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Abstract 

Increased generation capacity from non-dispatchable energy resources such as wind and 

solar has created challenges to ensuring the reliable delivery of electric power. This research 

develops a systematic three-step method of assessing the reliability of electric power systems under 

a variety of different possible fault conditions to ensure that overall system stability is preserved 

in a manner the meets regulatory requirements. The first step is a risk-based reliability method 

(RBRM) that accounts for the probability of a line outage versus the severity of impact. This allows 

system planners to judiciously allocate expenses for reliability improvements based on the greatest 

economic benefit. The second approach is the synchrophasor validation method (SVM) which 

allows system planners and analysis to develop accurate models of electric power system behavior. 

This improves the decision making capability for implementing new system designs and 

equipment choices. The third new area is the development of norm-based wide-area control 

methods that optimize system stability and reliability based on the statistical characteristics found 

in the first two steps. This norm-based approach includes calculating optimal values for parameters 

of flexible ac transmission system (FACTS) devices and high voltage direct current (HVDC) links 

in order to have results within the regulatory requirements of the North American Electric 

Reliability Corporation (NERC).  Power flow and frequency criteria are used to verify 

conformance with the regulations.  These criteria are evaluated under N-1-1 conditions in two 

reduced order models to demonstrate the ability of the norm-based wide-area controller to maintain 

performance of these systems within acceptable ranges.  The obtained simulation results confirm 

the benefits of the proposed technique in meeting regulatory requirements under conditions of N-

1-1 contingencies in electric power systems with large amounts of renewable energy resources. 
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1 Introduction 

1.1 Background and Motivation 

Increasing energy demand brings many challenges for ensuring the reliability of electricity 

delivery infrastructure around the globe. One factor is increased capacity from variable wind and 

solar generation that may result in transmission line congestion.  A second factor, especially in 

North America, is meeting recent NERC TPL-001-4 standards [1] for analyzing multiple 

contingency cases for reliability studies and maintaining frequency and power changes within 

limits of NERC BAL-003-1 standard [2].  Presently, N-1 analysis is analyzed continuously during 

system operation to ensure that generators will maintain synchronism after any single fault that 

might occur on the system. N-1-1 contingency analysis is significantly more challenging in terms 

of evaluating transient stability characteristics.  

For the N-1-1 disturbances, this first contingency event is then followed by the loss of a 

second element [3]. This type of analysis ultimately is used to assist in sustaining economic activity 

and quality of life through reliable electric power delivery.  If the resulting analysis indicates an 

unacceptably high likelihood of a major power disturbance, then further system modifications and 

upgrades may be justified such as installing new transmission lines, designing new exciter controls, 

implementing more aggressive demand response agreements, installing power electronic based 

equipment such as Flexible AC Transmission Systems (FACTS), or adopting High Voltage DC 

(HVDC) links within or between different areas [4].  This work brings N-1-1 contingency analysis 

to the spotlight in dynamic security assessment (DSA) that will produce improved methods for 

system planners in designing reliable electric power systems. 
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These types of developments require more preceding steps to identify locations that may 

suffer high load conditions or lose synchronism after N-1-1 contingency events.  Several efforts 

have tried to predict the contingency events in power systems under dynamic conditions to 

anticipate corrective actions that allow networks to withstand these events without outages while 

also allowing for electricity market transactions.  Probabilistic studies are considered as one 

promising method to achieve a predictive capability to assist operators in control rooms via 

probabilistic calculations.  For instance, the concept of using probabilistic approaches for dynamic 

power system stability studies was introduced in [5] and [6].  A cumulant-based probabilistic power 

flow (PPF) and a hybrid algorithm in [7] and [8] were utilized to correlate various input of random 

variables.  In [9]-[12], computing of probabilistic evolution for power systems was performed by 

assigning an initial probability distribution for the system building on uncertain parameters.   

Moreover, [13]-[18] showed that different factors with hidden failures affect reliability and 

security of power systems and these factors present in relays, transducers and circuit breaker trip 

mechanisms.  Probability of failure and frequency of failure were used to evaluate the operation 

of composite electric power systems from an economic perspective in [19, 20].  The results of 

optimal load flow analysis and load curtailment were employed when the system was unable to 

meet the load amount. Aleatory (deteriorating components and repair processes) and epistemic 

(limiting actual parameter values for probabilistic factors) were used in [19], [21]-[23] to evaluate 

reliability with a probabilistic Monte Carlo simulation.  All these analyses give clear evidence that 

probabilistic approaches could help in obtaining the likelihood of failures for the second event in 

a N-1-1 contingency sequence. 

Many researchers continue to develop new methods based on power systems models 

representing electrical systems that no longer physically exist. For example, the widely used IEEE 
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68-bus benchmark model was originally developed for the New England regional transmission 

grid in the 1960’s. Since then, there has been rapid expansion in renewable energy resources, 

changes in load characteristics and increased use of static VAR compensators and other types of 

FACTS equipment. Therefore, there is a need to have better methods for deriving and calibrating 

electric power system models.  In many cases, reduced order models are preferred during initial 

investigations of power system stability analysis. These simplified power system models should 

capture the same stability characteristics as the overall larger system. This helps planners and 

policy makers to have an overview of their systems and optimize utilization of renewable 

resources.  Reduced models of large-scale power systems facilitate testing different operating 

situations, such as line congestion, thermal limits, negative locational marginal pricing, wind 

curtailment, etc., and give results close if those issues were tested in the actual physical system.  

Therefore, extraction of benchmark models of large power systems should meet requirements of 

the NERC standards and result in models with smaller errors if their measurements match with 

real ones of original power systems [24, 25]. 

Various methods have been employed to derive reduced models for analysis purposes, such 

as Ward Reduction, Kron Reduction Approach, Dimo Method, and Zhukov Method, after 

extracting them from large-scale networks [26].  Ward Reduction Method divides large power 

systems into two systems: an internal system and an external system.  The buses are divided into 

three types: internal, boundary, and external buses [27, 28].  For example, both the Standard and 

Extended Ward Equivalent methods in [29] are applied on transmission systems in the Netherlands 

to produce a  65-bus benchmark model after reducing the external system to specified boundary 

nodes.  Researchers in [30] have developed a decomposition and coordination algorithm based on 

the Ward Equivalent process to optimize reactive power flows.  The Ward reduction method in 
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[31] is used with a modified load shedding algorithm to evaluate the reliability of the Southern 

China grid after reducing to 22 buses.  In [32], this reduction process is applied to the IEEE 118-

bus system to produce a 35-bus reduced model for optimal power flow purposes.  From that 

research, a Ward reduction technique was used due to simplicity and accuracy, in addition to 

keeping the studied area as the internal system with full details [27]-[32].  Therefore, this technique 

is selected in this research after some modifications in its procedure to derive a new model that 

retains the full details of the studied area. 

High levels of wind turbine generation result in critical and complicated risks of inter-area 

oscillations.  Wide-area control (WAC) designs, via involvement of advanced wide-area 

measurement (WAM) technologies such as phasor measurement units (PMU), can effectively 

reduce power flow oscillations in multi-area electrical systems.  Optimal WAC methods for  

improving transient stability could enhance the power transfer capability of transmission networks 

and avoid dangerous cases, such as load or generator disconnection or cascading blackouts after a 

sequence of disturbances [33]-[35].  This work suggests a WAC approach based on a modified 𝐻  

control method, one of to dampen frequency oscillation and power flow excursions through 

adjusting variables in both HVDC ties and FACTS devices with particular attention to Static 

Synchronous Series Compensators (SSSC). 

This research examines methods based on two specific case studies that are modeled after 

existing transmission networks in order to demonstrate a realistic level of improved stability by 

adopting the proposed methods.  The first system is a new reduced benchmark model from a large-

scale system in North America. This reduced benchmark model consists of 456 buses and is used 

in validating a novel reduction technique developed in this dissertation.  This system is further 

reduced to a three- area 21 buses model to run the proposed 𝐻  control method.  The second system 
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is a Load Frequency Control (LFC) model of the Iraqi electrical network.  Both systems have or 

are in the process of installing wind or solar generation stations to increase the use of renewable 

energy.  Also, HVDC links and SSSC devices have been placed in the targeted systems to 

emphasize their roles in improving reliability and stability. 

1.2 Objectives 

The goal of this dissertation is to create a new algorithm that detects instabilities in 

transmission systems after having N-1-1 disturbances and design a control method that maximizes 

the reliability and stability boundaries when accounting for inverter-based generation. These 

algorithms are developed in terms of the flow chart shown in Fig. 1.1. 

First, utilization of probabilistic techniques in creating a risk-based reliability method to 

determine potential outage of lines in transmission systems through considering two main 

variables: age of line and post first-fault load flow with consideration of line overload following a 

second fault.  This method also provides appropriate locations to place HVDCs and SSSCs.  

Second, there is a need to have a power model with high levels of wind generation from 

realistic networks that have not been previously analyzed.  A novel reduction method is developed 

in this research through three parts: a reduction part that consists of four sub-parts; a validation 

state that also consists of two sub-parts; and an error reduction part.   All of these parts with their 

substeps produced a new reduced model with high levels of wind transferred surplus energy to 

remote areas.  Results of this method guarantee that the reduced technique could be generalized 

on various systems to build reduced models to mimic large-scale systems with low error. 

Third, a 𝐻  control framework as a new WAC technique is applied on power systems with 

LFC models.  The new method assumes load variation and renewable generation as disturbance 

inputs to the 𝐻  controller after consideration of communication time-delays.  The parameters of 
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inverter-based generation equipment are obtained in the proposed control method in order to find 

optimal values with minimum frequency and power deviations and low cost.  This step is examined 

with the LFC model of the reduced North American and Iraqi multi-area systems.    

The final aspect of this dissertation is investigating the 𝐻  control framework under the 

conditions of N-1-1 disturbances due to losing load and tripping two transmission lines.  These 

changes by employing the 𝐻  controller and HVDC links, or SSSC devices with their optimal 

parameters, show results that meet the requirements of NERC standards compared to the original 

uncompensated responses that violate the regulatory standards.   

Fig. 1.1. The proposed method for improved power system planning to achieve increased 
reliability with renewable energy. 
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1.3 Dissertation Outline 

The outline of the dissertation is given as follows: Chapter Two focuses on studying 

contingency analysis and N-1-1 disturbances. Also, previous research into probability in power 

systems is reviewed and a new risk-based reliability method is presented.  An application of the 

reliability method to the IEEE 68-bus benchmark system is provided with calculation of optimal 

parameter values that allow for more effectively distinguishing the severity of a second 

disturbance.  Chapter Three discusses building a novel method to reduce large-scale power systems 

to reduced models for research and planning purposes.  Chapter Four shows the proposed control 

method and how it can be configured in LFC models with different types of inputs and outputs.  

Also, installing of HVDC and SSSC equipment is studied in this chapter.  The Chapter Five and 

Chapter Six present the application of the new control method to the reduced North American and 

the Iraqi national electrical system for N-1-1 contingency analysis.  Results are compared with a 

conventional controller in order to show the benefits of the new method. The major contributions 

of this dissertation are summarized in addition to some future research topics in Chapter Seven. 
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2 Modified Reliability Method 

2.1 Contingency Analysis 

Electric power systems are complex networks whose operational modes require 

complicated processes to provide consumers with uninterrupted sources of electricity.  For meeting 

regulatory requirements in electricity grid operations, electric utility providers try to maintain their 

systems to withstand abnormal conditions due to fault conditions and various types of anomalous 

conditions that might occur.  Preventive steps are prepared in advance by operators and planners to 

keep power systems at acceptable levels of frequency and voltage being delivered to consumers 

[36, 37].  All of these plans and procedures are analyzed under a power system security umbrella, 

which is the ability of the power system to remain secure without serious consequences to different 

types of contingencies [38].   

Power systems have five defined operating conditions during pre- and post-fault 

circumstances. These are (i) normal, (ii) alert, (iii) restorative, (iv) emergency and (v) in-extremis 

are shown in Fig. 2.1.  These classifications are dependent on voltage, frequency, and overload limit 

criteria.  In the normal operating states, the system functions in a secure manner where voltage and 

frequency are within the acceptable ranges and all equipment are not overloaded.  In addition, any 

loss of a single piece of equipment will not violate operational constraints of the system.   Alert 

conditions reflect that the system that could experience a type of disturbance that may cause some 

elements to become overloaded.  However, this condition could lead to a more severe state such as 

an emergency or in-extremis condition prior to returning to the normal state.  The emergency state 

reflects that a power system has low voltage or overloaded equipment that are in violation of power 

constraints (and possibly for only a short-term period).  However, this state could deteriorate into 



 

9 
 

the in-extremis state if remedial actions do not occur, otherwise with protective actions then the 

system can revert to an alert state. 

During an in-extremis state some consumers will lose their power partially or power systems 

might be in a total blackout condition due to lack of fast and desired response to clear or treat large 

disturbances.  In this situation, the system will need to progress through a restorative state in order 

to rebuild the electrical networks after total or partial [39]-[41] blackout. Analytical studies in power 

system security consider all possible disturbances that would result in circuit breaker operations 

due to overload conditions or inadequate voltage levels at buses. This type of analysis is generally 

referred to as Contingency Analysis.  

 

 

 

 

 

 

 

 

 

 

The reliability of delivering electricity to customers without interruptions and within 

acceptable levels of frequency and voltage regulation is an essential aspect of operating a bulk 

electric power system. It is also required to provide power delivery while withstanding possible 

Fig. 2.1. Operating states for electrical power systems [39]-[41]. 
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disturbances and equipment failures. Preparing for abnormal situations and investigating the 

resulting load flow on transmission lines and bus voltages after disturbances is used to evaluate the 

security of electric power systems.  Assessment of transient stability for possible contingencies on 

transmission lines is a significant aspect of power system security planning [19].  Contingency 

Analysis (CA) is a part of power system security analysis and also impacts power market studies, 

security assessment, and electricity market transaction management. A typical CA consists of 

various models such as single-component outage (one line or one generator outage), multiple-

component outage (two lines outage, one line and one generator outage, etc.), and sequential outage 

(one outage after another) [42].  Evaluation of voltage levels, transmission capacities, and generator 

power limits is completed for each contingency to determine whether the system is secure [43]. 

2.2 N-2 or N-1-1 Contingency Analysis 

Contingency analysis in power systems is important for operators, owners, planners, and 

policy makers in the electrical energy sector.  Various remedial actions, such as transmission 

switching and other corrective actions are considered to reduce consequences of disturbances, 

increase reliability and stability levels, and provide economic benefits [44].  Obtainment of all 

these aspects is included in regulatory requirements from federal agencies such as the National 

Electric Reliability Corporation (NERC) and the Federal Energy Regulatory Commission (FERC).  

When considering N-1 constraints, a power system should continue in normal operation conditions 

after any single element failure, such as an outage of a transmission line.  However, NERC sets 

regulations to ensure that operators will maintain contingency plans for further possible conditions, 

such as N-2 or N-1-1 (two elements fail within a short time-frame) contingencies [45].  A N-2 

contingency event is defined as when a sequence of cascading outages in transmission system 

occurs within 1 second.   
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In contrast with N-2 contingencies, a N-1-1 contingency event could be defined as 

cascading faults occurring with a time interval longer than one second.  More specifically, N-1-1 

contingency analysis is defined based on NERC guidelines where there is a loss of one element, 

followed by adjustments to the electric power systems (either automatic or operator initiated). This 

first contingency event is then followed by the loss of a second element [3]. This type of analysis 

ultimately is used to assist in sustaining economic activity and quality of life through reliable 

electric power delivery.  If the resulting analysis indicates an unacceptable likelihood of a major 

power disturbance, then further system modifications and upgrades may be justified such as 

installing new transmission lines, designing new exciter controls, implementing more aggressive 

demand response agreements, installing power electronic based equipment such as Flexible AC 

Transmission Systems (FACTS), or adopting High Voltage DC (HVDC) links within or between 

different areas. 

Identification of critical N-2 or N-1-1 contingencies is a computationally challenging 

problem, especially with complex and large-scale networks, and a large amount of research has 

been conducted on his topic.  Risk-based planning methods are one group of alternatives to evaluate 

electric power systems [46, 47].  For example, in [7] and [8] a cumulant-based Probabilistic Power 

Flow (PPF) and a hybrid algorithm are employed to correlate the parametric input of random 

variables. The concept of using probabilistic approaches for dynamic power system stability studies 

was introduced in [5] and [6].  Those methods could help operators in control rooms via 

probabilistic calculations to make a decision for situations involving security levels and market 

transactions. Computing the probabilistic evolution of power systems is performed by assigning an 

initial probability distribution for the system through dealing with the uncertainty of power systems 

parameters is described in [9]-[12].   Uncertain barriers in power calculations may be integrated and 
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approximated by using probabilistic methods to evaluate the transient stability for multi-machine 

power systems, and the evaluation methods provide remedial actions for electric utilities to avoid 

voltage collapse and frequency instability [48]. 

Moreover, [13]-[18] shows the importance of accounting for factors that affect the 

reliability and security of power systems.  Those factors include protection systems having hidden 

failures present in relays, transducers and circuit breaker trip mechanisms. Probability of failure 

and frequency of failure were used to evaluate the operation of composite electric power systems 

from an economic perspective in [19, 20].  The results of optimal load flow analysis and load 

curtailment were employed when the system was unable to meet the load amount. Aleatory (failing 

components and repairing processes randomly) and epistemic (limiting actual parameter values 

for probabilistic factors) were used in [21]-[23] to evaluate reliability with a probabilistic Monte 

Carlo simulation.  In [49, 50] an approach utilizing steady-state load flow to analyze the reliability 

of power systems included uncertainties in wind power was introduced.  The probabilistic analysis 

in [51] illustrated that increasing the number of surge arresters, and aging of cables, and lines were 

factors that influenced reliability.  The researchers in [52] used weather forecast factors such as 

humidity, wind speed, temperature, and their effects during maintenance periods as parameters 

that impact power system equipment failure rates.  However, this work presents a new method to 

emphasize the critical cases under N-1-1 contingencies with different aspects. 

2.3 Risk Based Reliability Method (RBRM) 

In this dissertation, a new method is proposed for calculating the reliability of a power 

system depending on a combination of variables such as transmission line ageing and power-flow.  

The age of the various transmission lines, the load flow under normal conditions, and load flow 

under post-first disturbance conditions, are used to develop the suggested approach.  A probabilistic 
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method is used to select a transmission line based on likelihood of a contingency and calculate the 

load flow for it under normal and post-fault conditions.  These factors lead to developing a Risk-

Based Reliability Method (RBRM).  A RBRM that uses a ratio between the reliability of a system 

under the first faulty condition to the reliability of system under normal conditions to obtain the 

final probability of occurrence the N-1-1 contingency event as shown in Fig. 2.2.  

In this figure, the age of the transmission lines is assumed as a proxy for probability of 

failure in order to obtain a reliability measure for each case.  A hypothesized age estimation is 

done in order to complete the reliability calculations.  The values for line age are given in seconds 

in order to relate standard electrical SI units, but in the actual practice the line’s age 𝑇  is given in 

thousands of hours.  To get 𝑇 in seconds, the age of each line is reduced after ignoring the first ten 

years from all lines.  Then the rest of the line’s age is converted to hours after multiplying the rest 

by 8760, which is equal to 365 days multiplied by 24 hours.  For obtaining the line’s age in seconds, 

𝑇  is selected arbitrarily to reduce 𝑇  to seconds through [19]; 



 

14 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑇 =  𝑇 /𝑇 ,      (2.1) 

After obtaining the line’s age, the load flow that passes through the line for the non-fault 

case is calculated and used along with the line age to determine the probability of a failure occurring 

on that line. These factors are used for the ith line can be given in [19],[53]-[56] 

𝜂 = 𝛼 𝑒 ∗ ,     (2.2) 

where 𝜂  is a characteristic life parameter under the normal case, 𝛼  and 𝛼  are the coefficients in 

the life-stress relationship parameters (scale parameters of the distribution function).   𝑆  is the load 

flow in the normal condition at line i. 𝛼  and 𝛼  are calculated relying on the ratio between values 

of load flows for lines i and j in the normal condition after comparing them with the maximum 

Fig. 2.2. Flow chart of the proposed probability method. 
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value in that case.  Calculations of 𝛼  and 𝛼  are dependent on assumptions that all lines have the 

same conductor, and a line with low load flow would have high reliability and vice-versa.  These 

values can be adjusted to evaluate the behavior of the power system to possible design changes, 

such as replacing or upgrading transmission lines[19].  Using 𝜂  and 𝑇 , the reliability of ith line 

under normal statues can be given as in [19],[53]-[56] 

𝑅 = 𝑒 ( / ) ,     (2.3) 

where 𝑅  is the reliability of line i at the normal condition and 𝑇  is the age of line i, while 𝛽 is 

the shape parameter. After the first reliability calculations, the same steps would be utilized to 

calculate the same variables but under different conditions. Via the load flow after the first event, 

𝛼  and 𝛼 , new calculations would be shown in [19],[53]-[56] 

𝜂 = 𝛼 𝑒 ∗ ,     (2.4) 

where 𝜂  is a characteristic life parameter under the post-first fault case and 𝑆  is the load flow 

in the post-first fault condition at line i.  

𝜏 =  𝜂 (− log(𝑅 )),     (2.5) 

where 𝜏  is the time that line i can carry load flow 𝑆 .  Equation (2.4) shows the approach to 

calculation of 𝜏  when the line carries the different current after disturbances with taking in account 

that 𝛼  and 𝛼  are constant. 𝜏  would be higher than 𝑇  because 𝜏  comes from 𝑇  plus the time of 

the post-first fault’s current.  After getting 𝜏 , the reliability of line after the first fault can be 

obtained by using 𝜏  and 𝑇  and given in [19],[53]-[56] 

𝑅 = 𝑒 (( )/ ) ,     (2.6) 
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where 𝑅  is the reliability of line i after the first fault and 𝑇  is the time of the first fault. From 

previous steps, the reliability of each line could be modified in the formula 

𝑅 = 𝑅 /𝑅 ,     (2.7) 

where 𝑅  is the final reliability of line i given by the first fault of the system. By using this 

analysis, the prediction of an N-1-1 contingency event can be obtained by using an inverse 

relationship between reliability and probability (𝑅 = 1 − 𝑃 )[19].   

Calculation of the severity index (SE) for the double contingency depends on each 

generators’ weight and generator phase angles and is given by 

𝑆𝐸 =  
( ) ( )  ( ) ( ) ⋯  ( ) ( )

( ) ( )  ( ) ( )  …  ( ) ( )
,   (2.8) 

where, 𝑊 (𝑡) is the weighting factor of the generator m for the normal condition.  𝑊 (𝑡 + 1) is 

the weighting factor of the generator m after the second fault. 𝛿 (𝑡) is the phase angle of the 

generator m for the normal condition.  𝛿 (𝑡 + 1)  is the phase angle of the generator m after the 

second fault and  

𝑊 (𝑡 + 1) =  
( )

∑  ( )
      (2.9) 

where Pm(t) is the real power of generator m for the normal case. Pm(t+1) is the real power of 

generator m after the second fault.  The level of transient stability of the system is checked by 

observing the maximum value that each generator rotor angle changes from the pre-fault condition.  

This is the ‖𝛿(𝑡)‖  norm of the vector of machine rotor angles [4, 19, 58].  This approach is 

developed for contingencies on transmission networks and applied to transient stability analysis of 

an IEEE 68-bus, 16-machine, 5-area benchmark system [57]. 
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2.4 IEEE 68 Bus System  

A sequence of random N-1-1 contingency events were simulated for the 68-Bus, 16-

machine, 5-area (geographical regions) system [57]. This is an IEEE transient stability benchmark 

system. It is based upon a reduced-order equivalent model of the interconnected New England test 

system (NETS) and New York power system (NYPS). A one-line diagram of the benchmark 

system is shown in Fig. 2.3.  The frequency of the system is nominally 60Hz and the base power 

is 100 MVA. Transmission lines, generators and exciter data used in this simulation are given in 

[57]. 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple contingencies in power systems may possibly occur that have the potential for 

resulting in a partial or regional blackout. Many parameters are used to estimate or predict and 

evaluate the dynamic stability of power systems such as rotor angle, speed of synchronous 

Fig. 2.3. One-line diagram of IEEE 68-bus system [57, 71]. 



 

18 
 

generators, bus voltage, etc.  Modeling the dynamic components and their controls is necessary for 

power system planning studies [58, 59].  The analysis of power system behaviors during transients 

resulting from fault conditions used in this research is based on the following equations [57]: 

Generator Modeling: 

= 𝜔  (𝜔 − 𝜔 ) = 𝜔 𝑆 ,  (2.10) 

2𝐻 =  (𝑇 − 𝑇 ) − 𝐷 𝑆 ,  (2.11) 

where 𝑇  consists of different components, which are given by: 

 𝑇 = 𝐸𝐹 + 𝐸𝐷 + 𝐸𝐶 + 𝐸𝐻 + 𝐸𝑄,   (2.12) 

and, 

EF= 𝐸′ 𝐼
( )

( )
,     (2.13) 

ED=𝐸′ 𝐼
( )

( )
,   (2.14) 

EC =𝐼 𝐼  𝑋 − 𝑋 ,  (2.15) 

EH= 𝜓 𝐼
( )

 ,   (2.16) 

EQ =𝜓 𝐼  ,   (2.17) 

and, 

𝐼 + 𝐼 = (1/(𝑅  𝑋 ))(𝐸 + 𝐸 − 𝑉 + 𝑗𝑊𝐹𝐷),  (2.18) 

where, 

𝐸 = 𝐸
( )

 ,      (2.19) 

𝐸 = 𝜓
( )

,   (2.20) 
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 𝑊𝐹𝐷 = (𝐸𝐹 − 𝜓 − 𝑉 + 𝐸 ),   (2.21) 

and, 

 𝑇 = 𝐼 𝑋 − 𝑋 − 𝐸 ,  (2.22) 

𝑇′ =  − 𝐸 + XQE,  (2.23) 

where, 

𝑋𝑄𝐸 = X − X (−I + XQ X − X I − E − ψ ),  (2.24) 

and, 

𝑋𝑄 =  ,   (2.25) 

𝑇′ = 𝐸  − 𝐸 + 𝑋𝐷𝐸,  (2.26) 

where, 

𝑋𝐷𝐸 = (𝑋 − 𝑋 )(𝐼 + 𝑋𝐷 𝜓 − 𝑋 − 𝑋 𝐼 − 𝐸 ),  (2.27) 

where, 

𝑋𝐷 =
( )

,   (2.28) 

𝑇′′ = 𝐸′ + (𝑋 − 𝑋 )𝐼 − 𝜓 ,  (2.29) 

𝑇′′ = −𝐸′ + 𝑋 − 𝑋 𝐼 − 𝜓 .  (2.30) 

The excitation systems have automatic voltage regulators (AVRs): 

𝑇 = 𝑉 − 𝐾 𝐸 + 𝐸 𝐴 𝑒 ,  (2.31) 

where, 



 

20 
 

𝑇 =  𝑉 − 𝑉 ;   𝑇 =  𝐸 − 𝑉 ,  (2.32) 

and, 

 𝑇 = 𝐾 𝑉 + 𝑉 − 𝑉 − 𝐸 − 𝑉 − 𝑉 ,  (2.33) 

𝐸 = 𝐾 𝑉 + 𝑉 − 𝑉 .  (2.34) 

Power system stabilizer: 

𝑉 = 𝐾
( )( )

( )( )( )
𝑆  .  (2.35) 

Load network: 

𝐼 + 𝑗𝐼 = 𝐼 + 𝑗𝐼 𝑒 ,  (2.36) 

𝑉 = 𝑉 + 𝑗𝑉 = 𝑉 + 𝑗𝑉 𝑒 ,  (2.37) 

𝑉 = 𝑍 𝐼,  (2.38) 

where, 

𝑍 = (𝑌 ) .     (2.39) 

Variable 𝑖 refers to the 𝑖𝑡h generator; 𝛿 is the rotor angle in radians; 𝜔𝐵 is the rotor base 

angular speed in radians per second; 𝐻 is the inertia constant in seconds; 𝑇𝑑0′ and 𝑇𝑑0′′ are the d-

axis open circuit transient and sub-transient time constants, respectively; 𝑇𝑞0′ and 𝑇𝑞0′′ are the q-

axis open circuit transient and sub-transient time constants, respectively; and 𝑇𝑐 is the time constant 

for the amortisseur rotor coil (which is usually taken as 0.01 seconds). The other variables are in 

per unit (pu): 𝜔: rotor angular velocity; 𝜔𝑠: synchronous angular velocity; 𝑆𝑚𝑖: slip; 𝑇𝑚 is the 

mechanical torque; 𝑇𝑒: electrical torque; 𝐷: machine rotor damping; 𝐸𝑞′: transient electromotive 

force (emf) of field flux linkages; 𝐸𝑑′: transient emf of flux linkage in q-axis damper coil; 𝜓1𝑑 and 
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𝜓2𝑞: sub-transient emfs of d-axis and q-axis damper coils, respectively; 𝐸𝑓𝑑: field excitation voltage; 

𝐸𝑑𝑐′: transient emf across the dummy rotor coil; 𝐼𝑑 and 𝐼𝑞: d-axis and q-axis components of the stator 

current, respectively; 𝑉𝑑 and 𝑉𝑞: d-axis and q-axis components of the stator terminal voltage, 

respectively; 𝑋𝑑, 𝑋𝑑′ and 𝑋𝑑′′: synchronous, transient and sub-transient reactance, respectively, 

along the d-axis; 𝑋𝑞, 𝑋𝑞′ and 𝑋𝑞′′: synchronous, transient and sub-transient reactance, respectively, 

along the q-axis; 𝑅𝑎: armature resistance and 𝑋𝑙𝑠: armature leakage reactance [4, 19, 57, 58].  In this 

work, a three-phase fault is assumed to be the cause both of the contingencies in N-1-1 sequence 

mode and the age of each line is scaled for simplification of the calculations. This resulting scaling 

is summarized in Table 1. 

 

Table 1. The age of some lines in seconds 

 

 

 

 

 

 

 

To simulate the N-1-1 contingencies in the IEEE 68 bus system, the first fault occurs at time 

5 seconds and the time clearing for this disturbance is assumed to be a standard 2 electrical cycles 

(33 ms) setting.  After 2.0 seconds from clearing the first fault the second contingency occurs.  There 

are five types of line impedances used in simulating the fault sequence for transient analysis 

purposes of the N-1-1 contingency sequence: 1- normal impedance; 2- first fault impedance; 3- post 

first-fault impedance; 4- second impedance; and 5- post-second fault impedance.  Each impedance 

Line No. Bus from-Bus to 𝑇  (Sec) 

1 27-53 190 

22 47-48 901 

45 39-45 552 

54 22-23 206 

63 17-36 536 
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has a matrix of values depending on the configuration of the system during and after the disturbance.  

For illustration of N-1-1 contingency analysis, two instances of several sequences that were 

simulated in order to compute of the severity indices. As an example, the first case shown in Fig. 

2.4 represents a double contingency that occurs on transmission lines 18-49 and 28-26, while Fig. 

2.5 shows the N-1-1 contingency occurs on transmission lines 30-32 and 25-26 and both cases 

experience faults at 5 seconds and 7 seconds, respectively [58]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4. Transient response for phase angles of generators for case #1.   
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Fig. 2.5. Transient response for phase angles of generators for case #2.   
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In Fig. 2.4, the disturbances produce low power oscillations and the system recovers along 

time of the simulation  and the cause for this behavior is the positions of outage lines and amount 

of power flow in tripped lines after disturbances do not affect generators of the system largely.  In 

Fig. 2.5,  the disturbances change the phase angle of generators due to varying paths of power flow 

due to outage of transmission lines. The tripped lines make significant variations in impedance 

values between load points and generators. Therefore, phase angles for some generators would be 

shifted. After applying the N-1-1 contingencies on the 68-bus benchmark model in [17], the 

severity index (SE) is calculated for showing the severe cases of double contingencies as in (2.8) 

[19, 21].  The SE for all possible N-1-1 contingencies for line outages in the 68-bus system are 

illustrated in Fig. 2.6.  

These cases are sorted depending on (x, y, z) coordinates, where the x-axis is the number 

of line, which has the first fault, the y-axis is the number of line which has the second fault, and z-

axis is the value of SE.  Each case in the figure has a different value of SE that depends upon the 

load flow and maximum rotor angle deflection.  Cases that have high SE are visually emphasized 

in Fig. 2.6 to draw attention to those N-1-1 contingencies that required corrective actions to 

increase the reliability and stability of power system.  Depending on these cases and their computed 

reliability, system planners and operators can mitigate the N-1-1 effects by upgrading their 

networks with proper components [4, 19].  The results of the SE’s calculation will be combined 

with the following results of RBRM to predict the most severe cases in order to increase reliability.  

Studying the reliability of power systems is essential in helping reliability coordinators and 

system planners to decide upon remedial actions in critical situations.  The proposed Risk-Based 

Reliability Method (RBRM) is utilized to evaluate the system reliability after a first fault and to 

predict the probability of an N-1-1 event.  It is displayed that RBRM enhances the ability to 
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distinguish between the severities of various N-1-1 contingencies.  The results of the research 

indicate that RBRM would improve the ability of reliability coordinators to identify weak elements 

in a power system and thereby provide a guide to transmission planners in prioritizing system 

upgrades.   

RBRM is applied to evaluate the reliability and predict which line will be most likely to 

have the second fault through applying equations (2.1) to (2.7).  Selection of the values of 𝛼  and 

𝛼  is done after choosing a specific line and using its load flow with a specific value of 𝛽 via 

equations (2.3), (2.5), and (2.6). This process is accomplished through adopting two values of load 

flow, which are normal and post-first fault conditions, for each line in the systems.  Values of load 

flow under the two conditions have been employed for different moments (𝑇  and 𝜏 ).  By applying 

(2.2) , the values of 𝛼  and 𝛼  are obtained when a transmission line is under normal load condition 

Fig. 2.6. Severity index (SE) for IEEE 68 bus system under N-1-1 contingencies[19, 58]. 



 

25 
 

and maximum power flow could pass through it.  To analyze the RBRM of the system, 𝛽 is varied 

from 0.5 to 5 [19, 60].  This range provides ability to observe cases that have the worst impacts on 

the overall system reliability and these changes are shown obviously in Fig. 2.7.  In this figure, the 

y-axis represents first fault case, the x-axis represents the transmission line number, the z-axis is 

the value of the reliability of the (𝑥 , 𝑦 ) associated transmission line and fault case.  As 

illustrated in Fig. 2.7, reliability for some cases is affected by three factors which are the amount 

of load flow, age of lines, and β.  Increased power rating leads to distinguish normal cases having 

𝛽 = 0.5 𝛽 =  1 

𝛽 = 2 𝛽 =  5 

Fig. 2.7. Reliability of IEEE 68 bus system when 𝝱 =0.5, 1, 2, 5 [19]. 
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high values of reliability and abnormal cases having low reliability due to the value of currents for 

both conditions [19].  

The high value of active power flows in this system under normal conditions would not 

exceed 0.5pu, while the active power passes under abnormal conditions may exceed 1pu. This is 

interpreted as the line i carries high load flow (apparent power) passing through it; the reliability 

of it would be low compared with lines that have low power flow.  That is because of the natural 

exponential function producing the reliability evaluation through impacting with the amount of 

power flow and age of line.  The impacts of the value of 𝛼  and 𝛼  come from their roles in 

calculating the characteristic life parameter (𝜼) as indicated in (2.2) and (2.4).  Also, when a 

generator loses synchronism due to severe disturbances, the power flow would be increased in 

some of the remaining lines, thereby generating cases of lowered reliability for those lines most 

impacted by increased power flow (i.e., reduced thermal margins).  On the other hand, having 

contingency cases with small values of probability distribution function of RBRM, due to the value 

of the shape parameter β, makes recognizing the lines that have low reliability (high failure 

probability) more complex[19].  

First of all, β is set to be 0.5 and the final probability for the second disturbance is obtained 

for 2070 cases in 2.6 hours via (2.3), (2.5), (2.6), and (2.7) .  Then the value of β has been varied 

to be equal to 1, 2, and 5 in 2.6, 2.6, and 2.4 hours, respectively, shown in Fig. 2.7.  when 𝛽 is 

equal to 1, the reliability of different cases almost has same values of cases in the calculation of 

reliability with β =0.5 and that makes difficult to distinguish which line would be likely to have a 

next fault.  Moreover, the investigated cases with β =2 or 5, the probability distribution function 

of RBRM is changed and it is easy to identify lines have low reliability, high failure probability 

[19].  
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Selection of the optimal value of 𝛽 could play a favorable role in distinguishing cases with 

high reliability.  The value of reliability would be increased or decreased relying on the ratio of 

time over 𝜼 powered by 𝛽.  When 𝛽 is equal to 0.5, the reliability of different cases almost have 

the same values and that leads to difficulty in finding the line that would be likely to have a next 

fault while when 𝛽 is equal to 2, the different values of reliability between lines can be recognized 

easily.  Increasing 𝛽 to be equal to 2 or 5 will help in highlighting which cases would have high 

or low reliability. However, when 𝛽 is set 5, as shown in Fig. 2.7, several cases would be 

considered having low reliability due to increasing values of exponential to power 5 and that leads 

to minimize the obtained reliability even when  𝜼  has small differences.  Therefore, selection of 

𝛽 in the range between 2 and 3 would be the optimal value to find cases with lower reliability. 
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3 New Benchmark Wind Model 

3.1 New Benchmark Wind Model 

Due to clean environment policies, lower capital costs and electricity production tax credits 

(PTC), the growth of wind source use in the United States and other countries may tend to increase 

the risk levels of the operational characteristics and dynamics of electric power systems.  It also 

impacts their reliability and stability [61]-[63].  The installation of new wind generation and the 

expansion of transmission systems encourages researchers to think of having smaller power 

models that have the same characteristics of larger systems, which are difficult to access due to 

security aspects and to analyze the existence of new components and their influences under various 

situations.  These system models that represent realistic conditions help planners and policy 

makers to have an overview of their systems and optimize utilization of renewable resources.  

Small models of large-scale power systems facilitate testing different power issues, such as line 

congestion, thermal limits, negative locational marginal pricing, wind curtailment, etc., and 

provide accurate results to those issues that are tested in real power systems.  Therefore, extraction 

of benchmark models of large power systems should meet the requirements of the NERC standards 

and result in models with smaller errors if their measurements are examined with real ones from 

the original power systems [24-25]. 

Several methods are employed to build small power models for analyzing purposes, such 

as Ward Reduction Technique, Kron Reduction Approach, Dimo Method, and Zhukov Method, 

after extracting them from large-scale networks [26].  Ward Reduction Method divides large power 

systems into two systems, internal system and external system.  The buses are divided into three 

types, internal, boundary, and external buses [27-28].  For instance, both the standard and extended 
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Ward equivalent methods in [29] are applied on transmission systems from the Netherlands to 

produce a model with 65-bus test system after reducing the external system to boundary nodes.  

[30] develops a decomposition and coordination algorithm based on the Ward equivalent process 

to optimize reactive power flow.  Ward reduction method in [31] is used with a modified load 

shedding algorithm to evaluate the reliability of the Southern China grid after reducing to a power 

system with 22 buses.  In [32], a reduction process is applied on IEEE 118-bus system to produce 

the 35-bus reduced model for optimal power flow purposes.  From previous research, Ward 

Reduction Technique is used widely due to simplicity and accuracy, which are in existent in the 

reduced models in the internal system, with full details [27]-[32].  Therefore, this technique is 

selected in this work, after some modifications in its procedure, to accompany with a new model 

that has the full details of the studied area. 

3.2 Novel Reduction Method 

Synchrophasor technology is adopted in many power grids due to producing both big 

amounts of data and high accuracy.  Both are sought for reliability and stability purposes [64-65]. 

Several papers depend on phasor measurement units (PMUs) data to examine and validate their 

works. For instance, [66] utilizes PMU data to validate and calibrate measurements of power 

models with measured models of real power systems.  In addition to use of the Ward equivalent 

method in [67], is used to reduce New-England system with constant PQ loads and benefited from 

PMU data from analyzing the new model.  The results in [64] highlight both the accuracy of the 

model, obtained after comparing data measured by PMUs and simulation measurements, and cause 

of errors in frequency and phase angle measurements. In [68], researchers develop a method to 

complete the measurements of large power systems depending on a number of PMUs installed in 

those systems. For previous works, PMU technology is employed to validate and calibrate power 
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models. In this work, PMU data from a real system is provided to validate the new model after 

reduction and calibrate its measurements to minimize significant errors if they are present. 

This work focuses on building models with high wind generation and calibrating 

simulation results with PMUs measurements, which are the main contributions. In addition to 

previous contributions, the response of breakers in transmission systems under variable generation 

and abnormal events is presented in this research. A novel reduced model method in this research 

has extracted new models from real power systems, including several wind or solar generation, 

through a specific process.  The specific process for reducing large-scale power system includes: 

the reduction part that consists of the Ward equivalent technique with modified steps; the 

validation part that compares simulation results of reduced model with real measurements data 

with preliminary relative errors; and the error correction part that adjust some parameters in the 

small model to obtain small values of errors.  The accuracy of this method in the resulting reduced 

system model gives system planners a realistic opportunity to study transmission systems with 

non-dispatchable resources under various conditions. 

This dissertation develops the Synchrophasor Validation Method (SVM) as a new 

reduction procedure consisting of three parts to create accurate models from large-scale power 

systems.  Each part in SVM has specific steps to reduce time of simulations and obtain high 

accuracy. This research uses a Ward Equivalent Technique, PMU measurements data provided by 

a transmission operator, and a network simulator such as PowerWorld apply the new proposed 

method. A large-scale power system studied in this work is comprised of 15,310 buses, 19931 

lines, 2204 generators, and 69 areas through various voltage levels and the operational model to 

run in PowerWorld environment, which included all the mentioned data and is provided by 

Network6 company.  The Network6 grid includes large amounts of surplus wind generation 
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capacity carried by transmission systems to demand buses in remote areas. The approach is divided 

into the following three main parts, which are; 

3.2.1 Reduction Part 

Ward Reduction Technique in this part comes with some modifications and these changes 

centralize the selection of specific electric components of the studied area from other areas.  First, 

Ward Reduction Method divides any studied system into two areas, an internal system and external 

system.  The buses are partitioned to internal (I), boundary (B), and external buses (E), as shown 

in Fig. 3.1.  The bus admittance matrix (Y) for large scale systems can be written as [28] 

𝑌 =

𝑌 𝑌 0

𝑌 𝑌 + 𝑌 𝑌
0 𝑌 𝑌

,                           (3.1) 

where 𝑌  and 𝑌  are the bus admittances inside external and internal systems, respectively, 𝑌 , 

𝑌 , 𝑌 , and 𝑌  are the bus admittances connect the boundary buses with external and internal 

buses, 𝑌  and 𝑌  are the bus admittances for all lines between boundaries and external and 

internal buses, respectively.  

 

 

 

 

 

 
 
In the reduction method, the external system would be equivalenced while the internal 

system that is kept as is without changes.  From buses sight, the boundary and external buses would 

be reduced to the following form, 

Fig. 3.1.  Studied system before the Ward reduction method [28]. 
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𝑌 =
𝑌 𝑌

𝑌 𝑌
,      (3.2) 

The lines connecting the boundary buses with the internal system that would not be 

influenced by the equivalencing process while lines that connect boundary buses with the external 

system would be reformed [28], as shown in Fig. 3.2.  Equation (3.1) can be written in different 

form if the voltage or current for both internal and external systems are considered [69]; 

 

𝐼 = 𝑌𝑉 ,      (3.3) 

𝐼
𝐼

=
𝑌 𝑌
𝑌 𝑌

×
𝑉
𝑉

,     (3.4) 

where 𝐼  and 𝐼  are the injection currents at internal and external buses respectively, 𝑉  and 𝑉  are 

voltage at internal and external buses respectively.  Eliminating the external system reforms the 

equation (3.4) into  

𝐼 = 𝑌 − 𝑌 𝑌 𝑌 × 𝑉 + 𝑌 𝑌 𝐼     (3.5) 

where 𝑌 𝑌 𝑌  part leads to new equivalent branches, equivalent power lines, connected 

boundary buses while 𝑌 𝑌 𝐼  part provides the equivalent currents at boundary buses [69]. 

In this research, internal and external systems are selected depending on locations of both 

wind generation and load areas in the Network6.  This selection is required to classify buses into 

Fig. 3.2.  The internal system with the Ward equivalent connections [30]. 
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internal, boundary, and external buses.  Also, availability of buses and lines in PMU measurements 

data is another criterion to choose components for both reduction and validation purposes.  In this 

work, the modification brought by SVM to the Ward reduction technique are explained in 

following steps: 

3.2.1.1 Area Reduction 

The first step is selecting geographical areas where wind generation are located in 

Network6.  Also, areas of load buses are chosen to add to the internal system for achieving the 

balance between generation and demand.  The Area2, which is a part of Network6 consisting of 

surplus generation, is selected to be as a generating area while areas in the east of Network6 are 

opted to be load areas for the new power model.  Areas that have transmission systems linked the 

generating and load buses are considered to be in the internal system of the Ward reduction 

technique to complete power paths.  Boundary buses are chosen in this work relying on having 

either generating components or considerable value of loads and both are needed for completing 

power balance in the new power model.  After these processes, the first task with Ward technique 

is completed with the new internal system including only the targeted of generating, transmitting, 

and demand areas.  

3.2.1.2 Transmission Reduction 

The second task of using the Ward technique is selection of main transmission levels, 

which are 345 and 138kV in this work, for the new power model and eliminate the other 

transmission levels.  The chosen transmission levels represent essential paths to transfer generating 

power from wind generation and other generating plants to load areas.  Some expectations are 

taken place in the process of removing because some transmission levels, such as 500, 230, and 

161kV infrastructures, should be kept in the internal system because they complete paths for 
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transferring power without overloading 345 and 138kV lines.  By the end of this step, the internal 

system would have a transmission system with a reduced number of lines that are sufficient to 

transfer power in the original system and most lines in the new system are similar to lines in the 

original system. However, there are some new branches, not presented in the initial system, and 

those lines come from connecting boundary buses together building on the Ward equivalent 

method to complete power paths in the new power system ([28], [67], [70]). 

3.2.1.3 Substation Reduction 

The third step of the proposed work focuses on reducing number of buses in the small power 

model.  The selection of desired buses is relying on some criteria like generating units, demand 

nodes, connecting buses, and off-line status in the original files provided by Network6.  For more 

clarification, most of generating plants, are either wind generation or other types of power plants 

in Area2, and are chosen to be within the new system to produce the power required to have power 

flow like in the original model.  Moreover, the connecting buses are kept in the internal system of 

the third application of Ward method because they are parts of power routes between generating 

and load buses and maintaining them gives the small model more realistic situations.  The other 

criterion of selection is the status of the buses and lines in the original operational model provided 

by Network6 company.  Some of buses in the studied areas of the original files are eliminated in 

the new model because they are off-line and there is no benefit to keep them unless those buses 

with their lines would be in future plans. The last criterion are demand buses, especially with high 

amount of load, are chosen in the new model to fulfill the cycle between the generation and 

demand.  The new model by this step would have almost all its main components to run normally 

comparable with the operational files.  
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3.2.1.4 Internal Reduction 

Generally, substations are comprised of different buses at various voltage levels and those 

buses may have generators, transformers, shunt capacitors or a reactor depending on the type of 

substation.  The final step in this part, internal reduction, focuses on reducing the number of 

components in substations by the Ward technique. Internal reduction means eliminating or shifting 

some electrical components to different locations in substations in the new system.  All previous 

parts and steps of the proposed method are described in Fig. 3.3. In this figure, iA is the number of 

area, iL is the number of line, iS is the number of substation, iC is the number of component. 

Some criteria are utilized in this step to decrease the complexity of the new model. For 

instance, amount of load ˂5 MVA, small shunt capacitor or reactor are ignored due to the low 

impacts they have on the model performance.  However, this process will be adjusted in the third 

part of this novel method to reduce the relative error.  Also, generators or loads in low levels are 

moved to high voltage buses, especially if the maximum values of generators or demand points 

are too small, compared to the capacity of lines or transformers linked those components to 

substations.  Therefore, moving those components reduces the size of substations and then the size 

of the new model.  Some substation components with low voltage levels, especially transformers 

connect generators and loads to main buses, are kept in the new model to give planners and 

researchers the ability to analyze transformers behavior during studies.   After this step,  456-bus 

simplified wind equivalent test system, WTS456, is completed. 
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3.2.2 WTS456 Model 

The new model consists of  56 buses, 98 generators, 785 lines, and 15 areas is built as an 

example of applying first part of SVM.  The WTS456 model has a transmission system with 

Fig. 3.3.  Flow chart of reduction part of the proposed method. 
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different voltage levels and is made up of various substations with high levels of wind generation 

for mimicking Network6 with a low level of complexity. The reduction benchmark model 

produced by SVM, WTS456, is shown in Fig. 3.4 where the main transmission voltage systems, 

500 and 345kV are presented.  In this figure, bold horizontal lines are buses, thin lines are 

transmission lines linked to buses, circles with wind shapes represent wind generation either 

connected directly to ultra-high voltage levels or connected through step-up transformers, while 

circles with dog bone shapes are conventional generators. The green area in this figure is Area2 

and red area is a transmission system with 500kV.  Also, Fig. 3.5 shows Area2 includes wind 

generation with three main transmission levels in this area, which are 345, 230, 138KV, and those 

levels represent a main path for transferring power to the rest of WTS456.  

 

 

Fig. 3.4.  One-line Diagram of 500kV and 345kV transmission system in WTS456 model. 
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3.2.3 Validation Process 

After building the new benchmark model, the validation process should take place.  Power 

flow of WTS456 model must be examined to check its accuracy of its measurements compared 

with measurements of the initial system.  WTS456 model is run in the PowerWorld simulator and 

an event is placed resulting in open a 345kV line similar to the real event in both the operational 

file and PMU data.  The validation approach applied on the measurements of WTS456 model 

simulation consists of two main inspections; PMU measurements data comparison and Network6 

operational files comparison.  

3.2.3.1 Contingency Analysis 

NERC advises utilities to validate small operational and planning systems using 

Synchrophasor data because the exact match for power flows between original and reduced models 

is not expected after reduction [71].  Therefore, different levels of errors are anticipated in 

producing reduction processes and it should be certain rules thay mention acceptable ranges of 

Fig. 3.5.  One-line diagram of the wind farms area, Area2, in WTS456 model. 
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errors.  Model Validation Working Group (MVWG) of NERC recommends that power flow errors 

of new reduced systems should be within ±10% of measured values [72] and relying on this 

standard, validation part is necessary for obtaining the error rate. 

The voltage angle error comparison is given in 

𝛿 = 𝛿 − 𝛿 ,      (3.6) 

𝛿 = 𝛿 − 𝛿     (3.7) 

where 𝛿  is voltage angle at bus j, δ  is the voltage angle at bus k, 𝛿  is the power angle between 

the buses j and k.  𝛿  is the error between voltage phase angles of WTS456 and PMU 

measurements data, respectively.  𝛿  and 𝛿   are the phase of the WTS456 and PMUs, 

respectively. 

Other calculations are in this part to achieve the goal from PMU comparisons.  Calculations 

such as, lower levels of error and those calculations that analyze error levels in measurements of 

both active power and reactive power. Obtained errors from the power comparison includes, the 

difference between WTS456 measurements and PMUs measurements, and the weight of line, 𝑤 , 

which is a ratio of power passes through line i to the net of powers pass through the lines of 

WTS456. 𝑤  is given in 

𝑤 =
∑

      (3.8) 

where 𝑤  is the weight of line i, 𝑃  is the power passes through line i, n is the number of lines in 

the new model, which is WTS456.  The accuracy of comparisons is obtained like in [71] through 

calculating the relative error, 𝜀  

𝜀 =
∑   

 ∑  

    (3.9) 
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where 𝑋   represents a power measured by PMUs for line i,  𝑋   is a power measured 

in the new model simulation for line i, 𝜀 is utilized to derive a measure of confidence “σ” as it is 

given in 

𝜎 = 100%(1 − 𝜀)     (3.10) 

This examination is deemed to be a quantitative exam because it focuses on the values of 

power flow variables and it is required to see different aspects of checks in next sections to give 

more credit to the proposed approach. 

3.2.3.2 Direction Examination 

The second inspection in the validation part is testing the direction of power flow in 

WTS456 compared with the initial operational files provided by Network6.  The direction of power 

flow variables could be diagnosed form PMUs data. However, the novel method adopts this second 

path to check its new model (in addition to PMUs comparison) to reduce error percentage if there 

is shortage of information in PMUs measurement data. Different elements are selected in this 

comparison depending on the location of them from the studied area to emphasize accuracy of the 

reduced model.  By this step, two main comparisons validate both quantitative and directional 

values of power flow to achieve error within ±10% of actual data in both PMUs and operational 

models.  However, if all validation steps do not produce the targeted percentage error, all reduction 

steps in the first part of the novel method would be repeated. 

3.2.4 Error Reduction Section 

This section could be referred to an error reduction technique (ECT) and is the final part of 

the SVM. This section works on minimizing the percentage of error from ±10% to ±5% of 

measured values in the small models to avoid mismatching conditions if there is a disturbance or 

component placed.  The ECT section functions through adjusting PV and PQ buses and this set 
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depends on PMUs measurements to simulate the same studied conditions.  In PV buses, the 

magnitude of injection power by generators, left without any change in this method to make 

generators and its transformers experience the studied conditions. However, voltage magnitude in 

those buses is set with values extracted from PMUs data and this change helps increase accuracy 

of reactive power and variables related to dynamic stability. If error percentage ±5% is not gotten 

in this step, adjusting PQ buses is the next step.   

This step stirs in four aspects, increasing PQ load, decreasing PQ load, increasing P load 

and decreasing Q load, and vice-versa. These variations are applied in areas where a high error of 

measurements is diagnosed. This step impacts the fourth reduction in the first section, Internal 

Reduction, through increasing elements inside substations, but this influence would reduce relative 

errors and make small models more realistic, especially in the main section of the system.  In other 

words, the new model will have a main section that should have low errors due to it mimicking 

the original systems  with low complexity and that can be explained as following  

𝑉 ≅ 𝑉 ,            (3.10) 

And  

𝑃 ≅ 𝑃 ,            (3.11) 

Then 

𝑉 𝑌 ≅ 𝑉 𝑌 ,           (3.12) 

Where 

𝑌 =

𝑌 . 𝑌

. 𝑌 .
𝑌 . 𝑌

.     (3.13) 

𝑌  is admittance matrix of the reduced model, 𝑉 , 𝑉  are the voltage magnitude of original and 

studied part of reduced model, respectively, 𝑃 , 𝑃  are the active power of original and studied part 
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of reduced model, respectively, 𝑌 , 𝑌  are the admittance of original and studied part of reduced 

model, respectively.  From (3.10) to (3.13), equality of values for powers and voltages of the 

targeted area could come from having same values of admittance for the original and the reduced 

model or 

𝑌 ≅ 𝑌 ,           (3.14) 

If ECT does not produce the required relative error with completing all potential buses, the 

reduction method goes towards the first section, reduction part and all steps are shown in Fig. 3.6. 

In Fig. 3.6,  iE is number of the event, Pei is the initial error percentage which is below ±10%  , 

Pe is the final error percentage which is below ±5%  , iPV is the number of PV bus, iPQ is the 

number of PQ bus, and 𝜀 is the relative error.  
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3.2.5 WTS456 Model Results 

For test purposes, a contingency event is applied on WTS456 to copy the actual event 

occurred in the Network6, Area2, and this event was recorded in PMUs data.  This event is 

executed in the WTS456 model via outage line 58-67.  This event is selected because the 

Fig. 3.6.  Flow chart of the novel reduction method with its SVM steps. 
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disturbance occurred near several wind generation and its influences on them and transmission 

lines in the Area2. All comparisons in the second and third parts of the reduction method are 

accomplished through analyzing measurements of 16 lines of 345kV transmission level linked 16 

buses of WTS456 and the comparisons analyze the model under pre and post-event conditions via 

three variables, phase angle, active power, and reactive power. 

Investigation of the three variables, illustrated in Fig. 3.7 to Fig. 3.12, includes two results, 

the initial error percentage and the final error percentage, which are results of the validation part 

and the error reduction part, respectively.  In Fig. 3.7, the initial error of phase angles, at line 4, is 

-1.68° and this error decreased to -0.8° after the reduction error part due to adjusting voltage 

magnitude and the PQ load amount near this line.  Those differences between WTS456 system 

and PMUs measurements come from variations in the power flow amount after the SVM process 

that changes power production of some generators due to the change of demand in the model. 

However, other lines may not experience high differences between results after the reduction error 

part, some even have high error, because any change around those lines could impact power flow 

in the whole system and produce inaccurate measurements. In comparison with errors of line 4th 

in Fig. 3.8, errors have increased after having the disturbance because the load flow suffered big 
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Fig. 3.7. Comparison of phase angle errors for pre-event condition. 
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changes and is shown in line 12.   Line 12 has big differences between Fig. 3.7 and Fig. 3.8 and 

those differences are because this line is the tripped line in this simulation and the load flow around 

it will make big differences impacting phase angle levels. 

 

 

 

 

 

 

 

 

From active power aspects, errors between WTS456 and PMUs measurements shown in 

Fig. 3.9 and Fig. 3.10 have different ranges that are from -50 to 50 MW and -40 to 65 MW, 

respectively.  These errors come either from eliminating some generators, load nodes, and lines or 

adjusting the load values in WTS456 model and those acts influence values of active power in the 
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Fig. 3.8. Comparison of phase angle errors for post-event condition. 
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Fig. 3.9. Comparison of active power errors for pre-event condition. 
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studied area significantly. However, the error levels are decreased to minimum values after the 

ECT part.  For instance, line 4 in Fig. 3.9 has the error measurement equal to 45.71 MW and this 

value is decreased to 4.61 MW after setting PV load in the ECT part.   Another explanation that 

cause could cause those errors is the change in production of the generating unit and this can be 

seen in line 6.  

This line has a significant power error, which is -49.16 MW as the initial error.  The cause 

of this error comes from the wind generation at Bus12, near 6th, and this wind generation increases 

its production from 152.02 MW in the operational files to 169.8 MW in WTS456 model to fulfill 

changes in power flow after SVM processes. Previous acts exhibit the same effects on other lines 

in both Fig. 3.9 and Fig. 3.10, which are for pre and post-event conditions, respectively.  
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Fig. 3.10. Comparison of active power errors for post-event condition. 



 

47 
 

The third variable is analyzed in this research is reactive power that is illustrated in Fig. 

3.11 and Fig. 3.12.  In these figures, both situations show noticeable errors of reactive power  

within ±100MVAr. Those large errors are results of changes in configuration of WTS456 system 

with the original model removing the external network and relinking the boundary buses together.  

This change is a result of inadequate reactive power produced by removed shunt capacitance of 

transmission lines [67, 70]. The high range of errors is minimized in ECT to values within 

±25MVAr in pre-event and ±40MVAr in post-event conditions. After validation of ECT parts, 

measures of confidence for all pervious variables under pre and post event conditions can be seen 

in Table 2 and Table 3. 
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Fig. 3.11. Comparison of reactive power errors for pre-event condition. 
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Fig. 3.12. Comparison of reactive power errors for post-event condition. 



 

48 
 

Table 2. Accuracy of WTS456 model for pre-event conditions 

Variable Before ECT (%) After ECT (%) 
Phase Angle (°) 99.80 99.74 

Active Power (MW) 99.12 99.53 
Reactive Power (MVAr) 92.50 97.70 

 
Table 3. Accuracy of WTS456 model for post-event conditions 

 

 

 

 

The second inspection in this work is examining the power flow direction in WTS456 

compared with the initial model files provided by Network6 corporation.  This check is conducted 

through matching the direction of power flow in the initial operational file with direction of power 

flow in the WTS456 model.  The test includes two buses and one of them is in the middle of 

targeted area, located near wind generation, and another one is far from the wind generation.  The 

first bus is Bus58 located in the middle of the wind generation area and has some wind generation 

connected to it.  The direction of active power flow for all lines and generators linked to this bus 

are the same for both the operational model and WTS456. Also, the comparison is applied on 

Bus361 and the power flow of active and reactive power for the initial files and WTS456 model 

have the same directions. For clarification, power flow in two lines connected to the mentioned 

buses are matched and tabulated in Table 4 with taking in account comparing with PMUs data. 

Both active and reactive power for both lines in WTS456 model have the same directions 

compared to files of the operational files and PMUs data.  

 

Variable Before ECT (%) After ECT (%) 

Phase Angle (°) 97.78 99.37 

Active Power (MW) 98.85 98.89 

Reactive Power (MVAr) 92.72 97.55 



 

49 
 

Table 4. Comparison of power flow direction 

Line 
 

WTS456 Original Model PMU 
MW          MVAr MW       MVAr MW        MVAr 

58 – 223 42.7         -48.9 46.8         -49.3 48.2        -75.83 
69 – 361 37.5         -91.8   0.7         -85.7    3.0         -88.92 

 
The previous comparisons are taken under steady state conditions.  In other words, they 

show the performance of WTS456 before and after a fault condition in a certain time and they do 

not show response of the model under dynamic conditions.  Therefore, an additional test is applied 

on WTS456 model to simulate dynamic performance during the fault occurrence.  This final 

simulation is dependent on the PMUs measurements and compares them with the dynamic 

simulation of WTS456 in PowerWorld environment.  Three lines in WTS456, which are 58-65, 

219-218, and 58-56, are selected to analyze their phase angles and active power flow when the 

fault is applied and compares them with the same lines in PMUs data.  

Selection of those lines is because their locations are near both wind generation and an 

open line. Performances of phase angles and active power calibrated with PMUs data are exhibited 

in Fig. 3.13 and Fig. 3.14.  In those figures, WTS456 model conducts in similarly to the original 

system through mimicking the changes in load flow variables when the fault occurs at 0.5 seconds.  

In Fig. 3.14, phase angles of the three lines show the same actions with small errors for both 

measurements of WTS456 model and PMUs data.  For Fig. 3.14, active power for three lines 

experience same changes after tripping line58-67 either for WTS456 model or for PMUs data.   

From previous quantity and direction checks, the new benchmark model shows some 

common aspects with the initial system by either comparing with PMUs measurements data or 

comparing with Network6 files.  The differences that appeared in the measurements of WTS456 

model are related to changing size of the original system through eliminating undesired areas, 

buses, generators, and others.  However, the accuracy of the WTS456 model is within NERC 



 

50 
 

requirements for validation of new models.  Therefore, the suggested SVM steps in this work 

provides a valid reduced system to analyze power systems for various conditions, and WTS456 

could be used for planning purposes, especially with a high penetration of wind generation.  

The proposed strategy in this research is to produce reduction models to help researchers and 

planners to use small power system imitating large networks with high accuracy, especially with 

wind generation.  Reduction, validation, and reduction error parts of SVM are explained. PMUs 

measurements data is employed in both validation and reduction error parts.  Those processes are 
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Fig. 3.13. Phase angle comparison of three lines after open line 58-67. 
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applied on Newtork6 and resulted in producing WTS456 model.  WTS456 model shows small 

errors that meets requirements of NERC standards for validations.  WTS456 model with its 

extensive details like circuit breakers, could be used for analyzing aims under various operational 

circumstances, especially with wind power sent remotely to load areas. 
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4 Wide Area Control Method 

4.1 Need for Control Approach in Power System 

Modern power grids with large amount of wind turbine generators could produce 

complicated risks of inter-area oscillations relying on location and volume of wind generation.  

Wide-area control (WAC) designs, with participation of advanced WAM technologies like PMUs, 

can effectively diminish wide oscillations of power systems.  Optimal modification of transient 

stability, using WAC and the incorporation of wind generation, can enhance capability of power 

transfer of  transmission grids and block power systems from generators or load disconnection, or 

large failure following a sequence of disturbances [33]-[35]. This work offers a WAC approach 

based on a modified 𝐻  control method, one of robust control techniques, to dampen frequency 

oscillation and power swing through adjusting variables in both HVDC links and FACTS devices 

particularly static synchronous series compensators (SSSC). 

One of the techniques employed in various systems as a robust control is the 𝐻  control 

method.  [73] addresses using  a composite of linear and nonlinear parts to produce a controller 

that is designed to meet the required 𝐻  performance and offset the quantization error.  [74] 

presents a 𝐻  method to design a robust controller for optimizing the vertical ride quality of the 

wheel-rail forces and improving the ride comfort of the railway vehicle.  The investigation in [75] 

deals with designing a 𝐻  controller for linear uncertain models with input quantization in the 

existence of common encoder/decoder mismatch.  A 𝐻  controller optimal design is suggested in 

[76] which meets and satisfies requirements of a robust control benchmark model.  The aim of 𝐻  

control method in [77] is to develop a feedback controller for placing the desired eigenvalues in 

some desired stable regions and weaken the disturbance between the output vector and the 
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disturbance vector.  Also, [78] offers a study on a robust 𝐻  LMI-based controller to treat damping 

issues and improve the inter-area mode oscillations of power systems.  [79] develops continuous 

time 𝐻  and 𝐻  controllers for FACTS devices through two types of  vibration modes subjected 

to large load variations that makes the control of devices difficult.  [80] states utilizing a LMI-

based mixed 𝐻 /𝐻  state-feedback control technique for controlling Distributed Generation (DG) 

units in an islanded operation of a microgrid system under load uncertainties.  Mixed 

𝐻 /𝐻 controllers in [81] prove to be functional in minimizing road disturbances and tackling 

different inputs.  [82] explains designing of 𝐻  controller for robust stability of individual 

generators in multi-machine systems via feedback controlled static VAR compensators.  From 

previous research, it is clear that 𝐻  control method can be used in various systems to attenuate 

disturbances and set poles or eigenvalues in stable regions. 

4.2 The Modified 𝑯𝟐 Control Method 

It is known that the transfer matrix in terms of state-space systems, for linear-time invariant 

systems (LTI), could be given in the following forms 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),               (4.1) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡),      (4.2) 

Or in different form, which is 

𝐺(𝑠) =
𝐴 𝐵
𝐶 𝐷

.      (4.3) 

With denoting 𝐺(𝑠) = 𝐷 + 𝐶(𝑠𝐼 − 𝐴) 𝐵. 

These systems could be investigated to increase stability through designing controller. 

Several researches utilized the 𝐻  controller to get optimal LTI system feedback that functions 
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properly to reduce influences of disturbance and meet standard requirements [82]-[85].  This 

research considers the following LTI formula, shown in Fig. 4.1, as in  

𝑃 =

𝐴 𝐵 𝐵
𝐶 𝐷 𝐷
𝐶 𝐷 𝐷

=
𝑃 𝑃
𝑃 𝑃

,     (4.4) 

Where 𝑃 (𝑠) = 𝐶 (𝑠𝐼 − 𝐴) 𝐵 + 𝐷 , for |𝐼 − 𝑃 𝐾| ≠ 0. 

 

 

 

 

A generalized plant, P, that consists of the studied system with its controlled and variable inputs, 

is designated with a specific arrangement given in [86]-[87] and this formula could be given as  

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵  𝑤(𝑡) + 𝐵  𝑢(t),     (4.5) 

𝑧(𝑡) = 𝐶 𝑥(𝑡) + 𝐷  𝑤(𝑡) + 𝐷  𝑢(t),    (4.6) 

𝑦(𝑡) = 𝐶 𝑥(𝑡) + 𝐷  𝑤(𝑡) + 𝐷  𝑢(t).    (4.7) 

where  𝑥 ∈ ℝ  is the state, 𝐵  is controlled input, 𝐵  is disturbance input, 𝐶 is sensor or 

measurement output, 𝐶  is the performance or cost output, and 𝐷 , 𝐷 , 𝐷 , 𝐷  represent 

constant variables change with the system design. The 𝐻  control method has been chosen in this 

work because is a proper approach to find a real rational K that stabilizes G(s) internally and 

minimizes the 𝐻  norm of the P matrix from w to z and the action of 𝐻  control method would be 

P

K

yu

zw

Fig. 4.1.  Generalized block diagram of  𝐻  control method [86]. 
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fast compared with the 𝐻  controller.  Also, the 𝐻  controller works on minimizing the maximum 

error while the 𝐻  controller functions on reducing the function [86]-[87]. 

The inputs and outputs for the controller design are vector signals and the input generated by the 

feedback controller, K, is u, while the output or sensor measurement of K is 𝑦, z and w represent 

the desired variable to control and exogenous inputs to P, respectively.  Therefore, this work takes 

benefits of the 𝐻  controller approach, dealing with exogenous inputs, to accomplish the goals of 

this research with reducing the impacts of disturbances that have sudden and unexpectable 

variations with time. 

All equations (4.5)-(4.7) would be correct with assumptions that 𝐷  is equal to 0, [𝐴 𝐵 ] is 

stabilizable,  [𝐴 𝐶 ] is detectable, 𝑉 =
𝐵

𝐷
[𝐵 𝐷 ] ≥ 0, 𝑅 =

𝐶

𝐷
[𝐶 𝐷 ] ≥ 0 [23]. 

The proposed controller design method in this research, illustrated in Fig. 4.2, requires that 

variables of any test system with respect to equations (4.4) to (4.7) and that they should be defined 

with proper forms in order to achieve optimal results. Then the method takes in account changing 

values of 𝐾  and 𝑇   that represent the controller gain and time of enhancing devices would be 

connected to the system adjusted and set by 𝐻  controllers.  Variation in values 𝐾  and 𝑇  will 

influence directly A matrix and lead to change in calculations of gain of 𝐻  controllers.  For 

instance, let’s assume there is a system with 𝐴 ∈ ℝ  and 𝐾  and 𝑇  are elements in the A matrix 

and that impact gain of  𝐻  controllers, which is given in 

𝐾 =
−𝐿

𝐹 0
,    (4.8) 

𝐹 = −𝑅 (𝑅 + 𝐵 𝑋 ),    (4.9) 

𝐿 = −(𝑌 𝐶 + 𝑉 )𝑉 ,    (4.10) 



 

56 
 

Where  

𝑅 =
𝑅 𝑅
𝑅 𝑅

=
𝐶 𝐶 𝐷

𝐷 𝐶 𝐷
,    (4.11) 

And 𝑋  and 𝑌  are the unique, positive semidefinite solutions to the following Riccati equations 

[84]; 

0 = 𝑋 𝐴 + 𝐴 𝑋 + 𝑅 − 𝑅 𝑅 𝑅 − 𝑋 𝐵 𝑅 𝐵 𝑌 ,   (4.12) 

0 = 𝐴 𝑌 + 𝑌 𝐴 + 𝑉 − 𝑉 𝑉 𝑉 − 𝑌 𝐶 𝑉 𝐶 𝑌 ,   (4.13) 

Where 

𝐴 = (𝐴 − 𝐵 𝑅 𝑅 ),       (4.14) 

and 

𝐴 = 𝐴 − 𝑉 𝑉 𝐶 .    (4.15) 

From all mentioned variables it is clear that 𝐴 matrix would influence directly three of four 

elements in (4.8) and produce different weights. Therefore, generating different controller weight, 

will produce different performances of system due to adjustment of the controller weight with the 

difference value could result in having proper outcomes and the criteria for γ. 

The values of  𝐾  and 𝑇  would be within  a range to avoid divergence results.  After having 

these variables, the P plant would be built and then the 𝐻  controller is calculated with forming 

inputs and outputs and a comparison between sensor outputs of systems with conventional 

controllers and sensor outputs of systems with 𝐻  controllers is made.  After getting all results for 

all conditions, the two criteria are used to select the optimal 𝐾  from lower cases have low 
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measurement output deviations of system.  The first criterion is based on the 𝐻  optimal cost (γ), 

which is given in  

γ =‖𝑓(𝑃, 𝐾)‖ .      (4.16) 

If differences between low optimal cost (γ) for three different cases are lower than 0.1, then chosen 

the minimum of maximum output deviation, min ( max (ST)), would be the second criterion to 

select the optimal 𝐾 .  

In other words, the 𝐾  value would have three different current or frequency deviations as 

examples and the maximum values of these deviations are used to make a comparison of the second 

criterion.  The case has lower current or frequency deviation in any area can be selected to choose 

𝐾 .  If differences between low optimal cost (γ) for three different cases are higher than 0.1, then 

selection of  𝐾  is dependent on a case that has lower γ and all these steps are explained in Fig. 4.2. 
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Fig.  4.2. Flow chart of the proposed control method. 
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Designing the system with an 𝐻  controller could be done in several configurations and that 

is dependent on the type of  inputs and outputs [88, 89]. In this research, two types of disturbance 

inputs are suggested to be within the suggested configuration of 𝐻  control feedback design, shown 

in Fig. 4.3, while the error of sensor outputs would be as inputs of the controller. 

 

 

 

 

In this figure, the unstructured uncertainty model for the 𝐻  controller is built on additive 

model of uncertainty [90] where the first disturbance input, w1, is assumed to have variables with 

transfer functions to simulate complex components and this is added to the system plant producing 

a new plant as following 

𝐺(𝑠) = 𝐺 (𝑠) + 𝑤 ∆𝑤.     (4.17) 

Where 𝐺  is the original system plant, 𝐺 is the new system plant with the disturbance input, and 

∆𝑤 is the disturbance deviation and it is considered in this work as a band-limited white noise.  The 

second disturbance input, w2, is employed to be as a reference for the sensor outputs to reduce errors 

passes through the controller.  The sign of w1 could be positive or negative and that relies on the 

nature of the disturbance’s influence on the whole test system.  The input of the system, u, is the 

output of the 𝐻  controller in addition to w1 and performance output, z, is taken from this part and 

the error in outputs, e, is selected to be the input of 𝐻 , shown in Fig. 4.3. 

 

 

Fig. 4.3. The unstructured uncertainty model for the suggested control method.  
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4.3 The 𝑯𝟐 Controller in AGC Models 

Various papers related to AGC models function with 𝐻  controller for predictive 

approaches, damping oscillations, and multi-area power flow through SSSC devices or HVDC links 

purposes [82],[88]-[97].  Defining variables, related to control and disturbance inputs and 

emphasizing performance and sensor outputs in power systems in LFC models, is an essential part 

in those researches to come up with optimal consequences that meet required standards.    

SSSC devices or HVDC links are enhancing equipment that would be placed in the test 

system.  The values of  𝐾  and 𝑇 , represent the controller gain and time of SSSC or HVDC 

connections, would be within  a range to avoid divergence results.  After having these variables, the 

P plant would be built and then the 𝐻  controller is calculated and a comparison between sensor 

outputs of systems with ACE controllers and sensor outputs of systems with 𝐻  controllers is made.  

After getting all results for all conditions, there are two criteria that are used to select the optimal 

𝐾  from lower cases that have low frequency deviations or power deviation of areas in a test system, 

which are the 𝐻  optimal cost (γ)  or the minimum of maximum frequency deviation, min ( max 

(ST)).  The case that has lower frequency deviation in any area can be selected to choose 𝐾  and 

this criterion is important for this work in order to check violating the NERC frequency standard, 

Bal-003-1.  

The outputs of LFC models,  [ ∆𝑓  ∆𝑃 ], are selected in all works to display successes 

of control methods and this research is considered sensor outputs to make the controller develop its 

weight in order to reduce errors. Also, disturbance inputs in LFC models could be either renewable 

generation, wind or solar generation, or load variation or faults and these inputs may be simulated 

through transfer functions to demonstrate more realistic performance. 
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4.4 The 𝑯𝟐 Controller with Inverter-based Devices 

This work employs these components of LFC models, as state-space variables, after adding 

the SSSC device or HVDC link, as the other output, and replacing the ACE controller with the 𝐻  

controller [96] for multiple area systems.  The proposed approach, shown in Fig. 4.4, deals with 

several areas and each area has its own outputs, which are [ ∆𝑓  ∆𝑃 ],  in addition to power 

deviation via either the SSSC device, ∆𝑃 , or HVDC links, ∆𝑃 .  In addition to the outputs, 

disturbances inputs, which are PW is wind power, PV is solar power, and ∆𝑃  is the load variation, 

influence frequency response and power swing in the model widely and this increase the complexity 

of power systems.  As part of the suggested methods in Fig. 4.3, the sensor outputs, ∆𝑓, ∆𝑃 , 

∆𝑃  and ∆𝑃  are normalized with reference values, ∆𝑓 , ∆𝑃 , ∆𝑃  and ∆𝑃  

(set to be zero) in order to reduce errors, shown in Fig. 4.4.  These reference values are also 

considered disturbance inputs to the test system for processing in the system and getting low errors 

as inputs for the suggested controller.  The normalized outputs are turned back to the model, with 

various disturbances, through the 𝐻  controller with an integrator and these steps should be counted 

in equations (4.1) to (4.4). After arrangement in (4.5) to (4.7), the control law for the suggested 

approach can be written with the configuration in Fig. 4.4 as  

Fig. 4.4.  The proposed approach to implement the 𝐻  controller in the LFC test system. 
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𝑢(𝑡).  (4.18) 

This approach makes the controller deal with its input variables, displayed in (4.18), which is 

dealing with each area, and outputs of the area, and this assists the controller to set the weight of 

areas.  This will help in having results with low error and cost and meeting requirements of agencies 

standards. 

4.4.1 Static Synchronous Series Compensator (SSSC) 

One of the substantial members in flexible ac transmission system devices is SSSC that 

would be installed in series with lines of transmission systems connecting two areas, as shown in 

Fig. 4.5, to control the real power flow, voltage profile, and frequency damping in acceptable 

ranges [95]-[97].  One of the SSSC characteristics is the ability of absorbing active power from 

one area and injecting it to another area under change load in the power system [96], [98, 99].  The 

dynamic model of SSSC used in AGC system requires knowing the way to calculate its variables 

to represent them properly in LFC models. In the existence of SSSC between areas i and j, 

deviation of active power flow between the two areas can be given as follow 

∆𝑃 = ∆𝑃  + ∆𝑃      (4.19) 

Where ∆𝑃  is the deviation of power flow in tie-line i-j with SSSC, ∆𝑃   is deviation of 

power flow in tie-line i-j without SSSC, ∆𝑃  is power flow between areas i and j due to SSSC 

and this power flow will have different signs (+/-) due to its performance dynamically [96],[98, 

99].  
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To represent the SSSC device in LFC models with taking in account with respecting to state-space 

formulas, linearized model of SSSC device with its power flow control consists of four blocks, as 

shown in Fig. 4.6, that represent a lead/lag compensator, a High Pass Filter (HPF) and a controller 

gain [96]. Where, 𝐾  is a controller gain, 𝑇  is a washout time constant, 𝑇 , 𝑇 , 𝑇  and 𝑇  are 

time constants of lead/lag  controller. Time constant of HPF, i.e. 𝑇  is between 0.5 and 20 s. In 

this study, it is fixed to 10 seconds while 𝑇  and 𝑇  are set to be 0.01 seconds [96, 100]. 

 

Dynamic characteristic of SSSC is modeled by first order transfer function or first order  

differential equation as [96]: 

∆𝑢 + 𝑇 ∆�̇� = ∆𝑃     (4.20) 

Fig. 4.6. Linearized model of the SSSC device [100]. 

Fig. 4.5. Configuration of a two-area power system equipped with a SSSC device [96]. 
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where 𝑢  is control signal of SSSC, and 𝑇  is time constant of SSSC.  The input signal of 

the compensator for the SSSC is defined as: 

𝑈  = ∆𝑓 − ∆𝑓      (4.21) 

where, ∆𝑓  and ∆𝑓  are frequency deviations of areas i and j, respectively.  From Fig. 4.6, the SSSC 

controller uses frequency deviation of Area i and j and frequency deviation of Area i is a local 

signal while  the frequency deviation of Area j would be transmitted via communication channels 

to the controller.  The SSSC control unit will vary power flow in the tie-lie between two areas and 

assist in stabilizing the frequency oscillations.  For the proposed 𝐻  control method, four variables, 

which are 𝐾 , 𝑇 , 𝑇  and 𝑇 , would be examined to find optimal values of  𝐾  and 𝑇 .  

4.4.2 High Voltage Direct Current (HVDC) Link 

Development of the HVDC transmission system, due to economy, environment and 

performance’s advantages over the other alternative techniques, improves dynamic performance  

 

of power systems, especially with greater stabilization margins or edges under small changes in 

power systems.  Therefore, this work considers LFC models of interconnected power systems with 

a dc tie-line in parallel with an ac tie-line, shown in Fig. 4.7 [99, 101].   The HVDC system provides 

better flexibility in the power system operation and control by utilizing the power electronics 

Area i Area j

PTie-ac 

PTie-dc 

AC Link

DC Link

Fig. 4.7. Configuration of a two-area power system equipped with a HVDC link [99]. 
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equipment.  In each HVDC link, the sending end converter acts as a rectifier and the receiving end 

converter functions as an inverter, as shown in Fig. 4.7.  With fast control action of the converters, 

the parallel combination of AC tie-line and HVDC link (AC/DC link) improves in reducing power 

oscillation and frequency deviation in systems have variable generation and disturbances is a main 

purpose in this research in addition to enhanced power flow in tie-lines for international 

connections [102]. 

Tie-lines in interconnected areas are utilized for increasing a power exchange between the 

control areas while providing inter area support during abnormal conditions[103]. However, due 

to issues in ac transmission systems such as power flow oscillations, increasing fault current level, 

frequency droop, and disturbance effects of transmission faults from one area to other could result 

in deterioration of overall system performance.  These issues are solved by adoption of HVDC 

links that participate in reducing power instability associated with ac lines of the interconnected 

power systems, especially with renewable generation [99],[104]-[106]. The fast act of power 

electronics within HVDC converter stations could vary power flow rapidly through the HVDC 

line and help in power oscillation damping (POD). The potential for power injection control at 

non-generator buses (where HVDC systems are typically installed) has been shown that HVDC 

systems can be used to damp inter-area electromechanical oscillations produced by abnormal 

events or renewable generation [107].  
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In this work, a simple block diagram of AC/DC transmission system is used in LFC models 

to simulate HVDC tie-lines. An equivalent first order transfer function with appropriate AC/DC 

gain constant, 𝐾 , and time constant, 𝑇  are shown in Fig. 4.8.  Similar to the SSSC device, the 

difference between ∆𝑓  and ∆𝑓  is used as input to the HVDC controller i and j, respectively.  For 

the proposed 𝐻  control method, four variables, which are 𝐾 , and 𝑇 , would be examined to 

find optimal values of  𝐾  and 𝑇 . 

The suggested control method and calculating optimal values of inverter-based 

equipment’s parameters are applied in two real test systems in the following chapters.  One of 

these systems is an electrical network with high penetration of wind generation built relying on 

SVM.  While the other system is an electrical network planned to have solar generation and be a 

hub for connecting different countries through ac tie-lines and HVDC links. 

 

 

 

 

Fig. 4.8. Linearized model of the HVDC link [99]. 
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5 The Modified 𝑯𝟐 Control Method with Three Area System 

5.1 Three Area Test System 

The main aim of this dissertation is applying the suggested control method on real power 

systems to achieve two goals; offering new models created and validated via the proposed 

reduction technique, SVM, and presenting more realistic results that could help in determining 

proper actions for potential events.  Also, it is preferred to have simple reduced systems of large 

ones to run LFC models to avoid complexity during the calculations and the outcome model from 

SVM in chapter 3 is employed to be the test system required to be a simple LFC model. 

Area 2, in Fig. 3.5, in the WTS456 model includes 237 buses, 414 lines, and 35 generators 

with total generation 4300 MW, and 40% of the installed generation is from wind generation, 

whose percentage would be increased or reduced with time compared with the conventional 

generators.  This model is reduced by the novel reduction method to 21 bus system.  The reduced 

system consists of nine generators, six of them are wind generation, and 27 lines, shown in Fig. 

Fig. 5.1. The 21 buses three-area system. 
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5.1.  This area is built in this work as a LFC model in order to simulate power systems with wind 

generation under 𝐻  control method with both SSSC device and HVDC link. 

The new model, shown in Fig. 5.2, is divided into three areas and each area has a 

conventional generator and different numbers of wind generation and these areas are connected 

together through three tie-lines.  Both SSSC device and HVDC link is placed or connected second 

and third areas.  Also, there is a disturbance with 0.05pu as a magnitude is set at 30 seconds in the 

first area and it is cleared after 0.5 seconds and frequency deviation and power change in tie-lines 

are outputs used to be inputs for the 𝐻  controller.  

 
Fig. 5.2. Block diagram of three area system with wind farms. 
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The wind generation in each area has a different generation that is varied with time and 

that is shown in Fig. 5.3 and this impacts directly the frequency and power in tie-lines.  The 

frequency for the three-area system, shown in Fig. 5.4, has a range which is between 60.2 and 

59.6Hz and this violates frequency standard within 0.06Hz.   Several dips and peaks display in 

each frequency recovery due to varying generation of the wind generation.   Also, the frequency 

shows a significant dip at the time when the disturbance is placed in the first area while it does not 

Fig. 5.3. Generation of wind farms in the three-area system. 

Fig. 5.4. Frequency response of the three-area test system with wind farms and a disturbance. 
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have high influences on other areas.  Generators in this system are considered as thermal units and 

transfer functions of those units are given in Generator:  

,                        (5.1) 

Governor transfer function: 

,              (5.2) 

Steam turbine: 

,      (5.3) 

while the ACE in all the three areas are given as in  

𝐴𝐶𝐸 = ∆𝑃𝑡𝑖𝑒 + 𝐵 ∆𝑓 ,    (5.4) 

where, s: Laplace operator, i: the number of areas, 𝐾𝑔: gain constant, 𝑇𝑝: time constant, 𝑇𝑔: 

governor time constant, 𝑇𝑡: turbine time constant, ∆𝑃𝑡𝑖𝑒: tie-line power changes among different 

areas, B: biasing constant, ∆𝑓: the incremental frequency deviation [108].  

The system calculations are built on state-space variables equations in order to check 

stability and design the 𝐻  controller. The check shows that the system, which has 15 state 

variables, before having time delay, and wind generation is unstable and the reason for this 

condition is the existence of a zero eigenvalue. The zero eigenvalue is brought to this system 

because of integrators in the ∆𝑃𝑡𝑖𝑒 transfer function, given by 

,      (5.5) 
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where, 𝑇 : power synchronizing coefficient between area i and j.  Therefore, a reduced row 

echelon form is utilized to reduce number of tie-line power changes in the three- area system. After 

several calculations, ∆𝑃𝑡𝑖𝑒  is replaced with both ∆𝑃𝑡𝑖𝑒  and ∆𝑃𝑡𝑖𝑒  after multiplication with 

constants and that is given in 

𝑥 = − 𝑥 − 𝑥 ,                   (5.6) 

Where, 𝑋 : state-space variable of ∆𝑃𝑡𝑖𝑒 pre-replacement, 𝑋 : state-space variable of ∆𝑃𝑡𝑖𝑒 , 

𝑋 : state-space variable of ∆𝑃𝑡𝑖𝑒 , 𝑞 , 𝑞 , 𝑞 : reduction constants. The state-space equations after 

this reduction are given in 

𝑥̇ = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑢,  (5.7) 

𝑥 ̇ = 𝑥 + 𝑥 ,      (5.8) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,     (5.9) 

 𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 + 𝑥 + 𝑥 ,     (5.10) 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑢,   (5.11) 

 𝑥 ̇ = 𝑥 + 𝑥 ,             (5.12) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,          (5.13) 

𝑥 ̇ = −2𝜋𝑇 𝑥 + 2𝜋(𝑇 + 𝑇 )𝑥 − 2𝜋𝑇 𝑥 ,      (5.14) 

𝑥̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑥 ,     (5.15) 
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𝑥 ̇ = 𝑥 + 𝑥 − 𝑥 + 𝑥 + 𝑢,    (5.16) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (5.17) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,      (5.18) 

𝑥 ̇ = −2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 + 2𝜋(𝑇 + 𝑇 )𝑥 ,   (5.19) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑥 ,           (5.20) 

𝑥 ̇ = 𝑥 +
  

 𝐾𝑊𝑇     (5.21) 

𝑥 ̇ = 𝑥 +
  

 𝐾𝑊𝑇     (5.22) 

𝑥 ̇ = 𝑥 +
  

 𝐾𝑊𝑇     (5.23) 

where, 𝐾𝑖 , 𝐾𝑖 , 𝐾𝑖 : three area controllers, 𝑅 ,𝑅 , 𝑅 : speed regulation parameter, U: state-space 

input, TW: Wind turbine time constant, which is 1.5 seconds in this work, 𝐾 : Wind power 

percentage of total generation, 𝐾𝑊𝑇: Wind variable input. 

The state space equations for (5.7)-(5.23) are written as: 

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),               (5.24) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡).      (5.25) 

Six of the test system’s variables, 𝑥 , 𝑥 , 𝑥 , (− 𝑥 − 𝑥 ), 𝑥 , 𝑥 , are connected to 

the 𝐻  controller through a time delay function, which is  
  

.  All these variables are added to 

the system resulting in a test system with 23 state-space variables.  The modified, highlighted by 

*, and new state-space variables can be given as 
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𝑥̇ = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑢 ,    (5.7*) 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑢 ,      (5.10*) 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑥 + 𝑥 + 𝑢 ,    (5.11*) 

𝑥̇ = 𝑥 + 𝑥 + 𝑢 ,               (5.15*) 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥 + 𝑥 + 𝑢 ,    (5.16*) 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑢 ,     (5.20*) 

𝑥 ̇ = 𝑥 − 𝑥 ,             (5.26) 

𝑥 ̇ = 𝑥 − ( )𝑥 − 𝑥 ,    (5.27) 

𝑥 ̇ = 𝑥 − 𝑥 ,                 (5.28) 

𝑥 ̇ = 𝑥 − 𝑥 ,             (5.29) 

𝑥 ̇ = 𝑥 − 𝑥 ,          (5.30) 

𝑥 ̇ = 𝑥 − 𝑥 ,         (5.31) 

where 𝑈 , 𝑈 : controlled input and variable input, such as renewable power or random load.  After 

running these state-space equations in the MATLAB environment, the results of the system pre 

and post having the 𝐻  controller are obtained.   

The power flow deviation shown in Fig. 5.5 has obvious changes with time due to impacts 

of wind generation and these changes vary from -0.02 to 0.04pu.  However, the power in tie-lines 
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does not display large dips or peaks at the time of disturbance and this may come from influences 

of renewable generation.   

The performance of the system illustrated in previous figures is an outcome of a 

conventional controller, which is ACE, and this controller does not give a proper act to reduce 

large variations and fluctuations. The proposed control method is applied on this system to show 

the required response and similar to the approach in Fig. 4.2.  From Fig. 5.6 and Fig. 5.7, the 

improvement of system’s response for both frequency and power deviation of tie-lines exists and 

this enhancement is a result of an adoption of the 𝐻  control method.  The frequency recovery 

shown in Fig. 5.6 is reduced from the range 60.14-59.74Hz to the range 60.08-59.92Hz and this 

outcome is because of the considering disturbances or varying inputs by the 𝐻  controller and its 

function to keep the frequency and power deviation near the reference values. Also, frequency has 

a high swing when the disturbance is placed evenly.  The 𝐻  controller tries to reduce it and keep 

it within the range between 60.06 and 59.94Hz and that is required to avoid violating the frequency 

standards.  However, the 𝐻  controller act causes some oscillations in frequency that are present 

Fig. 5.5. Power deviation of tie-lines in the three-area test system. 



 

75 
 

in the original system with the conventional controller even these oscillations do not have high 

values compared with original system.  

From the power flow in tie-lines aspect, the system with the 𝐻  controller shows low power 

deviation for all three areas compared with the original system where the range of deviation has 

been reduced from 0.09 to 0.03pu, Fig. 5.7, and that is optimal in load flow, especially if the system 

Fig. 5.6. Frequency response of the test system with both ACE and 𝐻  controllers. 

Fig. 5.7. Power deviation response of the test system with both ACE and 𝐻  controllers. 
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experiences abnormal conditions.  Similar to frequency recovery, the power deviation has little 

oscillations with the 𝐻  controller.  This phenomenon could be an effect of power generation by 

wind generation and this could be seen when wind generation have high amount of production 

injected into the system.  Some techniques are going to be adopted in this work to reduce those 

oscillations and others and these techniques consist of inserting a SSSC device and HVDC link in 

the test system in addition to placing N-1 and N-1-1 contingency events.  

5.2 HVDC Link Installation 

One of methods used to improve and enhance power flow and reduce frequency deviation 

is installing HVDC links in transmission systems. The HVDC link is placed between two areas, 

Area 2 and Area 3, to reduce impacts of disturbances, Fig. 5.8.  The modified method is applied to 

obtain the optimal values of 𝑇  and 𝐾  with considering the time communication delay is 200ms. 

After running the proposed method in Fig. 4.2 in MATLAB environment for 1900 cases in 4.45 

hours, the optimal values for 𝑇  and 𝐾  that achieve optimal cost γ for three areas, depending on 

criterion min(max(ST)) , are 3.15, 3.11, and 3.12, respectively, and minimum frequency deviations 

for the areas are 60.0651, 60.0312, and 60.0330Hz, respectively, shown in Table. 5. 

 Table 5. Minimum frequency (Hz) and optimal cost values for the HVDC case 

 

 

 

The first case is chosen to be optimal values for 𝑇  and 𝐾  with and their values are 0.5 

second and 0. 2 pu, respectively.  Selection of these values from others is because all mentioned 

cases achieve the condition (γ(i+1)-γ(i) = 0.1) and then the optimal values selection would depend 

Case No. 𝑓  𝑓  𝑓  γ 

1 60.0651 60.0321 60.0444 3.1510 

2 60.0654 60.0312 60.0336 3.1094 

3 60.0654 60.0318 60.0330 3.1241 



 

77 
 

on the lowest value of frequency deviation, which can be seen in the first area.  Also, other 

conditions will be ignored even they have lowest frequency deviation or optimal cost because they 

have a HVDC link connected them together in addition their ac tie-line.  This connection would 

help in reducing frequency deviations and power swings and that would be seen in next part.    

 

 

 

 

 

Fig. 5.8. Block diagram of three area system with wind farms with HVDC link. 
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The optimal values are placed in the transfer function of  HVDC link and a comparison 

between three different cases, ACE controller, 𝐻  controller, and 𝐻  controller with HVDC link, 

respectively,  under two scenarios will be done.  The first scenario consists of the three-area system 

with wind generation and a disturbance in the first area.  The system is run in MATLAB 

environment for 150 seconds and the comparison will be between the three cases as shown in Fig. 

5.9.  In this figure, frequency deviation has been reduced to lower values in 𝐻  controller, and 𝐻  

controller with HVDC link compared with ACE controller case.  However, the 𝐻  controller case 

shows high frequency oscillations during the simulation time and that could exhaust generators 

and their controllers and may lead to overloading conditions in lines with high power flow.  This 

case would be a result of 𝐻  controller’s dealing with wind generation or disturbances because 

these oscillations begin with increasing of wind volume or disturbance occurrence, shown in Fig. 

5.3.  Therefore, adoption of HVDC link technique helps in mitigating this issue along with 

reducing frequency oscillations.  

Fig. 5.9. Frequency response of three areas in three cases; ACE controller, 𝐻  controller, 
and 𝐻  controller + HVDC link. 
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In Fig. 5.10, the system with HVDC links shows a smoother response compared with the 

condition without an HVDC link and it maintains the frequency deviation with ±0.06Hz to meet 

the regulatory requirements.  However, the first area has a frequency deviation over 0.06 Hz and 

this issue is due to influence of the disturbance at 30.  Also, frequency deviations of the third case 

has the same value of frequency deviation of the second condition and this phenomenon is due to 

injection of wind generation or placement of disturbances. Therefore, the HVDC link functions to 

reduce this issue gradually with time after the moment of the event.  

Fig. 5.10. Frequency response of three areas in two cases; 𝐻  controller, and 𝐻  controller 
+ HVDC link. 
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From the power flow in tie-line aspect, the comparisons are repeated for power deviation 

in tie-lines and the deviation has been reduced largely, as shown in Fig. 5.11.  In this figure, power 

deviation for the second and third cases are within ±0.02pu due to the impact of the 𝐻  controller 

while the system with ACE controller has conditions with power deviation reaches 0.1pu as in the 

third area.  

5.3 N-1-1 Contingency Event with HVDC Link 

The three-area system experiences N-1-1 contingency events through setting a disturbance 

with 0.05pu as magnitude after 2 seconds from clearing the first fault, cleared at 30.5 seconds, and 

the second fault would be clear by 33 seconds.  In this simulation, selection of  𝑇  and 𝐾  is left 

relying on the previous values to analyze response of the system under unpredictable conditions 

or without pre-preparations.  After placing the disturbances, the comparisons are applied again on 

the three cases, ACE controller, 𝐻  controller, and 𝐻  controller with HVDC link, respectively.  

Fig. 5.11. Power deviation of tie-lines of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + HVDC link. 
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The first comparison is related to frequency deviation that is displayed in Fig. 5.12 and this 

figure shows the system has high frequency deviation during the disturbance period for all cases, 

especially in the first area that reached 60.1 Hz.  This issue comes from the influence of faults that 

occur in a sequence where the impacts of first the fault are increased by the second fault instead of 

damping.  However, the system responds to this type of events in a proper way through reducing 

frequency deviation in all areas and these changes have been enhanced from a response with high 

oscillations to smooth variations that are illustrated in Fig. 5.13.  For the issue in the first area, the 

frequency deviation during the N-1-1 condition that reaches over 60.1 Hz  and this is related to the 

impact of disturbances of 5% of the system load.  

Fig. 5.12. Frequency response of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + HVDC link under N-1-1 contingency events. 
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This disturbance could be considered a large change in power system conditions and that 

is used in this work to show a worst-case situation. Moreover, another comparison is made for the 

power deviation in tie-lines and is similar to a previous scenario.  The power deviation for the 

system under N-1-1 contingency event does not show high changes in the second and third cases 

in contrast with the first case that have large variations, shown in Fig. 5.14.   

Another type of event is applied on the test system with the HVDC link and this event is 

an outage of two lines sequentially.  These lines area selected to be in tie-lines 1-2 and 1-3 and 

these trips occur at 30 and 32 seconds, respectively, and these lead to increased values of power 

synchronizing coefficients ten times, to emphasize outage of lines as shown in Fig. 5.15.  In this 

figure, it is obvious that the N-1-1 event impacts power flow in the system largely and that can be 

seen during wind generation periods where there are big differences in values of power deviation 

between pre and post-event condition.  

Fig. 5.13. Frequency response of three areas in two cases; 𝐻  controller, and 𝐻  
controller + HVDC link under N-1-1 contingency events. 

Fig. 5.14. Power deviation of tie-lines of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + HVDC link under N-1-1 contingency events. 
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This event is simulated for the system in three cases and the results are shown in Fig. 5.16 

and Fig. 5.17.  In Fig. 5.16, the system with only the 𝐻  controller or with the  𝐻  controller and 

HVDC link have better frequency recovery compared with ACE controller. The HVDC link 

simulation shows smooth response keeping within the NERC frequency requirements.   Also, Fig. 

5.17 displays that power deviation with the 𝐻  controller have reduced values and maintain with 

Fig. 5.15. Power deviation of tie-lines of two areas under N-1-1 contingency events. 

Fig. 5.16. Frequency response of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + HVDC link under N-1-1 contingency events in lines. 
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the range of 0.05pu while the system with a conventional controller has larger power deviations.  

The 𝐻  controller with HVDC link produces lower power deviation even when there are several 

disturbances and variable resources influence the power system.  

5.4 SSSC Device Installation 

The modified approach for use of FACTS devices is applied on the three-area system 

through setting a SSSC device between the second and third area, Fig. 5.18.  This step is to test 

the response of the system for dynamic circumstances and the influence of the SSSC device to 

reduce power oscillation and frequency swings.  The modified method calculates the optimal 

values of 𝐾  and 𝑇 , 𝑇 , and  𝑇  with considering the time communication delay is 200ms 

and fixing 𝑇 , 𝑇 , and 𝑇  to be 10, 0.01, 0.01. 

The suggested approach is simulated in MATLAB environment for 2.2 hours, the optimal 

values for 𝐾  and 𝑇 , 𝑇 , and  𝑇  that achieve optimal cost γ for three areas, depending on 

criterion min(max(ST)) , are 3.30, 3.24, and 3.27, respectively, and minimum frequency deviations 

Fig. 5.17. Power deviation of tie-lines of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + HVDC link under N-1-1 contingency events in lines. 
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for the areas are 60.0360, 60.0370, and 60.0352Hz, respectively, illustrated in Table 6.  Similar to 

the HVDC link conditions, the first case is chosen to be optimal values for 𝐾  and 𝑇 , 𝑇 , 

and  𝑇  with and their values are 0.2pu and 0.1, 0.1, and 0.1 seconds, respectively.  

Table 6. Minimum frequency (Hz) and optimal cost values for SSSC case 

Case No. 𝑓  𝑓  𝑓  γ 

1 60.0360 60.0374 60.0467 3.2959 
2 60.0372 60.0370 60.0355 3.2363 
3 60.0370 60.0374 60.0352 3.2660 

 

Like the analysis with an HVDC installment, three cases are studied to make a comparison to 

evaluate the system response with having the SSSC device. The first comparison is for the 

frequency recovery that is shown in Fig. 5.19.  

 

Fig. 5.18. Block diagram of three area system with wind farms with SSSC. 
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In this figure, frequency recovery of the system either with only 𝐻  controller or with 𝐻  

controller and SSSC device functions better that frequency recovery of the system with an ACE 

controller.  The 𝐻  controller helps the power system to reduce its frequency deviation created 

either by wind generation or by disturbances.  The controller decreases frequency variations range 

from over 0.4 to 0.2Hz but it has a frequency deviation due to the disturbance around 60.17Hz 

while the system has  a frequency deviation in the conventional condition that reaches 59.8Hz. 

However, the 𝐻  controller participates in producing some frequency oscillation around the 

nominal value of frequency, 60Hz, and that is increased by wind generation and faults.   

Performance of the three-area system with the SSSC device does show significant 

differences in contrast with the system without the FACTS equipment and these cases are with the 

𝐻  controller and are shown in Fig. 5.20.  The system with the SSSC connection has stable 

behavior and the deviations are reduced from 0.2 to 0.1 Hz.  However, the system for both the 

second and third cases have almost the same recovery time although reaching over 60.1Hz at the 

Fig. 5.19. Frequency response of three areas in three cases; ACE controller, 𝐻  controller, 
and 𝐻  controller + SSSC device. 
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disturbance moment, for the first area, and the system starts having lower values in time after that. 

In the other areas, the system with SSSC has a smooth recovery and maintains the range of 

frequency deviation within ±0.05Hz and that is illustrated in Fig. 5.21.  

In power flow aspect, power variation range has been mitigated from 0.12pu in ACE 

controller case to 0.01pu in the 𝐻  controller cases, without and with SSSC device, and that is 

Fig. 5.21. Power deviation of tie-lines of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + SSSC device. 

Fig. 5.20. Frequency response of three areas in two cases; 𝐻  controller, and 𝐻  
controller + SSSC device. 
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illustrated clearly in Fig. 5.19.  The difference between 𝐻  controller cases is lower than 0.003pu 

and the system performs smoothly with SSSC compared with only 𝐻  controller case the during 

the simulation.  The second and third areas present small variations with time compared with the 

first area due to the impact of the SSSC device.  These variations between the two cases would be 

the same at the beginning of the disturbances produced by wind generation or by faults and that 

could be seen in Fig. 5.21 at 25, 75, 120 seconds and then the SSSC would help the system to have 

damped power oscillations. This concludes that the SSSC device would have a significant 

influence in the power system with an 𝐻  controller and would assist in reducing frequency and 

power deviations and keep them within acceptable ranges of NERC power system requirements. 

5.5 N-1-1 Contingency Event with SSSC Device 

A sequence of two events also are evaluated in the system with SSSC device in order to 

investigate the dynamic response.  The first event is applying the same disturbances as in the 

HVDC link example, with 0.05pu magnitude and at 30 and 32 seconds, respectively, and these 

events are placed in the first area.  From Fig. 5.22, the system has a different response for the three-

area depending on the fault and SSSC locations.   The first area experiences high effects of the 

disturbances and the frequency reaches range between 60.16 and 59.8Hz in the conventional 

controller condition. Both the 𝐻  controller cases witness a high frequency swing at the disturbance 

moment due to the N-1-1 consequences and the only 𝐻  controller case has over 60.1 Hz and under 

59.9 Hz which violates the NERC frequency standard.  However, the 𝐻  controller functions 

within limits 60.12 to 59.97Hz and then this is reduced to be under 0.06Hz.  In other areas, the last 

two cases do not exceed the NERC frequency standard. 
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From a power deviation aspect, the range of power swing under the 𝐻  controller cases is 

within 0.02pu as shown in Fig. 5.23, and this is an improvement compared to a range of 0.04pu in 

ACE controller method.  In the other scenario of an N-1-1 disturbance, there is no violation in 

frequency standards for all cases as shown in Fig. 5.24 where the frequency recovery has been 

Fig. 5.22. Frequency response of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + SSSC device under N-1-1 contingency events. 

Fig. 5.23. Power deviation of tie-lines of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + SSSC device under N-1-1 contingency events. 



 

90 
 

enhanced under the 𝐻  control method.   Installing an SSSC in the three-area system improves 

frequency recovery with time and that is displayed in Fig. 5.25, particularly with increasing wind 

penetration. From a power flow aspect, the range of power deviation has been decreased from 

0.11pu in the ACE controller case to 0.04pu in the 𝐻  controller case. The 𝐻  controller with an 

SSSC device shows a smooth response as illustrated in Fig. 5.26.  

Fig. 5.25. Frequency response of three areas in two cases; 𝐻  controller, and 𝐻  controller + 
SSSC device under N-1-1 contingency events in lines. 

Fig. 5.24. Frequency response of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + SSSC device under N-1-1 contingency events in lines. 
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5.6 HVDC Link and SSSC Device Comparison 

Two different techniques are added to the three-area system with high penetration of wind 

turbines. An HVDC link and an SSSC device are considered to emphasize their roles in reducing 

frequency deviations and improved power damping.  There is a comparison between the two cases 

for the three-area system under N-1 condition with the HVDC link and SSSC device. The first 

comparison is for frequency deviation, shown in Fig. 5.27, where both techniques produce almost 

the same response. However, the HVDC presents almost the same response during pre- and post-

disturbances compared with the SSSC device and has a low frequency deviation. It ranges from 

59.95 to 60.05Hz, in contrast with the SSSC device which has a frequency deviation range from 

59.93 to 60.12Hz during the disturbance.  This change also can be seen in other periods of the 

simulation when there is high penetration of wind generation.   

Power flow in tie-lines for the three-area system has its own comparison between the 

HVDC and SSSC techniques. In Fig. 5.28, the HVDC case has a fast and smooth response with 

Fig. 5.26. Power deviation of tie-lines of three areas in three cases; ACE controller, 𝐻  
controller, and 𝐻  controller + SSSC device under N-1-1 contingency events in lines. 
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obvious differences in contrast to the SSSC case and that is shown in the second and third area.  

These areas display that the HVDC case has power deviation with large range if this range is 

checked with the SSSC case, shown between 80 to 120 seconds, and this comes from the order of 

the transfer functions that represent both techniques used in this work in addition to design of the 

Fig. 5.27. Frequency deviation of three areas with 𝐻  controller in two cases; HVDC link and 
SSSC. 

Fig. 5.28. Power deviation of three areas with 𝐻  controller in two cases; HVDC link and 
SSSC. 
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𝐻  controller. The first-order transfer function of HVDC link assists in having fast and large 

deviations in power flow for tie-lines while the third-order transfer function of SSSC device offers 

low response with time. These differences and others would give the priority to adopt HVDC links 

in power systems rather than SSSC devices to increase the time response and reduce frequency 

oscillations and power damping, especially with systems suffering a large volume of wind 

generation and dynamic events. 

5.7 Eigenvalues Examination 

One of the ways to show stability optimization of the system with the  𝐻  controller and 

HVDC link or SSSC device is examination of eigenvalues through comparison the original 

eigenvalues.  The eigenvalues of the total system can be evaluated from (4.1) and (4.2) via 𝜆 =

𝜎 ∓ 𝑗𝜔 , and 𝜎 = 𝜁𝜔  and 𝜔 𝜁 − 1 where 𝜁 is the damping ratio and 𝜔  is the natural 

frequency.   This work will focus on eigenvalues near the imaginary axis because they are least 

damped and correspond to reduced stability margins.  For the three-area system, it looks from Fig. 

5.29 that performance of the original system with black + has been improved through shifting of 

eigenvalues away from the imaginary axis. The performance is enhanced through increasing 𝜁 

Fig. 5.29. Results of comparison between original system with ACE controller and system 
with  𝐻  controller and HVDC link and SSSC device. 
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from 0.142, the lowest eigenvalue in the system with conventional controller, to  0.244 in the 

system with HVDC link, with red *, and 0.237 in the system with SSSC device, with blue +. These 

eigenvalues are improved after considering a damping ratio limit 𝜁 equal to 0.2.  From the figure, 

it shows that eigenvalues of HVDC and SSSC move toward left s-plane and that helps in increasing 

the stability of the system. All changes in the eigenvalues of the system under different conditions, 

illustrated in Table 7 through Table 9.  

Table 7. Mode Characteristics of  the Original Study System 

Eigenvalue     Damping          Freq. (rad/s) 

-0.281+1.96i 0.142              1.98 

-0.281-1.96i 0.142              1.98 

-0.446+1.77i 0.244              1.83 

-0.446-1.77i 0.244             1.83 

-0.606+1.48i 0.380              1.60 

-0.606-1.48i     0.380              1.60 

 

Table 8. Mode characteristics of  the study system with 𝐻  controller and HVDC link 

Eigenvalue Damping Freq. (rad/s) 

-1.110+2.46i  0.411             2.69 

-1.110-2.46i 0.411 2.69 

-1.310+2.56i 0.455            2.87 

-1.310-2.56i 0.455           2.87 

-0.804+3.20i 0.244           3.30 

-0.804-3.20i 0.244            3.30 

-9.540+1.01i 0.994             9.60 

-9.540-1.01i 0.994            9.60 
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Table 9. Mode characteristics of  the study system with 𝐻  controller and SSSC device 

  Eigenvalue                Damping        Freq.(rad/s) 

-1.07+2.44i 0.401           2.66 

-1.07-2.44i 0.401          2.66 

-1.25+2.55i 0.441          2.85 

-1.25-2.55i 0.441          2.85 

-0.719+2.95i 0.237           3.03 

-0.719-2.95i 0.237          3.03 

-9.56+0.979i 0.995          9.61 

-9.56-0. 979i 0.995        9.61 
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6 The 𝑯𝟐 Control Method for the Iraqi National Super Grid System 

6.1 Iraqi National Super Grid System (INSGS) 

The Iraqi national electrical system includes hundreds of lines and buses, 400kV and 

132kV, and this network experienced several circumstances resulting in a lack of generation and 

an imbalance between electricity production and demand, especially during between 1991 and 

2014. This causes unstable condition in the Iraqi electrical system network in addition to the delay 

of replacement or maintenance of power components. Various works dealt with Iraqi national 

super grid system (INSGS) to show the optimal control methods to increase the stability and 

reliability [109]-[112]. This work will apply the proposed 𝐻  control method on INSGS model in 

[110, 112] that consists of 19 buses and 29 transmission lines for 400KV transmission level, 

INSGS is the backbone of Iraqi electrical network shown in Fig. 6.1. This system is divided into 

six areas, two hydro turbines, three steam non-reheat turbines, and one steam reheat turbine area 

and loads are represented by static admittance while lines are expressed by equivalent π 

representation model, Fig. 6.2a.  All network data are in per-unit to refer a common base power of 

100MVA for 400kV as base voltage and all this data is tabulated in the appendix [110, 112]. 

This system is evaluated to receive various modifications in the future to reduce unstable 

conditions and increase reliability and stability. The modifications include installing PV generation 

in the third area and HVDC link between the first and sixth area to reduce short circuit levels and 

transfer power through peak load times seasonally. Moreover, there is a plan, adopted by the 

Ministry of Electricity in Baghdad to start power marketing with synchronizing ac tie-lines 

between Iraq and Turkey and Iran. There are isolated areas in the eastern part of Iraq that are fed 
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by Iran ac tie-lines presently, and a HVDC link with Kuwait to transfer power to Turkey and then 

to Europe [113]. The studied case and future case of INSGS are demonstrated in Fig. 6.2b. 

Fig. 6.1. One-line diagram for Iraqi National Super Grid System (INSGS) [109, 111]. 

Fig 6.2. INSGS areas; a) recent system, b) future plan. 
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6.2 Load Frequency Control Model of INSGS 

The studied LFC model of INSGS, before the modifications, is linearized and represented 

in the state-space like in (4.1) and (4.2), shown in Fig. 6.3. 

Fig. 6.3. Block diagram of INSGS for LFC model. 
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The power system investigated in this work is given in [110] and this system is modified with time 

delay transfer function and common ACE control approach. The state-space variables controlled through 

the ACE approach are shown in Fig. 6.3. Generators in this system are considered as thermal units and 

transfer functions of those units are given in 

Reheat turbine: 

,      (6.1) 

Hydro turbine: 

.
,      (6.2) 

Hydro governor: 

 
,       (6.3) 

Time delay: 

.   
,      (6.4) 

while the ACE in all six areas are given as in  

𝐴𝐶𝐸 = ∆𝑃𝑡𝑖𝑒 + 𝐵 ∆𝑓  ,           (6.5) 

where, Kr is a reheat constant, and Tr reheat time constant, TW: water starting time, TR: dashpot 

time constant of hydro-governor, T2: hydro-governor time constant, ∆𝑓: the incremental frequency 

deviation [108]. The state-space equations for this system, for each area before placing the time 

delay and the solar generation, are given in 

Area One: 
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𝑥̇ = 𝑥 + 𝑥 − 𝑥 ,    (6.6) 

𝑥 ̇ = − 𝑥 − 2�̇� + 𝑥 ,    (6.7) 

𝑥 ̇ = − 𝑥 + �̇� + 𝑥 ,    (6.8) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,    (6.9) 

𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,     (6.10) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑥 .     (6.11) 

Area Two: 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑎 𝑥 − 𝑥 − 𝑥 ,  (6.12) 

𝑥 ̇ = 𝑥 + 𝑥 ,                     (6.13) 

𝑥̇ = 𝑥 − 𝑥 + 𝑥 ,    (6.14) 

 𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,      (6.15) 

𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,     (6.16) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 + 𝑎 𝐾𝑖 𝑥 .   (6.17) 

Area Three: 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑎 𝑥 − 𝑥 ,   (6.18) 

𝑥 ̇ = − 𝑥 − 2�̇� + 𝑥 ,    (6.19) 
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𝑥 ̇ = − 𝑥 + �̇� + 𝑥 ,    (6.20) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,    (6.21) 

𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,     (6.22) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑥 + 𝑎 𝐾𝑖 𝑥 .   (6.23) 

Area Four: 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑎 𝑥 + 𝑎 𝑥 − 𝑥 ,  (6.24) 

𝑥 ̇ = − 𝑥 + 𝐾𝑟 �̇� + 𝑥 ,    (6.25)  

𝑥 ̇ = 𝑥 + 𝑥 ,                   (6.26) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,          (6.27) 

𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,     (6.28) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑥 + 𝑎 𝐾𝑖 𝑥 + 𝑎 𝐾𝑖 𝑥 .  (6.29) 

Area Five: 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑎 𝑥 − 𝑥 ,   (6.30) 

𝑥 ̇ = 𝑥 + 𝑥 ,                   (6.31) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,          (6.32) 

𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,     (6.33) 
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𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑥 + 𝑎 𝐾𝑖 𝑥 .    (6.34) 

Area Six: 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑎 𝑥 ,    (6.35) 

𝑥 ̇ = 𝑥 + 𝑥 ,                   (6.36) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,           (6.37) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 + 𝑎 𝐾𝑖 𝑥 .     (6.38) 

where, 𝐾𝑖 , 𝐾𝑖 , 𝐾𝑖 , 𝐾𝑖 , 𝐾𝑖 , 𝐾𝑖 : six ACE area controllers, 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 , 𝑅 : speed 

regulation parameters. After simulating the original system in [110, 112] without time delay or the 

solar generation,  it shows during the analysis that there is a critical condition because of the one 

eigenvalue, which is almost equal to zero, causes this issue and this eigenvalue, which is 𝜆 , 

comes from one of the six tie-lines of the INSGS. Therefore, a reduced row echelon form technique 

is utilized to reduce number of tie-line power changes in the six-area system.  

To reduce the size of the A-matrix due to having the critical eigenvalue, the reduced row 

echelon form or Gauss-Jordan elimination method is used and applied on synchronizing power 

coefficients, as given in  

⎣
⎢
⎢
⎢
⎢
⎡

𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇ ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
2𝜋𝑇 −2𝜋𝑇 0 0 0 0

0 2𝜋𝑇 −2𝜋𝑇 0 0 0
0 2𝜋𝑇 0 −2𝜋𝑇 0 0
0 0 2𝜋𝑇 −2𝜋𝑇 0 0
0 0 0 2𝜋𝑇 −2𝜋𝑇 0
0 0 0 0 2𝜋𝑇 −2𝜋𝑇 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑥
𝑥
𝑥
𝑥
𝑥
𝑥 ⎦

⎥
⎥
⎥
⎥
⎤

  (6.39) 

After using the rref MATLAB command, the result of the reduced row echelon is written as 
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⎣
⎢
⎢
⎢
⎢
⎡
𝑞 𝑞 𝑞 𝑞 𝑞 𝑞
𝑞 𝑞 𝑞 𝑞 𝑞 𝑞
𝑞 𝑞 𝑞 𝑞 𝑞 𝑞
𝑞 𝑞 𝑞 𝑞 𝑞 𝑞
𝑞 𝑞 𝑞 𝑞 𝑞 𝑞
𝑞 𝑞 𝑞 𝑞 𝑞 𝑞 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇ ⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 0 1 0 −1
0 0 0 0 1 −1
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡

𝑥
𝑥
𝑥
𝑥
𝑥
𝑥 ⎦

⎥
⎥
⎥
⎥
⎤

  (6.40) 

From the equation above, the last row could be used to coordinate which element would be reduced 

of the A-matrix. 

[𝑞 𝑞 𝑞 𝑞 𝑞 𝑞 ]

⎣
⎢
⎢
⎢
⎢
⎡

𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇ ⎦

⎥
⎥
⎥
⎥
⎤

= [0 1 −1.4 1.06 0 0]

⎣
⎢
⎢
⎢
⎢
⎡

𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇
𝑥 ̇ ⎦

⎥
⎥
⎥
⎥
⎤

 (6.41) 

In other words,  𝑞 , 𝑞 , and 𝑞  are equal to zeros. Then 

𝑞 𝑥 + 𝑞 𝑥 + 𝑞 𝑥 = 0,    (6.42) 

𝑥 = 𝑥 − 𝑥  or 

𝑥 = −0.94 𝑥 + 1.32 𝑥 .     (6.43) 

Four equations from (6.21) to (6.41) would be modified with this equation and renumbered 

in a new sequence. Modified equations are given in  

𝑥 ̇ = 𝑥 + 𝑥 − (𝑎 − )𝑥 + ( )𝑥 , (6.18*) 

𝑥 ̇ = 𝑥 − 2𝑥 ̇ + 𝑥 ,    (6.19*) 

𝑥 ̇ = 𝑥 − 𝑥 ̇ + 𝑥 ,    (6.20*) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,    (6.21*) 
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𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 (𝑎 − )𝑥 + (𝐾𝑖 )𝑥 ,  (6.23*) 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥 − (𝑎 − 𝑎 )𝑥 + (𝑎 )𝑥 , (6.24*) 

𝑥 ̇ = 𝑥 − 𝐾𝑟𝑥 ̇ + 𝑥 ,    (6.25*) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.26*) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,    (6.27*) 

𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,     (6.28*) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 (𝑎 − 𝑎 )𝑥 + (𝐾𝑖 𝑎 )𝑥 − 𝐾𝑖 𝑥 ,  (6.29*) 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑎 𝑥 − 𝑥 ,  (6.30*) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.31*) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,    (6.32*) 

𝑥 ̇ = 2𝜋𝑇 𝑥 − 2𝜋𝑇 𝑥 ,     (6.33*) 

𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑎 𝑥 − 𝐾𝑖 𝑥 ,   (6.34*) 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑎 𝑥 ,   (6.35*) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.36*) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,    (6.37*) 
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𝑥 ̇ = −𝐾𝑖 𝐵 𝑥 − 𝐾𝑖 𝑎 𝑥 .    (6.38*) 

The results of this modification could be shown in Table 10 that displays the difference 

between the eigenvalues of INSGS before and after removing the critical eigenvalue.  

Table 10. Eigenvalue comparison for INSGS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-Reduction Post-Reduction 

-0.064+14.24i -0.064+14.24i 
-0.064-14.24i -0.064-14.24i 
-0.078+12.58i -0.078+12.58i 
-0.078-12.58i -0.078-12.58i 
-0.042+9.1i -0.042+9.1i 
-0.042-9.1i -0.042-9.1i 

-0.066+7.16i -0.066+7.16i 
-0.066-7.16i -0.066-7.16i 

-10.47+0i -10.47+0i 
-10.18+0i -10.18+0i 
-8.344+0i -8.35+0i 
-8.35+0i -8.34+0i 

-0.054+3.62i -0.041+3.61i 
-0.054-3.62i -0.041-3.61i 

-3.826+0i -3.826+0i 
-3.164+0i -3.087+0i 
-2.71+0i -2.634+0i 
-2.04+0i -2.014+0i 
-1.19+0i -1.43+0i 

-0.432+0i -0.414+0i 
-0.21+0.27i -0.16+0.24i 
-0.21-0.27i -0.16-0.24i 

-0.083+0.18i -0.14+0.19i 
-0.083-0.18i -0.14-0.19i 
-0.051+0.15i -0.19+0i 
-0.051-0.15i -0.08+0.09i 
-0.09+0.1i -0.08-0.09i 
-0.09-0.1i -0.112-0i 
-0.14+0i -0.018+0.052i 
-0.12+0i -0.018-0.052i 

-0.014+0.05i -0.011+0.01i 
-0.014-0.05i -0.011-0.01i 

-2.36e-16 -------------- 
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After this reduction, a time delay and renewable resource are added to the INSGS in order 

to prepare it as a reference power model with the conventional ACE control method.  A time delay 

transfer function is placed on each input entered to the ACE controller and by this step the system 

size increased from 32 state-space variable to 44 and those new variables are given as 

𝑥 ̇ = 𝑥 + 𝑥 ,      (6.44) 

𝑥 ̇ = 𝑥 + 𝑥 ,      (6.45) 

𝑥 ̇ = 𝑥 + 𝑥 ,      (6.46) 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑥 + 𝑎 𝑥 ,    (6.47) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.48) 

𝑥 ̇ = 𝑥 + (𝑎 − ) 𝑥 −   𝑥 ,   (6.49) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.50) 

𝑥 ̇ = 𝑥 + (𝑎 − 𝑎 ) 𝑥 − 𝑎   𝑥 + 𝑥 ,   (6.51) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.52) 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑥 ,    (6.53) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.54) 

𝑥 ̇ = 𝑥 + 𝑥 ,     (6.55) 

This placement of 12 variables in the system would change the configuration of the system 

and impacts the following state-space variables 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 ,     (6.11*) 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 ,     (6.17*) 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 ,     (6.22*) 
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𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 ,     (6.28*) 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 ,     (6.34*) 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 .     (6.38*) 

Then a solar generation is added to the third area where is expected to place due to the high 

sunlight intensity in the western part of Iraq.  This renewable generation would be connected to 

the third area through a transfer function 
 

 where the KPV is the gain of solar generation in 

per unit, represents 20% of solar generation to the total generation in INSGS, and Tv is the solar 

time constant. The new state-space variable can be given as  

𝑥 ̇ = 𝑥 + 𝑢 ,     (6.56) 

Where 𝑢  is the disturbance input while (6.47) is modified with this add and given as 

𝑥 ̇ = 𝑥 + 𝑥 − (𝑎 − )𝑥 + ( )𝑥 + 𝑥 . (6.18**) 

The output of the solar generation is illustrated in Fig. 6.4 where the generation was 

0.2pu of the generation of the system and goes down after 40 second to display low generation 

with high demand phenomenon. 
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Also, the load change (∆𝑃 ) in the system, shown in Fig. 6.5, is assumed to be in the second area 

and that impact the equation (6.12) and make it as written 

𝑥 ̇ = 𝑥 + 𝑥 + 𝑎 𝑥 − 𝑥 − 𝑥 − ∆𝑃 ,  (6.12*) 

  In Fig. 6.5, the demand load is decreased from 0.018pu. to zero load at 80 seconds and then 

it starts increasing its value with time due to peak period at sunset as an example. This case tries 

to mimic real conditions when demand load begins to have high amount while the solar generation 

is in low level.  

 

Fig. 6.4. Solar farm generation in the third area of INSGS. 
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Fig. 6.5. Load change in INSGS added to the second area. 
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The Iraqi model, under the condition in Fig. 6.6, is simulated in MATLAB Simulink™ 

environment with all previous modifications in order to make the original model and compare it 

with the proposed control method. The frequency deviation output of each area is presented in Fig. 

6.7 where influences of solar generation and load variation are in existence obviously.  Moreover, 

power deviation for all areas are illustrated in Fig. 6.8.  These figures explain the fluctuations of 

frequency and power flow in each area during normal case with changeable load and power 

generation. 

6.3 The 𝑯𝟐 Controller in INSGS Model 

The Iraqi system (INSGS) under a normal condition is analyzed with the proposed  𝐻  

control approach. This study determines the design needed to operate this controller type.  The 

number of variables in state-space form of INSGS is 45 variables. The arrangements of these 

variables with respect to the inputs and outputs is essential to produce a proper action of the 

controller. The controlled inputs matrix, 𝐵 , of the system are six inputs and they are assumed to 

Hydro Generation

Steam Reheat Generation

Steam Non-reheat Generation

Solar Generation

Ac tie-line

HVDC Link

First Area
Second 
Area

Third Area Fourth Area Fifth Area

Sixth Area

Fig. 6.6. INSGS model under the studied condition. 
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be connected to six variables, which are 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , and 𝑥 . The sensor or measurement 

outputs matrix 𝐶 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , and 𝑥 , are considered also 

as inputs of the controller after normalizing them with reference values depending on the modified 

𝐻  control mothed. The disturbance inputs, 𝐵 , in this system are 12 inputs; six of them are placed 

at 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , and 𝑥  and others represent disturbances inputs at each tie-line and these 

inputs are assumed to be load change, solar generation, or any disturbance impacts either 

generation or power flow in tie-lines.  

Fig 6.7. Frequency deviation of INSGS under studied case. 

Fig. 6.8. Power deviation of INSGS under studied case. 
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The size of the A-matrix of INSGS is 45 rows by 45 columns, 𝐵 is 45 rows by 6 columns, 

𝐵  is 45 rows by 12 columns, 𝐶  is 12 rows by 45 columns,  𝐶  is 12 rows by 45 columns, 𝐷  is 

12 rows by 12 columns, 𝐷  is 12 rows by 6 columns, 𝐷  is 12 row by 12 columns, and 𝐷  is 12 

rows by 6 columns. 𝐷 , 𝐷 , and 𝐷  are arranged to be zero matrices while 𝐷  is assumed to be 

an identity matrix to simulate the reference values of sensor outputs. In other words, equation 

(4.18) could be written for INSGS model through following equation 
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𝑢(𝑡).  (6.57) 

The 𝐻  controller with this arrangement with P plant matrix of INSGS model is 69 rows 

by 63 columns. This system is simulated in MATLAB environment after building the LFC model 

and there is a comparison between frequency deviation of Area 1 and Area 2 and power deviation 

of tie-line 1-2 under the conventional control, ACE, and 𝐻  control methods.  

In Fig. 6.9, INSGS has different responses of frequency deviation building on the type of 

controller.  Under the ACE controller condition in red line, INSGS shows large frequency 

deviation far away from the nominal frequency of the Iraqi system, 50Hz. In other words, the 

frequency deviation varies between 50.082 to 49.959Hz for more than 80 seconds, which is too 

long a period, and this could cause violating frequency standards if the Ministry of Electricity in 

Iraq adopts standards similar to NERC frequency standard, BAL-003-1, requiring the frequency 
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deviation within 0.06Hz of the nominal value. This high deviation from 50Hz could result in large 

disturbances, especially in transmission lines, if there is any sudden change in demand values or 

generation amounts of INSGS and can lead to cascade failures then total blackout.  

However, the Iraqi system with an 𝐻  controller, blue line, shows more stable performance 

and low frequency deviation around 50Hz compared with the conventional method. The frequency 

begins with high fluctuation and moves from 50.04 to 49.98 Hz in 10 seconds, approximately, and 

this would be higher changes compared with the ACE control method, but after this time, the 

frequency gets low frequency deviation and this range is mitigated with time through having range 

between 50.005 and 49.995Hz after 40 seconds.  

Fig. 6.9. Frequency deviation of the first area. 

Fig. 6.10. Power deviation of tie-line 1-2. 
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From the power flow aspect, power deviation in tie-line 1-2 is investigated in Fig. 6.10 in 

order to compare changes with both the ACE controller and 𝐻  controller.  The system with ACE 

control method shows high power deviation unlike the system with the proposed control method 

that has low range of deviation between 0.04 and -0.08pu this range goes in low range between 

0.025 and -0.025pu.  Also, the 𝐻  controller keeps the power deviation around 50Hz after 40 

seconds while the other controller continues with frequency swings far away from zero pu as 

nominal value of power flow in the tie-line until finishing the simulation time.  

In Fig. 6.11, results of frequency deviation are shown for all areas in terms of ACE and 𝐻  

controller conditions. Frequency deviations for all areas have a faster response with the 𝐻  

controller.   Deviation values in all areas have been reduced to within 0.07pu ranges for 12 seconds 

and be within 0.02 range for the rest of the simulation time.  In Fig. 6.12  it is clear that power 

deviations in the system with the 𝐻  controller has performance that is more stable and equal to 

zero pu in less than 20 seconds compared with the original controller.  During injection of solar 

power, power in tie-lines has significant changes especially with the proposed controller and that 

Fig. 6.11. Frequency deviation of INSGS with both ACE and 𝐻  controller. 
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reflects tries of the controller to mitigate any changes in these lines compared with the original 

system has large variation of power in tie-lines that can be seen in all areas.  

6.4 INSGS and Three Countries Interconnection Tie-Lines 

Plans are emerging for Iraq to connect its electrical network with neighboring countries, 

particularly Iran, Kuwait, and Turkey, to increase stability of the system and take advantage of 

differences in peak load time to compensate for load demand variability as shown in Fig. 6.13.  

This plan also will bring Iraq into power marketing and make it as a power hub for international 

electrical tie-lines. 

To simulate this plan in the MATLAB environment in order to check the results, three 

scenarios are followed, and all countries areas are considered to be thermal power plants with non-

reheat turbine.  All ac tie-lines are assumed to have specific amount of power to run INSGS under 

expected power limits.  The first scenario consists of connecting INSGS with neighboring 

countries through two ac tie-lines, with Iran and Turkey, while INSGS is connected with Kuwait 

Fig. 6.12. Power deviation of INSGS with both ACE and 𝐻  controller. 
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through a HVDC link, shown in Fig. 6.14.  In this scenario, 20 transfer functions are added to the 

original system to mimic the interconnected network that consists of three governors, three 

Hydro Generation

Steam Reheat Generation

Steam Non-reheat Generation

International Generation

Solar Generation

Ac tie-line

HVDC Link

First Area

Second 
Area

Third 
Area

Fourth 
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Fifth Area

Sixth Area

Iran

Kuwait

Turkey

Fig. 6.13. Geographical map Of Iraq and its neighboring countries with the 
future tie-lines plan. 

Fig. 6.14. INSGS with the three countries tie-lines. 
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turbines, three generators, three ACE controllers, two ac tie-lines, one dc tie-line, and five time-

delay functions.  Neighboring countries depend on ACE controllers due to the fact that 𝐻  control 

method is applied only on the INSGS as decentralized approach to monitor and set power flow.  

The added transfer functions can be given as:  

For Turkey area:  

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥 ,    (6.58) 

 𝑥 ̇ = 𝑥 + 𝑥 ,            (6.59) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,        (6.60) 

𝑥 ̇ = −2𝜋𝑇 𝑥 + 2𝜋𝑇 𝑥 ,       (6.61) 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 ,     (6.62) 

𝑥 ̇ = 𝑥 − 𝑥 ,                (6.63) 

𝑥 ̇ = 𝑥 − 𝑥 ,             (6.64) 

For Kuwait Area 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥 ,   (6.65) 

𝑥 ̇ = 𝑥 + 𝑥 ,             (6.66) 

𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,        (6.67) 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥 ,   (6.68) 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 ,     (6.69) 

𝑥 ̇ = 𝑥 − 𝑥 ,                (6.70) 

For Iran area 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥 ,    (6.71) 

 𝑥 ̇ = 𝑥 + 𝑥 ,             (6.72) 
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𝑥 ̇ = 𝑥 − 𝑥 + 𝑥 ,        (6.73) 

𝑥 ̇ = −2𝜋𝑇 𝑥 + 2𝜋𝑇 𝑥 ,       (6.74) 

𝑥 ̇ = 𝑥 − 𝑥 ,                (6.75) 

𝑥 ̇ = 𝑥 − 𝑥 ,             (6.76) 

𝑥 ̇ = −𝐾𝑖 𝑥 − 𝐾𝑖 𝑥 , ,     (6.77) 

 

where all variables with tk are in the Turkey area, variables with kw are in the Kuwait area, and 

variables with ir are in the Iran area.  Then the modified INSGS system is simulated through 

applying the proposed method in Fig. 4.2 to calculate 𝐾𝑑𝑐  and 𝑇𝑑𝑐  values could produce 

optimal frequency deviation damping and low power deviation in tie-lines under 𝐻  controller 

condition.  After running simulation for in MATALB environment, 𝐾𝑑𝑐  and 𝑇𝑑𝑐  are selected 

to be equal to 1.9pu and 0.45 seconds building on the modified 𝐻  control method that all results 

are illustrated in Table. 11.  These values represent the fifth case can be considered the area without 

external impacts. In other words, there is not any disturbance or solar generation or international 

tie-lines or HVDC links located in this area.  Therefore, the values of  𝐾𝑑𝑐  and 𝑇𝑑𝑐  remain 

within maximum allowed frequency deviations. 

Table 11. Minimum frequency (Hz) and optimal cost values for the first scenario 

        

 

 

 

 

 

 

Case No. 𝑓  𝑓  𝑓   𝑓  𝑓  𝑓  γ 

1 50.0298 50.0477 50.0679 50.0410 50.0271 50.0278 2.0038 

2 50.0314        50.0470        50.0678        50.0409       50.0290       50.0323        1.9741 

3 50.0314           50.0471        50.0678        50.0410       50.0290       50.0323        1.9740 

4  50.0306           50.0478        50.0680        50.0397       50.0210       50.0276        2.0083 

5  50.0306           50.0478        50.0680        50.0398       50.0206       50.0279        2.0066 

6  50.0304           50.0478        50.0680        50.0400       50.0245       50.0223        2.0080 
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Then these values are simulated to obtain a comparison between the original INSGS and 

the modified grid network.  Results of the simulation are displayed in Fig. 6.15 and Fig. 6.16.  In 

Fig. 6.15, frequency deviation of the system shows more stable performance under the 

𝐻  controller even INSGS has been expanded to have more areas and all frequency deviation are 

within ±0.06Hz.  However, the third area still has high frequency deviation, and this is because the 

solar generation injects power into INSGS through this area.  The frequency oscillation has been 

damped to lower values compared with the original performance.  

From the power view, ranges of power deviation in six areas of INSGS have been reduced 

from 0.6pu, highest range value in the third area, to be equal to 0.1pu in all cases after adopting 

𝐻  controller and international connections, illustrated in Fig. 6.16. That means the suggested 

control method helps INSGS to have more stable condition with large size of network and 

renewable generation and keep power flow through tie-lines in constant variations.  

Fig. 6.15. Frequency deviation of INSGS with international connections. 
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6.5 INSGS and Three Countries Interconnection Tie- Lines with HVDC Links 

The second and third scenarios analyzed in this section include setting HVDC links 

between different areas.  The second scenario covers a case consists of placing a HVDC link 

between first and sixth areas, between Mosul in north of Iraq and Basra in south, and this link 

would have length equal to 780 km, 485 mi, shown in Fig. 6.17.   This link will give benefits to 

INSGS through transferring power between these areas that have different demand load during 

seasons of the year and that would reduce power losses and line congestion or overload cases if 

power transfers through 400Kv and 132Kv.  Moreover, this link would be a main flow-gate line 

carries power from Kuwait area to Turkey then to Europe via INSGS and this will make Iraq a hub 

node to transfer energy between Asia and Europe [113].  

This scenario requires adding a transfer function between the first and sixth areas represents 

the HVDC link and that also will increase the number of variables to be equal to 66. The new 

variable could be given as  

Fig. 6.16. Power deviation of INSGS with international connections. 
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𝑥 ̇ = 𝑥 + 𝑥 − 𝑥  ,    (6.78) 

where values of  𝐾𝑑𝑐  and 𝑇𝑑𝑐  are obtained as  𝐾  and 𝑇  in the proposed method.  The input 

of HVDC transfer function is frequency error between the first and sixth areas.  After running a 

simulation of the suggested method, an optimal six cases are gathered in Table 12 that display 

lower frequency deviations for each area and the second case, which is similar to the fifth case, is 

selected to be the optimal case for two reasons; low optimal cost γ and low frequency deviation in 

the fifth area, which is the area without external influences.  The optimal values of 𝐾  and 𝑇 , 

equal to parameters of HVDC link 𝐾𝑑𝑐  and 𝑇𝑑𝑐 , are 0.1pu and 0.95 seconds, respectively.  

Table 12. Minimum frequency (Hz) and optimal cost values of the second scenario 

Case No. 𝑓  𝑓  𝑓   𝑓  𝑓  𝑓  γ 

1 50.0255 50.0492 50.0681 50.0404 50.0234 50.0327 2.1178 

2 50.0308 50.0479 50.0692 50.0419 50.0211 50.0300 2.0074 

3 50.0284 50.0486 50.0680 50.0409 50.0217 50.0304 2.0592 

4 50.0458 50.0516 50.0690 50.0359 50.0294 50.0369 4.0330 

5 50.0308 50.0479 50.0692 50.0419 50.0211 50.0300 2.0074 

6 50.0297 50.0483 50.0684 50.0412 50.0211 50.0297 2.0080 

Fig. 6.17. INSGS configuration with international connections and HVDC link. 



 

121 
 

Values of 𝐾𝑑𝑐  and 𝑇𝑑𝑐  are simulated to calculate frequency and power deviations and 

the results are shown Fig. 6.18 and Fig. 6.19.  In these figures, frequency and power deviation are 

similar to results in the first scenario with slight differences due to increasing number of elements 

in INSGS.   

In the third scenario, two HVDC links are placed as tie-lines connecting INSGS with both 

Iran and Turkey as shown in Fig. 6.20 as a new proposal in this research.  The addition of these 

Fig. 6.18. Frequency deviation of INSGS with international connections with HVDC link. 

Fig. 6.19. Power deviation of INSGS with international connections with HVDC link. 
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AC/DC links with existence of an ac tie-line would help in increasing stability and reliability of 

INSGS and may help in raising power flow between the connected countries.  Like in the second 

scenario, two HVDC transfer functions are added to define the 𝐻  controller and simulate the 

modified system in MATLAB environment.  These transfer function produce two more variables 

which are written as 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥  ,    (6.79) 

𝑥 ̇ = 𝑥 + 𝑥 − 𝑥  ,    (6.80) 

 

where variables with tk represent the HVDC link connected to Turkey area while variables with ir 

represent the HVDC link connected to Iran area.  The optimal values of 𝐾  and 𝑇  in this scenario 

are calculated for the two HVDC links and they are 𝐾𝑑𝑐 , 𝐾𝑑𝑐 , 𝑇𝑑𝑐  and 𝑇𝑑𝑐 .  After running 

the simulation for 2.5 hours, the optimal values of parameters for HVDC links are obtained for 

each area and listed in Table 13.  

 

Fig. 6.20. INSGS configuration with international connections and four HVDC links. 
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Table 13. Minimum frequency (Hz) and optimal cost values of the third scenario 

Case No. 𝑓  𝑓  𝑓   𝑓  𝑓  𝑓  γ 

1 50.0247 50.0442 50.0674 50.0319 50.0184 50.0212 2.3673 

2 50.0247 50.0442 50.0674 50.0319 50.0184 50.0212 2.3673 

3 50.0251 50.0445 50.0673 50.0371 50.0174 50.0216 2.3271 

4 50.0287 50.0442 50.0674 50.0296 50.0197 50.0222 2.3837 

5 50.0258 50.0442 50.0673 50.0353 50.0172 50.0214 2.3477 

6 50.0247 50.0442 50.0674 50.0319 50.0184 50.0212 2.3673 

 

Building on the same concepts used to select 𝐾  and 𝑇  in previous scenarios, the four 

variables have been chosen that represent the fifth case because this case shows low frequency 

deviation in the fifth area and this area is not damped by tie-lines or impacted by external 

disturbances.  The obtained values, 3, 0.3, 0.1, and 0.2 which are 𝐾𝑑𝑐 , 𝐾𝑑𝑐 , 𝑇𝑑𝑐  and 𝑇𝑑𝑐 , 

respectively, assist INSGS with its new expansions to have a stable condition.  These values have 

been simulated and compared with the original INSGS model in MATLAB environment and like 

previous conditions, the system runs normally, and its frequency and power changes have been 

reduced to minimum values and variations are kept within or near power standards, shown in Fig. 

6.21 and Fig. 6.22.  

6.6 INSGS with the 𝑯𝟐 controller under N-1-1 Contingencies 

Similar to the three-area system analysis, INSGS is examined under N-1-1 contingency 

events through applying disturbances, power change with magnitude 0.1pu, 30 and 32.5 seconds 

in order to emphasize the system response with 𝐻  controller and two ac tie-lines and four HVDC 

links connect different areas.  In Fig. 6.23, the frequency deviation for the system has been 
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improved with the 𝐻  controller and other added components compared with original system. The 

changes of frequency are maintained within ±0.05Hz for all areas and this does not violate the 

frequency standards, while deviations in the original model have ranges between 49.9 and 50.1Hz 

due to lack of any damping tools.  Also, the shape of the response of systems to disturbances 

Fig. 6.21. Frequency deviation of INSGS model with two countries connections and four HVDC 
links. 

Fig. 6.22. Power deviation of INSGS model with two countries connections and four HVDC 
links. 
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clearly is dependent on the type of turbines and governors, especially in the original model and 

this is highlighted in this exam.  The second, fifth, and sixth areas, area with steam non-reheat 

turbines, show high responses with faults compared with other areas and this impact has been 

mitigated to lower values through the 𝐻  controller technique.  

Another type of event is applied on the INSGS model and that occurs through setting 

disturbances on tie-lines 4-5 and 5-6 at 30 and 32.5 seconds, respectively, and that is simulated via 

multiplication of power synchronizing coefficients of these lines.  This N-1-1 event is shown in 

Fig. 6.24 where the power deviation for all areas are present and it is clear that from the figure that 

the system gains some power oscillations on its tie-lines after having the disturbances, especially 

in the original model.  However, the system experiences a stable manner with the final condition, 

with the 𝐻  control approach and other tie-lines connections and that means the system takes 

advantage having tie-lines with HVDC links to produce power with acceptable ranges under 

variable generation or large disturbances.  

Fig. 6.23. Frequency deviation of INSGS under N-1-1 contingency events. 
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6.7 Eigenvalues Examination  

The final case will exam INSGS  under various circumstances to check its stability through 

positions of eigenvalues.  In Fig. 6.25, the original system has eigenvalues that are near the 

imaginary axis, illustrated in Table 14, and these eigenvalues could be influenced by any 

disturbances and shifted to the right plane resulting in an unstable condition.  Adoption of the 

suggested control method with extension the system with two ac tie-lines and four HVDC links 

helps INSGS to have more stable and firm response through moving these eigenvalues far from 

the imaginary axis and final eigenvalues after having the all extension are given in Table 15.  All 

eigenvalues are tabulated in following tables have damping ratio below 1 or cos 0° and highlighting 

these eigenvalues are significant to show effects of the 𝐻  control approach with HVDC links. 

 

 

 

Fig. 6.24. Power deviation of INSGS under N-1-1 contingency events. 



 

127 
 

 

Table 14. Mode characteristics for INSGS (original model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Eigenvalue Damping Freq.(rad/s) 

-0.06.42+14.2i 0.00451 14.2 

-0.0642-14.2i 0.00451 14.2 

-0.0790+12.6i 0.00628 12.6 

-0.0790-12.6i 0.00628 12.6 

-0.0413+9.09i 0.00455 09.09 

-0.0413-9.09i 0.00455 09.09 

-0.0616+7.15i 0.00862 07.15 

-0.0616-7.15i 0.00862 07.15 

-0.0400+3.61i 0.01110 03.61 

-0.0400-3.61i 0.01110 03.61 

-0.0994+0.367i 0.26200 0.380 

-0.0994-0.367i 0.26200 0.380 

-0.130+0.174i 0.59900 0.217 

-0.130-0.174i 0.59900 0.217 

-0.0126+0.0441i 0.27500 0.0458 

-0.0126-0.0441i 0.27500 0.0458 

-0.0204+0.0486i 0.38700 0.0527 

-0.0204-0.0486i 0.38700 0.0527 

-0.0810+0.0616i 0.79600 0.1020 

-0.0810-0.0616i 0.79600 0.1020 

Fig. 6.25. Results of comparison between original system with ACE controller and 
system with  𝐻  controller two ac tie-lines and four HVDC links. 
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Table 15. Mode characteristics for INSGS with interconnections and HVDC links 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pole Damping Freq. (rad/s) 

-0.252+9.43i 0.0267 9.44 

-0.252-9.43i 0.0267 9.44 

-0.570+6.95i 0.0818 6.97 

-0.570-6.95i 0.0818 6.97 

-0.663+5.21i 0.1260 5.25 

-0.663-5.21i 0.1260 5.25 

-1.74+5.13i 0.3210 5.42 

-1.74-5.13i 0.3210 5.42 

-8.58+0.938i 0.9940 8.63 

-8.58-0.938i 0.9940 8.63 

-8.27+0.817i 0.9950 8.31 

-8.27-0.817i 0.9950 8.31 

-0.171+3.24i 0.0527 3.25 

-0.171-3.24i 0.0527 3.25 

-1.49+2.41i 0.5250 2.83 

-1.49-2.41i 0.5250 2.83 

-1.46+2.31i 0.5350 2.74 

-1.46-2.31i 0.5350 2.74 

-2.31+0.350i 0.9890 2.33 

-2.31-0.350i 0.9890 2.33 

-0.688+0.977i 0.5760 1.19 

-0.688-0.977i 0.5760 1.19 

-0.594+0.110i 0.9830 0.605 

-0.594-0.110i 0.9830 0.605 
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7  Conclusions and Future Work 

7.1 Conclusion 

This section briefly explains the main findings and corresponding improvements made by 

this research assessing and mitigating N-1-1 contingency events and employing a wide area control 

approach to increase reliability of power systems.  First, previous work with N-1-1 contingency 

was often made with an assumption that all transmission faults could be cleared quickly by circuit 

breakers and therefore limit the spread of power outages.  However, this kind of assumption does 

not consider critical load lines or susceptible points for instability that power systems could 

experience with cascading outages. Therefore, developing the risk-based reliability method for N-

1-1 contingency analysis was necessary to highlight outcomes that could be appear under this type 

of disturbance. 

The RBRM studied the reliability of transmission systems through checking each line case 

and comparing its condition under after an N-1 event. This allows for assessing each line’s impact 

would have for a subsequent N-1-1 event.  This approach utilized two main factors: age of lines 

(which could be modified after maintenance or conductor replacement) and power flow though the 

respective lines. The simulation results presented the effects of the sequence order of line faults.  

To treat these types of faults using real power system networks as benchmarks, the research 

considered systems with high penetration of renewable resources.  PMU data provided a mean for 

developing a synchrophasor validation method (SVM).  Application of SVM with using Model 

Validation Working Group (MVWG) of NERC recommends as reference for results helped in 

producing a new benchmark model of power system with high penetration of wind generation.  

Results of the model validation processes showed that SVM gives planners and researchers an 

opportunity to build or develop power models extracted from real networks with low percentage 
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of errors and meet standards of regulatory agencies. This benchmark was reduced in size from 456 

buses to 21 buses under load frequency control analysis in order to examine the suggested wide 

area control method. 

A wide control area control using 𝐻  control approach was developed to increase the 

reliability of LFC power system with variable generation and stochastic disturbances.  The 

proposed method was developed in this dissertation to help planners in power system to obtain 

parameters of power system compensators such as SSSC devices and HVDC links that could be 

installed to achieve optimal stability results. Validation methods were utilized to determine the 

effectiveness of the proposed method based on frequency and tie-line power deviations and 

eigenvalue analysis.  This analysis is checked through setting two types of N-1-1 contingency 

events were assumed to place in LFC model. The first were disturbances of losing generation with 

0.05pu of the net generation. The second was a circuit breaker trip and the associated loss of a 

transmission line.   

These events took place in the 21 bus three-area system with a sequence of contingencies 

(N-1-1).  The results showed that the system has an improved response under the abnormal 

conditions and stayed within NERC standards compared with the original system controlled by 

ACE technique. In the other hand, the second validation offered results that the critical eigenvalues 

located near the imaginary axis of s-plane had been shifted to the stable region after adoption the 

suggested control method. Moreover, both results helped in distinguish which technique of SSSC 

device and HVDC link could be most useful.  Lower frequency and reduced power flow deviations 

with more stable eigenvalue locations were displayed by installation of an HVDC link between 

two areas in the 21 buses three-area system. 
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Another power model was employed to ensure the proper function of the proposed control 

method.  The system examined was the Iraqi national electrical network (INSGS) and its LFC 

model included large amounts of solar PV generation.  The suggested method was designed in this 

research to obtain optimal variables in order to make INSGS have cross-national tie-lines with 

neighboring countries and these tie-lines represent the future plan for the Ministry of Electricity in 

Iraq. Two ac tie-lines and four HVDC links were added and eight parameters of the HVDC 

technique were obtained.  After selection of the optimal values of the HVDC parameters, two 

validation conditions were analyzed for the Iraqi model. The results showed that the Iraqi system 

with the proposed 𝐻  control method and new tie-lines could withstand random generation and N-

1-1 disturbances and have reduced frequency deviations that stay within regulatory requirements.  

Also, the eigenvalue locations had been improved and shifted from critical regions to more stable 

positions and that helped to support the INSGS model for facing abnormal states. 

7.2 Future Work 

For future work, the suggested control method would be applied on models of the load 

frequency systems as a decentralized control framework with stochastic time delays with inclusion 

of inverter-based generation devices and dynamic conditions to reduce time response and increase 

reliability. 
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9  Appendix 

A. 21 Buses Three-Area System Data 

B=1, R=3 

𝐾𝑝
1
=100, 𝑇𝑔

1
=0.12, 𝑇𝑡1=0.5, 𝑇𝑝 =18; 

𝐾𝑝
2
=90, 𝑇𝑔

2
=0.10, 𝑇𝑡 =0.52, 𝑇𝑝

2
=20; 

𝐾𝑝
3
=105, 𝑇𝑔 =0.19, 𝑇𝑡 =0.48, 𝑇𝑝 =21; 

Ki=0.09; 

𝑇 =0.0145, 𝑇 =0.002, 𝑇 =0.024, 𝑇 =0.0145, 𝑇 =0.002, 𝑇 =0.024; 

𝑅 =23.5, 𝑊 =3.14, p=1.25, 𝐴 =1735, β=1.74533, 𝑇 =1.5,  

𝐾 =0.3, 𝐾 =0.5, 𝐾 =0.4. 

B. Iraqi National Super Grid System (INSGS) Data 

𝑇𝑝 = 32.376, 𝑇𝑝 =  5.211, 𝑇𝑝 =  6.911, 𝑇𝑝 =  3.333, 𝑇𝑝 =  18.598, 𝑇𝑝 =  7.664;  

𝐾𝑝 =84.134, 𝐾𝑝 =16.286, 𝐾𝑝 =36.764, 𝐾𝑝 =12.820, 𝐾𝑝 =48.945, 𝐾𝑝 =20.169; 

R = 2.4;  

𝐵  = 0.5059,  𝐵  = 0.530, 𝐵  = 0.5136, 𝐵  = 0.539, 𝐵  = 0.5102, 𝐵  = 0.5247;  

𝑎  = -1.218, 𝑎  = -1.1491, 𝑎  = -0.9576, 𝑎  = -0.833, 𝑎  =  -0.923, 𝑎  = -1.71;  

Tr = 6.0; Kr = 0.333; 

 𝑇 =2.1135, 𝑇 =2.0814, 𝑇 =1.4918, 𝑇 =1.9819, 𝑇 =1.4641, 𝑇 =1.5820. 
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Table 16. Iraqi Turbine-Governor Parameters 

Area 

No. 

T1 

(sec) 

T2 

(sec) 

T3 

(sec) 

TR 

(sec) 

Tw 

(sec) 

Tt 

(sec) 

Tr 

(sec) 

1 48.7 0.51 - 5 1 - - 

2 0.2 0 0.1 - - 0.25 - 

3 48.7 0.51 - 5 1 - - 

4 0 0 0.1 - - 0.25 6 

5 0.1 0 0.12 - - 7 - 

6 0.1 0 0.12 - - 7 - 
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