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Abstract 

Field based electrical resistivity measurements, such as electrical resistivity tomography 

(ERT) and capacitively coupled resistivity (CCR), are geophysical methods that offer a non-

destructive and rapid means to collect continuous data. As such, ERT and CCR are becoming 

increasingly popular tools for geotechnical engineers; however, it is challenging to derive 

geotechnical information such as soil type, density, and water content from the data. A laboratory 

geophysical investigation was carried out to gain a better understanding of the parameters that 

affect the electrical resistivity of soils and devise a relationship between resistivity and soil type 

or classification. In this study, a soil box attached to a resistance meter in a 4-electrode Wenner 

array was used for the resistivity measurements. Nine different benchmark soils were tested, 

representing most of the major soil groups according to the unified soil classification system. The 

effects of water quality, water content, degree of saturation, bulk density, dry density, Atterberg 

limits and temperature on the measured electrical resistivity of the soils were investigated. 

Although there is an apparent correlation between all of these parameters and the electrical 

resistivity of soils, the parameters that are most effective in the identification of soil type are bulk 

density and degree of saturation. The laboratory results indicate that if the soil is saturated, a 

reasonable estimate of the soil group classification can likely be made from resistivity alone. For 

unsaturated samples, the range of possible resistivity values is much larger; however, the estimate 

of soil group can be significantly narrowed down if an approximation of saturation or density can 

be made. To assess the feasibility of the developed approach, a series of verification studies using 

samples acquired from the field and other processed soils were also conducted.  
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Chapter 1: Introduction 

1.1 Motivation for this Study 

According to the Federal Emergency Management Agency (FEMA) a levee is a “man-

made structure, usually an earthen embankment, designed and constructed in accordance with 

sound engineering practices to contain, control, or divert the flow of water so as to provide 

protection from temporary flooding” (FEMA, 2006). For the levees to perform their intended 

function, they must be constructed of strong, compacted layers of soil that create an impervious 

barrier that can resist the forces of the floodwaters.  Levees not only have to prevent water from 

seeping through the core and foundation, it is also important that the water does not erode away 

the soil. To create this high strength, low permeability structure, levees are ideally built in layers 

of compacted soil starting at the ground surface and continuing until the desired height is reached 

(Figure 1). 

 

Figure 1 – Cross-section of a typical levee showing flat crest and riverside and landside slopes 

[Online image] Retrieved May 1, 2017 from: http://library.water-

resources.us/docs/MMDL/FLD/Feature.cfm?ID=5 

In 2017, the American Society of Civil Engineers (ASCE) gave the levee system in the 

United States an overall rating of D (ASCE, 2017). This report indicates there is currently 48,000 

documented kilometers (30,000 miles) of levees in the U.S. surrounding communities, critical 

infrastructure, and property with an estimated value over $1.3 trillion. According to this report, 

most of the levees in the U.S. were built in the middle of the past century by federal, state, and 
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local agencies or by private property owners and are 50 years old on average. Although many 

levees were originally made to protect farmland, due to urban sprawl and changes in land use, 

over 14 million people now live or work behind these structures. 

Although numerous flood related failures have occurred throughout history, prior to 

2005, most of these failures were in low-risk rural areas where damages were mostly agricultural 

related. The first real failure to occur in an urban environment came in August of 2005 during 

Hurricane Katrina. The levees and floodwalls in and around New Orleans, Louisiana failed in 

over 50 locations, flooding more than 80% of the city, killing over 1,118 people, and resulting in 

an estimated $16.5 billion in damages (ASCE, 2007). Considered the most costly US natural 

disaster on record, these events exposed the vulnerability and increased risk associated with 

levee systems surrounding growing urban developments.  In 2007, Congress directed agencies to 

create a national levee database and in 2009, ASCE created a new category for levees in its 

report card for America’s infrastructure. Levees received a grade of D-, which was a less than 

poor rating, but it increased awareness of the issue, the limited funds available, and provided a 

general plan to address the deteriorating system. Two additional major flood related disasters 

occurred in the Midwest in 2008 ($538 million in estimated damages) and in 2011, where record 

water levels resulted in over $2 billion in damages and repairs (ASCE, 2013). In the 2013 report 

card for America’s infrastructure, the American Society of Civil Engineers gave the levee system 

in the United States the same overall rating of D-, showing no change from the previous report. 

Although levee failures in the United States account for more economic impact than any other 

geo-related disasters, little improvement has been made to the overall levee system. This could 

prove to be a major problem in the coming decades, where continued deterioration, urban 
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development, and an increase in extreme weather events will test these structures to and beyond 

their capacity and significantly increasing the risk associated with their failure. 

To date, the U.S. Army Corps of Engineers (USACE) has performed risk assessments on 

over 1,200 levee systems out of the 2,500 in their program. The assessment criteria included 

possible loading events such as floods, storms, and earthquakes, level of performance and 

consequences of failure. Major deficiencies include culverts, seepage and vegetation. The risk-

assessment results showed that 5% are at high to very high risk, 15% at moderate risk, and 80% 

at low risk; the numbers of high and moderate risk levees are expected to grow as more 

inspections are performed and awareness of their conditions is increased.  Although USACE and 

FEMA are working to inventory levees in the US, limited funding is available to assess the 

condition of the levees. Without the condition and performance evaluation of a particular levee, 

there is no way to determine the risk associated with it.  

Typically, levees are evaluated based on a simple visual inspection program to identify 

critical or weak spots in the system (USACE 2014). This method can detect surface distress or 

erosion failures (post failure), but it cannot identify defects that exist within the inner core or 

foundation soil that could lead to a failure during an extreme event. This leads to a passive 

detection system in which failures must occur often times before they are investigated. The 

methods currently used to proactively obtain this internal soil data are extremely time intensive, 

they require soil borings or sampling which damages the levees, and they only provide a small 

discrete amount of data. With the limited funds available, it would be impossible to obtain the 

data needed to properly evaluate the condition of the nation’s levees using these invasive 

methods. Therefore, there is a need for a rapid, proactive, non-destructive assessment procedure 
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that can quickly and cost effectively gather continuous data, so that the most accurate 

performance evaluation can be made before defects in the levee lead to catastrophic failures.  

1.2 Organization of Thesis 

As discussed, many of the defects leading to levee failure are internal problems that 

depend on the materials used in levee construction. However, due to the limited funding 

available and the vast number of levees, inspections rarely go beyond visual inspection which 

cannot identify such problems before it is too late. Therefore, there is great need to determine the 

most cost-effective non-destructive testing methods which can be used to quickly and reliably 

identify the subsurface soils and any deficiencies. The main objective of the research presented 

in this thesis is to develop an approach, based on electrical resistivity testing, to rapidly and non-

destructively assess levee subsurface soils. Using this and other geophysical methods, the 

ultimate goal is that someday the overall condition of the levees, including the most critical 

locations in need of repair will be able to be determined through a quick and cost-effective 

assessment. 

Following this introduction, Chapter 2: Background presents background information 

related to levee failures and possible non-destructive technologies which may prove useful for 

future more robust levee inspections and assessments. A discussion of the rationale behind the 

chosen method is also provided. Chapter 3: Research methodology presents the methodology 

including the laboratory setup, procedures, and details of any special considerations made. 

Following the methodology, the goal of the research was to identify the effect of various 

engineering parameters such as density, water content, saturation, temperature and water quality 

on the electrical resistivity of soils in order to link electrical resistivity measurements with soil 
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type. A series of controlled laboratory experiments were carried out using a Nilsson Resistance 

Meter Model 400 attached to a M.C. Miller Large Soil Box in a Wenner 4-electrode array. In 

these tests, numerous resistivity measurements were taken using different soil types under 

controlled laboratory conditions to understand the link between this geophysical testing method 

and the engineering properties of interest. Chapter 4 presents the results of the study and Chapter 

5 contains the conclusions and final remarks.  

Chapter 2: Background 

2.1 Levee Defects and Failure Mechanisms 

Many mechanisms could lead to a levee’s failure. Some of the most common failure 

mechanisms are shown in Figure 2. These failure mechanisms are often divided into two 

categories: structural failures and failures due to hydraulic forces.  Structural failures include 

damage to the embankment from debris or tree uprooting, slope failures, and sliding, while 

failures from hydraulic forces include underseepage, overtopping or wave erosion, piping, and 

liquefaction. 

The following sections summarize the most common levee failure modes and the defects 

that lead to these failures (Ellis et al. 2008 and Vrjiling 2003).  It should be noted that although 

these are termed failure modes, their occurrence does not guarantee catastrophic failure of the 

levee.  Breaching is often caused by a combination of these failure modes. 
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Figure 2 – Deretsky, Z. (2010) Ten ways a levee can fail. [Online image], retrieved on July 18, 

2017 from http://www.zina-studio.com/p489212137/h1834C228#h1834c228 

2.1.1 Overtopping Erosion 

One of the most common phenomenon causing levee failures is surface erosion due to 

overtopping (Figure 3). In this process, the dry side of the levee will start being eroded by the 

forces of the overtopping water which may result in steepening of the downstream slope, 

lowering of crest, head cut development, and eventual collapse of the structure. There are many 

factors which affect the rate of erosion including grain size distribution, compaction energy, 

salinity of water, levee geometry and vegetative cover. As indicated by Briaud et al. (2008), 

larger grained soils such as sands are more susceptible to erosion compared to fine grained soils 

such as clays. The slope of the levee, determines the velocity of the water jet on the dry side 

where higher velocity corresponds with a higher rate of erosion. Generally, plants with extensive 
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root networks help protect the soil from eroding by keeping the soil particles in place and 

decreasing the speed of water flow (Figure 4). There are number of ways to mitigate this erosion 

process including adequate design to prevent overtopping, providing vegetation cover, avoiding 

erodible soils and steep slopes. Visual inspection of the levee is sufficient in assessing the 

susceptibility to overtopping erosion and there is no need for additional assessment tools. The 

two items which should be checked are a comparison of the current height of the levee with the 

design height, and the vegetative coverage.  As shown in Figure 4, good vegetative cover can 

help armor the levee from surface erosion.  

 

Figure 3 - overtopping erosion in a levee west of Oakford, IL (Rutherford et al., 2016) 
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Figure 4 - vegetative cover laid down and acting as an armor on the landside slope of the levee 

near Olive Branch, IL (Rutherford et al., 2016) 

2.1.2 Internal erosion/ Piping 

Another common failure mechanism associated with levees is failure due to internal 

erosion or piping. In this phenomenon, a series of pipes or water paths will develop in the body 

of the levee, due to the existing hydraulic gradient, enabling the transportation of water from the 

wet side to the dry side of the levee. In this process water goes through the path which satisfies 

the criteria for relatively higher hydraulic conductivity and higher hydraulic gradient. Through 

time, water carries smaller soil particles with itself causing cavities to form in the levee. These 

cavities start forming on the dry side of the levee and propagate towards the wet side through 

time. Therefore, as time passes, these cavities expand and weaken the levee’s core, making it 

more susceptible to collapse. 
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There are several visual signs which may indicate the occurrence of this phenomenon 

including the appearance of sand boils on the dry side of the levee (Figure 5), levee toe erosion, 

cracks on levee surface, absence of fine grain overburden materials on the dry side. The piping 

can also be initiated by the presence of voids from tree roots or animal burrows (Figure 6). While 

all levees are susceptible to piping, relatively thin levees, presence of high hydraulic gradients, 

and levees built with erodible soils are more susceptible to piping.   

This internal erosion may occur in the foundation as well. In this case, the foundation 

material is much more permeable than the body material which provides a higher hydraulic 

gradient for water to flow through. As a result, fine-grained particles would be washed with 

water and transported upstream, slowly forming the void spaces in the levee foundation. This 

could especially happen if the levee is founded on paleo channels which comprises highly 

permeable and erodible sedimentary deposits. While generally the sand boils appear close to the 

toe, (Figure 7), visual detection of this mechanism may be harder as the sand boils may be found 

hundreds of meters away from the levee (Figure 8). 

While burrows or sand boils can often be seen at the surface through visual inspection, 

internal piping or voids may not be visible and thus, a detection method capable of penetrating 

through the levee is needed to assess susceptibility of a levee to internal erosion. Additionally, a 

thorough assessment of the core and foundation soil types could also help identify soils which 

might be susceptible to internal erosion.  
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Figure 5 - The arrow indicates the location of a sand boil near the landside levee toe and the box 

indicates subsidence in levee crest due to loss of soil (Rutherford et al., 2016) 
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Figure 6 – View looking at exposed western edge of breach in a levee revealing the presence of 

animal burrows within the levee (Rutherford et al., 2016) 
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Figure 7 - Large sand boil network at levee toe near Olive Branch, IL (Rutherford et al., 2016) 

 

Figure 8 - Sand boils approximately 1,200 feet landward of the levee with water still seeping 

through near Cairo, IL (Rutherford et al., 2016) 

 



13 

 

2.1.3 Surface erosion (Wet side) 

Another common failure mechanism for levees is the erosion of soil on the water or wet 

side of the levees. Similar to the erosion of the land or dry side, soils on the wet side can be 

eroded due to the forces of flowing water. Providing adequate vegetative cover, proper 

compaction and avoiding erodible soils are the main solutions to avoid this type of failure. One 

of the most comprehensive works on erodibility of different soil types is presented in Briaud 

(2008) where soils are categorized into six groups depending on their erodibility from very high 

erodibility to non-erosive (Figure 9). As can be seen, as the plasticity of the soil increases and/or 

the grain size decreases, soils can resist higher shear stresses and will erode at a slower rate. 

Therefore, depending on the expected water velocity, suitable levee construction material must 

be chosen.  

Visual inspection may be helpful in detecting areas where surface erosion has started 

developing. However, many times the water may cover the erosion issues and it would be more 

advantageous to use non-destructive tools to assess the erodibility of soils and be able to make an 

assessment of the probability of erosion occurring for a given event. 
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Figure 9 - Proposed erosion categories for soils and rocks based on shear stress (Briaud, 2008) 

2.1.4 Sliding 

Another failure mechanism threatening the stability of levees is failure due to sliding. In 

this process, the horizontal hydraulic pressure overcomes the shearing resistance provided at the 

interface of the levee’s body and foundation and causes the levee to slide. This type of failure is 

likely to occur in levees where there is a sudden change of soil properties between the body and 

foundation materials. Although not very common, this phenomenon could occur for relatively 

tall levees where the levee’s body is not connected adequately to the foundation. This type of 

failure can be prevented by increasing the bottom width of the levee and proper compaction of 

the bottom layer of the levee where it joins with the levee foundation. 

As the sliding plane is unavailable for visual inspection, non-destructive test methods can 

be used to detect sharp contrast between the body and foundation materials. For example, sharp 

contrast between soil layers can be detected by an array of geophysical methods including 

seismic methods which are based on reflection and refraction. 
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2.1.5 Wave/Structural impacts 

Wave impact is another process during which the levee structure will slowly deteriorate 

over time. Similar to other surface erosion processes, choosing the right soil and providing 

adequate vegetation could slow this process significantly.  

Structural impacts are another cause of levee failures which may be due to the impact of 

boats or tree logs and other debris carried by the river during the flood. Such impacts may expose 

the core of the levee to the passing water and expedite the erosion. Any defects due to structural 

or wave impacts would be clear through visual inspection and no additional methods of detection 

are needed.  

2.1.6 Liquefaction 

Although there are not many documented cases for liquefaction in levees, it is another 

possible failure mechanism threatening levees. Generally, levees built using liquefiable soil or 

founded on liquefiable soil close to active faults are susceptible to liquefaction. One of the most 

interesting cases regarding levee liquefaction occurred in 1993 Kushiro-oki earthquake in 

northern Japan (Sasaki et al., 1995). The Kushiro river levees were underlain by a non-

liquefiable peat layer. However, this highly compressible layer had subsided in a concave shape, 

creating a saturated zone in the levee as shown in Figure 10. Although liquefaction is a complex 

phenomenon, saturated sand layers subject to shaking have high liquefaction potential. To assess 

the liquefaction potential of a site, information about the potential seismic activity of the site and 

subsurface conditions are needed which cannot be obtained through visual inspection. However, 

non-destructive methods, such as Multi-Channel Analysis of Surface Waves (MASW) can 

confidently estimate the stiffness of subsurface layers which can be used to estimate liquefaction 
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potential. Resistivity methods are also capable of distinguishing between sands and other fine-

grained soils. 

 

Figure 10 - Damaged levee of the Kushiro river (Sasaki et al., 1995) 

2.1.7 Tree damage 

Another potential threat to levee stability is the growth of larger plants such as trees on 

the levees. While under a normal climate trees may not damage the levee, severe climates such 

as storms could exert extreme forces on the tree and levee. If the tree gets uprooted, it will 

expose the levee’s core and expedite the erosion process. Therefore, while grass vegetation is 

desired, it is often good practice to prevent trees from growing on top of the levees. Visual 

inspection methods would be adequate for detecting trees on levees, although it is difficult to 

identify the full extent of the root structure by this method. 

2.1.8 Slope failure 

Slope failure on the levee face can occur on the landside or waterside of the levee and 

reduce the thickness and/or height of the levee, ultimately reducing the stability. Slope failures 

can be the result of scour or overtopping erosion, seepage, desiccation cracking, rapid 
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drawdown, earthquake loading, impacts, or simply low strength soil combined with the geometry 

of the levee slope. Scour and seepage are typically soil type dependent. 

Factors such as insufficient compaction, desiccation cracking and rapid drawdown could 

increase the chances of slope failure. An example surface slide due to 2016 Midwest floods is 

shown in Figure 11. The exposed surface was immediately covered with plastic liner and sand 

bags to prevent further erosion until reconstruction finished.  

In this case, non-destructive testing methods and visual methods are both required to 

examine the subsurface soil structure and the geometry of the slope in order to assess the risk of 

slope failure in levees. 

 

Figure 11 -Surface slide covered with plastic liner and sandbags near Grand Tower, IL 

(Rutherford et al., 2016) 
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2.2 Detection and Evaluation Methods 

There are currently numerous destructive and non-destructive methods available to detect 

anomalies and weak points within the ground. Although the data obtained through destructive 

methods is generally reliable and easier to use for geotechnical engineering purposes, it demands 

more time and money to obtain; these methods are also undesirable for levees in particular due to 

their destructive nature. As discussed, a large portion of the nation’s levee system has little or no 

data regarding the current condition or design and the data that does exist is minimal in its 

consideration of subsurface defects. Therefore, it is critical to develop a low-cost, rapid and non-

destructive testing framework to assess the condition of the aging levee systems and repair or 

reinforce these structures against future floods.  

2.2.1 Non-destructive Assessment Methods  

Non-destructive geophysical tests use electrical currents, electromagnetics and stress 

waves to “see” within the earth without drilling or punching holes. The tests are typically 

conducted from the ground surface and are used to image objects or soil layers to determine the 

engineering or geologic properties of the subsurface. Geophysical methods that can and have 

been applied to levee evaluation include the Multi-channel Analysis of Surface Waves (MASW), 

P- and S-wave refraction, Ground Penetrating Radar (GPR), electromagnetics (EM), and 

capacitively coupled resistivity (CCR)  (Hayashi and Konishi 2010, Lane et al. 2008, Inazaki and 

Sakamoto 2011, Kita et al. 2013, Mckenna et al. 2006). Each of these methods has distinct 

features that make them advantageous for detecting various defects within a levee system. For 

example, MASW and S-wave refraction provide a shear wave velocity (Vs) profile of the levee 

that is directly related to the shear modulus of the levee. This profile can be used to detect low 
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density areas and strength related to weak spots within the levee and foundation system that 

could lead to failure. In addition, the Vs profile can be used to evaluate the liquefaction potential 

of various levee and foundation layers. The P-wave refraction method can determine the P-wave 

velocity profile of the levee and most importantly, it can be used to identify the line of saturation 

through the levee for liquefaction analysis and seepage monitoring. GPR can detect small buried 

objects, pipes, and other encroachments within the levee which can create weak spots and 

piping/seepage zones within the levee. EM and resistivity measurements can be used to infer the 

soil type of the levee and pick up changes in soil type with depth. Some of the most common 

geophysical methods will be described in more detail in the following subsections. 

2.2.1.1 Electromagnetic surveys (EM) 

Electromagnetic induction is a method to measure the apparent electrical conductivity of 

subsurface materials. Electrical conductivity is a measure of how well the soil conducts an 

electrical current. These measurements can be used to identify geologic materials and their 

locations. It can also be used for identifying buried metallic items. Conductivity values vary over 

several orders of magnitude depending on the type of material (Table 1). It is known that the 

amount of pore fluid present, the salinity of the pore fluid, the presence of conductive materials, 

and the amount of fracturing influence the conductivity measurements. (Llopis and Simms, 

2007) 
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Table 1 – conductivity and electrical resistivity values of some common rocks and minerals 

(Keller and Frischknecht, 1966)

 

For measurement of soil conductivity through EM induction, a transmitter (Tx) and a 

receiver (Rx) coil separated by a distance are used. An alternating magnetic field is generated by 

the alternating current passed through the Tx coil. Eddy currents are inducted in the subsurface 

conductive materials due to the formation of the magnetic field. In this setup, Rx coil detects the 

secondary magnetic field produced by the eddy currents as well as the primary field. 

Typical EM systems record the quadrature phase, also known as the out-of-phase or 

imaginary component, and the quadrature component magnitude. The quadrature component is 

used to determine the apparent ground terrain conductivity. Anomalies such as filled-in 

abandoned channels, buried objects or voids typically produce conductivity readings which are 

different from the background values. The in-phase component is also very sensitive to metallic 

objects. Therefore, it can be very useful for locating buried metals such as metal rails, rebar, or 

electrical wires. However, a disadvantage is that if such materials are present and the object of 

the survey is not to locate such objects, these objects will interfere with the survey results 
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significantly. Therefore, when planning a survey, it is important to avoid locations close to 

metallic fences, railroads, metallic gates, etc. to ensure the conductivity readings are from the 

subsurface geologic materials only. Additionally, although EM induced conductivity can be used 

to infer information regarding mineralogy, grain size, water content and anomalies, EM units 

require multiple passes at different frequencies and/or different coil distances to gather data at 

different depths. 

 

 

Figure 12 - Geonics Ltd. EM34 EM induction instrument being towed by a vehicle collecting 

continuous data (Llopis and Simms, 2007) 

The depth of investigation in EM induction systems varies considerably based on the 

array type, distance between the transmitter and receiver and the operating frequency (Llopis and 

Simms, 2007). For example, Llopis and Simms (2007) used Geonics Ltd. EM34 induction 

instruments for assessing levee conditions in the Feather River levees in California. They towed 
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the coils on an electronically non-conductive sled at a walking distance to collect continuous data 

(Figure 12). The EM34 allowed for coil separations of 10, 20, or 40 m. Operating in the vertical 

dipole mode allowed for greater depths of investigation and less sensitivity to surface materials. 

This resulted in nominal depths of exploration of 15, 30 and 60 m for 10, 20 and 40 m coil 

distances, respectively (McNeil, 1980).Dunbar et al. (2003) conducted EM surveys in Texas by 

towing a symmetric and coplanar dipole system on a helicopter above the levee at an altitude of 

30 m. Using different frequencies, they gathered data up to the depth of 30 m. Although this 

method is more rapid than other geophysical methods, it did not provide a good resolution and it 

is relatively expensive compared to other non-destructive methods. 

2.2.1.2 Ground Penetrating Radar (GPR) 

Ground Penetrating Radar (GPR) is a geophysical method that images the subsurface 

using radar pulses. GPR transmits EM pulses (10-2000 MHz) (Davis and Annan, 1989) and the 

receiver antenna records the reflections. The penetration depth and resolution depend on 

conductivity of the materials and the signal frequency. In low conductivity materials such as dry 

sands, signals could penetrate up to 50 m while in conductive materials such as clays, they will 

penetrate only a few meters (Davis and Annan, 1989). Therefore, GPR is likely not the most 

effective option for levee assessment, as most levees are constructed using clays and are 

relatively high in water content. 

2.2.1.3 Light Detection and Ranging technology (LiDAR) 

LiDAR uses light in the form of a pulsed laser to measure ranges (variable distances) to 

the earth. These light pulses, combined with other data recorded by the system, can generate 
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three-dimensional information about the shape of objects. These systems generally consist of a 

laser, a scanner and a GPS receiver (NOAA, 2017). 

Palaseanu-Lovejoy et al. (2014) used LiDAR technology to create crest elevation profiles 

of levees in south Louisiana. They were able to identify abrupt changes in levee elevation and 

orientation. Using this data, they were also able to compare the levee height with the height 

requirements to withstand the 100-year flood. Surprisingly, only 5% of the crest points of the 

levees investigated passed the height requirement. 

Unlike geophysical methods which provide information about the internal structure of the 

levee, LiDAR gives information about its geometry. This information can be used for assessing 

overtopping risk and slope stability analysis. 

2.2.1.4 Multi-channel analysis of surface waves (MASW) 

There have been several cases where researchers have used MASW to assess the 

subsurface conditions in levees. In this method, seismic waves are created by a hammer blow or 

other impacts. The reflected and refracted seismic waves are recorded by an array of receivers 

called geophones. By analyzing the response waves and the dispersion curves, a seismic velocity 

profile of the subsurface can be generated. This information can be used to locate layers, infer 

stiffness variations and locate porous zones and voids. Shear wave velocity can also be used to 

determine liquefaction potential (Stokoe et al., 1988). A great example of levee assessment can 

be found in Miller and Ivanov (2005) where they used a range of seismic technics including 

MASW to test levees in Weslaco, Texas. One of the interesting findings was the applicability of 

the seismic tool to identify permeable areas where infiltration is active (e.g. during flood season).  
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In order to expedite the process of gathering seismic responses, a system called a Land 

streamer (Figure 13) can be used. In this setup, the geophones are in contact with the ground 

through a metallic plate which enables the recording of data without the need for soil penetration. 

Therefore, the array can be dragged behind a vehicle without the need for removal and 

installation of individual geophones. However, it is still required to periodically stop movement, 

create seismic waves using an impact source and allow a few seconds to record the data. 

 

Figure 13 - Use of land streamer to collect seismic wave velocity data on top of a levee in Mel 

Price lock and Dam in Edwardsville, IL 
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2.2.1.5 Electrical Resistivity Methods 

Electrical resistivity is an intrinsic property that quantifies how strongly any given 

material opposes the flow of electrical current. The use of the electrical resistivity method has a 

long history in geophysical testing and it was made famous through the pioneering work of 

Conrad Schlumberger in France in 1912. (Dahlin, 2001). 

Electrical resistivity measurements require at least four-electrodes, two current electrodes 

and two voltage potential electrodes. The arrangement of the electrodes and sequence of 

measurements is the array and many different arrays have been developed through the years. For 

example, to measure the electrical resistivity using a Wenner array (Figure 14 (a)), electrical 

current is passed between two external electrodes inserted into the ground (current electrodes) 

and then the resulting voltage potential is measured across two internal electrodes inserted into 

the ground (potential electrodes) (Herman, 2001). Some of the most common resistivity arrays 

are shown in Figure 14. 

In the DC electrical resistivity method, the electric current I is directly injected into the 

ground through a pair of electrodes and the resulting voltage V is measured between a second 

pair of electrodes. The impedance Z = V/I is calculated which is then transformed into apparent 

resistivity ρa which is an indicator of the underlying resistivity structure ρ(r) of the earth. 

(Everette, 2013). The depth of a resistivity measurement depends on the distance between the 

current or sink electrodes and the distance from the voltage potential electrodes. Each 

measurement is called the apparent resistivity and is the measurement that would have been 

measured if the entire subsurface was uniform (Everett, 2013). A map of the apparent resistivity 

plotted at these locations is termed a pseudosection (Loke, 1999). 
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Construction of a pseudosection using a diploe-dipole array (Figure 14 (d)) is shown in 

Figure 15; where the measured apparent resistivity associated with current AB and potential 

electrode pairs PQ is plotted at the intersection of two 45° angles passing through the center of 

the electrode pairs. By moving the electrode pairs, apparent resistivity is measured at different 

depths and locations. (Everette, 2013). However, the pseudosection only provides a rough 

estimate of the true resistivity of the subsurface. Through a process called inversion, which 

requires complex mathematical calculations, true resistivity of the ground is obtained (Figure 

16). 

2.2.1.5.1 Electrical resistivity tomography (ERT) 

An electrical resistivity sounding in which the electrode spacings are varied without 

moving the midpoint, provides a local 1-D electrical resistivity depth model at midpoint, ρ(z). By 

traversing the array over a horizontal profile without altering the electrode spacings, lateral 

profiling of ρ(x) over a limited depth range can be achieved. However, this method faces several 

challenges in complex geologies (Everette, 2013). 

2.2.1.5.2 Capacitively coupled resistivity (CCR) 

A relatively rapid method to collect electrical resistivity data in the field is using 

Capacitively Coupled Resistivity (CCR). A geometrics OhmMapper (Figure 17) uses one 

transmitter and 5 receivers. The spacing between the transmitter and the first receiver and the 

spacing between each receiver can be modified to allow for resistivity measurements at different 

depths. An advantage of this system is that unlike the conventional DC electrical resistivity 

methods, CCR does not require direct contact with the ground (Chlaib, 2014). This offers two 

advantages, as it reduces the setup time for subsequent measurements and enables measurement 
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on hard surfaces such as pavements where electrode penetration is not possible or desired. The 

OhmMapper can be dragged behind a vehicle or by humans at walking speed (approximately 2 

km/hr) while the system continuously collects data and builds the pseudosection using the GPS 

data in real time. However, depending on the target of the investigation, multiple passes may be 

needed to gather data at different depths. Larger spacings correspond with deeper measurements 

but lower resolution, similar to any other geophysical method. 

 

Figure 14 - commonly used electrode arrays in resistivity surveys. C1, C2 and P1, P2 denote the 

position of the current and potential electrodes. For the symmetrical and gradient Schlumberger 

arrays, it is common to use symbols A, B for the current electrodes and M, N for the potential 

electrodes. (Sharma, 1997) 
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Figure 15 - Construction of a dipole-dipole resistivity pseudosection (Everette, 2013) 

 

Figure 16 - measured apparent resistivity pseudosection for a hybrid Schlumberger – dipole-

dipole electrode configuration (Top) along with the inverted resistivity image (Bottom). Middle 

image shows the calculated apparent resistivity based on the inverted cross section. (Everette, 

2013) 
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Figure 17 - CCR used to measure electrical resistivity at the toe of a levee close to the Mel Price 

Lock and Dam in Edwardsville, IL 

2.3 Selection of Methods for the Current Study 

As discussed, there are many non-destructive testing options available to assess levees. 

Although LiDAR does not provide any information about the subsurface conditions, it is an 

effective tool to assess overtopping and find surficial defects. Although several researchers have 

used GPR for levee assessment, it is not as effective for deep investigations in clay filled 

structures despite having a relatively high resolution in sands and gravels. In other words, 

although GPR may be able to capture information within the levee itself, it would likely not be 

able to detect any of the foundation soils along the center of the levee. EM methods enable 
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measurement of the electrical conductivity of subsurface; however, these systems only use one 

transmitter and receiver whereas, electrical resistivity methods use an array of receivers and 

transmitters to measure the resistivity. Multiple receivers enable the measurement of apparent 

resistivity in several depths simultaneously which results in a fewer of number of passes. In this 

sense, electrical resistivity has an advantage over EM. MASW is also a powerful tool in 

assessing subsurface conditions, as it can incorporate different types of seismic waves to measure 

elastic properties of the soils (e.g. P-Wave, S-Wave, and Rayleigh wave velocity) which cannot 

be directly measured by any of the other methods. However, this method also has shortcomings. 

For example, a loose sand may have a similar velocity to a dense clay deposit. This could lead to 

erroneous conclusions of levee conditions because a dense clay is very desirable for levees, 

while the loose sand is highly susceptible to erosion and it may not be clear to distinguish the 

two. 

Seeing the advantages and disadvantages of different testing methods for assessing 

subsurface conditions, it was decided that both MASW and electrical resistivity should be used 

in conjunction with each other. Hayashi and Konishi (2010) proposed an integrated geophysical 

method using electrical resistivity and surface-wave methods in conjunction with each other to 

evaluate vulnerable points of levees in Japan. The authors were able to develop a matrix to detect 

the presence of alluvial and diluvial gravel and alluvial sand and clay deposits using the two 

methods together. Their research indicated that resistivity increases with decreasing density and 

increasing grain size, while S-Wave velocity decreases under those conditions. The basic concept 

behind this assessment method is depicted in Figure 18. Similarly, Hayashi et al. (2014) 

developed a polynomial equation using cross-plots of S-Wave and resistivity to estimate soil 
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parameters, such as fines content, D20, SPT blow count, and general soil type descriptors (e.g., 

sand, clay, gravel). 

 

Figure 18 - Schematic relationship between geophysical properties and soil condition (a) and 

levee vulnerability (b) (Hayashi and Konishi, 2010) 

This thesis is portion of larger study where electrical resistivity and MASW were used to 

develop a framework for rapid and non-destructive assessment of levees. While field 

measurements were taken using CCR, it was determined that a laboratory study would be more 

effective in order to avoid the large variability observed for natural soils in the field. This thesis 

focuses on the electrical resistivity portion of the study and uses controlled laboratory 

measurements to examine the relationship between electrical resistivity and parameters such as  

water content, temperature, water composition, etc.  The ultimate goal was to develop 

relationships in order to predict soil type from field based measurements of resistivity.  
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2.4 Previous Resistivity Studies Aimed at Determining Soil Type 

There have been many attempts to identify soil type based on its resistivity magnitude. 

Piegari and Di Maio (2013) were able to derive an empirical relationship between soil resistivity 

and suction using a combination of Archie (1942) and Van Gnuchten (1980) models on a series 

of laboratory and field experiments. According to the field studies conducted by Besson et al 

(2004), electrical resistivity can be used to describe the structure of the tilled soil. Additionally, 

Seladji et al. (2010) investigated the effect of soil compaction on electrical resistivity in a series 

laboratory experiments. The authors focused on agricultural samples of clay and loam with 

organic content and analyzed the effect of soil microstructure, organic matter and saturation level 

on the measured electrical resistivity. While they were able to fit a model to their results, the 

results indicated a further need for investigation of low saturation soils and the effects of organic 

matter on the electrical resistivity of soil.  

There have also been several efforts to relate field resistivity measurements to soil type or 

soil classifications. Two of the more significant studies were conducted by Kaufman and 

Hoekstra (2001) and Palacky (1987). Their results are summarized in Table 2. 
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Table 2- Resistivity ranges of different soil types  

 

According to Kaufman and Hoekstra (2001), there are overlaps between many of the 

different soil types. Moreover, Palacky (1987) published a different range of values for similar 

soil types. He measured much lower resistivity values for clays, while his measured lower bound 

resistivity for sand surpassed the upper bound resistivity measured for sand by Kaufman and 

Hoekstra (2001). According to Palacky, gravels can have much higher resistivity compared to 

what was published by Kaufman and Hoekstra (2001). These two publications show some of the 

complexity of deriving soil type and geotechnical properties from electrical resistivity data 

measured in the field. 

As discussed, many researchers have worked over the past seven decades to interpret the 

results of non-destructive geophysical testing methods for engineering purposes. Most of these 

researchers conclude that there is a need for more work in this area (Seladji et al., 2010, 

Samouelian et al., 2005, Piegari and Di Maio 2013). As it is very challenging to understand the 

effect of various geotechnical parameters on electrical resistivity using field measurements 

where soils can be highly variable, the resistivity of different benchmark soils was measured 
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under controlled laboratory conditions. A laboratory investigation of resistivity provided the 

opportunity to examine the effect of temperature, water quality, soil type, density and water 

content to better understand the range of resistivity values possible for a particular soil. The 

methodology of this research is described in the following chapter.  

Chapter 3: Research methodology 

To measure the electrical resistivity of the soil, a Nilsson Resistance Meter Model 400 

attached to a M.C. Miller Large Soil Box in a Wenner 4-electrode array (Figure 19) was used. 

According to ASTM G57 - 06(2012), the electrical resistivity of a soil specimen in this 

configuration is 

ρ=R∙A/a                    Eq. 1 

where R is the electrical resistance measured between the two inner electrodes in Ohms 

(Ω), A is the cross-section of the soil specimen in cm2 and a is the distance between the inner 

electrodes in cm.  For the soil box used, the distance between the inner electrodes is 12.8 cm and 

the cross section is 12.8 cm2 which gives the cross section to length ratio (A/a) of 1 cm. For this 

setup, the magnitude of the measured electrical resistance (R) in Ω is the same as the magnitude 

of its electrical resistivity (ρ) in Ω.cm. To ensure consistency in measurements and control over 

parameters such as density, water content and degree of saturation, the following procedures 

were followed. 
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Figure 19 - Resistivity measurement setup 

First, the water and dry soil mass were measured with a scale accurate to 0.01 g and were 

mixed thoroughly. The mixed soil was then sealed in a container and kept for at least 24 hours in 

a room with controlled temperature and humidity. To ensure the soil was at the target water 

content, it was weighed at the end of mixing and once more before the start of the test. A sample 

was also taken at the end of the test to verify the water content. Because of the many variables 

affecting electrical resistivity, it was critical to ensure that the specimen in the soil box was as 

uniformly placed as possible. To hit target densities, the total amount of the soil required to fill 

the box was calculated and placed in three equal layers. Once filled, the total weight of the soil 

box was recorded for final density calculations and then the electrical resistivity and temperature 

of the specimen were measured simultaneously three times and then averaged. As soil 

temperature increases, its electrical resistivity decreases. Therefore, all of the resistivity values 
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presented in this paper have been corrected to a common temperature of 15.5° C following Eq. 2 

from ASTM G57-06 (2012) 

ρ15.5=ρt ((24.5+T)/40)  Eq. 2 

where T is the temperature of the soil at the time of measurement and ρt is the resistivity 

of the soil at that temperature. ρ15.5 is the corrected resistivity value at 15.5° C. 

A total of nine different benchmark soils were made by mixing different portions of 

commercially available sand, Kaolin clay, Bentonite clay and red art clay. Deionized water was 

used for all of the tests to ensure repeatability. In Table 3, the composition of each benchmark 

soil is shown along with the measured index properties, as well as the range of densities and 

water contents in which each was tested.  For the electrical resistivity measurements, each soil 

was tested at its loosest and densest possible compacted states corresponding to various water 

contents. Additional intermediate densities were also tested to obtain a representation of how 

electrical resistivity varies with density and water content. The dry density and corresponding 

water contents for the points tested are shown in Figure 20, where each benchmark soil is 

assigned a label according to its group symbol from USCS (ASTM D2487-11). The water 

content was varied from the driest possible state to a very wet state where electrical resistivity 

did not change with increased water content (AASHTO Standard T 288-12, 2012). The lowest 

tested water content for each soil type was limited by the equipment’s maximum measurable 

electrical resistivity (1.1×106 Ω.cm) and was different for each soil type according to their 

physical properties. For example, the electrical resistivity of the poorly graded sand (SP) is 

measurable at a water content of 2% while the high plasticity silt (MH) required a water content 
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of at least 6% for its electrical resistivity to be measurable using the current setup. The majority 

of soils in the field will likely be at water contents well above these thresholds.  

Because it is known that the electrical resistivity of soil is a function of the resistivity of 

pore fluid, the effect of water composition was explored by comparing resistivity values for a 

common soil mixture with different water sources: distilled water, tap water from Arkansas, 

ground water from a well in Texas and ground water from a well in Arkansas. However, to 

ensure the consistency and reproducibility of the results for future studies, the remainder of the 

tests were carried out using deionized water.  

As shown by Eq. 2, temperature is also known to affect the electrical resistance of 

different materials. In materials classified as conductors (e.g. copper), an increase in temperature 

is expected to increase the electrical resistance and in materials classified as insulators (e.g. 

glass), the opposite effect is observed. Since soils are mainly composed of insulators such as 

silicates, they are expected to have lower electrical resistivity at higher temperatures.  To 

measure resistivity at different temperatures, the soil sample was compacted in the soil box, 

sealed and stored in a cold storage room until it reached the room temperature (5 °C), then it was 

removed from the room and tested continuously until it reached the ambient room temperature 

(21 °C). To measure electrical resistivity at higher temperatures, the sealed soil box was put in an 

oven at 30-40 °C for a short time. Once at equilibrium, the soil was removed and tested until it 

reached the ambient room temperatures again. It was important to cover the soil tightly between 

tests and while waiting to reach the target temperatures to avoid evaporation as much as possible. 
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Table 3 - Material description, index properties, and density and moisture conditions for the soils 

tested 

 

 

Figure 20 - Dry densities and corresponding water contents tested 

Chapter 4: Results and Discussion 

As discussed several geotechnical parameters were examined to better understand their 

effects on the resistivity of different soils. Along with measuring the resistivity of different soil 
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types according to the USCS, the effects of water composition, temperature, density, saturation 

and volumetric water content are also investigated. 

4.1 Water composition 

The variation of electrical resistivity for the SP soil using different water sources and 

saturations is presented in Table 4.  Degree of saturation greatly influences the electrical 

resistivity, regardless of water composition; electrical resistivity changing from approximately 

90,000 to 7,000 ohm.cm from 10% saturation to fully saturated condition. As shown in Table 4, 

deionized water results in the highest resistivity as it introduces the least amount of ions to the 

mixture. The smallest resistivity measurement was measured for the well water from Texas. 

Another interesting observation is that while pore water composition significantly affects the 

resistivity at low degrees of saturation, it does not seem to play a major role when the sand is 

saturated.  As shown, using deionized water results in the highest resistivity measurements, 

which should be taken into account when natural soils are tested and compared to the benchmark 

samples. 

Table 4 - Effect of water type on resistivity of sand (SP) (γd = 1600 kg/m3)
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4.2 Temperature 

The effect of temperature on the resistivity of two different soil types (SP and SP-SM) is 

shown in Figure 21, where the points represent the laboratory measurements and the dotted line 

represents the prediction of Eq. 2 based on the resistivity estimate at 15.5 °C.  

It can be seen that there are slight deviations from Eq. 2 for temperatures lower than 10 

°C; however, the relationship works well for the ambient laboratory temperatures at which the 

rest of the measurements were taken in this study (15-23 °C).  

Based on the data, a decrease in temperature from 20 °C to 5 °C can increase the 

resistivity by roughly 50%. Therefore, all of the values reported in the following sections have 

been transformed to the equivalent resistivity value at 15.5 °C using Eq. 2. Seeing the effect of 

temperature on electrical resistivity, it is recommended that the temperature in the field be 

approximated for any future studies aiming to interpret field measurements using laboratory data. 

The electrical resistivity data presented in the following section is the resistivity at 15.5 °C while 

in the field, a range of temperatures can be experienced depending on parameters such as 

seasonal and daily changes in solar radiation, slope orientation, thermal conductivity of soil, 

water content and vegetation cover (Florides & Kalogirou, 2005). Despite its complexity, there 

are several models available in the literature which can help estimate ground temperature at 

various depths in different seasons such as those presented by Mihalakakou et al. (1997) and 

Kusuda & Achenbach (1965). 
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Figure 21 - Effect of temperature on resistivity 

4.3 Degree of saturation, dry density, bulk density, and volumetric water content 

As discussed, each soil was tested at various combinations of densities and water content, which 

resulted in several options for plotting the data. Resistivity values were plotted versus the degree 

of saturation, bulk density, dry density, and the volumetric water content to examine how the 

electrical resistivity measurements were influenced by moisture and density and to identify any 
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trends (Figure 22). Plotting these various combinations was also important because of the large 

range of possible resistivity values for a given soil type.   

 

Figure 22 - Effect of bulk density (a), volumetric water content (b), saturation (c) and dry density 

(d) on resistivity of different soils 

The bulk density and corresponding resistivity results for SP, CL-1, CH and MH soil 

types are displayed in Figure 22 (a). As can be seen, the non-plastic soil type (SP) lies in the 

upper right boundary of the plotted results while the soil type with highest PI (CH) occupies the 

lower left side of the plotted data and the MH and CL-1 soils occupy the area in between. The 

MH soil type has a higher PI than CL-1 (Table 3) and in Figure 22 (a) generally lies closer to the 

CH soil as compared to CL-1. Although some of these soils overlap each other in some locations, 

there appears to be a correlation between PI and the parameters plotted in Figure 22 (a). This 

likely indicates that bulk density could be used as a parameter for predicting soil type for soils 
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that are not in a saturated condition. One disadvantage of this parameter from a field testing 

standpoint is that it would require some measure of in situ bulk density to single out a soil type, 

which requires another test to be conducted.  

The relationship between resistivity and volumetric water content was also investigated 

(Figure 22 (b)). As can be seen, soils have a big range of resistivity for volumetric water contents 

below 25%. However, the effect of volumetric water content becomes limited on electrical 

resistivity for water contents above 30%. Although generally electrical resistivity decreases with 

an increase in volumetric water content, it cannot be concluded that the sample with lower 

electrical resistivity necessarily has higher volumetric water content. This is especially true for 

silts and clays where the minimum electrical resistivity (at saturation) is lower than the electrical 

resistivity of water alone. Moreover, it can be seen in Figure 22 (b) that the different soil types 

plot very close to each other when volumetric water content is used. Therefore, although 

volumetric water content provides a better correlation with resistivity in comparison with dry 

density, it would still be hard to identify the type of soil based on this parameter. 

As shown in Figure 22 (c), an increase in the degree of saturation leads to a decrease in 

resistivity for all soil types. Additionally, the minimum recorded resistivity for each soil 

(generally for degrees of saturation above 60%) decreases as its plasticity index (PI) increases. 

For example, the minimum resistivity observed for the high plasticity clay (CH) which has the 

highest PI is much lower than the minimum resistivity observed for the other soils tested. This 
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trend could potentially help distinguish between high and low plasticity soils in saturated or close 

to saturated conditions. 

The resistivity values were also plotted with the corresponding dry densities (Figure 22 

(d)).  It is evident from Figure 22 (d) that there is little correlation between dry density and the 

resistivity of soil since a soil’s resistivity can vary several orders of magnitude at a specific dry 

density due to change in water content. Therefore, even if the dry density were known, it would 

be impossible to identify the soil based on its resistivity and dry density alone.   

Although the dry density alone would not be a good indicator, it was proposed that a 

combination of degree of saturation and dry density might give the necessary information to 

distinguish between soil types.  The effect of saturation and dry density on the resistivity of SP, 

CH, MH and CL-1 soils is shown in Figure 23. It shows that although the saturation is the major 

factor that affects resistivity, some soils are heavily influenced by their dry density (e.g. MH), 

whereas some are minimally affected by it (e.g. SP). Another important observation is that for 

each soil, there appears to be a limit saturation level above which the resistivity does not change 

significantly. At this level, dry density also does not affect the resistivity, which indicates that 

different densities could not be identified for a given soil in a saturated condition.  

More importantly, these plots show that soil type could be narrowed down significantly if 

resistivity were known for the soil in its saturated condition. For example, a saturated sample 

with a resistivity value near or above 10,000 Ω.cm would likely be a sand and a saturated sample 

with a resistivity value below 1,000 Ω.cm would likely be a CH. This saturated condition could 

be assumed for soils below the water table and could perhaps be useful for non-destructive field-

testing. The difference in the resistivity values for the saturated MH and the saturated CL-1 is not 
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as well defined; however, the difference in the resistivity values at high and low saturation levels 

is drastically different. Therefore, identifying a particular soil is much more likely if resistivity 

values were known at two drastically different saturation levels (i.e. at perhaps 20% and 60% or 

greater). While this is easy to do in the laboratory, it is not as practical in the field, especially for 

soils below the water table.  

 

Figure 23 - Effect of saturation on different soil types at different dry densities 

Although some correlation between each parameter and the measured resistivity is 

observed, the two parameters that were determined to be the most effective in identifying soil 

type were the degree of saturation and the bulk density. The best estimate of soil type can be 

made by using a combination of these two parameters and the corresponding resistivity values. 

To demonstrate this, the bulk density plot (Figure 22 (a)) was regenerated and the samples with 

the highest and lowest saturation values were identified using hollow markers and labels of the 
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percent degree of saturation. While it was not true for all the soil types, highest and lowest 

saturations typically corresponded with some of the highest and lowest bulk densities. As shown 

in Figure 24, the regions for each of the various soil types is well defined with only a few 

samples as exceptions. The diagonally oriented zones move from right to left as PI increases. 

The results indicate that soil type can be greatly narrowed down and even possibly identified if 

even an estimate of the degree of saturation and/or bulk density can be made.    

 

Figure 24 – Comparison of resistivity values and corresponding bulk density and saturation 

values (numbers inside the plotting area indicate degree of saturation for the hollowed out 

symbols) 

As seen in Table 3, some soils were made by mixing different proportions of sand and Kaolin 

clay or sand, Kaolin clay and Bentonite clay to obtain the different major group classifications 

according to USCS. The resistivity measurements for SP,SP-SM, SM, MH and CL-2, i.e. Sand-

Kaolin clay mixes, are shown in Figure 25. When resistivity is plotted as a function of bulk 

density, the SP soil type is somewhat separated from the other soils (Figure 25 (a)). Considering 

the samples with higher bulk densities, the resistivity values decrease as the fines content of the 

mixes increase. Figure 25 (b) shows that if the degree of saturation is known, it is possible to 

distinguish soil type using resistivity. As can be seen, if the soil is saturated under approximately 
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60%, the higher the fines content, the higher its electrical resistivity will be. However, close to 

saturation this relationship is inversed and soils with higher fines content show less electrical 

resistivity. This is because when Kaolin clay is relatively dry and in powder from, it has many air 

voids that increases the resistivity of the material. However, as the water content increases, ions 

will be able to travel more freely in the pore spaces, resulting in a lower resistivity. Therefore, 

the difference between the resistivity values of these mixes in a saturated condition is likely 

attributed to the difference in their mineralogy, while the difference in resistivity values in a drier 

condition is likely more related to the air void volume.   

 

Figure 25 - Resistivity of Sand – Kaolin clay mixes with respect to bulk density (a) and degree of 

saturation (b) 

The results for Sand-Kaolin clay-Bentonite clay mixes are displayed in Figure 26. A 

similar correlation is observed where SP (Sand) and CH (Kaolin clay-Bentonite clay) are the 

clear outliers at relatively high bulk densities and saturations. In general, for the bulk density 

data, higher plasticity soils tend to plot closer to the lower left corner while non-plastic soils plot 
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to the upper right. Although a large number of benchmark samples were tested, it is important to 

examine these findings further using several natural soils.  

 

Figure 26 – Resistivity of Sand-Kaolin clay-Bentonite clay mixes with respect to bulk density (a) 

and degree of saturation (b) 

 4.4 Verification studies 

Three cases were considered to assess the practicality of using the benchmark soil data in 

identifying soil types for natural field retrieved soil samples. For the first case, a clay sample 

obtained in Monticello, AR was considered. The soil was compacted in the soil box at the natural 

water content of 36.17 % to a bulk density of 1890 kg/m3, similar to the measured in situ bulk 

density (1878 kg/m3). The measured resistivity was 617 Ohm.cm. From Figure 22, it is evident 

that only a CH soil type has a resistivity lower than 1000 Ohm.cm. The sample indeed classified 

as a CH and neither water content nor density were necessary to determine the soil type for this 

sample because of the significantly low value of resistivity.  

For the second case, a natural clay sample was tested at a water content of 8.35% and at 

densities of 1125.9 kg/m3 and 1415.37 kg/m3. The measured resistivities were 70,050 and 

11,832, respectively for the two cases. Following the suggestions above, the sample was also 

tested at a higher water content of 36.01% and a bulk density of 1701.4 kg/m3 and the resistivity 
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was found to be 1,504. Figure 27 shows these samples plotted with the benchmark sample 

results. The classification can be narrowed down to either a CL or CH based on the first two 

points. Considering the third point at the more saturated condition, the sample would likely be a 

CL. The sample actually classified as a CL, with a liquid limit of 36 and a plasticity index of 16. 

Therefore, the benchmark samples also appear to provide a means of identifying the 

classification for soils falling within the more difficult range. While the moisture content and 

densities can be varied for a field retrieved sample, examining a soil at different densities would 

be impractical in a single field study. These types of comparisons were simply made to examine 

the ability of the developed plots to capture soil type, similar to a blind study. As more and more 

natural samples are added in the future and adjustments are made to the relationships, it is likely 

that a clearer distinction could be made.    

 

Figure 27 – Results of the natural soil sample plotted along with other major soil types 

For the third case, a natural soil known as Hillside red clay (common in Arkansas) was 

investigated. This soil is generally a mixture of red clay and fragile cobbles of chert. The soil 

was sieved using a #10 sieve to separate the larger pieces of rock. The resulting sample had a 
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fines content of 92.60%. The liquid limit was found to be 66 and the plasticity index was found 

to be 37, resulting in a USCS classification of CH. The resistivity of the soil was measured at a 

relatively high water content (+35%) The results of these tests along with the results obtained for 

other major soil types are presented in Figure 28. 

 

Figure 28 - Results of the Arkansas Hillside clay plotted along with other major soil types 

Despite the CH classification, it can be seen that this soil overlaps the results of the MH 

benchmark sample. A comparison of the Atterberg limits of the three soils on the typical 

plasticity chart reveals that they are all very near the A-Line (Figure 29). However, one of the 

main reasons this soil behaves like a MH according to the resistivity measurements may be due 

to the existence of small grains of chert mixed with the red clay.  
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Figure 29 - Atterberg limits of different soil types used in this study 

For the third case, two different sands, designated as SP-1 and SP-2, from Arkansas were 

tested at high and low water contents and densities. It was observed that these soils show higher 

resistivities (10,000-20,000 ohm.cm higher) compared to the benchmark SP sample when 

saturated. However, it is still evident from Figure 30 that these two cases lie closest to the 

benchmark SP sample compared to the other soil types. It is likely that the higher resistivity 

measurements may be due to slight difference in mineral composition, gradation and perhaps 

even fines content. 
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Figure 30 – Results of two different types of sands from Arkansas (SP-1 and SP-2) plotted along 

with other major soil types 

4.5 Additional Considerations 

As discussed, the only ML that could be sourced as a benchmark sample was a processed 

kaolin clay. This soil classified as ML with a liquid limit of 34 and a plasticity index of 6. The 

results are presented in Figure 31 along with the results of the CH benchmark soil. As shown in 

the figure, the processed kaolin clay is indistinguishable from the CH soil and appears very 

differently from the unprocessed kaolin (MH). Further analysis of the kaolin clays through 

Energy-dispersive X-ray spectroscopy (EDX) revealed that the unprocessed Kaolin was a 

sodium-potassium (Na+-K+) kaolinite with 25% sodium and 11% potassium cations while the 

processed Kaolin was a sodium-calcium (Na+-Ca2+) kaolin with 33% sodium and 24% calcium. 

Therefore, despite the similar name, mineralogicaly speaking they are different soils with 

different cation exchange capacities (CEC). The presence of Ca2+ cations in the processed kaolin 

likely causes the lower resistivity compared to the unprocessed kaolin. This finding reveals the 

importance of mineralogy in the measured resistivity of soils.  
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Figure 31 - Resistivity of processed Kaolin clay in comparison with the CH soil type 

4.6 Application 

After gaining an understanding of the effect of various parameters on the resistivity of 

soils, this knowledge needs to be applied to the interpretation of resistivity data collected in the 

field. As seen in Figure 22 and Table 4, when the soil is below the water table, the measured 

resistivity is not sensitive to the density, water content and water quality. Therefore, if the 

location of the water table is known, the soil type for soils below the water table can be 

distinguished. Under this condition, a chart in the format of Figure 32 shall be used to predict 

soil type. As can be seen, most of the soil types tested can be easily distinguished based on their 

resistivities under saturated conditions. 
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Figure 32 - Expected resistivity for different soil types above water table (up to approximately 

25m) 

Distinguishing soil types above the water table is more challenging due to the broader 

range of water content and the increased effect of density on resistivity. Moreover, matric suction 

will cause water to rise above the water table at different heights depending on the soil type and 

particle sizes. However, several steps could be taken to simplify this part as well. For example, it 

is known that water does not rise in sands more than one meter (for typical gradations in nature), 

while clays may remain at water contents close to saturation for tens of meters above the water 

table (Fredlund et al., 2012). It should be noted that other phenomenon such as rain, flooding, 

extreme heat or humidity could alter the moisture content of these soils and should be carefully 

considered when planning a resistivity survey. Therefore, under normal conditions and having 

known the depth of water table, sands should show the whole range of their resistivity in the first 

meter above the water table (104-105 ohm.cm); any sand more than one meter above the water 

table is likely to have a resistivity in the order of 105 ohm.cm. However, clays hold water 

contents close to saturation tens of meters above the water table and the actual height depends on 
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their soil water characteristics curve (SWCC). As can be seen in the generic SWCC plots 

presented in Figure 33, clays can be assumed saturated up to 10 meters above the water table (98 

kPa suction) and the suction decreases gradually above 10 meters although they still maintain a 

relatively high water content up to 100 meters (980 kPa suction) above the water table. As water 

tables deeper than 25 meters are hardly encountered unless it is extreme desert conditions, the 

results in Figure 33 were plotted for the depth of 25 meters to make it more applicable to typical 

field studies conducted for geotechnical purposes. 

 

Figure 33 - Comparative desorption SWCCs for sand, silt, and clay soils (Fredlund et al., 2012) 

Therefore, it is safe to use charts similar to Figure 32 to discern different soil types up to 

25 meters above the water table. While most of the tested soil types do not have any overlap in 

their range of resistivities, some such as CL-2, MH and SM do. A closer look at the composition 

of these soils (Table 3) shows that they are all composed of Kaolinite. Therefore, resistivity is 

consistent for similar minerals and can perhaps give information about the mineral present. 
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4.7 Conclusions and Future Work 

This thesis summarizes an investigation on the relationships between geotechnical 

parameters such as saturation, volumetric water content, dry density, bulk density and soil 

classification parameters with laboratory-based electrical resistivity measurements in order to 

determine soil type. Benchmark samples made from combinations of commercially available 

soils were tested at various water contents and densities to create plots that could be used to 

predict soil type for natural samples. Several validation studies were also conducted using natural 

soils to examine the effectiveness of the developed charts. 

The results indicate that there is clear correlation between these parameters and the 

resistivity of soil. An increase in either of those parameters is associated with a decrease in 

electrical resistivity. However, the effect of these parameters is not linear and is affected by other 

parameters. For example, the resistivity values were found to be highly dependent on the degree 

of saturation up to approximately 60%, at which point increasing saturation did not result in 

significantly different resistivity values. When the soil is close to saturation, the effect of density 

or water quality on resistivity diminishes significantly which makes the task of identifying soil 

type easier. Among the parameters investigated, it was observed that bulk density in conjunction 

with electrical resistivity can offer the best estimate of soil type. 

For most field cases, bulk density is not easily obtained and although this information 

was available for the lab samples, it would not likely be available for a true non-destructive field 

study.  Because the ultimate goal of the work was to develop charts that could be used to 

estimate soil type for field retrieved data, another approach to interpret resistivity surveys based 

on the obtained dataset was proposed in the “Application” section. This approach was based on 
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the idea that the location of the water table was either known or could be determined in the field. 

The results plotted in Figure 27 shows that soils below the water table can easily be distinguished 

based on their resistivity alone. However, uncertainty in interpretation increases above the water 

table as the soils can have a broader range of electrical resistivity depending on water content 

and density and this uncertainty increases as the depth to the water table increases. When 

interpreting the resistivity results above the water table, an estimate of water content is necessary 

which could be affected by the climate condition, matric suction and the SWCC.  

While they were not perfect predictions in all cases, some of the verification studies show 

that resistivity may be significantly affected by the mineral composition of the soil. For example, 

the last case studied in section 4.5 shows that a processed sodium Kaolinite, classifying as ML, 

may appear the same way as a CH on a bulk density-resistivity plot. This finding, while 

interesting, needs to be further investigated.  Only a limited number of natural soil samples were 

investigated and it is recommended that a larger number of data points from natural samples be 

added to the curves in the future. The results also further indicate the need for building a 

database for different soil types found across the globe. A database of soil properties and 

corresponding resistivity values would allow for statistical analysis of the data and for a more 

precise prediction model to be generated. The next phase of the work should also include a 

comparison with field resistivity profiles and the resistivity values obtained in the laboratory for 

samples retrieved within the profile. This type of work would provide an additional blind study 

which could prove very useful in determining the effectiveness of the charts developed as a part 

of this research. 
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