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ABSTRACT 

This thesis presents the design, simulation and layout of a silicon carbide (SiC) 8 bit split 

array charge scaling digital to analog convertor (DAC).  The converter consists of the charge 

scaling capacitor chain with two operational trans-conductance amplifiers (op amp) in voltage 

follower configuration. The op amps used in the design have the input common mode ranges of 

0 to 11.2 V and 4.7V to 14.5V respectively. Additional logic circuit topologies are designed, 

which help to switch the op amps when needed to provide a rail to rail unity gain at the output. 

As the design is based on the charge based approach it has the advantages of low power 

dissipation (capacitor array does not dissipate DC power), the output is sampled and held and the 

almost zero offset. The specification of the DAC is (1) power operation less than 200 mW (2) 

operation up to 1 MHz and (3) with a reset enables, to reset the convertor when needed. The 

main focus of the thesis is on the monotonicity and to reduce capacitor sizes. The size of the 

largest capacitor used in the design is 16pF which makes the design as compact as possible. The 

major area of application of this convertor is at high temperature applications where the silicon 

based integrated circuits(IC) fail to operate properly. 
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1 - INTRODUCTION  

1.1 Converter Overview 

Data converters are essential for processing information. The converters are used to 

create a machine- human or machine- machine interface.  For example, computers can 

understand digital signals, human cannot, nor can speakers or headphones. The better the 

converter designed, the better the interface will be.  The Fig 1.1 below gives a brief idea about 

why and where the converters are required. 

 

Fig. 1.1. Data Conversion 

In the above figure, the start and end users are humans, for processing the information 

signals must be converted to digital or machine understandable form and it is often required to 

have the processed data at the output as an analog signal. This is where the digital to analog 

converter is required. 
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In order to process information (end to end) in a system without any signal loss a precise 

converter has to be designed. The performance of the digital to analog converters is mainly 

measured by two standard error measurements; they are integral nonlinearity (INL) and 

differential nonlinearity (DNL)[8].  

INL (Integral non Linearity): It describes the maximum deviation of the ideal output and the 

actual output of DAC. 

DNL (Differential non Linearity):  It is defined as the deviation between two analog values 

corresponding to adjacent input digital values. Differential non-linearity is a measure of the 

worst case deviation from the ideal 1 LSB (Least significant bit) step. The LSB voltage is the 

minimum change in the voltage required to guarantee change in the output voltage level. A 

differential non-linearity greater than 1 LSB may lead to a non-monotonic transfer function in a 

DAC. It is also known as a missing code. 

 

Fig. 1.2. Non-linearity in DAC 



3 

 

1.2 Application 

The DACs are used in the field where there is a need for data storage and retrieval, signal 

transmission. A few applications of the converters are discussed below 

(i) Audio 

Audio signals are stored in digital format in order to save memory, in order to hear these 

audio signals conversion has to be done from analog to digital. In most cases the speakers have 

built-in DACs which play the role of signal conversion.  Therefore DACs are present in most 

electronic gadgets like CD players, music players, USB speakers and pc sound cards. DACs are 

also found in VoIP( voice over IP) applications, where the analog signal at the senders end is 

digitized for the transmission by an analog to digital converter(ADC) and is converted to the 

analog form at the receiving end by a digital to analog converter(DAC). 

(ii) Video 

A CPU stores information in the digital format. In order to view the data on the analog 

monitor the data received has to be converted from the memory to its corresponding analog 

value. DACs are commonly seen in devices such as digital video players, DVD players, DTV 

and computer displays 

(iii) Industrial Control Systems 

A widely used control system which incorporates DACs for is the whippletree. It uses a 

mechanism to distribute force or pressure evenly though the linkages. Other type of control 

systems where DACs play a prominent role are motor control, valves, and transducer excitation. 
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(iv)Waveform Function Generators 

  Very high speed test equipment such as sampling oscilloscopes. These are uniquely 

designed to capture, display, and analyze repetitive signals 

1.3 Digital to Analog Converters 

DACs are classified into two categories: parallel and serial. Based on the topologies there 

are wide varieties of DACs available each having their own advantages and disadvantages. These 

DACs are further classified based on the conversion speed or by how the binary scale of 

reference is accomplished. The classification of digital to analog converters can be seen in 

Fig.1.3 below.  

 

Fig. 1.3. Classification of Digital to Analog Converters [1] 

 Fig.1.3. shows the hierarchy of classification of DACs in terms of speed. The parallel 

DACs are very fast as they take the input in a parallel manner and produce an analog output after 
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processing. These DACs can be implemented using various methods like charge scaling, voltage 

division and current steering. On the other hand, the serial DACs are very slow. It takes the input 

in serial order and depending on the given input the capacitor will be charged and discharged to 

give the final analog output. The serial DACs are implemented only with the charge scaling 

approach.  A popular example of serial DAC is cyclic DAC. The Table 1.1 below gives the 

advantages and disadvantages of DACs that are commonly used. 

Table. 1.1. Differences Between the Commonly available Data Converters[2] 

Type of 
DAC  

Components 
used  

Implementation 
method  

Advantages  Disadvantages  

Resistor 
string  

Resistors and 
switches  

Voltage division  1.The output is 
always 
monotonic  

2.Fast for <8 
bits  

1.Large conversion speed for 
bits >10  

2. Large chip area for high bit 
resolutions  

3. Large power dissipation  

4. Requires 2N Resistors  

R-2R Ladder  Resistors  Voltage division  1.Inexpensive 
and easy to 
manufacture  

2. Faster 
response time  

Small inaccuracies in the higher 
significant bit resistors can 
entirely overwhelm the 
contribution of the less 
significant bits. This may result 
in non-monotonic behaviour at 
major crossings, such as from 
01111 to 10000  

Generic 
Current 
Steering  (or) 
Current 
steering 
using Binary 
weighted 
current 

Precision 
current 
sources  

Current steering  Faster 
conversion 
speed  

1. Use of binary weighted 
current steering DAC.An 8 bit 
DAC needs 8 current sources 
with the largest being 2N-1 

times greater than the smallest  

2. Causes glitches  
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sources  

Charge 
Scaling 
DAC’S  

Capacitors  Charge scaling  1.Low power 
dissipation  

2.Output is 
sample and 
held  

1.Requires large capacitor 
ratios  

2.Not inherently monotonic  

Cyclic DAC 

(paralle) 

 Capacitors, 
operational 
amplifiers 

Charge and 
discharging of 
capacitors 

1. High 
accuracy 

2. Fast 
conversion 
speed 

3, Output is 
sampled and 
held 

1. High power consumption 

2.Occupies large circuit space 

1.4 Organization of the Thesis 

Chapter 2 covers the implementation of the DAC, all the other analog and digital blocks 

which are used in the design and also it provides the description of the different topologies used.   

Chapter 3 describes the simulation results of all the individual blocks and also the DAC 

integrated circuit using different topologies. Chapter 4 presents the actual layout of all the blocks 

designed. chapter 5 covers the conclusion and the recommendations for future work. Appendix A 

covers the test plan of the circuits. Appendix B covers the temperature and extracted simulations. 

Appendix C covers the characterization of Schmitt trigger circuit. Finally Appendix D covers the 

pipeline based DAC model which is more accurate with some limitations discussed in detail.  
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2.  DIGITAL TO ANALOG CONVERTER DESIGN 

2.1 Design Procedure  

By comparing all the DAC models shown in Table 1.1, it is found that charge scaling 

version of DAC is more advantageous to implement because of its inherent characteristics of 

lower power consumption and output sample and hold. The power consumption is give 

importance because the DACs are mostly used in the interface systems. If a DAC is designed for 

lower power consumption helps to reduce the power consumption of overall circuit by 

significant amount, It is also important for a circuit to hold the data until the input changes again.   

It also seems to have a disadvantage of large capacitor sizes and non monotonic output. The sizes 

of the capacitors can be reduced by implementing the DAC with split array model. The split 

array based approach is used to save the circuit space. The design of a charge scaling split array 

DAC includes defining the requirements of the design, creating an architectural model, defining 

the process design kit, hand calculations, simulations, physical design, fabrication, verification 

and testing. A design is said to be complete when it passes through all these implementation 

phases. The V diagram shown below gives the brief idea of how a design process works. 
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Fig. 2.1. V Diagram [10] 

1. The System/ Functional level is the phase in the design where the high level validation of the 

design is performed. This is the most important level of the design process; if the top level 

doesn’t work then major changes have to be made to the system, so it works as desired. This step 

saves a lot of time that would be consumed if the implementation is started directly.  

2. In the Architectural level model, the specific sub blocks are put in place with accurate 

connectivity and behavior. This model is an abstract design, but correlates directly to hardware to 

be built [10].  

3. In the implementation phase the circuit is designed with the real transistor models. The 

simulations are run under varied temperature ranges and process corners. Slight deviations are 

seen in the outputs when compared to the ideal models which is due to the addition of all 

transistor parameters to the models like thresholds, gate capacitance etc., 
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4. In the physical design phase, the implementation of the schematic is represented in its physical 

form which is later converted to a .GDSII format (the design in the form of rectangles and 

polygons), which is sent out for fabrication.  

5. The block verification phase checks the consistency of the physical design with the schematic 

and a set of rules are followed while designing the layouts. The verification of the design for the 

design rules and the consistency of the layout are carried out in this stage with the help of DRC, 

LVS error checking tools. 

6. In the IC verification phase of design test and verification plans are developed to test the 

design under real case scenario, compare with the simulation results. 

7. In the system level verification phase, the circuit performance is measured as a whole. This is 

the last step of the design cycle and improvements are made to the design if required before the 

chips are sent for fabrication. 

2.2 Architectural Design 

The main purpose of creating the model is to verify how the circuit works at a given 

frequency and provided specifications. This model helped in determining the capacitor sizes such 

that the input capacitance of the op amp buffer does not affect the DAC output. The Fig. 2.2 

shows the architectural design of the charge scaling DAC.  All the sub blocks used in the design 

have the ideal characteristics.  
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Fig. 2.2.  DAC System Level Model 

The Table 2.1 provides the specifications for which the circuit is designed.  This 

circuit consumes very low power and operates at frequencies as high as 1MHz.  

 

Table 2.1. Charge Scaling DAC design Specifications 

Design Parameters 

Vref 15 V 

Vout Range 0 to 14.5 V or binary value 

Power consumption 8.3 mW 

VDD 15 V 
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Operating frequency Upto 1 MHz 

 

The Table 2.2 gives the information of all the sub level blocks of the design. All the 

blocks are modeled to behave ideally and the circuit internal parameters are not accounted. 

Table 2.2. Design Sub Level Blocks 

Library Model Total Used Type 

eb_Logic eb_Inverter_VV 8 Built-in-effect 

eb_Electrical eb_Switch 18 Built-in-effect 

eb_Electrical eb_Capacitor 10 Built-in-effect 

sl_PortsSubsystems sl_Inport 17 Built-in-effect 

Spice spl_V_vdc 1 User created effect: 

Spice DC voltage 

source 

2.2.1 Test Bench  

The Fig. 2.3 shows the test bench for DAC architecture model. Pulse divider circuits are 

used in order to provide a sequential bit pattern to the input of the converter. The frequency of 

the clock signal is 1 MHz. The simulator tool used is SPICE.  
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Fig. 2.3.  Top Model Test Bench 

The plot below shown in the Fig. 2.4 is the representation of output voltage of the DAC 

versus time. The spikes in the output are caused during the charging and the discharging of the 

capacitors, which is quite common in all charge based design approaches. These spikes can be 

eliminated by placing op amp buffers at the output. 

 

Fig. 2.4. Full Scale Ramp 
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2.3 Implementation 

The Fig. 2.5 below shows the complete topology of DAC. This has three stages. The first 

stage consists of a charge scaling DAC, the second stage consists of logic circuitry built with sub 

blocks such as Schmitt trigger, flip flop and transmission gates and the final stage comprises of 

two op amps in voltage follower configuration. 

 

Fig. 2.5.  DAC Integrated Circuit 

The topology comprises of all the sub blocks designed under analog and digital circuit 

libraries. The blocks such as DAC, Counter, Schmitt trigger, Inverters, Transmission gates and 

digital buffered are designed as a part of the Full chip design. The operational amplifiers are used 

from the previous run with were designed by fellow students. Table.2.3 shows the blocks used in 

the design. 
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Table 2.3. Blocks used in the Logic circuit Design  

Counter 

Charge scaling DAC 

SR flip flop 

Schmitt trigger 

Transmission Gates 

Op amp buffers 

Digital buffer 

The design topology is comprised of three stages, those are basic charge scaling DAC, 

logic circuitry and the output buffer.  

The logic circuitry is comprised of blocks such as Schmitt triggers, transmission gates, 

digital buffers and SR flip-flop. The main idea of using this topology is to provide rail to rail 

buffered output. The op amp buffers used in the design have an input common mode range of 0 

to 11.2 V and 4.7 to 14.5 V respectively. In order to get a rail to rail buffered output, both the op 

amps are used in combination and make the transition between them depending upon their 

ICMR. The SR flip-flop is the heart of the logic circuitry; it is the one which controls the 

switching between the op amps. 
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Operation: 

The output of the DAC is fed into the transmission gates and the Schmitt trigger. The 

Schmitt trigger provides the corresponding digital output based on the provided switching 

threshold levels. The output of the Schmitt triggers is fed into the SR flip flop, which controls the 

switching states of the transmission gates. These transmission gates acts as the interface between 

the DAC and the op amp buffers. The Table 2.4 shows different states of the SR flip flop and the 

corresponding switching of op amps and transmission gates. 

Table 2.4. States of SR Flip Flop 

S R Q Qbar Opamp1 Opamp2 

0 0 Q0 Q0bar Depends upon previous state  

0 1 0 1 OFF ON 

1 0 1 0 ON OFF 

1 1 NA NA Output state is undisturbed 

2.3.1 Digital Building Blocks  

These blocks are designed to create the test bench, and logic circuitry needed for the 

Digital to Analog Converter design. This section provides more details about the blocks used in 

the design. 
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Digital buffer 

The digital buffer is a driver for a large load, which is used to isolate the input signal 

from the output signal preventing the impedance of one circuit altering the other, which 

improves the drive capability of the circuit [13]. Generally buffers are used to drive output pads 

of a chip, to drive long wires, and anywhere that a large number of inputs that must be driven 

rapidly. The digital buffer designed is a basic 3X inverter buffer which has the delay of 14 ns and 

can drive an output load which is 10 times more than its input capacitance. The main advantage 

of using this circuit in the design is to provide proper isolation between the input and output 

terminals. 

 

Fig. 2.6. Inverter 3X Digital Buffer 

The drive capability of the buffer is given by the equation 
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                                                            (2.1) 

The normalized delay of the logic gate can be expressed as a summation of two primary 

terms,   parasitic delay P (delay considered without load) and path effort F, (considered with 

load). The parasitic delay for the inverter is found to be 1 from Elmore delay model of the 

inverter.  The path effort F, is given by the product of path logical effort G (product of individual 

logical efforts of the gates), path electric effort H (ratio of the load capacitance to its input 

capacitance)[13] and the branching factor. 

F = BGH, H = Cload/ Cin 

Where, N – Number of inverter stages, G – Logical effort, B – Branching factor 

The value of N is chose such that 2< N < 5.  Buffer designed using the N in between this range is 

found to have least delay. 

For the inverter B = G = 1 

Cload/ Cin = f
N
 

For a 3X inverter buffer with two inverters in chain 

Cload/ Cin =  3
2
 = 9 

The buffer can drive a load which is 9 time higher than its input 
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Counter[2]  

A counter is a sequential circuit; it is a register that goes through a predetermined 

sequence of states upon the application of input. The counter designed is an 8 bit synchronous 

counter which can operate at frequencies as high as 1MHz and consumes power of 80 mW 

(worst possible case). The output bits of a synchronous counter change simultaneously, with no 

ripple. The state of the signals in a synchronous counter can be changed only with the application 

of distributed clock signal, which makes the circuit predicTable. Another advantage of using this 

topology is that the synchronous clock signals are less susceptible to noise, which makes it safer 

to design and operate.  The purpose of designing this counter is to ease the testing of the DAC. 

The counter is designed using a 1.2 µm SiC process, this improved the rise and fall times of the 

output pulse when compared to topologies which are designed using 2 µm SiC process in the 

previous runs. The output pulses of the counter have a rise and fall times of 20 nanoseconds and 

16 nanoseconds respectively. The operation of the counter is a very simple. When both the input 

of the JK flip flop is assigned to logic ‘1’, it makes the output of the flip flop to toggle for each 

rising edge of the clock pulse provided. The output of the first flip flop is fed to the input of the 

second one and so on. This make the flip flop switch between the states and provide the 
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sequential output. The schematic of the counter is shown in Fig. 2.9.

 

Fig. 2.7. 8 bit sequential up counter 
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The counter is built using the basic digital gates. The schematics of the inverter, 2 and 3 

input NAND, AND the digital cells are given in Fig. 2.10 for completeness 

 

(a) 

  

(b) 
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(c) 

 

(d) 

Fig. 2.8. Digital cell Schematics 
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JK Flip Flop 

The digital sub cell is required to design the counter is JK flip flop. The JK flip is the 

combination of two and three input NAND gates and inverter [2].  

 

Fig. 2.9. JK Flip Flop Master and Slave 

The JK flip flop is the core building block of the counter design. The JK flip flop behaves 

the same as the SR flip flop except for the state when j=k=1. In this state the output of the flip 

flop toggles for each and every clock pulse given to it. The flip flop is positive edge triggered, 

which change states only on the application of positive edge of the clock cycle. The truth Table 

of the JK flip flop is given in Table.2.5. 
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Table 2.5. Truth Table JK Flip Flop 

J K Q Qnext comment 

0 0 0 Q Hold state 

0 1 0 0 Reset 

1 0 1 1 Set 

1 1 1 Qbar toggle 

The flip flop is designed to operate with less propagation delay and have high driving 

capability. The counter circuit is designed to have low rise and fall times. In order to make the 

counter to operate fast, the sub blocks of the circuit are designed such that the response time of 

the whole circuit is as low as possible. Uniformity is maintained for the rise and fall times all the 

circuits in the design, which is in the range of 15 to 20 nanoseconds 

2.3.2 Analog Building Blocks 

The analog building blocks are spread out in all the three stages of the design. The first 

stage comprises a charge scaling capacitor chain, the second stage contains the Schmitt triggers 

and the transmission gates and the final stage has the operational amplifiers in voltage buffer 

configuration. 
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Schmitt Trigger 

This is the crucial sub-block of the logic circuit.  As a part of the design, two Schmitt 

triggers were used which plays an important role in switching between the op amps when 

needed. The Fig. 2.12 shows the basic topology of the Schmitt trigger circuit[2]. 

 

 

Fig. 2.10. Schmitt Trigger  

Analysis: 

Assuming the output is high and input is low, the analysis is started from the bottom 

portion of the Schmitt trigger show in Fig. 2.11. The upper switching point(Vsph) voltage is 

determined by analyzing the switching states of the MOSFETs. When Vin is 0, MOSFETs M1 

and M2 are off, while M3 is on. The source of M3 floats to VDD – Vthn, which is approximately 

11.5 V for VDD of 15V. 
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Fig. 2.11. Lower portion of Schmitt Trigger used to calculate upper switch point voltage [2] 

When Vin less than the threshold voltage of M1, Vx remains at VDD – Vthn3. As Vin is 

increased further, M1 begins to turn on and the voltage, Vx, starts to fall towards ground. The 

high switching point voltage is defined as 

                                                Vin = Vsph = Vthn2 + Vx                                         (2.2) 

As M2 starts to turn on, the output starts to move towards the ground, causing M3 to turn 

off. This causes Vx to fall further, turning M2 on even more. This positive feedback cause the 

switching to be well defined. 

The current flowing through M1 and M3 are essentially the same. Equating these currents 

                                       β1/2 (Vsph – Vthn)
2
 = β2/2 (Vdd – Vx – Vthn3)

2
                              (2.3) 
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Since M2 and M3 are tied together, Vthn2 = Vthn3 , the increase in the threshold 

voltages from the body effect is the same for both  MOSFET.  

                                       β1/ β3 = W1L3/ L1W3 = [ Vdd – Vsph/Vsph – Vth]
2
                          (2.4) 

The threshold voltage of M1, given by Vthn in this equation, is the zero body bias 

threshold voltage. Given specific upper switching point voltage, the ratio of the MOSFET 

transconductors is determined by solving this equation. A general design rule for selecting the 

size of M2, that is, β2, is to require that 

                                                               β 2 > β1 or β3                                                       (2.5) 

Since M2 is used as a switch. A similar analysis can be used to determine the lower 

switching point voltage. The resulting equation is. 

                                   β 5/ β6 = W5L61/ L5W6 = [ Vspl/Vdd -Vsph – Vthp]
2
                           (2.6) 

Thus, from the equations given above the upper and the lower switching point voltages of 

the Schmitt trigger can be determined.  

The Schmitt trigger topology shown in the Fig. 2.14 is the modified version of the basic 

Schmitt trigger circuit. Using the BSIM4 models for the design, these are modeled at Cato 

springs research center at university of Arkansas. These models provide the most accurate 

characteristics match with fabricated SiC devices. Threshold voltages of PMOS are very high. 

So, it is always better to have fewer PMOS transistors in the pull up network of the design to get 

equal raise and fall times with less transistor sizes and this will also improve the circuit switching 

speeds. The circuit analysis is same as the basic Schmitt trigger circuit except for the lower 
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switching threshold voltage, which is determined during the simulations and can be set by 

varying the size of the pull up transistors. 

 

Fig. 2.12. Modified Schmitt Trigger Circuit 

Charge Scaling DAC:  

A charge scaling DAC requires large sized capacitors when designed for a high 

resolution, which can be resolved by the split array based DAC. For example the MSB capacitor 

size required by a 8 bit charge scaling DAC with a unit capacitor size of 2 pF  is 256 pF whereas 

the size of the largest capacitor in the 8 bit split array based DAC is 16pF. The layout area of a 

2pF capacitor fabricated using this process is approximately 0.6 X 0.6 µm
2
. A lot of design space 

can be saved by designing the DAC using split array based model.  
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The Fig. 2.5 shows the implementation of charge scaling DAC. It is built with the basic 

sub blocks like transmission gates, inverters, and capacitors.   

 

Fig. 2.13. 8 Bit Split Array Based Charge Scaling DAC 

The architecture of split array based DAC is different from charge scaling DAC in two 

ways, the output is taken at the MSB in a split array based DAC where as it is taken at the LSB 

in the charge scaling DAC. In split array based model an additional capacitor is used to separate 

LSB from the MSB array. The value of the attenuation capacitor is given by  

                                            
                          

                          
 

  

  
                               2.6) 

Sum of MSB capacitor sizes is equal to the difference of the sum of LSB array capacitor 

sizes and the attenuation capacitor size. The value of the attenuation capacitor should be such 

that series combination of the attenuation capacitor and the LSB array, assuming all bit are zero, 

equals C (size of minimum capacitor) [3]. 

 To understand the split array based model the circuit is modified to its Thevenin 

equivalent as shown in the figure below. 
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Fig. 2.14. Thevnin Equivalent of Split Array DAC 

The equivalent model of split array based charge scaling DAC consists of two capacitors 

in series with voltage sources which are separated by an attenuation capacitor. The voltages v1 

and v2 are given by 

 

 

The output of the DAC is given by  

                                                                                                                   (2.7) 

2.3.3 Transmission Gates 

Transmission gates in the design are used to create a charging and discharging path for 

the capacitors. Capacitors in the circuit are enabled/ disabled by the DAC’S binary input signals. 
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Transmission Gates can be used to quickly isolate multiple signals with a very less investment of 

board area and with a negligible degradation in the characteristics of those critical signals [8].  

The N- channel pass transistor passes logic ‘0’ perfectly but degrades logic ‘1’, P- Channel pass 

transistor passes logic ‘1’ perfectly but degrades logic ‘0’.  The CMOS transmission gate passes 

both 1’s and 0’s perfectly. The design does not limit the use of these gates just to pass either 

logic 0 or logic 1, the gates are needed to pass a wide voltage ranges. Analog design procedure is 

used to implement these gates.  The equivalent model of the transmission gate is shown in Fig. 

2.15. , which consists the two resistors in parallel Rp (Resistance of a PFET) and Rn (Resistance 

of NFET).  

   

Fig. 2.15. Transmission Gate and its Equivalent Resistive Model 
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The equivalent resistance of the transmission gate is given by 

                                                   Req = Rp||Rn                                             (2.8) 

The ideal on state resistance of a CMOS transmission gate is zero whereas when the 

CMOS gate is ‘off’ the resistance is infinity, but the equivalent resistance of the transmission 

gate is not same as the ideal value. It keeps on changing depending upon the change in the 

supply voltage. The plot Ron Vs VDD illustrates the relationship between changes of on state 

resistance with supply voltage change.  

 

Fig. 2.16. On State Resistance of a Transmission Gate Versus Input Voltage [9] 

The plot in the Fig. 2.16 indicated in green, red, blue are on state resistances of NFET, 

PFET, CMOS transmission gate respectively. The design of the transmission gate should be of 

minimum transistor sizes and also have as much low on state resistance as possible. 
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2.3.4 Operational Amplifiers (Designed by fellow students) 

The operational amplifiers from the previous runs are used in the output stage of the 

DAC design.  The main idea of the project is to design a DAC with rail to rail buffered output 

stage.  The amplifiers are used in unity gain buffer configuration used to drive a resistive load or 

a large capacitive load. The op amps used in the design are p channel input op amp (sense low 

amplifier) and n channel input op amp. The ICMR of these op amps are 0 to 11.2 V and 4.7 to 

14.58 V respectively. The topologies of both the op amps are shown below. 

P Channel Input Op Amp (Sense Low Amplifier) 

The sense low amplifier is designed to have a common mode range of min rail to the 11.2 

V the design of this amplifier is based on the basic two stage operational amplifier with some 

modifications. The N channel input pair is replaced by P channel input pair and the PMOS load 

is replaced by NMOS current mirror load. An additional resistor and capacitor pair is added in 

between the stages to provide greater stability.  
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Fig.2.17. P Channel Input Two Stage Operational Amplifier 

The design parameters of the op amp are given in Table 2.6 below. 

Table 2.6. Design Parameters for N Channel Input Op Amp 

Design parameter( Tested results) 

DC Gain 58.44 

Phase margin 76.05 

Gain bandwidth 1.395 MHz 

ICMR 127.6mV – 10.7V 



34 

 

Slew rate 3.962 M 

 

N- Channel Input Op Amp 

This is a CMOS SiC based two stage operational amplifier. The first stage is a differential 

stage followed by the common-source amplifier output stage( second stage). An additional 

circuit is added between these stages for better stability and improved phase margin. The 

schematic is shown in the Fig. 2.18.[14] 

 

Fig.2.18. N channel Input Two Stage Operational Amplifier [11] 

The design parameters of the N channel input trans-conductance amplifier is shown in Table.2.7. 
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Table.2.7. Design Parameters Two Stage Operational Amplifier 

Design parameter( Tested results) 

DC Gain 74.29 

Phase margin 40.65 

Gain bandwidth 2.164 MHz 

ICMR 4.7V – 14.58V 

Slew rate 26.41 V/µs 
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3. SIMULATION 

This is the most important step of the design process. The performance of the circuits is 

validated to match with the design specifications. Test benches are developed to verify the circuit 

characteristics performance over different process corners and the temperatures (25˚C to 275˚C).  

Most of the circuits of the design work well at the temperature range above 100˚C and below 

200˚C. All the simulations are carried out at 25˚C with TT models. The simulations were run 

using HSPICE simulator. The models used for the design are BSIM4. 

3.1 Digital Simulations   

The digital simulations are performed to verify the performance characteristics of the 

digital blocks such as digital gates, flip flops and counter. 

3.1.1 Digital Gates 

The test bench for the basic two input NAND gate is given below in Fig. 3.1. The clock 

signals given to the input of the gate are of frequency 1 MHz and 500 kHz respectively and are 

in phase with each other. The size of the output load capacitor is chosen as 1 pF to emulate the 

largest fan-out of any gate expected to encounter. The basic idea is to design the digital gates 

with the rise and fall times less than 20 ns and with as small delay as possible. 
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Fig. 3.1 Test Bench for 2 Input NAND Gate 

The plot given in Fig. 3.2 shows the NAND gate output and the corresponding input 

voltages. The rise time and fall times is observed to be 18 and 19 nanoseconds respectively. 

 

Fig. 3.2 NAND Gate Functionality 
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3.1.2 JK Flip Flop 

This is the most crucial part of the counter. The test bench for the flip flop is given in Fig. 

3.3. The pulses are given to the input port J and K to verify all the states of the flip-flop. It is a 

positive edge triggered flip-flop, the output changes whenever the clock goes high. The pulse 

inputs used are of 1 MHz frequency and the load capacitance is chosen to be 1 pF.  

 

Fig. 3.3. Test bench for JK Flip Flop 

The Fig. 3.4 shows the transient characteristics of the JK flip flop. The figure indicates 

the plot of the inputs and the corresponding output states of the JK flip flop. 



39 

 

  

Fig. 3.4 JK Flip Flop Functionality  

3.1.3 Counter 

The functionality of the basic building blocks of counter is verified. The next step in the 

design process is to verify the counter circuit as a whole. The counter designed is an 8 bit 

synchronous up counter. The counter is designed to create the test bench for the charge scaling 

DAC with works at a frequency of 1MHz. The counter provides an output pulse frequency of 1 

MHz. The frequency of the output pulse can be changed when needed by changing the frequency 

of the clock signal input. The test bench for the counter is shown in Fig. 3.5. A voltage of logic 1 

is applied to J and K inputs, the output toggles for every clock cycle. The frequency of the pulse 

given to the clk input is 2 MHz and the load capacitance is 1 pF. The simulation results are 

shown in the Fig. 3.6. 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0.00E+00 1.00E-06 2.00E-06 3.00E-06 4.00E-06 5.00E-06 

V
o

lt
ag

e
(V

) 

Time(S) 

JK flip flop 

J 

K 

Q 

Qbar 



40 

 

 

Fig. 3.5 Counter Test Bench 
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   (c)        (d) 
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(i) 

Fig. 3.6 Counter Output Bit Sequence 

 The Table 3.1 provides the details about raise and fall times of the output pulse and also 

the design parameters of the circuit as a whole. 

Table.3.1. Design Parameters of Counter 

Design Parameters 

Trise of output pulse 20 ns 

Tfall of output pulse 16 ns 

VDD 15 V 

Power consumption 80m W 
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3.1.4 Digital Buffer 

The test setup for the transient response of the digital buffer is given in the Fig. 3.7. The 

input pulse is of the frequency 1MHz and the load capacitance is 1 pF.  

 

Fig. 3.7 Digital Buffer Test Bench 

 The Table 3.2 shows the buffer characteristics such as driving capability, rise, fall and 

delay times. 

Table.3.2. Digital Buffer Design Parameters 

Design parameters 

Trise  21 ns  

Tfall  19 ns  
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The plot shown in Fig. 3.8 provides the digital buffer characteristics. The rise, fall and delay 

times of the buffer circuit are 21, 19 and 14 ns respectively. 

 

Fig. 3.8 Digital Buffer Transient Response 

 

3.2 Analog Simulations 

This section consists of the verification of analog portion of the system. The validation of 
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3.2.1 Charge Scaling DAC 

Charge scaling DAC is the core block of the design. The Fig. 3.8 below shows the test 

setup for the DAC, eight pulse sources are taken with varying frequencies to get a bit pattern that 

starts from 00000000 and counts till 11111111. A transient simulation is run with start and stop 

times of 0 and 256 µs and with a step size of 100 nanoseconds. 

 

 

Fig. 3.8 Test Bench Setup for DAC 

 The Fig. 3.9 shows the full scale output ramp of the DAC, it starts from 0V and reaches 

14.49 V. The DAC has an offset of 0.05 mV which is almost negligible. The spikes are caused 

during the charging and the discharging phases of the capacitors can be eliminated by an output 

buffer. As all the circuits are integrated together the input to the capacitor chain stops generating 
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sequence at frequency of 3.5 MHz which makes capacitor chain output deviates from its general 

behavior. 

 

Fig. 3.9 DAC Full Scale Ramp 

3.2.2 Schmitt Trigger 

The Schmitt triggers are used to provide switching voltages to turn transmission gates on/ 

off which determines the switching between the op amps. 

DC response 

The Fig. 3.10 shows the test setup for the DC response characteristics of the Schmitt 

trigger. The input DC voltage is swept from 0 to 15 V with a step increment of 1 V and the 

corresponding output voltage is plotted as shown in the Fig. 3.11 which helps to determine the 

lower switching point. The input DC voltage is sweep from 15 to 0 V which helps to determine 

the upper switching point. 
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Fig. 3.10. Test Bench Set Up to Determine Hysteresis Width 

The Fig. 3.11 below shows the DC characterization to determine the hysteresis width, and it is 

observed to be 2V with an upper and lower switching point voltages as 8 and 6 V respectively. 

 

Fig. 3.11. Hysteresis Width  
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Transient Response 

The transient response of the Schmitt trigger helps us to determine the rise, fall and the 

delay times of the circuit, it also gives information about slew rate. The transient response test 

bench setup is shown in the Fig. 3.12. The input to the circuit is a pulse wave of frequency 1 

MHz and the load capacitance is 1 pF.  The Fig. 3.13 gives the transient performance 

characteristics of the circuit. The rise and fall times of the Schmitt trigger are found to be 8 and 

9ns respectively. 

 

Fig. 3.12. Test Setup for Transient Response Characteristics  

 

Fig. 3.13. Transient Response 
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The Table 3.3 shows the design parameters of the modified Schmitt trigger circuits and 

also the design parameters for the prior Schmitt trigger. 

Table.3.3. Design Parameters of Schmitt Trigger 

 Modified 

Schmitt 

trigger 1 

Modified 

Schmitt 

trigger 2 

Basic 

Schmitt 

trigger 

unit 

Upper switching point 6 5 5.4 V 

Lower switching point 8 7 9.2 V 

Rise time 8  7  196 ns 

Fall time 9 10 131 ns 

Power consumption 7.5 15 0.89 mW 

Slew rate 396 265 80.6 V/µs 
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3.2.3 Operation Amplifiers 

Two op amps in voltage follower configuration are used at output stage of charge scaling 

DAC. The circuits were designed by the fellow students in the previous run using the BSIM3 

models. In the current design more emphasis is given to the ICMR of the op amps. The Figs. 

3.14 and 3.15 Show the ICMR test benches for the two op amps used in the design. Simulations 

are done using the BSIM4 models. The input common mode ranges of the two op amp circuits 

used are given in the Table3.6. 

Table.3.4. ICMR of Operational Amplifiers 

 BSIM3 BSIM4 

N Channel input two stage amplifier 4.7 – 14.7 V 5.2- 11.1 V 

P channel input two stage amplifer 127.6m – 10.7 V 127.6m – 9.7 V 

 

Fig. 3.14. shows the test setup configuration for finding ICMR. Here the op amp is a 

voltage – follower configuration. The current bias is 100µA sinking current and the supply 

voltage is 15 V.  In the voltage follower configuration the output of the amplifier is connected 

with the negative input. This forces the output to be equal to the input. The minimum ICMR is 

found to be 127.6m V and the maximum ICMR is found to be 9.7 V. 
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Fig. 3.14 ICMR Test Setup for P Channel Input Op Amp 

From the Fig. 3.15 it can be inferred that the output voltage is equal to the input voltage until the 

input voltage reaches a value of 9.7 V, after this point the operational amplifier no longer acts as 

a unity gain buffer, Vin is not equal to Vout. This is due to the higher threshold voltages of 

PMOS transistors. 

 

Fig. 3.15 ICMR Plot for P Channel Input Op Amp 
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   Fig. 3.16 shows the test bench setup to determine ICMR of the op amp. This op amp is 

designed in the Raytheon tape out 1 using the SiC process. The bias voltage is set to 3.5 V and 

the DC voltage sweep is applied as the input to the circuit and it is determined that the op amp 

acts as the voltage follower circuit within the range 4.7 (min ICMR) to 14.5 (max ICMR).   

 

Fig. 3.16 ICMR Test Setup for N Channel Input Op Amp 

The Fig. 3.17 shows the plot of input voltage vs the corresponding voltage and also the 

supply current. This data is useful to determine the ICMR and the total DC power consumption 

of the op amp. 
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Fig. 3.17 ICMR Plot for N Channel Input Op Amp 

The circuits are designed using BSIM4 models, these models have higher thresholds for 

the PMOS which decreased the ICMR of the circuits when compared to the ICMR of the 

amplifiers simulated using BSIM3 models.  

3.3 DAC Integrated Circuit 

After all the individual blocks are validated, the final step is the implementation process. 

Fig. 3.18 shown below is the test bench configuration for the full circuit.  The input to the 

counter is a clock pulse of frequency 500 kHz, the counter produce the sequence of bits from 

00000000 to 11111111. The capacitor chain converts these input bits into corresponding output.  

This output is further filtered by the op amps at the output stage. 
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Fig. 3.18. DAC Circuit with Output Buffer 

The Fig. 3.19 below is the plot of output digital voltage with respect to time. The graph is 

plotted on a time scale of range 0 to 255 µs, each µs corresponds to a digital input starting from 

00000000 to 11111111.  
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Fig. 3.19 Full Scale Output Ramp Through TG 

From the plot in the Fig. 3.19 it is seen that there is a distortion in the output voltage 

when the ramp is passed through a transmission gate. This is caused due to the high on-state 

resistance of the transmission gate when one transistor is partially on and the other is partially 

off. Due to the high threshold of the BSIM4 transistor models the on-state resistance of the 

transmission gate is found to be 3.2 GΩ when the input is 7.5 V. The Fig. 3.21 shows the plot of 

transmission gate on state resistance versus input voltage.   

Transmission gate 

The figure below shows the test bench setup for determining the transmission gate on state 

resistance. DC voltage is supplied as the input to the transmission gate. The input voltage is 

swept from 0 to 15 V.  The value of the output voltage V3 is set to 7 V, drain – source current is 

measured and the value of on state resistance is calculated by using the equation provided below 
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                                                    Rds(on) = Vds/ Ids                (3.1) 

 

Fig. 3.20. On State Resistance Test Setup for TG 

 The plot in the Fig. 3.21 determines transmission gate on state resistance for the corresponding 

input voltage. From the plot it can be inferred that the on state resistance is very high when the 

input voltage is 7.5 V, this causes the output to be distorted when a ramp is passed through the 

transmission gate. 

 

Fig. 3.21 On State Resistance Vs Input Voltage 
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3.3.1 Modified Design Topology 

From Fig. 3.19 it can be seen that when a ramping voltage is passed through the 

transmission gate it gets distorted at the output. The circuit is modified as shown in Fig. 3.22 in 

which the transmission gates are used to control the switching between the op amps rather than 

passing the signal through it. The Schmitt trigger control the on/ off state of the TGs which in 

turn turns the op amps on/off. 

 

Fig. 3.22. Modified Topology I 

The Fig. 3.23 is same as the modified topology except for TGs are replace by digital 

buffers and supply voltage to the op amps is determined by the Schmitt trigger high/ low 

switching voltage levels. 

 



58 

 

 

Fig. 3.23. Modified Topology II 

 

Fig. 3.24. Output of Schmitt trigger switching at 6V 

The Fig. 3.25 is the buffer output of the DAC. The graph marked in red is when the P- 

channel input op amp is acting as the voltage buffer, N- channel input op amp is off and the plot 

which is marked in blue is when the N- channel input op amp is acting as the voltage buffer, P- 

channel input op amp is off. The transition between the op amps is made 6 V. This is voltage that 

is common in the ICMR of both the op amps.  
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Fig. 3.25. DAC Buffered Output 

3.3.2 Error Checking 

 The verification of the DAC functionality is validated using two error checking methods 

INL and DNL. 

DNL (Differential Non Linearity) 

To determine the DNL error the output is sampled at the switching points for 256 steps. 

Once the waveform is acquired it is compared with the ideal waveform switching points and the 

difference per step between the two waveforms gives the resulting DNL. The resolution of the 

DAC is 0 to 14.5 over 256 steps resulting in a step size 0.056V. Fig.3.26 shows the DNL error 

versus the corresponding digital input code. The output range of the op-amp is between 126.7 m 

V to 10.3 V.  The worst case DNL is found to be 3.5 LSBs. The DNL is given by the equation 

Differential nonlinearity (DNL) = (Vcx – Vs/Vs) x 100% = (Vcx/Vs -1) LSBs     (3.2) 

Where Vs is the ideal change and is given by, Vs = Vfsr/ 2
N
 ,Vcx is the actual change in voltage 
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Fig. 3.26. DNL error 

 

INL (Integral Non Linearity) 

Fig. 3.26 shows the INL error versus the corresponding digital input code. INL observes 

the error over the full scale range, opposed to step by step. The INL error can be determined by 

the deviation over the full scale range of the simulation data as compared to an ideal best fit line. 

Fig.3.27 shows the plot of simulated values and ideal best fit line over the time scale. The output 

range of the op-amp is between 126.7 m V to 10.3 V. The worst case INL is observed to be 0.37 

V. 
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Fig. 3.27. INL error 

 

Fig. 3.28. Calculation of INL using Best fit line Method 
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4.  PHYSICAL DESIGN 

The performance of the circuit can be varied based of the physical design, IC layout or 

mask design. The IC layout is the representation of the integrated circuit components in the form 

of geometric shapes which represents the fabrication layers of the circuit’s components. After the 

layout verification is completed, it is converted into a standard format (GDS II), and sent out for 

fabrication.   It is always important to consider the effects of layout on the design system.  

Table 4.1. Layer Map 

Blue Metal 1 

Red Polysilion 

Green/ yellow Pdiff/Ndiff( Active Region) 

Dark yellow Contacts 

 

The performance and precision directly depend on the matching of devices. Layout 

designers should be more cautious while doing physical design and always keep in mind about 

the mismatches that might hinder the proper functioning of the circuit. There are many causes of 

mismatches like microscopic fluctuations in dimensions, doping, oxide thickness and other 

parameters which affect the component values. Though mismatches can’t be eliminated 

completely, the design can be made in such a way that, it will have a limited variation. 
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Table 4.2. Layout rules for basic layers 

Minimum metal width  2.4 µM 

Minimum metal spacing 1.2 µM 

DPoly to Dpoly spacing 1.6 µM 

Dpoly2 to Dpoly2 1.4 µM 

Minimum Poly width 2.2 µM 

4.1 Digital Layout 

The layout of digital blocks used in the DAC is discussed in this section. 

4.1.1 Compact Layout Style 

Digital Layout is simple when compared to analog, as it has complementary (CMOS) 

gates and are symmetrical. All the gates are constructed using cadence Layout suite version IC6 

and the verification was executed in caliber. The layout procedure is explained using the design 

of a unit inverter with the width of PFET is twice of NFET. The layout of the complex digital 

gates is executed in 5 steps as shown. 

Y = A nand B 
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1) Label all the nodes 

  

Fig. 4.1. Two Input NAND Gate Schematic 

2) Make transistors crudely and label their connections, use the symbolic diagram or stick 

diagram. 

 



65 

 

3)  Some wires can be eliminated by flipping transistors. Many redundant connections can be 

removed by abutment. 

4) Draw the final layout except NWELL, substrate contacts. 

 

5) Make the connections between the transistors with the metal layers and poly layers. 

 

Fig. 4.2.  NAND Gate Physical Design 

6) Check the layout. Perform LVS, DRC and parasitic extraction. 
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4.1.2 Counter Layout 

 The counter is the important circuit in the design of test bench for the charge scaling 

DAC. The counter is comprised of all the basic sub blocks designed under digital circuit library. 

Table 5.3 shows the digital cells used in the design of the 8 bit counter. 

Table 4.3. Sub Blocks of Counter 

Gate Name 

Inverter 

2- input NAND gate 

3 Input NAND gate 

2- Input AND gate 

JK flip flop 

 

The Fig. 4.3, 4.4 shows the layout of the sub blocks and the counter as a whole. 
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  (a)      (b) 

 

  (C)      (d) 

(e) 

Fig. 4.3.   Physical Design of (a) Inverter (b) 2 Input AND (c) 2 Input NAND (d) 3 

input NAND (e) JK Flip Flop 
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The design idea of behind the counter is to make it as compact as possible. The physical 

design of the counter is shown in Fig. 4.4. The aspect ratio is 1147µm X  931µm 

 

Fig. 4.4. Counter Physical Design 

4.2 Analog Layout 

The layout of analog blocks used in the DAC is discussed in this section. 
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4.2.1 Capacitor Chain 

The blocks used in the design of the capacitor chain are transmission gates and the 

capacitor array. The Fig. 4.5 shows the physical design of the transmission gate. The main idea 

of the design is: Each branch of a capacitor chain has two transmission gates to provide the 

charging and discharging path to the capacitor. The design is made in a way that using two 

transmission gates together occupies as little space as possible as shown in Fig. 4.7. 

 

Fig. 4.5. Transmission Gate Physical Design 

The layout of the capacitor chain is shown in Fig. 4.6. The aspect ratio is 613µm 

X800µm.  
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Fig. 4.6. Charge Scaling DAC  

4.2.2 Schmitt Triggers 

The layout of the modified Schmitt circuit is given in Fig. 4.9.  The aspect ratio is 174 

µm X 73 µm.  

 

Fig. 4.7.  Modified Schmitt Trigger Layout 
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The Schmitt trigger layout with digital pad frame and the corresponding actual reticle is shown 

in Fig. 4.7 and Fig. 4.8 respectively, which was design for Raytheon tape out 1. The driving 

capability of the circuit is further enhanced, as the digital pad frame has a built-in buffer. The 

aspect ratio of the circuit is 109µm X 178 µm without the pads. 

 

Fig. 4.8.  Schmitt Trigger with Digital Pad Frame 

 

Fig. 4.9.  Actual Reticle Image of Schmitt Trigger 
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4.3 Full Chip Layout 

The aspect ratio of the Full chip is 953 µm X 2731 µm.  Single metal process is used, it 

quite challenging to design the full chip layout with very less poly (which adds more resistance). 

The figure below shows the full chip circuit with probe pads.

 

 

Fig. 4.10.  Full chip Layout With probe pads 
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5.  CONCLUSION 

5. 1 Summary 

This thesis presents the overall design flow of a charge scaling DAC with rail to rail 

buffer output.  The charge scaling DAC is the first of its kind designed in SiC CMOS technology 

which operate in high temperature ranges is an added advantage to the circuit. The design uses 

the BSIM4 models. 

The Charge scaling DACs have an inherit advantage of lower power consumption and 

fairly decent conversion speeds. The circuit design is made in such a way that it behave 

monotonically and the sizes of the capacitor are reduced to save the chip area. The size of the 

largest capacitor in the design is 16pF.  The sizes of the capacitors are chosen in a way that the 

input capacitance of the op amp doesn’t impact the functioning of the capacitor chain. 

The DAC is functional at frequencies as high as 1 MHz and have good performance 

characteristics. The output is buffered in the range of 127.6 m V to 10.2 V.  The power 

consumption of the whole topology is less than 200m V.  As a 1.2µm process is used, the 

conversion speed of overall all circuit is improved.  

5.2 Significance 

Most of the cases an op amp buffer is used at the output stage of the DAC to improve the driving 

capability of the circuit.  It is difficult to design an op amp with a rail to rail input common mode 

range (ICMR).  Without the proper output buffered stage the usage of the DAC will not be 
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fulfilled to a full extent. The approach used to get rail to rail buffered output is applicable to all 

the circuit which need a full range buffered output. 

5.3 Future Work 

The design does not have any disadvantages except for the ICMR range of the two stage 

n channel input operational amplifier.  As the max ICMR of the op amp is 11.2 V the usage of 

the DAC is limited to this voltage itself.  If an op amp is designed having a minimum ICMR of 5 

to8 V and the maximum ICMR nearly equal to the top rail, then it is possible to get the rail to rail 

buffered output. The circuits are yet to be sent for fabrication and packaged. Temperature testing 

is needed to see the behavior of the circuit at high temperatures. The transmission gates on state 

resistance implement the design with the full circuit topology with SR flip flop; this provides 

more control over the switching between op amps. If the accuracy of the circuit is given more 

importance the DAC can be implemented with pipeline based approach shown in appendix D, 

which provides a more accurate analog output at the expense of chip space. The circuit can be 

tested by following the test plan shown in Appendix A. 
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Appendix A. Test Plan 

A. Circuit Overview 

The DAC to be tested is designed in a 1.2 μm SiC process. The process voltage is 15V. 

There are different kinds of sub-circuit block of DAC to be tested.These are 

- Schmitt triggers  

- Counter 

- Full chip DAC 

These circuits are to be tested over temperature range, transient behavior and current 

consumption.  The load capacitance used for the simulation is 1pf. The simulation results of the 

circuit are shown in Appendix B. For the Schmitt trigger circuit follow the test bench setup 

shown in Appendix C. 

B. Test Equipment  

Table A.1. Test Equipment used 
 

Agilent Hewlett Packard HP 54645D 100 MHz 2-16 Channel Mixed Signal 

Oscilloscope 

Oscilloscope probes 1pf 

Tektronix AFG3022B Dual Channel Arbitrary/ Function Generator 25 MHz 

Agilent E3631A Triple Output DC Power Supply 

Cole Parmer STable Temp hotplate 

Hewlett Packard 3458A Multimeter 
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Marconi Instrument 10 KHz, 2.7 GHz signal Generator 2031 

Keithley 4200 SCS 

Semi Probe Station M-6 

 

C. Counter 

Table A.2. Counter pin I/O description 

 
Pin out name Connection description 

VDD Power supply:  15.0 VDC 

VSS Circuit ground: 0 VDC 

Clk Power supply:  15.0 Pulse 

J Power supply:  15.0 VDC 

K Power supply:  15.0 VDC 

Q0 Lower significant Output bit D0 

Q1 Output bit D1 

Q2 Output bit D2 

Q3 Output bit D3 

Q4 Output bit D4 

Q5 Output bit D5 

Q6 Output bit D6 

Q7 Most significant bit D7 
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Fig. A.1 Test Setup for counter 

 

Testing Procedure 

The goal of the test setup is to measure the output of the 8 bit sequential up counter over 

temperature. 

Steps for setting up the bench 

1. Connect the grounds to all the VSS pins of the counter 

2. Connect the 15V Voltage Supply from the HP 6216A to  VDD, Pad VDD 

3. Connect the 15V Voltage supply  from HP E3631A to the J an K ports of the counter 

4. Generate input square signal with a peak value of 15V using the arbitrary waveform generator.        

The amplitude to 7.5 Vp-p with a offset of 7.5 V, and the frequency to 500 KHz. 

5. Connect the output of each output bit line to the oscilloscope (one bit at a time) and measure 

the frequency, output rise and fall times. 

6. Vary the temperatures and repeat the process and Record the values 
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7. Turn off the power supplies. 

D. Full chip DAC 

Table A.3. Full chip DAC pin I/O description 

Pin out name Connection description 

VDD Power supply:  15.0 VDC 

VSS Circuit ground: 0 VDC 

Clk Power supply:  15.0 Pulse 

J Power supply:  15.0 VDC 

K Power supply:  15.0 VDC 

Output Voltage output 

 

 
Fig. A.2 Test Setup for DAC circuit 

 

 The layout below shows the full chip design indicated I/O ports on the pads. 
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Fig. A.3 Layout of the Chip 

 

 

Testing Procedure 

The goal of the test setup is to measure the output of the Full chip DAC over temperature. The 

measure of INL and DNL error are to be calculated from the recorded data. 

Steps for setting up the bench 

1. To test on probe station, place the reticle on the chuck  

2. Connect the probe tips to the pads, turn the vaccum on and mark which coaxial cable connects 

to which pad. 

3. Create a Project folder to save data into the Keithey 

4. Connect all the VSS pins of the DAC to the GND port of keithley 

5. Connect the pin J,K and supply to the SMU 1 port of keithley at set the voltge as 15V. 

6. Connect the CLK to the SMU 2 of keithley and set a pulse voltage input with a peak value of 

15 V and the frequency to 500 KHz. 

7. Measure the output by connecting the port to SMU 4 port 



81 

 

8. Set the connection on keithley 

6.  Run the transient simulation for 0 to 300 µsec and plot the output voltage versus time graph 

7. Save the file 

8. Raise the probe tips, increase the temperature of the chuck and lower the probe tips. 

9. Run the simulation again. Repeat this process at temperatures 25, 100, 200, 300˚ C and save 

the data. 

10. Raise the probe tips lower chuck, turn the vacuum off and remove reticle from the probe 

station. 

 11. Get the data from the keithley and analyze the values by calculating DNL, INL errors using 

excel. 
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Appendix B. Temperature and Extracted simulations 

 This section of the document provides information on circuit behavior with temperature 

and simulation with parasitic extraction from the layout. 

A. Split Array DAC 

 The figure below shows the DAC’s un buffered output at varying temperatures. It is 

observed that the output varies less than 0.2 V when the temperature changes from 100˚C to 

300˚C.  

 

Fig. B.1 Unbuffered  DAC Output Over Temperature 

 

Simulation Results With PEX and Without PEX 

The  plot marked in blue resembles the simulation with out considering the parastics and 

the one with red is with the parasitics. The  extraction results shows almost same characterstics 

as that of the testing results. 
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Fig. B.2 Simulation With and Without PEX 

 

B. Schmitt Trigger 

 The Table.B.1 provide the information about the variation in schmitt trigger 

characterstics with PEX and without PEX over temperature 

Table. B.1. Simulated Schmitt Trigger 

Parameter Temperature Without PEX With PEX Unit 

 

Hysteresis width 

25 
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300 

2.1(5.1,7.2) 

2.3(4.9,7.2) 

1.8(5.3,7.1) 

2.6(4.7,7.3) 

2.2(5.1,7.3) 

2.15(4.9,7.05) 

1.9(5.3,7.2) 

2.8(4.6,7.4) 
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Rise Time 200 
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C. Counter 

The fig. B.3 shows the extracted simulation of the counter circuit. The output pulse rise 

and fall times are found to be 22 and 17 nanoseconds respectively. The simulated and extracted 

characteristics don’t seem to show much variation. 
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Fig. B.3 Extracted Simulation of Counter 

 

D. Full chip  

The figures below shows the comparison between buffered DAC output with and without 

parasitic extraction. The extracted results are very much quite same as that of the simulation 

results without parastics. 
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Fig. B.4 Full chip DAC buffered output with and without PEX 

 

Temperature Simulations Error checking 

DNL and INL 

 The plot shows the DAC’s linearity measure with respect to varying temperatures.  From 

the plots it can inferred that the DNL and INL errors doesn’t change much with temperature.  

  

 

Fig. B.5 Error checking at varying temperatures 
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Appendix C. Testing and characterization of Schmitt trigger circuit 

The Schmitt trigger designed for the Raytheon tape out 1 was sent to fabrication. The 

testing results of the fabricated chip give the clear idea of how a circuit which is designed in 

silicon carbide process responds to temperature changes. A wide range of bonding and packaging 

plans that are compatible with the high temperature testing were considered. 

A. Bond Wire and Packaging 

The wire bonding and the packaging was accomplished at High Density Electronics 

center (HiDEC) at the University of Arkansas. The Fig. C.1 shows the Schmitt trigger on the die.  

 

Fig. C.1. Schmitt Trigger Circuit on the Die 



88 

 

There is a specific sequence of steps to be followed for packaging the chip. The first step 

is to dice the Schmitt trigger reticle from the die shown in the above figure. In the second step 

the die is attached into the 64- pin ceramic quadpack package using epoxy which can with stand 

high temperatures. The package was kept in a vacuum oven at 150˚C for 4 hours, which will 

allow the epoxy to settle down and die will be attached to the package. The third step was wire 

bonding. The pads of the circuit were bonded to the package by using 1 mil gold wire. Fig. C.2 

shows the bonding plan of the Schmitt trigger. The reticle is placed at the bottom left corner of 

the package.  The pin out information is detailed in Table C.1 

 

Fig.C.2. Bonding Plan 
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Table C.1. Bonding diagram pin configuration 

PIN name PIN on package 

PVDD 60 

PVSS 3 

PVDD_IO 6 

PVSS_IO 63 

PVIN 62 

PVOUT 5 

 

The final step packing is soldering the package to the printed circuit board (PCB) and 

verifies the connections. The PCB can withstand the temperature as high as 300˚C. The Fig..A.3 

shows the packaged chip. 
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Fig.C.3. Packaged Circuit [11] 

 

B. Test Setup 

 

 

 

Fig.C.4. Semiprobe Station M6 150mm Test Setup 
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The test equipment is shown in Table 5.3. The circuit characteristics are measured at 

varying temperature from 0 to 300˚C and compared with the simulation results.  Active probes 

are used to reduce the loading effect of the circuit.   

Table C.2. Testing equipment  

Agilent Hewlett Packard HP 54645D 100 MHz 2-16 Channel Mixed Signal 

Oscilloscope 

Oscilloscope probes 10 Pf 

Tektronix AFG3022B Dual Channel Arbitrary/ Function Generator 25MHz 

Agilent E3631A Triple Output DC Power Supply 

Cole Parmer STable Temp hotplate 

Hewlett Packard 3458A Multimeter 

Marconi Instrument 10KHz, 2.7GHz signal Generator 2031 

 

C. Test Results 

 The circuits fabricated are tested and characterized under varying temperature and supply 

voltage variations. 

 

 

DC Characterization 
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 By performing the DC Characterization on the chip, the performance characteristic like 

DC power consumption, upper and lower switching voltages of the chip can be determined. 

 I. Measurement of Hysteresis Width: 

 The Fig. A.5 shows the Test Bench setup for measuring Hysteresis width followed by 

testing procedures. 

 

Fig.C.5. Test bench for Measuring Hysteresis Width 

Procedure 

a) Connect the board as shown in the Fig.C.5. 

b) Follow the general power up procedure. 
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c) Set the Transient triangular power supply with time period of 1us and peak voltage of 15V 

starting from 0 V and measure the hysteresis width by noting down the Upper Threshold and 

Lower Threshold Voltage by observing the intersection points of the triangular waveform with 

the output waveform in the oscilloscope.  

d) Repeat c) for varying power supply and varying temperatures (25 -300
0
C) 

e) Note down the values  

The Fig..C.6 shows the plot of the hysteresis width with the varying temperature. It 

observed hysteresis width is within the +/- 10% range of the simulated value. 

 

Fig.C.6. Hysteresis Width Vs Temperature 

Transient Characterization 

 By performing the Transient Characterization on the chip, the performance characteristics 

such as slew rate, rise, fall and delay times can be determined 

II. Measurement of Rise, Fall and Delay Times 
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The Fig. C.7 shows the Hysteresis setup for measuring Hysteresis width followed by 

testing procedures. 

 

Fig.C.7. Test Bench for Measuring Rise and Fall Times 

Procedure 

a) Connect the board as shown in Fig..A.7. 

b) Follow general power –up procedure. 

c) Generate the input square signal with a peak value of 15V using the arbitrary waveform 

generator.  The amplitude to 7.5Vp-p with an offset of 7.5, and the frequency to 500KHz 

initially and increase it up to 3MHZ. 

d) Monitor the rising and falling edge of the output signals.  

e) Measure the rising and falling slope to calculate each slew rate.  

f) Measure the rise time by calculating the time taken by the signal to reach 90% of its final 

value from the 10% of the final value. 
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g) Measure the fall time by calculating the time taken by the signal to reach from 90% of its 

final value to the 10% of the final value. 

h) Measure the delay time by observing the time difference between the input and output. 

i) Increase the temperature of the die from 25
o
C to 300

o
C in gradual increments. 

j) Repeat the measurement following steps c) to f) for each temperature step. 

Note down the measured values in the Table 

The plots below show the variation of rise and fall times with respect to temperature. The rise 

and fall times didn’t vary much with the temperature. 

 

 

Fig.C.8. Rise time Vs temperature 
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Fig.C.9. Fall time Vs temperature 

 

Table. C.3. Simulated and measured values of Schmitt Trigger 

Parameter Temperature Simulated value Measured value Unit 
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Fall Time 200 

275 

300 

115 

111 

107 

151 

150 

156 

nanosec 

 

 

Power 

consumption 

25 
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200 

275 

0.89 
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131.6 
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Appendix D. 8 BIT PIPELINE DIGITAL TO ANALOG CONVERTER 

A. Introduction 

The split array based charge scaling DAC have advantages of lower power consumption, 

output is sampled and held, but when come to the point of error checking it is found that the max 

INL and DNL errors are 6 LSB and 3 LSB respectively. If more accurate converter is needed 

with DNL and INL less that +/- 2 LSB the pipeline based design approach can be used at the 

expense of large circuit space. Pipeline based DAC uses the charge scaling implementation. The 

accuracy of the output mainly depends on the op amps used in the design. An 8 bit pipeline DAC 

consists of sub circuits like sample and hold, gain and switches which make the design a bit more 

bulky. The main advantages of this topology are fully monotonic, high conversion speed and a 

high resolution can be achieved by varying amplifier gain. The only disadvantage of this DAC is 

it occupies a large chip area[2]. This topology can be used in areas where high accuracy is 

needed and does not have much restriction with the circuit space and power consumption. 

Table. D.1. Design Specifications of the Pipeline Based DAC 

Design Parameters 

Vref 2.5 V 

Vout Range 0 to 15 V or binary value 

VDD 15 V 
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Operating frequency Upto 1 MHz 

Offset < 0.1 mV 

Conversion speed Converts for every clock cycle after the first N 

clock cycles 

INL and DNL error < 0.5 LSB 

B. Technical Approach 

The design of the DAC is carried out in three levels. In the level 0, the inner sub blocks 

of the DAC are designed and modeled, simulated by giving the digital input and observed the 

corresponding output. In the level 1, error checking is performed and also a few adjustments are 

made in the design to make the output accurate. The DAC is checked for the production of the 

sine wave at the output when the ADC output is connected to the input of the DAC. The level 2 

is a custom based approach; the DAC is modeled with verilog A and added few effects such as 

offset, rise time, fall time and time delay. 
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Table. D.2. Levels of Design Approach 

Level Approach Description 

Level 0 Effects In this level I have designed 

the circuit based upon the 

pipeline based topology and 

simulated it by giving an input 

square wave for the 

corresponding digits and 

check the output, whether it is 

analog or not. 

Level 1 Effects In this level of design I have 

tested the DAC for non ideal 

effects like INL and DNL and 

also checked whether the 

DAC is reproducing the sine 

wave at the output when the 

ADC output is connected to 

the input of DAC. 

 

Level 2  

 

Custom based In this level I have modeled 

the DAC by using sequential 

code for the branch used in the 

model and added some effects 

such as offset, rise time, fall 

time and time delay. 

 

C. Implementation 

Sample and Hold Circuit 
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The design starts by the implementation of the sample and hold circuit with is the most 

crucial sub block of the pipeline based DAC. The operation of the circuit is quite simple to 

analyze. When the input to the circuit is logic 0 the capacitor starts discharging to the ground. 

When the input is logic 1 the capacitor charges towards the reference voltage. 

 

Fig. D.1 Model of a Sample and Hold Circuit 

The Table below shows the sub block used in the model design. All the sub blocks are 

built and behaves ideally. 

Table. D.3. Sub Blocks of Sample and Hold Circuit 

Library Model Total Used Type 

eb_Logic eb_Inverter_VV 1 Built-in-effect 

eb_Electrical eb_Switch 3 Built-in-effect 

eb_Electrical eb_Capacitor 1 Built-in-effect 

sl_PortsSubsystems sl_Inport 1 Built-in-effect 

Spice spl_V_vdc 1 User created effect: 

Spice DC voltage 
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source 

 

Simulation 

The plot marked in green is the input to the sample and hold circuit, has two states either 

‘0’ or ‘1’. When the input is ‘0’ the capacitor is discharged toward ground, when the input is ‘1’ 

the capacitor is charged to the reference voltage. The plot shown in blue is the output of sample 

and hold circuit. 
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Fig. D.2 Sample and Hold Circuit Functionality 

Pipeline DAC 

The Fig. D.3. is shows the design topology of pipeline based DAC. The signal from one 

stage is passed down to the next one, each stage does the processing. In an 8 bit pipeline based 

DAC the conversion starts after 8 clock cycles, this is the time taken for the signal to pass down 

from the initial stage to the output of the converter. After this delay time, conversion takes place 

at every clock cycle. The output of the N stage pipeline based DAC is given as 

Vout(n) = [Dn-1 * Vref + Vout(n-1)] * 0.5 

Equation B.1 

The operation of the converter is as follows, when an input bit is 1, add the Vref to the 

output of the previous stage, divide it by two and pass on to the next stage. When the input is 0, 

the output of the precious stage is divided by two and passed on to the next stage. 
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Fig. D.3. Pipeline Based Digital to Analog Converter 

 

The Table below provides the information about the sub blocks used in the design 

topology and the type of effect. 

Table. B.4. Sub Blocks of Pipeline Based DAC 

Library Model Total Used Type 

Level0 Bit1 8 User created effect: 

sample and hold using 

switches 

eb_EventDriven eb_PulseDivider_AV 8 Built-in-effect 

Sl_MathOP Sl_Sum 7 Built-in-effect 

Sl_MathOP Sl_Gain 8 Built-in-effect 
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Simulation  

The plot shows the analog voltage of the DAC for the corresponding digital bit input. The 

output is a full scale ramp starting at 0 V and reaches the reference value. The offset voltage is 0 

V for this ideal model. 

 

 

Fig. D.4.Full Scale buffered Output 

Linearity 

Linearity is defined as the difference between the actual analog output and the desired 

output over the full range of values. It can be defined by two main specifications INL and DNL. 

The accuracy of the DAC depends of linearity. The DAC with INL observed to be less than 0.5 

LSB and DNL values less than 3 LSB are considered to be more accurate. The Fig. B.5 and Fig. 

B.6 shows the DNL and INL errors of the converter.  

-5.00E-01 

0.00E+00 

5.00E-01 

1.00E+00 

1.50E+00 

2.00E+00 

2.50E+00 

3.00E+00 

0 0.05 0.1 0.15 0.2 0.25 0.3 

V
o

lt
ge

(V
) 

Time(s) 

DAC output 

DAC out 



106 

 

 

Fig. D.5. Error Checking DNL 

 

Fig. D.6. Error Checking INL 

 

D. Conclusion 

 The performance characteristics of ideal DAC model are validated, the linearity error is 

found to be less than 4 LSB. The design is can be implemented with real models, if provided 

with enough circuit space and power supply. 
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