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ABSTRACT 

The demands of high performance cloud computation and internet services have increased in 

recent decades. These demands have driven the expansion of existing data centers and the 

construction of new data centers. The high costs of data center downtime are pushing designers to 

provide high reliability power supplies. Thus, there are significant research questions and 

challenges to design efficient and environmentally friendly data centers with address increasing 

energy prices and distributed energy developments. 

This dissertation work aims to study and investigate the suitable technologies of power 

interface and system level configuration for high efficiency and reliable data centers. 

A 400 V DC-powered data center integrated with solar power and hybrid energy storage is 

proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless 

PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three 

main control strategies are developed for the power converters. First, a model predictive control is 

developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable 

transient performance and high power efficiency. Second, a power loss model based dual-phase-

shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an 

optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy 

storage unit (HESU) control are given in this research work. The HESU consists of battery and 

ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients 

affecting grid side operation. 

The large signal model of a typical solar power integrated datacenter is built to analyze the 

system stability with various conditions. The MATLAB/Simulink™-based simulations are used 



 

 

to identify the stable region of the data center power supply. This can help to analyze the sensitivity 

of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. 

This work analyzes the system dynamic response under different operating conditions to determine 

the stability of the dc bus voltage. The system stability under different percentages of solar power 

and hybrid energy storage integrated in the data center are also investigated. 
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CHAPTER 1 

INTRODUCTION AND THEORETICAL BACKGROUND 

1.1 Background: The Challenge and Opportunity of Data Center Power Conversion 

1.1.1 Quantity and capacity expansion of data centers 

The popularity of internet services and cloud computing is leading to continuous expansion of 

data centers. To meet the demands of high computation speed and data storage capacity, the 

quantity and capacity of data centers is rapidly increasing. Larger IT companies such as Microsoft, 

Google, Facebook, Alibaba, and Baidu are building more data centers around the world. At the 

same time, the energy required by data centers is climbing very quickly. The Lawrence Berkeley 

National Laboratory, in collaboration with experts at Stanford, Carnegie Mellon, and Northwestern 

published a figure showing the rising energy consumption by data centers, which is given in Fig. 

1-1 [1.1]. In 2013, the electricity used by data centers increased to 70 billion kilowatt-hours (kWh). 

The amount of 70 billion kWh is close to 1.8% of total electricity usage in the U.S. in 2014. The 

report shows the electricity consumption is expected to continue increasing to up to 4% of total 

electricity usage of the U.S. by 2020. 
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Fig. 1-1 Total Electricity Consumption of Data Centers in U.S. [1.1]  

1.1.2 Climbing electricity price  

From the electricity data provided by the U.S. Energy Information Administration, illustrated 

in Fig. 1-2 [1.2], the energy prices are climbing every year. From 2001 to 2014, the average retail 

price of industrial electricity increased from 5.05 cents per kWh to 7.1 cents per kWh. For example, 

the actual monthly critical average power of a 10 MW data center often is 4-6 MW [1.3]. The 

monthly average power is selected as 5 MW. The industrial electricity price is 7.1 cents per kWh. 

If the power converter reaches 5% power loss reduction, then the electricity cost reduction will be 

$155,098 per data center per year, and the related cost will also be further reduced, like the costs 

of operational and cooling systems. 
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Fig. 1-2 Annual Average Retail Price of Electricity [1.2] 

The efficiency is the key element to reduce the total power consumption, increase the power 

density and lead to small footprint of data centers. The design of high efficiency data centers 

includes power transmission, conversion, and distribution development.  

1.1.3 High cost of data center power supply downtime  

Due to the power capacity and expansion of data centers, the reliability of data centers is 

becoming increasingly important. Due to the growing quantity and density of data centers, the 

consequences of outages are increasing. Emerson Company reports, data centers have an average 

downtime of 2.34 hours, and an average of 2.5 outages per year [1.4]. For 500,000 data centers, 

the Emerson Company estimated $2.84 million in annual outage costs for data centers. Designing 

a more reliable power supply would reduce expensive downtime and avoid associated costs. 

To meet the requirements of high performance and low power loss, many researchers have 

been working on power topology development, integration with renewable energy, system level 

stability analysis, etc. The detailed research status is summarized in the following section.  
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1.2 Previous Research  

1.2.1 Power distribution bus: 120 VAC or 400 VDC 

The typical efficiencies obtainable through the ac system technologies in data centers are given 

in Fig. 1-3. A traditional Uninterruptible Power Supply (UPS) architecture is utilized.  It employs 

at least two stages. Ac voltage from the grid side is converted to dc voltage first. An energy storage 

device, like lead-acid batteries, is connected to the dc bus. The dc bus is then inverted to an ac bus 

which is the Power Distribution Unit (PDU). The advantage of this traditional four stages 

architecture is robustness. However, the end-to-end efficiency is a relatively low 71%. From article 

[1.3], about 15% of data center’s power is wasted and dissipated as heat.  

 

 Fig. 1-3 Traditional ac Distribution Efficiency 

Dc distribution is attractive, it eliminates at least one power inversion stage, resulting in higher 

efficiency. The efficiency performance of dc distribution is shown in Fig. 1-4. Compared with the 

ac distribution, the efficiency is improved from 71% to 90%. This 19% efficiency increase leads 

to significant cost reduction of the cooling system. What’s more, as the power distribution voltage 

is increased to 400 V dc, the conduction loss can be reduced, allowing the use of lighter and more 

economic cables. The power cable comparison between 48 V dc and 400 V dc is shown in Fig. 

1-5. 
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 Fig. 1-4 Efficiency of 400 V DC Distribution Architecture 

 

Fig. 1-5 Cable Size Comparison between 48 V and 400 V with 100 kW Load 

Another merit of the dc distribution architecture is its ease in integrating with distributed 

energy sources, such as solar photovoltaic, wind turbine, fuel cell, etc. In current commercial 

technologies, dc equipment is available, but the costs are higher than comparable ac equipment. 

In this dissertation, a 400 V bus is selected due to higher efficiency consideration. The power 

topology development and design is analyzed and designed in detail in Chapters 2 to 5. 
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performance. What’s more, data center operation needs reliable power, but solar power is only 

available during the daytime and wind power is only available when the wind is blowing. The truth 

of the ‘Green Data Center’ mentioned from the industrial side is that these companies purchase at 

least an equivalent amount of power from renewable energy companies and sell the energy back 

into the grid at a wholesale price [1.3]. Given the large size of many data centers, the large roofs 

offer excellent real estate for solar panel placement.  This dissertation considers solar panels on 

the roof as green power and utilizes energy storage to reduce the electricity cost and the non-green 

emissions from the grid. Due to the randomness and fluctuation of solar power generation, the 

effects to the system stability will be investigated in this dissertation.  

1.2.3 Energy storage in data center 

Energy storage, such as batteries, play an important role in the UPS system. It supplies the 

uninterrupted power to critical loads. Power transients, due to solar irradiance transients or load 

changes, need to be smoothed by the energy storage. Lead-acid batteries are widely used in the 

data center due to their low cost. However, rapid charging and discharging degrade the life 

expectancy of a battery pack. To overcome this drawback, ultracapacitor packs are considered in 

this work. The ultracapacitor application market is shown in Fig. 1-6 [1.5]. The global 

ultracapacitor consumption is fast growing. This market is expected to grow from $500M in 2015 

to $1.5B around 2020. One type of ultracapacitor module from Schneider is shown in Fig. 1-7. 

With more technological advancements, both the cost and maintenance of ultracapacitors have 

gone down. 
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 Fig. 1-6 Ultracapacitor Consumption by Market [1.5] 

 

Fig. 1-7 Ultracapacitor Module from Schneider [1.5] 

Ultracapacitors allow more charge/discharge cycles and have a higher power density, which 

are desirable for fast power smoothing. In this dissertation, an investigation is conducted for the 

design of high frequency ripple reduction and battery lifetime improvment, which are both 

compensated by ultracapacitors. 
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1.3 Proposed 400 V DC-powered Data Center with Solar Power Integration 

As mentioned, the traditional ac bus data center configured as shown in Fig. 1-8 has low 

efficiency in the distribution unit. For high efficiencies and high power densities, high-power dc 

distribution, such as 400 V in DC-powered data centers, is becoming more attractive. Due to the 

high power levels of data centers, the input of the ac/dc converter is usually connected to a 

medium-voltage power grid through bulky low-frequency step-up transformers. Recently, high-

frequency transformers in multilevel converters are investigated due to their small size, light 

weight, high power density and capability for integrating multiple functions [1.6][1.7]. The 

proposed 400 V DC-powered data center is shown in Fig. 1-9. Compared with traditional ac bus 

data centers, the low-frequency transformer is replaced by a solid-state transformer and the power 

distribution is improved with a higher voltage 400 V bus, thus the current in the bus bars are 

decreased. The conduction power loss and cable cost in the distribution bus bars are reduced as 

well. To reduce the voltage stresses on switches and increase the current carrying capabilities, 

different multilevel converter topologies have been investigated by various groups [1.8][1.9]. 

Some topologies utilize high breakdown voltage IGBTs. However, IGBTs are inherently slow 

devices and have a tail current. The tens of kV power MOSFETs are rarely available in the market 

and mostly under investigation in the research environment. For high efficiency and switching 

speed considerations, commercial SiC power MOSFETs rated from 0.9 kV to 1.7 kV are adopted 

in this paper. 
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 Fig. 1-8 Conventional AC-powered Data Center 

 

Fig. 1-9 400 V DC-powered Data Center Integrated with Solar Power and Energy Storage 
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Furthermore, to build a real ‘green’ data center and reduce the energy consumption from grid 

side, in the evaluated system the locally produced solar power is interfaced to the 400 V dc bus 

through dc/dc converters. To maintain the 400 V dc bus, the battery and ultracapacitor packs are 

interfaced with the same 400 V dc bus through dc/dc converters. A high-power active-front-end 

rectifier is utilized at the grid side. The existing 48 V telecom power supply is recognized as a 

more economical and practical option. To minimize the revision from the existing power supply 

in data center, 48-V dc bus is kept in the rack. The battery as back-up energy is on the 48-V dc bus 

as well. A dc/dc converter steps down 400 V to 48 V in the server racks. 

1.4 Problem Definitions 

There are many research topics in a data center. The high reliability, efficiency and green data 

center are identified as the main topics in this dissertation.  

1.4.1 Topology consideration 

1.4.1.1 The issue in ac/dc voltage conversion 

For ac/dc voltage conversion, Power Factor Correction (PFC) converters are widely adopted. 

The most popular and conventional PFC converter is the diode bridge rectifier in series with a 

boost converter. The benefit of this topology is that just one switch needs to be controlled. The 

drawback is that at least two diodes are on in every power delivery circle, leading to inefficient 

power conversion. Some soft-switching controllers are investigated to reduce the reverse recovery 

of Si diodes [1.10][1.11]. Complicated auxiliary circuits and more complex controls are needed to 

realize soft-switching. 
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1.4.1.2 Proposed solution for ac/dc voltage conversion 

In this dissertation, two different types of bridgeless PFC converters are carefully compared 

with the diode full bridge rectifier. The dual boost bridgeless PFC (DBP) converter has better 

efficiency performance by reducing the conduction loss on the diodes. It requires more 

components, which means the need of auxiliary gate drivers and higher cost. Two high frequency 

diodes are required in the DBP converter.  

Another bridgeless PFC converter is the totem-pole bridgeless PFC (TPBP) converter. The 

challenge of TPBP converter is that it usually works in discontinuous-current mode (DCM) or 

critical-current mode (CRM) due to efficiency consideration. The poor reverse recovery time of 

MOSFETs are reduced in SiC MOSFETs and the on-state resistance of SiC MOSFETs are also 

less than the Si MOSFET. These two features allow the TPBP converter to work in continuous-

current mode (CCM) with much greater efficiency. The TPBP converter has the lowest volume of 

components. If the two diodes in the TPBP converter are switched at ac voltage frequency, then 

the power loss is further reduced. 

1.4.2 Controller consideration: Proportional-Integral Control vs Model Predictive 

Control  

1.4.2.1 The issue in controller design for load or voltage transient 

In the power supply design of power converters for data center applications, the transient 

response capability is the key requirement. The conventional proportional-integral (PI) control is 

very popular in the area of power converter controller design. Usually, it has two loops: voltage 

loop and current loop. The challenge in regarding PI controllers is that different load power or 

voltage transient needs different phase and gain compensation, thus the controller design varies 
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from light load to heavy load. What’s more, the controller complexity is increased if compensating 

for the aforementioned load variances. 

1.4.2.2 Proposed solution for transient performance 

To overcome these disadvantages, a model predictive control (MPC) is proposed in this 

dissertation. MPC is a real time control algorithm. It predicts the expected control variable and 

determines the optimized control period. The mathematical model of the controlled converter is 

utilized in MPC control. Different from the conventional PI control, the frequency of MPC control 

is variable which is dependent on the feedback. However, the maximum frequency can be less or 

equal to the conventional PI control, thus MPC can improve the efficiency. Another merit of MPC 

is that the multi-goal control can be realized. The coefficient of different goals need to be 

investigated. 

1.4.3 Efficiency consideration 

1.4.3.1 Issue in power conversion efficiency 

The typical total energy usage of a conventional datacenter includes the IT equipment, cooling 

system, uninterrupted power supply (UPS), power distribution, and ancillary systems. The detailed 

percentages of different power consumption is given in Fig. 1-10. The power usage effectiveness 

(PUE) presents the ratio of IT power to the total power, which reflects the efficiency of a datacenter 

infrastructure. The IT power is the power consumed by the servers. The power converter is the key 

factor to improve the power efficiency, thus guaranteeing lower PUE. Many researches have been 

working on the efficiency improvement in power converters in the data center, such as 

development of new power topology, soft switching, control strategy, etc. For example, there are 

two popular efficiency improvement methods for the isolated dc/dc power converter known as the 
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dual-active bridge (DAB). The first method is a current stress optimizing algorithm and the second 

is a flow-back power minimization strategy. The DAB is used in final stage of the proposed 

topology in this work.   

 

 Fig. 1-10 A Typical Power Losses in a Data Center [1.3] 

1.4.3.2 Proposed solution for efficiency improvement 

In this dissertation, the improvement of the efficiency performance in a dual-active bridge for 

the data center power supply is discussed. Different from the reported methods, an accurate loss 

model is developed in this work for the power converter to find the expected phase-shift angle for 

the switches. The accurate loss model method is developed from three aspects which are the 

conduction loss model, switching loss model, and a high frequency transformer loss model. The 

better loss model leads to the more accurate prediction of phase-shift in the dual-active bridge, and 

thus smaller losses. 
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1.4.4 Green data center 

1.4.4.1 Issue in current ‘green’ data centers 

The integration of solar power and data centers can highly reduce the electricity cost and 

emissions of data centers. However, solar power is not stable and heavily depends on the 

environment. Battery energy storage has relatively high energy density. It is usually utilized to 

smooth the power output from solar systems. However, the lifetime of batteries is a major issue, 

leading to cost increases. 

1.4.4.2 Proposed solution for ac/dc voltage conversion 

The ultracapacitor has a high power density and can be quickly charged and discharged without 

harming its lifetime. In this dissertation, the battery and ultracapacitor are used as hybrid energy 

storage devices to smooth the solar power. The controller design for each energy storage device is 

developed as well to achieve high performance. 

1.5 Outline 

Chapter 2 describes the rectifier power stage and the control strategies for the cascaded totem 

-pole PFC converter. The conventional PI control design and the proposed model predictive 

control are developed, analyzed and compared. A discrete time mode of a cascaded totem-pole 

PFC converter is derived and utilized to design the model predictive control. The control goals 

include unity power factor, dc bus voltage balance, power loss minimization, etc. 

Chapter 3 illustrates the dc/dc stage in the proposed topology. The operation principle of a 

dual-active bridge converter is analyzed. The single and dual phase-shift control is compared. To 

improve the efficiency performance, the backflow power reduction and current stress minimization 

methods are given. The loss model optimization method is proposed to achieve better efficiency 
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performance. Simulation and testing results are given to verify the proposed control strategy. For 

the control of transient performance, the conventional PI control and proposed K-factor control 

are designed and compared. A scaled-down prototype is tested to verify the proposed K-factor 

control. 

Chapter 4 is about the solar power and hybrid energy storage integration in the data center. The 

controllers for solar power, battery, ultracapacitor and data center loads are developed. The 

simulation results are given to validate the effectiveness of the proposed topology and its control 

strategies. 

Chapter 5 shows the system level stability analysis of a data center. The large signal model of 

a large-scale data center is built. The stability criterion is introduced and the stable region is given 

through the MATLAB/SimulinkTM simulation results.  

Chapter 6 is the summary of this dissertation and the outlook of the future work. 
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CHAPTER 2 

DESIGN, MODELING AND CONTROL OF RECTIFIER STAGE 

2.1 Introduction and Motivation 

2.1.1 Ac/dc voltage conversion with low-frequency transformer 

 

 Fig. 2-1 Ac/dc Power Conversion: with Low-Frequency Transformer Application 

A typical system configuration is shown in Fig. 2-1. A Low-Frequency Transformer (LFT) is 

utilized to step down the high ac voltage to the low ac voltage, then the low ac voltage is rectified 

to 400 V dc. To reduce the voltage stress and increase the current carrying capability, each PFC 

topology can be connected in series or parallel. For single-phase ac/dc voltage conversion in data 

centers, the Power Factor Correction (PFC) converter is widely adopted. The conventional PFC 

converter is diode bridge rectifier. The efficiency needs to be improved for these devices due to 
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the power loss from diodes. To eliminate the requirement of using a diode bridge rectifier, 

bridgeless PFC topologies are reviewed. There are two popular topologies: Dual-boost Bridgeless 

PFC (DBP) which is shown in Fig. 2-2 (a) and totem-pole bridgeless PFC (TPBP) which is given 

in Fig. 2-3 [2.1]-[2.3]. Both DBP and TPBP have only two switches conducting in every cycle. 

Compared with the classic PFC converter, the DBP converter has good efficiency performance, 

but it needs two more choke coils and two more diodes to reduce the large common-mode noise, 

thus the size and cost are increased. Due to the poor reverse recovery performance of the body 

diode in Si switches, the TPBP topology did not attract widespread implementation in the past, 

especially in the continuous-current mode (CCM). With the advent of wide bandgap devices, such 

as GaN or SiC switches, which have very good reverse recovery characteristics and relative low 

on-state resistance [2.4]-[2.6], the TPBP topology has better efficiency performance and has 

attracted more widespread attention [2.7]-[2.9]. If the two diodes are replaced by two active 

switches, the conduction loss caused by diodes can be further reduced. 

   

(a) Classic Boost-type Rectifier   (b) Dual-Boost Bridgeless PFC 

 Fig. 2-2 Classic Boost-type Rectifier 
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(a) Totem-pole Bridgeless PFC (b) Totem-pole Bridgeless PFC with SiC and GaN Devices 

 Fig. 2-3 Totem-pole Bridgeless PFCs with Wide Bandgap Devices 

The four typical types of PFC stage are summarized in Table 2.1. To further investigate the 

efficiency performance of different PFC converters, the efficiency simualtion is performed in the 

simulator PLECSTM. Three toplogies are adopted in the simuation: (a) Classic boost-type rectifier, 

(b) Dual-Boost Bridgeless PFC, and (c) Totem-pole Bridgeless PFC only with one leg using SiC 

MOSFETs. The power loss model of the MOSFET is from Wolfspeed which is built in PLECSTM. 

The efficiency simulation results are shown in Fig. 2-4. It shows that the totem-pole PFC converter 

has the highest efficiency performance. 
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Fig. 2-4 Simulation Results of Efficiency Comparison: 240 V ac to 400 V dc with 5 kW Load 

Table 2.1 Comparison of Three Typical PFC Converters 

Topology 
(1) Classic 

PFC 

(2) Dual-Boost 

Bridgeless PFC 

(3) Totem-pole 

Bridgeless PFC 

without GaN 

(4) Totem-pole 

Bridgeless PFC 

with GaN 

Number of 

components 
7 8 5 5 

Device 

5 Si Diodes 

1 Si MOSFET 

1 Inductor 

1 Capacitor 

4 Si Diodes(2 are grid 

voltage frequency, 2 

are switching 

frequency) 

2 Si MOSFETs 

2 Choke Inductors 

1 Capacitor 

2 SiC Diodes 

(grid voltage 

frequency) 

2 SiC 

MOSFETs 

1 Inductor 

1 Capacitor 

4 GaN FETs or 

4 SiC MOSFETs 

1 Inductor 

1 Capacitor 

Loss on 

Diodes 

1 recovery and 

2 conduction 

losses 

1 recovery and 2 

conduction losses 

1 conduction 

loss 
None 

Efficiency 95-97% 96-97% 97-98% 98-99% 
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2.1.2 Ac/dc voltage conversion with high-frequency transformer 

The disadvantage of Fig. 2-1 is the necessity of a large foot print, high weight and bulky 

transformer. High-frequency transformers attract attention due to their small size, light weight and 

high power density. They also can work as both a bus bar voltage regulator and a reactive power 

compensator. The challenge of using high-frequency transformers is that the control complexity is 

increased and more semiconductor devices are needed. However, the cost of high-frequency 

transformers is high and the efficiency is somehow lower than the low-frequency transformer. The 

system configuration with a medium- or high-frequency transformer is given in Fig. 2-5. 

 

 Fig. 2-5 System Configuration Using Medium- or High-frequency Transformer 

The PFC converter in high-frequency transformer applications can be divided to three types as 

shown below. 

2.1.2.1 Non-modular topology 

In the non-modular topology, it usually requires high breakdown voltage rated switches to 

rectify high ac voltage to dc voltage. The advantage of this topology is that less switches are 

required and which leads to less complexity and control effort.  For example, a five-level ac/dc 
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topology is given in Fig. 2-6, which is reported by ETH Zurich [2.10]-[2.12]. The voltage stresses 

of switches are relatively high and it usually requires many switches connected in series to increase 

the breakdown voltage. Thus, the auxiliary driver circuits are required to symmetrically turn-on or 

off the switches. 

 

 Fig. 2-6 Five-level NPC ac/dc Topology 

2.1.2.2 Modular multilevel topology 

The modular multilevel topology attracts attention due to it being scalable and modular. The 

voltage stress is decided by the amplitude of input ac voltage level and the levels of modulation. 

Low voltage switches can be utilized in this topology. Three typical topologies are shown in Fig. 

2-7. To reduce the number of switches and further improve the efficiency performance, a cascaded 

bridgeless totem-pole PFC through a dual-active bridge feeding a common 400-V dc bus is 

proposed as shown in Fig. 2-7 (b) and (c). Different from most of the recent literature, which is 

focused on the single TPBC or interleaved TPBC [2.13]-[2.15], is that there are several totem-pole 

bridgeless PFC converters connected in series. The dc voltage will be divided by the number of 

PFC converters. Hence, voltage stresses of the switches can be reduced to a more managable value. 
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For example, if the PFC output voltage is controlled to 400 V, then 650 V rated devices can be 

utilized. The output voltage of PFC converters are integrated with dual-active bridges connected 

in parallel to increase the current capability. The galvanic isolation is provided by high-frequency 

transformer. There are two differences between Fig. 2-7 (b) and (c): (1) Si MOSFET is replaced 

by wide bandgap devices such as GaN or SiC, to overcome the reverse recovery problem; (2) 

Diodes are replaced by Si MOSFETs for better efficiency performance. 

In the dc/dc stage, cascaded totem-pole converters convert grid voltages to primary dc-bus 

voltages voi dual-active bridges, whose outputs are connected in parallel to increase the current 

capability, produce a secondary dc output voltage. In the dual-active bridge stage, it can be a half-

bridge or a full-bridge on the primary or secondary side. Regarding the kV-level input ac voltage, 

the full-bridge of the DAB primary side may be replaced by a half-bridge topology to further 

reduce the high-frequency transformer turns ratio. 

 

(a) Series Diode Bridge and Boost PFC 
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(b) Proposed Series Totem-pole Bridgeless PFC with SiC MOSFET 

 

(c) Proposed Series Totem-pole Bridgeless PFC with GaN HEMT and Si MOSFET 

 Fig. 2-7 Modular Multilevel PFC Converters 
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2.1.2.3 Hybrid topology 

As shown the configuration of Fig. 2-8 [2.11], the input ac of the hybrid topology is rectified 

by a diode full bridge, then through a modular isolated dc/dc converter to generate the dc bus to 

loads. The diodes, with appropriate voltage ratings, are required in the hybrid topology. 

 

 Fig. 2-8 Multi-Cell Boost Topology with Four Input Series Output Parallel Connected Converter  

In summary, a modular multilevel H-bridge converter topology and series dual-boost 

bridgeless PFC are investigated in this dissertation. Compared with existing topologies in Fig. 2-6, 

Fig. 2-7(a) and Fig. 2-8, along with the modularity and scalability, the proposed topology has 

additional merits such as: 

(a) Better reverse recovery performance of diode by utilizing wide bandgap devices to improve 

efficiency performance; 

(b) In each cell, two switches are operated at line frequency thereby further reducing power 

losses; 
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(c) Fewer active switches. The auxiliary gate driver circuit and power supply are reduced;  

(d) Low complexity and low control effort. 

2.1.2.4 The proposed topology in low, medium and high power rated data centers 

According to [2.16] and [2.17], the sizes of data centers vary widely. Two thirds of data centers 

in US are rated at less than 1 MW critical power. To reduce the construction and operation cost of 

data centers, multiple companies are sharing one data center, the resulting arrangement is called 

co-location data centers. The critical power of co-location data center is usually rated from 10-20 

MW. Very few data centers exceed a power rating of 30 MW. At different power ratings, the 

prosed topology is modular to achieve high power capability. Three examples are given in the 

flowing sections for 1 MW, 10 MW and 30 MW power data centers. 

2.1.2.4.1 Low power rating data center (≤ 1 MW) 

The proposed topology for a 1 MW data center is shown in Fig. 2-9.  If the grid side voltage is 

2.4 kV per phase, then the minimum dc bus voltage in the rectifier stage is 3.771 kV. The dc 

reference voltage of each totem-pole PFC is set as 800 V, thus at least five cells of totem-pole PFC 

converters connected in series to realize 800 V dc output in each PFC stage. To step down 800 V 

to 400 V and provide galvanic isolation, a dual-active bridge converter is applied in dc/dc stage. 

The 1.2 kV or 1.7 kV SiC MOSFET can be utilized in the proposed topology. 
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 Fig. 2-9 Proposed Topology for 1 MW Power Data Center 
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Then the rms current rating for each phase is calculated as shown below: 

The peak current is: 

If the secondary side dc bus voltage of the dual-active bridge is 400 V, then the current rating 

of the switching is: 

The voltage/current stress and the available manufacturer of switches are summarized in Table 

2.2.  

 Table 2.2 Switch Specification in 1 MW Data Center 

Switch S1-S2, S3-S4 D1~D2 S5-S6, S7-S8 

Voltage 

stress 
800 V 800 V 400V 

Current 

stress 
198.4 A 198.4 A 168.35 A 

Manufacturer 

CREE, Wolfspeed 

 

Powerex Inc. 

 

CREE, Wolfspeed 

 

Part No. CAS300M17BM2 LS411860 CAS300M17BM2 

Voltage 

Rating 
1.7 kV 1.8 kV 1.7 kV 

Current 

Rating 
225 A(90 ℃), 325 A(25 ℃) 600 A(25 ℃) 

225 A(90 ℃), 325 

A(25 ℃) 
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Table 2.2 (Cont.) Switch Specification in 1 MW data center 

Manufacturer 

ROHM 

 

IXYS  

 

ROHM 

 

Part No. BSM300D12P2E001 MDO500-22N1 BSM300D12P2E001 

Voltage 

Rating 
1.2 kV 1.8 kV 1.2 kV 

Current 

Rating 
300 A(60℃) 560 A(25 ℃) 300 A(60 ℃) 

Manufacturer 

Semikron 

 

Microsemi Power 

Products Group  

 

Semikron 

 

Part No. SKM500MB120SC APT30SCD120B SKM500MB120SC 

Voltage 

Rating 
1.2 kV 1.2 kV 1.2 kV 

Current 

Rating 

541 A(25 ℃), 431 A(80 

℃) 

99 A(25 ℃), parallel 

three switches = 297 A 

541 A(25 ℃), 431 

A(80 ℃) 

 

2.1.2.4.2 Medium and high power rating data center (1~30 MW) 

Due to the high power rating, to reduce the current stress of switches, higher ac voltage is 

considered. The tradeoff is that the higher the ac voltage, the higher the output dc voltage of the 

PFC stage, then more PFC converters and high voltage rating devices are required. This 

dissertation evaluates the available 1.2 kV or 1.7 kV SiC MOSFET devices and 4 kV grid side 

voltage for a 10 MW data center. The proposed topology is shown in Fig. 2-10. Compared with 

the 1 MW data center, to further reduce the current stress of switches, there are four cells of SST 

converters, and the number of PFC converters are increased to eight.  
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In the 30 MW data center which is shown in Fig. 2-11, the grid voltage is increased to 6 kV. 

There are 12 cells of PFC converters, and 6 cells of SST converters. The equations to calculate the 

switch voltages and currents are similar with the previous section. The available switches are 

summarized in Table 2.3. With the development of high voltage rating SiC modules, such as the 

3.3 kV, 6 kV, 10 kV and 15 kV voltage levels, the number of stages of the proposed topology can 

be greatly reduced. 

 

(a) Four cells of SST Converter ac to dc Voltage 

kV AC Bus

4 SST Structures

400VDC
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 (b) Each cell has 8 PFC+DAB Converters 

 Fig. 2-10 Proposed Topology for 10 MW Power Data Center 

Table 2.3 Switch Specification in 10 MW Data Center 

Switch S1-S2, S3-S4 D1~D2 S5-S6, S7-S8 

Voltage rating 800 V 800 V 400V 

Current rating 297.7 A 297.7 A 263.1 A 

Manufacturer CREE, Wolfspeed Powerex Inc. CREE, Wolfspeed 

Part No. CAS300M17BM2 LS411860 CAS300M17BM2 

Parallel Device Yes, two switches No Yes, two switches 

Manufacturer ROHM IXYS ROHM 

Part No. BSM300D12P2E001 MDO500-22N1 
BSM300D12P2E00

1 

Parallel Device Yes, two switches No Yes, two switches 

Manufacturer Semikron 
Microsemi Power 

Products Group 
Semikron 

Part No. SKM500MB120SC APT30SCD120B SKM500MB120SC 

Parallel Device Yes, two switches Yes, three switches Yes, two switches 
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(a) 6 cells of SST Converter ac to dc Voltage 

  

 (b) Each Cell Has 12 PFC+DAB Converters 

 Fig. 2-11 Proposed Topology for 30 MW Power Data Center 
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2.1.3 Design of cascaded scaled-down totem-pole multilevel converter 

In order to evaluate the proposed topology, a scaled-down prototype was developed and 

constructed. Two totem-pole Bridgeless PFC converters are connected in series, shown in Fig. 

2-12. 

  

Fig. 2-12 Totem-pole Bridgeless PFC Converter, Two Cells 

The circuit design of the proposed topology is introduced in the following section. 

2.1.3.1 Switch selection 

The switch current is_peak is given by Eq. (2-7). 
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where, Ps is the power rating of the proposed topology, vgrid is the rms voltage and frequency of 

grid, ηs is the system designed efficiency. 

Based on this calculation, the selection of switches are shown in Table 2.4. 

Table 2.4 Switch Specification in the Scaled-down ac/dc Converter 

Switch 
MOSFETs in primary 

side 
Diodes in primary side 

MOSFETs in 

secondary side 

Voltage rating 400 V 400 V 400V 

Current rating 6 A 6 A 2.53 A 

Manufacturer CREE, Wolfspeed Fairchild Semiconductor CREE, Wolfspeed 

Part No. C3M0065090D L RHRP15120 C3M0065090D 

Voltage 

Rating 

900 V 1.2 kV 900 V 

Current 

Rating 

36 A(25 ℃), 23 A(100 

℃) 

15 A(25 ℃) 36 A(25 ℃), 23 

A(100 ℃) 

 

2.1.3.2 Grid side inductor design 

The grid side inductor is used to reduce the current ripple and reduce the THD of input current. 

The inductance is calculated as follows.  

The duty cycle for the peak voltage is: 

where nPFC is the number of the cascaded bridgeless totem-pole converters and Vo_ref is the desired 

dc bus voltage. 

The required PFC inductor is analyzed in [2.18]: 

where fPFC is the switching frequency of ac/dc stage. is_ripple is the input current ripple requirement.  

PFCrefo
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PFC
nV

vnV
D

_

_ 2
  (2-8) 

PFC

ripples

PFCgrid

g f
i

Dv
L

_

2
  (2-9) 



35 

 

 

For 10% ripple: 

2.1.3.3 Rectifier dc bus capacitance requirement 

There is a double-line frequency ripple voltage in the output dc voltage of the PFC due to the 

utilization of single phase rectifier. A capacitor is needed to suppress this voltage ripple. The 

following equations are used to calculate the required capacitance. The required dc bus capacitance 

is given in the following equation: 

where vdc.ripple is the dc voltage ripple requirement. If the acceptable ripple is 5% of dc bus voltage, 

then: 

2.1.3.4 Input CBB capacitor selection 

The input capacitor on the grid side is utilized to reduce the voltage ripple caused by the 

switches [2.18]. The equation to calculate the capacitance is shown below: 

where krip is the inductor current ripple coefficient and is selected as 20%, r is ac voltage ripple 

coefficient and is chose as 5%. 

2.2 Control Strategy: PI Control vs Model Predictive Control 

2.2.1 Conventional PI control 

In many literatures, the conventional PI controllers are investigated for power converters 

[2.19][2.20]. A boost converter is used as an example in the following discussion. Usually, there 

peaksripples ii __ %10  (2-10) 

2,1,
2 _.

 i
Vvnf

P
C

reforippleDCPFCsgrid

s
oi


 (2-11) 

reforippleDC vv _. %5  (2-12) 

rmsacSDPFCSD

pkacSDrip

in
rvf

ik
C

...

..

2
  (2-13) 



36 

 

 

are two control loops, which are shown in Fig. 2-13. The inner loop is the current loop, which 

regulates the inductor current along its reference and prevents overcurrent conditions. The outer 

loop is the voltage loop, which controls the output voltage to an expected value. The inner and 

outer PI controllers are designed based on the state-space equations of the power converter. Despite 

the reasonable effectiveness, simple scheme and design procedure of the PI control methods, some 

issues still need to be addressed, in particular: too many controller parameters need adjustment 

during tuning, switching losses and the stability region is usually changed by circuit conditions. 

Another disadvantage is that classical PI control is only suitable for single-input, single-output and 

linear systems. Significant control design and parameter tuning efforts are needed for the non-

linear and multi-input, multi-output system. 

L

S

D

Cout
voutvin

+

-

+

-

RL

iL

R

 

(a) Boost Converter 

 

(b) Boost Converter with Classical PI Control 

 Fig. 2-13 Boost Converter Topology as Example 
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2.2.2 Conventional PI controller design steps for a boost converter 

L
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(a) Switch S On 

L D
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+
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-

RL

iL

R
S

 

(b) Switch S Off 

Fig. 2-14 Equivalent Circuits with Switch On and Off 

First, the designer needs to develop the mathematical model of the boost converter. 

Considering continuous current mode, when the switch is on, the inductor is charged by the dc 

source vin. The equivalent circuit is shown in Fig. 2-14(a). The equations of inductor current and 

capacitor voltage are given by 

where: vin is the input voltage, RL and L are the boost inductor resistance and inductance, 

respectively. iL is inductor current, Cout is the output dc capacitor, R is resistive load, vout is the 

output dc voltage.  
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When the switch is off, the inductor is connected to the load, which results in the following 

equations: 

Combination of Eqs. (2-14) and (2-15) lead to the following solution for the state-space 

equations in continuous-time domain: 

where: 
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 10C . 

Use the mathematical model to calculate the required phase and magnitude margin. This step 

can be realized in MATLABTM or PLECSTM. The phase and magnitude margin can be easily read 

from the simulation results. For example, Fig. 2-15 shows the phase margin of 81.617 degrees, 

and a magnitude of 3.14 dB. The last step is tuning PI parameters to meet the phase and magnitude 

margin. 

 
 Fig. 2-15 Bode-plot of a Boost Converter in PLECS 

In summary, both the control scheme and design procedure of PI controller are simple and 

reasonably effective. However, the PI controller is only suitable for linear systems and require 

significant efforts with regard to controller parameters tuning. For these reasons, a more effective 

and straightforward method of model predictive control is introduced and developed in the next 

section.  
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2.2.3 Model predictive control 

Model predictive control is a real time control algorithm to overcome the aforementioned 

disadvantages. It utilizes the mathematical model of the plant and selects the appropriate device 

switching state to achieve the desired control goals. There are four main elements of model 

predictive control. First is the mathematical model of the controlled plant.  It is a power converter 

continuous-time model which specifies the input-output relation of the voltages and currents. Then 

the discrete-time model is derived from continuous-time model to predict the system behavior in 

the next switching cycle. Second is the design of the control objectives or cost functions. The cost 

functions account for the targeted circuit behaviors. For example, the output voltage of power 

converter should accurately track the reference, and the input current should be sinusoidal and 

achieve unity power factor. The lower the cost value, the better circuit performance is achieved. 

Third, it is based on the control goals to sense the feedback signals. The circuit status such as the 

voltage of capacitors or current of inductors are feedback signals which are applied in the 

mathematical model to predict the future behavior of the controlled variables. 

2.2.4 Discretization method: from continuous-time domain to discrete-time domain  

The switching period is relatively small when compare with grid frequency and leads to 

Then: 

where, ‘k’ means the current switching cycle, and ‘k+1’ means the next switching cycle. Ts is one 

switching period. 
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The discretization of continuous-time state-space Eq. (2-16) is illustrated by 

where: 
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From the discretized Eq. (2-22), the required feedback signals are inductor current iL and the 

output voltage vout. The objective of boost converter is to regulate the output dc voltage vout. The 

cost function is defined as the absolute voltage error between output voltage and reference voltage. 

Thus, the cost function is given by 

The expression of vout(k+1) is given by Eq. (2-24) which is rewritten as 
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The switching state u has two status 1 and 0. Thus: 

where vout(k) is the feedback signal at time k. vout(k+1) is the predicted value at time k+1. S is the 

switch state, when S=1, switch is on, otherwise S=0, switch is off.  

The corresponding cost functions: 

The procedure to choose the proper switching state is shown in Fig. 2-16. vout(k) is the sensed 

signal at the beginning of one switching cycle. Assume switch S will be on or off in this switching 

cycle, then the predicted output voltage vout(k+1) can be obtained by Eq. (2-25), respectively. 

Through comparing Costu=1 and Costu=0, the switching state with the lower cost value is chosen as 

the gate single to switch S. In Fig. 2-16, at time of k+1, because Costu=0 is lower than Costu=1, the 

‘off’ control signal is selected for switch S. At time of k+2, Costu=1 is lower than Costu=0, the ‘on’ 

state is the better choice to achieve smaller voltage error. At time of k+3, Costu=0 is higher than 

Costu=1, then the switch should be on. However, there is no switching action needed in this 

switching period due to the fact that the switch is already on at time k+2. In this case, the switching 

speed is reduced. 
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 Fig. 2-16 The Procedure to Choose the Proper Switching State 

In summary, the model predictive control is suitable for both linear and non-linear systems. It 

also has fewer control parameters. With the design of cost functions, it can easily realize the multi-

objective control. Despite the disadvantages of the model predictive control, such as the 

requirement of both high calculation ability of a controller and the accurate modeling of the system, 

it provides the significantly better control performance. 
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2.2.5 Comparison of PI and MPC 

 

 Fig. 2-17 Design Flowcharts of PI and MPC Control 

The design flowchart is given in Fig. 2-17. All the steps have been discussed in the previous 

section. Both control methods require the mathematical model of the system. The MPC needs more 

steps to find the best switching state. However, the PI controller parameter is unchanged during 

operation, so it is hard to meet all the circuit conditions. The MPC controller is based on the desired 

feedback and circuit model, and the gate control signal is optimized during every switching cycle 

to realize the expected circuit performance. What’s more, the hardware cost is similar for both PI 

and MPC controllers. 

In summary, a simple boost converter is used first to help understand the control theory behind 

these two controllers. The controller design for the proposed cascaded bridgeless totem-pole 
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multilevel converter, which is more complicated and has more active switches, will be introduced 

in the next section. 

2.3 MPC design for Cascaded Bridgeless Totem-Pole Multilevel Converter 

 

 Fig. 2-18 Scaled-down Prototype: ac/dc Stage, Two Cells 

Several control strategies for cascaded converters, such as level-shift pulse-width modulation 

(LSPWM), phase-shift PWM, or sliding mode control, have been developed [2.21][2.22]. Despite 

the effectiveness of the developed control methods, some issues still need to be addressed, in 

particular: voltage balancing, voltage error elimination and switching losses. A model predictive 

control through the selection of the appropriate switching state to achieve the control goals has 

been applied in motor drives, dc/dc converters and so on [2.23][2.24]. The main characteristic of 

the MPC algorithm is predicting the future behavior of the controlled variables whose values will 
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be used to calculate the cost function that represents the control objectives of system. The desired 

switching states will be obtained by selecting the minimal cost function. In this paper, a real-time 

MPC is designed for the proposed cascaded bridgeless totem-pole converter to achieve a better 

dynamic performance. 

This section is organized as follows: the circuit design of the proposed topology is described 

first. Second, the control strategy of the MPC is presented. Third, the simulation and experimental 

results of the conventional PI and proposed MPC controller are illustrated. The conclusion and 

future work are given in the last part of this section.  

2.3.1 Cascaded totem-pole converter modeling 

The procedure to design the MPC controller for a two-cell cascaded totem-pole converter will 

be discussed in this section. Based on KCL and KVL, in Fig. 2-18, the input-output relationship of 

the currents and voltages are given by Eqs. (2-27) (2-28) and (2-29). 

 

where, is is the grid current, Lg is the grid side inductor, RLg is the resistance of inductor, vo1 and vo2 

are the 1st cell and 2nd cell output voltages, respectively. Capacitors Co1 and Co2 are the 1st cell and 

2nd cell dc-bus capacitor voltages, respectively. u1 and u2 are the switch states of s1 and s2, 

respectively. u11 and u12 are the switch states of s11 and s12, respectively. 

)()()()()()(
)(

21211121 tvuutvuutvtiR
dt

tdi
L oossLg

s
g   (2-27) 

 )()()(
)(

121

1

1 titiuu
dt

tdv
C os

o

o   (2-28) 

 )()()(
)(

21211
2

2 titiuu
dt

tdv
C os

o
o   (2-29) 



47 

 

 

From the time-domain equations, the state-space equations of the cascaded totem-pole 

converter are shown in Eq. (2-30). 

The expression of x(t), u(t), A1, A2, B, and C are shown below. 
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The discrete-time models from the continuous-time model are given in Eqs. (2-38), (2-39) and 

(2-40). 

where, ‘k’ means the current switching cycle, and ‘k+1’ means the next switching cycle. Eqs. (2-39) 

and (2-40) are to predict the desired control variables vo1(k+1) and vo2(k+1), respectively. 

2.3.2  Cost function of totem-pole converter 

The control goals of the cascaded totem-pole converter are shown below:  

(a) The input current should be sinusoidal and achieve unity power factor. 

(b) The output voltage of each totem-pole should accurately track the reference value. The 

voltages of the dc buses should be balanced. 

(c) Maintain a low switching frequency in order to reduce power losses. 

(d) Have a very good dynamic performance against load changes. 
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2.3.2.1 Unity power factor control 

The goal of power factor correction control is to make the input current waveform sinusoidal 

and in phase with the input voltage. The reference current is_ref is controlled by the output of voltage 

loop. Then the cost function of PFC control in the proposed topology is given in Eq. (2-41). 

2.3.2.2 Voltage balance control 

If the PFC rectifier converters are connected in series, the voltage unbalance in the PFC output 

side voltage will happen without proper control. The unbalance issue is due to the varied active 

power of the DAB and the unequal switching losses in each PFC converter. The difference of these 

voltages will lead to the overvoltage of switches and capacitors. There are many papers which 

discuss about controlling the voltage unbalance. The existing normal control is utilizing PI or 

Proportional-Resonant (PR) control to track dc voltage reference or power reference [2.25]. The 

disadvantage of the PI or PR method is that it is not easy to find the proper parameters and the 

stability region is usually changed by circuit conditions. What’s more, if the system is nonlinear, 

significant parameter design changes are required in PI or PR control. To overcome the 

aforementioned disadvantages, the model predictive control is developed in this dissertation. 

Without any PI or PR controller, the cost function of the voltage tracking control and voltage 

balance are given in Eq. (2-42) and Eq. (2-43), respectively. The simulation results are shown in 

Fig. 2-19. 

 

)1(_  kiiCost srefscurrent  (2-41) 

)1()1( 2_1_  kvVkvVCost orefoorefodc  (2-42) 

)1()1( 12,  kvkvCost oobalancedc  (2-43) 



50 

 

 

 

 

(a) Without to With Voltage Balance Control 

 

 

(b) With to Without Voltage Balance Control 

Fig. 2-19 Simulation Results of 400 dc Bus Balance Performance 

2.3.2.3 Switching sequence 

As shown in Table 2.5, there are 16 cases of switching states for switches S1, S2, S11, and S12. 

However, S1 and S2 or S11 and S12 should not be ON at the same time to prevent a short circuit, thus 

the switching cases 10 to 16 should be avoided. The possible switching states are from cases 1 to 

9. The minimum cost function and the related switch positions are applied to the circuit to achieve 

the optimized performance of the power converter. 
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 Table 2.5 Switching Cases of Cascaded Bridgeless Totem-pole PFC 

Switching case  n 

1: switch on 

0: switch off 

u1 u2 u11 u12 

Case 1: 0 0 0 0 

Case 2: 0 0 0 1 

Case 3: 0 0 1 0 

Case 4: 1 0 0 0 

Case 5: 1 0 0 1 

Case 6: 1 0 1 0 

Case 7: 0 1 0 0 

Case 8: 0 1 0 1 

Case 9: 0 1 1 0 

Case 10: 0 0 1 1 

Case 11: 1 0 1 1 

Case 12: 0 1 1 1 

Case 13: 1 1 0 0 

Case 14: 1 1 0 1 

Case 15: 1 1 1 0 

Case 16: 1 1 1 1 

 

2.3.2.4 Overall system cost function 

In summary, by combining the aforementioned cost functions, the overall system cost function 

is given in Eq. (2-44). 
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The flowchart of the MPC strategy is illustrated in Fig. 2-20. First, the current is(k) of inductor 

Lg, and the totem-pole PFC output voltage vo1(k) and vo2(k) are the measured variables at the 

beginning of the kth switching cycle. Second, from the discrete-time model in Eqs. (2-38), (2-39) 

and (2-40), the variables is(k+1), vo1(k+1) and vo2(k+1) in the (k+1)th switching cycle are predicted. 

Third, there are 9 switching cases leading to 9 sets of predictive variables. From each set of 

predictive variables, the cost function Costmin is calculated separately. The minimal cost function is 

selected and the related switching signals are sent to the gate drive circuit to regulate the expected 

dc bus voltage. 
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Fig. 2-20 The Flowchart of  MPC 

2.3.3 Block diagram of controllers 

The block diagram of the MPC control for the proposed topology is illustrated in Fig. 2-21 (a). 

The reference iref in the current-loop is generated by the dc voltage-loop. The voltage-loop aims to 

maintain the primary dc bus voi. The controller Gv can be a simple PI or PR control. The 

conventional double-loop PI control is also given in Fig. 2-21 (b) for comparison purposes. A more 

detailed control loop design given in [2.26]. There are four controllers that need to be designed 

which are cumbersome and dependent on each other. The control diagram for the DAB is using 

conventional phase-shift control [2.27].  
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(a) MPC Algorithm for the Proposed Topology 

 

(b) Conventional PI Control for the Proposed Topology 

Fig. 2-21 The Block Diagram of MPC and Conventional PI for the Proposed Topology 

2.3.4 Simulation and experiment verification 

In order to verify the effectiveness of the proposed MPC strategy, both simulation and 

experimental results are presented. The simulation results are introduced first. 

MATLAB/SimulinkTM is used to verify the proposed MPC strategy in the scaled-down 5 kW 

prototype. The grid voltage is 480 V and the frequency is 60 Hz. Using Eqs. (2-9) and (2-11), the 

boost inductor Lg is 7.2 mH, and the capacitors Co1 and Co2 on the dc side of the totem-pole 

converter are 680 μF. Each cell’s dc reference voltage is Vo_ref = 400 Vdc.  A resistive load is 

connected in the secondary side of the DAB. Conventional PI control and MPC are applied in the 

cascaded totem-pole PFC, respectively. The same controller for the DAB is used for both the PI 

and MPC controllers. 
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2.3.4.1 Simulation: dc bus voltage balance 

Before 0.3 s, the converter operates under no-load condition. At 0.3 s, a 5 kW load is connected. 

As shown in Fig. 2-22(a), there is a voltage imbalance issue between vo1 and vo2 before 0.3 s when 

using the conventional PI control. Auxiliary and complex balance control is needed in the 

conventional PI control. Fig. 2-22(b) shows that the voltage is always balanced between the two 

totem-pole converters under MPC control. During the step-up load, the conventional PI control 

needs at least 0.3 s to stabilize the output voltage of each totem-pole converter, while the MPC 

requires less than 0.05 s to stabilize these voltages. The 120 Hz voltage ripple in the dc bus is limited 

to 10 V. The simulation results verified that the transient performance of the MPC controller is 

much better than that of the PI controller. 

 

(a) Conventional PI Control 

 

(b) Model Predictive Control 

 Fig. 2-22 Normal Operation to Step-up Load of the Two Controllers 
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2.3.4.2 Simulation results of switching frequency 

The switching frequency of the conventional PI control is set at 20 kHz. The switching 

frequency of the MPC is variable and depends on the system feedback. The simulation results of 

the gate signal from each controller are shown in Fig. 2-23 and Fig. 2-24. The maximum switching 

frequency of the MPC is about 8 kHz. This is less than half of the switching frequency in the 

conventional PI control, so the switching loss can be greatly reduced. The current THD of both 

controllers are all within the IEEE 519-2014 standard. It is worth mentioning that the minimum 

switching frequency of MPC algorithm should be set to meet the THD requirements. 

 

 Fig. 2-23 Gate Signals For a Selected Switch Position For Conventional PI Control 

 

Fig. 2-24 Gate Signals for a Selected Switch Position for Model Predictive Control 
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2.3.4.3 Experiment: dc bus voltage balance 

The experimental setup is shown in Fig. 2-25 which includes the hardware-in-loop (HIL) 

simulator Typhoon HIL402, a TI DSP TMS320F28335 control card, and oscilloscope. The MPC 

algorithm is programmed in the DSP. The proposed cascaded bridgeless totem-pole PFC and dual-

active bridge converter are modeled in Typhoon HIL 402. The circuit parameters are the same as 

those in the simulation setup. The test results of vo1 and vo2 are shown in Fig. 2-26 and Fig. 2-27, 

respectively. Similarly to the simulation results, the experimental results exhibit that the proposed 

MPC strategy has smaller overshoot and much faster response when the load power changes from 

0 to 5 kW. 

 

 

 Fig. 2-25 Experimental Setup: Typhoon Simulator and DSP Control Card 
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 Fig. 2-26 Hardware-In-Loop Testing Results of Conventional PI Control (Time: 25 ms/div, 

vo1=vo2=400 V, iload: 0 to 12.5 A) 

 

 Fig. 2-27 Hardware-In-Loop Testing Results of  The Proposed Model Predictive Control (Time: 

25 ms/div, vo1=vo2=400 V, iload: 0 to 12.5 A) 

2.4 Conclusion 

A model predictive control for a novel cascaded bridgeless totem-pole multilevel converter for 

400 V DC-powered data centers was presented. The procedures to design MPC control in power 

converter application are: 

(a) Determination of power converter model to specify the input-output relation of the voltages 

and currents. 
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(b) Determination of discrete-time model from continuous-time model to predict the system 

future behavior. 

(c) Designing the cost functions. In the proposed topology, the first cost function can be that 

the sinusoidal input current to meet a unity power factor requirement. Second, the output voltage 

of each totem-pole should accurately track the reference value. The third cost function is to limit 

the switching frequency to a set range to minimize loss while optimizing filter performance. Fourth, 

is to ensure good dynamic response during load changes.  

(d) Select the switch position to have the minimum cost function and apply it to circuit to 

achieve the preferred performance of power converter. 

Compared with existing multilevel converters, totem-pole converters, by utilizing the 

advantages of wide bandgap devices, were cascaded to achieve high efficiency and reduce the 

number of active switches. Compared to the conventional PI control, the proposed MPC strategy 

had better transient and voltage balance performance and required lower switching frequencies 

which translates to lower switching losses. Both simulation and experimental results were been 

presented to validate the effectiveness of the proposed topology and its optimized MPC strategy. 

The disadvantage of MPC is that it requires high calculation ability of a controller and accurate 

modeling of the system. Thanks to the rapid development of the micro-processor, the 

computational ability of state-of-the-art DSPs have been greatly improved. For example, the clock 

frequency of TMS320F28377D DSP is 200 MHz, the MPC algorithm can be easily implemented 

in such a DSP. 
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CHAPTER 3 

MODELING AND CONTROL OF SOLID STATE TRANSFORMER DC/DC STAGE: 

EFFICIENCY IMPROVEMENT 

3.1 Introduction and Motivation 

In the dc/dc stage, the dual-active bridge converter is well adapted for this application due to 

its excellent performance in voltage conversion, flexibility, high power density, galvanic isolation, 

modularity and high efficiency [3.1]-[3.4]. 

The conventional single phase-shift (SPS) modulation control is simple and easy to implement 

in many applications [3.5]-[3.7]. In order to improve the efficiency performance of the DAB, the 

SPS has been improved by using the multi-phase-shift control, such as extended phase-shift (EPS), 

dual phase-shift (DPS) and triple phase-shift (TPS) controls [3.8]-[3.10]. These three phase-shift 

control methods are classified by the different phase-shift angles, reducing the current stress and 

circulating energy in the circuits, thus the efficiency performance is improved. The TPS control is 

recognized as a unified phase-shift control, but the penalty of this control method is much 

complexity and increased design efforts. Compare with other phase-shift strategies, the DPS 

control has been popular due to its efficiency performance and its acceptable level of complexity. 

To further increase the power efficiency of the DAB, the multi-phase-shift controls are designed 

with the goal of minimum current stress [3.11] or minimum reactive power flow [3.12]. These two 

efficiency optimization methods can reduce the power loss in the DAB, but neither is a 

straightforward method. A more optimal strategy which can find the desired phase-shift angles 
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directly from the power loss model of the DAB. In the paper [3.13], a conventional loss model is 

utilized in an IGBT-based DAB. The saturation voltage of the IGBT along with the voltage drop 

of the diode are assumed as constant values. These assumptions may prevent the algorithm from 

calculating the expected phase-shift angle and couldn’t guarantee the high efficiency performance. 

To increase the power density of the DAB wide bandgap devices, such as SiC MOSFETs or GaN 

FETs, are usually utilized today. Different from the IGBT, the MOSFET can have bidirectional 

current flow when its gate voltage is high enough, thus the operation of the MOSFET version of 

the DAB also differs from the DAB which utilizes IGBTs. 

Compared with the aforementioned studies, a more accurate loss model is developed in this 

work to further improve the efficiency performance of the SiC-based dual-active bridge. A 

comprehensive operational analysis of the SiC-based DAB is also presented in this work. A 

detailed improved conduction loss model and switching loss model are given to construct a more 

accurate loss model of the DAB. For example, the loss model of a DAB will consider the effect of 

junction temperature, gate resistance, and gate voltage to the power loss. Furthermore, the impact 

of harmonic currents, as they relate to the losses, on auxiliary circuits and transformers is illustrated. 

According to the comparison of the proposed loss model with the aforementioned control of a SiC-

based DAB from the experimental prototype testing results, the efficiency of the DAB is improved 

with varying input voltages and/or load power. 

This chapter is organized as follows: Section II introduces the SiC MOSFET-based DAB 

operation principle. A simplified power loss model and an improved power loss model are 

presented in Section III, and finally, the simulation and experimental results are included in Section 

IV. 
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3.2 Dual Active Bridge Operation 

3.2.1 Single phase-shift control 

The single phase-shift control is widely used in the dual-active bridge converter due to its 

simplicity. The switches S1-S8 are controlled with a 50% duty cycle. Leg 1 and Leg 3 have the 

phase-shift, and leg 2 and leg 4 have the same phase-shifts which are shown in Fig. 3-1. vpri is the 

voltage output from the primary side full bridge, and vsec is the voltage input to the secondary side 

full bridge. As shown in Fig. 3-2, with changing the phase-shift angle, the voltage across the 

inductor Lk will change and then the power flows between the primary and secondary sides. The 

disadvantage of single phase-shift control is that the RMS and peak current of the switches are 

high due to the circulating power flow in the circuit [3.13], thus the efficiency of DAB with single 

phase-shift control is relatedly low. 

 

 Fig. 3-1 Dual-Active Bridge with Single Phase-Shift Control 
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Fig. 3-2 Single Phase-Shift Control: The Transformer Input/Output Voltage and Inductor Lk 

Current 

3.2.2 Extended phase-shift control 

To reduce the RMS and peak current stress of the switches, while also improving the efficiency, 

the EPS control has been investigated in [3.8][3.14]. Comparing with SPS, EPS has the phase-shift 

between leg1 and leg2 which is shown in Fig. 3-3. There are two degrees of freedom to change the 

voltage difference, thus controlling the power flow. The first degree Do is used to control the 

magnitude and direction of power flow. The second degree Di is applied to reduce the circulating 

power and current stress of the converter. The detailed inductor voltage and current waveforms are 

given in Fig. 3-4. 
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 Fig. 3-3 Dual-Active Bridge with Extended Phase-Shift Control 

 

 Fig. 3-4 Extended Phase-Shift Control: The Transformer Input/Output Voltage and Inductor Lk 

Current 

3.2.3 Dual-phase-shift control 

Another control method which gives two degrees of freedom using the phase-shift control 

method is DPS control. The difference between DPS and EPS is the phase-shift also exit in leg3 

and leg4 and is the same phase-shift angle as leg1 and leg2 which is illustrated in Fig. 3-5. 

Compared with SPS control, DPS can effectively reduce the circulating energy and current stress, 

vout

N1:N2

Cin Cout

Lk

S1 S3

S2 S4

S5 S7

S6 S8

vpri
vseciLk

iC

iDC

 Di

Leg 1 Leg 2 Leg 3 Leg 4

vpri

vsec

v

iL

t

t

Di



68 

 

 

however it also expands the soft-switching range [3.9][3.15]. The inductor voltage and current 

waveforms with DPS control is given in Fig. 3-6. 

 

Fig. 3-5 Dual-Active Bridge with Dual Phase-Shift Control 

 

Fig. 3-6 Dual Phase-Shift Control: The Transformer Input/Output Voltage and Inductor Lk 

Current 

3.2.4 Triple phase-shift control 

As shown in Fig. 3-7, the TPS control method has three degrees of freedom [3.16]-[3.18]. The 
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that the design of TPS control is much more complicated than that of the SPS, EPS and DPS 

control methods. The input and output voltages of the transformer and inductor Lk current are given 

in Fig. 3-8. 

 

Fig. 3-7 Dual-Active Bridge with Triple Phase-Shift Control 

 

Fig. 3-8 Triple Phase-Shift Control: The Transformer Input/Output Voltage and Inductor Lk 

Current 
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3.2.5 Conclusion 

Comparing these four phase-shift control strategies, the performance of TPS is the best but 

also the most complicate. The SPS control is the simplest but the high circulating currents and 

RMS or peak current stress. Compare EPS with DPS, the control state of the two full bridges are 

changed when the required power or voltage is changed, but DSP control doesn’t, with this reason, 

the DPS control is adopted in the following section to achieve a relatively simple, effective and 

high efficiency control strategy.  

3.3 Efficiency Optimization Methods 

To improve the efficiency performance of the dual-active bridge converter, two popular 

methods are reported in [3.11][3.19][3.20]: (1) Peak current minimization method and (2) 

circulation power reduction method. The drawback of these two methods are the efficiency is not 

optimal in the wide range of the load power. A loss model based method is reported in [3.20][3.21]. 

In the paper [3.20], it is applied with an IGBT based-circuit and simple loss model. It assumed that 

the saturation voltage of IGBT and voltage drop of the diode are constant values, thus it may not 

realize the optimized efficiency performance. In the last few years, the wide bang-gap device has 

been widely used due to its fast switching capability and low on-state resistance, thus it is very 

suitable for the dual-active bridge converter application. In this section, a SiC MOSFET based 

dual-active bridge is analyzed and a more accurate loss model is developed to achieve better 

efficiency performance. 

3.3.1 Current stress minimization method 

The control diagram of current stress minimization control is given in Fig. 3-9. The PI control 

is adopted in the voltage loop to regulate the dc bus voltage at the secondary side. The solved Di 
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is fed as the forward signal added plus with the output of PI controller. The final stage of this 

control strategy is the phase-shift generator which can be realized by the controller. 

  

 Fig. 3-9 Control Diagram of Current Stress Minimization 

The phase-shift Di and Do are calculated by the Lagrangian expression. Lagrangian function is 

a strategy to find the minimum or maximum value of an object with some constraints. The normal 

Lagrangian expression is shown in Eq. (3-1). 

where the function L is called the "Lagrangian", f(x1, x2, …, xn) is the objective function, g(x1, 

x2, …, xn) is the constraint function, λ is defined as Lagrange multiplier, c is the desired constant 

value of constraint function g(x1, x2, …, xn). 

In order to realize the control goal, set the gradient of Lagrangian expression equal to zero: 
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By solving Eq. (3-2), the desired x1, x2, …, xn can be found to achieve the minimum or 

maximum value of control objective. 

In the DPS control, the two degrees of control variables are Di and Do, and the Lagrangian 

expression is shown in Eq. (3-3). 

where ipeak(Di, Do) is the peak current in the DPS control, Pout is the power output of the DPS 

control, Pref is the reference power of the dual-active bridge. 

The expression of ipeak and Pout can be derived from the current and voltage waveform of the 

leakage inductor. By solving Eq. (3-4), the calculated values Di and Do are the desired phase-shifts 

which can be realized with the minimum peak current stress. 
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3.3.2 Circulating power reduction method 

Similar to the current stress minimization control, the Lagrangian expression of the circulating 

power reduction method is shown in Eq. (3-5). The circulating power Pcircutlation and output power 

of DAB Pout can be derived from the current and voltage waveform of the leakage inductor. 

Similar with the current stress optimization control, the desired phase-shift of Di and Do are 

solved by Eq. (3-6). 

The control diagram of circulating power reduction method is given in Fig. 3-10. The 

difference with the current stress minimization control is that the desired phase-shift is based on 

the control of minimization of the circulating power. 
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Fig. 3-10 Control Diagram of Circulating Power Reduction 

In the next section, a loss model based on the efficiency optimization method is proposed. In 

order to build the loss model, the operation principle of the dual-active bridge is introduced first, 

then the simple and more accurate loss model are developed and compared. 

3.4 SiC MOSFET-based DAB Operation Principle 

There are two operational conditions of the dual-phase-shift control method, which are Do<Di 

and Di<Do, where Di is the inner phase-shift and Do is the outer phase-shift. This dissertation 

mainly discusses the case of Di<Do. The analysis steps of Do<Di are the same. The operation 

principle of dual-active bridges in the dual-phase-shift model is given in Fig. 3-12. From t0 to t10, 

there are 10 stages. 
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 Fig. 3-11 Control Signal and Circuits Waveform when Di<Do 

 

(a) Stage 10: t9<t10     (b) Stage 1: t0<t1 

 

(c) Stage 2: t1<t2     (d) Stage 3: t2<t3 
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(e) Stage 4: t3<t4     (f) Stage 5: t4<t5 

 

(g) Stage 6: t5<t6     (h) Stage 7: t6<t7 

 

(i) Stage 8: t7<t8     (j) Stage 9: t8<t9 

 Fig. 3-12 10 Operational Stages when Di<Do 

The current equations for 10 stages are given in Table 3.1. 
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Table 3.1 The Inductor Lk Current Equations, Di<Do 

Time 

Primary side 

ac voltage,  

vpri 

Secondary 

side ac 

voltage, vsec 

Current equation 
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Stage 1, t0<t<t1: At time t<t0, S2, S3, S6, and S7 are on. At t0, S3 turns off first. To prevent the dc 

bus voltage short through, a short dead time td is set between S3 and S4. The diode D4 is conducting 

in freewheeling mode during the dead time. At time t0+td, the gate signal of S4 is high level, then 
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S4 is turned on at zero-voltage switching (ZVS). Due to the fact that MOSFETs allow bidirectional 

current flow, a large proportion of current will flow from source to the drain when the gate voltage 

is much higher than the threshold voltage. Then diode D4 turns off and leads to reverse-recovery 

loss. 

Stage 2: The MOSFETs in the primary and secondary sides are still conducting, but the current 

direction at both sides are changed at time t1. 

Stage 3: At time t<t2, S2, S4, S6 and S7 are on, S2 turns off at time t1, then D2 is conducting as 

freewheeling diode. After time t1+td, S1 is turned on at hard switching mode and D2 turns off. 

Stage 4: The primary side switches keep the same status as the previous stage, the secondary 

side switch S7 is turned off at time t2, D7 conducts during the dead time. At time t2+td, S8 turns on 

and D7 is off. 

Stage 5: During this stage, S1 and S4 only have conducting loss. S6 turns off at time t4, D5 is on 

immediately. At time t4+td, S5 turns on at ZVS.  

Stage 6: The secondary side switches S5 and S8 are always on during this stage. S4 turns off and 

D3 is on at time t5. S3 turns on at ZVS. 

Stage 7: In this stage, the current direction changed in the primary and secondary sides. Only 

conduction loss is happened in this stage. 

Stage 8. The MOSFET S1 turns off at time t6, then the diode D1 is conducting during dead time. 

S2 turns on with hard switching at time t6+td. The status of secondary side switches are the same 

as stage 7. 
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Stage 9: The switches of primary side stay the same status as in stage 7. The secondary side 

switch S8 turns off at time t7, the diode D8 conducts the current until S7 soft switching turns on. 

Stage 10: This stage is the last stage in one switching period. The status of primary side’s 

switches are same as in stage 9. S5 is turned off at t9 then D6 is conducting the current. S5 is turned 

at ZVS. 

From the operational principle of the dual-phase-shift control in the dual-active bridge, the 

switching actions are summarized in Table 3.2. The conduction actions are shown in Table 3.3. 

 Table 3.2 The Switching Actions in One Switching Period 

Hard turn-off Soft turn-off Hard turn-on Soft turn-on Diode reverse recovery 

S3 at t0,  

S7 at t3,  

S6 at t4,  

S4 at t5,  

S8 at t8,  

S5 at t9 

S2 at t2,  

S1 at t7 

S1 at t2,  

S2 at t7 

S4 at t0,  

S8 at t3,  

S5 at t4,  

S3 at t5,  

S7 at t8,  

S6 at t9 

D4 at t0,  

D2 at t2,  

D8 at t3,  

D5 at t4,  

D3 at t5,  

D1 at t7,  

D7 at t8,  

D6 at t9 

 

 Table 3.3 The Conduction Actions in One Switching Period 

Time 
t0-t1,  

t1-t2 
t2-t3 t3-t4 t4-t5 

t5-t6,  

t6-t7 
t7-t8 t8-t9 t9-t10 

MOSFET 
S2, S4, 

S6, S7 

S1, S4, 

S6, S7 

S1, S4, 

S6, S8 

S1, S4, 

S5, S8 

S1, S3,  

S5, S8 

S2, S3, 

S5, S8 

S2, S3, 

S5, S7 

S2, S3, 

S6, S7 
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3.5 Simplified Power Loss Model and Improved Power Loss Model 

3.5.1 Switching loss analysis and modeling 

3.5.1.1 Turn-on loss model 

The main turn-on or turn-off power loss happens when the gate voltage is between the thresh 

hold voltage Vth and plateau voltage Vplateau. During the turn-on process, when Vgs reaches Vth, the 

current path is changed from the body diode to MOSFET. During this period, the power loss can 

be calculated as turn-on loss of the MOSFET and reverse-recovery loss of free-wheeling diode. 

From the simple turn-on loss calculation method, the current rise time and voltage fall time is 

assuming constant values. Thus, from switching scenarios in Fig. 3-11 and Fig. 3-12, the Eq. (3-7) 

is presented as the turn-on loss. 

where, td,on is turn-on delay time, tr is rise time of switch. 

In this work, the more accurate turn-on loss model is considered with the contribution of the 

gate voltage, gate resistance and dc bus voltage to the switching loss. The gate resistance should 

be adjusted to realize fast turn-on and turn-off but acceptable Vds overshoot. The gate current 

during turn-on is shown in Eq. (3-8). The voltage fall time can be calculated in Eq. (3-9). Then, 

the turn-on energy loss and the power loss in a switching period are given in Eq. (3-10). 
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where Vdrive is the supplied gate voltage, Rgate is the internal gate resistance, and Rdriver is the 

external gate resistance. Cgd1 and Cgd2 are the associated gate capacitance which can be read from 

the datasheet. tri is the current rise time which is given in the device datasheet. 

3.5.1.2 Turn-off loss model 

Same as the turn-on loss model, as given in the Table 3.2, the turn-off loss simple and more 

accurate model of SiC MOSFET are given in Eqs. (3-11)(3-12) and Eqs. (3-13)(3-14), respectively. 

In the Eq. (3-11), the switch turn-off time parameters are red from the datasheet directly. In the 

accurate model as shown in Eq. (3-14), the junction temperature is considered as variable in the 

accurate loss model. The gate resistance and voltage are used in the turn-off loss model. 

where, td,off is the turn-off delay time, tf is the switch fall time of switch. 
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3.5.2 Conduction loss analysis and modeling 

The conventional way to calculate the MOSFET conduction loss is assuming the on-stage 

resistance Rdson is a constant value, which is based on constant junction temperature Tj and drain-

source current. However, the Rdson may vary greatly when Tj changes. For example, the Rdson of 

C2M0080120D at 25℃ is about 80 mΩ, but increased about 18% when the junction temperature 

is 75℃. Through the curve-fit method, the relationship of Rdson verses Tj of C2M0080120D is 

given in Eq. (3-15). If Tj is sensed as feedback, then the more accurate Rdson can be predicted. 

Based on the aforementioned operational scenarios, the conduction loss based on constant and 

varied Rdson from SiC MOSFET can be derived as Eqs. (3-16) and (3-17), respectively. 
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where, Ron.MOS is the switch on-sate resistance. 

3.5.3 The power loss from the transform and auxiliary inductor 

The two main losses associated with the transformer are core and copper losses. The core loss 

calculation is based on the Improved Generalised Steinmetz Equation (IGSE) using the parameters 

for the core materials as shown in Eq. (3-18).  

where, 

a, b, ki are the Steinmetz coefficients. 

Bm is the peak flux amplitude. 

fDAB is the frequency of transformer. 

D is the duty ratio of DAB. 

    The windings are considered to be composed of circular Litz wire arranged in a concentric 

manner. The calculation for ac winding loss is based on the simplified approach used in [3.22] 
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(valid for low penetration ratios) which is a development of the approach outlined by Lammeraner 

and Stafl in [3.23] as presented in Eqs. (3-19) and (3-20). The calculation of losses include the 

harmonic content of the current in the transformer. 

where, Iv is the each current harmonic. Rp, Rs are the resistance for each of the windings. Frv is the 

resistance factor. 

There are core and copper losses in the high-frequency transformer and auxiliary inductor. The 

core loss Pcore can be derived as Eq. (3-21) [3.24]. 

where Irms is the root mean square value of the auxiliary inductor current. 

The copper loss from high-frequency transformer and auxiliary inductor are shown in Eqs. 

(3-22) and (3-23), respectively. 

Thus the total loss of the high-frequency transformer and auxiliary inductor is: 
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3.6 The Total Loss Model 

According to the aforementioned loss analysis, the global loss of the dual-active bridge is the 

sum of power losses from switches, the high-frequency transformer, and the auxiliary inductor. 

Combine the turn-on loss equations (3-7)(3-10), turn-off loss equations (3-11)(3-14), conduction 

loss equations (3-16)(3-17) and transformer and inductor loss equation (3-23), the total loss 

equation with simple and accurate loss models are given in Eqs. (3-24) and (3-25), respectively. 

3.7 Efficiency Optimized Method: Lagrangian Objective Function 

3.7.1 Power delivery capability 

When Di<Do, the output power of the DAB is calculated as shown in Eq. (3-26). When Do<Di, 

the output power can be derived as the similar method which is given in Eq. (3-27). 

The output power curve of Eq. (3-26) is plotted in Fig. 3-13. It can be seen that, dual-phase-

shift has many sets of Di and Do to meet the output power requirement. The related power loss 

curves are illustrated in Fig. 3-14. It can be seen that the DAB converter has different power loss 

with different sets of Di and Do, which means if the phase-shift is calculated properly, the DAB 

will not only deliver the desired power, but also the lowest power loss is minimized. 
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 Fig. 3-13 Power Curve of the DAB with Dual-Phase-Shift Control 

  

 Fig. 3-14 Power Loss 3D Plot when DAB with Dual-Phase-Shift Control 
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3.7.2 Minimum power loss design  

To find the desired dual-phase-shift Di and Do, the Lagrangian expression of the power loss 

minimization is utilized in this paper. The main idea is to adjust the efficiency   to satisfy the 

minimum power loss constraint. The simple loss model and the accurate loss based Lagrangian 

expression is given in Eq. (3-28) and Eq. (3-29), respectively. 

Then the equations to resolve the Di and Do with simple loss model and accurate loss model 

are shown in Eq. (3-30) and Eq. (3-31), respectively. 

For example, for 155 V input voltage and 60 V output voltage, with the same load power 240 

W, the calculation results of dual-phase-shift (Di, Do) from the simple loss model and the accurate 

loss model are (0.0411, 0.2074) and (0.0554, 0.2086). Since there is only one solution from the 

Lagrangian expression, if the loss model is not good enough, the calculated Di and Do will not 
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result in the lowest power loss, thus the best efficiency performance cannot be achieved. The 

experimental results will verify this in the section. 

3.7.3 Control strategy of DAB with loss model 
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 Fig. 3-15 Control Diagram of Power Loss Minimization 

The control scheme of the DAB is given in Fig. 3-15. The inner phase-shift and outer phase-

shift is calculated by Eqs. (3-30) and (3-31). In order to maintain the output bus voltage during 

input voltage or load power transients, a PI control is utilized to modify the outer phase-shift. The 

calculated Do as feed forward phase-shift and added with the output of PI controller to improve 

the transient performance. In the steady state, the output Do,total should be equal to Do to realize the 

goal of the smallest power loss. 

3.8 Experimental Verification 

The experimental results of the DAB converter are shown in Fig. 3-16 and Fig. 3-17. These 

results were obtained using a TI DSP TMS320F28335 and CREE SiC MOSFET. The switching 

frequency is 50 kHz. Since the expression of Do and Di are very complicated, in order to save the 

calculation time of the DSP, a look-up table is built based on the circuit parameters. In every 

switching cycle, the optimized Do and Di are selected based on the feedback of Tj, Vi and Vo. To 

measure the efficiency, the multi-channel power analyzer PA3000 from Tektronix is utilized. In 
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the experiment, the simple and accurate loss models of the SiC MOSFET are tested and compared. 

These two loss models are tested in two cases:  

(a) Same Vout_ref and same load power, different Vin. 

(b) Same Vin, different Vout_ref, or Same Vin, different load power. 

3.8.1 Same Vout_ref and same load power, different Vin 

In this scenario, the input voltage increases from 100 V to 250 V, the reference output voltage 

is set as 60 V. Then the voltage ratio is varied. The transmission power is 500 W. With different 

dc input voltages, the efficiency testing results are shown in Fig. 3-16. It is demonstrated that the 

efficiency has increased at least 1% with the accurate loss model control. It can be concluded that 

the more accurate loss model helps to predict the correct inner and outer phase-shift to maximize 

the system efficiency. 

 

Fig. 3-16 Efficiency Testing Results of SPS, Accurate Model and Simple Model with Vary Input 
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3.8.2 Same Vin, different load power 

The input and output voltage are fixed at 200 V and 60 V, respectively.  The load power is 

varied from 135 W to 480 W. The measured efficiency is compared with the different loads as 

shown in Fig. 3-17. The efficiency is again shown to be improved by utilizing the accurate loss 

model of DAB. 

 

Fig. 3-17 Efficiency Testing Results of SPS, Accurate Model and Simple Model with Varying 

Load Power 

3.9 Loss Model Based Efficiency Improvement Conclusion 

The optimized and accurate loss model is developed for a dual-active bridge converter to 

improve efficiency performance. The accurate loss model is improved from three aspects: 

conduction loss model, switching loss model, and high frequency transformer loss model. 

Compared with the simple loss model, the proposed accurate loss model can predict the more 

accurate inner and outer phase-shift. From the theoretical and experimental results, the proposed 

accurate loss model can effectively increase the system efficiency by reducing the power loss. The 

power losses are mainly effected by the conduction loss.  
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3.10 Transient Performance Improvement Methods 

In this section, a novel control strategy to improve dynamic and efficiency performance of 

dual-active bridge converters is investigated. The proposed control method is based on a new 

virtual capacitance concept with K-factor approach for obtaining better stability and performance 

for a closed-loop DAB. Because the capacitor is not real, a large capacitance can be obtained 

without taking much space and cost. Moreover, a virtual capacitance can be designed to have 

nonlinear characteristics and respond selectively to the desired signals. And the K-factor control 

can provide the desired phase boost to get the targeted phase margin at the crossover frequency. 

The efficiency is optimized through the power loss model of the DAB. Dual phase-shift control is 

designed to maximum the efficiency performance in the DAB. The closed-loop control system has 

been implemented in a real hardware experiment. The comparative closed-loop performances of a 

DAB converter with classical PI, single K-factor and virtual capacitor based K-factor controllers 

have been produced. Simulations and experimental results are provided to demonstrate the 

effectiveness of the DAB small signal model and K-factor virtual capacitor for the proposed DAB 

converter. Design and implementation of K-factor virtual capacitor controller for DAB converters 

has not been reported in any literature before. 

3.10.1 Introduction 

The controller design is critical to the performance of DAB converters. The classic PI and other 

control methods have been applied to DAB converters in solid-state transformers (SST) 

applications [3.25]-[3.28]. However, very limited papers have presented the detailed controller 

design procedures and validated the effectiveness under varying operating conditions. In addition, 

the major studies on the controller design for DAB converters are focused on the use of classic PI 

controllers. Qin et al., analyzed the closed-loop gain of a DAB converter controlled by a PI 
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controller and also highlighted its limitations in [3.29]. It has been shown that it is difficult for the 

PI controllers to track and reject disturbances induced by 120 Hz double-line frequency harmonic 

current from the inverter due to the limited controller bandwidth.  

 The classic PI controller design relies on the small-signal model and parameters of the 

DAB converters. Consequently, load variations and parametric uncertainties may degrade its 

performance [3.30]. The PI controller can ensure system stability around an equilibrium point. 

However, large external perturbations, such as fast load current pulsations and large input voltage 

variations, can make the system unstable [3.31], [3.32]. Several methods [3.33]-[3.39], have been 

proposed to improve the robustness of the controller of the dc-dc converters against various 

disturbances. However, they were usually quite complicated to implement. As an alternative, it is 

well known that increasing the value of the output filter capacitor improves output voltage 

regulation. This method, however, not only increases the system cost and size, but also may 

degrade the dynamic response of the converter when sudden changes of the output voltage is 

desired. A virtual capacitance concept was introduced in [3.40] and [3.41] to improve the output 

voltage robustness of dc-dc converters that does not require increasing the size of the bulky filter 

capacitor. 

The K-factor control, which integrates three different type of controllers [3.42]-[3.45], is well 

suited to address the aforementioned issues of the classical the PI controller. Various K-factor 

controllers have been designed to improve the performance of converters and other power 

electronic systems. However, it has not been applied to DAB converters yet. In this work, a novel 

K-factor controller is designed to improve the dynamic response and the transient performance of 

DAB converters, in particular, to track the reference dc output voltage with fast transient response 



93 

 

 

and significantly reduced the overshoot under various operating conditions compared to PI 

controllers. To further enhance the robustness of the K-factor controller against various 

disturbances, an additional control loop is proposed based on the virtual capacitance concept, 

which makes the DAB converter behave as if there is a large filter capacitor. 

Comprehensive theoretical analysis, modeling, design and experimental verification of a DAB 

converter with the proposed virtual capacitor based K-factor (K+VC) controller are presented in 

this paper. The main objective of the study is to determine the most suitable controller to handle 

normal and transient operating conditions. The closed-loop performances of a DAB converter with 

classic PI, K-factor and K+VC controllers are evaluated. Both simulation studies using MATLAB/ 

SimulinkTM and experimental studies on a 0.6-kVA, 200-V DAB converter prototype are 

performed to validate the feasibility and the effectiveness of the proposed methods. By using the 

proposed K+VC control scheme, short transient and zero steady-state errors can be achieved 

simultaneously. 

As aforementioned, the classical SPS control in DAB is widely adopted due to it is simple and 

easy to apply. However, the efficiency performance of SPS need to be improved. Thus the multi-

phase-shift control, such as EPS, DPS, and TPS are investigated by many scholars. These three 

controllers have different degrees of freedom. Compared to other phase-shift controllers, TPS has 

the best performance. But its design is most complicated. The DPS control has two degrees of 

freedom and its performance is very close to that of the TPS control in terms of the current stress 

and reactive power reductions [3.46][3.47]. In this work, a DAB power loss model is developed 

and an optimized controller is then proposed to integrate the DPS and K+VC controllers. Thus, 

the proposed control algorithm can improve the efficiency as well as the transient performance of 
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the DAB. 

The section is structured as follows: First, the DAB topology with K-factor control and the 

virtual capacitor control concept is introduced. Then, the comparative analysis and simulations of 

transit response characterization of K-factor virtual capacitor control and PI control is presented. 

The efficiency optimization method based DPS is analyzed and the experimental results are 

presented. Finally, the conclusion is given about the proposed control. 

3.10.2 Proposed K-Factor control with the virtual capacitor for a DAB 

3.10.2.1 Operation principle of DPS control in DAB 

A single module, single-phase DAB converter consists of two H-bridges connected by a 

medium/high frequency transformer. The H-bridge converter on the primary side converts the dc 

voltage into a medium/high frequency ac voltage; the H-bridge converter on the secondary side 

converts the ac voltage back to the dc voltage. There are many ways of controlling the DAB 

converter. The SPS control is the most straightforward and widely adopted control method for the 

DAB. The phase-shift between the two active H-bridges is used to control the amount of power 

flow from one dc voltage source to the other. The control objective for the DAB converter in an 

SST is to regulate the output dc voltage by adjusting the phase-shift between the two active H-

bridges. The topology of a typical DAB converter is depicted in Fig. 3-18. The transformer 

connects the two H-bridges in a DAB converter, and therefore, the DAB current and voltage 

waveforms can have a significant impact to the efficiency of the transformer. 
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Fig. 3-18 DAB Converter with Phase-Shift Control 

When using DPS control, there are two operating conditions of dual-phase-shift due to the 

desired power flow, i.e., 0 ≤ Do < Di ≤1 and 0 ≤ Di ≤ Do≤1[3.46], where Di is the inner phase-shift 

ratio, Do is the outer phase-shift ratio. The same analysis method can be applied to the Do ≤ Di and 

Di < Do operating conditions. In this paper, Di ≤ Do case is discussed as an example. There is phase-

shift of gate driver signal between Leg 1 and Leg 3 and a different phase-shift angle between leg1 

and leg 2, as illustrated in Fig. 3-18. The inductor current and voltage waveforms under DPS 

control is given in Fig. 3-19. It displays the transformer primary voltage vpri, and the secondary 

voltage vsec, and transformer input current iLk waveforms for the single-phase DAB. The voltage 

across the inductance Lk during the different bridge conduction periods determines the shape of 

current waveform. Due to the symmetry of transformer current and voltage waveforms, only the 

expressions for the first half switching cycle are given in (3-32) and (3-33). 
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Fig. 3-19 Transformer Primary and Secondary Voltages, DAB Inductor Current with DPS 

Control 

where t0 = 0, t1 = DiTs/2, t2 = DoTs/2, t3 = (Di + Do)Ts/2, t4 = Ts/2, vin and vout are the input and 

output dc voltage, respectively.  

The output power of the DAB, PDAB, is calculated as shown in (3-34). For any particular power 
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level, switching frequency, input and output voltages, the phase angle and leakage inductance of 

the transformer must be decided so as to achieve the required power transfer. Usually, the input 

voltage range, switching frequency and leakage inductance are fixed by system design. To regulate 

the output voltage, there are two different techniques can be used such as pulse-width or phase-

shift modulation [3.46]. Considering the current stress and efficiency requirement, phase-shift 

modulation is considered in this paper. It is assumed that the input voltage of the DAB has already 

been regulated as a constant value by the front end rectifier, and the output voltage is regulated as 

a fixed value by the DAB controller. 

where,  

n: turns ratio of the transformer  

Ts: Switching period  

L: The primary-referred leakage inductance 

3.10.2.2 Modeling of the DAB 

    For conventional control techniques for dc-dc converters, it is of interest to determine the 

effects of variations in the input voltage, the load current, and the duty cycle upon the output 

voltage. Unfortunately, understanding the converter dynamic behaviour is difficult due to the non-

linear time-varying nature of the switching and phase difference through the PWM process, and 

the conventional averaging technique for dc-dc converters, requiring negligible current ripple are 

not applicable to DAB design as the transformer primary and secondary currents are purely ac 
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quantities. Using time averaging and small signal analysis can overcome these issues. A well-

known converter modelling technique [3.42] is briefly described in this section. From this average 

model, a linear time-invariant small-signal model can be derived by means of linearization around 

a well-defined operating point. 

3.10.2.2.1 Averaging model for DAB 

Considering the symmetry of current waveform in the DAB transformer over one switching 

period, the inductor current is given by: 

Combining (3-32) and (3-35), the inductor current at time t0, t1, t2, t3, and t4 are calculated as 

shown below: 

Due to symmetry of the waveform, the average value of the inductive current iL in a switching 

period is zero at steady state, thus the normal average modelling method for a switching cycle 

cannot be used directly. In this dissertation, the inductor current is derived first, which is given in 

(3-37). Then, (3-36) and (3-37) are used to eliminate the inductor current iL in Eq. (3-33). After 

that, the order of the voltage average model is reduced. The voltage expression in (3-33) is 

rewritten as given in (3-38). 
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According to the average definition of the switching period of the variable, the mean value of 

the switching period of the output voltage vout is derived in (3-39). 

3.10.2.2.2 Small-signal model of DAB with DPS control 

Eq. (3-39) gives a relation between the output voltage, input voltage, inner phase-shift, outer 

phase-shift, and inductor current which is a time invariant nonlinear equation. Therefore, a small-

signal model to calculate the system transfer function is always desirable for closed-loop controller 

design and stability analysis of power electronic converters. 
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According to (3-39), a small perturbation can cause a deviation from its steady-state value. 

Lowercase letters are used to represent large-signal variables, the small-signal states and the 

steady-state quantities are represented by Δ and uppercase letters, respectively. The definitions of 

the state variables are: 

Because the multiplication of control input and state variables are contained in (3-39), with a 

small perturbation, the nonlinear term can be approximated using (3-40) to (3-43). The small-

signal model of the DAB converter could be achieved in (3-44) by substituting (3-40) to (3-43) 

into Eq. (3-39), which is a transfer function given by: 

3.10.2.3 K-factor with virtual capacitor control  

To design the closed-loop control of the DAB, the PID control is widely adopted because it 

can eliminate steady-state errors and is simple to design. However, the DAB converter is a non-

minimum phase system and the PID controller couldn’t guarantee the fast dynamical and low 

overshoot requirements. In this paper, the K-factor approach is developed to ensure control 

stability and meet the required specifications. It has three different types of transfer functions. The 

type of transfer function is decided by the required phase and magnitude margins. To further 

improve the transient performance of output voltage in DAB, a virtual capacitor concept will be 

outoutout vVv   (3-40) 

ininin vVv   (3-41) 

iii DDD   (3-42) 

ooo DDD   (3-43) 

  
soiiout

oioutoioutoioutoutiinois

o

out

vDo
RTDDPPDRsCL

DDnPvDDnPvDDnvvPDvPDPDRT

D

v
G

)21()1(4

224322
22

22









  (3-44) 



101 

 

 

developed in this section. 

3.10.2.3.1 K factor theory 

To design the control algorithm for the DAB, the voltage tracking error, which is the difference 

between the reference output voltage and the sensed output voltage, is utilized. Then, a controller 

is designed to amplify the error signal to the desired phase-shift in the DAB. Thus, the performance 

of a controller is the key to regulate the expected output in DAB. Depending on the required 

amplitude and phase margins, there are three typical types of amplifiers [3.43]: 

(1) Type I: 

The transfer function of Type I K-factor controller is given by (3-45). The Bode plot is shown 

in Fig. 3-20. The gain is rolled off at -20 dB/dec due to the signal pole at origin. 

 

Fig. 3-20 Bode plot of Type I K-factor controller 

(2) Type II: 

s

k
sG c

KI )(  (3-45) 
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The transfer function of Type II K-factor controller is given as (3-46). The Bode plot is shown 

in Fig. 3-21. Different from Type I, it has one more pole at frequency ωp and one zero at frequency 

ωz. Thus, the Type II can boost phase angle up to 90 degrees. 

 

Fig. 3-21 Bode Plot of K-factor Type II Control 

(3) Type III: 

The transfer function of Type III K-factor controller is given by (3-47). The Bode plot is shown 

in Fig. 3-22. Different with Type II, it has one zero, two poles at frequency ωp and two zeros at 

frequency ωz. Thus, the Type III can boost phase angle more than 90 degrees. 
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Fig. 3-22 Bode Plot of K-factor Type III Control 

(4) The factor K calculation 

From the transfer functions as shown in (3-45), (3-46), and (3-47), the desired K-factor can be 

derived as shown in (3-48), (3-49), and (3-50). K-factor for Type I is given by: 

For Type II amplifier: 

For Type III amplifier: 

where, Phaseboost is the required phase boost in the controller: 
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where Pd is the desired phase margins, Pc is the phase-shift of system at the crossover frequency, 

The frequency at the pole and zero can be calculated as given in (3-52) and (3-53), respectively. 

where, ωc is the crossover frequency of the system. 

3.10.2.3.2 Virtual capacitor control 

The output dc-link voltage stability improvement depends on the following design 

requirements: minimum voltage deviation and its response time for a given load power 

disturbance. To reduce the equivalent series resistance (ESR) of the dc-bus capacitor, there are 

several capacitors in parallel forming the dc bus. Although the paralleled capacitors can reduce the 

dc-bus voltage ripple and supply the transient power, the shortcomings are increased cost and size. 

The proposed stabilization approach is to improve the system stability by virtually increasing the 

dc-link capacitance. To enhance the stability or the transient response, a virtual capacitor C_v was 

introduced in Fig. 3-23. A virtual capacitor is used to replace the actual capacitor. The function of 

virtual capacitor is realized in the controller design. It also allows adjusting the system damping 

ratio and so, controlling the system response during the transient mode with the proposed K-factor 

control. The main advantage of the virtual capacitor is the capacitance can be easily adjusted based 

on the system response requirement. Also, these are no cost and voltage limitations for the virtual 

capacitor 
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Fig. 3-23 DAB System with Virtual Capacitor 

The small signal model of DAB with virtual capacitor by using (3-44) could be derived as 

shown in (3-54). 

Therefore, the closed-loop transfer function of K-factor virtual capacitor control can be written 

as follows, with Type I, II, and III factor controllers, separately. 
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where, AII= )( RCRC vout  , BII=  soiivoutp RTDDPPDLRCRC )214()( 22  ,  

CII= RTDDPPDL oiip )214( 22  ,  

AIII= )( RCRC vout  , BIII=  soiivoutp RTDDPPDLRCRC )214()(2 22  ,  

CIII=  soiivoutpp RTDDPPDLRCRC )214(2)( 22  ,  

DIII= RTDDPPDL oiip )214( 222  . 

 

Fig. 3-24 Control Diagram of Power Loss Minimization 

The control scheme of the DAB is given in Fig. 3-24. The reference value of inner phase-shift 

Di and outer phase-shift Do is calculated by Eq. (3-30). In order to maintain the output bus voltage 

during input voltage or load power transient, a K+VC control is utilized to modify the outer phase-

shift Do. The calculated Do as feed forward phase-shift and plus with the output of K+VC controller 

to improve the transient performance. In the steady state, the output Do,total should be equal to Do 

to realize the goal of the smallest power loss. 

3.10.3 Comparative analysis of transit response characterization 

3.10.3.1 System parameters 

The circuit parameters for simulation are given in Table 3.4. 
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Table 3.4 Parameters for Simulation 

Variables               Value Variables             Value 

Rated Power 1 kVA             Cout, Cv 50 μF, 800 μF 

Cin 180 μF fs 50 kHz 

Input DC voltage 200 V Lk 150 μH   

3.10.3.2 K-factor control –system stability 

The closed-loop SPS control system needs a high controller bandwidth which is desirable to 

maximize performance. Controller bandwidth is defined as the frequency at which the forward 

path transfer function has unity gain (ωc). The transient performance achieved by the controller (in 

terms of rise time, settling time, overshoot, etc.) is governed by the available phase margin (PM) 

at this crossover frequency. In general, large phase margins give less oscillatory response but 

slower rise times, while smaller phase margins give faster rise times at the cost of a more 

oscillatory response. The controller design process therefore aims to maximize controller 

bandwidth while still achieving a phase margin that provides good performance.  

By using PI control alone, the PI controller gives the forward path a pole at the origin, this will 

further subtract another 90° phase and would go below -180° if no phase boost is applied. 

Therefore, proper design of the K-factor controller and K+VC controller can provide the desired 

phase boost to get the targeted phase margin at the crossover frequency. And its Bode plot 

represents its characteristics below in Fig. 3-25. The comparison of Bode plots of DAB Gp(s) and 

closed-loop transfer function Go(s), which includes the K-factor controller transfer function Gc(s), 

along with Gp(s), are shown in Fig. 3-25 (a). The closed-loop transfer function Go(s) has a phase 

margin (PM) of 60° at ωc = 31416 rad/s. The gain margin (GM) is 0 dB at 31416 rad/s. From the 

values of PM and GM, the closed-loop system is stable. As shown in Fig. 3-25 (b), the K-factor 
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virtual capacitor controller generates a maximum phase margin (120°) and highest gain crossover 

frequency (31416 rad/s) in the frequency domain analysis. A large phase margin leads to a stable 

closed-loop system. Increasing the phase margin to obtaining real poles, with small overshoot and 

ringing. 

  

(a) The open-loop (Black solid) and closed-loop (Blue star) K+VC 
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(b) The bode-plot of three closed-loop controllers 

Fig. 3-25 Bode plot of DAB with Different Controllers 

3.10.3.3 Transient response of K+VC control 

As discussed in the previous section, although the transient performance can be achieved by 

the K-factor controller with enough phase margin (PM) at the crossover frequency, industrial 

standards often impose quality requirements on current and voltage waveforms, and particularly 

on their overshoot and settling time during a transition. The system-damping ratio should be 

adjusted to satisfy these requirements. Nevertheless, a high damping ratio requires high resistor 

and capacitor values and this is in contradiction with other requirements on weight and volume in 

transportation systems. As the proposed method in this paper permits to change virtually the dc-

link capacitance, it can be used to obtain a satisfactory damping ratio for the system. Fig. 3-26 

shows that small voltage sag and settling time could be achieved by adjusting Cv. From this point 

of view, the virtual capacitor Cv can be considered as the design parameter allowing adjusting the 

damping factor of the system. 
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(a) CV=0.15 mF 

 

(b) CV=0.8 mF 

Fig. 3-26 Step-up Load, Output Voltage Transit with Virtual Capacitor 

3.10.3.4 Simulation results and discussion 

Simulations based on the parameters presented in Table 3.4 have been carried out to compare 

the performance of PI control, K-factor control and K-factor plus virtual capacitor control. The 
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closed-loop performance of the converter becomes satisfactory. The dynamic performances in 

terms of step and frequency responses of the DAB converter with the three controllers have been 

reported in Fig. 3-27 and Fig. 3-28. It is clear that the K-factor plus virtual capacitor controller 

provides the best dynamic response than the other controllers. The time response with K-factor 

plus virtual capacitor controllers shows very fast response with very small overshoot and zero 

steady-state error. 

 
(a) PI Controller 

 
(b) K-factor Controller 
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(c) K+VC 

Fig. 3-27 Step-down Loads Response for Three Controllers 

 
(a) PI Controller 
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(b) K-factor  Controller 

 

(c) K+VC 

Fig. 3-28 Step-up Loads Response for Three Controllers 

It is to be mentioned here that the K-factor approach is a standard method for design of different 

type controllers and in the present case it worked well for the closed-loop boost converter. 

However, keeping in view the demand for very fast response of power supplies, the controller 

performance are further improved by adding the virtual capacitor in parallel with dc-link capacitors. 

From the simulation results, it is clear that the performance of the virtual capacitor based K-factor 

controller is better than the PI and single K-factor controllers for the proposed DAB converter. 
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3.10.4 Hardware experimental validation of the proposed control 

In order to further verify the preceding analysis and test the validity of the proposed controller, 

a 0.2 kV 0.6 kW DAB prototype has been designed and built. The current/voltage controller is 

implemented in a TMS320F28335 DSP. Wolfspeed SiC MOSFET C2M0080120D are the 

semiconductor switches of choice. The oscilloscope is a Techtronix TPS2024, which is used to 

reduce the noise/offset of the current sensor, and the high-precision current probe PEM CWT6 is 

the current sensor.  Tektronix THDP0200 probes are chosen as the high voltage probes and the 

YOKOGAWA WT1600 power meter is used for the efficiency measurement and analysis. The 

prototype main parameters are same as Table 3.4. A picture of the overall scaled-down laboratory 

prototype is depicted in Fig. 3-29. 

 

Fig. 3-29 The Scaled-down Prototype of DAB 

To verify the developed small signal based average model of DAB, the output power 

comparison between the experimental results and the simulation results from the model is shown 
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in Fig. 3-30. The circuit parameters are same as Table 3.4. Due to loss in the DAB converter is not 

considered in the model, the simulation results from the average model is slightly higher than the 

experimental results. However, with different power references, the simulation results of small-

signal model based average model fits with the experimental result very well. 

 
Fig. 3-30 Comparison betweed the output power in closed-loop avergae model and experimental 

results 

Fig. 3-31 shows the dynamic responses of the output voltage and load current in step-down 

and step-up load modes. Three controllers are applied to the DAB converter: (a) classical PI 

controller, (b) Single K-factor controller and (c) K+VC. In the step-down load mode, the voltage 

overshoot is reduced from 8 V to 6.4 V with the virtual capacitor based K-factor controller. The 

settling time is reduced from 60 ms to 32 ms. In the step-up load mode, the volatge sag is reduced 

some but the settling time is reduced from 150 ms to 15 ms. It validates that proposed virtual-

capacitor based K-factor controller exhibits the fastest response with little overshoot; the worst 

result in terms of sluggishness and overshoot is noted in the case of the PI classical controller. As 

expected, there is significant overshoot in the output voltage response due to step changes in the 
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load in the case of single K-factor and PI controllers. 

 

(a) PI Control 

 

(b) Single K-factor Control 

 

(c) Virtual Capacitor Based K-factor Control 

Fig. 3-31 Transient Reponse with Step Load Results With PI,  K-factor, and K+VC 
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3.10.5 Conclusion of virtual capacitor based K-factor control 

A new approach to improve the robustness of the output voltage of the DAB against various 

disturbances has been presented, associated theory analyzed and validated by simulations and 

experimental results. The proposed approach was the K+VC controller based on the K-factor 

method and a new parallel virtual capacitance concept for enhancing stability and performance. 

The virtual capacitance can be designed as large as possible without requiring any space and cost. 

The virtual capacitance can be designed to respond selectively against certain signals. It could be 

concluded that the K-factor virtual capacitor controller exhibits the best closed-loop performance, 

highest system bandwidth and largest margin of stability. 

3.11 Other Testing Results 

The hardware of the system has been built as shown in Fig. 3-32, which is based on the 

aforementioned ac/dc and dc/dc stages design. The cascaded totem-pole converter and dual-active 

bridge converter are marked in the figure. The control algorithm is programmed in the TI DSP. 

The power supply for the control card, sensing circuit, gate driver and relay are generated from the 

input ac voltage. The SiC MOSFET is Wolfspeed C2M0080120D. 
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Fig. 3-32 The Scaled Down Prototype of Overall System 

The circuit parameters are summarized in Table 3.5. 

Table 3.5 Circuit Parameters for the Scaled Down Prototype 

Grid voltage  
Grid voltage 

frequency 

Switching 

frequency of 

cascaded totem-

pole converter 

Switching 

frequency of dual-

active bridge 

PFC output 

voltage reference 

240 VAC 60 Hz 50 kHz 50 kHz 200 

PFC inductor  
Input 

capacitor 
Output capacitor Switch dead time 

DC output 

voltage reference 

5 mH 470 uF 470 uF 200 ns 50 
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The testing results of grid voltage and current from the cascaded totem-pole converter are 

shown in Fig. 3-33. The THD of grid voltage is 1.2%, and the current THD is 3.8%. The power 

factor is 0.98. All the testing results show the efficacy of the proposed model predictive control.  

 

Fig. 3-33 Yellow: Grid voltage vgrid= 240 VAC, Blue: Grid current igrid= 2.1 A, Purple: DAB 

primary side dc voltage vin=200 VDC 

 

Fig. 3-34 Testing results of DAB with SPS control 
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Fig. 3-35 Testing results of DAB with Loss Model Based-DPS control 

The dc/dc stage with the dual-active bridge and the testing results are shown in Fig. 3-34 and 

Fig. 3-35. vpri is the primary side voltage of transformer, vsec is the primary side voltage of 

transformer, iLk is the leakage inductor current, vout is the secondary side dc voltage of the DAB. 

The peak current of the leakage inductor with using the SPS control is 6.5 A. As shown in Fig. 

3-35, the dual-phase-shift control is applied in the DAB stage to reduce the current stress to 5 A 

for the switches. Therefore, the power loss can be reduced as well.  

In this chapter, the MPC control strategy is designed to improve the transient performance and 

realize multi-goal control. The loss model based DPS control is designed to improve the efficiency 

performance of DAB, then the virtual capacitor based K-factor is developed to achieve better 

transient performance for the DAB with step up/down loads. The scaled down prototype is 

designed and built. The simulation and experimental results are given to verify the proposed 

topology and aforementioned control algorithms. 
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CHAPTER 4 

DISTRIBUTED ENERGY INTEGRATION AND HYBRID ENERGY MANAGEMENT 

STRATEGY FOR 400 V DATA CENTER 

4.1  Introduction and Motivation 

Integrating renewable energy sources like solar power into the distribution system of a data 

center is of interest to reduce electric energy cost and carbon emissions [4.1][4.2].  Compared with 

ac distribution, the efficiency of dc distribution could be higher leading to significant cost reduction 

of the required cooling system. Furthermore, with increasing the power distribution voltage to 400 

V dc, the conduction loss can be reduced and the less costly cables can be utilized. Last but not 

least, the main merit of the dc distribution architecture is that it promotes integration with distributed 

energy sources such as photovoltaics (PV), wind turbines, fuel cells, and etc. The tradeoff is that 

the current commercial technologies for dc equipment have higher costs than comparable ac 

equipment. 

Energy storage units such as batteries play an important role in UPS systems. They supply 

uninterrupted power to the important loads. Power transients, due to solar irradiance transients or 

load changes, need to be smoothed by energy storage. Lead-acid battery packs are widely used in 

data centers due to their low costs. However, batteries should not be rapidly charged or discharged 

to avoid reducing their life expectancy. To overcome this drawback, ultracapacitor packs are 

considered in this work to compensate the high-frequency power transients in order to improve the 
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battery lifetime. The integration of solar power and energy storage units into the distribution 

system of a 400 V DC-powered data center was evaluated in the following sections. 

4.2 Description of Green Data Center 

In this chapter, integrating the PV power, a battery pack, and an ultracapacitor pack into a 400 

V DC-powered data center is evaluated. Due to solar irradiance transients or load changes, the 

power transients are smoothed by proper control of the battery and ultracapacitor packs with the 

former providing compensation of medium-frequency power transients and the latter 

compensating for high-frequency power transients. This strategy should extend the life expectancy 

of the battery pack. Four typical weather conditions and related controllers are investigated; 

namely, cloudy, rainy, overcast, and clear days. 

Fig. 4-1 illustrates the evaluated configuration with renewable energy generation and energy 

storage systems. There are two voltage buses in the system. One is the kV ac bus (i.e., the ac utility 

feeder) and the other one is the 400 V dc bus. Grid and (remote) renewable energy through a 

transmission system connect to the kV ac bus. Since diesel engines may have a high failure rate, 

the diesel generator and grid supply are connected through two separate paths of cabling to enhance 

the supply reliability. A high-power centralized active-frond-end (AFE) rectifier is utilized at the 

grid side to feed the 400 V dc bus. The PV power is interfaced to the 400 V dc bus through a boost 

converter that is equipped with a maximum power point tracking (MPPT) algorithm. The battery 

and ultracapacitor packs are interfaced using the buck/boost converters connected to the same 400 

V dc bus. The critical fans, lighting and room air conditioners are powered by an inverter. The 

existing 48 V telecom power supply is recognized as a more economical and practical option. To 

minimize the revision of the existing power supply in the data center, the 48 V dc bus is kept in 

the rack. The battery as back-up energy is on the 48 V dc bus as well [4.3]-[4.6]. 
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Fig. 4-1 Generic Configuration of A 400 V DC-Powered Data Center Integrated With Solar 

Power and Energy Storage Units 

In this chapter, the general system configuration of a 400 V DC-powered green data center is 

described firstly. Secondly, the control strategies of the PV, ultracapacitor packs and grid-side 

converters are presented. Thirdly, the simulation results of the designed controllers are illustrated, 

and conclusions are given in the last section. 

4.3 PV Topology and MPPT Control 

Maximum power point tracking systems are widely used to maximize output power of 

photovoltaic arrays. A crucial issue of these systems is an algorithm of maximum power point 
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seeking. The well-known perturb and observe technique is an optimal solution in terms of the ratio 

of cost and efficiency. However, this algorithm has some disadvantages such as oscillation around 

a maximum power point and a decrease in efficiency occurring under low levels of solar irradiance. 

In this section, an improved MPPT method has been used. It is based on combination of the perturb-

observe variable duty cycle step-size algorithm and constant voltage algorithm. According to this 

technique, a simple constant voltage method is implemented in case of low levels of solar 

irradiation, otherwise the system operates under the variable duty cycle step-size perturb and 

observe algorithm. The simulation results shown here prove the superior performance of variable 

duty cycle step-size of P&O over constant duty cycle step-size P&O. 

The block diagram for the PV farm is shown in Fig. 4-2. The module 1Soltech 1STH-215-P is 

selected for each PV array that has 40 parallel strings with 10 series-connected modules per string. 

The dc/dc converter is chosen as a boost converter to realize the maximum power point tracking 

(MPPT) control. The MPPT control algorithm for the PV is improved by using constant voltage 

tracking (CVT) to track the maximum power-point of photovoltaic output. Then, it is transferred 

to a variable duty cycle step-size perturbation and observation (P&O) method to quickly track the 

maximum power. This method can quickly and accurately track the maximum power. 
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Fig. 4-2 Circuit Diagram of the Considered PV Farm 

Fig. 4-3 illustrates the circuit block diagram for PV farm. MPPT of the PV array is regulated by 

controlling the duty cycle of switches. Two traditional and popular MPPT control algorithms are 

the CVT and P&O methods. The CVT method is easy to process, but if the temperature changes 

rapidly this method cannot track the maximum power point very well. Another method, P&O, is 

widely used in engineering applications since it simplifies control structure and requires fewer 

parameter measurements [4.7]. The disadvantage of this strategy is that oscillations easily occur 

when the system reaches its maximum power point due to a constant duty cycle step-size. This 

dissertation combines these two MPPT control algorithms to realize a more suitable MPPT 

performance. The detailed MPPT control diagram is displayed in Fig. 4-3. First, the CVT method 

controls the PV to produce a stable power output, with voltage reference (Uref) set at 0.85Uoc. The 

duty cycle step of switch in CVT control is △D. Then, the controller switches to the P&O method, 

the output voltage and current of PV panels are sensed. In order to improve the accuracy and reduce 

the power loss, the variable duty cycle △D1 and △D2 is adopted. 
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Fig. 4-3 Flowchart for the Calculation of the Duty Cycle of the Boost Converter 

Generally,  a large perturbation requires a longer settling time after the perturbation is triggered 

in a PV system with the MPPT control. A small perturbation requires a shorter settling time. 

Considering a 10% steady-state error, a perturbation period higher than the settling time of the 

system was chosen. The system transient response occurs with high step-sizes in the duty cycle thus  

increases the amplitude of the steady-state oscillation. The step-size needs to be calculated based 

on the energy utilization efficiency optimization, the optimum step-size is the one at which the 

algorithm will not be confused when solar irradiance changes. The controller algorithm adapts the 

MPPT perturbation period to the duty cycle perturbation step-size. The MPPT perturbation period 

is smaller when the duty cycle perturbation step-size is smaller and vice versa. 
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The simulation parameters of the PV panels are given in Table 4.1. Fig. 4-4 shows the comparison 

of both the constant duty cycle step-size P&O and the variable duty cycle step-size P&O with CVT 

control. From Fig. 4-4 (b), notice that when using the variable duty cycle step-size, P&O has a much 

more stable power tracking capability; there is also little oscillation at the beginning. 

Table 4.1 The PV Panels Simulation Parameters 

Module 1STH-215-P Maximum power (W) 213.15 

Open circuit voltage (V) 36.3 

Voltage at maximum power 

point Vmp (V) 

29 

Current at maximum power 

point Imp (V) 

7.35 

Temperature coefficient of Voc 

(%/deg.C) 

-0.36099 

Cells per module (Ncell) 60 Short circuit current Isc (A) 7.84 

Temperature coefficient of Isc 

(%/deg.C) 

0.102 Light-generated current IL (A) 7.865 

Diode saturation current Io (A) 2.9259×10-10 Diode ideality factor 0.98117 

Shunt resistance Rsh (Ω) 313.4 Series resistance Rs (Ω) 0.394 
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  (a) Constant Duty Cycle Step-Size P&O 

 
(b) Variable Duty Cycle Step-Size of P&O 

Fig. 4-4 PV Simulation Results with Constant and Variable Duty Cycle Step-Size P&O MPPT 

Methods  

4.4 PV Power Spectrum Analysis 

To aid in the design of the system controller, a typical set of PV data was collected over a period 

of 24 hours from a PV farm, then imported into the FFT simulation block in MATLAB/SimulinkTM, 

and an FFT analysis was performed to identify the different frequency ranges of the PV power data. 

The PV power spectrum analysis results are shown in Fig. 4-5. The high-frequency power should 

be absorbed by the ultracapacitor pack. The power rate of the ultracapacitor pack is designed based 

on the peak value of the PV farm power and load profile. The medium-frequency power transients 
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are only absorbed by the battery pack to optimize its lifetime. Then, the power from ac grid side 

can be very smooth, and thus, representing low-voltage disturbances for the 400 V dc bus. 

 

Fig. 4-5 Frequency Spectrum Analysis of PV Power Over A 24-Hour Period 

4.5 Hybrid Energy Storage 

High quality and reliable power is the standard for data centers. Energy storage devices such 

as batteries, flywheel energy storage, air compressor or fuel cells are used to smooth the power 

output from the sources. In a DC-powered data centers, due to the energy storage device batteries 

have relatively lower cost and high energy density, batteries are widely used for voltage regulation 

and bulk energy storage [4.8]-[4.10]. However, batteries have limited lifetime and shouldn’t be 

deeply charged or discharged. Recently, ultracapacitor technology attracts much attention due to 

its much higher power density and fast response capability [4.11]-[4.13]. It also can be deeply 

charged and discharged without harming its lifetime. The disadvantage of ultracapacitor is the low 

energy density.  Considering the tradeoff between power density and energy density, a hybrid 

energy storage becomes an optimal solution. In this section, both batteries and ultracapacitors are 

Grid Battery Ultracapacitor
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utilized to maintain the dc bus voltage and provide the reliable and high quality power to data 

center. 

4.5.1 Controller design of the buck/boost converter for the battery and ultracapacitor 

packs 

 

Fig. 4-6 Circuit Diagram of the Energy Storage Packs 

As shown in Fig. 4-6, the battery and ultracapacitor packs are connected through bidirectional 

dc/dc converters feeding a common 400 V dc bus.  

The control block diagram of the battery and ultracapacitor packs are illustrated in Fig. 4-7 and 

Fig. 4-8, respectively. There are two control loops for the bidirectional dc/dc converter. The outer 

loop is a power loop whose objective is to track the reference power. The inner loop performs 

current control and a limitation should be included to prevent any overcurrent in the battery or 

ultracapacitor packs. 
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Fig. 4-7 Control Diagram of the Battery Pack 

 

Fig. 4-8 Control Diagram of the Ultracapacitor Pack 

4.5.2 Power reference calculation 

The power relationship of solar power, grid, battery, ultracapacitor and data center load are 

shwon below: 

The power reference is designed as shown in  

Fig. 4-9. The power references for battery and ultracapacitor packs are given by Eqs. (4-3) and 

(4-4), respectively. The battery pack compensates for the power transients in the frequency range 

from fc1 to fc2 (fc1 < fc2). Similarly, the ultracapacitor pack compensates for transients whose 

frequencies are higher than fc2. Lastly, the grid supplies power at frequencies smaller than fc1. 
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Fig. 4-9 Power Reference Generation for Battery and Ultracapacitor 

where τfcn is the time constant at the cutoff frequency fcn which is defined in Fig. 4-5 and determined 

by the frequency spectrum of the PV power.  

4.6 Grid-Side Converter Design 

The grid-connected converter operates as a voltage source converter to regulate the 400 V dc 

bus. The topology can be a conventional three-phase rectifier (AFE) or a multilevel converter 

[4.14]-[4.16]. The aforementioned multilevel solid-state transformer converter structure is utilized 

in this paper. Its block diagram is given in Fig. 4-10. Each PFC topology is connected in series in 

order to reduce the voltage stresses. A dual-active bridge is feeding a common 400 V dc bus to 

increase the current carry capability. A high-frequency transformer is used to reduce the system 

size. 
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Fig. 4-10 Block Diagram of the Grid-Side Converter 

The control algorithm for the grid side converter is shown in Fig. 4-11. It applies the 

conventional phase-shift PWM control. The outer loop is a dc bus voltage feedback control. The 

dc bus voltage is measured as feedback and compared with the reference voltage Ubus_ref. The 

controller Hv is a typical PI control. The output of Hv is as the reference current to the inner loop 

which is the current loop to achieve the fast response capability. The feedback signals are the id 

and iq which are transferred from the currents ia, ib and ic to grid side. The controller Hi is used to 

generate the voltage reference for the gate driver circuit. 

 

Fig. 4-11 The Control Algorithm of the Grid-side Converter 
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The phase angle is sensed from grid voltage and the control structure of phase-locked loop 

(PLL) is shown in Fig. 4-12. The grid voltages are transformed to αβ frame and dq frame , then 

through a PI control, ccompared with the reference electric speed which is 2πfgrid. The integration 

of the PI output is the electric speed. 

 

Fig. 4-12 Control Strategy of PLL 

4.7 Case Study and Simulation Verification 

4.7.1 Data center integrated with solar power and hybrid energy storage 

To simulate the overall system, the solar power input is simulated in different weather 

conditions. There are four typical weather conditions: cloudy day, rainy day, overcast day, and 

clear day. The load profile of a data center is built for Matlab/Simulink™ simulations. Solar 

irradiation simulations for four typical weather conditions are given in Fig. 4-13-Fig. 4-16 [4.17]. 

Considering the power fluctuation, the clear day is the lowest and the cloudy day is the highest. 

 

Fig. 4-13 Solar Irradiance on a Cloudy Day 
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Fig. 4-14 Solar Irradiance on a Rainy Day 

 

Fig. 4-15 Solar Irradiance on an Overcast Day 

 

Fig. 4-16 Solar Irradiance on a Clear Day 
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The PV output power in a cloudy day always has the highest fluctuations, thus itis considered 

in the system level simulation. The load profile of a typical data center is shown in Fig. 4-17. 

 

Fig. 4-17 Rack Power and PV Power on a Cloudy Day Over 24 Hours 

The simulation results of the power flows from the ac grid and battery pack over 24 hours are 

given in Fig. 4-18 and Fig. 4-19. Fig. 4-18 is no ultracapacitor mode and shows all the high- and 

medium-frequency power are absorbed by the battery. Fig. 4-19 shows the power from grid and 

batteries in ultracapacitor pack connected mode. 

 

Fig. 4-18 Power Flows of the Grid and Battery without Ultracapacitor Pack 
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Fig. 4-19 Power Flows of the Grid and Battery with Ultracapacitor Pack 

The simulation results of the 400 V dc bus stability and ultracapacitor power are illustrated in 

Fig. 4-20, which is used to verify the effective of controller for ultracapactiors and batteries. It 

shows that all the high- and medium- frequency powers can be smoothed by the battery pack 

without the ultracapacitor. However, this leads to the frequent charge and discharge operations in 

the battery pack which can reduce the lifetime of the battery. The voltage spike with a high-

frequency component in the dc bus is increased to 22 V. This will easily activate the low or over 

voltage protection operations, and reduce the system reliability. As shown in Fig. 4-21, the high- 

and medium-frequency power transients absorbed by the ultracapacitor and battery packs with the 

application of the ultracapacitor on the 400 V dc bus. The 400 V dc bus is stabilized with a 

maximum voltage transient of 12 V which is only 3% of the 400 V reference dc voltage.  
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Fig. 4-20 The 400-V DC Bus Voltage without Ultracapacitor Compensation 

 

Fig. 4-21 The 400-V DC Bus Voltage and Ultracapacitor Powers with Ultracapacitor 

Compensation 

4.7.2 Different percentages of solar power in data center 

The simulation of different percentages of distributed solar power in data centers are performed 

to analyze the system dynamic response. Three power levels of data center are simulated in 

Vbus,dc

Pultracpas
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Matlab/SimulinkTM: 0.5 MW, 1.5 MW, and 3 MW. The maximum voltage ripple on the dc bus is 

monitored during the solar fluctuation period. The data are collected and shown in the tables. 

Table 4.2 DC Bus Ripple of 0.5 MW Data Center with Variable Solar Power 

Data center power 

rating 0.5 MW 

Solar power  [MW] 
Maximum voltage ripple on 400 

V dc bus [V] 

0.069 
3 

0.138 
5.8 

0.206 
8.65 

0.276 
11.5 

0.345 
14.3 

0.415 
17.1 

0.49 
20 

 Table 4.3 DC Bus Ripple of 1.5 MW Data Center with Variable Solar Power 

Data center power 

rating 1.5 MW 

Solar power  [MW] 

Maximum voltage ripple on 400 

V dc bus [V] 

0.275 6.8 

0.345 8.4 

0.415 9.8 

0.485 11 

0.555 12.5 

0.708 15.5 

0.85 18 
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 Table 4.4 DC Bus Ripple of 3 MW Data Center with Variable Solar Power 

Data center power 

rating 3 MW 

Solar power  [MW] 
Maximum voltage ripple on 400 

V dc bus [V] 

0.55 
6 

0.76 
8.1 

0.98 
10.1 

1.285 
12 

1.47 
14.2 

1.61 
15 

1.835 
18 

 

Considering 3% voltage ripple, in 0.5 MW data center, 0.25 MW of solar power (50% of data 

center power) is acceptable for dc bus stability. In the 1.5 MW and 3 MW data center, the 

acceptable solar power flows are about 35% and 42% of data center power rating, respectively. 

The tradeoff is the cost of the dc bus capacitor and battery. Better dc bus voltage transient 

performance could be achieved with the more energy storage devices. 
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Fig. 4-22 DC Bus Voltage Performance of 0.5 MW, 1.5 MW, and 3 MW Data Center with Solar 

Power 

4.8 Conclusion 

The integration of solar power, batteries and ultracapacitors for a 400 V DC-powered data 

center is investigated in this chapter. Four typical weather conditions are simulated for solar power 

generation. The availability of ultracapacitors which have very high power densities and 

charge/discharge cycling capability characteristics are investigated to smooth the output power 

intermittencies from solar panels. Battery and ultracapacitor packs are used to compensate the 

medium- and high-frequency power transients, respectively. This combination should maintain the 

desired lifetime of the battery pack, while reducing any transients affecting at the ac grid side. It 

can improve the dc bus stability with the PV power and/or load transients. Simulation results 

verified that the designed 400 V DC-powered data center system and its optimized control strategy 
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performed as predicted. The stability performance of data center with different solar power flows 

were also investigated. 
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CHAPTER 5 

SYSTEM LEVEL STABILITY ANALYSIS FOR 400 V DATA CENTER 

5.1 Stability Issue in a Data Center 

As mentioned previously, the cost of power supply downtime in data center is very high. 

Reliability is the top priority in data center application. In the power distribution of a data center, 

since there are many dc/dc converters connected dc bus to a load, it is important to control 

converters to cooperate with each other to increase the system stability. A model with circuit 

parameters, number of dc/dc converters and server loads will be investigated to characterize the 

dynamic and steady-state behaviors of the power supply system in a data center. The theory behind 

the unstable DC-powered system is that there is a negative input impedance of the power supplies. 

In other words, if the converter’s loop has the right-half-plane poles, the converter will be unstable. 

The system poles are determined by circuit parameters, controller parameters and load dynamic 

changes.  

5.2 Mathematical Model: Large Signal Modeling of Large-Scale Data Center 

To analyze the necessary stable condition, a large signal model of a 400 V DC-powered data 

center is built as shown in Fig. 5-1 [5.1]. The power converters for the grid, battery, and 

ultracapacitor are simplified as voltage source converters. vdc1 is the output voltage from the power 

converter of grid side and paralleled with a capacitor Cs1. Similarly, vdc2 presents the output voltage 

of PV converter. vdc3 and vdc4 are the voltage of battery and ultracapacitor, respectively. The power 

demand from the different racks are modelled as current sources. The input voltage to the racks is 
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vi, i=1, 2… n. The bus bar for the connection of each power source is relatively short, thus the 

impedance is neglected. However, the bus bar for the high power racks are long and large which 

is modeled as series RL branch presents.  

 

Fig. 5-1 Large Signal Model of 400 V DC-Powered Data Center 

By utilizing KCL and KVL, the differential equations that describe the dynamics of the 400 V 

DC-powered data center are shown in Eqs. (5-1) to (5-5). 

To investigate the stability of overall system, linearize the Eqs. (5-1) to (5-5) and eigenvalues 

of the system are calculated in MATLABTM. The criterion of stability is introduced before 

analyzing the stability in the next section. 
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5.3 Stability Criterion Introduction 

The system transfer function poles or the eigenvalues of system matrix defines the stability of 

the system [5.2]-[5.6]. Different locations of the eigenvalues leads to different homogeneous 

responses. Usually, there are six locations of eigenvalues.  

Case (a): A complex conjugate pair in the left-half plane. The response component is Ce-

atsin(ωt+ψ), a>0. It is a decaying sinusoid signal and the decay speed is decided by a.  

Case (b): When the response component is Ceatsin(ωt+ψ), a>0. It results the exponentially 

increasing signal, thus the system is unstable. In this case, the poles locate the right-half plane. 

Case (c): The eigenvalue locates on the left side real axis. The response component is –C and 

the system is stable. 

Case (d): Opposite of case (c), the response component is C which is in the right side real axis 

and leads to unstable system. 

Case (e): The eigenvalues located on the imaginary axis and the response component is ±jω. 

The system can be represented as a sinusoid signal with constant amplitude. 

Case (f): The eigenvalues locate at the origin is with a constant amplitude component. 

The specification of the system pole location on the pole-zero plot is illustrated in Fig. 5-2 

[5.6]. A stable system is that all the eigenvalues should be on the left-half plane. 
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Fig. 5-2 The Specification of Pole Location [5.6] 

For example, a pole on the right-half plane is corresponding to an exponentially increasing in 

voltage/current, this results in the system becoming unstable. Even from a small disturbance, it 

will lead to large current spike in capacitor (C*dv/dt) or large voltage spike in the inductor (L*di/dt), 

then the system will be unstable. The simulation results of eigenvalue and the related voltage 

response is shown in Fig. 5-3. When eigenvalues are very closed to the right-half plane, the dc bus 

voltage is not stable during the step-down load transient. 

 

Fig. 5-3 System Stability: Eigenvalue and Voltage Response 
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5.4 Simulation Results and Stability Analysis 

To evaluate the sensitivity of the cable impedance and the dc bus capacitance in the controller, 

a simulation is performed in MATLAB/SimulinkTM. To simplify the simulation, two racks are 

considered as server loads. The simulation parameters are given in the Table 5.1. The bus 

impedance is estimated by the cable length and resistance/inductance per unit length. 

 Table 5.1 Simulation Parameters 

Name Variable Value 

dc bus voltage 
Vdci, i=1,2,3,4 

v1,v2 
400 V 

Power source impedance 

Resistance Rsi, 

i=1,2,3,4 
2.5 mΩ 

Inductance Lsi, 

i=1,2,3,4 
80 μF 

Distribution bus impedance 

Resistance Rbi, 

i=1,2 
15 mΩ 

Inductance Lbi, 

i=1,2 
100 μF 

dc bus to rack cable impedance 

Resistance Ri, 

i=1,2 
10 mΩ 

Inductance Li, 

i=1,2 
60 μF 

Rack power rating 
Pi, 

i=1,2 
300 kW 

 

Fig. 5-4 (a) and (b) shows that the system will change from the stable region to the unstable 

region with the increased power requirement of rack power. The color curve is the boundary 

between stable region and unstable region. If the cable inductance decreases or cable resistance 

increases, the area of stable region will become larger. The tradeoff is the higher resistance in the 

cable, the more power loss in the distribution bus. Fig. 5-5 depicts that the higher dc bus 

capacitance, the larger stable region. If dc bus capacitance decreases too much, the system will be 

unstable which is shown in Fig. 5-5. 
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(a) DC Bus Cable Inductance Increasing: 50 μH (Orange), 100 μH (Blue), 150 μH (Red) 

 

(b) DC Bus Cable Resistance Increasing: 10 mΩ (Orange), 15 mΩ (Blue), 20 mΩ (Red) 

Fig. 5-4 Stable Boundary of Different dc Bus Cable Impedance 
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Fig. 5-5 Stable Boundary of DC Bus Capacitor. 200μF: 0.2 ms (Green), 0.15 ms (Orange), 0.1 

ms (Blue), 0.05 ms (Red). 2000μF: 0.2 ms (Green), 0.15 ms (Orange), 0.1 ms (Blue), 0.05 ms 

(Red) 

5.5 Conclusion 

In this chapter, the system level stability analysis for a 400 V data center is presented. The 

large signal model of the proposed system level configuration is developed. The differential 

equations that describe the dynamics of data center with solar power, battery, and ultracapacitor. 

To analyze the system stability, the stability criterion is introduced firstly. In order to analyze the 

sensitivity of the circuit parameters, such as the cable inductance, resistance, dc bus capacitance, 

the converter controller time constant, the simulation results are given to demonstrate the stable 

region of the data center. 
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CHAPTER 6 

CONCLUSION FUTURE WORK 

6.1 Conclusion 

The key contributions of this dissertation are summarized as below: 

(a) The limits of the power density and efficiency for the dc/dc converters as part of the power 

supplies in data centers are investigated. A 400 V DC-powered data center is proposed in order to 

reduce power loss and cable cost from the distribution. 48 V dc bus is kept in the rack in order to 

minimize the revision from the existing power supply in data center. 

(b) Cascaded totem-pole bridgeless PFC converters is proposed as a power interface converter 

grid ac voltage to the 400 V dc voltage. It can have better efficiency performance and minimize 

the number of switching devices needed. 

(c) Model predictive control is developed for the cascaded totem-pole bridgeless PFC 

converter to realize a better transient performance and higher power efficiency. 

(d) A more accurate loss model of dual-active bridge converter is proposed. The proposed 

method has better efficiency performance (1~1.5% improvement) compared with the previous 

research work. 

(e) K-factor control with a small signal model of the dual-active bridge is proposed and results 

in improved transient performance. A control strategy using a virtual capacitor based K-factor 

control is proposed to reduce the dc bus capacitance and maintain good transient performance.   
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(f) Solar power is integrated in the 400 V dc bus to reduce the electricity consumption from 

the grid side. Battery and ultracapacitor packs are used together to maintain the expected lifetime 

of battery and dynamic performance of the system. 

(g) Built a large signal model to analyze the necessary stable conditions: maximum output 

power, cable parameters, and minimum dc bus capacitance.  

(h) A scaled down prototype of the proposed topology is built and tested. The simulation and 

experimental results are presented to validate the proposed topology and control algorithms. 

6.2 Future work 

(a) Test the topology with higher ac voltage (> 480 VAC). If the phase voltage is unbalanced, 

control of the ac/dc converter will be an interesting topic. 

(b) The model predictive control also can be utilized for the overall system. The challenge is 

how to build the discrete model for the overall system. 
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