 

bound of the measured transfer lengths with a confidence interval of 95%.  The 95% region is 

represented by the shaded area in the figure.  This area was limited by the lower and upper bound 

of transfer lengths of 22.7 in. and 29.2 in. (575 mm and 741 mm), respectively.  The figure 

indicates that 95% of the measured transfer lengths varied from 22.7 in. to 29.2 in. (575 mm and 

741 mm).  The upper bounds, lower bounds, and average transfer lengths of different beam 

groups at release, and 7, 14, 21, and 28 days are shown in Figure 4.4, and the detail calculation 

of these parameters are summarized in Table B.3. 

 

Figure 4.3 – Normal distribution model of the measured transfer lengths at release of N-CC-S 
beams. 

(Note: PDF = probability density function; CI = confidence interval; STD = standard deviation; 1 
in. = 25.4 mm) 
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Figure 4.4 – Increase of transfer length over time 
(Note: db = strand diameter; the number in each column indicates the time at which transfer 

lengths were measured; 1 in. = 25.4 mm) 

 Increase of transfer lengths by time 4.3

The increase of transfer lengths was observed for all beams.  Barnes et al. (2003) 

determined the increase varied from 10% to 20% on average and was significant for the first four 

weeks after release.  In this study, the observed increase varied from 7% to 17% which was 

slightly less than the reported values as shown in Figure 4.4.  The types of concrete and concrete 

compressive strengths were likely independent factors in the increase.  For normal concrete 

strength groups, the increase of transfer length for the N-CC-S beams was greater than for the N-

SCC-S beams.  For high strength concrete groups, the H-SCC-S beams experienced a greater 

increase than H-CC-S beams.  For the beams using two prestressing strand, the H-CC-D beams 

experienced a greater increase than H-SCC-D beams. 

Figure 4.4 also shows error bars of the measured transfer lengths at a specific time for 

each beam group.  These error bars were calculated according to the upper bound and lower 
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bound of a normal distribution with a confidence interval of 95%.  As shown in the figure, the 

ACI 318 equation (50db) and AASHTO equation (60db) overestimate the upper bounds of 

measured transfer lengths at 28 days.  The transfer length predicted by ACI 318 equation (Eq. 

1.1) was approximate with the transfer length predicted by AASHTO equation.  In summary, the 

current specifications are applicable to predict transfer lengths of 0.7 in. (17.8 mm), Grade 270 

(1860) prestressing strands for the first 28 days. 

 Transfer length comparison of CC and SCC 4.4

In this study, the N-CC-S and N-SCC-S beams had similar compressive strengths at 

release of 6.3 ksi (43.4 MPa) and 5.9 ksi (40.7 MPa), respectively.  The difference in these 

strengths was approximately 7%, therefore, it was appropriate to compare the measured transfer 

lengths regardless of the effect of concrete compressive strength.  The measured transfer lengths 

of these beams at release and at 28 days are shown in Figure 4.4.  At release, the beams using 

SCC exhibited greater transfer lengths than those of the beams using CC.  This finding was 

similar to the conclusion determined by Girgis and Tuan (2005).  The average and maximum 

difference were 8% and 21%, respectively.  At 28 days, however, transfer lengths measured on 

the beams using SCC and CC were similar.  This indicated that the bond strength of prestressing 

strands with SCC was lower than that with CC at early age.  At 28 days, however, there was no 

difference in the bond strength of prestressing strands with SCC and CC. 

 Effect of strand spacing 4.5

The effect of strand spacing on the measured transfer lengths are shown in Figure 4.5.  

The average transfer length of H-CC-D and H-CC-S beams was similar regardless of the 
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concrete compressive strength of H-CC-D beams was 7% greater than the concrete strength of 

H-CC-S beams.  The H-SCC-S and H-SCC-D beams had an identical concrete compressive 

strength at release, but the average transfer length of H-SCC-D beams was 9% greater than that 

of H-SCC-S beams.  Therefore, the use of 0.7 in. (17.8 mm) prestressing strands at spacing of 2 

in. (51 mm) may increase transfer lengths at release.  At 28 days, there was no difference in the 

measured transfer lengths between the beams using one and two prestressing strands as shown in 

Figure 4.4. 

 

Figure 4.5 – Transfer lengths at release and concrete compressive strengths. 
(Note: UB = upper bound; LB = lower bound; f’ci is concrete compressive strength at 1 day and 

in ksi for the UB, LB, and predicted equations; 1 ksi = 6.895 MPa; 1 in. = 25.4 mm) 

 Effect of concrete compressive strengths 4.6

Figure 4.5 shows the upper bounds, lower bounds, and average transfer lengths of 

different normal distribution models.  As shown in the figure, the average transfer lengths of 0.7 

in. (17.8 mm) prestressing strands decreased as the concrete compressive strengths increased.  

This finding confirmed the effect of concrete compressive strength on the transfer length of 
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previous studies using 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) strands (Mitchell et al. 1993; 

Floyd et al. 2011b; Ramirez and Russell 2008; Martí-Vargas et al. 2012; Martí-Vargas et al. 

2007b; Martí-Vargas et al. 2006).  Mitchell et al. (1993) determined that transfer length at release 

can be predicted using Eq. 4.1.  This equations indicated the transfer length of 50db predicted by 

ACI 318 is conservative for concrete having compressive strengths at release of 3 ksi (20.7 MPa) 

or greater. 

86.6
t b

ci

L d
f

=
′

      (4.1) 

where Lt is transfer length (in.); f’ci is concrete compressive strength at 1 day (ksi); db is strand 

diameter (in.). 

Ramirez and Russell (2008) proposed another equations for predicting the initial transfer 

length as shown in Eq. 4.2.  These equations showed that the transfer length of 60db predicted by 

AASHTO is adequate for concrete having compressive strengths at release of 4 ksi (27.6 MPa) 

or greater.  

120 40t b b
ci

L d d
f

= ≥
′

     (4.2) 

where Lt is transfer length (in.); f’ci is concrete compressive strength at 1 day (ksi); db is strand 

diameter (in.). 

Using the experimental data from this study, an equations were proposed to predict 

transfer length at release for 0.7 in. (17.8 mm), Grade 270 (1860), prestressing strands as shown 

in Eq. 4.3.  This equations considered the effect of concrete compressive strength on transfer 

length as discussed previously.  The average transfer lengths of six beam groups shown in Table 

4.1 were used to determine the κ coefficient using a least squares estimation.  A κ coefficient of 

98.4 indicated the most appropriate value representing the relationship of transfer length at 
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release and concrete compressive strength with a coefficient of determination (R2) of 0.69.  This 

coefficient was 14% greater than the value proposed by Mitchell et al. (1993) , 86.6, and 18% 

smaller than the value proposed by Ramirez and Russell (2008), 120.  The predicted equations 

were plotted as the dashed line in Figure 4.5. 

t b
ci

L d
f

κ
=

′
      (4.3) 

where Lt is transfer length (in.); f’ci is concrete compressive strength at 1 day (ksi); db is strand 

diameter (in.); κ is a coefficient of the proposed transfer length equation. 

Table 4.1 – Transfer length analysis 
Beam 
group 

f’ci 
(ksi) 

Transfer length 95% confidence interval κ 
Mean (in.) STD (in.) LB (in.) UB (in.) LB UB 

N-CC-S 6.3 25.9 1.7 22.7 29.2 81 104 
H-CC-S 9.2 22.6 1.8 19.2 26.1 83 113 
H-CC-D 9.8 23.0 2.2 18.7 27.3 84 122 
N-SCC-S 5.9 28.0 2.0 24.0 32.0 84 112 
H-SCC-S 7.9 24.0 1.7 20.7 27.3 83 110 
H-SCC-D 7.9 26.2 1.4 23.4 28.9 94 116 
(Note: f’ci = concrete compressive strength 1 day; STD = standard deviation; UB = upper bound, 
LB = lower bound; κ = a coefficient of the proposed transfer length equation; 1 ksi = 6.895 MPa; 
1 in. = 25.4 mm) 

 Proposed equation of transfer length 4.7

The upper bounds and lower bounds of the measured transfer lengths with a confidence 

interval of 95% are shown in Figure 4.5.  These values were used to determine the 

corresponding bounds of the κ coefficient.  The determined bounds of the κ coefficient required 

to satisfy all the bounds of the measured transfer lengths.  The detailed calculations of the κ 

coefficient for each beam group are presented in Table 4.1.  For the upper bound, the κ 

coefficient varied from 104 to 122.  The maximum coefficient of 122, which was determined 

from transfer lengths of H-CC-D beam group, controlled the upper bound of the predicted 
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transfer length.  This value was slightly smaller than a κ coefficient of 120 proposed by Ramirez 

and Russell (2008) for 0.5 in. (12.7 mm) and 0.6 in. (15.2 mm) strands.  For the lower bound, the 

κ coefficient ranged from 81 to 94.  The minimum coefficient of 81, which was determined from 

transfer lengths of N-CC-S beam group, controlled the lower bound of the predicted transfer 

length.  The curves represented the upper bound and lower bound of the predicted transfer length 

are shown as solid lines in Figure 4.5 and summarized in Eq. 4.4. 

81 122
b t b

ci ci

d L d
f f

≤ ≤
′ ′

    (4.4) 

where Lt is transfer length (in.); f’ci is concrete compressive strength 1 day (ksi); db is strand 

diameter (in.). 

 Initial strand end-slips 4.8

 Measured initial strand end-slips 4.8.1

The measured strand end-slips are shown in Figure 4.6.  The figure indicates that there 

were no apparent differences in the end-slips at the live ends and the dead ends.  This was most 

likely due to the gradual release of the prestressing strands.  Figure 4.6 also presents the 

allowable strand end-slips (AESs) with different bond stress distribution (BSD) coefficient α.  

Researchers indicated that transfer lengths at release can be predicted from initial strand end- 

slips using Eq. 4.5 (Martí-Vargas et al. 2006; Russell and Burns 1996; Rose and Russell 1997).  

Therefore, the AESs were established based on a correlation of the empirical formula of transfer 

length and the transfer length of 50db predicted by ACI 318 as shown in Eq. 4.6.  A prestressing 

strand experiencing an initial strand end-slip of δall is expected to exhibit a transfer length of 
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50db as predicted by ACI 318.  In the AES equations, the α coefficient is an empirical parameter 

and varies from 2.0 to 3.0 depending on the distribution of bond stress within the transfer zone.  

A coefficient of 2.0 represents a constant BSD, and a coefficient of 3.0 represents a linear BSD.  

As shown in Figure 4.6, most of the strand end-slips exceeded the AES using an α coefficient of 

3.0, and none of them exceeded the AES using an α coefficient of 2.0.  In particular, the 

measured end-slips were approximately 68% - 113% of the AES using an α coefficient of 3.0, 

and 45% - 75% of the AES using an α coefficient of 2.0. 

p
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αδ=        (4.5) 
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δ

α
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where Lt is transfer length (in.); α is bond stress distribution coefficient; δ is initial strand end-

slip (in.) as summarized in Table B.4; δall is allowable initial strand end-slip (in.) as summarized 

in Table B.4; fpt is stress in prestressing steel immediately after transfer (ksi) as summarized 

Table A.4; db is strand diameter (in.); Ep is the modulus of elasticity of prestressing strand (ksi), 

28800 ksi (198720 MPa). 
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Figure 4.6 – Comparison of measured strand end-slips with the allowable strand end-slips 
calculated by different bond stress distribution coefficients. 

(Note: [1] = allowable initial strand end-slip calculated with bond stress distribution coefficient 
of 3.0 as summarized in Table B.4; [2] = allowable initial strand end-slip calculated with bond 

stress distribution coefficient of 2.0 as summarized in Table B.4; 1 in. = 25.4 mm) 

 Predicted transfer length from initial strand end-slip 4.8.2

The first method used to determine transfer length was to measure concrete surface 

strains and use the AMS technique as discussed previously.  Researchers indicated that this 

method provides a reliable measurement of transfer length (Russell and Burns 1993; Russell and 

Burns 1996; Russell and Burns 1997; Unay et al. 1991).  An alternative method to estimate 

transfer length is derived from initial strand end-slips as discussed previously (see Eq. 4.5).  This 

method is more simple and practical to quantify the transfer length because it is easier to measure 

strand end-slips than concrete surface strains (Park and Cho 2014).  However, the accuracy of 

second method depends on an empirical coefficient of BSD, α.  Previous studies showed that the 

α coefficient may vary from 2.0 to 3.0 (Martí-Vargas et al. 2007a). 
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Figure 4.7 shows the transfer lengths measured by the first method and the transfer 

lengths estimated by the second method.  The estimated transfer lengths were represented by the 

shaded region with α coefficients ranging from 2.0 to 3.0.  The lower and upper bound 

represented transfer lengths estimated with a coefficient of 2.0 and 3.0, respectively.  A least 

squares method was used to determine the most appropriate α coefficient.  The coefficient of 

determination, R2, indicated the fit of the two sets of data, the measured and estimated transfer 

lengths.  The relationship of R2 and α coefficient is shown in Figure 4.8.  For an α coefficient in 

a range of 2.0 to 2.2 and 2.55 to 3.0, the R2 was negative which shows that the two sets of data 

were independent.  For an α coefficient in a range of 2.2 to 2.55, the relationship of R2 and α 

coefficient was represented by a nonlinear curve.  The peak of the curve represented the most 

appropriate α coefficient for estimating transfer lengths from strand end-slips.  As shown in 

Figure 4.8, the most appropriate α coefficient was 2.38 with a R2 of 0.63.  This coefficient was 

3% smaller than the coefficient proposed by Martí-Vargas et al. (2007a) for 0.5 in. (12.7 mm), 

Grade 270 (1860) prestressing strands.  The estimated transfer lengths at the dead ends and live 

ends of 16 pretensioned concrete beams using a coefficient of 2.38 were also plotted in Figure 

4.7. 



66 

 

Figure 4.7 – The measured transfer lengths and the predicted transfer lengths from strand end-
slips using BSD coefficients varying from 2.0 to 3.0. 

(Note: Lt = transfer length; α = bond stress distribution coefficient) 
 

 

Figure 4.8 – Relationship of coefficient of determination R2 and α coefficient. 
(Note: α = bond stress distribution coefficient) 
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Figure 4.9 compares the measured transfer lengths with the estimated transfer lengths 

using an α coefficient of 2.38.  Ideally, the measured and estimated transfer lengths should align 

with the diagonal line.  The distance from a data point to the diagonal indicated the deviation of 

determining the α coefficient.  In this study, a coefficient of 2.38 was the most appropriate 

coefficient for estimating transfer lengths from initial strand end-slips. 

 

Figure 4.9 – Comparison of the measured transfer lengths and the predicted transfer lengths 
using an α coefficient of 2.38. 

(Note: 1 in. = 25.4 mm) 
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1. The average measured transfer lengths at release varied from 23 in. to 28 in. (584 mm to 

710 mm).  The experimental results confirmed the effect of concrete compressive 

strength on transfer length of prestressing strands.  The increase of concrete compressive 

strength can shorten the transfer length. 

2. At early ages, the bond strength between the prestressing strands with SCC was lower 

with CC.  At 28 days, however, the bond strength between prestressing strands with CC 

and SCC was similar. 

3. Transfer lengths increased by 7% to 17% during the first 28 days after casting.  The 

increase was independent of concrete compressive strengths and type of concrete.  The 

average measured transfer lengths at 28 days varied from 26 in. to 31 in. (660 mm to 790 

mm) 

4. The beams using two prestressing strands at spacing of 2.0 in. (51 mm) had greater 

transfer lengths at release than the beams using one prestressing strand.  At 28 days, the 

measured transfer lengths were similar for the beams using one and two prestressing 

strands. 

5. The lower and upper bound of the measured transfer lengths were proposed (Eq. 4.4).  

The lower bound should be used to check allowable stresses at release.  The upper bound 

should be used when determining shear strength and moment capacity. 

6. A concrete compressive strength at release of 8 ksi (55.2 MPa) was adequate for 

detensioning 0.7 in. (17.8 mm) strands placed at spacing of 2.0 in. (51 mm). 

7. The ACI 318 and ASSHTO specifications of transfer length are applicable for 0.7 in. 

(17.8 mm) prestressing strands cast with the CC and SCC mixtures used in this study. 
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8. The measured initial strand end-slips may be less or greater than the AESs calculated 

with different BSD coefficients.  There was no apparent difference in the strand end-slips 

measured at the live ends and the dead ends. 

9. Transfer lengths at release can be estimated from initial strand end-slips using an 

empirical formula.  A coefficient of 2.38 was the most appropriate value for estimating 

the transfer length with a coefficient of determination of 0.69. 
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 : DEVELOPMENT LENGTH RESULTS CHAPTER 5

This chapter presents the measured development length of 0.7 in. (17.8 mm) prestressing 

strands for 24 pretensioned concrete beams.  The beams were fabricated with conventional 

concrete or self-consolidating concrete.  The concrete compressive strengths at 28 days varied 

from 9.2 ksi to 13.4 ksi (63.4 MPa to 92.4 MPa).  The development length was determined by 

conducting bending test with different embedment lengths.  The experimental results indicated 

the measured development length did not show a good correlation with concrete compressive 

strengths.  The ACI 318 equations significantly over-predicted the measured flexural bond length 

and development length.  A simple equation was proposed for predicting development length of 

0.7 in. (17.8 mm) prestressing strands. 

 Measured development lengths 5.1

 N-SCC-S beams 5.1.1

The bending test results of N-SCC-S beams are presented in Figure 5.1 and Appendix 

C.1.1. In the figure, three parameters are presented for a bending test.  The first column was the 

ratio of the maximum measured moment capacity (Mmax) and nominal moment capacity (Mn).  

The second column was the ratio of the measured moment (Mslip) and nominal moment capacity 

when the prestressing strand exhibited the initial slippage recorded by LVDT.  If the prestressing 

strand exhibited no slippage, a text of “No Slip” is shown instead of the second column.  The 

tested embedment length is shown as a solid circle.  In the figure, the specimens were arranged 

according to the order of conducted bending tests. 
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Figure 5.1 – Bending test results of N-SCC-S beams. 
(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 

Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
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major crack occurring during the bending test and leading to the collapse of specimen, and the 

thin lines represents minor cracks. 

 

Figure 5.2 –Test results of N-SCC-S2-L with an embedment length of 4 ft (1220 mm). 
(Note: 1 in. = 25.4 mm; LCE = linear cable encoder; M/Mn = ratio of the measured moment and 

the nominal moment capacity when the prestressing strand started slipping) 
 

 

Figure 5.3 – Crack pattern of N-SCC-S2-L. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure 5.5.  The major crack occurred beneath the concentrated load and was slightly inclined to 

the right.  The failure mode was classified as bond failure in this case.  The bending test of N-

SCC-S1-L with an embedment length of 3.5 ft (1067 mm) and N-SCC-S1-D with an embedment 

length of 3.25 ft (991 mm) presented similar results to the N-SCC-S2-D in which the prestressing 

strand was slipped before these specimens achieved Mn.  Therefore, the required development 

length of prestressing strand was approximately 4 ft (1220 mm) for the N-SCC-S beams. 

 

Figure 5.4 – Test results of N-SCC-S2-D with an embedment length of 3.5 ft (1067 mm). 
(Note: 1 in. = 25.4 mm; LCE = linear cable encoder; M/Mn = ratio of the measured moment and 

the nominal moment capacity when the prestressing strand started slipping) 
 

 

Figure 5.5 – Crack pattern of N-SCC-S2-D. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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 H-SCC-S beams 5.1.2

The H-SCC-S beams were tested with different embedment lengths varying from 4.5 ft to 

3.5 ft (1372 mm to 1067 mm) as shown in Figure 5.6 and Appendix C.1.2.  Three specimens (H-

SCC-S2-L, H-SCC-S2-D and H-SCC-4-L) which were tested with an embedment length equal to 

or greater than 4 ft (1220 mm) exhibited flexural failure without strand slippage or the 

prestressing strand was slipped after the specimens achieved Mn.  The relationship of strand 

slippage and moment of H-SCC-S4-L bending test is shown in Figure 5.7.  The figure shows the 

prestressing strand was slipped instantly after the specimen achieved Mn.  This indicated that the 

required development length was very close to tested embedment length.  The major crack 

occurred beneath the concentrated load as shown in Figure 5.8. 

 

Figure 5.6 – Bending test results of H-SCC-S beams. 
(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 

Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
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Figure 5.7 – Test results of H-SCC-S4-L with an embedment length of 4 ft (1220 mm). 
(Note: 1 in. = 25.4 mm; LCE = linear cable encoder; M/Mn = ratio of the measured moment and 

the nominal moment capacity when the prestressing strand started slipping) 
 

 

Figure 5.8 – Crack pattern of H-SCC-S4-L. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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strand was slipped.  However, this specimen was considered as bond failure since strand slippage 

is a sign of losing bond strength between the prestressing strand and the concrete.  The crack 

pattern is shown in Figure 5.10.  One specimen (H-SCC-S3-L) which was tested with an 

embedment length of 3.5 ft (1067 mm) exhibited bond failure.  Therefore, the required 

development length was approximately 4 ft (1220 mm) for the H-SCC-S beams. 

 

Figure 5.9 – Test results of H-SCC-S4-D with an embedment length of 3.75 ft (1143 mm). 
(Note: LCE = linear cable encoder; M/Mn = ratio of the measured moment and the nominal 

moment capacity when the prestressing strand started slipping; 1 in. = 25.4 mm) 
 

 

Figure 5.10 – Crack pattern of H-SCC-S4-D. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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 N-CC-S beams 5.1.3

The bending test results of N-CC-S beams are summarized in Figure 5.11 and Appendix 

C.1.3.  The tested embedment lengths varied from 4 ft to 3 ft (1220 mm to 914 mm).  The N-CC-

S4-L was first tested with an embedment length of 4 ft (1220 mm) which was approximately 

48% of the predicted development length using ACI 318 equation.  This specimen exhibited 

flexural failure without strand slippage. 

 
Figure 5.11 – Bending test results of N-CC-S beams. 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 

nominal moment capacity; 1 ft = 305 mm) 
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crack was inclined 45o to the left as shown in Figure 5.13.  This may be due to the high shear 

effect when the specimen was tested with a short embedment length. 

 

Figure 5.12 – Test results of N-CC-S4-D with an embedment length of 3.5 ft (1067 mm). 
(Note: 1 in. = 25.4 mm; M/Mn = ratio of the measured moment and the nominal moment capacity 

when the prestressing strand started slipping) 
 

 

Figure 5.13 – Crack pattern of N-CC-S4-D. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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flexural failure, and one specimen showed bond failure.  In addition, one specimen (N-CC-1-L) 

which was tested with an embedment length of 3 ft (914 mm) reached 98% of Mn before 

collapsed as shown in Figure 5.14.  The prestressing strand also experienced initial slippage at 

98% of Mn.  However, the moment curve rapidly dropped and this specimen collapsed without 

warning.  This indicated that the bond strength between the prestressing strand and the concrete 

completely lost after the strand started slipping.  Therefore, the N-CC-1-L specimen did not 

satisfy the requirement of ductility.  The major shear crack shown in Figure 5.15 was the reason 

accounting for the rapid drop of the moment curve.  Based on the bending tests of 8 specimens, it 

was concluded that the required development length of prestressing strand was approximately 4 

ft (1220 mm). 

 

Figure 5.14 – Test results of N-CC-S1-L with an embedment length of 3 ft (914 mm). 
(Note: LCE = linear cable encoder; M/Mn = ratio of the measured moment and the nominal 

moment capacity when the prestressing strand started slipping; 1 in. = 25.4 mm) 
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Figure 5.15 – Crack pattern of N-CC-S1-L. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 

 H-CC-S beams 5.1.4

Bending tests of H-CC-S beams showed similar results with different embedment lengths 

as shown in Figure 5.16 and Appendix C.1.4.  Two specimens (H-CC-S4-D and H-CC-S3-D) 

which were tested with an embedment length of 4.25 ft (1295 mm) showed flexural failure 

without strand slippage.  For a shorter embedment length of 4 ft (1220 mm), three specimens (H-

CC-S4-L, H-CC-S3-L, and H-CC-S2-L) exhibited flexural failure without strand slippage or the 

prestressing strand was slipped after the specimens achieved Mn.  In particular, the H-CC-S4-L 

specimen achieved Mmax/Mn of 1.03, and the prestressing strand was slipped at 102% of Mn as 

shown in Figure 5.17.  This indicated that the required development length was close with the 

tested embedment length of 4 ft (1220 mm).  The major crack occurred beneath the concentrated 

load as shown in Figure 5.18. 
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Figure 5.16 – Bending test results of H-CC-S beams. 
(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 

Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 

 

 

Figure 5.17 – Test results of H-CC-S4-L with an embedment length of 4 ft (1220 mm). 
(Note: M/Mn = ratio of the measured moment and the nominal moment capacity when the 

prestressing strand started slipping; 1 in. = 25.4 mm) 
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Figure 5.18 – Crack pattern of H-CC-S4-L. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 

 

The embedment length was continuously reduced to determine the required development 

length.  The bending test of H-CC-2-D specimen with an embedment length of 3.75 ft (1143 

mm) and H-CC-1-L specimen with an embedment length of 3.5 ft (1067 mm) exhibited flexural 

failure without strand slippage.  The H-CC-S1-D specimen which was tested with a shorter 

embedment length of 3.25 ft (991 mm) exhibited bond failure.  The experimental results shown 

in Figure 5.19 were similar to those of N-CC-S1-L.  This specimen was able to achieve Mn 

before collapsed, and the prestressing strand was slipped at 97% of Mn.  However, the H-CC-S1-

L exhibited ductile behaviors instead of a sudden collapse as N-CC-S1-L.  The major crack 

shown in Figure 5.20 was due to bending effect instead of shear effect on the N-CC-S1-L 

specimen.  Although this specimen nearly reached the three requirements of flexural failure, it 

was classified as bond failure in terms of determining development length.  As a results, only 

specimens which were tested with an embedment length of 3.5 ft (1067 mm) or greater met 

requirements of flexural failure.  Therefore, the required development length of prestressing 

strand was approximately 3.5 ft (1067 mm) for H-CC-S beams. 
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Figure 5.19 – Test results of H-CC-S1-D with an embedment length of 3.25 ft (991 mm). 
(Note: 1 ft = 305 mm; M/Mn = ratio of the measured moment and the nominal moment capacity 

when the prestressing strand started slipping) 
 

 

Figure 5.20 – Crack pattern of H-CC-S1-D. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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and the prestressing strand started slipping as this specimen reached Mn.  Three other specimens 

(H-SCC-D2-L, H-SCC-D1-D, and H-SCC-D3-D) were tested with a shorter embedment length 

of 4 ft (1220 mm).  All these specimens exhibited flexural failure.  For the H-SCC-D3-D 

specimen, the prestressing strand started slipping as the specimen achieved Mn as shown in 

Figure 5.22.  This specimen had several shear cracks as shown in Figure 5.23 but the major 

flexural crack beneath the concentrated load leaded to the collapse of the specimen. 

 

Figure 5.21 – Bending test results of H-SCC-D beams. 
(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 

Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
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Figure 5.22 – Test results of H-SCC-D3-D with an embedment length of 4.0 ft (1220 mm). 
(Note: 1 in. = 25.4 mm; LCE = linear cable encoder; M/Mn = ratio of the measured moment and 

the nominal moment capacity when the prestressing strand started slipping) 
 

 

Figure 5.23 – Crack pattern of H-SCC-D3-D. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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which was tested with an embedment length of 3.5 ft (1067 mm) was unable to achieve the Mn 

before collapsed.  Based on experimental results of 8 bending tests, it was concluded that the 

required development length of H-SCC-D beams was 4 ft (1220 mm). 

 

Figure 5.24 – Test results of H-SCC-D4-D with an embedment length of 3.75 ft (1143 mm). 
(Note: 1 in. = 25.4 mm; LCE = linear cable encoder; M/Mn = ratio of the measured moment and 

the nominal moment capacity when the prestressing strand started slipping) 
 

 

Figure 5.25 – Crack pattern of H-SCC-D4-D. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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 H-CC-D beams 5.1.6

Bending tests of H-CC-D beams were conducted with embedment lengths varying from 

4.5 ft to 3.5 ft (1372 mm to 1067 mm).  The test results are presented in Figure 5.26 and 

Appendix C.1.6.  The specimens which were tested with embedment lengths equal to or greater 

than 4 ft (1220 mm) showed flexural failure without strand slippage.  Two specimens (H-CC-

D3-L and H-CC-D2-D) were tested with a shorter embedment length of 3.75 (1143 mm).  These 

specimens showed flexural failure, and the prestressing strands started slipping after the 

specimens achieved Mn.  Bending test results of H-CC-D2-D are shown in Figure 5.27.  This 

specimen stopped gaining external load as the prestressing strand slipped, and was collapsed due 

to a major flexural crack as shown in Figure 5.28. 

 
Figure 5.26 – Bending test results of H-CC-D beams. 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 

nominal moment capacity; 1 ft = 305 mm) 
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Figure 5.27 – Test results of H-CC-D2-D with an embedment length of 3.75 ft (1143 mm). 

(Note: 1 in. = 25.4 mm; M/Mn = ratio of the measured moment and the nominal moment capacity 
when the prestressing strand started slipping) 

 

 

Figure 5.28 – Crack pattern of H-CC-D2-D. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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flexural crack beneath the concentrated load.  Therefore, it was concluded that the required 

development length of H-CC-D beams was 3.75 ft (1143 mm). 

 

Figure 5.29 – Test results of H-CC-D2-L with an embedment length of 3.5 ft (1067 mm). 
(Note: 1 in. = 25.4 mm; M/Mn = ratio of the measured moment and the nominal moment capacity 

when the prestressing strand started slipping) 
 

 

Figure 5.30 – Crack pattern of H-CC-D2-L. 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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D) were not significantly different.  The difference in the measured development lengths for the 

beams using one strand and two strands was 0.25 ft (75 mm) which indicated that the use of 0.7 

in. (17.8 mm) strands at spacing of 2.0 in. (51 mm) had little effect on the measured development 

lengths.  For the beams using self-consolidating concrete (H-SCC-S and H-SCC-D), the 

measured development lengths were identical which indicated that the use of strand spacing of 

2.0 in. (51 mm) had no effect on the measured development lengths. 

Table 5.1 – Measured and predicted development lengths 
Beam 
group f’ct (ksi) Development length 

Measured (ft) Predicted* (ft)  Measured / Predicted 
N-CC-S 10.1 4.0 8.4 0.475 
H-CC-S 13.5 3.5 8.3 0.420 
H-CC-D 13.9 3.75 8.6 0.438 
N-SCC-S 9.4 4.0 8.4 0.475 
H-SCC-S 11.0 4.0 8.3 0.480 
H-SCC-D 10.3 4.0 8.5 0.468 

(Note: f’ct = concrete compressive strength at the time of conducting bending tests; * = using Eq. 
1.3; 1 ksi = 6.895 MPa, 1 ft = 305 mm) 

 Effect of concrete compressive strength 5.3

The measured development lengths in this study did not show a good correlation with the 

concrete compressive strengths as shown in Table 5.1.  Regardless of the difference in concrete 

compressive strengths of N-CC-S, N-SCC-S, and H-SCC-S the beams using these concrete 

mixtures presented an identical development length of 4.0 ft (1220 mm).  The effect of concrete 

compressive strength was more apparent on the measured development length for H-CC-S beams 

which had a shorter development length of 3.5 ft (1060 mm).  The H-CC-D beams had similar 

concrete compressive strength with H-CC-S beams, but the measured development length was 

0.25 ft (75 mm) greater than that of H-CC-S due to the little effect of strand spacing as 

mentioned previously. 
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 Proposed equation of development length 5.4

A new equation for predicting development length was proposed based on experimental 

results of 48 bending tests.  The proposed equation was more accurate in predicting the flexural 

bond length and development length.  Currently, ACI 318 uses Eq. 1.2 to predict the flexural 

bond length.  This equation was three times overestimation the measured values.  The proposed 

equation of flexural bond length is shown in Eq. 5.1.  As shown in Table 5.2, the proposed 

flexural bond lengths are approximately to or greater than the measured values. 

As shown in Table 5.1, the measured development lengths are approximately to 42% - 

48% of the predicted development length using ACI 318 equation.  The proposed development 

length equation was a combination of the existing transfer length equation of ACI 318 (Eq. 1.1) 

and the proposed flexural bond length equation (Eq. 5.1) which is shown in Eq. 5.2 and Figure 

5.31.  This equation was simplified as shown in Eq. 5.3.  The measured development lengths 

were 63% - 78% of the predicted length using the proposed equation. 

( )1
3 ps peb bL f f d= −      (5.1) 

( )1 1
3 3pe ps ped b bL f d f f d= + −    (5.2) 

1
3 psd bL f d=       (5.3) 

where Ld is development length (in.); Lb is flexural bond length (in.); fps is the average stress in 

prestressing steel at the time for which the nominal resistance of member is required (ksi); fpe is 

the effective stress in the prestressing steel after losses (ksi); db is strand diameter (in.). 
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Table 5.2 – Development lengths 

Beam 
group 

Measured results ACI 318 equations Proposed equations* 
Lt  

(in.) 
Lb  

(in.) 
Ld  

(in.) 
Lt (in.) 

(Eq. 1.1) 
Lb (in.) 

(Eq. 1.2) 
Ld (in.) 

(Eq. 1.3) 
Lt (in.) 

(Eq. 1.1) 
Lb (in.) 

(Eq. 5.1) 
Ld (in.) 

(Eq. 5.3) 
N-CC-S 30.2 17.8 48.0 42.7 58.3 101.0 42.7 19.4 62.1 
H-CC-S 25.6 16.4 42.0 43.4 56.5 100.0 43.4 18.8 62.3 
H-CC-D 26.9 18.1 45.0 41.1 61.8 102.9 41.1 20.6 61.7 
N-SCC-S 30.8 17.2 48.0 42.5 58.6 101.1 42.5 19.5 62.0 
H-SCC-S 27.9 20.1 48.0 43.2 56.9 100.1 43.2 19.0 62.2 
H-SCC-D 28.0 20.0 48.0 40.5 62.1 102.6 40.5 20.7 61.2 
(Note: Lt = transfer length; Lb = flexural bond length; Ld = development length; 1 in. = 25.4 mm) 
 

 

Figure 5.31 – Proposed equation of development length. 
(Note: The equations are presented in customary units; Lt = transfer length; Lb = flexural bond 
length; Ld = development length; fpe = effective stress in the prestressing steel after losses; fps = 
average stress in prestressing steel at the time for which the nominal resistance of member is 

required; db = strand diameter) 

 Summary 5.5

Forty-eight bending tests were conducted to evaluate development length of 0.7 in. (17.8 

mm) prestressing strands for 24 pretensioned concrete beams.  The beams were cast with 

different types of concrete including CC and SCC. The concrete compressive strengths at 28 

days varied from approximately 9.2 ksi to 13.4 ksi (63.4 MPa to 92.4 MPa).  The development 
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length was determined by conducting bending tests with different embedment lengths.  Based on 

the experimental investigation, the following conclusions were made: 

1. The measured development lengths of 0.7 in. (17.8 mm) prestressing strands varied from 

3.5 ft to 4 ft (1067 mm to 1220 mm).  These lengths were approximately 42% to 48% of 

the predicted development lengths using ACI 318 equation. 

2. Concrete compressive strength had little effect on the measured development lengths.  

The N-CC-S, N-SCC-S, and H-SCC-S beams had an identical development length of 4 ft 

(1220 mm) regardless of the difference in concrete compressive strengths.  The H-CC-S 

beams which used higher concrete compressive strength had a shorter development 

length of 3.5 ft (1070 mm). 

3. The use of strand spacing of 2.0 in. (51 mm) had little to no effect on the measured 

development length of 0.7 in. (17.8 mm) prestressing strands.  ACI 318 equation is 

applicable to predicted development length of 0.7 in. (17.8 mm) prestressing strands 

placed at spacing of 2.0 in. (51 mm). 

4. The ACI 318 equation significantly over-predicted the measured flexural bond lengths.  

A new equation of flexural bond length was proposed based on the experimental results 

(Eq. 5.1).  This equation was more appropriate for predicting the flexural bond lengths of 

0.7 in. (17.8 mm) prestressing strands. 

5. A new equation of development length of 0.7 in. (17.8 mm) prestressing strand was 

proposed (Eq. 5.3).  The measured development lengths were approximately from 67% to 

78% the predicted development length using the proposed equation.  The over-prediction 

accounted for the limited experimental data in this study. 
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 : SUMMARY AND CONCLUSIONS CHAPTER 6

 Summary 6.1

This study measured transfer and development lengths and evaluated applicable strand 

spacing of 0.7 in. (17.8 mm), Grade 270 (1860) prestressing strands for 24 pretensioned concrete 

beams.  Twelve beams were cast with normal strength and high strength conventional concrete.  

The other beams were cast with normal strength and high strength self-consolidating concrete.  

The concrete mixtures had a wide range of compressive strengths which varied from 5.9 ksi to 

9.8 ksi (40.7 MPa to 67.6 MPa) at 1 day, and 9.2 ksi to 13.4 ksi (62.4 MPa to 92.5 MPa) at 28 

days.  In terms of number of prestressing strands, 16 beams were cast with one prestressing 

strand, and 8 beams were cast with two prestressing strands.  The beams using one strand 

provided comparable data to evaluate the effect of strand spacing on transfer end development 

lengths. 

Transfer lengths were measured at release (approximately 1 day), and at 7, 14, 21, 28 

days.  Transfer lengths were determined using concrete strain profiles along with 95% AMS 

method.  The measured transfer lengths were analyzed and compared with the current 

specifications.  The effects of concrete compressive strength, types of concrete, and strand 

spacing on the measured transfer lengths were evaluated.  A new equation was proposed to 

estimate transfer length at release based on a least square estimation method.  Initial strand end-

slips were measured at release of prestressing strands.  The measured end-slips were compared 

with the allowable initial end-slips and analyzed to propose a coefficient for an existing 

empirical formula to predict transfer lengths at release. 
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Development lengths were measured by conducting 48 bending tests with different 

embedment lengths.  The development length determination based on failure modes of the tested 

specimens.  For the specimen exhibited flexural failure, the tested embedment length is equal to 

or greater than the development length.  The effects of concrete compressive strength and strand 

spacing on the measured development lengths were evaluated.  The experimental data were 

analyzed to propose a new equation for predicting development length of 0.7 in. (17.8 mm) 

prestressing strands. 

 Conclusion 6.2

 Transfer length 6.2.1

1. The average measured transfer lengths at release varied from 23 in. to 28 in. (584 mm to 

710 mm).  The experimental results confirmed the effect of concrete compressive 

strength on transfer length of prestressing strands.  The increase of concrete compressive 

strength can shorten the transfer length. 

2. At early ages, the bond strength between the prestressing strands with SCC was lower 

with CC.  At 28 days, however, the bond strength between prestressing strands with CC 

and SCC was similar. 

3. Transfer lengths increased by 7% to 17% during the first 28 days after casting.  The 

increase was independent of concrete compressive strengths and types of concrete.  The 

measured transfer lengths at 28 days varied from 26 in. to 31 in. (660 mm to 790 mm). 

4. The lower and upper bound of the measured transfer lengths were proposed (Eq. 4.4).  

The lower bound should be used to check allowable stresses at release.  The upper bound 

should be used when determining shear strength and moment capacity. 



96 

5. A concrete compressive strength at release of 8 ksi (55.2 MPa) was adequate for 

detensioning 0.7 in. (17.8 mm) strands placed at spacing of 2.0 in. (51 mm). 

6. The ACI 318 and ASSHTO specifications of transfer length are applicable for 0.7 in. 

(17.8 mm) prestressing strands cast with the CC and SCC mixtures used in this study. 

7. The measured initial strand end-slips may be less or greater than the AESs calculated 

with different BSD coefficients. There were no apparent differences between the strand 

end-slips at the live ends and the dead ends. 

8. Transfer lengths at release can be estimated from initial strand end-slips using an 

empirical formula. A coefficient of 2.38 was the most appropriate value for estimating 

the transfer length with a coefficient of determination of 0.63. 

 Development length 6.2.2

1. The measured development lengths of 0.7 in. (17.8 mm) prestressing strands varied from 

3.5 ft to 4 ft (1067 mm to 1220 mm). These lengths were approximately to 42% - 48% of 

the predicted development lengths using ACI 318 equation. 

2. Concrete compressive strength had little effect on the measured development lengths.  

The N-CC-S, N-SCC-S, and H-SCC-S beams had an identical development length of 4 ft 

(1220 mm) regardless of the difference in concrete compressive strengths.  The H-CC-S 

beams which used higher concrete compressive strength had a shorter development 

length of 3.5 ft (1070 mm). 

3. The ACI 318 equation significantly over-predicted the measured flexural bond lengths.  

A new equation of flexural bond length was proposed based on the experimental results 

(Eq. 5.1). This equation was more appropriate for predicting the flexural bond lengths of 

0.7 in. (17.8 mm) prestressing strands. 
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4. A new equation of development length of 0.7 in. (17.8 mm) prestressing strand was 

proposed (Eq. 5.3).  The measured development lengths were approximately from 67% to 

78% the predicted development length using the proposed equation.  The over-prediction 

accounted for the limited experimental data in this study. 

 Strand spacing 6.2.3

1. The use of strand spacing of 2.0 in. (51 mm) had little effect on the measured transfer 

lengths at release, and no effect on the measured transfer length at 28 days.  This 

conclusion was applicable for concrete which had compressive strengths of 8 ksi (55.2 

MPa) or greater at 1 day. 

2. The use of strand spacing of 2.0 in. (51 mm) had little to no effect on the measured 

development lengths of 0.7 in. (17.8 mm) prestressing strands.  This conclusion was 

applicable for high strength concrete which had compressive strengths of 10 ksi (69.0 

MPa) or greater at 28 days. 
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APPENDIX A : BEAM ANALYSIS 

A.1 Cross-section properties 

This section presents the calculation of gross and transformed cross-section parameters 

(Figure A.1).  The gross cross-section parameters do not consider effects of reinforcement and 

prestressing strand as shown in Table A.1.  The transformed cross-section, however, considers 

the contribution of reinforcement and prestressing strand (Table A.2) to its parameters.  The 

calculation results are presented in Table A.3. 

 

Figure A.1 – Cross-section parameters of: (1) gross cross-section and (2) transformed cross-
section. 

(Note: b = width of the cross-section; h = depth of the cross-section; C = center of the gross 
cross-section; Ap = prestressing strand area; A’s = steel area; yb = distance from the center of the 
gross cross-section to the bottom fiber of the beam; yt = distance from the center of the gross 
cross-section to the top fiber of the beam; d’s = distance from the center of reinforcement to the 
top fiber of the beam; yp = distance from the center of prestressing strand to the bottom fiber of 
the beam; e = eccentricity of prestressing strand(s); tr = transformed cross-section) 
 

Table A.1 – Gross cross-section properties 

Beam b (in.) h (in.) V/S 
(in.) 

Ag 
(in.2) Ig (in.4) yt (in.) yb (in.) e (in.) 

All beams 6.5 12 2.11 78 936 6 6 3.5 
(Note: b = width of the cross-section; h = depth of the cross-section; V/S = volume-to-surface 
ratio; Ag = gross cross-sectional area; Ig = moment of inertia of the gross cross-section; yb = 
distance from the center of the gross cross-section to the bottom fiber of the beam; yt = distance 
from the center of the gross cross-section to the top fiber of the beam; e = eccentricity of 
prestressing strand; 1 in. = 25.4 mm) 
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Table A.2 – Concrete strengths and the placement of top steel and prestressing strand 

Beam 
Concrete Reinforcement Strand 

f’ci 
(psi) 

f’c 
(psi) 

Eci 
(ksi) 

Ec 
(ksi) Ns no. A’s 

(in.2) 
d’s 

(in.) Np 
db 

(in.) 
Ap 

(in.2) 
yp 

(in.) 
N-CC-S1&2 5930 9250 4389 5482 2 5 0.62 2 1 0.7 0.294 2.5 
N-CC-S3&4 6610 9660 4634 5602 2 5 0.62 2 1 0.7 0.294 2.5 
H-CC-S1&2 9490 13700 5553 6672 2 5 0.62 2 1 0.7 0.294 2.5 
H-CC-S3&4 8890 13190 5374 6546 2 5 0.62 2 1 0.7 0.294 2.5 
H-CC-D1&2 9690 12250 5611 6309 2 6 0.88 2 2 0.7 0.588 2.5 
H-CC-D3&4 9880 13260 5666 6564 2 6 0.88 2 2 0.7 0.588 2.5 
N-SCC-S1&2 5830 10330 4352 5793 2 5 0.62 2 1 0.7 0.294 2.5 
N-SCC-S3&4 6050 9610 4434 5588 2 5 0.62 2 1 0.7 0.294 2.5 
H-SCC-S1&2 8060 11030 5117 5986 2 5 0.62 2 1 0.7 0.294 2.5 
H-SCC-S3&4 7770 10390 5024 5810 2 5 0.62 2 1 0.7 0.294 2.5 
H-SCC-D1&2 7720 10180 5008 5751 2 6 0.88 2 2 0.7 0.588 2.5 
H-SCC-D3&4 8130 10580 5139 5863 2 6 0.88 2 2 0.7 0.588 2.5 
(Note: f’ci = concrete compressive strength at 1 day; f’c = concrete compressive strength at 28 
days; Eci = modulus of elasticity of concrete at 1 day; Ec = modulus of elasticity of concrete at 28 
days; Ns = number of reinforcing bar; no. = bar size; A’s = area of reinforcement; d’s = distance 
from the center of reinforcement to the top fiber of the beam; Np = number of prestressing strand; 
db = nominal strand diameter; Ap = area of prestressing strand; yp = distance from the center of 
prestressing strand to the bottom fiber of the beam; 1 in. = 25.4 mm; 1 psi = 6.895 kPa; 1 ksi = 
6.895 MPa) 
 

Table A.3 – Transformed cross-section properties 
Beam b (in.) h (in.) V/S (in.) Atr (in.2) Itr (in.4) yt (in.) yb (in.) etr (in.) 
N-CC-S1&2 6.5 12 2.11 83.1 1011 5.902 6.098 3.598 
N-CC-S3&4 6.5 12 2.11 82.8 1006 5.907 6.093 3.593 
H-CC-S1&2 6.5 12 2.11 81.8 993 5.925 6.075 3.575 
H-CC-S3&4 6.5 12 2.11 82.0 995 5.922 6.078 3.578 
H-CC-D1&2 6.5 12 2.11 84.1 1024 5.927 6.073 3.573 
H-CC-D3&4 6.5 12 2.11 84.0 1023 5.927 6.073 3.573 
N-SCC-S1&2 6.5 12 2.11 83.2 1012 5.901 6.099 3.599 
N-SCC-S3&4 6.5 12 2.11 83.1 1010 5.903 6.097 3.597 
H-SCC-S1&2 6.5 12 2.11 82.3 998 5.917 6.083 3.583 
H-SCC-S3&4 6.5 12 2.11 82.3 1000 5.915 6.085 3.585 
H-SCC-D1&2 6.5 12 2.11 85.0 1037 5.917 6.083 3.583 
H-SCC-D3&4 6.5 12 2.11 84.8 1034 5.919 6.081 3.581 
(Note: b = width of the cross-section; h = depth of the cross-section; V/S = volume-to-surface 
ratio; Atr = transformed cross-sectional area; Itr = moment of inertia of the transformed cross-
section; yb = distance from the center of the transformed cross-section to the bottom fiber of the 
beam; yt = distance from the center of the transformed cross-section to the top fiber of the beam; 
etr = eccentricity of prestressing strand; 1 in. = 25.4 mm) 
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A.2 Prestress losses 

Prestress losses are determined using Refined Method as mentioned in Section 5.9.5 of 

AASHTO (2012).  Parameters shown in Table A.1, Table A.2, and Table A.3 were used to 

calculate the losses.  Table A.4 shows the prestress losses immediately after release the 

prestressing strands.  Parameters used for calculating long-term losses are summarized in Table 

A.5.  In the table, the age of concrete when load is initially applied (ti) is 1 day, and the final age 

(tf) is 28 days.  The total losses at 28 days are shown in Table A.6. 

Table A.4 – Prestress loss and strand stress immediately after transfer 
Beam fcgp (ksi) ∆fpES (ksi) fpt (ksi) 
N-CC-S1&2 1.343 8.8 193.7 
N-CC-S3&4 1.346 8.4 194.1 
H-CC-S1&2 1.357 7.0 195.5 
H-CC-S3&4 1.355 7.3 195.2 
H-CC-D1&2 2.767 14.2 188.3 
H-CC-D3&4 2.769 14.1 188.4 
N-SCC-S1&2 1.343 8.9 193.6 
N-SCC-S3&4 1.344 8.7 193.8 
H-SCC-S1&2 1.352 7.6 194.9 
H-SCC-S3&4 1.351 7.7 194.8 
H-SCC-D1&2 2.743 15.8 186.7 
H-SCC-D3&4 2.749 15.4 187.1 
(Note: fcgp = concrete stress at the center of gravity of prestressing tendons, that results from the 
prestressing force at either transfer or jacking and the self-weight of the member at sections of 
maximum moment; ∆fpES = loss in prestressing steel stress due to elastic shortening; fpt = stress in 
prestressing steel immediately after transfer; 1 ksi = 6.895 MPa) 
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Table A.5 – Parameters for calculating long-time prestress loss 

Beam εbid 
(in./in.) ks khs kf ktd Kid Ψb(tf,ti) khc 

N-CC-S1&2 1.78E-04 1.176 1.020 0.722 0.429 0.931 0.691 1.000 
N-CC-S3&4 1.69E-04 1.176 1.020 0.657 0.448 0.935 0.657 1.000 
H-CC-S1&2 1.51E-04 1.176 1.020 0.477 0.549 0.947 0.584 1.000 
H-CC-S3&4 1.53E-04 1.176 1.020 0.506 0.524 0.945 0.592 1.000 
H-CC-D1&2 1.50E-04 1.176 1.020 0.468 0.557 0.901 0.582 1.000 
H-CC-D3&4 1.50E-04 1.176 1.020 0.460 0.566 0.902 0.581 1.000 
N-SCC-S1&2 1.80E-04 1.176 1.020 0.732 0.426 0.930 0.697 1.000 
N-SCC-S3&4 1.76E-04 1.176 1.020 0.709 0.432 0.932 0.685 1.000 
H-SCC-S1&2 1.57E-04 1.176 1.020 0.552 0.493 0.942 0.608 1.000 
H-SCC-S3&4 1.59E-04 1.176 1.020 0.570 0.483 0.941 0.616 1.000 
H-SCC-D1&2 1.59E-04 1.176 1.020 0.573 0.482 0.889 0.617 1.000 
H-SCC-D3&4 1.56E-04 1.176 1.020 0.548 0.496 0.892 0.607 1.000 
(Note: εbid = concrete shrinkage strain of girder between transfer and deck placement; ks = factor 
for the effect of the volume-to-surface ratio; khs = humidity factor for shrinkage; kf = factor for 
the effect of concrete strength; ktd = time development factor; Kid = transformed section 
coefficient that accounts for time-dependent interaction between concrete and bonded steel in the 
section being considered for time period between transfer and deck placement; Ψb(tf,ti) = girder 
creep coefficient at final time due to loading introduced at transfer; khc = humidity factor for 
creep; 1 in. = 25.4 mm) 
 

Table A.6 – Prestress losses at 28 days and effective strand stress 
Beam ∆fpES (ksi) ∆fpSR (ksi) ∆fpCR (ksi) ∆fpR1 (ksi) ∆fpT (ksi) fpe (ksi) 
N-CC-S1&2 8.8 4.8 5.7 1.6 20.9 181.6 
N-CC-S3&4 8.4 4.6 5.1 1.6 19.7 182.8 
H-CC-S1&2 7.0 4.1 3.9 1.7 16.7 185.8 
H-CC-S3&4 7.3 4.2 4.1 1.6 17.1 185.4 
H-CC-D1&2 14.2 3.9 7.5 1.4 27.0 175.5 
H-CC-D3&4 14.1 3.9 7.4 1.4 26.8 175.7 
N-SCC-S1&2 8.9 4.8 5.8 1.6 21.1 181.4 
N-SCC-S3&4 8.7 4.7 5.6 1.6 20.6 181.9 
H-SCC-S1&2 7.6 4.3 4.4 1.6 17.9 184.6 
H-SCC-S3&4 7.7 4.3 4.5 1.6 18.2 184.3 
H-SCC-D1&2 15.8 4.1 8.7 1.4 29.9 172.6 
H-SCC-D3&4 15.4 4.0 8.3 1.4 29.1 173.4 
(Note: ∆fpES = loss in prestressing steel stress due to elastic shortening; ∆fpSH = prestress loss due 
to shrinkage of girder concrete between transfer and deck placement; ∆fpCR = prestress loss due 
to creep of girder concrete between transfer and deck placement; ∆fpR1 = prestress loss due to 
relaxation of prestressing strands between transfer and deck placemen; ∆fpT = total loss in 
prestressing steel stress; fpe = effective stress in the prestressing steel after losses; 1 ksi = 6.895 
MPa) 
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A.3 Nominal moment capacity 

The nominal moment capacity is determined using Strain Compatibility as stated in 

Section 5.2 of PCI Design Handbook (2010).  Table A.7 summarizes the calculation results of 

24 pretensioned concrete beams. 

Table A.7 – Nominal moment capacity 

Beam a 
(in.) 

c 
(in.) 

ε1×103 
(in./in.) 

ε2 ×103 

(in./in.) 
ε3 ×103 

(in./in.) 
εps ×103 

(in./in.) 
ε’s*×103 

(in./in.) 
fps 

(ksi) 
f’s 

(ksi) 
Mn 

(k.in.) 
N-CC-S1&2 1.39 2.14 6.33 0.24 10.33 16.90 0.19 266 6 684 
N-CC-S3&4 1.32 2.03 6.37 0.24 11.03 17.64 0.05 266 1 690 
H-CC-S1&2 1.11 1.71 6.47 0.21 13.69 20.37 -0.51 267 15 714 
H-CC-S3&4 1.18 1.82 6.45 0.22 12.70 19.37 -0.31 267 9 706 
H-CC-D1&2 1.75 2.69 6.11 0.39 7.59 14.09 0.77 264 22 1317 
H-CC-D3&4 1.76 2.71 6.12 0.40 7.53 14.04 0.78 264 23 1315 
N-SCC-S1&2 1.44 2.22 6.32 0.25 9.86 16.43 0.29 266 8 679 
N-SCC-S3&4 1.39 2.14 6.33 0.24 10.33 16.90 0.19 266 6 684 
H-SCC-S1&2 1.27 1.95 6.43 0.23 11.59 18.25 -0.07 266 2 696 
H-SCC-S3&4 1.31 2.02 6.42 0.24 11.14 17.80 0.02 266 1 691 
H-SCC-D1&2 2.12 3.26 6.01 0.44 5.74 12.19 1.16 262 34 1272 
H-SCC-D3&4 2.19 3.37 6.03 0.46 5.46 11.95 1.22 262 35 1262 
(Note: * = a negative value indicates the reinforcement in tension; a = depth of equivalent 
rectangular stress block; c = distance from extreme compression fiber to neutral axis; ε1 = strain 
caused by the effective prestress after all losses; ε2 = strain in the concrete required to reach zero 
compressive stress; ε3 = strain in the strand at failure; εps = total strain in prestressing strand; fsp = 
specific strand stress; f’s = steel stress; Mn = nominal moment capacity) 

A.4 Predicted transfer and development lengths 

Transfer and development lengths were predicted using ACI 318 equations (Eq 1.1 and Eq. 1.3).  

Table A.8 summarizes the calculation results. 
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Table A.8 – Predicted transfer and development lengths 
Beam Lt (in.) Ld (in. (ft)) 
N-CC-S1&2 43 101 (8.4) 
N-CC-S3&4 43 101 (8.4) 
H-CC-S1&2 43 100 (8.3) 
H-CC-S3&4 43 100 (8.3) 
H-CC-D1&2 41 103 (8.6) 
H-CC-D3&4 41 103 (8.6) 
N-SCC-S1&2 42 101 (8.4) 
N-SCC-S3&4 43 101 (8.4) 
H-SCC-S1&2 43 100 (8.3) 
H-SCC-S3&4 43 100 (8.3) 
H-SCC-D1&2 40 103 (8.6) 
H-SCC-D3&4 41 102 (8.5) 
(Note: Lt = transfer length; Ld = development length; 1 in. = 25.4 mm; 1 ft = 305 mm) 
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APPENDIX B : TRANSFER LENGTH DATA 

B.1 Transfer length measurement 

This section presents the measured transfer lengths at release, and at 7, 14, 21, and 28 

days.  In the following figures, the first and second value represent the measured transfer lengths 

at the live and the dead end.  For instance, the measured transfer length at release of beam N-CC-

S1 (Figure B.1) at the live end is 27.3 in. (695 mm) and at the dead end is 27.6 in. (700 mm). 

B.1.1 N-CC-S beams 
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Figure B.1 – Measured transfer lengths of beam N-CC-S1 
(Note: 1 in. = 25.4 mm) 
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Figure B.2 – Measured transfer lengths of beam N-CC-S2 
(Note: 1 in. = 25.4 mm) 

 

 

Figure B.3 – Measured transfer lengths of beam N-CC-S3 
(Note: 1 in. = 25.4 mm) 
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Figure B.4 – Measured transfer lengths of beam N-CC-S4 
(Note: 1 in. = 25.4 mm) 

B.1.2 H-CC-S beams 

 
Figure B.5 – Measured transfer lengths of beam H-CC-S1 

(Note: 1 in. = 25.4 mm) 
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Figure B.6 – Measured transfer lengths of beam H-CC-S2 
(Note: 1 in. = 25.4 mm) 

 

 

Figure B.7 – Measured transfer lengths of beam H-CC-S3 
(Note: 1 in. = 25.4 mm) 
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Figure B.8 – Measured transfer lengths of beam H-CC-S4 
(Note: 1 in. = 25.4 mm) 

B.1.3 H-CC-D beams 

 
Figure B.9 – Measured transfer lengths of beam H-CC-D1 

(Note: 1 in. = 25.4 mm) 
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Figure B.10 – Measured transfer lengths of beam H-CC-D2 
(Note: 1 in. = 25.4 mm) 

 

 

Figure B.11 – Measured transfer lengths of beam H-CC-D3 
(Note: 1 in. = 25.4 mm) 
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Figure B.12 – Measured transfer lengths of beam H-CC-D4 
(Note: 1 in. = 25.4 mm) 

B.1.4 N-SCC-S beams 

 
Figure B.13 – Measured transfer lengths of beam N-SCC-S1 

(Note: 1 in. = 25.4 mm) 
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Figure B.14 – Measured transfer lengths of beam N-SCC-S2 
(Note: 1 in. = 25.4 mm) 

 

 

Figure B.15 – Measured transfer lengths of beam N-SCC-S3 
(Note: 1 in. = 25.4 mm) 

0 12 24 36 48 60
0

200

400

600

800

                                                                          Distance from live end (in.)

M
ic

ro
st

ra
in

 (x
 1

0-6
)

156 168 180 192 204 216
0

200

400

600

800

 

 

  1-day; 29.6 in. and 26.1 in.
  7-day; 29.9 in. and 31 in.
14-day;  32 in. and 29.6 in.
21-day;  32.7 in. and 29.9 in.
28-day;  30.6 in. and 31.3 in.

0 12 24 36 48 60
0

200

400

600

800

                                                                          Distance from live end (in.)

M
ic

ro
st

ra
in

 (x
 1

0-6
)

156 168 180 192 204 216
0

200

400

600

800

 

 

  1-day; 29.7 in. and 26.3 in.
  7-day; 27.3 in. and 28 in.
14-day;  29.7 in. and 30.1 in.
21-day;  30.4 in. and 30.7 in.
28-day;  31.4 in. and 31.1 in.



118 

 

Figure B.16 – Measured transfer lengths of beam N-SCC-S4 
(Note: 1 in. = 25.4 mm) 

B.1.5 H-SCC-S beams 

 
Figure B.17 - Measured transfer lengths of beam H-SCC-S1 

(Note: 1 in. = 25.4 mm) 
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Figure B.18 – Measured transfer lengths of beam H-SCC-S2 
(Note: 1 in. = 25.4 mm) 

 

 

Figure B.19 – Measured transfer lengths of beam H-SCC-S3 
(Note: 1 in. = 25.4 mm) 

0 12 24 36 48 60
0

200

400

600

800

                                                                          Distance from live end (in.)

M
ic

ro
st

ra
in

 (x
 1

0-6
)

156 168 180 192 204 216
0

200

400

600

800

 

 

  1-day; 25.4 in. and 24 in.
  7-day; 26 in. and 22.2 in.
14-day;  26.9 in. and 25.7 in.
21-day;  25.7 in. and 26 in.
28-day;  27.5 in. and 27.2 in.

0 12 24 36 48 60
0

200

400

600

800

                                                                          Distance from live end (in.)

M
ic

ro
st

ra
in

 (x
 1

0-6
)

156 168 180 192 204 216
0

200

400

600

800

 

 

  1-day; 25.9 in. and 25.9 in.
  7-day; 24.4 in. and 26.8 in.
14-day;  27.4 in. and 23.8 in.
21-day;  27.7 in. and 24.1 in.
28-day;  28.6 in. and 26.8 in.



120 

 

Figure B.20 - Measured transfer lengths of beam H-SCC-S4 
(Note: 1 in. = 25.4 mm) 

B.1.6 H-SCC-D beams 

 
Figure B.21 – Measured transfer lengths of beam H-SCC-D1 

(Note: 1 in. = 25.4 mm) 
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Figure B.22 – Measured transfer lengths of beam H-SCC-D2 
(Note: 1 in. = 25.4 mm) 

 

 
Figure B.23 – Measured transfer lengths of beam H-SCC-D3 

(Note: 1 in. = 25.4 mm) 
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Figure B.24 – Measured transfer lengths of beam H-SCC-D4 
(Note: 1 in. = 25.4 mm) 

B.2 Transfer length statistics 

Table B.1 and Table B.2 summarize the measured transfer lengths of 24 pretensioned 

concrete beams at the live end and the dead end, respectively.  Table B.3 shows the mean value, 

and the upper and lower bound of 95% confidence interval.  The bounds are determined using 

Eqs. B1-B2. 
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Table B.1 – Measured transfer lengths at the live end 

No. Beam End Transfer length (in.) 
1-day 7-day 14-day 21-day 28-day 

1 N-CC-S1 Live 27.3 30.7 29.3 30.0 31.7 
2 N-CC-S2 Live 27.6 30.0 31.4 30.0 30.4 
3 N-CC-S3 Live 24.5 28.1 26.8 27.8 29.1 
4 N-CC-S4 Live 25.5 25.8 28.1 27.8 30.1 
5 H-CC-S1 Live 23.2 23.5 22.9 24.5 25.9 
6 H-CC-S2 Live 20.5 23.7 22.1 23.2 24.5 
7 H-CC-S3 Live 23.4 23.1 23.9 24.5 25.6 
8 H-CC-S4 Live 24.5 23.9 22.3 25.4 25.9 
9 H-CC-D1 Live 22.9 22.4 24.3 25.6 28.3 
10 H-CC-D2 Live 25.6 22.9 24.8 25.1 28.3 
11 H-CC-D3 Live 22.7 23.0 24.1 25.4 26.2 
12 H-CC-D4 Live 22.7 25.4 27.3 26.5 28.1 
13 N-SCC-S1 Live 28.9 30.6 31.3 32.0 31.3 
14 N-SCC-S2 Live 29.6 29.9 32.0 32.7 30.6 
15 N-SCC-S3 Live 29.7 27.3 29.7 30.4 31.4 
16 N-SCC-S4 Live 27.3 30.4 31.4 30.1 29.7 
17 H-SCC-S1 Live 23.1 26.3 27.2 26.9 28.1 
18 H-SCC-S2 Live 25.4 26.0 26.9 25.7 27.5 
19 H-SCC-S3 Live 25.9 24.4 27.4 27.7 28.6 
20 H-SCC-S4 Live 22.6 25.6 27.4 28.6 29.8 
21 H-SCC-D1 Live 24.8 25.7 26.0 26.9 27.8 
22 H-SCC-D2 Live 27.2 26.0 27.2 27.8 28.4 
23 H-SCC-D3 Live 25.1 26.9 27.2 26.0 28.9 
24 H-SCC-D4 Live 25.1 26.9 26.3 28.0 27.2 
(Note: 1 in. = 25.4 mm) 
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Table B.2 – Measured transfer lengths at the dead end 

No. Beam End Transfer length (in.) 
1-day 7-day 14-day 21-day 28-day 

1 N-CC-S1 Dead 27.6 30.0 29.7 30.0 31.0 
2 N-CC-S2 Dead 26.9 27.9 28.6 29.7 30.4 
3 N-CC-S3 Dead 23.2 27.8 26.1 28.4 29.7 
4 N-CC-S4 Dead 24.8 26.5 26.5 27.1 29.4 
5 H-CC-S1 Dead 22.1 23.7 22.6 23.2 25.4 
6 H-CC-S2 Dead 21.0 24.8 22.9 24.0 24.8 
7 H-CC-S3 Dead 25.4 23.9 23.1 25.1 26.8 
8 H-CC-S4 Dead 21.1 22.5 23.1 22.3 25.6 
9 H-CC-D1 Dead 22.1 22.7 23.5 23.7 26.2 
10 H-CC-D2 Dead 26.4 22.9 23.7 24.0 27.3 
11 H-CC-D3 Dead 21.9 22.4 22.7 24.3 25.4 
12 H-CC-D4 Dead 19.5 23.2 22.2 24.1 25.4 
13 N-SCC-S1 Dead 31.0 31.3 31.0 31.3 31.0 
14 N-SCC-S2 Dead 26.1 31.0 29.6 29.9 31.3 
15 N-SCC-S3 Dead 26.3 28.0 30.1 30.7 31.1 
16 N-SCC-S4 Dead 25.3 31.4 30.1 29.7 30.4 
17 H-SCC-S1 Dead 21.3 23.7 24.9 25.1 26.0 
18 H-SCC-S2 Dead 24.0 22.2 25.7 26.0 27.2 
19 H-SCC-S3 Dead 25.9 26.8 23.8 24.1 26.8 
20 H-SCC-S4 Dead 23.8 27.1 26.5 27.7 29.2 
21 H-SCC-D1 Dead 25.1 26.3 25.4 26.6 27.2 
22 H-SCC-D2 Dead 28.7 28.7 26.9 29.3 29.6 
23 H-SCC-D3 Dead 27.2 27.2 26.6 27.4 28.0 
24 H-SCC-D4 Dead 26.3 26.3 23.6 26.6 26.9 
(Note: 1 in. = 25.4 mm) 
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Table B.3 – Statistical analysis 

No. Beam group Parameter Parameter (in.) 
1-day 7-day 14-day 21-day 28-day 

1 N-CC-S 

Mean 25.9 28.4 28.3 28.8 30.2 
STD 1.7 1.8 1.8 1.2 0.9 
95% UB 29.2 31.8 31.9 31.2 31.9 
95% LB 22.7 24.9 24.8 26.5 28.5 

2 H-CC-S 

Mean 22.6 23.7 22.9 24.0 25.6 
STD 1.8 0.7 0.6 1.1 0.7 
95% UB 26.1 25.0 24.0 26.1 26.9 
95% LB 19.2 22.3 21.7 21.9 24.2 

3 H-CC-D 

Mean 23.0 23.1 24.1 24.8 26.9 
STD 2.2 1.0 1.5 1.0 1.3 
95% UB 27.3 25.0 27.1 26.7 29.4 
95% LB 18.7 21.2 21.0 23.0 24.4 

4 N-SCC-S 

Mean 28.0 30.0 30.6 30.9 30.8 
STD 2.0 1.5 0.9 1.1 0.6 
95% UB 32.0 33.0 32.4 32.9 32.0 
95% LB 24.0 27.0 28.9 28.8 29.7 

5 H-SCC-S 

Mean 24.0 25.3 26.2 26.5 27.9 
STD 1.7 1.7 1.3 1.5 1.3 
95% UB 27.3 28.6 28.8 29.5 30.4 
95% LB 20.7 21.9 23.6 23.5 25.4 

6 H-SCC-D 

Mean 26.2 26.7 26.1 27.3 28.0 
STD 1.4 0.9 1.2 1.1 1.0 
95% UB 28.9 28.6 28.5 29.4 29.9 
95% LB 23.4 24.9 23.8 25.3 26.1 

(Note: STD = standard deviation; UB = upper bound; LB = lower bound; 1 in. = 25.4 mm) 
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B.3 End-slip measurement 

Table B.4 – Measured and allowable strand end-slips 

No. Beam δ (in.) δall (in.), ACI 318 δall (in.), AASHTO 
Live Dead α = 2 α = 3 α = 2 α = 3 

1 N-CC-S1 0.076 0.089 0.118 0.078 0.141 0.094 
2 N-CC-S2 0.088 0.069 0.118 0.078 0.141 0.094 
3 N-CC-S3 0.065 0.065 0.118 0.079 0.142 0.094 
4 N-CC-S4 0.078 0.075 0.118 0.079 0.142 0.094 
5 H-CC-S1 0.070 0.061 0.119 0.079 0.143 0.095 
6 H-CC-S2 0.065 0.057 0.119 0.079 0.143 0.095 
7 H-CC-S3 0.067 0.078 0.119 0.079 0.142 0.095 
8 H-CC-S4 0.076 0.063 0.119 0.079 0.142 0.095 
9 H-CC-D1 0.061 0.058 0.114 0.076 0.137 0.092 
10 H-CC-D2 0.068 0.070 0.114 0.076 0.137 0.092 
11 H-CC-D3 0.060 0.058 0.114 0.076 0.137 0.092 
12 H-CC-D4 0.060 0.052 0.114 0.076 0.137 0.092 
13 N-SCC-S1 0.085 0.089 0.118 0.078 0.141 0.094 
14 N-SCC-S2 0.082 0.071 0.118 0.078 0.141 0.094 
15 N-SCC-S3 0.089 0.080 0.118 0.078 0.141 0.094 
16 N-SCC-S4 0.077 0.080 0.118 0.078 0.141 0.094 
17 H-SCC-S1 0.072 0.059 0.118 0.079 0.142 0.095 
18 H-SCC-S2 0.073 0.074 0.118 0.079 0.142 0.095 
19 H-SCC-S3 0.075 0.069 0.118 0.079 0.142 0.095 
20 H-SCC-S4 0.069 0.075 0.118 0.079 0.142 0.095 
21 H-SCC-D1 0.064 0.065 0.113 0.076 0.136 0.091 
22 H-SCC-D2 0.070 0.074 0.113 0.076 0.136 0.091 
23 H-SCC-D3 0.065 0.071 0.114 0.076 0.136 0.091 
24 H-SCC-D4 0.065 0.068 0.114 0.076 0.136 0.091 
(Note: δ = strand end-slip at transfer; δall = allowable strand end-slip; α = bond stress distribution 
coefficient; 1 in. = 25.4 mm) 
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APPENDIX C : DEVELOPMENT LENGTH DATA 

C.1 Bending test results 

C.1.1 N-SCC-S beams 
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Figure C.1 – Test results of N-SCC-S4-L 
with an embedment length of 6.0 ft (1830 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.2 – Test results of N-SCC-S4-D 
with an embedment length of 5.5 ft (1676 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.3 – Crack pattern of N-SCC-S4-L (top) and N-SCC-S4-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.4 – Test results of N-SCC-S3-L 
with an embedment length of 5.25 ft (1600 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.5 – Test results of N-SCC-S3-D 
with an embedment length of 5.0 ft (1524 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.6 – Crack pattern of N-SCC-S3-L (top) and N-SCC-S3-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Displacement (in.)

M
/M

n

 

 0 0.01 0.02 0.03 0.04 0.05
End-slip (in.)

Displacement (manual)
End-slip

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Displacement (in.)

M
/M

n

 

 0 0.01 0.02 0.03 0.04 0.05
End-slip (in.)

Displacement (manual)
End-slip



130 

 
Figure C.7 – Test results of N-SCC-S2-L 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.8 – Test results of N-SCC-S2-D 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.9 – Crack pattern of N-SCC-S2-L (top) and N-SCC-S2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.10 – Test results of N-SCC-S1-L 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.11 – Test results of N-SCC-S1-D 
with an embedment length of 3.25 ft (991 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.12 – Crack pattern of N-SCC-S1-L (top) and N-SCC-S1-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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C.1.2 H-SCC-S beams 

 
Figure C.13 – Test results of H-SCC-S2-L 
with an embedment length of 4.5 ft (1372 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.14 – Test results of H-SCC-S2-D 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.15 – Crack pattern of H-SCC-S2-L (top) and H-SCC-S2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.16 – Test results of H-SCC-S1-L 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.17 – Test results of H-SCC-S1-D 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.18 – Crack pattern of H-SCC-S1-L (top) and H-SCC-S1-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.19 – Test results of H-SCC-S4-L 
with an embedment length of 4.0 ft (1120 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.20 – Test results of H-SCC-S4-D 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.21 – Crack pattern of H-SCC-S4-L (top) and H-SCC-S4-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Displacement (in.)

M
/M

n

 

 0 0.01 0.02 0.03 0.04 0.05
End-slip (in.)

Displacement (LCE)
Displacement (manual)
End-slip

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Displacement (in.)

M
/M

n

 

 0 0.01 0.02 0.03 0.04 0.05
End-slip (in.)

Displacement (LCE)
Displacement (manual)
End-slip



135 

 
Figure C.22 – Test results of H-SCC-S3-L 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.23 – Test results of H-SCC-S3-D 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.24 – Crack pattern of H-SCC-S3-L (top) and H-SCC-S3-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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C.1.3 N-CC-S beams 

 
Figure C.25 – Test results of N-CC-S4-L 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.26 – Test results of N-CC-S4-D 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.27 – Crack pattern of N-CC-S4-L (top) and N-CC-S4-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.28 – Test results of N-CC-S3-L 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.29 – Test results of N-CC-S3-D 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.30 – Crack pattern of N-CC-S3-L (top) and N-CC-S3-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.31 – Test results of N-CC-S2-L 
with an embedment length of 3.25 ft (991 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.32 – Test results of N-CC-S2-D 
with an embedment length of 3.25 ft (991 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.33 – Crack pattern of N-CC-S2-L (top) and N-CC-S2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.34 – Test results of N-CC-S1-L 

with an embedment length of 3.0 ft (915 mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.35 – Test results of N-CC-S1-D 
with an embedment length of 3.25 ft (991 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.36 – Crack pattern of N-CC-S1-L (top) and N-CC-S1-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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C.1.4 H-CC-S beams 

 
Figure C.37 – Test results of H-CC-S4-L 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.38 – Test results of H-CC-S4-D 
with an embedment length of 4.25 ft (1295 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.39 – Crack pattern of H-CC-S4-L (top) and H-CC-S4-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.40 – Test results of H-CC-S3-L 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.41 – Test results of H-CC-S3-D 
with an embedment length of 4.25 ft (1295 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.42 – Crack pattern of H-CC-S3-L (top) and H-CC-S3-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.43 – Test results of H-CC-S2-L 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.44 – Test results of H-CC-S2-D 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.45 – Crack pattern of H-CC-S2-L (top) and H-CC-S2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.46 – Test results of H-CC-S1-L 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.47 – Test results of H-CC-S1-D 
with an embedment length of 3.25 ft (991 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.48 – Crack pattern of H-CC-S1-L (top) and H-CC-S1-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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C.1.5 H-SCC-D beams 

 
Figure C.49 – Test results of H-SCC-D2-L 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.50 – Test results of H-SCC-D2-D 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.51 – Crack pattern of H-SCC-D2-L (top) and H-SCC-D2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.52 – Test results of H-SCC-D1-L 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.53 – Test results of H-SCC-D1-D 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.54 – Crack pattern of H-SCC-D2-L (top) and H-SCC-D2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.55 – Test results of H-SCC-D4-L 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.56 – Test results of H-SCC-D4-D 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.57 – Crack pattern of H-SCC-D4-L (top) and H-SCC-D4-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.58 – Test results of H-SCC-D3-L 
with an embedment length of 4.25 ft (1295 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.59 – Test results of H-SCC-D3-D 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.60 – Crack pattern of H-SCC-D3-L (top) and H-SCC-D3-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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C.1.6 H-CC-D beams 

 
Figure C.61 – Test results of H-CC-D4-L 
with an embedment length of 4.5 ft (1372 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.62 – Test results of H-CC-D4-D 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.63 – Crack pattern of H-CC-D4-L (top) and H-CC-D4-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.64 – Test results of H-CC-D3-L 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.65 – Test results of H-CC-D3-D 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.66 – Crack pattern of H-CC-D3-L (top) and H-CC-D3-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.67 – Test results of H-CC-D2-L 
with an embedment length of 3.5 ft (1067 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.68 – Test results of H-CC-D2-D 
with an embedment length of 3.75 ft (1143 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.69 – Crack pattern of H-CC-D2-L (top) and H-CC-D2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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Figure C.70 – Test results of H-CC-D1-L 
with an embedment length of 4.25 ft (1295 

mm) 
(Note: 1 in. = 25.4 mm) 

 
Figure C.71 – Test results of H-CC-D1-D 
with an embedment length of 4.0 ft (1220 

mm) 
(Note: 1 in. = 25.4 mm) 

 

 

Figure C.72 – Crack pattern of H-CC-D2-L (top) and H-CC-D2-D (bottom). 
(Note: 1 ft = 305 mm; 1 in. = 25.4 mm) 
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C.2 Development length determination 

Table C.1 – Bending test results of N-SCC-S beams 
No. Specimen Embedment length (ft) Mmax/Mn Mslip/Mn 
1 N-SCC-S4-L 6.00 0.98 No Slip 
2 N-SCC-S4-D 5.50 0.98 No Slip 
3 N-SCC-S3-L 5.25 1.04 No Slip 
4 N-SCC-S3-D 5.00 1.08 No Slip 
5 N-SCC-S2-L 4.00 1.07 1.05 
6 N-SCC-S2-D 3.50 1.03 0.93 
7 N-SCC-S1-L 3.50 1.11 0.95 
8 N-SCC-S1-D 3.25 1.10 0.97 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
 
Table C.2 – Bending test results of H-SCC-S beams 

No. Specimen Embedment length (ft) Mmax/Mn Mslip/Mn 
1 H-SCC-S2-L 4.50 1.09 No Slip 
2 H-SCC-S2-D 4.00 1.05 No Slip 
3 H-SCC-S1-L 3.75 1.14 1.12 
4 H-SCC-S1-D 3.75 1.17 No Slip 
5 H-SCC-S4-L 4.00 1.07 1.00 
6 H-SCC-S4-D 3.75 1.12 0.94 
7 H-SCC-S3-L 3.50 1.10 0.97 
8 H-SCC-S3-D 3.75 1.17 1.02 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
 
Table C.3 – Bending test results of N-CC-S beams 

No. Specimen Embedment length (ft) Mmax/Mn Mslip/Mn 
1 N-CC-S4-L 4.00 0.99 No Slip 
2 N-CC-S4-D 3.50 1.01 0.92 
3 N-CC-S3-L 3.50 1.06 1.05 
4 N-CC-S3-D 3.50 1.10 0.99 
5 N-CC-S2-L 3.25 1.11 1.04 
6 N-CC-S2-D 3.25 1.07 1.04 
7 N-CC-S1-L 3.00 0.98 0.98 
8 N-CC-S1-D 3.25 1.07 0.93 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
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Table C.4 – Bending test results of H-CC-S beams 
No. Specimen Embedment length (ft) Mmax/Mn Mslip/Mn 
1 H-CC-S4-L 4.00 1.03 1.01 
2 H-CC-S4-D 4.25 0.99 No Slip 
3 H-CC-S3-L 4.00 1.03 1.02 
4 H-CC-S3-D 4.25 1.06 No Slip 
5 H-CC-S2-L 4.00 1.04 No Slip 
6 H-CC-S2-D 3.75 1.15 No Slip 
7 H-CC-S1-L 3.50 1.00 No Slip 
8 H-CC-S1-D 3.25 1.00 0.97 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
 
Table C.5 – Bending test results of H-SCC-D beams 

No. Specimen Embedment length (ft) Mmax/Mn Mslip/Mn 
1 H-SCC-D2-L 4.00 1.07 1.04 
2 H-SCC-D2-D 3.75 1.03 0.91 
3 H-SCC-D1-L 3.75 1.01 0.91 
4 H-SCC-D1-D 4.00 1.05 1.03 
5 H-SCC-D4-L 3.50 0.92 0.88 
6 H-SCC-D4-D 3.75 1.01 0.70 
7 H-SCC-D3-L 4.25 1.10 1.00 
8 H-SCC-D3-D 4.00 1.11 1.01 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
 
Table C.6 – Bending test results of H-CC-D beams 

No. Specimen Embedment length (ft) Mmax/Mn Mslip/Mn 
1 H-CC-D4-L 4.50 1.00 No Slip 
2 H-CC-D4-D 4.00 1.03 No Slip 
3 H-CC-D3-L 3.75 1.06 1.02 
4 H-CC-D3-D 3.50 1.06 1.01 
5 H-CC-D2-L 3.50 0.96 0.93 
6 H-CC-D2-D 3.75 1.01 1.00 
7 H-CC-D1-L 4.25 1.02 No Slip 
8 H-CC-D1-D 4.00 1.02 No Slip 

(Note: Mmax/Mn = ratio of the maximum measured moment and the nominal moment capacity; 
Mslip/Mn = ratio of the measured moment at which the prestressing strand started slipping and the 
nominal moment capacity; 1 ft = 305 mm) 
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