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ABSTRACT 

 

Gallium nitride (GaN) power devices exhibit a much lower gate capacitance for a similar on-

resistance than its silicon counterparts, making it highly desirable for high-frequency operation 

in switching converters, which leads to their significant benefits on power density, cost, and 

system volume. High-density switching converters are being realized with GaN power devices 

due to their high switching speeds that reduce the size of energy-storage circuit components. 

The purpose of this dissertation research is to investigate a new isolated GaN AC/DC switching 

converter based on solid-state transformer configuration with a totem-pole power factor 

corrector (PFC) front-end, a half-bridge series-resonant converter (SRC) for power conversion, 

and a current-doubler rectifier (CDR) at its output. A new equivalent circuit model for the 

converter is constructed consisting of a loss-free resistor model for the PFC rectifier with first 

harmonic approximation model for the SRC and the CDR. Then, state-space analysis is 

performed to derive the converter transfer function in order to design the controllers to yield 

sufficient phase margins.  

The converter offers the advantages of voltage regulation feature of the solid-state transformer, 

low harmonics and close-to-unity power factor of the PFC rectifier, soft-switching of the half-

bridge SRC, reduced size of the high-frequency transformer, and smaller leakage inductance 

of the CDR which is used for low-voltage high-current applications as the CDR draws half of 

the load current in the transformer secondary side yielding less copper losses. A high-frequency 

nanocrystalline toroid transformer, based on a modified equation to determine its leakage 

inductance, is designed and fabricated to satisfy the performance specifications of the 

converter. A meticulously planned gate driving strategy together with a Kelvin-source return 

circuitry is used to mitigate Miller effects, minimize gate ringing, and minimize the parasitics 

of the pull-down and pull-up loops of the converter. A new programming method that combines 



 
 

MATLAB Simulink embedded coder with code composer studio for the TMS320F28335 

digital signal processor (DSP) controller is developed and demonstrated. Finally, the GaN-

based AC/DC converter is experimentally verified for a 120Vac to 48Vdc/60Vdc conversion 

operating at 100 kHz for various loadings. 
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CHAPTER 1 

INTRODUCTION 

1.1 GaN Based Converters’ Features 

Gallium Nitride (GaN) technology offers higher performance converters with faster switching 

speed due to reduced switching losses, and so reducing heat sink requirement. Very high 

efficiency is achievable using GaN technology due to very low on resistance, superior fast 

switching ability, and zero reverse recovery losses. GaN devices can realize high current 

capability up to 100’s Amperes. It is proven that GaN systems offer extreme benefits to 

switching power supply designs. Totem-pole power factor correction (TP-PFC) circuit can be 

improved for closed-loop control, and obtaining higher efficiency AC/DC converters topology. 

So, an efficient power supply converter can be developed using GaN devices for low and 

medium power applications. In this research, a low-power battery charging application is 

proposed for the investigated GaN converter topology which is designed for 120 Vac to 

48Vdc/60Vdc conversion, operating at 100 kHz in the 1.3–1.5 kW range.  Figure 1.1 shows 

the advantageous of GaN properties compared to silicon and gallium arsenide (GaAs) [1-1]. 

Advantageous in 
power supplies 

Advantageous 
in RF circuits

Wide bandgap and 
high potential barrier 
yield high operating 
temperature.

High electric field saturation 
and low parasitic yield high 
maximum oscillation 
frequency. 

Large bandgap yields 
high voltage 
breakdown strength. 

Low carrier scattering 
and low RF losses yield 
superior noise factor. 

High carrier density and 
high electron mobility 
yield high maximum 
current density. 
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Figure 1.1. The Advantageous of GaN properties compared to Si and GaAs [1-1]. 
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Totem-pole bridgeless PFC rectifier is now emerging using 600 V GaN devices as a preferred 

front end rectifier for low power applications. Since the GaN reverse recovery charge is much 

less than that of Si MOSFET, hard switching operation is still appropriate. GaN high-electron-

mobility-transistor (HEMT) high-frequency capability and significant system advantages have 

been shown to dramatically reduce the volume of the boost inductor and the electromagnetic 

interference (EMI) filter. The switching frequency can be above 1 MHz for the totem-pole PFC 

rectifier, and verified solutions were addressed for significant high frequency issues [1-2]. An 

efficient power supply converter can be developed using GaN devices for low and medium 

power applications. High efficiency converters are achievable using GaN technology, superior 

fast switching ability, and zero reverse recovery losses. GaN device characteristics are 

especially suitable for hard switched diode bridgeless applications, such as PV inverters, and 

related totem pole PFCs applications [1-2, 1-3, 1-4]. The cascode GaN HEMT is very suitable 

for high-frequency operation as zero-voltage switching (ZVS) turn on has been achieved [1-5]. 

GaN technology is significant for several reasons: 

1) GaN devices have high energy gap and so yield significantly higher electric field for 

GaN over Si or SiC. Therefore it allows less channel length of a GaN device which 

results in smaller on resistance and conduction loss [1-4]. 

2) Low input and output capacitances reduce switching losses in hard-switched converters 

and allows higher switching frequency in hard-switched and soft-switched converters. 

3) Near-zero reverse recovery charge losses in hard-switched, half-bridge converters 

enables new topologies such as totem-pole PFC. 

4) Greatly reduced switching loss reduces transition period and allows faster switching 

speeds while reducing or eliminating heat sink. 

5) It is an ideal solution for applications requiring high frequency, high-efficiency 

operation in a small form factor [1-3]. 
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6) Recently the highest current rating for 650 V GaN HEMTs has exceeds 90 A [1-4].  

7) GaN HEMTs has been applied to many traditional power converters topologies, and 

higher efficiency with high power density was demonstrated. A 600 V, 10 kW E-Mode 

GaN based three phase inverter with targeted power density of 17 kW/L was built and 

under test [1-4]. 

The depletion mode (D-Mode) GaN devices are used since the cascode structure can yield 

positive gate-to-source threshold voltage of 2.1 V [1-4]. The switching losses and sizes of 

switching power supplies can be reduced by 50% through low on-resistance and high frequency 

capability of the GaN HEMTs. Hard switching losses occur at both turn-on and turn-off periods 

of the power switching devices. The total power loss (PLOSS) for Si device is the sum of the 

following losses multiplied by the switching frequency.  

PLOSS = f x (EOFF + ERR + EOSS +EG + EON)                                     (1.1) 

where,                                       EOFF = Turn-off switching energy loss. 

ERR = Diode recovery energy loss. 

EOSS = Output charge energy loss. 

EG = Gate charge energy loss. 

EON = Turn-On switching energy loss. 

The use of enhancement GaN HEMTs reduces switching losses and increases switching 

frequency to yield smaller size and improve the performance.  GaN HEMTs have near-zero 

reverse recovery charge (QRR) due to their absence of the minority carriers. The output 

capacitance (COSS) and its associated charge (QOSS) is also smaller because GaN HEMTs are 

physically smaller than MOSFETs of comparable RDS(ON).  Both VGS and QG are low for GaN 

HEMTs, as such EG is negligible. GaN HEMT can yield 2.5 ns rise time for a hard-switched 
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device. This switching speed is much faster than that of the silicon power MOSFETs. Soft-

switching transitions of less than 5 ns are achievable, as parasitic capacitances and inductances 

are no longer ignored in the GaN HEMT based switching converters [1-3, 1-5]. 

1.2 Solid-State Transformer Functionalities 

Solid-State Transformer (SST) is a key component with promising features. SST has reduced 

weight and size and can be utilized for niche applications, with additional voltage regulation 

and voltage disturbance rejection functionality. It allows bidirectional power flow control, and 

SST is very convenient for many applications since better automation and control algorithm 

can be developed. Also, SST will help gaining more advantages for power quality, storage 

management, and power flow control in addition to the reduction of volume and weight 

compared to the traditional transformer [1-6, 1-7]. Therefore, utilizing the advantages of SST 

operation and functionalities to develop a GaN-based power supply topology for low power 

applications will be investigated. SST demonstrated good structure as it enables superior 

controllability. Figure 1.2 shows the basic structure of the solid-state transformer topologies. It 

has been concluded that dual active bridge (DAB) converter with PWM control offers extended 

ZVS range and improved efficiency at light load [1-8]. Four topologies for SST were 

investigated in [1-9] by considering cost, number of semiconductor devices, efficiency, and 

specifications. 

AC

Source
Solid State Transformer Load

 

Figure 1.2. Solid State Transformer structure [1-6]. 
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The advantages and disadvantages of the selected SST topologies (full or half bridges DAB, 

Boost Based topology) for emerging distribution system applications were highlighted and 

compared. The main advantages and promising features of SST are [1-6, 1-7, 1-8]: 

• Voltage regulation and voltage disturbance rejection.  

• It allows bidirectional power flow control. 

• Easier for voltage and frequency adaption. 

• Possible reactive power compensation. 

• Reduced weight and size potentially. 

• Fault current limiting. 

• Overall power quality improvement. 

• Power factor correction. 

The proposed and designed GaN AC/DC topology in this dissertation will be operated to 

achieve these aforementioned SST features and functionality advantages for low power 

applications. The basic objective is to pursue an intelligent power electronic transformer to 

develop the GaN AC/DC converter which achieves SST control features.  

 

Figure 1.3. SST power management for DC microgrid [1-10]. 
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It is stated and presented in some literatures that the core part of the SST is the isolated DC/DC 

converter which is operated at a medium or high frequency. Figure 1.3 demonstrates the 

structure of SST which was adopted in [1-10] as an interface between the distribution grid, AC 

loads, and DC loads. Therefore SST allows not only AC to AC conversion, but also AC to DC 

conversions to interact between different grids. 

1.3 Dissertation Motivation 

With the current advancement in wide bandgap power semiconductors, power conversion with 

high-frequency (HF) link has been found very convenient for many applications, and it gives 

an opportunity to improve power density and efficiency as well as reducing the weight, volume, 

and cost. GaN technology is significant as GaN HEMT devices have smaller ON resistances 

and thus smaller conduction losses. Also, near-zero reverse recovery charge losses in hard-

switched converters makes totem-pole PFCs feasible [1-2, 1-4]. A 1 MHz bridgeless totem-

pole PFC rectifier has been designed in [1-2] using the low-loss 600 V GaN device, which 

provides a great front-end converter for low power applications. Bridgeless totem-pole PFC 

has shown several advantages like higher efficiency, less parts count, and bidirectional power 

flow operation [1-11]. 

On the other hand, the current doubler rectifier (CDR) reduces RMS current on the transformer 

secondary (half of the load current, so less copper losses) and the output voltage ripple is 

reduced. Therefore it is widely used for high current, low voltage applications. Also, CDR 

yields smaller leakage inductance to obtain ZVS condition [1-12, 1-13], it has bi-directional 

energy control capability, and offers better thermal performance (good heat dissipation); also, 

CDR transient response performance is improved [1-14]. Reference [1-15] designed an 

optimized telecom phase shift full-bridge DC–DC converter with CDR for 400 Vdc input 

voltage, while the proposed topology in this dissertation utilizes the 120 Vac line input and half 



7 
 

bridge series resonant converter (SRC), which is easier to control and yields half of the voltage 

to the transformer primary side. Most importantly, converter losses in series resonant 

converters are significantly reduced because of zero-voltage- and zero-current-switching 

operation of all switching devices compared to hard-switching full-bridge and half-bridge 

topologies, which increases the overall efficiency of this proposed topology. The combination 

of the reduced SRC losses with the alleviation of losses in the transformer secondary winding, 

due to the CDR, makes the proposed topology an attractive high-efficiency AC/DC low power 

converter. 

The main target is to develop a power supply converter utilizing SST functionalities for few 

kilowatts application by using GaN switches and fully utilize their high temperature, high 

frequency, and low loss characteristics. It is recommended to continue the research on this 

particular idea in order to solve some issues related to the complex control of these topologies 

and to achieve the objective of high efficiency and small size with acceptable cost switching 

converters. The proposed converter will enhance and maintain power quality supply for low 

power application as well as produce a power supply topology with higher reliability and 

minimum cost spent in manufacturing it. The proposed GaN power converter shown in Figure 

1.4 yields a close-to-unity power factor, low harmonic content (<5%), and high efficiency 

power supply for 120Vac to 48Vdc/60Vdc conversion, operating at 100 kHz in the 1.3–1.5 kW 

range. 

GaN Totem pole PFC Rectifier

VPFC
VO 48-60Vdc 

VIN AC

120V

Ls

 GaN Isolated SRC with CDR

L1
+

-

HF XFMR

VT2 VT1 

Ir
Cr

D1

D2
L2

C1

C2

S1

S2

S3

S4

D3

D4

CPFC Co

 

Figure 1.4. The proposed GaN AC/DC converter topology.  
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This converter topology includes a totem-pole power-factor-correction (TP-PFC), a half bridge 

series resonant converter (SRC), and a current doubler rectifier (CDR) at the secondary of the 

high frequency transformer. The equivalent averaged model for the proposed and investigated 

topology, state space equations, and transfer function are presented in this dissertation. 

Analysis, simulation, and experimental prototype are conducted to demonstrate the feasibility 

of the proposed power supply topology for low power application. MATLAB/Simulink is used 

for simulation and controller design and to analyze the stability of the proposed switching 

converter system. 

1.4 Dissertation Objectives 

The main objectives for this dissertation research are: 

 Investigate, simulate, propose and design a new GaN-based power supply topology 

utilizing solid-state transformer for low power applications, particularly by combining 

the advantages of PFC and SRC with CDR utilizing the superior switching 

characteristics of GaN devices and the reduced size and cost of HF transformer.  

 Analyze and synthesize the operation of the proposed GaN topology to yield higher 

efficiency converter due to zero-voltage- and zero-current-switching operation of all 

switching devices, GaN performance, and CDR advantages. 

 Design the controller algorithm to achieve close to unity power factor, low harmonic 

contents, and high efficiency power supply for 120Vac to 48Vdc/60Vdc conversion, 

operating at 100 kHz in the 1.3–1.5 kW range. Then implement the control algorithm 

with TMS320F28335 digital signal processor (DSP). 

 Design, fabricate and experimentally investigate a scaled down 4-layer printed circuit 

board (PCB) prototype to demonstrate the feasibility of the designed GaN AC/DC 

converter topology and its operation. 
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1.5 Dissertation Organization 

The literature review for the operation and topologies of solid-state transformer, resonant 

converters soft-switching, and GaN gate drivers design considerations will be covered in 

Chapter 2. Chapter 3 is about the theoretical operation concepts, modeling and simulation of 

the proposed GaN AC/DC topology. High-frequency transformer design is documented in 

Chapter 4. Then TMS320F28335 DSP programming and controller algorithm design are 

covered in Chapter 5.  Experimental prototype results for the investigated GaN converter 

topology are presented in Chapter 6 with all PCB design and fabrication steps. Finally, the 

research conclusions and recommendations for future work are explained in Chapter 7. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

The theoretical fundamentals and concepts of solid-state transformer (SST) operation and 

topologies are described in this chapter. The resonant converters soft switching, and gallium 

nitride (GaN) gate drivers design considerations are also described. It is believed that energy 

crisis could be avoided by improving the necessary infrastructure for renewable energy sources 

and storage devices. Currently, there are many researches conducted to develop various 

technologies for the electric distribution system using power electronics as a key technology. 

It is expected to experience many developments in the near future for solid-state transformer 

(SST) market because of its advantages. SST can operate using medium and high frequency 

and its physical size and weight already have been reduced significantly. Using advanced 

semiconductor devices in addition to the essential diodes and transistors, SSTs become very 

flexible. So they should be fast switching and manipulate low, medium and high power levels. 

Also, they can exchange different forms of electric power by changing the voltage and the 

frequency. Therefore, they connect the power grid to the wind turbines and solar panels using 

DC and AC power converters. In addition, they utilize some control equipment to communicate 

with utility operators and consumers. The distributed power generation and smart grid 

applications are very promising technologies for solid-state transformers. SST size and weight 

reduction can be accomplished, while the efficiency of the entire electric power system can be 

improved. Moreover, the characteristic of being a solid-state device is very convenient for 

smart grid applications as better automation and control are possible [2-1]. 

In the low and medium voltage power distribution network, power quality (PQ) was affected 

by the fundamental reasons of PQ issues and the presence of renewable energy sources. There 
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are many products which improved the power quality are serving the sensitive loads. Power 

electronics (PE) conversion technique is the main base for these important products [2-2]. 

Power quality solutions have been developed using power electronics systems such as 

uninterruptible power supply systems and active filters. These improvements are due to the 

significant decrease in cost, high reliability, and high-frequency switching semiconductors with 

low losses. Medium-voltage (MV) power distribution systems which were in the last few years 

dominated by electromechanical and electromagnetic technology are depending significantly 

on power electronics conversion techniques. Also, SST which is a high-frequency switched 

transformer and has extended functionality, as such, it is more economical to replace the typical 

power frequency distribution transformer. This PE transformer can operate on both AC MV 

input (single or three phase) or DC MV input. In addition it can enable balancing the loads and 

result in low harmonic distortions [2-2]. 

Power electronics transformer with high frequency is a “niche product” [2-2], and has higher 

functionality to serve the future power distribution systems. However, the costs and power 

losses are still challenges for the wide usage of SST. A medium-voltage distribution grid has 

been described in [2-2] which contains some DC subsystems and distributed resources, such as 

wind energy and fuel cell. More importantly the usage of power electronic converters to 

connect varies forms of electricity. More than fifteen years ago several preferred topologies of 

SSTs were discussed to replace the typical power frequency distribution transformer. 

Semiconductor switches with higher blocking capability, lower on state losses, higher 

switching speed and with smart integrated gate drivers are now available in the market [2-2]. 

However, SSTs were not popular due to unavailability of high-voltage high-frequency 

switching power semiconductor devices. 

Electricity is generated by power generation plants, then it is transferred to the transmission 

lines and eventually to the distribution grids to feed the loads. In all these stages, the 
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transformer is an essential part to step up/down the voltage to the desired usage values. 

Traditional power transformer has achieved high efficiency, but its size and weight are still 

relatively high and could be improved. Power electronic developments are presenting a very 

suitable technology to serve the electric power system. High-power and high-frequency 

converters have been involved in the power transmission and distribution system, especially in 

the applications related to the utilization of renewable power energy resources. SST was 

introduced in 1970 and was called the electronic transformer [2-3], while the concept of solid-

state transformers or electronic transformers was firstly introduced in 1950 [2-4]. It was defined 

as an intelligent universal transformer since it is controlled by advanced intelligent controllers 

and can provide different forms of DC and AC voltages. Power switching devices have been 

developed to be used in power electronics applications to achieve higher efficiency. The basic 

structure of solid-state transformer is shown in Figure 2.1. It is clear that SST is containing 

power electronics converters working as rectifiers and inverters, and in between these there is 

a high-frequency (tens to hundreds of kHz) transformer to step the voltage up/down. SST is 

considered as a promising component with great advantages to improve the future electric grid 

and be a key part especially to help connecting to the new DC microgrid architecture.  

AC

Source Solid State Transformer Load

 

Figure 2.1. Solid State Transformer configuration [2-3]. 
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So basically SST is a power electronic converter connected to function as a transformer which 

is going to replace the traditional power transformer, hence, the volume and weight are 

significantly decreased. Moreover, SST can provide extra benefits to the distribution network 

by offering useful functions such as power flow control, protection monitoring, power factor 

correction, and voltage sag compensation [2-3]. Future electric power distribution systems 

highly depend on more penetration of power electronic converters, so all efforts to understand, 

analyze and control the subsystems interactions are significantly valuable. Nowadays there are 

significant improvements because of the advancements of power electronic converters in 

electrical power systems. These improvements are clear and very important parts for 

autonomous power systems, and smart grid components [2-5].  

2.2 Solid State Transformer Operation and Functionalities 

Figure 2.2 shows the functional configuration of SST which is described as a power electronic 

converter that does much more than only voltage change (step up/down) task. SST is an 

important smart device for the electric distribution and delivery system to connect these 

different parties and transform the electric energy from one another through either AC or DC 

form [2-6]. It is not easy to implement this basic idea for SST, especially to obtain high 

efficiency and utilize additional benefits from the SST to the network. Efforts should be made 

to overcome the challenges for power electronic circuits to work properly in high-voltage and 

high-power applications. The design must be effective to ensure the reduction in size and 

weight since SST has extra elements like (control circuits, power devices, and heat sinks). 

There are many researches conducted to improve the design of SST, but still there is no 

standard could be followed. So it is important to review the literature and the outcomes of the 

previous works in order to help design SST for distribution networks considering its volume 

and efficiency [2-3]. 
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Figure 2.2. SST functional configuration [2-6]. 

The efficiency of the traditional transformer is already high and it is difficult for power 

electronic converter to achieve a 97% efficiency. However, a lower efficiency can be 

compromised to achieve the other functions from SST. Currently, the highest efficiency of 

SSTs in distribution grid is between 96% and 98%, according to the power ratings [2-3]. By 

reducing the size and weight of the transformer, the costs of their transportation and the 

required space will be much less, then both the manufacturers and the customers would gain 

economic benefits. Special and appropriate design considering the thermal and insulation 

aspects is really valuable and challenging to obtain a small size high-voltage SST. 

The future renewable electric energy delivery and management (FREEDM) system using 

distributed renewable energy resources (DRERs) and distributed energy storage devices 

(DESDs) is shown and explained in [2-6]. DRERs include wind, solar, hydro, and fuel cells, 

while DESDs means the equipment like batteries, hydrogen storage, and hybrid electric 

vehicles. SST is a fundamental and important element to achieve the suitable operation of this 

proposed FREEDM system. 

Table 2.1 compares four different SST structures: universal and flexible power management 

(UNIFLEX), Electric Power Research Institute (EPRI), General Electric Global Research 
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(GE), and FREEDM [2-3]. Si power devices and multilevel converter topologies are used in 

UNIFLEX, EPRI, and FREEDM in the high-voltage rectifiers for their SSTs, to achieve VAR 

compensation and voltage sag compensation capabilities. The highest SST efficiency is that of 

GE because of the customized SiC MOSFET line frequency commutation in the high-voltage 

rectifier [2-3]. 

2.3 Solid State Transformer Components and Topologies 

High-voltage and high-frequency power devices are necessary for SST to be inserted into the 

distribution system which operate in voltages from 2.3 kV to 35 kV. Because of the switching 

loss limitations, silicon power devices (IGBT, IGCT, and ETO) are not able to operate at high 

switching frequencies. So the practical switching frequency is usually less than 1 kHz, which 

is not convenient for SST to obtain significant reduction in size and weight. One of the possible 

solutions for high-voltage is to series connect low voltage power devices. For future high-

voltage applications, wide band gap materials (like 4H-silicon carbide) will be adopted. SiC 

material can operate at high temperature since it has a larger energy band gap. 

Table 2.1. Comparison between four different SST designs [2-3]. 

SST Functionality  UNIFLEX EPRI GE FREEDM 

Eliminates oil No Yes Yes Yes 

VAR compensation Yes Yes No Yes 

Voltage sag compensation Yes Yes No Yes 

Voltage regulation Yes Yes Yes Yes 

Harmonic isolation  Yes Yes Yes Yes 

Common DC link No Yes Yes Yes 

Energy storage option Yes Yes Yes Yes 

Fault isolation Yes Yes Yes Yes 

Bidirectional power flow Yes No Yes Yes 

Control complexity Complex Average Easy Complex 

Efficiency Average Average High Average 
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Also, the larger breakdown electric field enable SiC devices to switch at higher voltage, higher 

current, and higher frequencies. These features are suitable for SST applications. High voltage 

SiC devices have been investigated and it was found that 10 kV SiC MOSFETs are the best 

option for applications with higher than 20 kHz. However, IGBTs can operate for higher 

current than MOSFET at lower frequencies. For compact SST SiC MOSFETs are preferred for 

voltages less than 10 kV, rather than SiC IGBT, SiC GTO, and SiC ETO because of their 

switching speed [2-3]. 

SST replaces the 50/60 Hz transformer with a high-frequency transformer as the main circuit 

component in SST. There are several challenges needed to be investigated carefully to obtain 

the desired requirements for SST operation. First, to achieve high saturation flux density and 

less losses in the transformer, the magnetic material should be critically selected. Secondly, the 

efficiency at high frequencies is affected by the transformer winding method, so it should be 

studied sufficiently. Also, high-voltage and high-power applications must consider the thermal 

breakdown issue when designing the SST. Finally, for small SST size and when oil is 

eliminated the insulation requirement for SST is very difficult for high voltage applications. 

Many magnetic materials may be considered like: ferrite, nanocrystalline, silicon steel, and 

amorphous. Optimization must be done to evaluate these magnetic materials by considering 

cost, permeability, losses, and saturation flux density. In general nanocrystalline core is the 

best option to satisfy the efficiency and power density requirement as well. Recent studies 

mentioned that the efficiency can be improved up to 99.99% for different core types. Solenoidal 

and coaxial windings are the two main structures of transformers. Solenoidal structure is more 

popular and preferred because of its advantages in more flexible design, lower cost, and easier 

manufacture. In SST it is much more difficult to design the thermal and insulation aspects since 

it is desired to have less space and oil-free operation [2-3]. 
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Figure 2.3 shows four different configurations for SST. Type A is a one stage converter that 

contains the high-frequency isolation transformer. Type B and Type C are both two-stage 

conversion topologies but they contain different DC voltage levels. Type D has a rectifier to 

produce HVDC, then there is a high-frequency isolation transformer to give LVDC, and finally, 

the inverter to provide the LVAC output. Type D is the most used topology for SST field 

application [2-3]. The future distribution grid requires an intelligent controller to provide the 

electric energy to the loads and fulfill the stability requirement. SST can present an essential 

element since it uses power electronic converters to integrate all those renewable sources with 

storage devices. The idea of energy router is mentioned in [2-6] and it is mainly built on SST 

and how it enables the plug-and-play of renewable resources, distributed storages, and loads. 

A 15 kV SiC MOSFET single phase SST circuit topology in which there are three voltage 

levels (7.2 kV AC, 120/240 V AC, and 400 V DC) is depicted in [2-6]. Figure 2.4 shows the 

three stages SST structure. This contains PWM rectifier, dual active bridge (DAB) DC/DC 

converter, and PWM inverter. As can be noticed the isolation in DAB is through a high-

frequency transformer. 

 

Figure 2.3. Topology classification of SST [2-3]. 
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Figure 2.4. Three stages SST configuration [2-7]. 

This topology is providing HVDC, LVDC, and transforming from 7.2 kV AC to 120/240 V 

AC. This feature has enabled the SST superior controllability. It has been concluded in [2-7] 

that DAB converter with PWM control has extended ZVS range to improve its efficiency at 

very light load [2-7]. Figure 2.5 shows the basic topology of a single-phase SST which presents 

the values of the voltages at all stages, while figure 2.6 presents its average model [2-8]. 

 

Figure 2.5. Gen-I SST single phase topology [2-8]. 

 

Figure 2.6. Single phase Gen-I SST average model [2-8]. 
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2.4 Solid State Transformer Applications and Emerging Research Directions 

Figure 2.7 shows the desired future distribution network by adopting SSTs instead of the 60 

Hz transformer and the necessary converters for renewable energy resources and traction 

system. Obviously, SST can operate as an isolated AC/DC topology with power electronics 

converters operating at high frequency. Figure 2.8 presents the concept of using SST for 

reactive power compensation and harmonics filtering [2-5]. The SST plays a significant role 

for traction systems and it can effectively replace the low-frequency transformer and some 

power electronics converters since it is able to regulate the voltage as presented in [2-10]. 
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Figure 2.7. Future distribution network utilizing SSTs [2-3, 2-9]. 

 

Figure 2.8. SST compensates reactive power and filters harmonics [2-9]. 
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It is recommended to continue the research in order to solve some issues related to the complex 

control of SST topologies and to achieve the objectives of high-efficiency and small size with 

acceptable cost. For future work, the stability issues need more investigations, and it is 

recommended to gain more experience in future distribution systems utilizing SST. Power 

electronics technology is entering the electric power grid especially for the penetration of 

renewable energy resources. In addition SST is promising to function like an energy router to 

integrate smart grid applications [2-3]. 

The microgrid concept has been studied recently, and by adopting power electronic technology 

it can be proposed to replace the bulky and uncontrollable networks and solve some power 

quality issues [2-10]. As can be seen from Figure 2.7 and explained in [2-9], the SST can 

interface both the DC and AC grids in the distribution network. An interleaved configuration 

topology has been suggested in [2-4] for high-voltage applications to reduce the number of SiC 

MOSFETS and their switching losses.  

The TMS312F28335 digital signal processor (DSP) is used for the experimental prototype. 

Experimental and simulation results showed the feasibility of proper SST operation for the 

proposed system [2-4]. Figure 2.9 shows the diagram to adopt SST in a DC Microgrid [2-11]. 

This proposed system concerns the DC load and DC renewable energy sources (PV, fuel cell, 

and battery) with the advantages of SST to operate the system. It is confirmed that SST has 

many useful features and it can work bi-directionally. When the microgrid provides more 

power than the loads’ demand, the extra power will be re-distributed to the utility grid, and vice 

versa. The battery can take in or give the energy according to its state of charge (SOC) while 

the PV and fuel cell are only alternative sources [2-11]. SST can be utilized as a smart plug-

and-play interface to exchange the electricity among different subsystems, so it is the key 

enabling technology for the distribution system and smart grid. 
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Figure 2.9. SST for DC Microgrid [2-10]. 

FREEDM system diagram has been described in [2-6, 2-9, 2-12] and it shows the fundamental 

concept for using SST to provide 120V AC and 400V DC from the 12 kV AC bus. Intelligent 

energy management (IEM) is performing energy flow control using SST and distributed grid 

intelligence (DGI) unit. So IEM will fulfill the bidirectional power flow and distributed power 

management. The local loads are supplied initially from DRER and DESD, and if the demand 

is more than the supply then SST will draw the needed electricity from the grid. Also, when 

the loads are less than the supply SST will send the extra power to the grid [2-12]. SST 

technology needs an efficient high-voltage and high-frequency transformer. FREEDM research 

center has compared and reviewed the theoretical concepts for the magnetic core materials, and 

winding layout options. They reported the test results for the 6.7 kVA high voltage high-

frequency transformer prototype [2-8]. SST is established and implemented in [2-13] for the 

smart grid to improve the system performance and integrate the alternative energy sources and 

storage devices. So eventually mitigate the energy crisis by developing an efficient electric 

network infrastructure for controlling the entire system. 
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2.5 Resonant Conversion Concepts and Soft Switching Operation 

Zero-voltage-switching and zero-current-switching topologies are designed to gain higher 

efficiency power conversion by minimizing switching losses for the switches. That is typically 

obtained by utilizing the resonant operating condition for the switching frequency. Resonant 

converters are different from typical PWM converters as they include resonant L-C networks 

and their voltage and current sinusoidal waveforms are depending on each subinterval 

switching period conditions. By changing the switching frequency, the magnitudes of the 

resonant tank current and voltage can be controlled as desired for the topology under 

consideration [2-14]. The resonant switch concepts are not discussed in this chapter, which are 

thoroughly explained in the literature for several resonant converters. In these resonant switch 

topologies the PWM converter has switch network contains resonant elements, therefore they 

result in a resonant switch network with the properties of the original PWM converter. 

Common quasi-square wave methods for soft switching converters achieves zero voltage 

switching without having high voltage stress on the transistor [2-14]. 

The main feature of the resonant converters is minimizing the switching loss by the mechanism 

of turning on and off transitions at the zero crossing of the waveforms. This phenomena has 

been widely implemented in switching converters to let the transistors switching transitions 

coincide the zero crossing of the voltage and current waveforms. Typically for a full-bridge 

topology, zero-voltage-switching (ZVS) occur when it operates below resonance, while zero-

current-switching (ZCS) occur at above resonance operation. These are because the circuit 

causes the transistor current become zero before it turns off, likewise it causes the voltage 

across the transistor to be zero before the turn-on transition is done. In addition, diodes reverse-

recovery charge losses are mitigated by ZVS, whereas ZCS is applied to eliminate current 

tailing and stray inductances switching losses. ZVS is preferred when diode reverse-recovery 

losses and semiconductor output capacitors are causing major switching losses [2-14]. 
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Considering the efficiency and losses in any switching converter is an important step during 

the equivalent circuit operation analysis. Many references described the sinusoidal 

approximation to investigate and analyze the operation of resonant converters. Sinusoidal 

approximation approach is very useful to have great insight for many properties of the resonant 

converters such as the output characteristics, load current dependence, and zero-voltage and 

zero-current-switching transitions. It is accurate for large Q factor and close to resonant 

switching frequency operation [2-14]. 

Zero-voltage-switching has been discussed and analyzed in [2-15] for an isolated forward 

converter with current doubler rectifier (CDR) on the secondary side of the high frequency 

transformer. CDR has been utilized for high-current low-voltage applications due to the smaller 

current in the transformer secondary windings, and CDR can maintain ZVS with its reduced 

leakage inductance [2-15]. Soft switching has been achieved for the analyzed topology by 

adjusting the desired leakage inductance of the CDR topology to meet the resonant frequency 

condition. 

2.6 GaN Gate Drivers Design Considerations 

Gate driver circuitry is designed to provide the required voltage and current levels to drive a 

transistor in a safe and an efficient way. At the same time it protects the digital signal processor 

(DSP) from voltage spikes or any noise as well as operates to minimize conduction and 

switching losses. The gate capacitance is charged as fast as possible to minimize the switching 

time, hence, a driver IC with sufficient current capability should be used. Also the stray 

inductances in drive circuits have to be eliminated or minimized to avoid the presence of 

unwanted oscillation during device turn-off. This is typically employed using a four terminals 

(Kelvin) connection to have the transistor source connected separately to the gate driver 

terminals. Meanwhile, the length of all unshielded terminals should be minimized to reduce the 
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over-voltages at turn-off transients. Therefore, the layouts of gate drivers and power electronic 

converter printed circuit boards are crucial to mitigate the effects of parasitic inductances and 

reduce switching noises to obtain satisfactory operation [2-16, 2-17]. 

Bootstrap capacitance effect for high speed non isolated gate driver circuitry is addressed in 

[2-18] for driving the top switch of a half-bridge converter, or for driving two MOSFETs in a 

synchronous buck converter. The voltage level of the gate pulse is shifted to switch on the 

upper switch by using a bootstrap bias circuit comprising of a bootstrap capacitor, diode, and 

resistor. The bootstrap capacitor is charging when the bottom switch is ON and it is discharging 

to turn the top-switch off. Bootstrap circuits use a single pulse width modulation (PWM) input 

signal to drive both the low-side and high-side switches through the charge storage bootstrap 

capacitor, resistor and diode [2-16, 2-18]. However, in this dissertation, gate driver isolation is 

obtained by utilizing separated power supply for each opto-coupler and gate driver IC of any 

of the GaN transistors. Silicon Labs half-bridge isolated gate drivers for E mode GaN FETs 

(SI8273) are used to drive both the top and bottom switches of the proposed AC/DC converter. 

The SI8273 isolated gate driver has several features such as high dv/dt immunity, low 

propagation delay, and high DC bus voltage level (1500 V) [2-19]. 

A quasi-Kelvin source connection is employed for the GaN transistors and their gate drivers’ 

return loops to eliminate the deleterious effects of common source inductances. It is called 

quasi-Kelvin because the GaN HEMTs used in this research work have only three terminals. 

As such, a small amount of source parasitic inductance is present within the package. Also 

minimizing the layout parasitics for the prototype is taken into account for the 4 layer printed-

circuit-board (PCB). Designing an appropriate layout is extremely critical for GaN converters 

to minimize the noise and avoid any false switching for the GaN transistors, which is a high 

priority. It has been recommended in [2-20] for driving GaN switches to minimize noise 

coupling, mitigate gate ringing or oscillations, and control Miller effects by optimizing the 4 
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layer PCB layout. Therefore, 4 layer PCB has been designed for the converter described in 

Chapter 6. It is essential to apply quasi-Kelvin connections for the driver return loops, and 

minimize the pull-down and pull-up loops by locating the components (gate resistances, 

capacitors, and diodes) as close as possible to minimize the parasitics. Also, isolating and 

preventing gate, drain, and control traces from overlapping among each others are performed 

[2-20]. The converter utilizes gate resistors of 10 Ω for RG(ON), and 1 Ω for RG(OFF) with low 

forward voltage Schottky diode as depicted in Figure 2.10. Gate-to-source spike clamping 

diodes are employed in the gate drivers circuitry. 

 

Figure 2.10. The gate driver for the GaN half-bridge structure. 

2.7 Conclusion 

SST is considered one of the most significant enabling technologies for future electric systems 

especially to the distribution system. This chapter presents an overview of SST previous 

researches and to provide useful information to review this technology and its main features. 
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Also, it presents several application topics of SST in the future smart electrical system. In 

addition, interfacing SST with some renewable energy sources is addressed. The literature for 

SST has been reviewed and summarized to provide the fundamental background and concepts. 

Different topologies have been applied to operate SST for different applications and different 

voltage levels. Several selected SST topologies have been reviewed and evaluated for the 

desired functionalities. SST offers extra benefits to the distribution grid by enabling significant 

function such as power flow control, power factor correction, voltage sag compensation, and 

significant reduction in volume and weight. Moreover, resonant conversion concepts and soft 

switching operation for solid state converters have been briefly addressed. Finally, GaN gate 

drivers design considerations for the proposed converter are highlighted and described. 
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CHAPTER 3 

SIMULATION AND MODELING OF THE PROPOSED GaN TOPOLOGY 

3.1 Introduction 

Solid-state transformer (SST) had been intensely investigated and reported because of its 

desired advantages, so SSTs are becoming more popular in many important applications. On 

the other hand, wide bandgap power semiconductors have several advancements recently. The 

opportunity to improve efficiency and power density in addition to weight, volume, and cost 

reduction is higher for power converters with high-frequency links [3-1][3-2]. An efficient 

power supply converter can be designed using GaN devices for low and medium power 

applications. Very high efficiency can be achieved using GaN technology due to their superior 

fast switching ability and zero-reverse-recovery losses. GaN technology characteristics are 

promising for several efficient power conversion applications, such as PV inverters, and hard 

switched diode bridgeless totem pole PFCs topologies [3-3][3-4]. GaN devices have smaller 

ON resistances which yield less conduction losses to improve converters efficiency [3-4]. 

Totem-pole power factor corrections (PFCs) are utilized to have near-zero reverse-recovery 

charge losses in half-bridge hard-switched converters. Power electronics converters with high 

efficiency and high power density are desired for future power supplies. So, it is beneficial to 

develop a new compact higher efficiency GaN AC/DC converter topology utilizing the 

advantages of SST for low power applications.  

In this Chapter, the proposed GaN-based AC/DC power supply converter for low power 

applications is simulated and modeled. It has been simulated in MATLAB/Simulink in order 

to study its operation and control perspectives. The complete topology state-space equations, 

transfer function, controller design, and equivalent circuit model have been addressed and 

derived. An equivalent model is derived to determine the main steady-state characteristics of 
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the investigated AC/DC converter. The proposed converter topology is designed for 120Vac to 

48Vdc/60Vdc conversion, operating at 100 kHz in the 1.3–1.5 kW range. A totem-pole power-

factor-correction (TP-PFC) active front-end yields close-to-unity power factor (~0.98), and 

higher efficiency with reduced harmonic content. This converter combines the advantages of 

GaN TP-PFC and high-frequency (HF) series resonant converter (SRC) with current doubler 

rectifier (CDR) utilizing the superior switching characteristics of GaN devices and the reduced 

size and cost of HF transformer. Therefore, the proposed converter has many of the operating 

functionalities and features of the SST configuration reviewed in [3-5]. The SRC promotes 

reduced switching losses by having zero-voltage- and zero-current-switching operation for 

switching devices. Also, current doubler rectifier (CDR) is utilized in the secondary-side of the 

HF transformer for high-current, low-voltage applications due to several advantages, such as 

reduced copper losses as the transformer secondary winding conducts half of the load root-

mean-square (RMS) current. In addition, CDR yields zero-voltage-switching (ZVS) condition 

due to its smaller leakage inductance [3-6][3-7]. The proposed converter topology has been 

investigated, simulated and modeled to achieve several attractive features for high-efficiency 

low power application due to GaN technology merits, reduced losses in SRC, and CDR 

mitigation of losses in the transformer secondary winding [3-8]. 

3.2 Proposed GaN AC/DC Power Supply Converter 

Figure 3.1 shows the proposed 100 kHz 1.3-1.5 kW 120V/60 V GaN based AC/DC converter 

structure. As shown, it comprises a TP-PFC, a half-bridge series resonant converter (SRC), and 

a current doubler rectifier (CDR) at the secondary of the high-frequency transformer. This 

topology is converting 120V AC supply to a 48Vdc/60Vdc output for low power applications. 

The secondary side CDR consists of two diodes instead of transistors as this is easier and has 

been previously developed in some literature.  
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Figure 3.1. The proposed GaN AC/DC converter topology.  

The CDR is widely used for high-current low-voltage applications since it has half of the load 

current, as such, the transformer copper losses are reduced, while the output voltage ripple is 

reduced. Also the CDR has a smaller leakage inductance to obtain ZVS condition [3-6]. The 

CDR topology can achieve ZVS for a wide load range to improve its efficiency. It has a bi-

directional energy control capability when transistors are used instead of the diodes (D3 and 

D4), and CDR obtains good heat dissipation [3-9]. However, for the converter in this 

dissertation, CDR has two diodes (D3 and D4) which is easier for reducing the gate driver’s 

circuitry. Figure 3.2 shows the main theoretical waveforms of the proposed converter topology. 

The top switches (S1 and S3) are turned on simultaneously, and likewise for the two bottom 

switches (S2 and S4). This sequence yields less voltage spikes at the PFC DC link and for the 

output voltage as the top switches (S1 and S3) provide a path for the current to flow from the 

boost inductor to the resonant capacitor.  Both PFC and SRC switches are turned on 

alternatively to avoid the shoot-through for the two half-bridges. The CDR inductors current 

depends on the load current being supplied. The duty cycles of the switches S1, S2, S3, and S4 

change the transformer primary current waveform and peak value as well as regulate the output 

voltage of the converter. The transformer primary-side current is shown and the CDR inductors 

currents are also depicted in Figure 3.2. The CDR inductor current flows through only one 

diode (D3 or D4) at each half-cycle interval. 
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Figure 3.2. Key theoretical waveforms of the proposed converter. 

As can be noticed L1 and L2 currents are identical with 180o phase shift, so they cause partial 

current ripple cancellation of the CDR output current. 

3.3 Converter Design Calculations 

It is essential to calculate the converter voltages and currents when designing any power supply 

converter to have reasonable safety margin for the component ratings. In addition, considering 

the efficiency and losses in the switching converter is a significant step for the equivalent circuit 

analysis. Using GaN high-electron-mobility-transistor (HEMT) devices in the PFC front end 

without a traditional full-bridge rectifier reduces losses in the proposed converter especially for 

high switching frequency. Moreover, conduction losses in the transformer secondary winding 

are reduced by using a current-doubler rectifier [3-8]. Simulation of the circuit topology shown 

in Figure 3.1 was performed after determining the main component values as shown in Table 

3.1. The secondary-side of the high-frequency transformer is connected to the current doubler 

rectifier to step-down the voltage and obtain a higher output current. The main components 
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values were calculated for the designed converter as below. The PFC inductor value is given 

by: 

Ls = 
√2  𝑉𝑖𝑛−𝑟𝑚𝑠 𝐷 

𝑓𝑠𝑤 𝑖𝑟𝑖𝑝𝑝𝑙𝑒
                                                       (3.1) 

where, 

𝐷 = 1 − 
√2  𝑉𝑖𝑛−𝑟𝑚𝑠

𝑉𝑜_𝑝𝑓𝑐
   ,  𝑉𝑜_𝑝𝑓𝑐 = 

√2  𝑉𝑖𝑛−𝑟𝑚𝑠

𝑀𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 (𝑀)
   ,   𝑖𝑟𝑖𝑝𝑝𝑙𝑒 = 10% √2  

𝑃𝑙𝑜𝑎𝑑
𝜂⁄

𝑉𝑖𝑛−𝑟𝑚𝑠
 . 

So, D = 1 – M. 

where, M is the power-factor-correction (PFC) modulation index, C1 and C2 are equal large 

capacitors for the half-bridge inverter. The DC blocking capacitor (Cb) is estimated as: 

𝐶𝑏 = 
𝐼𝑝 𝑇𝑜𝑛 𝑚𝑎𝑥

∆𝑉
                                                       (3.2) 

where, Ip is the maximum primary current (resonant current Ir), 𝑇𝑜𝑛 𝑚𝑎𝑥 is the maximum ON 

time of either Q3 or Q4, ΔV is the primary voltage permissible droop due to Cb. 

However, in the designed topology, the DC blocking capacitor is considered as the SRC 

resonant capacitor which is calculated from the fundamental resonant equation:  

𝐶𝑟 = 
1

𝐿𝑟(2𝜋𝑓𝑠𝑤)2
                                                          (3.3) 

The CDR inductors values are given as [3-10]: 

L1 = L2 = 
(𝑉𝑠 − 𝑉𝑜𝑢𝑡)𝐷

𝑓𝑠𝑤 𝛥𝑖𝐿
                                                        (3.4) 

The output capacitor can be estimated as: 

𝐶𝑜 = 
∆𝑖𝐿

2𝜋𝑓𝑠𝑤∆𝑉𝑜𝑢𝑡
                                                            (3.5) 
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But the calculated output capacitor Co value is much smaller than the simulated value as the 

equation is very simplified and does not consider the harmonics of the 100 kHz AC voltage 

rectified by the CDR. So to obtain the desired output voltage waveform, the output capacitor 

used in the experimental prototype Co is 6600 µF as shown in Table 3.1. 

3.4 Proposed Converter Topology Simulation 

Figure 3.3 presents the output current and voltage for the open loop operation, while the main 

simulation waveforms of the converter topology operating at 64 kHz are shown in Figure 3.4. 

As can be seen, the transformer primary current (Ir) is a sinusoid indicating the SRC is in 

resonance. To achieve a close-to-unity power factor, low harmonic contents, and high 

efficiency across the full operating range of the converter, a controller is applied. Two 

independent proportional-integral (PI) controllers are designed for the PFC and SRC stages to 

operate with voltage feedback. 

Table 3.1. Converter component values. 

Component Value Component Value 

Ls 270 µH L1 , L2 10 µH 

CPFC 470 µF Co  6600 µF 

C1, C2 6.8 µF HF-XFMR Ratio 10:9 

Cr 0.1 µF 

 

Figure 3.3. The converter output current and voltage. 
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Figure 3.4. Main simulation waveforms of the proposed converter at 64 kHz. 

Figure 3.5 shows the PFC voltage and input current waveforms for the open loop simulation. 

This input current has a large spike at the beginning because of not using an input filter for the 

simulations. Without a controller, the PFC circuit draws a harmonics distorted current. The 

output voltage from the PFC can be controlled by changing the duty cycle for Q1 and Q2. The 

gate driver signals shown in Figure 3.4 for the simulation waveforms are designed to have the 

top switches of the PFC and SRC half-bridges (Q1 and Q3) synchronized by turning on together, 

and the bottom switches of the PFC and SRC half-bridges (Q2 and Q4) also synchronized. 

 

Figure 3.5. PFC voltage and input current open-loop simulation waveforms. 
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This switching sequence is better to yield more regulated DC voltage at the PFC output link, 

because the capacitor CPFC is not totally decoupling the PFC stage from the SRC stage. 

Synchronizing the gate pulses for the switches Q1 and Q3 provides the conducting path from 

the positive input line to the series resonant capacitor to discharge the boost inductor stored 

energy at that particular mode when both top switches Q1 and Q3 are on. However, the 

switching sequence can be adjusted to have Q1 turned on with Q4 which will be the same if 

CPFC is larger to regulate the DC voltage link. As the PFC stage is a rectifier to feed the half-

bridge inverter stage switching the transistors in either sequence produce no difference for the 

transformer primary voltage and the converter output. 

Figure 3.6 presents the main simulation waveforms of the proposed converter for different duty 

cycles of the switches Q1, Q2, Q3, and Q4 while Figure 3.7 presents the regulated output voltage 

for the open loop operation using large output capacitors to smooth the output voltage. 

 

Figure 3.6. Key simulation waveforms of the proposed converter at fs= 200 kHz. 
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Figure 3.7. The converter regulated output voltage (Vo = 57 V). 

Next Figure 3.8 is the switching pulses, transformer primary voltage and current, and diode 

currents for the mode when D1 is ON while D2 is OFF for different Q1 and Q2 switching 

conditions.  

 

Figure 3.8. Switches’ pulses, VT1, Ip, and diodes’ currents when D1 is ON and D2 is OFF. 



38 
 

As can be noticed, the PFC top-side diode (D1) is conducting a positive average current of 12 

A for the converter load, while the PFC low-side diode (D2) has very small leaking negative 

current. CDR diodes (D3 and D4) are conducting the 30 A DC current to the load each for half-

cycle of the time period. Figure 3.9 shows the switching pulses, transformer primary voltage 

and current, and diode currents for the mode when D2 is on while D1 is off for both different 

Q1 and Q2 status. As can be seen, the PFC top-side diode (D1) has very small leaking negative 

current, while the PFC low-side diode (D2) is conducting a positive average current of 11.2 A 

for the converter load. CDR diodes (D3 and D4) are alternatively conducting the 30 A DC 

current to the load.  

 

Figure 3.9. Switches’ pulses, VT1, Ip, and diodes’ currents when D2 is ON and D1 is OFF. 
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Figure 3.10. VT1, VT2, and Ip of the proposed converter for 200 kHz, 300 W load. 

For the proposed isolated GaN AC/DC converter, a 100 kHz HF transformer is designed using 

the programmed methodology (reviewed in Chapter 4) to determine the transformer optimum 

specifications. Leakage inductance evaluation is a critical step which is affected by the 

transformer winding and core arrangements, and eventually presents the SRC resonance 

inductance in the topology [3-8]. Figure 3.10 presents the simulation results of the high-

frequency transformer primary and secondary voltages, and primary current (VT1, VT2, and Ip) 

for a 200 kHz switching frequency, a PFC with D = 0.25, a 90 V to 127 V transformer ratio, 

and a 300 W load for a scaled down prototype converter to yield a 60V output voltage. 

Simulation waveforms shown in Figure 3.10 are performed with the assumption that the HF 

transformer has a zero primary and secondary inductance and zero leakage inductance. 

However, the transformer ratio for the experimental prototype is designed to be 130 : 117 (10 

: 9), to either step up or down the voltage to yield output voltage of 60 or 48 V, respectively. 

This is to enable its low-power niche applications in telecom loads or battery charging 

application. 

3.5 Closed-loop Simulation and Controller Design 

This section shows simulation and modeling of the proposed converter with the designed 

controllers. To avoid instability issues and develop an appropriate feedback controller; 
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converter operation analysis is conducted, and equivalent model for the designed converter is 

investigated. Figures 3.11 shows the proposed GaN isolated AC/DC converter topology with a 

proportional integral (PI) controllers’ feedback. The first PI controller is for the PFC rectifier 

switches (Q1 and Q2) to adjust their gate driver duty ratios, while the second PI controller is for 

the SRC inverter switches (Q3 and Q4) to adjust their gate driver duty ratios or switching 

frequency so the output voltage and current will be regulated as desired. 

 

Figure 3.11. The proposed GaN AC/DC converter with PI controllers. 

 

Figure 3.12. The converter output current and voltage for load step disturbance. 
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Figure 3.12 presents the simulation for output current and voltage during a load disturbance 

step change. The proposed converter simulations were performed for different loading currents 

and switching duty ratios. Figure 3.13 shows the main waveforms at 100 kHz which are shown 

before in Figure 3.4 at 64 kHz, but the output CDR inductors in Figure 3.4 have higher currents 

and the switches S1 and S2 have relatively larger duty ratios to reduce the PFC inductive current 

spike. The peak current values of the CDR inductors (L1 and L2) is around 10 A, while in Figure 

3.4 it is around 22 A because of the difference between large and small loading conditions. The 

resonant current is sinusoidal waveform for the resonant condition (at 64 kHz) as shown in 

Figure 3.4, while it is a triangular current waveform for the above-resonant mode (100 kHz). 

Figure 3.14 presents MATLAB simulation schematic of the isolated AC/DC topology with the 

two designed PI controllers. To obtain close-to-unity power factor (~0.98) and higher 

efficiency conversion with low harmonic distortion, the converter employs a totem-pole power-

factor-correction (TP-PFC) active front end. Each PFC half-cycle of operation has an 

equivalent circuit produces identical operation of a bridge-rectified based boost PFC topology. 

Therefore, the same traditional bridge-rectified boost PFC is used as an equivalent model for 

the controller design. 

 

Figure 3.13. Key simulation waveforms of the proposed converter at 100 kHz. 
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Figure 3.14. Converter closed-loop MATLAB schematic. 

Figure 3.15 shows the PFC simulation waveforms of the power factor, input current (iLac), input 

voltage (Vin ac), and output voltage (Vpfc) which attains close-to-unity power factor, and reduced 

harmonic distortion to produce an average PFC output voltage of 200 V as stable dc-link [3-

8]. As can be seen in Figure 3.15, the PFC ac input voltage and current are in phase. For 

example, at the instances t = 0.05s or t = 0.1s, both the PFC input voltage and current cross the 

zero at the same moment. 

 

Figure 3.15. PFC control simulation waveforms [3-8]. 
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PFC rectifier is analyzed and modeled by replacing the switch network with voltage and current 

sources to obtain time-invariant linearized models. The traditional bridge-rectified boost PFC is 

used to design average current mode control to maintain a close-to-unity power factor, and low 

harmonic components as shown in the simulation waveforms of Figure 3.16. Both the switching 

and averaged PFC models simulation give low harmonics distortion current, and close-to-unity 

power factor. The duty cycle waveform approaches 1 when the input voltage and current are 

instantaneously zero, while it becomes 0.2 when the input voltage and current are 

instantaneously at peak values, because it depends on the controller regulation to regulate the 

output voltage. Similarly, the SRC with the CDR is able to regulate the output current and 

voltage [3-11]. 

The gate driver signals for the SRC switches operating at 1 MHz and the resonant tank 

discontinuous conduction mode (DCM) current for light load are presented in Figure 3.17. The 

load resistance characteristics are affecting the current discontinuous subinterval and the 

current peak value. The SRC is designed for soft-switching operation such as the switching 

frequency matches the desired resonant frequency of the series resonant capacitor and inductor.  

However, in this proposed converter, SRC switches Q3 and Q4 are controlled by a fixed 

frequency PWM scheme. 

 

A. PFC switching model simulation 

 

B. PFC averaged model simulation 

Figure 3.16. PFC average current mode control simulation waveforms [3-11]. 
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The difference between the reference voltage and the output voltage of the CDR will let SRC 

PI controller provide the required gate driver duty ratios for the SRC leg. Ultimately the SRC 

with CDR will regulate the load current and voltage as shown in Figure 3.18. The peak value 

of the resonant current depends on the load, while the DCM depends on the SRC switching 

frequency and Q3 and Q4 duty cycles. Applying low duty ratio signals to SRC switches yields 

discontinuous current in the resonant tank. A simple PI control strategy for the proposed 

converter is applied to rectify the AC input at near-unity power factor and produces a regulated 

output voltage from the CDR as shown in Figure 3.11. Two independent PI controllers are 

employed for the switches in the PFC and SRC blocks. Converter output voltage and current 

are regulated for the load through the feedback loops of the PWM duty cycle control. 

 

Figure 3.17. SRC gate pulses and DCM resonant tank current [3-8]. 

 

Figure 3.18. Battery voltage and charging current. 
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The PFC is controlled using the first PI controller with a reference voltage for the desired DC 

voltage, while the SRC switches duty ratios are governed by the second PI controller. The 

voltage open-loop transfer function of the SRC with CDR converter can be described as in [3-

12]: 

𝑣𝑜

𝑣𝑖
= |

𝑠22𝑛𝐶𝑏𝑅𝑒

𝑠3𝐶𝑏𝐿𝑙𝑘+𝑠2𝐶𝑏𝑅𝑒𝑐+𝑠+
𝑅𝑒
𝐿1

|                                                 (3.6) 

where 𝑅𝑒 is the load equivalent resistance, n is the transformer turns ratio, Llk is the transformer 

leakage inductance employed as the resonant inductance, and L1 is the self-inductance of the 

CDR inductor. The transformer magnetizing inductance is large and its effect is neglected for 

the sake of simplicity. The variable c is the CDR inductors (L1, L2) mutual inductance 

relationship and it is considered as: 

𝑐 = 4 +
𝐿𝑙𝑘

𝐿1
                                                         (3.7) 

Figure 3.19 shows the control of the proposed converter for battery charging applications that 

requires the PFC to rectify the AC input at near-unity power factor to feed the DC-DC converter 

stage – this is one set of controls for the converter that will be described. The SRC operates as 

a voltage/current regulator for charging the battery using variable-frequency control. The PFC 

is controlled using an average current mode control with an input voltage feedforward path that 

provides a waveform shape for the inductor current to track. Combined with sensing of the 

current waveform, this will be referred to as the current loop control [3-11]. The bode plots of 

the PFC voltage and current loop are presented in Figure 3.20, while the SRC with CDR transfer 

function bode plot is presented in Figure 3.21. The PFC voltage loop gains are presented for the 

compensated, uncompensated, and for approximated voltage loop gains as well. 
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Figure 3.19. The controller diagram for the proposed converter [3-11]. 

 

 

Figure 3.20. PFC voltage and current controller bode plots [3-8][3-11]. 
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These bode plots basically show the frequency response characteristics of the closed-loop 

converter with 90o phase margin of the PFC voltage loop gains, and 46.4o phase margin of the 

PFC current loop gains. However for the SRC with CDR closed-loop stability, the phase margin 

is 115o for the compensated voltage transfer function. The SRC with CDR open loop transfer 

function can be deduced from the magnitude response shown in Figure 3.21. The slope of the 

magnitude is +40 dB/decade due to the two zeros, then at the second crossover frequency of the 

compensated loop it became -20 dB/decade because of the three poles of the transfer function 

as in equation 3.6. Therefore, the proposed converter with the designed PI controllers will avoid 

instability issues and produce the desired dynamic performance for disturbances. So, the 

controller design guarantees a stable steady-state performance and an appropriate transient 

response of the converter. 

 

Figure 3.21. Compensated and uncompensated SRC with CDR bode plots. 

3.6 Converter Modes of Operation and Equivalent Modelling  

Models of the switching converter dynamics are needed for the converter control system design. 

Figure 3.22 shows the equivalent simplified main operating modes of the entire proposed 

converter referred to the transformer primary side. Mode 1 is for the interval when Q1 and Q3 
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are ON as shown in Figure 3.3 and Figure 3.13, while Mode 2 is for the interval when Q2 and 

Q4 are ON. The equivalent simplified steady-state space equations of the proposed converter 

operating modes have been derived using KVL and KCL for the topology. In any well-designed 

converter, the output voltage switching ripple should be small and minimized by appropriate 

low-pass filters to block the switching harmonics.  Also, it is desirable to only model the 

important dc components of any waveform, and ignore the complicated small ripples [3-13]. 

 

Figure 3.22. Converter equivalent circuits referred to the HF-XFMR’s primary side.  

The state variables are considered as: PFC inductor (Ls) current, C1 and C2 voltages, transformer 

primary current, and resonant capacitor voltage, i.e., X = [is, Vc1, Vc2, ip, Vcr]. Applying KVL 

and KCL to the converter mode 1 equivalent circuit yields the following state equations, where 

𝐿𝑙𝑘 is transformer leakage inductance, and 𝑛 is its turns ratio. 

Vs = Ls 
𝑑𝑖𝑠

𝑑𝑡
 + VC1 + VC2                                                                   (3.8) 

is = C1 
𝑑𝑉𝐶1

𝑑𝑡
 + CPFC 

𝑑𝑉𝐶𝑃𝐹𝐶

𝑑𝑡
                                                            (3.9) 

IC2 = C2 
𝑑𝑉𝐶2

𝑑𝑡
 = is –nip – ICPFC                                                     (3.10) 

VC2 =  𝑛2𝐿2
𝑛𝑑𝑖𝑝

𝑑𝑡
 + nVo +𝐿𝑙𝑘  

𝑛𝑑𝑖𝑝

𝑑𝑡
 + VCr                                                                     (3.11) 

nVo = 𝑛2𝐿1
𝑛𝑑(𝑖𝑝− 𝑖𝑜)

𝑑𝑡
                                                              (3.12) 
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nip = Cr 
𝑑𝑉𝐶𝑟

𝑑𝑡
                                                            (3.13) 

From equation (3.8):                     
𝑑𝑥1

𝑑𝑡
 = 

1

𝐿𝑆
(Vs - VC1 - VC2)                                                   (3.14) 

The equivalent values of the CDR inductors (L1, L2) referred to the primary-side are n2L1 and 

n2L2, respectively. 

Equations (3.9) and (3.10) are simplified by assuming that CPFC in the topology is much larger 

than C1 and C2, so neglecting the effects of ICPFC in equations (3.9) and (3.10) yields: 

𝑑𝑥2

𝑑𝑡
=

𝑖𝑠

𝐶1
                                                             (3.15) 

𝑑𝑥3

𝑑𝑡
=

1

𝐶2
(𝑖𝑠 − 𝑛𝑖𝑝)                                                   (3.16) 

From equations (3.11) and (3.12) and by assuming that 
𝑑(𝑖𝑝− 𝑖𝑜)

𝑑𝑡
= 

𝑑𝑖𝑝

𝑑𝑡
  as the load current is not 

a state variable, and then after mathematically simplifying the equation, 

𝑑𝑥4

𝑑𝑡
=

𝑉𝐶2− 𝑉𝐶𝑟

𝑛 𝐿𝑙𝑘+𝑛3(𝐿1+ 𝐿2) 
                                            (3.17) 

From equation (3.13), 

𝑑𝑥5

𝑑𝑡
=

𝑛 𝑖𝑝

𝐶𝑟
                                                      (3.18) 

From equation (3.12), the output voltage is, 

𝑣𝑜 = 𝑛2𝐿1
𝑑𝑥4

𝑑𝑡
=

𝑛𝐿1(𝑉𝐶2− 𝑉𝐶𝑟)

 𝐿𝑙𝑘+ 𝑛2(𝐿1+ 𝐿2)
                                        (3.19) 

The averaged state-space model for the equivalent simplified steady-state operating modes of 

the converter is shown below. This state-space model is a mathematical model derived to obtain 

an average description of the converter topology for one switching cycle to present the main 
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modes of operation. The main modes of operation are analyzed by considering the switches 

pulses of the key waveforms shown in Figure 3.13. 

𝑋 = ̇

[
 
 
 
 
 
 
 
 0

−1
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𝐿𝑠

0
0
0
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𝑈                              (3.20) 

𝑌 =  𝑉𝑜𝑢𝑡 = [0 0
𝑛𝐿

𝐿𝑙𝑘+2𝐿𝑛2
0

−𝑛𝐿

𝐿𝑙𝑘+2𝐿𝑛2]  𝑋                              (3.21) 

where, C1= C2 = C, L1 = L2 = L, 𝐿𝑙𝑘 is transformer leakage inductance, Ls is the primary PFC 

inductance, D is the duty cycle for mode 1 operation, and 𝑛 is the transformer turns ratio. The 

transfer function is derived from the above state-space equations (3.20) and (3.21) as: 

𝑇(𝑠) =  
𝑉𝑜𝑢𝑡(𝑠)

𝑉𝑖𝑛 (𝑠)
= 𝐶(𝑆𝐼 − 𝐴)−1𝐵 = 

𝐿 𝑆2

𝛥𝐶𝐿𝑠 (𝑛3 𝐿𝑙𝑘+2𝑛𝐿)
                          (3.22) 

where, ∆ is the determint of (SI − A). 

𝛥 = |𝑆𝐼 − 𝐴| = 

|

|

|

𝑠 1
𝐿𝑠

⁄ 1
𝐿𝑠

⁄ 0 0

−1
𝐶1

⁄ 𝑠 0 0 0

−1
𝐶2

⁄ 0 𝑠 𝑛
𝐶2

⁄ 0

0 0 −1
(𝑛𝐿𝑙𝑘 + 2𝐿𝑛3)⁄ 𝑠 1

(𝑛𝐿𝑙𝑘 + 2𝐿𝑛3)⁄

0 0 0 −𝑛
𝐶𝑟

⁄ 𝑠

|

|

|

 

  𝛥 =   𝑆4 +
2 𝑆2 

𝐶𝐿𝑠
+

𝑛

(𝑛𝐿𝑙𝑘+2𝐿
𝑛⁄ )

[
𝑆2

𝐶𝑟
+

𝑆2

𝐶
+

2

𝐶𝐶𝑟𝐿𝑠
+

1

𝐶2𝐿𝑠
]                               (3.23) 

Figure 3.23 depicts another equivalent model for the entire converter. As shown, M is the HF 

transformer primary and secondary mutual inductance. The PFC is presented as a two-port 

model for the ideal rectifier called loss-free resistor (LFR) model, while the SRC is modeled 
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by the equivalent first harmonic approximation (FHA) method as documented in [3-13]. The 

PFC lossless two-port network includes the average power transferred to the dependent power 

source as drawn. Then the CDR is modeled for positive coupling configuration as explained in 

[3-12] for the coupled inductors. In the proposed series resonant converter (SRC) investigated 

in this dissertation, the output current doubler rectifier (CDR) is primarily driven by the 

resonant tank current. The output voltage from the CDR is regulated by the large output 

capacitor to remove switching frequency harmonics. To simplify the circuit analysis for the 

designed SRC topology, it is modeled as a fundamental voltage source, while the power factor 

correction (PFC) rectifier is modeled using the effective resistor Re. Then the entire equivalent 

circuit model of the topology is solved by a standard linear analysis approach including 

deriving voltage transfer function. 

Figure 3.24 shows a feedback control model simulated to study the stability issues for the 

converter. With this feedback control model, the controller is designed to maintain a close-to-

unity power factor, low harmonic components, and high efficiency power supply. The PFC 

state-space model is used with the first PI controller to provide the control signal to the second 

PI for the half-bridge SRC and CDR transfer function model.  

Iin

Ls

CPFC

Re

Llk
<Pac(t)>Ts

VT1

Cr

Vin AC

L1- M

L1- M

M

Battery 

Tank

Loss-Free Resistor Model for PFC SRC Fundamental Component & Positive Coupling CDR Model

 

Figure 3.23. The equivalent model for the proposed converter. 
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Figure 3.24. Feedback control simulation for the power supply converter. 

3.7 Converter Loss Analysis 

Losses in any converter come typically from inductor winding resistances, semiconductors ON 

resistances and forward voltage drops, and switching losses. So a converter model is developed 

to account for all of the loss elements to predict the voltages, currents and efficiency of non-

ideal converters. Basically inductor volt-second balance and capacitor charge-balance principles 

are applied to derive the simplest dc equivalent circuit for the converter under consideration [3-

13]. In addition, GaN-based high-frequency converters are highly sensitive to the design layouts 

and their parasitics. Therefore, parasitics mitigation and signal integrity of the high-frequency 

converters experimental setups are of high priority. However, in this section the investigated 

GaN converter is only analyzed from the perspective of conduction and switching losses of the 

circuit components. 

Considering the efficiency and losses in the switching converter is an important step in 

equivalent circuit analysis. The obvious components in the proposed converter as shown in 

Figure 3.1 and Figure 3.11 are categorized as follow [3-8]: 

 Semiconductors losses: Diodes (D1:D4) and GaN switches (Q1: Q4). 

 Passive losses: Inductors (Ls, L1, L2) and capacitors (CPFC, C1, C2, Cr, Co). 

 High-frequency transformer losses: Leakage and magnetizing inductances (Llk, LM), 

core and winding losses. A designed 1 MHz transformer efficiency is 99.3 %, while the 
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fabricated 100 kHz nanocrystalline transformer efficiency is 98.2 % as explained in 

Chapter 4. 

The GaN switches drain-to-source ON resistance RDS(on) typically is 100 mΩ for GS66504B 

at TJ = 25 °C. Also,  its drain-to-source leakage current IDSS is 1 µA. So the average switching, 

conduction, and leakage power loss for the GaN switches (Q1:Q4) can be estimated as: 

𝑃𝐺𝑎𝑁 =  4(0.5𝑉𝑑𝐼𝑓𝑠(𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓) + 𝐼2 𝑅𝐷𝑆(𝑜𝑛)𝐷 + 𝐼𝐷𝑆𝑆𝑉𝑑)                             (3.24) 

where Vd is the applied voltage on the transistor during OFF state, I is the transistor average ON 

current, fs is the switching frequency (1 MHz), (ton+ toff) are turn ON and turn OFF transition 

times intervals, RDS(on) is the transistor ON resistance. For the proposed 120Vac to 48Vdc/60Vdc 

converter, operating at 1 MHz for 1.4 kW load, the average power loss taking into account the 

GaN switching, conduction, and leakage current losses is: 

PGaN = 4(0.5*160*12*106(0.02*10-6) + 122 *0.1*0.375 + 10-6 * 160) = 98.4 W. 

The diodes power loss can be estimated by: 

𝑃𝐷 =  4(𝑉𝐷𝐼𝐷𝑎𝑣 + 𝐼𝐷𝑟𝑚𝑠
2  𝑟𝐷 + 0.25 𝑄𝑟𝑟𝑉𝐷𝑟𝑟 𝑓𝑠)                                    (3.25) 

where VD is the diode forward voltage, IDav and IDrms are the diode forward average and rms 

currents, respectively, rD is the diode resistance during conducting, Qrr and VDrr are the diode 

reverse-recovery charge and voltage, respectively. 

3.8 Converter Simulation in PSpice 

Figure 3.25 shows the PSpice simulation schematic for a simplified isolated DC/DC converter, 

which is a half-bridge inverter with CDR as an output stage of the entire AC/DC converter. 

The simulation results of the transformer secondary-side voltage and the output DC voltage are 

shown in Figure 3.26.  
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Figure 3.25. PSpice simulation schematic for an isolated half-bridge inverter with CDR.  

 

Figure 3.26. PSpice simulation waveforms for the half-bridge with CDR topology. 

The DC input voltage is assumed 180 V, which yields a transformer secondary-side voltage of 

200 V high-frequency (200 kHz) rectangular signal, and an output DC voltage of 85 V. The 

PFC stage also has been separately simulated in PSpice as shown in Figure 3.27 for its input 

and output voltages waveforms operating in an open loop power factor correction rectifier 

model. As can be seen, the PFC AC input voltage is 120 V at 60 Hz and the output dc voltage 

has an average voltage of 270 V. 
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Figure 3.27. PSpice PFC stage simulation input and output voltages waveforms. 

Figure 3.28 illustrates the PSpice schematic for the proposed AC/DC converter which contains 

the PFC with an isolated half-bridge inverter and CDR. This is simulated for hard-switching 

operation as the half-bridge inverter on the transformer primary does not have a series resonant 

capacitor, and as such, it is not a series resonant converter. The results (VPFC, VT1, Vo) of this 

PSpice converter are shown in Figure 3.29 and Figure 3.30 for the simulated waveforms at a 

switching frequency of 200 kHz for an RMS input voltage of a 71 V and a 120 V input voltage, 

respectively. 

 

Figure 3.28. PSpice schematic for a PFC with an isolated half-bridge inverter and CDR.  
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Figure 3.29. PSpice simulation waveforms (VPFC, VT1, Vo) at 200 kHz for low input voltage. 

The PFC output voltage is 205 V and the output DC voltage is 80 V as presented in Figure 

3.30. The transformer primary voltage presents voltage oscillations and ringing due to the low 

capacitor (50 µF) used at the PFC output DC bus, so for the rated input voltage of 120 V a 

larger PFC output DC bus capacitor (around 450 µF) must be used. Also the effects of the half-

bridge inverter capacitors (C1 and C2) as their midpoint voltage is increasing and decreasing 

with charging and discharging cycles, which causes the voltage sag of the simulated VT1 

waveform. Moreover, the dead time period of the used 46% duty ratio of the transistors caused 

the noticed voltage oscillations at the end of each half cycle. 

 

Figure 3.30. PSpice simulation waveforms of VPFC, VT1, Vo for Vin = 120 V. 
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3.9 Conclusion 

This Chapter illustrates the analysis, simulation and modeling of the GaN isolated AC/DC 

converter to achieve a conversion of 120Vac to 48Vdc/60Vdc at 100 kHz and 200 kHz for a 

1.4 kW application. Moreover, among the desired features of the designed converter is to obtain 

a high-efficiency power supply converter maintain close-to-unity power factor, low-harmonic 

input contents (<5%). The theoretical operation concepts, modeling and simulation of the 

investigated GaN AC/DC converter are covered and discussed. The investigated converter 

topology is extensively simulated in MATLAB and PSpice, and the main simulation 

waveforms of the proposed converter with the output current and voltage are illustrated for 

various gate driver duty ratios and switching frequencies. The converter offers the advantages 

of power flow control of the solid-state transformer, low harmonics and close-to-unity power 

factor of the PFC rectifier, soft-switching of the half-bridge SRC, reduced size of high-

frequency transformer, and smaller leakage inductance of the CDR which is used for low-

voltage high-current applications as the CDR draws half of the load current in the transformer 

secondary side. Also, state-space analysis for the converter is performed in order to derive the 

transfer function of the isolated AC/DC converter. Then the closed-loop converter controller is 

designed, simulated, and discussed. Stability operation of the converter is shown through the 

sufficient phase margins of the converter frequency response. Furthermore, a new equivalent 

circuit model for the converter is constructed consisting of a loss-free resistor model for the 

PFC rectifier with first harmonic approximation model for the SRC and the CDR. Positive 

coupling configuration is used for the CDR model as it yields almost zero current ripple in the 

output capacitor. The PFC lossless two-port network includes the average power transferred to 

the dependent power source as drawn. Then the CDR is modeled for positive coupling 

configuration for the coupled inductor. In the SRC investigated in this dissertation, the output 

CDR is primarily driven by the resonant tank current, while the output voltage of the CDR is 
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regulated by a voltage feedback controller with a large output capacitor to remove any high-

frequency harmonics. The contribution of this work is the new equivalent circuit model for the 

demonstrated GaN isolated AC/DC converter, state-space equations, transfer function, and 

controllers design which are derived and presented. 
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CHAPTER 4 

HIGH-FREQUENCY TRANSFORMER DESIGN 

4.1 Introduction  

Solid-State Transformer (SST) has been utilized with promising features for several niche 

applications. High-frequency (HF) transformer is the isolation and significant element in any 

SST topology. This chapter reviews, highlights, and explains the methodology steps of 

designing medium and HF transformer, and its optimum electrical and magnetic specifications. 

Then it demonstrates two different design examples for low power SST topologies. 

Experimental HF transformers are demonstrated for building 25 kHz, 5 kVA, 440/110V 

amorphous core transformer, and 100 kHz, 350 VA, 130/117V nanocrystalline core 

transformer. These two examples have been tested for low power operation. Also, theoretical 

concepts about the operation of selected transformer cores are addressed. The fabrication and 

experimentally investigation for constructing the two different transformers and their main 

operational features are presented. Also, evaluation of the two different magnetic materials at 

wide frequency range in term of cost, losses, and volume is presented. MATLAB has been used 

for programming the design methodology of the HF transformers. 

SST has reduced weight and size, moreover, it allows bidirectional power flow control with 

additional voltage regulation and voltage disturbance rejection functionality. SST is very 

convenient for many applications since better automation and control algorithm can be 

developed. Also, SST will help gaining more advantages for power quality, storage 

management, and power flow control in addition to the reduction of volume and weight 

compared to the traditional transformer [4-1, 4-2]. The essential part of the SST is the isolated 

DC/DC converter which is operated at a medium or high frequency. Therefore, HF transformer 

design steps will be reviewed and demonstrated to utilize the advantages of SST operation and 
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functionalities. The designed 100 kHz, 350 VA, 130/117V nanocrystalline core transformer 

(example 2) in this dissertation is adopted in the investigated GaN AC/DC converter topology 

to achieve some of the SST features and functionality advantages for low power applications. 

4.2 High-Frequency Transformer Design Methodology 

The design methodology for medium and high-frequency transformer has been described in [4-

3, 4-4, 4-5], and further investigated and disscussed in [4-6, 4-7, 4-8]. Figure 4.1 shows the 

main steps for designing HF transformer which are sumarized and reviewed in this chapter.  

1. Topology Specifications: The following fundamental specifications of the topology are 

identified: rated power, voltage, frequency, temperature, target effieciency, duty cycle, and 

desired leakage inductance for the optimum operation of the topology. 

2. Select the magnetic core: core material should be chosen taking into account cost, 

efficiency and volume. Amorphous, ferrite, and nanocrystalline magnetic materials were 

compared in [4-9] regarding the core losses at 10, 20, 50, and 100 kHz. Since the amorphous 

magnetic material has the highest saturation density, it yields the smallest core volume. Also, 

the cost for amorphous magnetic material is less than nanocrystalline material. Therefore 

amorphous magnetic material was chosen for the first transformer design example, while the 

second transformer design example is nanocrystalline material based on the desired switching 

frequency. After selecting the core material, its coefficients (Kc, α, β) and saturation flux 

density (Bsat) are taken from the manufacturer datasheet. 
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Figure 4.1. HF Transformer Design Procedure [4-3:4-8]. 

According to Figure 4.2 [4-9], at 50% duty cycle, 0.1T peak flux density, and f =100 kHz, the 

nanocrystalline material (Vitroperm 500F) has approximately 8 times lower losses than that of 

the ferrite (3C94) material, and the latter has approximately 1.5 times lower losses than the 

amorphous (Metglas 2605SA1) material.  
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Figure 4.2. Magnetic materials core losses (kW/m3) versus frequency [4-7][4-9]. 

So, for higher frequency (100 kHz or higher) nanocrystalline is much more efficient than ferrite 

and amorphous magnetic materials. However, for a frequency of 25 kHz, the losses are similar 

to each other, while the amorphous core material is cheaper than the nanocrystalline material. 

Table 4.1 shows the main properties parameters for the selected soft magnetic materials [4-9]. 

Table 4.1. Selected soft magnetic materials properties parameters [4-9]. 

Parameter Amorphous Nanocrystalline 

Bsat (T) 1.56 1.2 

Curie Temperature (oC) 399 600 

Permeability µi (x103) 10-150 15 

Kc (W/m3) 1.3617 2.3 

α 1.51 1.32 

β 1.74 2.12 

3. Calculate optimum flux density: Equation 4.1 is the formula derived in [4-3, 4-5] to 

calculate the flux density which yields the minimum total losses of the transformer core and 

copper. 
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𝐵𝑜𝑝𝑡 =
(ℎ𝑐𝑘𝑎𝛥𝑇)

2
3⁄

2
2

3⁄  (𝜌𝑤𝑘𝑤𝑘𝑢)
1

12⁄  (𝑘𝑐𝐾𝑐𝑓𝛼)
7

12⁄
(
𝑘𝑣𝑓𝑘𝑓𝑘𝑢

∑𝑉𝐴
)
1

6⁄

                              (4.1) 

where, the core coefficient parameters are typically as: ka = 40, kc = 5.6, kw =10 [4-3, 4-5, 4-

6], hc is the heat transfer coefficient, the suggested value for the window utilization factor ku is 

40% [4-3, 4-5, 4-6], the core stacking factor kf typically is 0.95 for laminated cores, and the 

winding voltage waveform factor kv is 4 for a square voltage waveform and 4.44 for sinusoidal 

waveform [4-4, 4-6]. Figure 4.3 shows transformer core, winding, and total loss verses the flux 

density. The optimum flux density is targeted to yield the minimum total loss.  
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Figure 4.3. Core, winding, and total loss verses flux density [4-5] [4-7]. 

4. Core dimension design: The area product is calculated from equation 4.2 in cm4 [4-3, 4-5] 

for the obtained optimum flux density, then the appropiriate core size is selected. The area 

product (Ap) is the prodcut of a transofrrmer window area (Wa) with the core cross sectional 

area (Ac) as shown in Figure 4.4. 

Ap = (
√2 ∑𝑉𝐴

𝑘𝑣𝑓𝐵𝑜𝑝𝑡𝑘𝑓𝑘𝑡√𝑘𝑢𝛥𝑇
)

8
7⁄

                                              (4.2) 
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Figure 4.4. Transformer core and winding typical layout [4-5]. 

5. Calculate optimum current density and select winding wire: Equation 4.3 is used to 

determine the desired current density in A/m2, taken into acount copper and core losses, and 

the thermal heat transfer for the transformer [4-3, 4-5, 4-6]. 

Jo = √
ℎ𝑐𝑘𝑎

𝜌𝑤𝑘𝑤
 . √

𝛥𝑇

2𝑘𝑢
 .

1

√𝐴𝑝
8                                                        (4.3) 

where: 𝜌𝑤 is the selected wire resistivity. Next are typical values for flux density and area 

product calculations: 

𝜌𝑤 =1.72* 10-8 Ω-m, hc = 10 W/m2 Co [4-5]. 

Then the primary and secondary windings number of turns are calculated from equation 4.4 [4-

5]: 

𝑁 = 
𝑉𝑟𝑚𝑠

𝐾𝑣𝑓𝐵𝑚𝑎𝑥𝐴𝑚
                                                             (4.4) 

where 𝐵𝑚𝑎𝑥 is the the smaller value of either 𝐵𝑜𝑝𝑡 or the material saturation flux density (𝐵𝑠𝑎𝑡). 

The conduction area of windings should be determined for the obtianed current density, and 

the radius of desired wire strand which considers the skin effect is calculated by equation 4.5 

[4-4] to choose the appropriate wire equivalent size. 

ɛ = 
6.62

√𝑓
                                                                (4.5) 
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where, ɛ is the skin depth which is the distance under the wire surface where the AC current 

density is 37% of its surface current value [4-4]. 

Conductors losses are reduced for Litz wires which can reduce the skin and proximity effects 

at high frequencies. Litz wire contians many thin wire strands, individually insulated and 

twisted together to obtain low wire resistance. For Litz wire with N number of strands, 

American wire gauge (AWG) is used to calculate the cross sectional area of the wire and the 

wire (of particular gauge) resistance per length (ohm/cm) as demonstrated in [4-7]. The gauge 

number is increased in AWG to denote decreasing wire diameters. 

6. Estimate leakage inductance: 

The critical steps for HF transformer design are calculating the optimal flux density, core 

dimensions, winding dimensions, and leakage inductance. The leakage inductance is related to 

the power transfer and phase shift for the dual active bridge (DAB) and similar topologies. The 

winding and core arrangements are typically adjusted to obtain the required leakage inductance 

for the transformer. Also, it is desired to utilize the leakage inductance for many converters 

topologies as a resonant inductance, or for optimum power transfer. There are some methods 

to evaluate the transformer leakage inductance reported in [4-3, 4-5, 4-6]. Equation 4.6 is the 

formula used for the shell type core reffered to the transformer primary-side [4-6, 4-7, 4-10]. 

Llk = 
1

3
 µ0𝑁𝑝

2 𝑀𝐿𝑇 
ℎ

𝑤
                                                        (4.6) 

where µ0 is the free space permeability constant (4π * 10-7 H/m), MLT is the mean length of a 

turn, w is the windings width (the core window width), and h is the window height. In [4-10], 

different cores arrangments and orthogonal flux effects are analyzed. Reducing the shell core 

leakage inductance can be achieved by reducing the number of turns, using long narrow core, 

or utilizing interleaving windings. For a toroid core of an r radius, the leakage inductance is 

estimated by equation 4.7. 



67 
 

Llk = 
1

2
 µ0𝑁𝑝

2 𝑀𝐿𝑇                                                      (4.7) 

This estimation equation is a modified formula developed to estimate the leakage inductance 

of the used toroid core transformer. It has verified the fabricated tarnsformer leakage 

inductance measured value which is very critical for the series resonant converter operation at 

the resonant frequency. If the desired leakage inductance is not obtained, the core and windings 

dimensions have to be modified to run another design iteration. The mean length of a turn 

(MLT) for a shell core (2 C-cores) is estimated as in [4-11] by equation 4.8. 

MLT = 2(w + 2l)+0.8*lw*(2+π)                                            (4.8) 

where w is the core cross sectional width, l is the cross sectional thickness of the core, and lw 

is the windings width for the C core. 

However, MLT for toroid core is given by equation 4.9 [4-4]. 

MLT = 0.8*(OD + 2*Ht)                                              (4.9) 

where OD is the toroidal core length, and Ht is the windings hight. 

The magnetizing inductance of the designed transformer typically is very high, and can be 

estimated by equation 4.10 [4-5]. 

Lm = µ0µ𝑟𝑁𝑝
2 𝐴𝑐

𝑙𝑐
                                                     (4.10) 

where 𝐴𝑐 is the core cross sectional area, and 𝑙𝑐 is magnetic path mean length. 

7. Calculate core and winding volumes: Equations 4.11 and 4.12 are the core and windings 

volumes related to the transformer area product [4-3, 4-6]: 

Vc = 𝑘𝑐  𝐴𝑝
3 4⁄

                                                         (4.11) 

 Vw = 𝑘𝑤 𝐴𝑝
3 4⁄

                                                         (4.12) 
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VT = Vc + Vw                                                        (4.13) 

where the dimensionless parameters are kc = 5.6, kw =10 [4-3, 4-5, 4-6]. If the required volumes 

for the core and winding are not fulfilled, the area product should be updated by compromising 

the flux density. 

8. Core and winding losses: 

The transformer efficiency depends on the core and winding losses which are calculated by 

equations 4.14, 4.15, and 4.17. The improved general Steinmetz equation (iGSE) is used to 

calculate core losses per unit volume (in W/m3) [4-5, 4-6]. The transformer efficiency is 

estimated by equation 4.18. 

Pcore = 
1

𝑇
 ∫ 𝑘1  |

𝑑𝐵(𝑡)

𝑑𝑡
|
𝛼

|𝛥𝐵|𝛽−𝛼𝑇

𝑜
dt                                     (4.14) 

𝑘1 = 
𝐾𝑐

(2𝜋)𝛼−1  ∫ |cos𝛳|𝛼|sin𝛳|𝛽−𝛼𝑑𝛳
2𝜋
0

                                     (4.15) 

Equation 4.16 is the approximation used for the coeffiecient 𝑘1 [4-5]: 

𝑘1 = 
𝐾𝑐

2𝛽−1 𝜋𝛼−1 (1.1044+
6.8244

𝛼+1.354
)
                                         (4.16) 

where Kc is core Steinmetz constant or core loss density (shown in Table 4.1) [4-9]. 

Pcu = 𝐼𝑝
2𝑅𝑝 + 𝐼𝑠

2𝑅𝑠                                                   (4.17) 

η = 
Output Power  

(Output Power+𝑃𝑐𝑜𝑟𝑒 + 𝑃𝑐𝑢)
                                        (4.18) 

9. Temperature and isolation evaluation: 

The transformer temperature rise must be within the acceptable limit as targeted in step 1 

specifications, and the conductors distance is calculated by equation 4.19 to ensure the isolation 

level requirement [4-12]. 
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  di = 
𝑉𝑖

𝑣𝐸𝑖
                                                          (4.19) 

where Vi is the required isolated voltage, Ei is the isolation material dielectric strength, and v 

is safe margin parameter which accounts for non-uniformities of the electric field [4-12]. 

10. Optimum design for the desired sepecifications and appropriate cost, volume and efficiency 

compromise is eventially obtained. The matlab code for the flowchart shown in figure 4.1 was 

dveloped by Roderick [4-7]. The program code has been updated and applied for two diferent 

design examples which are presented in this chapter (power, voltage, core, wire, and 

frequency,… etc ). All the associated equations for all the calculations have been reviewed and 

applied to yield the transformer specifications. 

4.3 Transformer Design Examples 

The literature for medium and high-frequency transformer design has been reviewed and 

investigated. Two diferent (core, frequency, rated power) design examples are demonstrated 

with their experimental testing measurements. 

4.3.1 Design Example 1: (25 kHz, 5 kVA, 440 V/110 V Amorphous shell core) 

Table 4.2 shows the obtained specifications for HF transformer example 1. Figure 4.5 shows 

the Metglas Amorphous AMCC – 63 core used in this design example. 

 

Figure 4.5. Metglas Amorphous AMCC – 63 laminated core.  
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Table 4.2. Example 1 (25 kHz) transformer specifications. 

Power 5 kVA 

Input – output voltage 440 V – 110 V 

Frequency 25 kHz 

Efficiency  96 % 

Core Metglas Amorphous AMCC - 63 

Wire 105/30 Served Litz wire 

Number of turns  32 primary/ 8 secondary 

Optimum flux density 0.19 T 

Volume  683 cm
3
 

Leakage inductance 210 µH 

Magnetizing inductance 30 mH 

Amorphous Metal C-Core (AMCC–63) was selected as well as 105/30 served Litz wire after 

running Matlab program to obtain the winding and core arrangements and all transformer 

specifications. A 25 kHz transformer has been constructed for 5 kVA rating with amorphous 

AMCC–63 core and 0.21 mH leakage inductance (Table 4.2). It was also tested using a half-

bridge inverter and it gave the expected output results. The gate drivers for the half bridge were 

controlled using the TMS320F28335 digital signal processor (DSP). This design has been done 

for shell type core as it is easier to estimate its leakage inductance, and also it is easily cooled 

as mentioned in the literature [4-10]. The bobbins for the shell core have not been utilized and 

105/30 served Litz wire is chosen for the transformer windings. 

An AWG 30 of 105 strands are used, and the diameter of AWG 30 is 0.254 mm. The primary 

and secondary wire areas have been calculated for the desired current density, and the desired 

wire radius for skin effect to calculate the total equivalent Litz wire size. Figure 4.6 

demonstrates the fabricated 5 kVA, 440V/110V amorphous transformer which was built using 
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the aferomentioned core and Litz wire. The primary and secondary winding resistances were 

measured and found as expected for the copper losses (Rp = 1.1 Ω, and Rs = 0.9 Ω). 

 

Figure 4.6. The developed 25 kHz, 5 kVA, 440 V/110 V amorphous transformer. 

4.3.1.1 Experimental Testing for the fabricated transformer of Example 1 

Half-bridge inverter board was fabricated to test the constructed transformer. The 

TMS320F28335 DSP is used to generate the control signals for the half-bridge transistors gate 

drivers. The experimental test setup shown in Figure 4.7 is to measure the inverter output 

voltage. The gate drivers to control the switching devices are placed on the top of the board as 

depicted in Figure 4.7. 

 

Figure 4.7. TMS320F28335 DSP to control the gate drivers of the half-bridge inverter. 
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The half-bridge inverter was built to obtain the required high frequency AC voltage. After 

making all the connections and using a 5 Ω resistor as a load at the transformer output, a dc 

power supply was increased gradually from 0 V to 40 V and the measurements are taken from 

the oscilloscope. Figure 4.8 shows the experimental setup to test the transformer using the DSP 

to control the gate drivers with PWM pulses of 25 kHz and 50% duty cycle.  Figures 4.9 and 

4.10 show the measured output voltage of the half bridge inverter for an input of 20 V, and 30 

V, respectively. 

 

Figure 4.8. Half-bridge inverter and 25 kHz transformer testing setup. 

 

Figure 4.9. Transformer input voltage for Vin = 20 V.  
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Figure 4.10. Transformer input voltage for Vin = 30 V.  

The applied input voltage was up to 46 V, and the secondary winding of the transformer was 

connected to 5 Ω resistor as a load. Figure 4.11 shows example 1 transformer output voltage 

for a DC input voltage of 20 V. Because the inverter output is the square pulse of +10 V and -

10 V, then the transformer secondary output is a fourth of the primary input as the ratio of 

stepping the voltage down. The frequency is 25 kHz, as the time period is 40 µs. Finally, Figure 

4.12 shows the transformer output AC voltage for a DC input of 46 V. It is obvious from the 

transformer measured waveforms that the 25 kHz output voltage have sloppy smooth 

transitions between the positive and negative values, and not rectangular as the input signals 

shown in Figures 4.9 and 4.10. That is because of the transformer non-ideal effects including 

the leakage inductance and losses. 

 

Figure 4.11. Example 1 transformer output voltage for Vin = 20 V.  
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Figure 4.12. Example 1 transformer output voltage for Vin = 46 V. 

4.3.2 Design Example 2: (100 kHz, 350 VA, 130V/117V, nanocrystalline toroid core) 

The proposed topology specifications are the starting parameters for this 100 kHz transformer 

design (Example 2). The chosen core is the W376-04 nanocrystalline toroid core for higher 

efficiency since the core losses are higher for amorphous and ferrite materials at higher 

frequencies. Leakage inductance evaluation is a critical step which is affected by the transformer 

winding and core arrangements, and eventually determines the resonance inductance of the 

series resonant converter in the proposed isolated converter. Figure 4.13 shows the W376-04 

nanocrystalline toroid core from VAC Magnetics, and its main dimensions. 

Core dimensions are in cm. 

Afe = 0.57 cm2. 

lfe = 7.85 cm. 

mfe = 32.9 g. 

 

Figure 4.13. W376-04 nanocrystalline toroid core [4-13]. 



75 
 

The completed 100 kHz transformer using the W376-04 nanocrystalline toroid core is shown in 

Figure 4.14. It has been designed according to the optimum specifications for the proposed GaN-

based AC/DC converter as shown in Table 4.3. 

Table 4.3. Example 2 (100 kHz) transformer specifications. 

Power 350 VA 

Input – output voltage 130 V – 117 V 

Frequency 100 kHz 

Efficiency 98.2 % 

Core Nanocrystalline Vitroperm W376-04 

Wire 16/30 Served Litz wire 

Number of turns 25 primary/ 22 secondary 

Optimum flux density 0.16T 

Volume 31.51 cm3 

Total Leakage inductance 50.31 µH 

Magnetizing inductance 18.7 mH 

 

Figure 4.14. The fabricated 100 kHz nanocrystalline toroid transformer. 

The resistances and inductances for each of the windings of the 100 kHz fabricated transformer 

are measured by an RLC meter, they are as follows: 

Primary side: 

Lm = 1.395 mH. 
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Llk = 25.48 µH. 

Rc = 135.7 kΩ (ac)- 170 mΩ (dc). 

Rs = 62 Ω (ac)- 130 mΩ (dc). 

Secondary side: 

Lm = 1.13 mH. 

Llk = 20.15 µH. 

Rc = 95.75 kΩ (ac)- 170 mΩ (dc). 

Rs = 51 Ω (ac)- 110 mΩ (dc). 

Therefore, the transformer total leakage reactance is calculated by 4.20 [4-5]. 

𝑋𝑒𝑞 = 𝑋𝑙1 + 𝑛2 𝑋𝑙2                                                    (4.20) 

Therefore, the total leakage inductance of this transformer is calculated as: 

𝐿𝑙𝑘_𝑒𝑞 = 25.48 + 1.112 (20.15) = 50.31 µ𝐻.                            (4.21) 

Tests are performed on the example 2 transformer (100 kHz Nanocrystalline toroid core) and 

Figure 4.15 shows its primary and secondary voltages, and primary current for the fabricated 

GaN converter prototype. The primary current is increasing when the voltages are positive, 

while it is decreasing when the voltages are negative. The proposed GaN isolated AC/DC 

converter is illustrated in Chapter 3. It includes a totem-pole power-factor-correction (TP-PFC), 

a half-bridge series resonant converter (SRC), and a current doubler rectifier (CDR) at the 

secondary of the high-frequency (100 kHz) transformer. Chapter 6 demonstrates the 

experimental converter prototype and its results. 
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Figure 4.15. 100 kHz transformer voltages (VT1, VT2), and primary current. 

4.4 Conclusion  

The literature and main steps to design medium and high frequency transformer are reviewed 

and explained, and MATLAB code was applied to obtain the specifications for two different 

transformers design examples. Amorphous shell type (25 kHz, 5 kVA, 440/110V) and 

nanocrystalline toroid core (100 kHz, 350 VA, 130/117V) are used as the material cores in the 

two design examples. Served Litz wires were selected for the transformers windings. 

Nanocrystalline core yields higher efficiency than amorphous core at 100 kHz or higher 

frequency, while at 25 kHz their efficiencies are close but the amorphous core is much cheaper 

than nanocrystalline core for the same power ratings. The high-frequency nanocrystalline 

toroid transformer is designed and fabricated to satisfy the performance specifications of the 

investigated AC/DC converter. More importantly, a new equation is developed to determine 

the toroid transformer leakage inductance. The measured value of the fabricated 

nanocrystalline transformer total leakage inductance is 50.31 µH, which proves the new 

equation developed in this work. The fabrication for the two transformers and their main 

operational features are presented and discussed. 
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CHAPTER 5 

TMS320F28335 DIGITAL SIGNAL PROCESSOR PROGRAMMING 

5.1 Introduction 

This chapter describes how to program the Texas Instruments™ (TI) TMS320F28335 digital 

signal processor (DSP) through code composer studio (CCS) version 6 and MATLAB 

Simulink embedded Coder. First, it shows how to setup Simulink and Embedded Coder and 

produce code to program the TMS320F28335 and variant of TI’s C2000 DSPs. It describes 

how to interact between MATLAB and CCS V6 and provides an explanation of the vital steps 

and settings needed to program the DSP. Basic functions such as pulse width modulation, 

analog digital conversion, and proportional-integral controllers are explained. Finally, the 

control model for the proposed AC/DC converter topology is developed. 

A TMS320F28335 DSP is shown in Figure 5.1. It is a C2000 class, 32-bit, floating-point 

microcontroller from Texas Instruments™ designed for real-time control with a system clock 

of up to 150 MHz to achieve a fast processing speed. The TMS320F28335 has up to 18 pulse 

width modulation (PWM) outputs, including 12 enhanced PWM outputs which allow easy 

initialization and implementation of PWM schemes. As such, TMS320F28335 applications are 

used for motor control, renewable energy, and power electronic converters.  

 

Figure 5.1. TMS320F28335 DSP with the USB docking station. 
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In addition to a 12-bit analog-to-digital (ADC) converter, with up to 16 ADC input channels, 

which provides real-time measurement and control. All pins of the TMS320F28335 DSP have 

a 3.3-V input/output voltage. Generally, it is an appropriate microcontroller to provide 

maximum control for many power conversion systems [5-1]. The TI TMS320F28335 DSP has 

many code examples available through TI’s website and support community. The TI’s website 

resources include schematics, reference manuals, software, and other development tools. 

ControlSUITE is an important software developed for TI’s C2000 class of microcontrollers 

and is free downloadable. This software includes many example projects and file libraries 

which can be utilized to develop a new project [5-1]. Figures 5.2, and 5.3 present the CCS 

home screen after building the project, and after running it respectively.  Entering CCS Debug 

mode means to download the executable output file to the DSP. This project is the program 

Example_2833xEPwmTimerInt.c which is used in [5-1], and downloaded from TI website. 

Designing closed-loop feedback multi PWM control schemes is much harder and more time 

consuming in CCS than in MATLAB Simulink Embedded Coder for Texas Instruments™ 

TMS320F28335 Digital Signal Processor (DSP). 

 

Figure 5.2. CCS home screen after building the project. 
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Figure 5.3. CCS debug home screen. 

The TMS320F28335 DSP is a cheaper controller which proved excellent convergence, and real 

time control for significant reduction of output ripple [5-2]. The code is automatically 

generated using the embedded coder, and so time for programming and control implementation 

is reduced. MATLAB Simulink for DSP controller is highly valuable as model design, 

simulation, code generation, debugging and running can be accomplished for control algorithm 

[5-3]. MATLAB Simulink environment is especially recommended for control algorithm 

implementation into micro controller [5-4][5-5]. This chapter provides a simple and clear 

tutorial to learn how to program the TMS320F28335 DSP from Texas Instruments™ (TI) 

through CCS and MATLAB Simulink Embedded Coder. Using Simulink code generation is 

more effective than writing line-by-line code in CCS which takes a long time for users to 

program the DSP [5-6][5-7]. To begin, the Embedded Coder, MATLAB Coder, and Simulink 

Coder toolboxes must be installed on the PC. Embedded coder sits on top of MATLAB and 

Simulink coder; it allows the user to add device specific code (ADC’s, DAC’s, CAN, etc.) to 

what it produces by the respective coders. An easy way to check the toolboxes installed on 

MATLAB version is by entering the “ver” command into the command window [5-7] as shown 

in Figure 5.4. 
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Figure 5.4. MATLAB installed toolboxes. 

5.2 CCSV6 Target Configuration 

First, Code Composer Studio (CCS) version 6 must be installed. If an older version of CCS 

was installed, it should be upgraded to CCS version 6 which is recently supported in Simulink 

for code generation. Embedded Coder (EC) works for previous versions but they are no longer 

supported by Texas Instruments. For setting up xMakefile in Simulink which tells EC where 

the CCS 6 compiler is installed among other programs. So MATLAB can call the command 

lines provided by CCS 6, and where MATLAB can find the compiler needed to create the 

makefile code. However, “xmakefilesetup” command in MATLAB is no longer needed 

because of the Embedded Coder Support package for TI C2000 Processors which permits the 

settings for model configuration parameters easily. Typing “supportPackageInstaller” 

command will launch the Support Package Installer Graphical User Interface in MATLAB.  
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Figure 5.5. Launch new target configuration. 

From the connection drop down box “Texas Instruments XDS100v1 USB Emulator” and 

“TMS320F28335” board or device must be selected. CCS 5 allows to test the target 

configuration right after it has been saved. Then for the New Target Configuration Launch 

Selected Configuration is clicked as shown in Figure 5.5. Then the debugger is brought up, you 

can right click on the board and click connect target. When the contents of the disassembly 

pane are displayed as in Figure 5.6, there is no problem with the connection to the DSP board. 

So CCS is ready to interact with MATLAB Simulink for TMS320F28335. 

 

Figure 5.6. Debugged target configuration. 
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5.3 Setup of xMakefile for CCS v5 

Type “xmakefilesetup” into MATLAB command line and after a few moments the 

configuration window should open up as in depicted Figure 5.7. Deselect the “Display 

operation configurations only” option and select “ticcs_c2000_ccsv5” option from the 

configuration dropdown menu. Then click Apply to change the tool directories as shown in 

Figure 5.8, you need to browse all CCS installation, Code generation tools, and DSP/BIOS 

installation folders to be entered correctly. The compiler directory should be incorrect when 

using CCS 5, so click on the new button to the right where you will be prompted to for a new 

configuration name. After it is named (clone), all of the options should be available to fill out 

the needed information. 

 

Figure 5.7. xMakefile configuration. 

 

Figure 5.8. xMakefile configuration tool directories. 
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Select the compiler tab and browse to the CCS 5 compiler directory. It is located at 

“C:\ti\ccsv5\tools\compiler\c2000_6.1.3\bin\cl2000”. Similarly, select the linker tab and 

browse to “C:\ti\ccsv5\tools\compiler\c2000_6.1.3\bin\cl2000”. Finally setup the archiver tab 

so that it’s pointed to the “C:\ti\ccsv5\tools\compiler\c2000_6.1.3\bin\ar2000” directory. Pre-

build and Post-build should be empty as the defaults are for both tool and “Arguments”. Also, 

“Execute” should be kept as the default. Figure 5.9 shows the compiler tab and its directory. 

With the above mentioned setup, building in Simulink now can be started. The help files for 

all the blocks are very useful, and references [5-8, 5-9, 5-10] provide some links for further 

information. Then type this command “checkEnvSetup('ccsv5','f28335','check')” in MATLAB 

to make sure that the tools are installed properly as shown in Figure 5.10. For F28335, header 

files are not needed but it is needed to install Flash APIs from TI ControlSUITE webpage. The 

compiler cab be checked by typing in the command window: mex –setup, or 

mex.getCompilerConfigurations. Then an environment variable for “Flash APIs” has to be 

created on the computer. Go to “Advanced system settings” and click environment variables, 

the prompt will show up as presented in figure 5.11. Then restart MATLAB, so it will be able 

to detect this flash APIs installed. Then the system is ready to create a Simulink model to blink 

an LED. 

 

Figure 5.9. xMakefile configuration clone compiler. 
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Figure 5.10. MATLAB checkEnvSetup command for F28335 DSP. 

5.4 Embedded Coder Support Package for TI C2000 Processors 

Open up a new file and go to the library browser and open up the following library tree: 

Embedded Coder > Embedded Targets. Within that library there are many blocks for TI C2000 

processors as shown in Figure 5.12. Embedded Coder Support package for TI C2000 

Processors has to be installed for MATLAB 2015a, and 2017a. But for MATLAB 2011b, and 

2013a versions, the library already exists. Then the desired C2833x processor can be chosen 

for the DSP control card under consideration. There is no block called target Preferences in the 

MATLAB 2011b version, but instead we will initialize “Configuration Parameters” by clicking 

on the Simulation menu then model configuration parameters. The window in Figure 5.13 will 

show up to change code generation parameters. The default solver is fixed step type and 

discrete. 
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Figure 5.11. Flash APIs environment variable. 

 

Figure 5.12. Embedded coder support package. 
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Figure 5.13. Code generation parameters configuration. 

5.5 Flash Memory Programming (Stand-Alone Mode) 

Choosing to work on RAM programming mode requires to set the configuration parameters to 

make the system target file as either “ert.tlc” or “idelink_ert.tlc” on the code generation page. 

For stand-alone mode, the program will be saved in the flash memory of the DSP, so it will not 

be erased when the DSP control card is unplugged from the computer. Check boot from flash 

option in configuration parameters window as shown in Figure 5.14. This setting in “Model 

Configuration Parameters” window tells EC what sort of DSP is being programmed so that it 

initializes the right peripherals, uses the correct operation frequency, knows how much memory 

is available, etc. Open the configuration parameters and ensure that the solver is set to fixed-

step and discrete, the fixed-step size should remain auto. The hardware implementation page 

should show Texas Instruments, C2000, and Little Endian [5-7][5-8][5-9]. The code can be 

generated by clicking “Deploy to Hardware” (build model) icon. It will build a dot out file 

which is a downloadable program file in CCSV6. MATLAB will build the model and put 

everything into an .out file which you will load onto the DSP using CCS. 
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Figure 5.14. Stand-alone execution configuration parameters. 

This .out file is placed in MATLAB current folder directory called 

Name_of_model_file_ticcs\CustomMW\Name_of_model_file.out. For a simple example, the 

model file is called “PI_Pulses”. Before loading the program, open up the debug drop down 

menu (The arrow next to the bug) and select debug configurations. Make sure to see the target 

and F28335 Flash settings as in Figure 5.15 for the flash mode operation. 

 

Figure 5.15. CCS debug configurations. 
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5.6 Debug Configurations and Code Running 

Once you open CCS, you can select the configuration from the debug dropdown menu and 

CCS will automatically connect to the DSP and load the .out file for that project as shown in 

Figure 5.16. You can check code generation report after loading the model to see the comments 

and the highlighted hyperlinks for specific blocks in the Simulink model. 

Finally in the target tab click on “auto run and launch options”, then select “connect to target” 

on debugger startup. After that is done, click debug at the bottom and CCS should take it from 

there. A new configuration for each one of the projects has to be setup, because when opening 

CCS the configuration can be selected from the debug dropdown menu, and CCS will 

automatically connect to the DSP and load the .out file for that project. 

A TMS320F28335DSP board is shown in Figure 5.17 with the blinking GPIO34 LED after 

running the program. Since this programming was done on the DSP flash memory, the USB 

switch can be turned ON and OFF to see that the program is still working and has not been 

erased from the RAM by turning the power off. 

 

Figure 5.16. Loading the .out file for the project. 
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Fig 5.17. TMS320F28335 DSP board. 

5.7 ePWM, ADC, GPIO, and PI Blocks 

Figure 5.18 shows ePWM block parameters to generate two complementary PWM signals with 

a frequency of 20 kHz and duty cycle of 0.5. For frequency of 40 kHz, the timer period would 

be 1875. But for up counting mode it would be 3750. The duty cycle is depending on the CMPA 

value and the counting mode specified in ePWM block of Figure 5.18. Here it is up counting 

mode so D= 0.5 since 1875/3750 = 0.5. As can be noticed, the frequency and duty cycle can 

be specified as input ports or via dialog. Under the General tap, the timer period can be 

specified and it is calculated as by equation 5.2.  

There are several options (Do nothing, Clear, Set, and Toggle) that can be chosen. As can be 

seen from Figure 5.18, when counter=CMPA on up-count (CAU) is “Set”, and when 

counter=CMPA on down-count (CAD) is “Clear”. Also counting mode can be chosen (Up, 

Down, or Up-Down). This is illustrated in the reference [5-1] and shown in Figure 5.19 for 

ePWM output signal generation. Set the period of the PWM waveform in clock cycles or in 

seconds, as determined by the Timer period unit’s parameter. The term clock cycles refers to 

the Time-base Clock on the processor. In this simple example, the timer period equals 3750 

with the “Up-Down” counting mode. So the frequency is set to 20 kHz as the time based clock 

is calculated by equation 5.1. 

𝑇𝐵𝐶𝐿𝐾 = 
𝑆𝑌𝑆𝐶𝐿𝐾

𝐻𝑆𝑃𝐶𝐿𝐾𝐷𝐼𝑉∗𝐶𝐿𝐾𝐷𝐼𝑉
                                                  (5.1) 



92 
 

where, SYSCLK is the system clock speed set to 150 MHz, which is the maximum clock speed 

of the TMS320F28335 as specified in the CPU clock. HSPCLKDIV is the high speed time 

based clock pre-scale, and CLKDIV is the time based clock pre-scale. For Up-Down counting 

mode:  

Timer period = 150 MHz /(2 * 20 kHz) = 3750                                 (5.2) 

For frequency of 40 kHz, the timer period would be 1875. But for up counting mode it would 

be 3750. 

 

Figure 5.18. ePWM block parameters. 
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Figure 5.19. ePWM signal generation. 

For compliment ePWMA and ePWMB, the “Deadband” polarity is chosen as either AHC or 

ALC as shown in Figure 5.20. 

 

Figure 5.20. ePWMA and ePWMB deadband. 
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Figure 5.21 shows two synchronized enhanced pulse width modulator (ePWM) blocks using 

the same frequency and duty cycle as inputs. The measured pulses for the two ePWM outputs 

are shown in Figure 5.22 as synchronized with a phase shift of TBPHS = 750 (number of cycles 

for the time period). Notice that these two ePWM outputs are 180 degree shifted, the switching 

frequency is 100 kHz, and each ePWM has two complementary signals. The duty cycles are 

0.48 (=720/(2*750)) and 0.46 (=690/(2*750)) for channel 1 (ePWM1A) and channel 3 

(ePWM2A), respectively. 

 

Figure 5.21. Synchronized two ePWM blocks. 

 

Figure 5.22. Synchronized ePWM pulses at 100 kHz. 
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Figure 5.23 presents the parameters for the two ePWM blocks used in Figure 5.21 model. It 

should be noted that the counting mode is Up-Down, so for a timer period of 1500 a phase shift 

of 1500 presents a 50% duty cycle. Also, notice that ePWM1A is set when counter equals zero 

and cleared when counter equals CMPA as shown below. The synchronization action is set as 

needed. The TMS320F28335 DSP has up to 18 PWM outputs which is adequate to control 

many three phase power converters. Twelve of these outputs are ePWM modules which are 

shown in Table 5.1. 

Figure 5.24 shows a simple example to use the analog digital converter (ADC) block to perform 

analog-to-digital conversion of signals connected to the selected ADC input pins. The output 

of the ADC is a vector of 16 values. The output values are in the range 0 to 4095 because the 

ADC is a 12-bit converter, the input channel is ADCINA0. Notice in Figure 5.25 that the option 

(Post interrupt at the end of conversion) has been unchecked, and the sample time is equal to 

the time period of the ePWM output pulse (f=20 kHz). When this simple model is built, and 

uploaded to the DSP board, the power supply DC voltage is connected to the pin ADCINA0, 

and the negative to the ground point.  

 

Figure 5.23. ePWM parameters for synchronization. 
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Table 5.1. ePWM output signals [5-1]. 

ePWM Module Module Outputs GPIO Pin 

ePWM1 ePWM1A GPIO00 

ePWM1B GPIO01 

ePWM2 ePWM2A GPIO02 

ePWM2B GPIO03 

ePWM3 ePWM3A GPIO04 

ePWM3B GPIO05 

ePWM4 ePWM4A GPIO06 

ePWM4B GPIO07 

ePWM5 ePWM5A GPIO08 

ePWM5B GPIO09 

ePWM6 ePWM6A GPIO10 

ePWM6B GPIO11 

 

Figure 5.24. ADC example. 

 

Figure 5.25. ADC and ePWM blocks parameters. 
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So, the duty cycle of this PWM signal can be controlled by changing the voltage from 0 to 3 V 

as can be seen on the oscilloscope. Notice that on the ePWM block you need to check the option 

(Enable ADC start of conversion for module A) as shown in Figure 5.25. Likewise the 

frequency of the ePWM output pulse can be controlled by the ADC input when we make it an 

input port. Figure 5.26 shows an example model of using the proportional integral (PI) 

controller to change the duty cycle of the ePWM output signals. The PID Controller block 

implements set-point weighting in the controller to achieve both smooth set-point tracking and 

good disturbance rejection [5-10]. Here the frequency was set to 40 kHz by making the time 

period 3750 in up counting mode.  

It is important to have the system controller designed conveniently to make sure the response 

is as desired. Notice that data type conversion block and rate transition block have been 

included to convert input signal to specified data type, and handle transfer of data between 

blocks operating at different rates. The aforementioned instructions are the basic settings to 

program the TMS320F28335 DSP; there are a couple other things that can be done to improve 

the code output. For instance, we can set objectives for the code output in “Configuration 

Parameters” window under the code generation advisor, such as execution efficiency, ROM 

efficiency, and RAM efficiency. If you click on the set objectives button, you will see a pop up 

and you can import the options in a prioritized list. 

 

Figure 5.26.  PI controller for duty cycle of ePWM output. 
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After you have a model built, you can click on the check model button and Simulink will 

analyze your model and provide tips to improve the generated code. Now it is good to start 

building your model. You can use any blocks from math, logic, and discrete block sets. Other 

blocks can be used as long as they do not have continuous states, the best way to check is by 

trial and error, add a block to your model and build the program. If the block is not compatible 

Simulink will tell you. In order to go to the DSP specific blocks (ADC, GPIO, CAN, PWM, 

etc.), scroll down to Embedded Coder > Embedded Targets > Processors > Texas Instruments 

C2000 > C2833x. There are also a number of IQ math and motor control blocks located in the 

optimization subgroup. Some of these blocks include Clark transformation, proportional 

integral derivative (PID) controller, Park transformation, speed measurement, and space vector 

generator. 

5.8 Closed-Loop Control model for the Developed AC/DC Topology 

The Model in Figure 5.27 has been developed to control the gate drivers of the proposed 

converter by controlling the duty cycles of the transistors. Each ePWM block generates two 

complementary pulses, so this model produces 4 pulses for the AC/DC converter prototype. 

The DSP generates the signals for the gate drivers to switch the GaN devices ON and OFF as 

desired. The ePWM blocks are coordinated to these 4 switches as ePWM1A, ePWM1B, 

ePWM2A, and ePWM2B for S1, S2, S3, and S4, respectively. 

 

Figure 5.27. TMS320F28335 DSP model for the AC/DC converter prototype. 
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In Figure 5.28, a feedback model with four sensors is designed for the input signals of ADC1 

and ADC2, and the PI controllers implemented a discrete-time controller in Simulink model. 

The reference values for the PI controllers are for the comparison with the ADC output to 

obtain the targeted time period for ePWM blocks in order to regulate the voltage levels for the 

power factor correction (PFC) stage and the series resonant converter (SRC) stage. 

 

Figure 5.28. Designed AC/DC converter closed-loop DSP model. 

 

Figure 5.29. Designed SRC PI controller. 
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Figure 5.29 shows the designed PI Controller block for the SRC inverter. Chapter 6 describes 

the experimental DSP signals and results for the designed converter topology prototype. 

5.9 Conclusion 

Using MATLAB Simulink embedded coder tools is time saving, efficient, and great for 

research and industrial control design. The Embedded Coder Support package for TI C2833x 

Processor provides the fundamental blocks needed for any power electronic, smart grid or 

motor drives applications.This chapter presents the instructions on how to program the 

TMS320F28335 micro-controller using a make file approach with embedded coder in 

MATLAB Simulink, and then debugging the program in CCS V6. This is a new programming 

methodology to interact between MATLAB and CCS V6 which provides an explanation of the 

vital steps and settings needed to program the DSP. This DSP programming method is better 

approach than only using the CCS code writing in term of the speed of the system prototyping, 

especisally when the converter has few swtching transistors to be controllerd so the memory of 

the TMS320F28335 is not overwhelmed and no need to optimize the microprocessor speed and 

memory. All basic functions such as pulse width modulation, analog-digital conversion, and 

proportional-integral controllers are explained and integrated. Also, the target configuration 

and xMakefile configuration tool directories are presented and explained. Hence, the main 

steps for the interaction between MATLAB and CCS V6 are investigated and explained. 

Different versions of MATLAB have some differences to interact with CCS, TMS320F28335 

DSP could be programmed using MATLAB 2011b and 2013a, but there are some errors for 

flash programming mode. Finally, the TMS320F28335 DSP control model for the proposed 

AC/DC converter topology is developed through MATLAB Simulink embedded coder 

programming approach and flash memory programming mode. The designed model has been 

described and presented. 
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CHAPTER 6 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

6.1 Introduction  

This chapter describes the printed circuit board (PCB) design and fabrication steps for the 

gallium nitride (GaN) AC/DC converter topology. The experimental results are presented, 

followed by discussions. 

6.2 Converter Topology Prototype Design 

Printed circuit board (PCB) layout was performed using Allegro Cadence software. Four layer 

PCB is recommended in [6-1] for driving GaN devices to obtain a suitable switching 

performance. The design methodology of the experimental prototype for the GaN AC/DC 

converter is described. 

6.2.1 OrCAD Capture Circuit Schematic Design  

The first step to design the PCB layout for the converter is to draw the circuit schematic using 

the software OrCAD capture. The designed topology schematic drawing in OrCAD is shown 

in Figure 6.1. The components are selected from the PSpice library. Each component has to be 

associated with the correct PCB footprint using the dimensions specified by the manufacturer 

data sheet. The connection of the gate drivers is considered to provide the gate signal to each 

switching transistor using the off-page connectors. The jumpers J1, J2, J3, and J4 are used to 

obtain the desired connections for the input and output terminals. 

6.2.2 Allegro PCB Editor Layout Design 

In this chapter the designed 4-layer PCB for the prototype is described. After drawing the 

circuit schematic in OrCAD and associating a PCB footprint for each component, the design is 

exported to Allegro PCB Editor. By creating a Netlist which contains the information of the 
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circuit schematic; OrCAD generates the netlist and opens its in Allegro PCB Editor [6-2]. Then, 

all the components of the converter are placed and connected with the fundamental 

considerations to mitigate as much parasitics as possible. The PCB layout in OrCAD Cadence 

Allegro PCB Designer is depicted in Figure 6.2. The four-layers of the PCB layout can be seen 

in Figures 6.3, 6.4, 6.5, and 6.6, respectively. Layer 2 is the ground return and layer 3 is the 

gate drivers and DSP card power supplies sources. A trace parasitic inductance analysis is 

considered for the converter layout, and briefly described in this dissertation. When operating 

at high frequencies, the parasitic inductances of the traces in a PCB and the intrinsic capacitance 

of the switching devices can cause over-voltages and high-frequency oscillations [6-3]. 

 

Figure 6.1. OrCAD Capture schematic of the AC/DC converter. 
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Therefore, a careful analysis of the trace parasitic inductances should be accomplished before 

building any converter board. The trace parasitic inductances should be less than 20 nH per 

inch and can be calculated using equation 6.1 [6-3, 6-4]: 

Lt = 2l (ln (
2l

w
) +

1

2
+ 0.2235 (

w

l
)

 
)              nH                               (6.1)  

 

Figure 6.2. 4-layer converter layout in Cadence Allegro PCB Designer. 

 

Figure 6.3. Top layer PCB layout. 
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Figure 6.4. Bottom layer PCB layout. 

 

Figure 6.5. Layer 2 layout with drill holes. 

 

Figure 6.6. Layer 3 layout with drill holes. 
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From equation (6.1), it can be seen that the trace parasitic inductance is a function of the length 

and width of the trace. Therefore, a gate driver PCB copper traces have to be as short as possible 

to avoid false triggering due to the deleterious effects of copper trace parasitics [6-4]. Once the 

PCB layout design is done with mitigating the effects of trace parasitic inductances, the next 

step is to create the Gerber and drill files for fabrication. All Cadence Allegro PCB design steps 

to take a circuit design from paper to a physical PCB are illustrated in [6-2]. 

6.3 GaN Gate Driver Considerations  

GaN high-electron-mobility transistors (HEMT) are voltage driven devices. Totem pole gate-

driver integrated circuits (ICs) can be used to apply the required voltage level to either turn the 

switch on or off. Gate driver design considerations recommended in [6-1] for GaN devices 

have been applied in the design of the 4-layer PCB. Driving the top switches of the power 

factor correction (PFC) and series resonant converter (SRC) of the converter can be 

accomplished by using either bootstrap circuits or isolated gate drivers power supplies. In this 

dissertation work, isolated power supplies and isolated gate drivers are implemented without 

the bootstrap circuit as explained in Chapter 2. Attention was paid to the gate driver layout 

design considerations and best practices illustrated in [6-1] for GaN devices. These 

considerations include controlling noise coupling, choosing the right gate resistors, setting the 

dead times, minimizing gate ringing, controlling Miller effect, high-side switch driving, 

minimizing layout parasitics, and applying quasi-Kelvin source for gate driver return. 

Decoupling capacitors are placed at the output of the power supply and at proximities to the 

drivers ICs to supply switching transient current and reduce voltage ripples. The voltage level 

to drive a HEMT needs to be higher than the threshold voltage which defines the point when 

the device shall conduct. It is necessary to apply quasi-Kelvin connections for the driver return 

loops, and minimize the parasitics of the pull-down and pull-up loops by locating the 

components (gate resistances, capacitors, and diodes) as close as possible. 
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Moreover, all gate, drain, and control traces have been isolated to prevent overlapping between 

different traces as recommended in [6-1]. The prototype utilized gate resistors RG(ON) of 10 Ω, 

and RG(OFF) of 1 Ω with a low forward voltage Schottky diode as depicted in Figure 6.7. Silicon 

fast recovery with low capacitance Schottky diodes are selected for gate pull-down path and 

gate-to-source spike clamping as the gate driver has single output for gate pull up and down. 

To avoid false turning on of the HEMT, the current flowing in Miller capacitance (CGD) will 

has a low impedance circuit through D1 diode back to the driver circuit. A Silicon Labs Si8273 

isolated gate driver [6-5] with desired features, like high dv/dt immunity, low propagation delay 

(60 ns or less), high DC bus voltage level (1500 V), and very high reliability is used. Figure 

6.8 shows the schematic of the designed gate drivers utilizing the isolated driver (Si8273) for 

the GaN switches in the half-bridges of the PFC and the SRC. The Silicon Labs Si8273 gate 

driver has convenient isolation barrier for 2.5 kVRMS withstand voltage and 200 kV/µs 

common-mode transient immunity (CMTI), also it has an Under-voltage Lockout (UVLO) 

protection for voltage drops as described in [6-5]. The peak output current of the Si8273 is 4 

A. The schematic designed in OrCAD PSpice capture for the gate drivers is shown in Figure 

6.8. As can be seen, U404 and U504 are the gate drivers 16-Small-outline integrated circuit 

(SOIC) which drive both the top (S1 or S3) and bottom (S2 or S4) switches. 

 

Figure 6.7. Gate driver for GaN transistor. 
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The 10 Ω gate turn on resistances for S1, S2, S3, and S4 are R406, R407, R506, and R507, 

respectively, while the 1 Ω gate turn off resistances for S1, S2, S3, and S4 are R401, R402, R511, 

and R512, respectively. All fast recovery Schottky diodes used for turn off paths and Miller 

effect control are CR1 to CR8. The 100 Ω input signal resistances are to protect the DSP from 

high currents, which are placed at the VIA and VIB of the gate driver U404 and U504. C405, 

C408, C505, and C508 are the 10 µF, 25 V capacitors used to yield smooth 6 V supply very 

close to the driver IC, while the 5 V input voltages of the Si8273 have 1 µF, 25 V capacitors 

(C407 and C507). The Si8273 enable signal is connected to the 5 V input voltage rather than 

using a DSP signal.  

 

 

Figure 6.8. Designed gate drivers schematic for GaN half-bridge legs. 
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a. Gate Driver Schematic for PFC switches. 

b.   Gate Driver Schematic for SRC switches. 
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A Texas Instruments TMS320F28335 DSP and two Silicon Labs Si8273 gate drivers are used 

for switching control. Figure 6.9 shows the 3.3 V DSP signals at 50 kHz, while the gate drivers’ 

6V outputs (VGS) to switch the PFC and SRC transistors at 100 kHz are presented in Figure 

6.10. The 50 kHz switching frequency is used for below resonant operation mode, while the 

converter resonant frequency is 64 kHz. The experimental measurements results are shown in 

this Chapter for ZVS operating condition. The top side switches of the PFC and SRC (S1 and 

S3) are synchronized together, while the bottom side switches S2 and S4 are synchronized 

together in order to avoid large spikes during turning on transitions.  

The gate signals shown in Figure 6.10 are the synchronized PWM signals obtained from the 

TMS320F28335 DSP through Si8273 gate drivers to operate the converter switches at 100 kHz 

switching frequency. The top two signals are S1 and S2 VGS voltages while the bottom two 

signals are S3 and S4 VGS voltages. GaN devices do not have intrinsic body diodes to conduct 

the boost inductor current during the freewheeling stages. The used GS66504B 650V E-mode, 

15 A GaN transistors rise and fall time is extremely small, and the propagation delay of the 

Si8273 gate driver is 60 ns or less. 

 

Figure 6.9. 3.3 V DSP signals for gate drivers at 50 kHz.  
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Figure 6.10. Gate drivers’ synchronized signals for GaN switches (VGS) at 100 kHz. 

So the dead time for the PFC VGS (S1 and S2) is made very small to minimize the time that the 

boost inductor is interrupted to avoid any inductive spike at the midpoint of S1 and S2. The VGS 

dead time of the PFC switches is minimized to 30 ns in order to minimize the boost inductor 

current spike and obtain best VPFC waveform, while the VGS dead time for the SRC transistors 

is adjusted to 90 ns at which the converter yields a minimum spike of the output voltage. 

However, Figure 6.11 shows the gate-to source voltages from the Si8273 drivers to operate the 

PFC and the SRC switches with 180o phase shifted signals at 105 kHz switching frequency.  

 

Figure 6.11. Phase shifted VGS signals for switching at 105 kHz. 
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That is performed to investigate the effect of the PFC and SRC switching sequence. Also, 

changing the dead time for the GaN half-bridge switches demonstrated significant effect on the 

PFC DC voltage and output voltage spikes. 

6.4 Converter Components Selection 

The main circuit components of the constructed converter are shown in Table 6.1 along with 

some of their key features. Two parallel capacitors of (Co) are used in the converter prototype 

to obtain 6600 µF for regulating the output voltage. 

Table 6.1. Constructed experimental prototype main parts. 

Element Description Features 

PFC Boost Inductor 

(Ls) 

PCV-2-274-10L 270 µH, Irms = 7.2 A. 

GaN Devices (S1 : 

S4) 

GS66504B 650V E-mode, 15 A. 

VGS(th) = 1.3 V. 

RDS(on) = 100 mΩ, VGS = 0:6 

V, QRR= 0, QG = 3 nC. 

Power Diodes (D1 : 

D4) 

FFH60UP40S 60 A 400 V Ultrafast Recovery, Low Vf. 

Gate Drivers Si8273, 1500 V, 16-pin SOIC, 

200 kV/μs CMTI 

60 ns propagation delay, high 

performance and speed 

isolation technology. 

Schottky Diodes 30 V 2 A DB2230600L Silicon epitaxial fast recovery 

with low capacitance. 

PFC Capacitor 

(CPFC) 

CAP ALUM 470 µF 20% 350 V, 

LQS2V471MELA50 

Nichicon electrolytic radial. 

SRC Capacitors (C1 

& C2) 

CAP ALUM 6.8 µF 20% 250 V, 

ULD2E6R8MPD1TD 

Nichicon electrolytic radial. 

Resonant Capacitor 

(Cr) 

CAP CER 0.1 µF 500 V X7T 2220 ceramic. 

High-Frequency 

Transformer 

100 kHz, 350 VA, 130/117 V Nanocrystalline toroid core 

(W376-04). 

CDR Coupled 

Inductor (L1 & L2) 

IHCL-4040DZ-5 A 10 μH Low profile, high-current 

coupled inductor, shielded 

construction. 

CDR Output 

Capacitor (Co) 

CAP ALUM 3300 µF 20% 100 

V, UVZ2A332MRD 

Nichicon electrolytic radial. 

TMS320F28335 

DSP 

Texas Instruments 

TMDSDIM100CON5PK 

C2000 class, 32-bit, 150 

MHz. 
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The designed converter is constructed onto a 4-layer PCB. The TMS320F28335 DSP is 

programmed as explained in Chapter 5 to generate the PWM signals (for S1 to S4) for the gate 

drivers (Si8273) which are initially set for 100 kHz fixed duty cycle operation. Multiple vias 

have been used to reduce resistive losses as well as increasing the width of all traces as much 

as possible. Quasi-Kelvin source connections for the GaN transistors gate driver returns are 

carefully used in the designed prototype. 

6.5 Experimental Prototype Testing 

Zero-voltage switching is implemented and verified in the series resonant converter to minimize 

switching stresses and losses. The resonant capacitor and the transformer leakage inductance 

determine the resonant frequency and the characteristic impedance values. The quality factor 

(Q) of the proposed converter is given by: 

𝑄 =   √𝐿𝑟 ⁄ 𝐶𝑟 ⁄ 𝑅𝐿𝑜𝑎𝑑                                                     (6.2) 

So the SRC characteristics depends on the load resistance and resonant tank [6-6].  

From Figure 3.22, at high frequency and with large output capacitor (Co = 6600 µF) Co is 

shorting one inductor of the CDR inductors (L1 and L2) at each mode. So, the total equivalent 

resonant inductance which includes the CDR inductance referred to the transformer primary 

side is calculated as: 

𝐿𝑟 = 50.31 + 1.112 (10) = 62.63 µ𝐻.                                       (6.3) 

Then the resonant frequency of the fabricated converter is given by: 

𝑓𝑟 =  
1

2𝜋√𝐿𝑟𝐶𝑟
 = 

1

2𝜋√0.1 µ𝐹∗62.6 µ𝐻
 = 64 kHz.                                      (6.4) 

The experimental prototype for the investigated GaN AC/DC converter is shown in Figure 

6.12. 
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a. Prototype top view. 

 

b. Prototype side view. 

Figure 6.12. The fabricated GaN AC/DC converter prototype board. 

For the converter prototype, a 100 kHz transformer is designed as explained in Chapter 4 to 

obtain the optimum flux density and satisfy the transformer specifications. Experimental work 

is conducted to verify the feasibility of this GaN based converter for various load conditions. 

The fabricated converter has been tested for AC/DC conversion operation as shown in Figure 

6.13. The RMS value of the output DC voltage shown in Figure 6.14 is 46 V. 

The designed gate drivers are working to switch the GaN transistors appropriately. The signals 

from each gate driver are 6 V pulses as designed in Figure 6.8 and shown in Figure 6.10. 

Schottky diodes are utilized for gate-to-source spike clamping (gate pull-down paths) to 

mitigate Miller effects, eliminate the ringing, and avoid false turn-on or gate oscillation as 

described in section 6.3 and explained in [6-1]. 
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Figure 6.13. Experimental setup using P5200 isolated voltage differential probes. 

 

Figure 6.14. Converter experimental testing setup for DC output voltage of 46 V. 
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6.6 Experimental Results 

The transformer primary voltage (-VT1) and primary resonant current (Ir) are shown in Figure 

6.15 for a reduced input voltage level and very large load resistance (100 kΩ) operating at 100 

kHz. VDS across the transistors exhibited noticeable parasitic noise and over voltage oscillation 

which showed VT1 having some switching ringing. Optimum switching performance is a 

challenge, and depends on the designed gate driver performance and the developed board 

layout design. Series resonant converter characteristics have been shown to depend on the load 

resistance value. Hence, the transfer characteristics of the converter may change with the load 

as the q-factor of the series resonant converter changes. 

Matching the switching frequency for S3 and S4 with the resonant frequency of the SRC results 

in soft-switching to reduce the switching losses. Also, adjusting the switching frequency and 

duty ratios for S3 and S4 will yield the discontinuous conduction mode (DCM) operation for 

the SRC current.  

 

Figure 6.15. -VT1 and Ir experimental results for Vin = 60 V and RL = 100 kΩ. 
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Applying low duty ratio signals to SRC switches S3 and S4 results in discontinuous conduction 

mode operation while high duty ratio signals yields continuous conduction operation for the 

SRC stage. The half-bridge SRC switching signals have dead time of 100 ns and 46% duty 

cycle as the gate drivers signals shown in Figure 6.10 were used for this measurement. 

Therefore, the transformer primary voltage (-VT1) shown in Figure 6.15 decreases from 90 V 

to -90 V in 0.6 µs, and it also increases from -90 V to 90 V in 0.6 µs. The experimental result 

for the transformer primary voltage (VT1), PFC output voltage, and primary current (Ir) are 

shown in Figures 6.16 and 6.17 for Vin of 70 V operating at 105 kHz with loads of 1 kΩ and 2 

kΩ, respectively.  

 

Figure 6.16. VT1, VPFC, and Ir waveforms for Vin = 70 V and 1 kΩ @ 105 kHz. 

The measured PFC output voltage is 150 V. As can be noticed from the voltage measurements 

scales of Figures 6.16 to 6.24, P5200 isolated voltage differential probes have been used with 

the range sets the attenuation to 1/50. So 1 V is 50V/DIV for all voltage measurements of 

Figures 6.16 to 6.24.  
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Figure 6.17. VT1, VPFC, and Ir waveforms for Vin = 70 V and 2 kΩ @ 105 kHz. 

The waveforms of VT1, VPFC, and Ir are shown in Figure 6.16 for an input voltage of 70 V and 

a load resistance of 1 kΩ operating at the switching frequency of 105 kHz. This measured PFC 

DC bus voltage is 154 V, and the transformer primary voltage is around 130 V. The waveforms 

for the gate-to-source voltage (VGS: the yellow signal), and drain-to-source voltage (VDS: the 

blue signal) for S3 and S4, and the SRC resonant current when operating at 105 kHz for a 

reduced input voltage with a load of 2 kΩ and 1 kΩ are shown in Figures 6.18, 6.19, and 6.20, 

respectively.  

 

Figure 6.18. S3 VGS VDS, and Ir waveforms for  RL = 2 kΩ @ 105 kHz. 
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Figure 6.19. S3 VGS VDS, and Ir waveforms for  RL = 2 kΩ @ 105 kHz. 

 

Figure 6.20. S4 VGS VDS, and Ir waveforms for  RL = 1 kΩ @ 105 kHz. 

Zero-voltage-switching (ZVS) is achieved for the SRC transistors (S3 and S4) as demonstrated 

in these waveforms at an above-resonant frequency of 105 kHz. The transformer primary 

current is not resonant sinusoidal waveform as the converter prototype resonant frequency is 

smaller than 105 kHz and so the converter is operated as a regular PWM converter for the 

above-resonant continous conduction mode of operation. However, the ZVS occurs because of 

the condition when the drian-to-source voltage is zero across the transistor as the current is 

flowing in the reverse direction through the body-drain diode of a MOSFET, at that moment 
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the transistor is turned on as can be seen from the ZVS results in Figures 6.19 and 6.20 

according to the direction of the transformer primary current (Ir). By analyzing the converter 

equivalent circuit and modes of operation shown in Figure 3.22; when the transformer primary 

current is positive either S3 is on or the S4 is carrying the current form the source to the drain 

direction, so S4 is turned on at ZVS. Similarly, when the transformer primary current is negative 

either S4 is on or S3 is carrying the current form the source to the drain direction, therefore S3 

is turned on at ZVS. 

Figure 6.21 also shows the gate-to-source voltage (VGS: the yellow signal), and drain-to-source 

voltage (VDS: the blue signal) for S4, and the SRC resonant current when operating at 105 kHz 

for a reduced input voltage with a load of 100 kΩ where the gate signals of the PFC and SRC 

are 180o phase shifted. There is an explicit voltage spike at the mid-point of S4 VGS due to the 

switching transition of the PFC transistors. That is when S1 is turned on and S2 is turned off as 

shown previously in Figure 6.11. At that moment when S1 is turned on and S2 is turned off, the 

source terminal of the switch S4 is getting large common mode voltage spike due to the 

interruption of the inductive current of the input inductor Ls. Therefore, the synchronized gate 

signals for the PFC and SRC (shown in Figure 6.10) are preferred for the converter operation 

to avoid this severe gate-to-source voltage spike.  

Figure 6.22 depicts the drain-to-source voltages of PFC switches which shows the smooth 

transition between switch voltages to avoid possible shoot-through or voltage spikes. GaN 

systems lateral devices do not include intrinsic body diodes, so there is a challenge of getting 

voltage spikes if the modes of operations have larger dead time periods with no freewheeling 

paths to conduct any interrupted current. Moreover, the PFC switches drain-to-source voltages 

and the PFC input current waveforms are shown in Figure 6.23. The PFC input current 

waveform verifies the low harmonic contents of the converter input stage. 
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Figure 6.21. S4 VGS VDS, and Ir waveforms for phase shifted VGS @ RL = 100 kΩ, 105 kHz. 

 

Figure 6.22. S1 and S2 VDS waveforms for Vin = 40 V and 2 kΩ @ 105 kHz. 

Also, the drain-to-source voltages of SRC switches are presented in Figure 6.24 which shows 

that there is no short circuit occurred for the converter bridges. Figure 6.25 presents the high-

frequency transformer primary and secondary voltages (VT1 and VT2), and the primary current 

(Ir) for an input of 80 V and 2 kΩ load at the switching frequency (105 kHz). The attenuation 

scale for this measurement is 1:1, hence the transformer primary and secondary measured 

voltages are 130 V and 100 V as shown. 

I
r
 

V
GS

 

 

S
1
 V

DS
 

 

S
2
 V

DS
 

 

V
DS

 

 



121 
 

 

Figure 6.23. S1 and S2 VDS, and IPFC waveforms for Vin = 35 V and 100 kΩ @ 100 kHz. 

 

Figure 6.24. S3 and S4 VDS and Ir waveforms for Vin = 40 V and 2 kΩ @ 105 kHz. 

The secondary voltage (VT2) displays some voltage fluctuations and ringing because of the 

leakage inductance di/dt effects during the high-current periods, while VT2 is pure when the 

resonant current is close to the zero crossing value. The resonant current slope is positive when 

the primary and secondary voltages are positive, while the slope of the current is negative for 

the negative voltages of the transformer.   
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Figure 6.25. VT1, VT2, and Ir waveforms for Vin = 80 V and 2 kΩ @ 105 kHz. 

Figures 6.26, 6.27, 6.28, and 6.29 show the experimental results for the transformer primary 

voltage (VT1), output voltage (Vo), and primary current (Ir) by gradually increasing the input 

voltage with different load resistances when operating the converter at the selected switching 

frequencies. As series resonant converter (SRC) characteristics depend on the load resistance 

of the experimental testing and the operating switching frequency, (250 Ω, 1 kΩ, 2 kΩ, and 

100 kΩ) load resistances are used for the conducted measurements. Figures 6.26 and 6.29 

present the voltage waveforms with the attenuation scale of 1:1, while Figures 6.27 and 6.28 

are the voltage waveforms using the P5200 isolated voltage differential probes with an 

attenuation of 1/50. 

So 1 V equals 50 V per the oscilloscope division for all voltage measurements of Figures 6.27 

and 6.28. Figure 6.26 shows VT1, Vo, and Ir for a 50 V input voltage and 2 kΩ load, at the 

resonant switching frequency (105 kHz) which resulted in an output DC voltage of 34 V, while 

the output DC voltage presented in Figure 6.27 is around 30 V for Vin of 60 V and a load of 

250 Ω at 72 kHz. 
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Figure 6.26. VT1, Vo, and Ir waveforms for Vin = 50 V and 2 kΩ @ 105 kHz. 

 

Figure 6.27. VT1, Vo, and Ir waveforms for Vin = 60 V and 250 Ω @ 72 kHz. 

As can be seen, the higher load resistance at the resonant frequency provided a higher output 

voltage even with slightly lower input voltage value. Figure 6.28 presents the results for 70 V 

input voltage and 2 kΩ load at 105 kHz which resulted in an output DC voltage of 47 V. Finally 

the experimental results for the transformer primary voltage (VT1), output voltage, and primary 

current (Ir) for an input voltage of 120 V with a large load resistance of 100 kΩ at the resonant 
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switching frequency is presented in Figure 6.29. The maximum measured output DC voltage 

for very light load condition at the rated input voltage is around 71 V as shown in Figure 6.29. 

 

Figure 6.28. VT1, Vo, and Ir waveforms for Vin = 70 V and 2 kΩ @ 105 kHz. 

 

Figure 6.29. VT1, Vo, and Ir waveforms for Vin = 120 V and 100 kΩ @ 105 kHz. 

Figure 6.30 shows the transformer primary voltage (VT1), output voltage (Vo), and load current 

(Io) for an input voltage of 80 V with a 2 kΩ load at 105 kHz. The measured output voltage 

(Vo) is 40 V and the measured load current (Io) is around 70 mA for the 2 kΩ load resistance.  
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Figure 6.30. VT1, Vo, and Io waveforms for Vin = 80 V and 2 kΩ @ 105 kHz. 

At high load resistance less current flows through the CDR coupled inductors L1 and L2 

(although its common resistance is very low) becuase the common mode inductor only allows 

the differential signals to flow through as the voltage across the inductor can change 

instantaneously while its current do not change instantaneously. 

6.7 Conclusion 

AC/DC power supplies desire higher efficiency high densities power electronics converters 

utilizing the merits of GaN devices. A GaN-based AC/DC converter is successfully designed 

and experimentally verified in this Chapter which yields a scaled-down isolated power supply 

to convert 120 Vac to 48 Vdc/60Vdc switching at 105 kHz. PFC and SRC GaN devices are 

controlled for PWM soft-switching operation using Silicon Labs Si8273 isolated gate drivers 

and the TMS320F28335 DSP controller. The gate driver configuration for critical GaN 

switching requirements is designed and fabricated. Moreover, GaN gate driver design 

considerations have been addressed and meticulously applied with a quasi-Kelvin source 

connection in the fabricated 4-layer PCB prototype in order to control Miller effects, minimize 
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gate ringing, and minimize the parasitics of the pull-down and pull-up loops of the designed 

layout. The PFC stage converts the 60 Hz AC input to the 300 V DC link to achieve a high 

power factor with reduced harmonic distortion load for the supply. A SRC operates under soft-

switching condition to yield a 105 kHz square-wave voltage for the high-frequency transformer 

primary winding. Finally the CDR provides the output DC voltage for the converter load. The 

experimental results verified the desired DSP and gate drivers operation for the control circuit, 

while the power supply has been applied with 2:1 scale isolation transformer (60 V AC input). 

The PFC DC voltage (VPFC), the transformer primary voltage (VT1), transformer primary 

current (Ir or Ip), and CDR output voltage have been measured under varied load conditions. 

ZVS operation has been demonstrated and verified for the SRC at the above-resonant frequency 

of 105 kHz. 

ZVS has been experimentally verified for the switching frequency of 105 kHz. Since series 

resonant converter (SRC) characteristics depend on the load resistance and the operating 

switching frequency, various load resistances are used for the conducted measurements. The 

dead times for both the PFC and SRC GaN transistors have been adjusted to yield the minimum 

voltage and current spikes whit PFC signals delay of 30 ns and SRC signals delay of 90 ns. 

There was an explicit voltage spike at the mid-point of S4 gate-to-source voltage due to the 

switching transition of the PFC transistors when S1 is turned on and S2 is turned off. Therefore, 

the synchronized gate signals for the PFC and SRC (shown in Figure 6.10) are preferred for 

the converter operation to avoid this severe gate-to-source voltage spike. The PFC input current 

waveform verified the low harmonic contents of the converter input stage, and the transformer 

output voltage with the CDR verified the voltage regulation capability of the converter. Ground 

loops are isolated using an isolation transformer for the input AC voltage to separate the 

oscilloscope probing ground from the converter voltages’ ground to obtain the correct 

measurements. The GaN HEMTs used in the scaled-down protoype (GS66504B) have 
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maximum operating junction temperature of 150 Co, so excessive heat dissipation must be 

avoid during the converter operation. The transformer primary current waveform is triangular 

because the converter is operating as a regular PWM converter at the the above-resonant 

continous mode for swtiching frequency of 105 kHz. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Introduction 

High-density switching converters are being realized with gallium nitride (GaN) power devices 

due to their high switching speeds that reduce the size of energy-storage circuit components. 

A new GaN-based power converter utilizing the solid-state transformer (SST) for low power 

applications is investigated, simulated, and designed in this dissertation. Several advantages 

have been the motivations for this research including the higher efficiency and fast switching 

ability of GaN technology, in addition to the reduction in size and volume of the high-frequency 

(HF) transformer. Moreover, the potential capabilities and functionalities of the SST converters 

can be combined with the advantages of power factor correction (PFC) rectifier and series 

resonant converter (SRC) with current doubler rectifier (CDR) to develop a new isolated 

AC/DC converter. Therefore, the objective of this dissertation is to synthesize the operation of 

the proposed GaN isolated AC/DC converter to obtain higher efficiency converter due to the 

zero-voltage-switching operation of all GaN transistors. So, the operation of the PFC and SRC 

is regulated to achieve full potential and higher performance soft-switching operating 

conditions. Eventually, the advantages of voltage regulation feature of the solid-state 

transformer, low harmonics and close-to-unity power factor of the PFC rectifier, soft-switching 

of the half-bridge SRC, volume reduction of the HF transformer, and smaller leakage 

inductance of the CDR are offered in this converter topology. CDR is used for low-voltage 

high-current applications as it draws half of the load current in the transformer secondary side, 

hence, it yields less copper losses of the transformer secondary winding. The key research 

conclusions and recommendations for possible future work directions are given in this chapter. 
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7.2 Dissertation Contributions 

High-efficiency, high-density power electronic converters utilizing GaN technology virtues are 

desired and being analyzed and investigated to develop AC/DC power supplies for several 

applications. In this dissertation, Chapter 2 gives the literature review of the operation and 

topologies of the solid-state transformer, and resonant converters soft-switching. Several SST 

topologies have been reviewed and evaluated for the desired functionalities. SST can provide 

extra benefits to the distribution grid by offering useful functions such as power flow control, 

protection monitoring, power factor correction, volume and size reduction, and voltage sag 

compensation. The designed converter in this dissertation yields a high-efficiency power 

supply converter assures close-to-unity power factor, low-harmonic distortion (<5%) to 

convert 120Vac to 48Vdc/60Vdc at 100 kHz for a 1.4 kW application. This GaN AC/DC 

converter is the simplest topology to yield a low-cost power supply for low-power applications. 

The theoretical operation concepts, modeling, and simulation of the proposed GaN AC/DC 

converter are presented in Chapter 3. The investigated converter topology is extensively 

simulated in MATLAB and PSpice, and the main simulation waveforms of the proposed 

converter with the output current and voltage are illustrated for various gate driver duty ratios 

and switching frequencies. The converter offers the advantages of voltage regulation feature of 

the solid-state transformer, low harmonics and close-to-unity power factor of the PFC rectifier, 

soft-switching of the half-bridge SRC, reduced size of high-frequency transformer, and smaller 

leakage inductance of the CDR which is used for low-voltage high-current applications as the 

CDR draws half of the load current in the transformer secondary side. Also, state-space analysis 

for the converter is performed in order to derive the transfer function of the isolated AC/DC 

converter. Then the closed-loop converter controller is designed, simulated, and discussed. 

Stability operation of the converter is shown through the sufficient phase margins of the 

converter frequency response. The frequency response characteristics of the closed-loop PFC 
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rectifier showed 90o phase margin of the PFC voltage loop gains, and 46.4o phase margin of the 

PFC current loop gains. However for the SRC with CDR closed-loop stability, the phase margin 

is 115o for the compensated voltage transfer function. Furthermore, a new equivalent circuit 

model for the converter is constructed consisting of a loss-free resistor model for the PFC 

rectifier with first harmonic approximation model for the SRC and the CDR. Positive coupling 

configuration is used for the CDR model as it yields almost zero current ripple in the output 

capacitor. The PFC lossless two-port network includes the average power transferred to the 

dependent power source as drawn. Then the CDR is modeled for positive coupling 

configuration for the coupled inductor. In the SRC investigated in this dissertation, the output 

CDR is primarily driven by the resonant tank current, while the output voltage of the CDR is 

regulated by a voltage feedback controller with a large output capacitor to remove any high-

frequency harmonics. 

The literature and fundamental steps to design medium and high-frequency transformers are 

reviewed and explained in Chapter 4, and MATLAB code was applied to obtain the 

specifications for two different transformers design examples. Amorphous shell-type (25 kHz, 

5 kVA, 440/110V) and nanocrystalline toroid core (100 kHz, 350 VA, 130/117V) are used for 

the demonstrated examples. Served Litz wires were chosen for the transformers windings. 

Nanocrystalline core yields higher efficiency than amorphous core at 100 kHz or higher 

frequency, while at 25 kHz their efficiencies are close but the amorphous core is cheaper than 

nanocrystalline for the same power ratings. A high-frequency nanocrystalline toroid 

transformer is designed and fabricated to satisfy the performance specifications of the 

converter. More importantly, a new equation is developed to determine the toroid transformer 

leakage inductance. The measured value of the fabricated nanocrystalline transformer leakage 

inductance is 50.31 µH, which verifies the modified equation developed in this work. 
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The instructions for programming the TMS320F28335 DSP controller using MATLAB 

Simulink embedded coder tools and then debugging the program in CCS V6 are documented 

in Chapter 5. MATLAB embedded coder support package for TI C2833x processors provides 

the required fundamental blocks for any power electronic, smart grid or motor drives 

applications. This is a new programming methodology to interact between MATLAB and CCS 

V6 which provides an explanation of the vital steps and settings needed to program the DSP. 

All basic functions such as pulse width modulation, analog-digital conversion, and 

proportional-integral controllers are explained and integrated. Also, the target configuration 

and xMakefile configuration tool directories are presented and explained. Finally, the 

TMS320F28335 DSP control model for the proposed AC/DC converter topology is developed 

through MATLAB Simulink embedded coder programming approach and flash memory 

programming mode. 

The fabricated GaN AC/DC converter experimental prototype and measurement results are 

presented and discussed in Chapter 6. PFC and SRC GaN devices are controlled for PWM soft-

switching operation using Silicon Labs Si8273 isolated gate drivers and the TMS320F28335 

DSP controller. The gate driver configuration for critical GaN switching requirements is 

designed and fabricated. Moreover, GaN gate driver design considerations have been addressed 

and meticulously applied with a quasi-Kelvin source connection in the fabricated 4-layer PCB 

prototype in order to control Miller effects, minimize gate ringing, and minimize the parasitics 

of the pull-down and pull-up loops of the designed layout. The scaled-down experimental 

prototype demonstrated a power supply converter for 120Vac to 48Vdc/60Vdc conversion, 

operating at 105 kHz for various load conditions. The Texas Instruments TMS320F28335 

digital signal processor (DSP) is used to generate the required gate driver control signals. Also, 

the dissertation work includes the experimental prototype fabrication to test and demonstrate 

the feasibility of the designed 4-layer printed circuit board (PCB) for the GaN AC/DC 
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converter operation. Simulation and experimental prototype have demonstrated the feasibility 

of the designed GaN AC/DC converter topology for low power applications. ZVS has been 

experimentally verified for the above-resonant continous mode of operation at the switching 

frequency of 105 kHz. Since series resonant converter (SRC) characteristics depend on the load 

resistance and the operating switching frequency, various load resistances are used for the 

conducted measurements. The dead times for both the PFC and SRC GaN transistors have been 

adjusted to yield the minimum voltage and current spikes whit PFC signals delay of 30 ns and 

SRC signals delay of 90 ns. There was an explicit voltage spike at the mid-point of S4 gate-to-

source voltage due to the switching transition of the PFC transistors when S1 is turned on and 

S2 is turned off. Therefore, the synchronized gate sequence for the PFC and SRC (shown in 

Figure 6.10) is preferred for the converter operation to avoid this severe gate-to-source voltage 

spike. The PFC output voltage waveform verified the converter input stage stable rectification, 

and the CDR output verified the output voltage regulation capability of the converter. 

7.3 Dissertation Recommendations for Future Research Work 

Although GaN technology has been recently developed and widely studied by many 

researchers for emerging electric power systems and power electronics applications, there are 

still many challenges needed to be carefully addressed, analyzed and investigated. The work 

presented in this dissertation could be extended per the following recommendations and 

possible directions for future work. 

First, the work in Chapter 3 needs to be extended and developed to find out more about the 

proposed converter optimum controller strategies in order to achieve higher efficiency 

operation conditions. Moreover, the small signal model should be derived and developed for 

the proposed and designed GaN AC/DC converter. 
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Secondly, there are more objectives for designing an optimized high-frequency transformer 

which would potentially improve the converter performance and resonant operation. 

Nanocrystalline toroid core transformer (100 kHz, 350 VA, 130/117V) is designed and built 

for the demonstrated converter experimental prototype. It is very attractive and practical to 

balance the transformer design tradeoff to achieve the desired optimal design regarding the 

cost, efficiency, volume, and layout configuration for higher frequency operation with smaller 

leakage inductance value. Interleaving winding arrangements to utilize the transformer leakage 

inductance targeting 500 kHz as the converter resonant frequency is recommended. Moreover, 

for different toroid core sizes, more accurate estimate for the leakage inductance should be 

obtained and derived by finite element analysis and simulations.  

Also, this dissertation has presented the designed AC/DC converter control strategy and the 

methodology for programming the TMS320F28335 DSP controller using MATLAB Simulink 

embedded coder. However, programming the TMS320F28335 DSP controller for the designed 

AC/DC converter control strategies is challenging and there are some operating conditions and 

constraints on this approach that will need to be further investigated.  

Furthermore, electromagnetic interference (EMI) issues have not been addressed in this work 

for the GaN isolated AC/DC converter. Therefore, the EMI aspect could be considered to 

mitigate their effects on the designed GaN converter and its performance.  

Finally, the experiments provided valuable insights into the operation of the designed 

converter. So the future research work should consider the experimental testing which needs 

more advanced measurements, like measuring the converter efficiency with an appropriate 

laboratory power analyzer, and verifying the converter stability for transient responses through 

input voltage or load change.  
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Appendix A: MATLAB Code for HF Transformer Design Example 1. 

 
% FOR HIGH-FREQUENCY TRANSFORMER DESIGN. Example #1 
% Includes General and Improved Steinmetz Equations for non-sinusoidal excitation 
 
clc 
%Specifications for Amorphous core. 
phase=1;                %Phase of input signal 
Pout=5000/phase;  %Output Power in VA (EX - 15000VA/phase) 
n=0.98;                  %Desired Efficiency (EX 0.98 = 98%) 
Pin=Pout/n;           %Input Power (VA) 
SVA=Pin+Pout;     %Sum of input power and output power 
Vp=440;                 %Primary voltage (V) 
Vs=110;                 %Secondary voltage (V) 
Ip=11.36;              %Primary current (A) 
Is=45.45;              %Secondary Current (A) 
f=25000;              %Frequency (Hz) 
T=1/f;                  %Period (s) 
DT=70;               %Temperature rise (C) 
D=0.5;                %Duty Cycle 
  
%Coefficients and dimensional parameters , typical values. 
hc=10;                  %Coefficient of heat transfer 10W/m^2C for natural convection. Up to 30W/m^2C 
ka=40;                  %Dimensionless Quantity See page 61 
kw=10;                 %Dimensionless Quantity See page 61 
kc=5.6;                 %Dimensionless Quantity See page 61 
Kv=4;                   %Waveform Excitation (Square wave=4 / Sinusoidal=4.44) 
kf=0.95;                %Core stacking factor 
ku=0.4;                 %Window utilization factor (recommended 40% of window area) 
phiw=1.72e-8;      %(ohm*m) initial wire resistivity for flux density and area product calculations 
Kt=(hc*ka/(phiw*kw))^0.5;   %48.2x10^3 eq. 3.29 page 61 
  
% Amorphous Core Parameters 
Kc=1.3617;          %Coefficient of the Steinmentz equation in (W/m3)  
alpha=1.51;          %Coefficient of the Steinmentz equation 
beta=1.74;            %Coefficient of the Steinmentz equation 
Bsat=1.56;           %Maximum flux density before saturation 
ki = Kc/(2^(beta-1)*pi^(alpha-1)*(1.1044+(6.8244/(alpha+1.354)))); %Improved General Steinmetz Equation 

Constant, k1 (Hurley P.204) 
  
%Optimum Flux Density 
Bop=(((hc*ka*DT)^(2/3))./((1.5874).*((phiw*kw*ku)^(1/12)).*(kc*Kc.*f.^alpha).^(7/12))).*((Kv.*f.*kf*ku./S

VA).^(1/6))   %Teslas (T) (Hurley P.126) 
  
Bop=0.19      %Introduce a different value when the optimum is not desired 
DB=2*Bop;   %Peak to Peak Flux Density 
Llk_Desired=Vp^2/(8*f*Pout)  % approximation for desired leakage inductance Llk at Maximum. 
  
%Optimum Area Product 
Ap=(((sqrt(2))*SVA./(Kv.*f.*Bop*kf*Kt.*((ku*DT).^(0.5)))).^(8/7))*1e8 %(cm^4)(Hurley P.125) 
  
%Core Dimensions (Amorphous C-Core AMCC-63) from data sheet. 
c=1;                 %number of cores needed to complete the optimum Ap /shell-core 
w = 3*c;          %total width (cm) 
hwa = 7;          %height of window area (cm) 
lw=2;               %length of the window area (cm) 
lc=5.2;             %length of the core (cm) 
l = 0.5*(lc-lw);   %length of cross sectional area (cm) 
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lm=25.3*2;             %mean length of the core (cm) 
Ac = 3.9*2;            % ~= 2*l*w Cross sectional area of shell-core (cm^2)  
Wa = lw*hwa;        %Window Area (cm^2) 
m = 703*c*2;         %mass of core (x2 if shell type)(grams) 
density = 7.18;       %(g/cm^3) 
Ap = Wa*Ac          %Area product (cm^4) 
Apm = Ap/(100^4);  %Area product (m^4) 
  
%Current Density Calculation 
J = (((hc*ka*DT)/(2*phiw*kw*ku))^(1/2))*(1/(Apm^(1/8)))/(100^2) % Primary Current Density (A/cm^2) 

page 125 
  
%Number of turns for primary and secondary 
Np = Vp./(Kv.*Bop.*kf*Ac*(10^-4)*f)     %Number of turns primary Eq.5.15 pg. 128  
Np=ceil(Np) 
Ns = Np*(Vs/Vp)                    %Number of turns secondary  
MLT = (2*w)+2*(2*l)+(lw*0.8)*(2+pi) %  Mean Length Per turn (cm) McLyman eq. 4-23 and Design 

Optimization (K.D. Hoang)(2*l for shell-type xfmr) 
% Eq. 4-24 McLyman for Toroid Core MLT. 
  
%Volume 
Vw=MLT*Wa;     %Volume of the windings cm^3 
Vc=lm*Ac;           %Volume of the core cm^3 
Vt=Vw+Vc           %total volume in cm^3 
Vtd=(1e-3).*Vt;    %  in dm^3 
Vtm=(1e-6)*Vt;    %in m^3 
  
%Volume based on Ap 
% Vw=kw.*Ap.^(3/4) %Volume of the windings 
% Vc=kc.*Ap.^(3/4) %Volume of the core 
% Vt=Vw+Vc   %total volume in cm^3 
% Vtd=(1e-3).*Vt; % in dm^3 
% Vtm=(1e-6).*Vt; %in m^3 
  
%Leakage Inductance for the Shell-type core 
Lkp=(4*pi*10^-7).*(Np^2).*MLT*hwa*(10^-2)/(3*lw) %  lw: winding width Design Optimization (K.D. 

Hoang)           
Lks=(4*pi*10^-7).*(Ns^2).*MLT*hwa*(10^-2)/(3*lw)  
Lm= (4*pi*10^-7)*15000*(Np)^2*Ac/(lm*100)  %  Magnetizing Inductance in H. 
  
%Copper winding dimension calculations 
skin = 6.62/(sqrt(f));     % radius of skin effect (also the radius of desired wire)(cm), McLyman eq. 4-5 
dskin = 2*skin              % maximum diameter of each strand  (cm)  
Askin = pi*skin^2;       % ideal copper cross sectional area (cm^2) 
PCA = Ip/J                    % Primary conduction Area of windings (cm^2)to choose the wire equivalent size. 
SCA = Is/J                    % Secondary conduction Area of windings (cm^2) 
  
%Copper Winding selection data (assuming litz wire with n # of strands) 
Aw = 0.000509;           %Cross Sectional Area of each strand (cm^2) AWG strand # 30 
rho = 3386;                  %Wire (of particular gauge) resistance per length (µOhm/cm) 
  
PS = round(PCA/Aw)         %IDEAL Primary strands in litz wire 
SS = round(SCA/Aw)         %IDEAL Secondary strands in litz wire 
rhop = rho/PS;                    %Primary Resistance per cm (µOhm/cm) 
rhos = rho/SS;                    %Secondary resistance per cm (µOhm/cm) 
RP = rhop*Np*MLT*(10^-6)  %Total Primary Resistance (Ohm) 
RS = rhos*Ns*MLT*(10^-6)  %Total Secondary Resistance (Ohm) 
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%Window utilization factor check 
Wap=PS*Np*Aw                 % Window area of primary winding (cm^2) 
Was=SS*Ns*Aw                  % Window area of secondary winding (cm^2) 
kux=(Wap+Was)/Wa            % Total window utilization 
  
%Copper Losses 
Pcup = RP*(Ip^2);           %Primary Copper Losses(W) 
Pcus = RS*(Is^2);            %Secondary Copper Losses (W) 
Pcu = Pcup + Pcus           %Total Copper Losses (W) 
  
%Core Losses per Unit Volume 
Pv = Kc*(f^alpha)*(Bop^beta);          %Losses per unit volume (General Steinmetz Equation) (W/m^3) 
Pvi = ki*(DB^(beta-alpha))*(1/T)*(2*DB^alpha*(D*T)^(1-alpha));    %Losses per unit volume (Improved 

Steinmetz Equation) (W/m^3)(Hurley P.205)  
  
%Core Losses 
Pfe = Vtm*Pv;       %Total core losses (General Steinmetz Equation) (W) 
Pfei = Vtm*Pvi      %Total core losses (Improved Steinmetz Equation) (W) 
  
%TOTAL LOSSES 
Ptot = Pfe + Pcu;          %TOTAL LOSSES (GENERAL STEINMETZ EQUATION) (W) 
Ptoti = Pfei + Pcu         %TOTAL LOSSES (IMPROVED STEINMETZ EQUATION) (W) 
  
%Efficiency 
Eff = Pout/(Pout + Ptot);       %Efficiency (%)(GENERAL STEINMETZ EQUATION) 
Effi = Pout/(Pout + Ptoti)      %Efficiency (Improved Steinmetz Equation) (%) 
  
% Temperature Rise and Isolation Level check  
Eins=16;       % Dielectric Strength of the Isolation material in KV/mm.  
Vins=2;        % Voltage Required to be isolated in KV. 
vv=0.41;       % Safe margin parameter , from Isolation material datasheet. 
dins=Vins/(vv*Eins); % Minimum Distance for Isolation in mm. 
  
%Temperature Rise and Isolation distance  
Ks=39.2;                  %For C core Table 5-4 McLyman 
At=Ks*(Ap)^0.5       %Surface area (cm^2)Eq. 5-30 McLyman 
Pdis=Ptoti/At;           %power dissipated per unit area (W/cm^2)Eq. 6-17 
Tr=450*(Pdis)^0.826  %Temperature rise (C) Eq. 6-19 McLyman  
dins=Vins/(vv*Eins)  %Minimum isolation distance between primary and secondary windings (mm) (Optimized 

design of Medium Freq. Trans _Ortiz) 
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Appendix B: TMS320F28335 DSP C Code for the AC/DC converter model. 

File: ert_main.c 

1 /* 

2 * Academic License - for use in teaching, academic research, and meeting 

3 * course requirements at degree granting institutions only. Not for 

4 * government, commercial, or other organizational use. 

5 * 

6 * File: ert_main.c 

7 * 

8 * Code generated for Simulink model 'APEC_Topology_Model_V12_105KHz'. 

9 * 

10 * Model version : 1.25 

11 * Simulink Coder version : 8.12 (R2017a) 16-Feb-2017 

12 * C/C++ source code generated on : Mon Sep 17 21:37:53 2018 

13 * 

14 * Target selection: ert.tlc 

15 * Embedded hardware selection: Texas Instruments->C2000 

16 * Code generation objectives: Unspecified 

17 * Validation result: Not run 

18 */ 

19 
 

20 #include "APEC_Topology_Model_V12_105KHz.h" 

21 #include "rtwtypes.h" 

22 
 

23 volatile int IsrOverrun = 0; 

24 static boolean_T OverrunFlag = 0; 

25 void rt_OneStep(void) 

26 { 

27 /* Check for overrun. Protect OverrunFlag against preemption */ 
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28 if (OverrunFlag++) { 

29 IsrOverrun = 1; 

30 OverrunFlag--; 

31 return; 

32 } 

33 
 

34 enableTimer0Interrupt(); 

35 APEC_Topology_Model_V12_105KHz_step(); 

36 
 

37 /* Get model outputs here */ 

38 disableTimer0Interrupt(); 

39 OverrunFlag--; 

40 } 

41 
 

42 int main(void) 

43 { 

44 volatile boolean_T runModel = 1; 

45 float modelBaseRate = 0.5; 

46 float systemClock = 150; 

47 c2000_flash_init(); 

48 init_board(); 

49 
 

50 #ifdef MW_EXEC_PROFILER_ON 

51 
 

52 config_profilerTimer(); 

53 
 

54 #endif 

55 
 

56 ; 
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57 rtmSetErrorStatus(APEC_Topology_Model_V12_105K_M, 0); 

58 APEC_Topology_Model_V12_105KHz_initialize(); 

59 configureTimer0(modelBaseRate, systemClock); 

60 runModel = 

61 rtmGetErrorStatus(APEC_Topology_Model_V12_105K_M) == (NULL); 

62 enableTimer0Interrupt(); 

63 globalInterruptEnable(); 

64 while (runModel) { 

65 runModel = 

66 rtmGetErrorStatus(APEC_Topology_Model_V12_105K_M) == (NULL); 

67 } 

68 
 

69 /* Disable rt_OneStep() here */ 

70 
 

71 /* Terminate model */ 

72 APEC_Topology_Model_V12_105KHz_terminate(); 

73 globalInterruptDisable(); 

74 return 0; 

75 } 

76 
 

77 /* 

78 * File trailer for generated code. 

79 * [EOF] 

File: APEC_Topology_Model_V12_105KHz.c 

1 /* 

2 * Academic License - for use in teaching, academic research, and meeting 

3 * course requirements at degree granting institutions only. Not for 

4 * government, commercial, or other organizational use. 

5 * 
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6 * File: APEC_Topology_Model_V12_105KHz.c 

7 * 

8 * Code generated for Simulink model 'APEC_Topology_Model_V12_105KHz'. 

9 * 

10 * Model version : 1.25 

11 * Simulink Coder version : 8.12 (R2017a) 16-Feb-2017 

12 * C/C++ source code generated on : Mon Sep 17 21:37:53 2018 

13 * 

14 * Target selection: ert.tlc 

15 * Embedded hardware selection: Texas Instruments->C2000 

16 * Code generation objectives: Unspecified 

17 * Validation result: Not run 

18 */ 

19 
 

20 #include "APEC_Topology_Model_V12_105KHz.h" 

21 #include "APEC_Topology_Model_V12_105KHz_private.h" 

22 
 

23 /* Real-time model */ 

24 RT_MODEL_APEC_Topology_Model__T APEC_Topology_Model_V12_105K_M_; 

25 RT_MODEL_APEC_Topology_Model__T *const APEC_Topology_Model_V12_105K_M = 

26 &APEC_Topology_Model_V12_105K_M_; 

27 
 

28 /* Model step function */ 

29 void APEC_Topology_Model_V12_105KHz_step(void) 

30 { 

31 /* S-Function (c280xgpio_do): '<Root>/Digital Output' incorporates: 

32 * Constant: '<Root>/Constant' 

33 */ 

34 { 
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35 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 

36 (APEC_Topology_Model_V12_105KH_P.Constant_Value != 0); 

37 } 

38 } 

39 
 

40 /* Model initialize function */ 

41 void APEC_Topology_Model_V12_105KHz_initialize(void) 

42 { 

43 /* Registration code */ 

44 
 

45 /* initialize error status */ 

46 rtmSetErrorStatus(APEC_Topology_Model_V12_105K_M, (NULL)); 

47 
 

48 /* Start for S-Function (c280xgpio_do): '<Root>/Digital Output' incorporates: 

49 * Constant: '<Root>/Constant' 

50 */ 

51 EALLOW; 

52 GpioCtrlRegs.GPBMUX1.all &= 0xFFFFFFCF; 

53 GpioCtrlRegs.GPBDIR.all |= 0x4; 

54 EDIS; 

55 
 

56 /* Start for S-Function (c280xpwm): '<Root>/ePWM1' */ 

57 
 

58 /*** Initialize ePWM1 modules ***/ 

59 { 

60 /*-- Setup Time-Base (TB) Submodule --*/ 

61 EPwm1Regs.TBPRD = 714; 

62 
 

63 /* // Time-Base Control Register 
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64 EPwm1Regs.TBCTL.bit.CTRMODE = 2; // Counter Mode 

65 EPwm1Regs.TBCTL.bit.SYNCOSEL = 3; // Sync output select 

66 EPwm1Regs.TBCTL.bit.PRDLD = 0; // Shadow select 

67 EPwm1Regs.TBCTL.bit.PHSEN = 0; // Phase load enable 

68 EPwm1Regs.TBCTL.bit.PHSDIR = 0; // Phase Direction 

69 EPwm1Regs.TBCTL.bit.HSPCLKDIV = 0; // High speed time pre-scale 

70 EPwm1Regs.TBCTL.bit.CLKDIV = 0; // Timebase clock pre-scale 

71 */ 

72 EPwm1Regs.TBCTL.all = (EPwm1Regs.TBCTL.all & ~0x3FBF) | 0x32; 

73 
 

74 /* // Time-Base Phase Register 

75 EPwm1Regs.TBPHS.half.TBPHS = 0; // Phase offset register 

76 */ 

77 EPwm1Regs.TBPHS.all = (EPwm1Regs.TBPHS.all & ~0xFFFF0000) | 0x0; 

78 EPwm1Regs.TBCTR = 0x0000; /* Clear counter*/ 

79 
 

80 /*-- Setup Counter_Compare (CC) Submodule --*/ 

81 /* // Counter-Compare Control Register 

82 EPwm1Regs.CMPCTL.bit.SHDWAMODE = 0; // Compare A block operating mode. 

83 EPwm1Regs.CMPCTL.bit.SHDWBMODE = 0; // Compare B block operating mode. 

84 EPwm1Regs.CMPCTL.bit.LOADAMODE = 0; // Active compare A 

85 EPwm1Regs.CMPCTL.bit.LOADBMODE = 0; // Active compare A 

86 */ 

87 EPwm1Regs.CMPCTL.all = (EPwm1Regs.CMPCTL.all & ~0x5F) | 0x0; 

88 EPwm1Regs.CMPA.half.CMPA = 357; 

89 EPwm1Regs.CMPB = 357; 

90 
 

91 /*-- Setup Action-Qualifier (AQ) Submodule --*/ 

92 EPwm1Regs.AQCTLA.all = 96; 
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93 EPwm1Regs.AQCTLB.all = 144; 

94 
 

95 /* // Action-Qualifier Software Force Register 

96 EPwm1Regs.AQSFRC.bit.RLDCSF = 0; // Reload from Shadow options 

97 */ 

98 EPwm1Regs.AQSFRC.all = (EPwm1Regs.AQSFRC.all & ~0xC0) | 0x0; 

99 
 

100 /* // Action-Qualifier Continuous S/W Force Register Set 

101 EPwm1Regs.AQCSFRC.bit.CSFA = 0; // Continuous Software Force on output A 

102 EPwm1Regs.AQCSFRC.bit.CSFB = 0; // Continuous Software Force on output B 

103 */ 

104 EPwm1Regs.AQCSFRC.all = (EPwm1Regs.AQCSFRC.all & ~0xF) | 0x0; 

105 
 

106 /*-- Setup Dead-Band Generator (DB) Submodule --*/ 

107 /* // Dead-Band Generator Control Register 

108 EPwm1Regs.DBCTL.bit.OUT_MODE = 3; // Dead Band Output Mode Control 

109 EPwm1Regs.DBCTL.bit.IN_MODE = 0; // Dead Band Input Select Mode Control 

110 EPwm1Regs.DBCTL.bit.POLSEL = 2; // Polarity Select Control 

111 */ 

112 EPwm1Regs.DBCTL.all = (EPwm1Regs.DBCTL.all & ~0x3F) | 0xB; 

113 EPwm1Regs.DBRED = 35; 

114 EPwm1Regs.DBFED = 35; 

115 
 

116 /*-- Setup Event-Trigger (ET) Submodule --*/ 

117 /* // Event-Trigger Selection and Event-Trigger Pre-Scale Register 

118 EPwm1Regs.ETSEL.bit.SOCAEN = 0; // Start of conversion A Enable 

119 EPwm1Regs.ETSEL.bit.SOCASEL = 1; // Start of conversion A Select 

120 EPwm1Regs.ETPS.bit.SOCAPRD = 1; // EPWM1SOCA Period Select 

121 EPwm1Regs.ETSEL.bit.SOCBEN = 0; // Start of conversion B Enable 
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122 EPwm1Regs.ETSEL.bit.SOCBSEL = 1; // Start of conversion B Select 

123 EPwm1Regs.ETPS.bit.SOCBPRD = 1; // EPWM1SOCB Period Select 

124 EPwm1Regs.ETSEL.bit.INTEN = 0; // EPWM1INTn Enable 

125 EPwm1Regs.ETSEL.bit.INTSEL = 1; // EPWM1INTn Select 

126 EPwm1Regs.ETPS.bit.INTPRD = 1; // EPWM1INTn Period Select 

127 */ 

128 EPwm1Regs.ETSEL.all = (EPwm1Regs.ETSEL.all & ~0xFF0F) | 0x1101; 

129 EPwm1Regs.ETPS.all = (EPwm1Regs.ETPS.all & ~0x3303) | 0x1101; 

130 
 

131 /*-- Setup PWM-Chopper (PC) Submodule --*/ 

132 /* // PWM-Chopper Control Register 

133 EPwm1Regs.PCCTL.bit.CHPEN = 0; // PWM chopping enable 

134 EPwm1Regs.PCCTL.bit.CHPFREQ = 0; // Chopping clock frequency 

135 EPwm1Regs.PCCTL.bit.OSHTWTH = 0; // One-shot pulse width 

136 EPwm1Regs.PCCTL.bit.CHPDUTY = 0; // Chopping clock Duty cycle 

137 */ 

138 EPwm1Regs.PCCTL.all = (EPwm1Regs.PCCTL.all & ~0x7FF) | 0x0; 

139 
 

140 /*-- Set up Trip-Zone (TZ) Submodule --*/ 

141 EALLOW; 

142 EPwm1Regs.TZSEL.all = 0; 

143 
 

144 /* // Trip-Zone Control Register 

145 EPwm1Regs.TZCTL.bit.TZA = 3; // TZ1 to TZ6 Trip Action On EPWM1A 

146 EPwm1Regs.TZCTL.bit.TZB = 3; // TZ1 to TZ6 Trip Action On EPWM1B 

147 */ 

148 EPwm1Regs.TZCTL.all = (EPwm1Regs.TZCTL.all & ~0xF) | 0xF; 

149 
 

150 /* // Trip-Zone Enable Interrupt Register 

matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','128')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','129')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','138')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','141')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','142')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','148')


145 
 

151 EPwm1Regs.TZEINT.bit.OST = 0; // Trip Zones One Shot Int Enable 

152 EPwm1Regs.TZEINT.bit.CBC = 0; // Trip Zones Cycle By Cycle Int Enable 

153 */ 

154 EPwm1Regs.TZEINT.all = (EPwm1Regs.TZEINT.all & ~0x6) | 0x0; 

155 EDIS; 

156 } 

157 
 

158 /* Start for S-Function (c280xpwm): '<Root>/ePWM2' */ 

159 
 

160 /*** Initialize ePWM2 modules ***/ 

161 { 

162 /*-- Setup Time-Base (TB) Submodule --*/ 

163 EPwm2Regs.TBPRD = 714; 

164 
 

165 /* // Time-Base Control Register 

166 EPwm2Regs.TBCTL.bit.CTRMODE = 2; // Counter Mode 

167 EPwm2Regs.TBCTL.bit.SYNCOSEL = 3; // Sync output select 

168 EPwm2Regs.TBCTL.bit.PRDLD = 0; // Shadow select 

169 EPwm2Regs.TBCTL.bit.PHSEN = 0; // Phase load enable 

170 EPwm2Regs.TBCTL.bit.PHSDIR = 0; // Phase Direction 

171 EPwm2Regs.TBCTL.bit.HSPCLKDIV = 0; // High speed time pre-scale 

172 EPwm2Regs.TBCTL.bit.CLKDIV = 0; // Timebase clock pre-scale 

173 */ 

174 EPwm2Regs.TBCTL.all = (EPwm2Regs.TBCTL.all & ~0x3FBF) | 0x32; 

175 
 

176 /* // Time-Base Phase Register 

177 EPwm2Regs.TBPHS.half.TBPHS = 0; // Phase offset register 

178 */ 

179 EPwm2Regs.TBPHS.all = (EPwm2Regs.TBPHS.all & ~0xFFFF0000) | 0x0; 
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180 EPwm2Regs.TBCTR = 0x0000; /* Clear counter*/ 

181 
 

182 /*-- Setup Counter_Compare (CC) Submodule --*/ 

183 /* // Counter-Compare Control Register 

184 EPwm2Regs.CMPCTL.bit.SHDWAMODE = 0; // Compare A block operating mode. 

185 EPwm2Regs.CMPCTL.bit.SHDWBMODE = 0; // Compare B block operating mode. 

186 EPwm2Regs.CMPCTL.bit.LOADAMODE = 0; // Active compare A 

187 EPwm2Regs.CMPCTL.bit.LOADBMODE = 0; // Active compare A 

188 */ 

189 EPwm2Regs.CMPCTL.all = (EPwm2Regs.CMPCTL.all & ~0x5F) | 0x0; 

190 EPwm2Regs.CMPA.half.CMPA = 357; 

191 EPwm2Regs.CMPB = 357; 

192 
 

193 /*-- Setup Action-Qualifier (AQ) Submodule --*/ 

194 EPwm2Regs.AQCTLA.all = 96; 

195 EPwm2Regs.AQCTLB.all = 264; 

196 
 

197 /* // Action-Qualifier Software Force Register 

198 EPwm2Regs.AQSFRC.bit.RLDCSF = 0; // Reload from Shadow options 

199 */ 

200 EPwm2Regs.AQSFRC.all = (EPwm2Regs.AQSFRC.all & ~0xC0) | 0x0; 

201 
 

202 /* // Action-Qualifier Continuous S/W Force Register Set 

203 EPwm2Regs.AQCSFRC.bit.CSFA = 0; // Continuous Software Force on output A 

204 EPwm2Regs.AQCSFRC.bit.CSFB = 0; // Continuous Software Force on output B 

205 */ 

206 EPwm2Regs.AQCSFRC.all = (EPwm2Regs.AQCSFRC.all & ~0xF) | 0x0; 

207 
 

208 /*-- Setup Dead-Band Generator (DB) Submodule --*/ 
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209 /* // Dead-Band Generator Control Register 

210 EPwm2Regs.DBCTL.bit.OUT_MODE = 3; // Dead Band Output Mode Control 

211 EPwm2Regs.DBCTL.bit.IN_MODE = 0; // Dead Band Input Select Mode Control 

212 EPwm2Regs.DBCTL.bit.POLSEL = 2; // Polarity Select Control 

213 */ 

214 EPwm2Regs.DBCTL.all = (EPwm2Regs.DBCTL.all & ~0x3F) | 0xB; 

215 EPwm2Regs.DBRED = 120; 

216 EPwm2Regs.DBFED = 120; 

217 
 

218 /*-- Setup Event-Trigger (ET) Submodule --*/ 

219 /* // Event-Trigger Selection and Event-Trigger Pre-Scale Register 

220 EPwm2Regs.ETSEL.bit.SOCAEN = 0; // Start of conversion A Enable 

221 EPwm2Regs.ETSEL.bit.SOCASEL = 1; // Start of conversion A Select 

222 EPwm2Regs.ETPS.bit.SOCAPRD = 1; // EPWM2SOCA Period Select 

223 EPwm2Regs.ETSEL.bit.SOCBEN = 0; // Start of conversion B Enable 

224 EPwm2Regs.ETSEL.bit.SOCBSEL = 1; // Start of conversion B Select 

225 EPwm2Regs.ETPS.bit.SOCBPRD = 1; // EPWM2SOCB Period Select 

226 EPwm2Regs.ETSEL.bit.INTEN = 0; // EPWM2INTn Enable 

227 EPwm2Regs.ETSEL.bit.INTSEL = 1; // EPWM2INTn Select 

228 EPwm2Regs.ETPS.bit.INTPRD = 1; // EPWM2INTn Period Select 

229 */ 

230 EPwm2Regs.ETSEL.all = (EPwm2Regs.ETSEL.all & ~0xFF0F) | 0x1101; 

231 EPwm2Regs.ETPS.all = (EPwm2Regs.ETPS.all & ~0x3303) | 0x1101; 

232 
 

233 /*-- Setup PWM-Chopper (PC) Submodule --*/ 

234 /* // PWM-Chopper Control Register 

235 EPwm2Regs.PCCTL.bit.CHPEN = 0; // PWM chopping enable 

236 EPwm2Regs.PCCTL.bit.CHPFREQ = 0; // Chopping clock frequency 

237 EPwm2Regs.PCCTL.bit.OSHTWTH = 0; // One-shot pulse width 

matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','214')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','215')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','216')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','230')
matlab:rtw.report.code2model('APEC_Topology_Model_V12_105KHz','APEC_Topology_Model_V12_105KHz.c','231')
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238 EPwm2Regs.PCCTL.bit.CHPDUTY = 0; // Chopping clock Duty cycle 

239 */ 

240 EPwm2Regs.PCCTL.all = (EPwm2Regs.PCCTL.all & ~0x7FF) | 0x0; 

241 
 

242 /*-- Set up Trip-Zone (TZ) Submodule --*/ 

243 EALLOW; 

244 EPwm2Regs.TZSEL.all = 0; 

245 
 

246 /* // Trip-Zone Control Register 

247 EPwm2Regs.TZCTL.bit.TZA = 3; // TZ1 to TZ6 Trip Action On EPWM2A 

248 EPwm2Regs.TZCTL.bit.TZB = 3; // TZ1 to TZ6 Trip Action On EPWM2B 

249 */ 

250 EPwm2Regs.TZCTL.all = (EPwm2Regs.TZCTL.all & ~0xF) | 0xF; 

251 
 

252 /* // Trip-Zone Enable Interrupt Register 

253 EPwm2Regs.TZEINT.bit.OST = 0; // Trip Zones One Shot Int Enable 

254 EPwm2Regs.TZEINT.bit.CBC = 0; // Trip Zones Cycle By Cycle Int Enable 

255 */ 

256 EPwm2Regs.TZEINT.all = (EPwm2Regs.TZEINT.all & ~0x6) | 0x0; 

257 EDIS; 

258 } 

259 } 

260 
 

261 /* Model terminate function */ 

262 void APEC_Topology_Model_V12_105KHz_terminate(void) 

263 { 

264 /* (no terminate code required) */ 

265 } 

266 
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267 /* 

268 * File trailer for generated code. 

269 * 

270 * [EOF] 

271 */ 

File: APEC_Topology_Model_V12_105KHz.h 

1 /* 

2 * Academic License - for use in teaching, academic research, and meeting 

3 * course requirements at degree granting institutions only. Not for 

4 * government, commercial, or other organizational use. 

5 * 

6 * File: APEC_Topology_Model_V12_105KHz.h 

7 * 

8 * Code generated for Simulink model 'APEC_Topology_Model_V12_105KHz'. 

9 * 

10 * Model version : 1.25 

11 * Simulink Coder version : 8.12 (R2017a) 16-Feb-2017 

12 * C/C++ source code generated on : Mon Sep 17 21:37:53 2018 

13 * 

14 * Target selection: ert.tlc 

15 * Embedded hardware selection: Texas Instruments->C2000 

16 * Code generation objectives: Unspecified 

17 * Validation result: Not run 

18 */ 

19 
 

20 #ifndef RTW_HEADER_APEC_Topology_Model_V12_105KHz_h_ 

21 #define RTW_HEADER_APEC_Topology_Model_V12_105KHz_h_ 

22 #include <stddef.h> 

23 #ifndef APEC_Topology_Model_V12_105KHz_COMMON_INCLUDES_ 

matlab:coder.internal.editUrlTextFile('file:///L:/F28335_DSP_Matlab/Matlab_2017a_CCS_V6/APEC_Topology_Model_V12_105KHz_ert_rtw/APEC_Topology_Model_V12_105KHz.h')
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24 # define APEC_Topology_Model_V12_105KHz_COMMON_INCLUDES_ 

25 #include "rtwtypes.h" 

26 #include "DSP2833x_Device.h" 

27 #include "DSP2833x_Gpio.h" 

28 #include "DSP2833x_Examples.h" 

29 #include "IQmathLib.h" 

30 #endif /* APEC_Topology_Model_V12_105KHz_COMMON_INCLUDES_ */ 

31 
 

32 #include "APEC_Topology_Model_V12_105KHz_types.h" 

33 #include "MW_target_hardware_resources.h" 

34 
 

35 /* Macros for accessing real-time model data structure */ 

36 #ifndef rtmGetErrorStatus 

37 # define rtmGetErrorStatus(rtm) ((rtm)->errorStatus) 

38 #endif 

39 
 

40 #ifndef rtmSetErrorStatus 

41 # define rtmSetErrorStatus(rtm, val) ((rtm)->errorStatus = (val)) 

42 #endif 

43 
 

44 #define APEC_Topology_Model_V12_105KHz_M (APEC_Topology_Model_V12_105K_M) 

45 
 

46 extern void enable_interrupts(void); 

47 extern void config_ePWM_GPIO (void); 

48 
 

49 /* Parameters (auto storage) */ 

50 struct P_APEC_Topology_Model_V12_105_T_ { 

51 uint16_T Constant_Value; /* Computed Parameter: Constant_Value 

52 * Referenced by: '<Root>/Constant' 

file://///eleg-storage.ddns.uark.eduL:/F28335_DSP_Matlab/Matlab_2017a_CCS_V6/APEC_Topology_Model_V12_105KHz_ert_rtw/html/MW_c28xx_pwm_c.html%238
matlab:coder.internal.code2model('APEC_Topology_Model_V12_105KHz:3');
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53 */ 

54 }; 

55 
 

56 /* Real-time Model Data Structure */ 

57 struct tag_RTM_APEC_Topology_Model_V_T { 

58 const char_T *errorStatus; 

59 }; 

60 
 

61 /* Block parameters (auto storage) */ 

62 extern P_APEC_Topology_Model_V12_105_T APEC_Topology_Model_V12_105KH_P; 

63 
 

64 /* Model entry point functions */ 

65 extern void APEC_Topology_Model_V12_105KHz_initialize(void); 

66 extern void APEC_Topology_Model_V12_105KHz_step(void); 

67 extern void APEC_Topology_Model_V12_105KHz_terminate(void); 

68 
 

69 /* Real-time Model object */ 

70 extern RT_MODEL_APEC_Topology_Model__T *const 

APEC_Topology_Model_V12_105K_M; 

71 
 

72 /*- 

73 * The generated code includes comments that allow you to trace directly 

74 * back to the appropriate location in the model. The basic format 

75 * is <system>/block_name, where system is the system number (uniquely 

76 * assigned by Simulink) and block_name is the name of the block. 

77 * 

78 * Use the MATLAB hilite_system command to trace the generated code back 

79 * to the model. For example, 

80 * 
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81 * hilite_system('<S3>') - opens system 3 

82 * hilite_system('<S3>/Kp') - opens and selects block Kp which resides in S3 

83 * Here is the system hierarchy for this model 

84 * 

85 * '<Root>' : 'APEC_Topology_Model_V12_105KHz' 

86 */ 

87 #endif /* RTW_HEADER_APEC_Topology_Model_V12_105KHz_h_ */ 

88 /* 

89 * File trailer for generated code. 

90 * [EOF] 

matlab:coder.internal.code2model('APEC_Topology_Model_V12_105KHz');
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Appendix C: Converter closed-loop MATLAB schematic. 
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Appendix D: The OrCAD Capture schematic of the AC/DC converter. 
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Appendix E: The OrCAD Allegro PCB Editor 4-Layer PCB Layout Design. 
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