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Abstract 

As drinking water sources become increasingly impaired, enhanced removal of natural 

organic matter (NOM) may be required to curb formation of disinfection byproducts (DBPs) 

upon chlor(am)ination. While carbon nanotubes (CNTs) can adsorb NOM, their properties for 

DBP precursor adsorption have not been elucidated. Nine types of CNTs were assessed for 

trihalomethane (THM), dihaloacetonitrile (DHAN), and total N-nitrosamine (TONO) precursor 

adsorption. Batch isotherm experiments were completed with lake water and, to simulate an 

impaired condition, effluent from a wastewater treatment plant (WWTP). Adsorption varied with 

CNT type and dose, with TONO precursors having the highest percent removals from WWTP 

effluent (up to 97%). Physicochemical properties of CNTs were characterized by gas adsorption 

isotherms and x-ray photoelectron spectroscopy and numerical models were developed to 

identify CNT properties driving DBP precursor adsorption. The models fits were strong (R2 > 

0.92) and indicated removal of the three precursor types increased with percent carboxyl groups 

(p < 0.01) and, for TONO precursors only, cumulative pore volume (CPV, p = 0.001). A 

multicollinearity analysis suggested surface oxides – particularly carboxyl groups – on the CNTs 

increased CPV, presumably by increasing electrostatic repulsive forces, which enhanced 

microporosity sufficiently to overshadow any repulsion of DBP precursors from negatively 

charged surface oxides. A size exclusion analysis revealed all CNT pores were accessible to 

TONO precursors, while THM and DHAN precursors had limited access to the smaller 

micropores. These findings provide a framework to modify CNTs to optimize adsorption of DBP 

precursors and demonstrate the potential of CNTs for TONO precursor removal. 
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1. Introduction 

The tunable physicochemical properties of carbon nanotubes (CNTs) (Tawfick et al., 

2012; De Volder et al., 2014) have the potential to be exploited in drinking water treatment 

plants (DWTPs) to adsorb organic precursors of disinfection byproducts (DBPs). While CNT 

toxicity (Liu et al., 2013; Das et al., 2014) is a concern in water treatment, the technology is now 

available to grow CNTs on various substrates as well as to incorporate CNTs into membrane 

filtration systems (De Volder et al., 2014). This may alleviate problems associated with fate and 

transport of toxic substances related to CNTs (Yang and Xing, 2009) in drinking waters. 

However, before CNT-based attached growth or membrane applications can be developed 

specifically to enhance DBP precursor removal, fundamental investigations are needed to 

quantify the affinity of CNTs for important groups of DBP precursors and elucidate the 

physiochemical properties primarily responsible for their adsorption. 

It is well known that natural organic matter (NOM) in source water reacts with 

disinfectants (i.e., free chlorine or chloramines) to form DBPs at low µg⋅L-1 levels, such as 

trihalomethanes (THMs) (Rook, 1976) and dihaloacetonitriles (DHANs) (Krasner et al., 2006). 

In waters enriched with algal organic matter or impacted by wastewater treatment plant (WWTP) 

effluents, N-nitrosamines can also form, albeit at low ng⋅L-1 levels (Krasner et al., 2013). N-

nitrosamines are a non-halogenated group of DBPs under consideration for regulation in drinking 

waters due to their high toxicity (Hrudey and Charrois, 2012). While the majority of N-

nitrosamine research to date has focused on N-nitrosodimethylamine (NDMA) due to its 

prevalence in drinking water systems (Russell et al., 2012), recent studies have demonstrated 

NDMA may only comprise ~5% of total N-nitrosamines (TONO) in chloramine systems (Dai 

and Mitch, 2013). As such, relatively little is known about the removal of TONO precursors by 
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engineered sorbents, although a recent study demonstrated that they have some affinity for 

activated carbon (Dai et al., 2012). Further, the authors are aware of no studies that have assessed 

the concomitant removal of THM, DHAN, and TONO precursors in sorption processes. With 

respect to CNTs, other researchers have demonstrated their affinity for various NOM fractions in 

water (Wang et al., 2009; Yang and Xing, 2009), although these investigations were geared 

towards minimizing NOM uptake by CNTs to maximize adsorption of other target compounds. 

Regardless, development of novel sorbents with enhanced affinities for organic DBP precursors 

could potentially be leveraged to curb DBP formation in finished drinking waters, regardless of 

the disinfection scheme used. 

As DBP measurements are time- and labor-intensive, reliable DBP precursor surrogate 

measures can be valuable screening tools to assess treatment. Previous studies by this research 

group have demonstrated metrics from fluorescence excitation-emission matrices (EEMs) 

collected before and after treatment but prior to chlor(am)ination were strong total THM 

(TTHM) precursor surrogates (Pifer and Fairey, 2014). In these studies, the EEMs were 

decomposed by parallel factor analysis (PARAFAC) to identify principal fluorophore groups 

(Stedmon and Bro, 2008). The corresponding maximum intensity values, FMAX, of humic- and 

fulvic-like fluorophores correlated strongly with TTHM precursor concentrations. A more recent 

study found strong correlations between fluorescence intensity values from peak-picking (i.e., 

excitation-emission pairs, IEx/Em) and removal of TTHM and DHAN precursors (Do et al., 2015). 

There is, however, a strong basis for why fluorescence may be useful as a TONO precursor 

surrogate. For example, in contrast to EPA Method 521 N-nitrosamines, algal-derived organic 

matter is a strong precursor to uncharacterized N-nitrosamines measured by the TONO assay 

(Krasner et al., 2013). Additionally, Liao and colleagues found strong correlations between the 
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removal of NA9FP – the sum of the FP of the six N-nitrosamines regulated under the UCMR2 

along with N-nitrosomorpholine, N-nitrosopiperidine, and N-nitrosodiphenylamine – and the 

regions of a fluorescence EEM associated with aromatic proteins (R = 0.88) and soluble 

microbial products (R = 0.90) (Liao et al., 2014). Aromatic proteins are nitrogen-containing and 

N-nitrosamine precursors can be present as functional groups, while soluble microbial products 

have been identified as an NDMA precursor (Krasner et al., 2013). In essence, secondary, 

tertiary, and quaternary amines may not fluoresce themselves but may be associated with 

compounds that do so. Coupled with the labor-intensive nature of TONOFP tests, a fluorescence-

based TONO precursor surrogate would advance development of control measures for these 

DBPs. 

Given that the structure of CNTs is equivalent to that of a rolled graphene sheet, their 

physicochemical properties dictate their functionality. CNTs can be produced in single-walled 

(SW) and multi-walled (MW) varieties, both of which have high specific surface area and range 

in hydrophobicity (Wang et al., 2009; Yang and Xing, 2009), size (Balasubramanian and 

Burghard, 2005), shape (De Volder et al., 2014), texture (Birch et al., 2013), defects (Shih and 

Li, 2008), and functionalities (Cho et al., 2008), all of which can be manipulated for their 

intended application. The ability to fine-tune CNT properties is an attractive option for use as a 

sorbent in drinking water treatment, but it is not yet known what properties are desirable for DBP 

precursor removal. Adsorption by CNTs is based on accessible surface area, which includes 

aggregated pores and large external surface area, in contrast to activated carbon, which 

preferentially adsorbs lower molecular weight compounds due to size exclusion from 

micropores. CNTs have been shown to have high adsorption capacities for organic contaminants 
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(Ren et al., 2011) and to outperform other microporous adsorbents in competitive adsorption 

systems (Upadhyayula et al., 2009). 

The objective of this study is to assess physicochemical CNT properties for enhanced 

TTHM-, DHAN-, and TONO-precursor adsorption. Nine commercially available CNTs were 

selected with a variety of characteristics and used in batch isotherm tests with two diverse water 

sources – a well-characterized lake water (Sen et al., 2007) that serves as a drinking water source 

and an effluent from a conventional WWTP. The TTHM-, DHAN-, and TONO-precursor 

concentrations in the raw and CNT-treated waters were indirectly measured using a recently 

verified DBP formation potential (DBPFP) test (Do et al., 2015), modified from Standard 

Methods 5710-B and D (Eaton, 2005). Each CNT type was characterized physically by gas 

adsorption isotherms to determine their specific surface area and pore volume distributions, and 

chemically by x-ray photoelectron spectroscopy (XPS) to determine the relative composition of 

surface functional groups. These physicochemical properties were used as primary variables in 

models to assess the adsorption of TTHM-, DHAN-, and TONO-precursors. Modeling results 

revealed strong correlations between CNT properties and removal of all three DBP precursor 

types. The findings of this study provide guidance for selective modification of CNTs for 

enhanced DBP precursor adsorption. 

2. Materials and Methods 

2.1. Site Description and Sample Collection 

 Waters used for the isotherm experiments originated from Beaver Lake, the drinking 

water source for Northwest Arkansas, and the West Side Wastewater Treatment Plant (WS-EFF) 

in Fayetteville, AR. Beaver Lake water (BL-RAW) was collected at the intake structure of the 

Beaver Water District DWTP (Lowell, AR) on July 7, 2014. Details on the land use and nutrient 
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inputs in the Beaver Lake watershed can be found elsewhere (Sen et al., 2007). WS-EFF samples 

were collected June 6, 2014 from the WWTP effluent. The plant utilizes biological nutrient 

removal, depth filtration, and ultraviolet disinfection with effluent aeration prior to discharge. 

Raw water characteristics are detailed in Table S1. Both waters were stored in 50-L low-density 

polyethylene carboys at 4 °C in the dark prior to use in the isotherm experiments. 

2.2. Experimental Procedures 

2.2.1. Bottle-Point Isotherms 

 Bottle-point isotherms were conducted with nine types of commercially available CNTs, 

selected to cover a range of wall type (SW and MW), diameter, and length (Table S2). CNTs 

were added to the sample waters at doses of 0-, 25- and 50 mg⋅L-1, in triplicate, in 1.25 L 

headspace-free amber glass bottles and were tumbled end-over-end for 3 days. Lu et al. (2007) 

showed that 4 hours was sufficient to reach equilibrium in a bottle-point isotherm study with 

MWCNTs and NOM-spiked waters. An equilibrium time of 3 days (i.e., 18 times longer) was 

chosen in this study and assumed to be a sufficient equilibration period for all precursors given 

the diversity of DBP precursors in the sample waters, including those for TONO for which little 

characterization information exists. The pH drift during the 3 days of tumbling was less than 0.1 

pH unit from the initial values reported in Table S1. CNT doses were chosen to achieve less than 

100% removal based on preliminary TTHMFP and DHANFP removal tests, the results of which 

are detailed in Table S3. It is important to note that the goal of this study does not include 

determination of the required CNT doses at a DWTP; rather, this study is intended identify CNT 

properties for enhanced DBP precursor adsorption and future studies will focus on development 

of an optimized CNT type and application mode. Following tumbling, BL-RAW samples were 

filtered through pre-rinsed 0.45-µm polyethersulfone (PES) membranes (Karanfil et al., 2003). 
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The WS-EFF samples were passed through pre-rinsed 0.7-µm glass fiber filters prior to 0.45-µm 

PES filtration, as direct filtration with the PES membranes was impractically slow. In both cases, 

filtration removed all CNTs from the water samples, which was confirmed by the lower chlorine 

residuals (or higher demand) of the blank relative to the CNT-treated waters (Table S4). Methods 

used for measuring dissolved organic carbon (DOC) and fluorescence EEMs, and performing 

PARAFAC analysis are in the Supplementary Information (SI) in Appendix 1. 

2.2.2. DBPFP 

 The procedure developed by Do et al. (2015) was used to assess the DBPFP of untreated 

waters (i.e., samples not exposed to CNTs) and CNT-treated waters and is detailed in the SI. 

EPA Method 551.1 with modifications (Pifer and Fairey, 2012) was used to extract TTHMs and 

DHANs into n-pentane. A gas chromatograph equipped with an electron capture detector (GC-

ECD, Shimadzu 2010) was used to quantify TTHMFP (the sum of trichloromethane, 

dichlorobromomethane, dibromochloromethane, and tribromomethane formation potential) and 

DHANFP (the sum of dichloroacetonitrile, bromochloroacetonitrile, and dibromoacetonitrile 

formation potential). Details regarding the GC standard curve are provided in the SI. Blanks and 

check standards complied with EPA Method 551.1. 

 Assessment of total N-nitrosamine formation potential (TONOFP) began with a modified 

SPE procedure from EPA Method 521, adapted from Kulshrestha et al. (2010) SPE columns 

were conditioned with methanol and Milli-Q water, and then 500 mL sample aliquots were 

pulled through the columns at a flow rate of 5 mL⋅min-1. Following 10 minutes of column 

aspiration, N-nitrosamines were eluted from the SPE columns using 12 mL of methanol. All 

remaining water was removed from the column extracts using a sodium sulfate drying column 

rinsed with an additional 3 mL of methanol; leached sodium sulfate was subsequently removed 
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with a 0.2 μm nominal pore size polytetrafluoroethylene syringe filter. Samples were 

concentrated to 1 mL in a 37 °C water bath using an evaporator with ultra high purity nitrogen 

gas and stored at -20 °C. To eliminate potential interferences, S-nitrosothiols and nitrite, if 

present, were quenched immediately before TONO measurement from sample extracts with 20 

g⋅L-1 mercuric chloride in Milli-Q water and 50 g⋅L-1 sulfanilamide in 1 N HCl, respectively. 

Notably, ion chromatography results (Table S1) indicated no nitrite in raw waters (method 

detection limit, MDL = 0.008 mg⋅L-1). An Eco Physics CLD 88sp chemiluminescence NO 

detector was used to quantify N-nitrosamines in purified samples, as detailed in Mitch and Dai. 

(2012) TONO concentrations were determined using a five-point NDMA standard curve, which 

was rerun after every four samples to account for sample mass recoveries. To prevent sample 

carryover, blank spike samples were run between each sample. As untreated BL-RAW samples 

had average TONO concentrations of 33 ng⋅L-1 as NDMA, just above the MDL of this 

procedure, TONO was not measured for these CNT-treated samples. 

2.2.3. CNT Characterization 

 CNT physical characteristics were measured rather than relying on manufacturer 

specifications (Table S2). The pore volume distribution and Brunauer-Emmett-Teller (BET) 

surface area of the CNTs were measured using a Quantachrome Nova 2200e Surface Area and 

Pore Size Analyzer using N2 and CO2 gas adsorption at 77 K and 273 K, respectively. 

Adsorption isotherms (Figure S1) were collected at partial pressures of 0.005-0.99 using step 

sizes of 0.011-0.095. Pore volume distributions (Figure S2) were calculated from the isotherms 

using a hybrid density functional theory model that assumed slit pore geometry for micropores 

and slit or cylindrical pore geometry for mesopores (Zhu et al., 2011). The BET surface area 

(SBET) was calculated using the N2 adsorption isotherm in the linear relative pressure range from 
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0.05-0.30. However, it should be noted that SBET is calculated without regard for the information 

given about micropores by the CO2 adsorption isotherm. As such, SBET is more suitable for 

comparing the amount of specific surface area individual CNT types have relative to each other, 

rather than their absolute specific surface area (Zhu et al., 2011).  

XPS measurements were performed on pristine CNTs using a PHI 5000 VersaProbe 

spectrometer with an AlKα source, and a vacuum of 10-8 Torr was maintained during analysis. 

Methods for the XPS data analysis are detailed in the SI and carbon spectra deconvolutions are 

shown in Figure S3. 

2.2.4. Data Modeling 

To assess the impact of physicochemical CNT characteristics on DBP precursor 

adsorption, a multivariate analysis was performed for the three groups of DBPs. DBPFP was 

expressed as a ratio, as the median of each triplicate sample to the median of each untreated 

sample – either BL-RAW or WS-EFF, as appropriate. The median was utilized, rather than the 

mean, due to its relative insensitivity to outliers. The potential undue influence on the mean 

caused by outliers in the data is exacerbated by small sample sizes (e.g., n=3) for a given CNT 

type and dose. The following independent variables are associated with each group of DBPs: 

DOC ratio, UV254 ratio, CNT dose, carbon-carbon bonds, alcohol groups, carbonyl groups, 

carboxyl groups, SBET, and cumulative pore volume (CPV). A binary variable (called Water 

Type) distinguishing between water types was also included in models of TTHM and DHAN 

Ratio. A binary variable was deemed more appropriate than including water quality 

characteristics as individual independent variables because these characteristics do not vary 

among the samples of a given water type. This variable was only used for TTHM and DHAN 

Ratio because TONO Ratio does not include samples of BL-RAW that were below the MDL. 
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DOC and UV254 ratio were calculated using procedures analogous to DBP ratio and were 

incorporated into the numerical models to assess their usefulness as DBP precursor surrogates, as 

opposed to the other independent variables related to CNT properties. An additional binary 

variable distinguishing single- and multi-walled CNTs is explored in the SI. Analysis of variance 

was used to study associations between DBP ratios and independent variables, or explanatory 

factors; equivalent linear regression was used to test hypotheses about factor levels while 

controlling for other factors. Models were estimated using STATA/IC 11.2 statistical software 

(StataCorp, 2009) which leverage principles of applied regression analysis as detailed by Draper 

and Smith (1998). 

3. Results and Discussion 

3.1. DBP Precursor Adsorption by CNTs 

Figure 1 shows percent removals of TTHMFP and DHANFP from BL-RAW (Figure 1A) 

and of TTHMFP, DHANFP, and TONOFP from WS-EFF (Figure 1B) attributed to each of the 

nine CNT types. Removal of TONOFP is only provided for WS-EFF because the concentration 

was below the MDL in BL-RAW. DBPFP removal is assumed to be due to adsorption of DBP 

precursors by the CNTs. As expected, increasing the CNT dose from 25- to 50 mg⋅L-1 resulted in 

an increase in percent removal for each DBP precursor for all nine CNT types. For TTHM 

precursor removal, the CNT types assessed performed similarly or better on a percent basis than 

the activated carbons used by Najm and colleagues (1991) and Iriarte-Velasco et al. (2008). 

Additionally, Iriarte-Velasco and colleagues reported removal of DOC (a commonly used as a 

TTHM precursor surrogate) as 27.6 and 2.2 mg DOC g-1 GAC for two types of GAC tested. In 

comparison, the removal of DOC from BL-RAW ranged from 8.5-24.2 mg DOC g-1 CNT, while 

the removal from WS-EFF was 11.4-57.1 mg DOC g-1 CNT, depending on the CNT type. 
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DHAN can be formed through two pathways utilizing different reactants, which include: (1) the 

decarboxylation pathway, in which chloramine (and/or free chlorine) reacts with amine-

containing moieties of NOM and (2) the aldehyde pathway, where an aldehyde incorporates 

chloramine-nitrogen (Shah and Mitch, 2012). For BL-RAW samples, the percent removals of 

DHAN precursors were less than that of TTHM precursors for all nine CNT types; in contrast, 

for WS-EFF samples, removal of DHAN precursors by CNT Types 1, 2, and 8 surpassed 

removal of TTHM precursors. Though other precursors in natural waters may contribute to 

DHANFP in an unknown degree, this relative difference in precursor removal between BL-RAW 

and WS-EFF suggests the possibility either the amine- or aldehyde-based precursors are more 

prevalent in WS-EFF and have a greater affinity for CNTs than the less abundant precursors.  

Average percent removal of TONO precursors reached a maximum of 93% (Type 9) at a 

CNT dose of 25 mg⋅L-1 and 97% at the higher CNT dose. Because of a lack of similar studies 

involving CNTs and TONO precursors, direct comparisons to the literature are not possible. 

However, using linear interpolation, we compared these results to Hanigan et al. (2012) who 

quantified NDMA precursor adsorption in batch studies with activated carbon and found that 6 

of the 9 CNT types achieved approximately the same or higher percent removals of TONO 

precursors on a mass sorbent basis. It is important to note that NDMA may only comprise ~5% 

of TONO formed following chloramination of wastewater effluent organic matter (Dai and 

Mitch, 2013) and little is known about the physicochemical properties of TONO precursors 

relative to NDMA precursors. Additionally, the average percent removal of TONO precursors at 

the 50 mg⋅L-1 CNT dose was 31% greater than either TTHM or DHAN precursor removal. 

Hydrophilic base fractions of organic matter are considered the most likely N-nitrosamine 

precursors in DWTPs (Wang et al., 2013) and WWTP effluent (Pehlivanoglu-Mantas and 
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Sedlak, 2008). Taken together, this may indicate that CNTs can sorb both hydrophobic and 

hydrophilic NOM fractions from natural waters although additional testing is required to support 

such an assertion. Regardless, the results in Figure 1B illustrate that many CNT types have high 

affinities for TONO precursors, the underlying reasons for which are discussed further in Section 

3.3. 

3.2. CNT Characterization 

The physical and chemical characteristics of each CNT type are summarized in Table 1. 

The shape of the gas adsorption isotherms (Figure S1) indicated the nitrogen adsorption 

isotherms were IUPAC Type II and the carbon dioxide adsorption isotherms were Type I (Sing 

et al., 1985; Zhang et al., 2010; Adeniran and Mokaya, 2015). CPV varied almost one order of 

magnitude, from 0.135 cm3⋅g-1 (Type 7) to 1.267 cm3⋅g-1 (Type 2). The CPV measurements of all 

CNT types fell within the range of values reported in the literature (0.104-2.46 cm3⋅g-1), which 

vary based on CNT dimensions and the number of walls and are associated with both pristine 

and modified CNTs (Zhang et al., 2010; Adeniran and Mokaya, 2015; Apul and Karanfil, 2015). 

Pore volume distributions were bimodal (Figure S2), with microporosity assumed to be 

associated with the interstitial space within CNT bundles and mesoporosity associated with the 

space within individual tubes (Yang et al., 2005). SBET measurements (Table 1) were within 55% 

of supplier specifications (Table S2) in all cases with the exception of Type 2, which was 106% 

greater. In fact, SBET for Type 2 (837 m2⋅g-1) was higher than the range reported in the literature 

for SWCNTs (22-662 m2⋅g-1) (Zhang et al., 2010; Birch et al., 2013). However, SBET can vary 

based on CNT dimensions and the methods of synthesis and purification, and thus, values 

outside the ranges reported in the literature are not unexpected. For all MWCNT types, SBET fell 

within the range reported in the literature (58-653 m2⋅g-1) (Cho et al., 2008; Zhang et al., 2010; 
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Birch et al., 2013; Apul and Karanfil, 2015). Elemental composition data from deconvolution of 

carbon spectra from XPS measurements (Figure S3) indicated that surface oxides (i.e., the sum 

of C-O, C=O, and COO functional groups) comprised 11% (Type 7) to 14% (Type 2) of the 

CNTs (Table 1), which falls into the range (6-32%) reported by others (Ago et al., 1999; 

Komarova et al., 2015). In Section 3.3, we explore relationships between CNT properties and 

DBP precursor adsorption. 

3.3. Impacts of Physicochemical CNT Properties on DBP Precursor Adsorption 

Multivariate analysis for each DBP type yielded regression coefficients and p-values 

(Table 2) for TTHM (n = 36), DHAN (n = 36) and TONO (n = 18). Coefficients with p < 0.05 

are assumed to be nonzero and indicate a significant effect on DBP ratio (i.e., influent-

normalized effluent concentration), controlling for other variables in the model. Significance of 

an independent variable in the negative direction indicates that an increase in the magnitude of 

that variable resulted in a decrease in DBP ratio, otherwise stated as an increase in the removal of 

that DBP precursor by the nine CNT types. A scatterplot of residuals versus fitted values 

suggested constant error variance (Figures 2A, B, and C). R-squared values indicated strong 

correlations between fitted values and observed values of DBP ratio for TTHM (R2 = 0.92, 

Figure 2D), DHAN (R2 = 0.92, Figure 2E) and TONO (R2 = 0.96, Figure 2F). In essence, the 

model has no discernible bias to the magnitude of DBP ratio and at least 92% of the variation is 

explained by the measured CNT properties. 

 The regression coefficients and p-values in Table 2 indicate several notable trends. 

Opposing signs of significance for the Water Type binary variable for TTHM Ratio and DHAN 

Ratio indicate that in comparing DBP precursor removal from the two waters, there was greater 

removal of (1) TTHM precursors from BL-RAW and (2) DHAN precursors from WS-EFF 
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samples when controlling for all other variables in the model. Also, across all three DBP groups, 

an increase in either CNT dose or the amount of carboxyl groups resulted in greater removal of 

precursors. That CNT dose shows this trend only confirms the effect of these particular dosages 

illustrated in Figure 1. However, the relationship between DBP ratio and the percent of carboxyl 

groups is intriguing due to the significance of that variable across all DBP groups and suggests 

that CNT surface chemistry is important for DBP precursor adsorption. For TONO Ratio only, a 

positive correlation with the percent of alcohol functional groups indicates a decrease in the 

amount of those surface oxides increased adsorption of TONO precursors. Additionally, for 

TONO Ratio alone, there was a significant relationship with CPV, indicating that an increase in 

CPV resulted in enhanced TONO precursor removal. Notably, true relationships between DBP 

precursor removal and CNT surface chemistry would be obscured by large errors in XPS carbon 

spectra deconvolution or any other independent variable. The risk of accidentally or randomly 

observing a relationship that is untrue is kept low by the choice of significance level (alpha = 

0.05). Therefore, we have confidence in the importance of significant chemical characteristics in 

the models.  

Surface oxides are generally considered to inhibit sorption of NOM (i.e., DBP 

precursors) to activated carbon due to repulsion caused by their negative surface charge (Karanfil 

et al., 2007). However, the results of the multivariate model (Table 2) indicate that an increase in 

carboxyl groups increases adsorption of all three groups of DBP precursors. Zhang et al. (2015) 

postulated a link between chemical and physical CNT characteristics that may be relevant here: 

repulsive forces created by negatively charged oxygen-containing functional groups enlarge 

spaces between individual CNTs in bundles thereby increasing CPV and SBET. Additionally, 

functional groups generally form at defect sites in the CNT walls which are also locations that 
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allow access inner microporosity or mesoporosity (depending on the inner diameter of the CNT) 

(Yang et al., 2005). It has also been shown that the presence of surface oxides increases the 

hydrophilicity of CNT surfaces, which could enhance the adsorption of hydrophilic DBP 

precursors, such as those that react with chloramines to form N-nitrosamines (Zhang et al., 

2015). Additionally, amine-based groups serving as N-nitrosamine precursors are positively 

charged at circumneutral pH. Thus, these groups would experience electrostatic attractions to the 

negatively charged carboxylic acid functionalities on the CNTs, which may explain the high 

removal of TONO precursors relative to TTHM and DHAN precursors. Hydrogen bonding may 

also be an important adsorption mechanism, which would be consistent with our results, as 

increases in oxygen groups will increase adsorption when hydrogen bonding is important (Pan 

and Xing, 2008). However, application of CNTs in the water produces hydrophobic interactions 

that could obscure the contribution of hydrogen bonding as an adsorption mechanism. The 

multicollinearity of the physical and chemical properties indicates that both CPV and oxygen-

containing functional groups are important to CNT performance for DBP precursor removal. 

To explore the concept of DBP precursor size exclusion from the CNT pore networks, 

linear regression models were refit for all DBP types by arbitrarily increasing minimum pore 

widths used for the computation of pore volume while all other variables remained unchanged 

(Figure 3). For TTHM, CPV p-values were large (p > 0.5) at low pore widths (< 5 nm) and only 

came close to significance (p = 0.079) above 15 nm. For DHAN, CPV p-values decreased from 

~0.15 and became significant (p = 0.05) near a minimum pore width of 7 nm and remained 

significant throughout. For TONOFP, pore volume had a negative effect (i.e. more precursor 

adsorption occurred as pore volume increased) and pore width had relatively little impact on the 

importance of pore volume. On balance, the results in Figure 3 indicate that size exclusion 
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effects by the CNT pores could impact adsorption of TTHM and DHAN precursors, but not 

TONO precursors. The trends in Figure 3 could indicate that TONO precursors are generally 

smaller in size (or more accessible to the smaller CNT pores) than TTHM and DHAN 

precursors. At smaller pore widths, TONO precursors may not have much competition for 

adsorption sites; as pore width increases toward pores in excess of 15 nm, larger and more 

abundant TTHM and DHAN precursors could utilize a greater portion of the adsorption capacity. 

Others have shown that larger molecules at relatively high concentrations (such as TTHM 

precursors) can block CNT pores and limit further adsorption, while small molecules at trace 

concentrations (such as TONO precursors) experience little competition for adsorption sites 

(Hanigan et al., 2015). 

3.4. Fluorescence Metrics as DBP Precursor Surrogates 

Fluorescence EEMs were measured on untreated and CNT-treated (but not 

chloraminated) waters to evaluate its usefulness as a precursor surrogate and perhaps limit time-

consuming DBPFP analyses in upcoming studies. Fluorescence intensities at all wavelength pairs 

measured were regressed against the DBP data to identify pairs for which strong correlations 

exist. Figure 4 shows the correlation coefficients presented on axes equivalent to the EEMs for 

TTHMFP (Panel A, RMAX
2 = 0.86), DHANFP (Panel B, RMAX

2 = 0.88), and TONOFP (Panel C, 

RMAX
2 = 0.50) in WS-EFF, and TTHMFP (Panel D, RMAX

2 = 0.78) and DHANFP (Panel E, 

RMAX
2 = 0.80) in BL-RAW. These correlations represent relationships between DBP precursors 

remaining after treatment with CNTs and DBP concentrations formed following FP tests, 

performed using a recently developed method (Do et al., 2015). As expected, correlations are 

strong for TTHMFP and DHANFP in both waters. However, the moderate correlation 

coefficients for TONOFP indicate that fluorescence is unlikely to be a suitable precursor 
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surrogate for total N-nitrosamine precursor concentrations when applied in this manner. 

Interestingly, samples from WS-EFF (Figures 4A, 4B, and 4C) show a large region of 

wavelength pairs that give high correlation coefficients. In contrast, high RMAX
2 values for BL-

RAW (Figures 4D and 4E) are more localized and are centered near I275/480. The insensitivity in 

R2 values shown in Figures 4A, 4B, and 4C was unexpected in light of several studies attributing 

the various regions of EEMs to distinct fluorophore groups (i.e., humic-, fulvic-, tryptophan-, 

and tyrosine-like), each with its unique chemistry (Hudson et al., 2007). The results presented in 

Figure 4 suggest strong relationships among virtually all wavelength pairs, and thus imply 

interdependence (i.e. an increase in a particular fluorophore group could impact other regions of 

the EEM). Fluorescence EEMs were also analyzed by PARAFAC analysis. A detailed discussion 

of the removal of the PARAFAC components by the CNTs and correlations between PARAFAC 

components (Table S5) is provided in the SI. This analysis advances our assertion of fluorophore 

interdependence, which prevents valid conclusions regarding the affinity of CNTs for discrete 

humic-, fulvic- and protein-like fluorophores. The interdependence observed in both EEM 

correlations and PARAFAC components may be indicative of interferences on the protein-like 

fluorophores and preclude the use of fluorescence EEMs alone as a surrogate for TONO 

precursors. However, the nature of these precursors suggests that fluorescence may be utilized 

following elimination of interfering humics (Wang et al., 2015), in applications such as 

asymmetric flow field-flow fractionation where proteins can be physically separated from 

humics prior to fluorescence measurements. 

3.5. Implications 

Based on the importance of surface oxides and CPV for DBP precursor removal, future 

studies are needed to enhance these CNT characteristics and test their impact in sorption 
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systems. Oxidative treatment with a mixture of nitric and sulfuric acid has been shown to result 

in formation of oxygen-containing groups on SWCNTs (Balasubramanian and Burghard, 2005; 

Komarova et al., 2015) and MWCNTs (Ago et al., 1999). Additionally, KOH treatment can 

increase surface area and pore volume, specifically in mesopores (Niu et al., 2007). Based on the 

size exclusion results (Figure 3), this may be particularly important to improve sorption of 

DHAN and TTHM precursors. Furthermore, future studies of CNT modification should be 

paired with a reliable system for CNT integration into DWTP treatment processes. A large range 

of possibilities now exists regarding design of freeform CNT microstructures grown on 

substrates that could be adapted into current treatment processes. These microstructures can be 

grown to exacting specifications of size, shape, and porosity, and conformal coating can be 

applied to manipulate chemical properties (De Volder et al., 2014). Additionally, incorporation 

of CNTs into hollow fiber membranes has been shown to increase membrane flux, fouling 

resistance, thermal stability, porosity, and electrochemically regenerative capability with 

minimal CNT leaching (Huang et al., 2014; Wei et al., 2014; Jafari et al., 2015). 

4. Conclusions 

 With no modification, CNTs have natural affinity for THM-, DHAN, and TONO 

precursors. The breadth of applications discovered for CNTs due to their unique set of 

physiochemical properties speak to their potential for further commercial availability. Though 

CNTs are a novel sorbent with higher costs than standard sorbents, higher performance levels – 

particularly with regard to TONO precursor adsorption – give CNTs an advantage that warrants 

future study. As production costs decrease and the body of research regarding their applications 

increases, CNTs gain potential for feasibility of application in conventional water treatment 

systems. Manipulation of physicochemical properties to enhance DBP precursor adsorption in 
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concert with reliable methods of integration into water treatment processes could provide 

DWTPs with a new technique for meeting the increasingly rigorous water quality standards for 

DBP control. 
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4. Figures and Tables 

Table 1. Physical and Chemical Characteristics of the selected CNTs 

CNT 

Type 

Physical Characteristics 

from SAA1 

Relative Amount of Chemical Bonds from 

XPS2  

CPV3  

(cm3 g-1) 

SBET
4 

(m2 g-1) 

C=C or 

C-C5 
C-O6 C=O7 COO8 

1 0.598 446 77.75 8.56 2.70 1.83 

2 1.267 837 73.83 10.25 2.90 1.09 

3 0.163 104 78.55 7.07 2.98 1.45 

4 0.627 426 75.09 8.53 3.90 2.23 

5 0.296 171 76.89 7.86 2.65 2.11 

6 0.541 298 78.17 7.72 2.88 1.73 

7 0.135 92 80.85 6.76 1.81 1.97 

8 0.442 265 78.40 7.80 2.18 1.98 

9 0.471 262 77.13 7.45 3.00 1.91 
1Quantachrome Nova 2200e Surface Area and Pore Size Analyzer; 
2PHI 5000 VersaProbe x-ray photoelectron spectrometer, reported as the percent of total 

carbon bond types present and does not include shake-up features 
3Cumulative Pore Volume; 
4Surface area calculated using the Brunauer-Emmett-Teller (BET) model; 5Analyzed as 

total of C=C, C-C, and C-H bonds;  
6Alcohol bonds;  
7Carbonyl bonds;  
8Carboxyl bonds 



 
20

Table 2. Linear regression models of DBP ratio for TTHMFP, DHANFP and TONOFP 

Independent Variables1 
TTHMFP Ratio DHANFP Ratio TONOFP Ratio 

Coeff.2 p-value Coeff. p-value Coeff. p-value 

DOC Ratio 0.618* 0.000 0.427* 0.005 1.667 0.097 

UV254 Ratio 0.039 0.731 0.384* 0.003 -1.900** 0.016 

Water Type3 -0.099** 0.000 0.050* 0.009 - - 

CNT Dose (mg/L) -0.004** 0.000 -0.003** 0.006 -0.011** 0.001 

Carbon-Carbon Bonds (%) 0.018 0.441 0.002 0.918 -0.014 0.823 

Alcohol Groups (%) 0.028 0.682 -0.081 0.264 0.445* 0.016 

Carbonyl Groups (%) -0.007 0.859 0.026 0.537 -0.089 0.462 

Carboxyl Groups (%) -0.112** 0.002 -0.212** 0.000 -0.246** 0.010 

BET Surface Area (m2 g-1) -0.000 0.837 0.001 0.239 0.000 0.798 

CPV4 (mL g-1) -0.096 0.679 -0.376 0.140 -2.246** 0.001 

Constant -1.034 0.666 0.919 0.710 -0.042 0.994 
*Positive significance (p < 0.05) 
**Negative significance (p < 0.05) 
1Independent variables all represent terms in regression equations 
2Regression coefficients  
3Binary variable distinguishing between BL-RAW and WS-EFF samples, not applicable to TONO 

ratio  
4Cumulative Pore Volume. 

;lkj;lkj  
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Figure 1. Percent removal of TTHMFP (� 25 mg•L-1 CNT dose, ☐ 50 mg•L-1 CNT dose), 

DHANFP (� 25 mg•L-1 CNT dose, ☐ 50 mg•L-1 CNT dose) and TONOFP (�25 mg•L-1 CNT 

dose, ☐☐☐☐ 50 mg•L-1 CNT dose) by nine CNT types from Beaver Lake raw water (BL-RAW, 

Figure 1A) and West Side wastewater treatment plant effluent (WS-EFF, Figure 1B). Values 

above bars in Figure 1A correspond to the CPV (cm3•g-1) of each CNT Type and hold true in 

Figure 1B as well. For TTHMFP and DHANFP, 95% confidence intervals are shown based on 

triplicate samples on a molar basis. Average FP for untreated BL-RAW samples was 0.095- and 

0.022 μmol•L-1 for TTHMs and DHANs respectively and 0.250- and 0.086 μmol•L-1 respectively 

in WS-EFF. TONOFP was measured for WS-EFF only in mass-based units as NDMA with an 

average concentration of 400 ng•L-1 as NDMA for untreated samples. 

 

  

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

D
B

P
F

P
 R

e
m

o
v

a
l

fr
o

m
 W

S
-E

F
F

CNT Type

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9

D
B

P
F

P
 R

em
o

v
al

fr
o

m
 B

L
-R

A
W

CNT Type
A

B

0.598 1.267

0.163

0.627

0.296
0.541

0.135

0.442 0.471



 
22

 

 

Figure 2. Error variance of models for TTHMFP Ratio (Figure 2A), DHANFP Ratio (Figure 2B) 

and TONOFP (Figure 2C) and representations of model correlations with observed values of 

TTHMFP, DHANFP and TONOFP Ratios (Figures 2D-2F). Independent variables used to fit 

models of TTHMFP, DHANFP, and TONOFP Ratio are detailed in Table 2. 
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Figure 3. Significance of Cumulative Pore Volume (CPV) in linear regression models (see Table 

2) of TTHMFP ratio (–), DHANFP ratio (–) and TONOFP ratio (–) as calculated by arbitrarily 

increasing the minimum pore widths used to calculate CPV for all nine types of carbon 

nanotubes. A p-value of 0.05 is included to illustrate the point below which CPV is statistically 

significant. 
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Figure 4. Correlation coefficients for fluorescence intensities of WS-EFF samples in relation to 

TTHMFP (Figure 4A), DHANFP (Figure 4B) and TONOFP (Figure 4C) and of BL-RAW 

samples in relation to TTHMFP (Figure 4D) and DHANFP (Figure 4E). 
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“Trihalomethane, Dihaloacetonitrile, and Total N-nitrosamine Precursor Adsorption by Carbon 

Nanotubes: The Importance of Surface Oxides and Pore Volume” 

  



 
34

List of Tables and Figures 

Table S1. Raw Water Characteristics 

Table S2. Manufacturer-specified properties of the selected carbon nanotubes 

Table S3. Preliminary DBPFP Removal Testing 

Table S4. Chlorine Residuals following filtration in batch studies  

Table S5. Fluorescence maximum (FMAX) values  

Table S6. Mean percent removal of each PARAFAC component  

Table S7. Linear correlations (R) between components of BL-RAW and WS-EFF PARAFAC 

Models 

Figure S1. Gas adsorption isotherms for CNT Types 1-9 

Figure S2. Pore volume distributions for CNT Types 1-9 

Figure S3. Deconvolutions of carbon spectra from XPS measurements for CNT Types 1-9 

Figure S4. Linear regression of fluorescence at RMAX
2 excitation-emission wavelength pairs 

Figure S5. PARAFAC component EEMs for Beaver Lake Raw Water 

Figure S6. PARAFAC component EEMs for West Side WWTP Effluent 

Figure S7. Linear regressions of DBPFP percent removal against percent removal of FMAX of 

Components. 

Figure S8. Sum of squared errors comparing PARAFAC models 

Figure S9. Linear regressions of TTHM- and DHANFP against UV254  



 
35

Methods 

Dissolved organic carbon was measured for each filtered sample using a GE 5310C TOC 

analyzer. Anion concentrations were measured for both BL-RAW and WS-EFF raw waters using 

a Metrohm 850 Ion Chromatograph with conductivity and UV detectors. Fluorescence EEMs 

were collected using a dual monochromator fluorescence detector (Agilent Technologies, Model 

G1321A). Wavelengths used were 250 to 400 nm for excitation and 270 to 600 nm for emission, 

both in 1 nm increments. A five-point standard curve of quinine sulfate in 0.1 M sulfuric acid 

was used due to its distinct response at excitation and emission wavelengths of 350 and 450 nm, 

respectively, and intensity measurements of all spectra were reported in quinine sulfate 

equivalents (Cory et al., 2010). Absorbance scans were used to correct for inner-filter effects as 

suggested by McKnight et al. (2001) and the MATLAB program Cleanscan (Zepp et al., 2004) 

was used to correct EEMs for Raleigh and Raman scattering. Values of fluorescence intensity at 

excitation and emission wavelengths of 345 nm and 425 nm, respectively, are strongly correlated 

with TTHM precursors (Do et al., 2015) and are shown in Table S1 for both BL-RAW and WS-

EFF. Two models were developed using parallel factor (PARAFAC) analysis on arrays of EEMs 

for each water type to reveal components with distinct excitation-emission signatures and their 

maximum intensities, FMAX (Andersen and Bro, 2003). 

Disinfection by-product formation potential (DBPFP) of the samples was measured using 

the procedure detailed in Do et al. (2015) Samples were warmed to room temperature, amended 

with 20 mM sodium bicarbonate, and adjusted to pH 7.0 using NaOH and/or HCl. Pre-formed 14 

g⋅L-1 as Cl2 stock monochloramine solution was prepared immediately before chloramination as 

detailed previously. The stock total chlorine and monochloramine concentrations were measured 

on a representative sample volume, following 4,000-6,000 times dilution with Milli-Q water, 
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using Hach powder pillows with a UV-Vis 2450 spectrophotometer (Shimadzu) at wavelengths 

of 655- and 552 nm, respectively. Samples were dosed with pre-formed monochloramine at 300 

mg⋅L-1 as Cl2 and stored headspace-free in 1-L chlorine demand free amber glass bottles for 7 

days in the dark at room temperature (25 ºC ± 2 ºC). Following the hold time, the 

monochloramine and total chlorine residuals were measured and quenched with 20.1 g of a salt 

mixture (mass ratio of 0.9 g ascorbic acid (C6H8O6): 1 g KH2PO4: 39 g Na2HPO4) added to each 

1 L sample to halt DBP formation reactions as recommended by Kristiana et al. (2014). Total 

trihalomethanes (TTHMs) and dihaloacetonitriles (DHANs) in the West Side wastewater 

treatment plant effluent (WS-EFF) samples were quantified by GC-ECD using a 9-point standard 

curve that ranged from 1- to 100 µg⋅L-1. Similarly, TTHMs and DHANs in the Beaver Lake raw 

water (BL-RAW) samples were analyzed using a 12-point standard curve that ranged from 0.1- 

to 100 µg⋅L-1. Blanks and check standards were run after every group of six samples. 

The pH point of zero charge of the carbon nanotubes (CNTs) was not measured because a 

stable suspension could not be achieved without CNT modification. Sonication of CNTs in pure 

water was attempted despite the high probability of damage to the CNT structure (Yan Yan and 

Terentjev, 2012), but failed to produce the stable suspension necessary for zeta potential 

measurements. 
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PARAFAC Analysis 

EEMs were analyzed by PARAFAC to further characterize the dissolved organic matter 

and help generalize the precursor surrogate findings. Given the differences in the water types, 

separate PARAFAC models were used for BL-RAW and WS-EFF samples, each originally 

consisting of 57 EEMs. Two outliers were removed from the BL-RAW data set while no outliers 

were found in WS-EFF samples. Split-half analyses showed that BL-RAW samples could be 

adequately described by a two- or four-component model and the WS-EFF samples could be 

described by a two- or three-component model. Models with the greatest number of components 

(i.e., four components for BL-RAW and three components for WS-EFF) were chosen to explain 

the data because they had the smallest sum of squared errors (Figure S8). 

XPS Data Analysis 

Binding energy scales were charge corrected using a C1s peak position of 284.4 eV (Ago 

et al., 1999; McPhail et al., 2009). C1s peaks were deconvoluted with a Gaussian-Lorentzian mix 

function, allowed to range from 70-80% Gaussian distribution, and a Shirley background 

subtraction (McPhail et al., 2009; Zhang et al., 2014). An asymmetry parameter of 0.19 was 

applied to the peak representing carbon-carbon bonds (Ago et al., 1999); other bonds assigned 

were alcohols (C-O), carbonyls (C=O), and carboxyls (COO) with an additional peak fitted to the 

shake-up features satellite located in the higher binding energy region. Peak locations chosen for 

the carbon spectra deconvolutions were set as allowable ranges based on ranges found in the 

literature. Actual peak locations were allowed to vary within the set range in order to achieve the 

best fit determined by the chi-squared value of the model. The assymetric carbon peak 

representing all types of carbon-carbon bonding was set to 284.38-285.50 eV (Ago et al., 1999; 

Kovtyukhova et al., 2003; Okpalugo et al., 2005; Wang et al., 2007; Zhang et al., 2014). 
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Locations of various types of carbon-oxygen bonds are as follows:  alcohol at 286.00-287.53 eV, 

carbonyl at 286.45-288.03 eV, and carboxyl at 288.39-289.55 eV (Ago et al., 1999; 

Kovtyukhova et al., 2003; Okpalugo et al., 2005; Ramanathan et al., 2005; Wang et al., 2007; 

McPhail et al., 2009; Singh et al., 2014). Shake-up features associated with π-π* transitions were 

fitted at 289.00-291.60 eV (Okpalugo et al., 2005). Each individual peak was allowed to vary 

from 70- to 80% Gaussian distribution in order to find the best fit (McPhail et al., 2009; Kundu 

et al., 2010; Zhang et al., 2014). 

Model Verification and Permutations 

Results in Table 2 are based on reasonable assumptions with respect to a normal 

distribution of residuals and constant error variance. The results of the Wilk-Shapiro test 

(Shapiro and Wilk, 1965) for TTHM (p = 0.788), DHAN (p = 0.066) and TONO (p = 0.339) 

were all greater than p = 0.05; we therefore fail to reject a normal distribution of residuals. 

Further investigation of the relationships between physical and chemical characteristics 

of the nine CNT types through simple linear regressions revealed strong correlations between 

percent alcohol groups and SBET (R2 = 0.95) and CPV (R2 = 0.90). Multiple linear regression 

models of surface oxide groups and physical characteristics showed that alcohol groups were 

significant to SBET and CPV when controlling for carbonyl and carboxyl groups. These findings 

show that multicollinearity of alcohol groups and physical properties results in variance inflation 

factors (VIF = (1 – R2)-1, where R2 is relevant to a multiple linear regression model of one 

independent variable versus the other independent variables) greater than ten, which could make 

it impossible to observe otherwise significant independent variables in models of DBP ratio. Of 

the physical and chemical characteristics, carboxyl groups suffer least from variance inflation 

(VIF = 1.27), and it is possible that this variable serves as a surrogate for significance of physical 
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characteristics. To further study possible significance of alcohol groups in the face of 

multicollinearity, the carbonyl groups variable, which was insignificant in all models, was 

deleted from models of TTHM and DHAN Ratios. This deletion revealed negative significance 

of alcohol groups to DHAN ratio, indicating that an increase in alcohol groups improved 

removal of DHAN precursors.  

As further evidence of multicollinearity, linear regression between SBET and CPV 

variables also results in a very strong correlation (R2 = 0.97). However, in the multivariate 

analysis including both physical variables, only CPV was significant to changes in DBPFP Ratio 

when controlling for surface area. The same cannot be said of SBET when controlling for CPV. 

As the multivariate model is capable of providing a more comprehensive assessment of the 

significance of variables than simple linear regression of variable pairs, it is reasonable to 

conclude that CPV is a more relevant variable to discuss than SBET in terms of relationships to 

chemical characteristics and DBPFP Ratio. 

Nevertheless, Figure S4 shows the linear regressions for the wavelength pair associated with the 

maximum R2 value for TTHM (I369/365) and DHAN (I379/356). Samples were included regardless 

of DBP type (TTHM and DHAN only) or source water and an aggregate R2 value of 0.91 

indicates that fluorescence measurements can be used as a reliable surrogate of organic precursor 

concentrations for TTHM and DHAN. As detailed in the SI, UV254 was also assessed as a DBP 

surrogate, but lacked sensitivity at low absorbance values (less than 0.05 cm-1). 

Modeling CNT Wall Type 

Of the nine types of CNTs studied, two are single-walled (SWCNTs) and seven are 

multi-walled (MWCNTs). To explore the effects of these designations, a binary variable was 

added to the model to distinguish between SWCNTs and MWCNTs in addition to their physical 
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and chemical characteristics (Table 1). This binary variable was significant in both TTHM and 

DHAN models and showed that DBP ratios were significantly smaller in SWCNT-treated waters 

(i.e., SWCNTs adsorbed more TTHM and DHAN precursors). Also, controlling for the new 

binary variable, CPV had negative, significant effects on DBP ratio for DHAN in general (n = 

36) and for TTHM in WS-EFF only (n = 18). However, without more observations of SWCNT 

types and/or greater chemical and physical detail to distinguish between single- and multi-walled 

CNTs, this study does not focus on the general difference in CNT wall type and its relationship 

to other variables.  

Removal of PARAFAC Components 

The maxima locations of PARAFAC Components 1 and 3 in BL-RAW (Figures S5A and 

S5C) and WS-EFF (Figures S6A and S6C) corresponded to locations previously characterized as 

humic- and fulvic-like fluorophores (Pifer and Fairey, 2014). Similarly, the maxima locations of 

Component 2 corresponded to protein-like fluorophores for BL-RAW (Figure S5B) and WS-EFF 

(Figure S6B) (Hudson et al., 2007). Component 4 in the BL-RAW model was considered 

negligible due to its location at maximum emission wavelengths and its low FMAX values, which 

were insensitive to treatment. To gain further insight into the DBP precursors represented by 

each PARAFAC component and their removal by the nine types of CNTs, mean percent 

removals were calculated for each component (Table S6) based on FMAX values for BL-RAW 

and WS-EFF (Table S5).  

Using all nine possible combinations of triplicate samples for both raw and treated waters 

for a given CNT type, a conservatively large range of percent removal values were determined 

and used to calculate mean removals and 95% confidence intervals using the t-distribution 

(Table S5) due to small sample estimates of standard deviation. Removal of Components 1, 2 
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and 3 in WS-EFF by the CNTs all show similar trends in CNT performance to those observed for 

the removal of total THM formation potential (TTHMFP) and dihaloacetonitrile formation 

potential (DHANFP) (Figure S7A and S7B). Additionally, removal of Components 1 and 3 show 

strong correlations to DBPFP in BL-RAW (Figure S7D and S7E). Weak correlations were 

observed for total N-nitrosamine (TONO) formation potential removal (Figure S7C) and 

Components 2 and 4 in BL-RAW. For all nine CNT types in WS-EFF, Component 2 (protein-

like fluorophores) had the highest mean percent removal (32-80%) of the three components. For 

six CNT types in BL-RAW, negative mean percent removals were calculated for Component 2, 

which was attibuted to a combination of low concentrations of protein-like compounds in BL-

RAW source water and interferences of humic- and fulvic-like fluorophores skewing the 

magnitude of the fluorescent response, similar to the findings of others (Mayer et al., 1999). 

Additionally, the samples with negative mean percent removals also have relatively large 95% 

confidence intervals (12-339%). These observations illustrated the need for further investigation 

into the independence of individual PARAFAC components.  

PARAFAC Component Correlations 

Linear associations between PARAFAC components were tested for data sets 

incorporating samples treated with both low and high doses of CNTs. Correlations may be 

considered “weak” if R < 0.5, “strong” if R > 0.8, and “moderate” otherwise (Devore, 2004). As 

shown in Table S7 for the BL-RAW samples, the correlation is strong between Components 1 

and 3 and moderate between Component 1 and Components 2 and 4. In constrast, correlations 

among Components 2, 3, and 4 are weak with R values between 0.43-0.49. For the WS-EFF 

samples, all correlations were strong between the three components, with R values of 0.85, 0.94, 

and 0.97. As such, even if protein-like fluorophore groups were the predominant precursors of 
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TONO, the influence of humic- and fulvic-like fluorophores would obscure this finding and 

produce poor correlations such as those observed in Figure S7C. 

UV254 as a DBP Precursor Surrogate 

Performing selected linear comparisons between single dependent variables and DBPFP 

revealed an interesting relationship between UV254 and TTHMFP (Figure S9A) and DHANFP 

(Figure S9B). While strong linear correlations existed between UV254 for the WS-EFF samples 

(TTHMFP, R2 = 0.74 and DHANFP, R2 = 0.78), those for BL-RAW samples had R2 values less 

than 0.01, indicating the sensitivity of the absorbance scans were insufficient for characterization 

of TTHM and DHAN precursors. The sensitivity of UV254 measurements could possibly be 

improved by utilizing a 5 cm pathlength cuvette, instead of the 1-cm cuvette used in this study. 

However, fluorescence measurements utilize a much smaller pathlength of 0.5 mm while still 

maintaining a comparatively high sensitivity. This in addition to its usefulness across multiple 

water types (Figure S4) indicates fluorescence is a more robust DBP precursor surrogate than 

UV254.  
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Table S1. Raw Water Characteristics 

Water Type BL-RAW1 WS-EFF2 

pH 7.82 7.93 

DOC3 (mg⋅L-1) 2.33 5.98 

UV254 (cm-1) 0.034 0.096 

I345/425 (QSE)4 5.16 14.25 

Specific Conductivity (μS⋅cm-1) 155 535 

Fluoride (mg⋅L-1) 0.11 0.47 

Chloride (mg⋅L-1) 4.1 47.9 

Bromide (mg⋅L-1) 0.11 0.16 

Nitrate (mg⋅L-1) 1.3 23.9 

Phosphate (mg⋅L-1) ND5 0.29 

Sulfate (mg⋅L-1) 8.0 47.2 

Nitrite (mg⋅L-1) ND ND 
1Raw intake water from Beaver Lake collected on July 7, 2014 
2Effluent from the West Side Wastewater Treatment Plant 

collected on June 3, 2014 
3Dissolved Organic Carbon 
4Average fluorescence intensity at excitation and emission 

wavelengths of 325 nm and 425 nm respectively 
5Not detected 
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Table S2. Manufacturer-specified properties of the selected carbon nanotubes. 

CNT1  

Number 

CNT 

Type 

Supplier Description Diameter 

(nm) 

Length 

(m) 

SBET
2 

(m2⋅g-1) 

Supplier 

1 SW3 SWNTs (90%, regular length) 1-2 5-30 300-380 NAM, Inc. 4 

2  SW-DW CNTs 60 0.8-1.6 5-30 407 Cheap Tubes, Inc. 

3 MW5 C-Grade MWNTs 1-3 80-150 NA6 NanoTechLabs, Inc. 

4  MW CNTs 8 nm 2-5 10-30 500 Cheap Tubes, Inc. 

5  MW CNTs 20-30 nm 5-10 10-30 110 Cheap Tubes, Inc. 

6  95%, OD/ID: <10/2-7 nm 2-7 5-15 40-600 NAM, Inc. 

7  95%, OD/ID: 30-50/5-15 nm 5-15 10-20 90-120 NAM, Inc. 

8  PD30L5-20 15-45 5-20 200-400 NanoLab, Inc. 

9  PD30L1-5 15-45 1-5 200-400 NanoLab, Inc. 
1Carbon nanotube 
2Supplier provided specific surface area from nitrogen adsorption isotherms using the Brunauer-Emmett-

Teller (BET) model 
3Single-walled 
4Nanostructured & Amorphous Materials, Inc. 
5Multi-walled 
6Not Available 
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Table S3. Preliminary DBPFP Removal Testing 

 

CNT Dose 

(mg⋅L-1)1 

Water 

Type2 

Average TTHMFP3 

Removal (%) 

Average DHANFP4 

Removal (%) 

0 BL-RAW - - 

5 BL-RAW 14 - 

50 BL-RAW 51 - 

520 BL-RAW 98 - 

0 BL-RAW - - 

5 BL-RAW 26 37 

50 BL-RAW 71 94 

0 WS-EFF - - 

5 WS-EFF 11 20 

50 WS-EFF 67 96 
1Single-walled CNTs were used in all dosed samples 
2Beaver Lake raw water (BL-RAW) was collected on August 15, 2013 

for first set of samples and April 5, 2014 for the second set. West Side 

WWTP effluent (WS-EFF) was collected on April 9, 2014. 
3Average total trihalomethane formation potential based on duplicate 

samples 
4Average dichloroacetonitrile formation potential based on duplicate 

samples 
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Table S4. Chlorine Residuals following filtration in batch studies 

 

CNT Type 
CNT Dose 

(mg⋅L-1) 

Average Chlorine 

Residual (mg⋅L-1) 

  BL-RAW WS-EFF 

Blank 0 9.29 9.26 

1 
25 11.30 10.27 

50 11.47 10.18 

2 
25 13.83 11.32 

50 14.47 11.23 

3 
25 14.63 12.77 

50 14.90 12.31 

4 
25 14.09 12.03 

50 14.85 12.37 

5 
25 14.35 12.40 

50 14.22 10.72 

6 
25 15.30 12.65 

50 15.23 13.50 

7 
25 13.19 12.43 

50 14.00 13.18 

8 
25 14.76 11.20 

50 15.37 10.49 

9 
25 11.94 11.48 

50 13.80 10.80 
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Table S5. Fluorescence maximum (FMAX) values  

 

CNT 

Type 

CNT Dose 

(mg⋅L-1) 

Water Type 

BL-RAW WS-EFF 

C1 C2 C3 C4 C1 C2 C3 

Blank 0 

9.7 5.1 3.0 1.8 17.1 10.1 9.5 

9.9 4.9 3.1 1.8 18.2 11.0 12.5 

9.9 4.3 3.0 1.8 18.0 10.9 12.1 

1 

25 

4.2 1.9 1.1 1.5 8.1 3.5 4.8 

4.2 1.9 1.2 1.6 8.1 3.4 5.0 

4.3 2.0 1.2 1.4 8.4 3.6 5.8 

50 

3.2 1.5 0.9 1.6 5.6 2.2 4.0 

3.2 1.5 0.9 1.3 5.6 2.2 4.4 

3.6 1.9 0.9 1.6 5.4 2.1 5.0 

2 

25 

4.7 2.1 1.6 1.5 7.4 4.0 4.0 

4.9 2.1 1.6 1.5 7.5 4.1 4.2 

4.6 2.2 1.5 1.4 7.5 4.1 4.4 

50 

3.2 1.6 1.0 1.3 4.4 2.3 2.6 

1.8 1.4 1.0 1.7 4.4 2.3 2.6 

4.0 3.2 1.6 1.7 4.5 2.4 2.9 

3 

25 

8.0 6.5 2.3 2.4 13.1 6.4 9.4 

8.2 8.1 2.2 1.8 13.0 6.2 9.2 

7.8 4.5 2.2 1.8 13.6 6.5 10.1 

50 

7.2 6.6 2.1 2.7 10.1 4.2 7.9 

5.2 2.0 1.6 1.6 9.9 4.0 6.8 

7.2 4.0 1.9 1.8 10.0 4.1 7.6 

4 

25 

5.5 3.9 1.6 1.8 8.9 3.5 6.3 

5.6 6.0 1.6 2.0 7.8 3.1 4.7 

5.5 3.8 1.6 1.9 8.3 3.4 6.1 

50 

4.2 3.2 1.2 1.6 5.5 2.1 3.9 

4.0 3.5 1.3 1.8 5.6 2.2 4.3 

4.1 3.3 1.2 1.7 5.7 2.2 4.4 

5 

25 

6.1 6.9 1.9 1.8 10.9 4.8 8.2 

6.6 6.9 2.0 1.7 10.8 4.8 7.7 

6.7 9.9 2.0 1.8 11.1 5.0 9.1 

50 

4.7 2.8 1.4 1.6 7.8 3.1 6.3 

5.5 4.9 1.7 1.8 7.9 3.2 6.2 

5.0 3.5 1.4 1.8 7.5 3.0 5.1 

6 25 

6.8 15.3 1.9 1.9 9.2 3.8 6.7 

6.7 13.3 1.9 1.9 9.2 3.9 6.4 

7.4 7.7 2.1 2.2 9.5 3.9 6.5 
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Table S5 Cont. 

 

CNT 

Type 

CNT Dose 

(mg⋅L-1) 

Water Type 

BL-RAW WS-EFF 

C1 C2 C3 C4 C1 C2 C3 

6 50 

4.9 3.0 1.3 1.8 6.7 2.5 5.3 

- - - - 6.2 2.4 4.2 

5.6 14.3 1.5 1.8 6.6 2.5 5.3 

7 

25 

9.5 10.5 2.7 2.0 14.2 7.1 10.7 

10.2 11.1 2.9 2.0 14.1 7.2 10.7 

7.9 5.2 2.3 1.9 14.1 7.3 10.9 

50 

7.8 17.6 2.1 2.0 11.6 5.1 10.5 

6.7 9.8 2.0 1.9 11.6 5.2 9.0 

8.9 10.8 2.2 2.3 11.7 5.3 9.2 

8 

25 

- - - - 8.9 3.4 7.1 

6.5 7.3 1.7 2.1 9.2 3.6 7.5 

6.1 10.7 1.7 1.7 10.1 3.9 8.4 

50 

4.7 8.0 1.5 1.7 6.7 2.5 5.8 

3.7 3.4 1.2 1.4 6.6 2.3 7.4 

4.5 10.0 1.3 1.6 6.5 2.4 5.3 

9 

25 

5.7 8.6 1.5 1.7 9.7 4.0 7.4 

5.5 6.2 1.6 1.7 9.4 3.9 7.1 

5.6 6.8 1.8 2.3 9.5 3.8 7.8 

50 

4.7 8.5 1.4 1.7 6.5 2.4 4.8 

4.1 7.5 1.3 2.1 6.6 2.4 5.0 

4.5 4.1 1.4 1.6 6.6 2.5 5.2 
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Table S6. Mean percent removal of each PARAFAC component 

Water Type CNT Type 
Dose = 25 mg⋅L-1 CNTs 

C11 C2 C3 C4 

B
L

-R
A

W
 

1 57 ± 2.52 59 ± 11 62 ± 2.3 16 ± 16 

2 52 ± 5.0 55 ± 14 48 ± 6.3 19 ± 7.8 

3 19 ± 8.4 -37 ± 123 27 ± 6.1 -11 ± 48 

4 44 ± 2.3 2 ± 89 47 ± 2.6 -7 ± 12 

5 34 ± 10 -70 ± 129 36 ± 7.2 2 ± 5.6 

6 29 ± 12 -160 ± 252 35 ± 13 -11 ± 30 

7 6 ± 33 -92 ± 200 12 ± 27 -9 ± 14 

8 36 ± 7.1 -93 ± 129 44 ± 2.6 -5 ± 28 

9 43 ± 4.0 -53 ± 102 46 ± 10 -5 ± 55 

W
S

-E
F

F
 

1 54 ± 6.2 67 ± 5.4 53 ± 30 -3 

2 58 ± 4.1 62 ± 5.5 62 ± 18 - 

3 25 ± 10.9 40 ± 11 14 ± 43 - 

4 53 ± 11.3 69 ± 7.5 49 ± 35 - 

5 38 ± 7.6 54 ± 8.1 25 ± 43 - 

6 47 ± 6.6 64 ± 5.5 42 ± 25 - 

7 20 ± 7.5 32 ± 10 4 ± 40 - 

8 47 ± 13 66 ± 10 31 ± 42 - 

9 46 ± 6.5 63 ± 6.1 33 ± 33 - 
1Components 1-4 represented as C1-C4 
295% confidence intervals calculated from maximum range of 

possible removal values 
3Model for WS-EFF were only validated with a maximum of three 

components 
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Table S6 Cont. 

Water Type CNT Type 
Dose = 50 mg⋅L-1 CNTs 

C1 C2 C3 C4 

B
L

-R
A

W
 

1 66 ± 7.5 65 ± 18 70 ± 1.2 15 ± 25 

2 69 ± 30 55 ± 62 60 ± 27 10 ± 32 

3 34 ± 31 8 ± 145 39 ± 21 -12 ± 86 

4 58 ± 3.5 29 ± 21 59 ± 4.9 4 ± 21 

5 49 ± 12 20 ± 76 51 ± 12 2 ± 18 

6 47 ± 11 -89 ± 339 54 ± 9.6 1 ± 3.6 

7 21 ± 31 -175 ± 292 31 ± 14 -16 ± 32 

8 56 ± 15 -54 ± 206 56 ± 14 13 ± 23 

9 55 ± 9.0 -44 ± 145 54 ± 8.0 1 ± 38 

W
S

-E
F

F
 

1 69 ± 4.1 80 ± 3.5 60 ± 27 - 

2 75 ± 3.0 78 ± 3.4 75 ± 14 - 

3 44 ± 6.4 61 ± 5.9 33 ± 37 - 

4 68 ± 4.3 80 ± 3.6 62 ± 20 - 

5 56 ± 5.7 71 ± 4.9 47 ± 32 - 

6 63 ± 6.5 77 ± 4.6 56 ± 27 - 

7 34 ± 6.2 51 ± 8.2 14 ± 52 - 

8 63 ± 5.0 77 ± 4.7 44 ± 47 - 

9 63 ± 3.9 77 ± 3.4 55 ± 21 - 
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Table S7. Linear correlations (R) between components of BL-RAW and WS-EFF PARAFAC 

Models 

Water 

Type 

Components 

 C1 C2 C3 

BL-RAW 

C2 0.51 - - 

C3 0.97 0.43 - 

C4 0.54 0.47 0.49 

WS-EFF 
C2 0.97 - - 

C3 0.94 0.85 - 
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Figure S2. Pore volume distributions for CNT Types 1-9 (Figures S2A-S2I), all 

with identical scales
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tation-emission wavelength pairs against TTHMFP in 

BL-RAW (  ) and WS-EFF (  ) and DHANFP in BL-RAW 

(  ) and WS-EFF (  ). 
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Figure S5. PARAFAC Component EEMs for Beaver Lake Raw Water. A) Component 1, B) 

Component 2 and D) Component 4 utilize the axes specified in C) Component 3.
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B) Component 2 utilize the axes specified in C) Component 3.
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MAX

 of 

PARAFAC Components 1 (   ), 2 (   ), 3 (   ), and 4 (   ) for TTHMFP, DHANFP, and 

TONOFP (Figures S8A-S8C) in WS-EFF and TTHMFP and DHANFP (Figures S8D and 

S8E) in BL-RAW. R2 values appear according to numerical Component order .
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PARAFAC models with varying quantities of components. Two component (  ) and 4 

component (  ) models were validated for BL-RAW (Figure S9A and S9B). Two 

component and three component (  ) models were validated for WS-EFF (Figure S9C 

and S9D).
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Figure S9. Linear regression of TTHMFP in 

BL-RAW (   ) and WS-EFF (   ) (Figure S10A) 

and DHANFP in BL-RAW (   ) and WS-EFF 

(   ) (Figure S10B).
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