
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

5-2017

Linear Quadratic Optimal Control for a Cascaded
Converters-Based Microgrid
Amlam Niragire
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Power and Energy Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Niragire, Amlam, "Linear Quadratic Optimal Control for a Cascaded Converters-Based Microgrid" (2017). Theses and Dissertations.
1902.
http://scholarworks.uark.edu/etd/1902

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fetd%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/1902?utm_source=scholarworks.uark.edu%2Fetd%2F1902&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


Linear Quadratic Optimal Control for a Cascaded Converters-Based Microgrid 

 

 

A thesis submitted in partial fulfillment 

of the requirements for the degree of 

Master of Science in Electrical Engineering 

 

 

 

by 

 

 

 

Amlam Niragire 

Harding University 

Bachelor of Science in Electrical Engineering, 2014 

 

 

 

May 2017 

University of Arkansas 

 

 

This thesis is approved for recommendation to the Graduate Council. 

 

 

 

____________________________________ 

Dr. Roy A. McCann 

Thesis Director 

 

 

 

____________________________________         ____________________________________ 

Dr. Juan C. Balda                                                     Dr. Yue Zhao 

Committee Member                                                 Committee Member 

 

 

 

 

 

 



ABSTRACT 

There is a constant transformation of the electric grid due to an ongoing interest in the 

deployment of renewable energy resources and electric microgrid formation. This transformation, 

though advantageous in many ways, poses great challenges for the energy industry and there must 

be a constant improvement in modeling, simulation, analysis and control techniques in order to 

characterize and optimize the system design and operation. In this light, the scope of this thesis is 

focused on developing a linear model, analyzing the stability and designing an optimal linear 

quadratic regulator (LQR) for a microgrid system. The microgrid system used is inspired by an 

existing, operational grid-connected microgrid testbed at the National Center for Reliable Electric 

Power Transmission (NCREPT). Simulation results using Matlab/SimulinkTM show that the 

linearized model has the same dynamics and converges to the same steady state values as the actual 

model with minimal error. The simulation results also show that the system’s stability margin 

lessens as the input impedance to the microgrid increases; suggesting a weaker coupling. Finally, 

it is observed through simulation that the proposed LQR controller remarkably improves the 

voltage settling time and overshoot, henceforth ameliorating the ability to include larger renewable 

generation capacity.   
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CHAPTER I       INTRODUCTIONS 

I.1 Distributed Generation and the Electric Power Grid of the Future  

The electric power grid has seen a tremendous transformation since the discovery of 

electricity in the 18th century. From the discovery of the first transformer in the late 19th century 

to today’s advanced technologies in measurement and sensors, Internet, communications, power 

electronics, and various types of control, the electric grid has emerged from a simple few-miles 

network to cross-country and cross-nation power grids. In [1], the authors propose a European 

mega-grid, which should be able to enable the region to profit from the diversity in energy supply 

and demand, and would facilitate the sharing of technologically and topographically uneven 

energy resources across the region.  

Even with the above-mentioned developments, problems related to electric power quality 

are still of concern. There are several definitions of electric power quality in existence, but one 

commonly used defines it as a collection of parameters that sets forth the properties and qualities 

of ready-to-use power under normal conditions of operation in regards to the continuity of service 

and voltage characteristics such as frequency, symmetry, waveform and magnitude [2]. Any 

deviations from these normal conditions can cause considerable harm to sensitive loads: a minor 

power interruption can cause serious problems during a technology-based surgery operation, such 

as those commonly performed in hospitals. Likewise, critical information can be lost in data 

centers and servers, which require that power be continuously available for their operation. Other 

sensitive load examples include but are not limited to time-sensitive manufacturing facilities where 

companies can lose a considerable amount of money due to power outages. Many remedies exist 

for power quality related problems. These remedies include capacitor banks, voltage regulators, 



 

2 

uninterrupted power supplies (UPS’s) … etc. Among these power quality solutions, distributed 

generation is considered to be especially significant to the scope of this thesis.  

Also, utility companies and governments around the globe are concerned with serious 

energy issues.  Two of these are most important: increased energy demand faced with shrinking 

energy resources, and the impact of these conventional energy resources on the environment. 

Consequently, the deployment of renewable resources at the distribution level has gained attention 

as a promising solution to the problems associated with fossil fuels and those of limited generation 

capacity expansion in face of the continuous rise in energy demand [3]. This has resulted in 

distributed generation systems forming microgrid, which play a crucial role in effective utilization 

of energy resources and can help stabilize the public power grid [4]. With the technology available 

today and research efforts across the globe, the megagrid of the type discussed in [1] is becoming 

a reality. 

However, the current and future trends in electric power grid bring benefits and challenges 

alike. As the authors of [5] put it, the continuous penetration of sporadic renewable energy 

resources is introducing many operational and technical issues in different areas such as safety and 

protection, reliability and power quality, load management, grid interconnections and the required 

controls, and even in regulation of the electricity market. In fact, integrating distributed generators 

into the power grid introduces bidirectional power flow with the resulting system, which not only 

challenges its stability but also the traditional practices used in the metering and protection thereof 

[6]. Moreover, different topologies continue being proposed for interfacing microgrids with the 

national electric grid. The resulting network of interconnected power electronic converters can 

cause system power flow instability as discussed in [7]. The latter issue constitutes what this thesis 

mainly focuses on, as will be described in the following sections.  
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I.2 Thesis Motivation 

The concept of electric energy is simply fascinating. One could argue that it is the backbone 

of the modern economy. Indeed, it is impossible to imagine life today without electricity, and the 

need for it continues to grow more than ever. Research into this area is highly active around the 

world: especially in the quest to harvest renewable energy resources. This alone constitutes more 

than enough motivation for the work in this thesis, but the specific incentive is due to the microgrid 

instability case observed at NCREPT.  

As discussed in the previous section, there is an ongoing integration of renewable resources 

into the lectric grid. The result is a system incorporating microgrids, which can operate in grid-

connected or isolated mode or both. As such, an ac grid-connected microgrid exists at the 

University of Arkansas (covered in detail in Chapter two). 

 

Fig. 1.  AC grid-connected microgrid configuration [26]. 
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During an experimental test, the microgrid configuration shown in Fig. 1 resulted in the following 

voltage instability case: there are two back-to-back converters in Fig. 1 named VVVF and Regen, 

and either one has a dc-link capacitor to store energy. 

During the experiment, each dc-link capacitor was allowed to charge independently by energizing 

the sub-microgrid in which it was contained. In this operation, the controllers managed to keep the 

two systems stable. This is illustrated in about the first 75 seconds on both Fig. 2 and Fig. 3, where 

the dc bus voltages are kept constant by the action of the controllers. Nevertheless, when the final 

switch is thrown to make the circuit in Fig. 1, the system suddenly fails to maintain stability as 

shown in both Fig. 2 and Fig. 3. As a result, this thesis focuses on modeling, linearizing, analyzing, 

and designing a linear quadratic regulator for a microgrid of the same type as that in Fig. 1.  

 

Fig. 2.  AC microgrid dc bus voltage instability – VVVF drive. 



 

5 

I.3 Thesis Objective 

The main objective envisaged by this thesis consists of designing and simulating an 

advanced and robust control scheme–namely a linear quadratic regulator (LQR) optimal controller 

for a cascaded inverters-based microgrid system using state space method.  

 Develop an accurate mathematical model, which represents a physical system and matches 

the simulation model. This ensures that the controller developed reflects the dynamics of 

the system and controls the realistic and accurate system model. The developed model can 

be used for other research initiatives and analyses. 

 Perform a stability analysis of the system to determine some of the factors that can affect 

its stability margin. The impact of the variability of the input impedance on the system’s 

stability is analyzed. This investigation is important in controller design.  

 Design a linear quadratic optimal controller to improve the system’s stability margin and 

analyze its performance in that regard. 

 

Fig. 3.  AC microgrid dc bus voltage instability – regen drive. 
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It follows that the central point of this work is to propose a control scheme whose 

performance increases the stability margin of the microgrid system, which in return improves its 

power-rating capacity. The proposed control scheme is an optimal linear quadratic regulator, 

which is discussed in latter chapters. The microgrid system used is inspired by the 6 MVA 

microgrid testbed located at the NCREPT facility at the University of Arkansas Research and 

Technology Park [8].  

I.4 Approach 

Matlab/SimulinkTM software package was used extensively both for design and analysis 

throughout this work. A series of steps were followed in an effort to develop an accurate 

mathematical model. A representative microgrid system is designed based on the 6 MVA one at 

the NCREPT [8]. Assuming a balanced three-phase system, the per-phase circuit was used to 

derive a set of differential equations (DEs) governing the system, which are then transformed in 

the rotating d-q reference frame to facilitate the analysis. To validate the accuracy of the obtained 

mathematical model, Matlab/SimulinkTM is used to compare the solutions to the obtained DEs and 

the simulation results of an actual circuit. After a series of checks and corrections, the two models 

finally converged to the same solution, henceforth proving the accuracy of the developed linear 

mathematical model.  

To investigate the effect of the change in input impedance to the stability margin of the 

system, a poles-based analysis was performed. Using the model obtained in the previous step, the 

input impedance was varied, and the system’s poles were plotted.  

Finally, an LQG optimal controller was designed, and its performance evaluated in 

comparison to that of a conventional proportional plus integral (PI) control method.   
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I.5 Thesis Organization  

The rest of this work is structured in the following manner: Chapter II provides a brief 

description of the NCREPT microgrid system. It also covers others works related to the scope of 

this thesis and briefly introduces the rotating dq0 reference frame. Chapter III details how the 

mathematical model was developed and validated for accuracy assurance. In Chapter IV, the 

analysis of the developed system’s stability is explored whereas in Chapter V the control 

development and design is presented. Chapter VI discusses the results and the analysis thereof, 

and Chapter VII states the conclusions, contributions and future work.  
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CHAPTER II       BACKGROUND 

II.1 Introduction 

 This chapter provides a brief description and background of the microgrid system at 

NCREPT. It introduces the microgrid concept in more detail and highlights different types of 

microgrids. In addition, a brief discuss of the direct-quadrature-zero (dq0) transformation is given. 

The final equations, which explicitly give the direct axis and quadrature axis components are 

derived for a balanced three phase system. The dq0 transformation is used in the chapter III to 

transform the alternating current (ac) states to direct current (dc), which simplifies the analysis and 

controller development. 

II.2 NCREPT Microgrid System Overview 

 The NCREPT is a $5million test facility, which is at the Arkansas Research and 

Technology Park along with the University of Arkansas Engineering Research Center (ENRC). 

This facility was built in 2005 as a result of the 2003 Northeast Blackout and has ever since used 

for research into investigating advanced power electronics solutions for the electric power grid and 

     

 Fig. 4.  NCREPT test facility building at the Arkansas engineering research center [26]. 
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transportation applications. In Fig. 4 shown below, a photograph of the NCREPT building, the 

service entrance transformer and the facility transformers are shown. 

The facility transformers are utilized for the microgrid testbed configuration. Fig. 5 shows 

a one-line diagram schematic representing the microgrid testbed, and in Fig. 6 the bay area inside 

the facility is shown. NCREPT serves as a cost-effective test facility for universities, businesses 

and national labs with a pay-per-use structure. Research areas include but are not limited to 

designing and testing of advanced solid-state solutions for control technologies with a focus on 

grid reliability, power interface applications, transportation (automotive, aerospace,..) and energy 

exploration. Other centers associated with NCREPT are the grid-connected advanced power 

electronics systems (GRAPES), the vertically integrated center for transformative energy research 

(VICTER) and the high density electronic center (HiDEC). A microgrid testbed has been built at 

NCREPT to promote research in the areas of microgrid, smart-grid systems, and distributed energy 

integration to the grid [11].  

 

Fig. 5.  NCREPT one-line diagram [26]. 
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The NCREPT facility is designed to allow different microgrid configurations and can therefore be 

used to test many types of devices and designs. For example, Fig. 1 shows an ac microgrid while 

Fig. 7 demonstrates an ac-dc hybrid one. 

As it is detailed in the subsequent chapters, the microgrid system on which the thesis focuses is 

inspired by that at NCREPT shown in Fig. 1.  

 

Fig. 6.  NCREPT bay area [26]. 

 

Fig. 7.  Hybrid microgrid configuration [26]. 
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The back-to-back converter topology in Fig. 8, which is the backbone of the system, is used for 

both the regenerative (REGEN) and the variable voltage variable frequency (VVVF) drives. The 

parameters for the NCREPT microgrid system are summarized in Appendix A. 

II.3 Direct-Quadrature-Zero (dq0) Transformation 

The well-known dqo transformation constitutes a mathematical transmutation, which is often 

used to simplify the analysis of three-phase quantities (voltages, currents, fluxes, etc...). The 

transformation is accomplished through a mathematical projection of the three-phase phasors onto 

a rotating reference frame such as it is shown in Fig. 9. The transformation results in two non-zero 

constants (d and q) and one zero component if the reference frame rotates at the same frequency 

as that of the three-phase quantities and if the latter are balanced. It is important to note that the 

dq0 transformation differs from the Park’s one in that the former is power invariant and the latter 

is not. However, for the following mathematical derivations Park’s transformation is used for 

simplicity since they only differ by a constant multiplicand.  

 

Fig. 8.  Back-to-back topology for the Regen and the VVVF drives 
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III.3.a    Direct Transformation: ABC to dq0 

For a balanced voltage triple phase system, the transformation of a, b and c quantities is given 

by equation (2.1) [24].  

 

(2.1) 

 

 

 

 

It follows from (2.1) that: 

 

 

 

 

 

 

(2.2) 
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(2.3) 

 The phase difference is constant if both θ and θg have the same frequency, and it is given 

by equation (2.4). Where θ is the rotation angle for the rotating reference frame, and θg is the 

electrical angle of the three-phase quantities. In this case, both the direct axis component xd and 

the quadrature axis component xq are constants.  

(2.4) 

III.3.b    Indirect Transformation: ABC to αβ0 and αβ0 to dq0 

By using an intermediate transformation, the same results can be obtained as follows: 

  First, the transformation from ABC to αβ is accomplished using equation (2.5) as follows: 
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                      (2.7) 

 In the same manner, the transformation from αβ to dq is accomplished using equation (2.8) 

as follows:  

  (2.8) 

 

 

 

       𝑥𝑑 = 𝑋𝑝 𝑐𝑜𝑠(𝜃 − 𝜃𝑔)                                                             (2.9) 

 𝑥𝑞   =  − 𝑠𝑖𝑛(𝜃) 𝑥𝛼 + 𝑐𝑜𝑠(𝜃) 𝑥𝛽  = −𝑋𝑝 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠 𝜃𝑔  + 𝑋𝑝 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛 𝜃𝑔 

        = 𝑋𝑝 (−
1

2
(𝑠𝑖𝑛(𝜃 + 𝜃𝑔) − 𝑠𝑖𝑛(𝜃 − 𝜃𝑔)) +

1

2
(𝑠𝑖𝑛(𝜃 + 𝜃𝑔) + 𝑠𝑖𝑛(𝜃 − 𝜃𝑔))) 

       𝑥𝑞 = −𝑋𝑝 𝑠𝑖𝑛(𝜃 − 𝜃𝑔)                                                        (2.10) 

From the above derivations, it can be concluded that both the direct and indirect 

transformations yield the same results since (2.2) is the same as (2.9) and (2.3) equals (2.10). 

III.3.c    Graphical Representation 

Fig. 9 shows the grahical representaion for different methods used to transform three phase 

sinusoidally varying quantities in two constant quanties. The different sets of equations derived in 

the previous section are extensively used in chapter III to accomplish the transformation from three 

phase coordinates to the rotating coordinates. The system model is modelled in terms of the change 

in inductor current or capacitor voltage, and the theory covered by this chapter is used to simplify 

the obtained model. 

𝑥𝛽  = 𝑋𝑝𝑠𝑖𝑛 𝜃𝑔             

[
𝑥𝑑
𝑥𝑞
] = [

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 0
−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

] [
𝑥𝛼
𝑥𝛽
]         

  𝑥𝑑   = 𝑐𝑜𝑠(𝜃) 𝑥𝛼 + 𝑠𝑖𝑛(𝜃) 𝑥𝛽  = 𝑋𝑝 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠 𝜃𝑔 + 𝑋𝑝 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛 𝜃𝑔 

        = 𝑋𝑝 (
1

2
(𝑐𝑜𝑠(𝜃 − 𝜃𝑔) + 𝑐𝑜𝑠(𝜃 + 𝜃𝑔)) +

1

2
(𝑐𝑜𝑠(𝜃 − 𝜃𝑔) − 𝑐𝑜𝑠(𝜃 + 𝜃𝑔))) 
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Fig. 9.  Geometric relationship between ABC, αβ0, and dqo reference frames [12]. 
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CHAPTER III       MICROGRID SYSTEM MODELING 

III.1 Introduction 

This chapter covers the mathematical model derivations for the microgrid system 

introduced in the previous chapters and covered in [27], and [28]. The obtained model is nonlinear 

in nature because of the switching of power electronic devices, and must be linearized in order to 

apply the proposed controller. To that end, the technique and process involved in linearizing it are 

covered in this chapter as well. Finally, this chapter covers the model validation process used to 

make sure that the linearized mathematical model and the actual modelled system have the same 

dynamics and converge to the same steady state values with minimal error.  

There is a continuous need for improved modeling and vigorous simulation to analyze 

different scenarios in order to characterize the impact of a rapidly increasing deployment of 

renewable resources, as well as that of energy storage, on the modern electrical grid [15]. That 

being said, accuracy in mathematical models and realistic simulations are essential to drawing 

reasonable and effective conclusions. As a result, this chapter is devoted on the techniques used to 

model the microgrid system of Fig. 10 and validating the obtained mathematical model.   

 

Fig. 10.  Cascaded converters-based microgrid system [27]. 
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III.2 Circuit Model 

This project focuses on the analysis of the microgrid system presented in Fig. 10, which 

was inspired by the NCREPT microgrid testbed discussed in the previous chapters. A few 

modifications have been made to the microgrid in Fig. 1, and the resulting one is shown in Fig. 10. 

These changes include a photovoltaic (PV) array system added as a backup power source and two 

loads.  

 

Fig. 11.  Single phase equivalent circuit for network controller development [27]. 

TABLE I 

 SYSTEM COMPONENT AND PARAMETER VALUES 

  

Component Symbol 
Nominal 

Value 

  

Component Symbol 
Nominal 

Value 

Service XFR 
RT 0.23 mΩ 

3 MV XFR 
R 0.23  mΩ 

LT 6.1 µH  L 6.1  µH 

LC Filter 1 

R1 207  mΩ 

LC Filter 4 

R4 3.8  mΩ 

L1 110 µH  L4 20  µH 

C1 2880 µF  C4 1440  µF 

LC Filter 2 

R2 207  mΩ Load 1 RL1 0.23  Ω 

L2 110  µH Load 2 RL2 0.23  Ω 

C2 2880  µF VVVF dc-link cap.  CDC1 25200 µF 

LC Filter 3 

R3 3.2  mΩ Regen dc-link cap. CDC2 37800  µF 

L3 20  µH System frequency Ω 120π  rad/s 

C3 1440 µF  System voltage VRMS 480 V 
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Fig. 11 shows a per phase equivalent circuit of the microgrid system from which a mathematical 

model is derived using the Kirchhoff’s current and voltage laws. The PV array and its output 

inverter are modelled as a three-phase current source for simplicity. This analysis assumes the PV 

array system constitutes an independent stable source capable of supplying a given power to the 

rest of the system. Also, each load and the adjacent shunt capacitor forming an LC-filter are 

modelled in Fig. 11 as a parallel shunt RC circuit. 

 Table I summarizes the equivalent overall component values for the circuit demonstrated 

in Fig. 11, and appendix A provides the details for these components and their arrangement on the 

physical system at NCREPT. The component values shown in Table I are the same values used 

for simulations and designs, which are covered in chapters IV through VI. 

III.3 Nonlinear Mathematical Model 

To develop the nonlinear mathematical model in terms of differential equations (DEs), the 

circuit shown in Fig. 11 is solved using basic Kirchhoff’s current and voltage laws. This section is 

centered on the derivation of the mathematical equations, which constitutes the system model. 

Throughout this section, the symbol μ is used to represent the switching function for power 

electronics devices, and the subscript i is used to denote the A, B and C three phase quantities. 

Moreover, the transformation of the obtained model into the dq0 synchronous frame also presented 

at the end of this section.  

The per-phase circuit, which represents the microgrid is shown in Fig. 11.   A closer look 

at the obtained this circuit indicates that there are 8 different inductor currents and 6 different 

capacitor voltages. These quantities determine how many state variables the dynamic model must 

have. Since it has been shown that each triple of three-phase quantities results in 2 variables in the 

dq0 rotating reference, one can forecast 26 state variables: 18 inductor currents, 8 capacitor 
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voltages and the 2 dc-link voltages. However, this is not the case. In fact, at least 2 of these states 

variables can be eliminated as follows. Fig. 11 shows that the inductor currents i4i can be given by 

the sum of inductor currents i5i and i8i as expressed in equation (3.3). Because of this relationship 

between the three currents, any fixed values for 2 of these 3 inductor currents give a constant value 

for the remaining one. Therefore, if 2 of these currents are regulated buy a controller action then 

the third one is also controlled indirectly.  As a result, these inductor currents are said to be linearly 

dependent, and one of them must be mathematically eliminated. Equations (3.1) to (3.7) 

summarize the elimination process taken to obtain coupled differential equations for currents i4i 

and i5i. 

Considering the circuit in Fig. 11, nodal analysis is first performed for the loop containing 

v2i, i4i, i8i and v4i. The resulting differential equation is given in (3.1), which indicates that the sum 

of voltage drops in a closed loop is zero. Using the same analysis for the loop containing v2i, i4i, i8i 

and v4i, equation (3.2) is obtained for the second current. In addition, the equation, which relates 

the 3 currents is given in (3.3).  

 

(3.1) 

 

(3.2) 

 

      (3.2) 

From the above 3 equations, one derives 2 DEs having a single derivative term as follows. 

First, equation (3.3) is used to substitute for i8i in (3.1). The resulting expression is given in (3.4). 

Secondly, equation (3.2) is rearranged to give the DE in (3.5).  At this point, i8i has been substituted 

𝑣2𝑖 − 𝑅𝑖4𝑖 − 𝐿
𝑑𝑖4𝑖
𝑑𝑡

− 𝑅𝑖8𝑖 − 𝐿
𝑑𝑖8𝑖
𝑑𝑡

− 𝑣4𝑖 = 0. 

𝑣2𝑖 − 𝑅𝑖4𝑖 − 𝐿
𝑑𝑖4𝑖
𝑑𝑡

− 𝑅𝑖5𝑖 − 𝐿
𝑑𝑖5𝑖
𝑑𝑡

− 𝑣3𝑖 = 0. 

𝑖8𝑖 = 𝑖4𝑖 − 𝑖5𝑖. 
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in both equations (3.4) and (3.5).  Finally, the sum of equations (3.4) and (3.5) gives the final DE 

(3.6) for the current i4i. Similarly, the final DE for current i5i is obtained by multiplying equation 

(3.5) by 2 and subtracting (3.4) from the resulting expression.  

 

(3.4) 

 

(3.5) 

 

(3.6) 

 

(3.7) 

 

Equations (3.3), (3.6), and (3.7) are sufficient to represent the dynamics for inductor currents i4i, 

i5i and i8i. The DE for rest of inductor currents, as shown in Fig. 11, are obtained using nodal 

analysis for the closed loop containing each specific current. Equations (3.8) through (3.12) give 

the derived mathematical equations.  

 

(3.8) 

 

(3.9) 

  

(3.10) 

 

2𝐿
𝑑𝑖4𝑖
𝑑𝑡

− 𝐿
𝑑𝑖5𝑖
𝑑𝑡

=  −2𝑅𝑖4𝑖 + 𝑅𝑖5𝑖 + 𝑣2𝑖 − 𝑣4𝑖 

𝐿
𝑑𝑖4𝑖
𝑑𝑡

+ 𝐿
𝑑𝑖5𝑖
𝑑𝑡

=  −𝑅𝑖4𝑖 − 𝑅𝑖5𝑖 + 𝑣2𝑖 − 𝑣3𝑖    

3𝐿
𝑑𝑖4𝑖
𝑑𝑡

= −3𝑅𝑖4𝑖 + 2𝑣2𝑖 − 𝑣3𝑖 − 𝑣4𝑖 

3𝐿
𝑑𝑖5𝑖
𝑑𝑡

= −3𝑅𝑖5𝑖 + 𝑣2𝑖 − 2𝑣3𝑖 + 𝑣4𝑖   

𝑣𝑖 − 𝐿𝑇
𝑑𝑖1𝑖
𝑑𝑡

−𝑅𝑇𝑖1𝑖 − 𝑣1𝑖 = 0.     

𝑣1𝑖 − 𝐿1
𝑑𝑖2𝑖
𝑑𝑡

 −𝑅1𝑖2𝑖 − 𝑢1𝑖 = 0. 

𝑢2𝑖 − 𝐿2
𝑑𝑖3𝑖

𝑑𝑡
 −𝑅2𝑖3𝑖 − 𝑣2𝑖 = 0. 
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(3.11) 

 

(3.12) 

 To determine the DEs, which express the capacitor voltages, a different approach is taken 

instead of using nodal analysis. In addition, it is well known that the change in a capacitor voltage 

is proportional to the current passing through it. Therefore, these two laws are used to derive 

equations (3.13) through (3.18), which express the change in voltage for each capacitor in the 

circuit model. 

 

(3.13) 

 

(3.14) 

 

(3.15) 

 

(3.16) 

 

(3.17) 

 

(3.18) 

 

𝑣3𝑖 − 𝐿3
𝑑𝑖6𝑖
𝑑𝑡

 −𝑅3𝑖6𝑖 − 𝑢3𝑖 = 0 

𝑣4𝑖 − 𝐿4
𝑑𝑖7𝑖
𝑑𝑡

 −𝑅4𝑖7𝑖 − 𝑢4𝑖 = 0 

𝑑𝑣1𝑖
𝑑𝑡

=  
1

𝐶1
(𝑖1𝑖 − 𝑖2𝑖)     

𝑑𝑣𝑑𝑐1
𝑑𝑡

=
1

𝐶𝑑𝑐1
 ( ∑ μ1𝑖𝑖2𝑖
𝑖=𝑎,𝑏,𝑐

− ∑ μ2𝑖𝑖3𝑖
𝑖=𝑎,𝑏,𝑐

) 

𝑑𝑣2𝑖
𝑑𝑡

=
1

𝐶2
 (𝑖3𝑖 − 𝑖4𝑖) 

𝑑𝑣3𝑖
𝑑𝑡

=
1

𝐶3
 (𝑖5𝑖 − 𝑖6𝑖 − 

𝑣3𝑖
𝑅𝐿1

) 

𝑑𝑣4𝑖
𝑑𝑡

=  
1

𝐶4
(𝑖4𝑖 − 𝑖5𝑖 − 𝑖7𝑖 − 

𝑣4𝑖
𝑅𝐿2

+ 𝑖𝑃𝑉) 

𝑑𝑣𝑑𝑐2
𝑑𝑡

=
1

𝐶𝑑𝑐2
( ∑ μ3𝑖𝑖6𝑖
𝑖=𝑎,𝑏,𝑐

+ ∑ μ4𝑖𝑖7𝑖
𝑖=𝑎,𝑏,𝑐

) 
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The obtained DEs, (3.6) through (3.18) and the relation given in (3.3), form the 

mathematical model for the microgrid shown in Fig. 10 and Fig. 11. This model is summarized by 

the system of DEs (3.19) 

 

 

 

 

 

(3.19)             

 

 

 

 

 

 

 

 

 

The transformation from the three-phase coordinates of the resulting time-varying 

sinusoidal variable of (3.19) to the two-coordinate synchronous rotating frame leads to the 

mathematical model described by the system of equations in (3.20) [25]. It follows that the system 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝐿𝑇

𝑑𝑖1𝑖
𝑑𝑡

=  −𝑅𝑇𝑖1𝑖 − 𝑣1𝑖 + 𝑣𝑖                              

𝐿1
𝑑𝑖2𝑖
𝑑𝑡

=  −𝑅1𝑖2𝑖 − 𝑢1𝑖 + 𝑣1𝑖                            

𝐿2
𝑑𝑖3𝑖
𝑑𝑡

=  −𝑅2𝑖3𝑖 + 𝑢2𝑖 − 𝑣2𝑖                             

3𝐿
𝑑𝑖4𝑖
𝑑𝑡

= −3𝑅𝑖4𝑖 + 2𝑣2𝑖 − 𝑣3𝑖 − 𝑣4𝑖               

3𝐿
𝑑𝑖5𝑖
𝑑𝑡

= −3𝑅𝑖5𝑖 + 𝑣2𝑖 − 2𝑣3𝑖 + 𝑣4𝑖                

𝐿3
𝑑𝑖6𝑖
𝑑𝑡

=  −𝑅3𝑖6𝑖 − 𝑢3𝑖 + 𝑣3𝑖                             

𝐿4
𝑑𝑖7𝑖
𝑑𝑡

=  −𝑅4𝑖7𝑖 − 𝑢4𝑖 + 𝑣4𝑖                             

𝐶𝑑𝑐1
𝑑𝑣𝐷𝐶1
𝑑𝑡

=  ∑ μ1𝑖𝑖2𝑖
𝑖=𝑎,𝑏,𝑐

− ∑ μ2𝑖𝑖3𝑖
𝑖=𝑎,𝑏,𝑐

     

𝐶𝑑𝑐2
𝑑𝑣𝐷𝐶2
𝑑𝑡

= ∑ μ3𝑖𝑖6𝑖
𝑖=𝑎,𝑏,𝑐

+ ∑ μ4𝑖𝑖7𝑖
𝑖=𝑎,𝑏,𝑐

      

𝐶1
𝑑𝑣1𝑖
𝑑𝑡

=  𝑖1𝑖 − 𝑖2𝑖                                                 

𝐶2
𝑑𝑣2𝑖
𝑑𝑡

=  𝑖3𝑖 − 𝑖4𝑖                                                  

𝐶3
𝑑𝑣3𝑖
𝑑𝑡

=  𝑖5𝑖 − 𝑖6𝑖 − 
𝑣3𝑖
𝑅𝐿1

                                    

𝐶4
𝑑𝑣4𝑖
𝑑𝑡

=  𝑖4𝑖 − 𝑖5𝑖 − 𝑖7𝑖 − 
𝑣4𝑖
𝑅𝐿2

+ 𝑖𝑃𝑉                 

𝑖8𝑖 = 𝑖4𝑖 − 𝑖5𝑖                                                          

           . 
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of equations given in (3.20) constitutes the nonlinear dynamic model of the microgrid system in 

Fig. 10.  

 

 

 

 

 

 

 

(3.20) 

 

 

 

 

 

 

 

 

 

III.4 Model Linearization for Controller Development 

The model obtained in the two-coordinate synchronous rating frame simplifies the 

controller development because the inductor currents and capacitor voltages are dc quantities as 

opposed to those in the three-phase coordinate system. However, the model still poses a level of 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑑

𝑑𝑡
[
𝑖1𝑑
𝑖1𝑞
] =  

1

𝐿𝑇
[
−𝑅𝑇 𝜔𝐿𝑇
−𝜔𝐿𝑇 −𝑅𝑇

] [
𝑖1𝑑
𝑖1𝑞
]  −

1

𝐿𝑇
[
𝑣1𝑑
𝑣1𝑞

] +
1

𝐿𝑇
[
𝑣𝑑
𝑣𝑞
]                                                        

𝑑

𝑑𝑡
[
𝑖2𝑑
𝑖2𝑞
] =  

1

𝐿1
[
−𝑅1 𝜔𝐿1
−𝜔𝐿1 −𝑅1

] [
𝑖2𝑑
𝑖2𝑞
] −

𝑣𝐶𝑑𝑐1
𝐿1

[
𝜇1𝑑
𝜇1𝑞

] +
1

𝐿1
[
𝑣1𝑑
𝑣1𝑞

]                                                   

𝑑

𝑑𝑡
[
𝑖3𝑑
𝑖3𝑞
] =  

1

𝐿2
[
−𝑅2 𝜔𝐿2
−𝜔𝐿2 −𝑅2

] [
𝑖3𝑑
𝑖3𝑞
] +

𝑣𝐶𝑑𝑐1
𝐿2

[
𝜇2𝑑
𝜇2𝑞

] −
1

𝐿2
[
𝑣2𝑑
𝑣2𝑞

]                                                   

𝑑

𝑑𝑡
[
𝑖4𝑑
𝑖4𝑞
] =  

1

𝐿
[
−𝑅 𝜔𝐿
−𝜔𝐿 −𝑅

] [
𝑖4𝑑
𝑖4𝑞
] +

2

3𝐿
[
𝑣2𝑑
𝑣2𝑞

] −
1

3𝐿
[
𝑣3𝑑
𝑣3𝑞

] −
1

3𝐿
[
𝑣4𝑑
𝑣4𝑞

]                                         

𝑑

𝑑𝑡
[
𝑖5𝑑
𝑖5𝑞
] =  

1

𝐿
[
−𝑅 𝜔𝐿
−𝜔𝐿 −𝑅

] [
𝑖5𝑑
𝑖5𝑞
] +

1

3𝐿
[
𝑣2𝑑
𝑣2𝑞

] −
2

3𝐿
[
𝑣3𝑑
𝑣3𝑞

] +
1

3𝐿
[
𝑣4𝑑
𝑣4𝑞

]                                         

𝑑

𝑑𝑡
[
𝑖6𝑑
𝑖6𝑞
] =  

1

𝐿3
[
−𝑅3 𝜔𝐿3
−𝜔𝐿3 −𝑅3

] [
𝑖6𝑑
𝑖6𝑞
] −

𝑣𝐶𝑑𝑐2
𝐿3

[
𝜇3𝑑
𝜇3𝑞

] +
1

𝐿3
[
𝑣3𝑑
𝑣3𝑞

]                                                   

𝑑

𝑑𝑡
[
𝑖7𝑑
𝑖7𝑞
] =  

1

𝐿4
[
−𝑅4 𝜔𝐿4
−𝜔𝐿4 −𝑅4

] [
𝑖7𝑑
𝑖7𝑞
] −

𝑣𝐶𝑑𝑐2
𝐿4

[
𝜇4𝑑
𝜇4𝑞

] +
1

𝐿4
[
𝑣4𝑑
𝑣4𝑞

]                                                   

𝑑 𝑣𝐶𝐷𝐶1
𝑑𝑡

=  
1

𝐶𝐷𝐶
((𝜇1𝑑𝑖2𝑑 + 𝜇1𝑞𝑖2𝑞) − (𝜇2𝑑𝑖3𝑑 + 𝜇2𝑞𝑖3𝑞))                                                       

𝑑 𝑣𝐶𝐷𝐶2
𝑑𝑡

=  
1

𝐶𝐷𝐶
((𝜇3𝑑𝑖6𝑑 + 𝜇3𝑞𝑖6𝑞) + (𝜇4𝑑𝑖7𝑑 + 𝜇4𝑞𝑖7𝑞))                                                        

𝑑

𝑑𝑡
[
𝑣1𝑑
𝑣1𝑞

] =  
1

𝐶1
[
𝑖1𝑑
𝑖1𝑞
] −

1

𝐶1
[
𝑖2𝑑
𝑖2𝑞
] + [

0 𝜔
−𝜔 0

] [
𝑣1𝑑
𝑣1𝑞

]                                                                        

𝑑

𝑑𝑡
[
𝑣2𝑑
𝑣2𝑞

] =  
1

𝐶2
[
𝑖3𝑑
𝑖3𝑞
] −

1

𝐶2
[
𝑖4𝑑
𝑖4𝑞
] + [

0 𝜔
−𝜔 0

] [
𝑣2𝑑
𝑣2𝑞

]                                                                       

𝑑

𝑑𝑡
[
𝑣3𝑑
𝑣3𝑞

] =  
1

𝐶3
[
𝑖5𝑑
𝑖5𝑞
] −

1

𝐶3
[
𝑖6𝑑
𝑖6𝑞
] +

1

𝑅𝐿1𝐶3
[

−1 𝜔𝑅𝐿1𝐶3
−𝜔𝑅𝐿1𝐶3 −1

] [
𝑣3𝑑
𝑣3𝑞

]                                     

𝑑

𝑑𝑡
[
𝑣4𝑑
𝑣4𝑞

] =  
1

𝐶4
([
𝑖4𝑑
𝑖4𝑞
] − [

𝑖5𝑑
𝑖5𝑞
] − [

𝑖7𝑑
𝑖7𝑞
]) +

1

𝑅𝐿2𝐶4
[

−1 𝜔𝑅𝐿2𝐶4
−𝜔𝑅𝐿2𝐶4 −1

] [
𝑣4𝑑
𝑣4𝑞

] +
1

𝐶4
[
𝑖𝑃𝑉𝑑
𝑖𝑃𝑉𝑞

] 

[
𝑖8𝑑
𝑖8𝑞
] = [

𝑖4𝑑
𝑖4𝑞
] − [

𝑖5𝑑
𝑖5𝑞
]                                                                                                                          
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complexity in that the system of equations in (3.20) is not linear because there are terms of products 

of time-varying switching functions and state variables. This challenge is overcome by linearizing 

the model in (3.20) using the first-order terms on Taylor series expansion around the system’s 

equilibrium point.  

To derive the linearized model, (3.20) is written in the state space form, which is expressed 

by equations in (3.21), where x represents the state variable matrix, u denotes the controlled-input, 

ud is the disturbance input matrix and y is the output vectors. The matrices A, B, F and C are the 

non-constant respective matrices of appropriate sizes with the notation of [23] adopted. 

{
ẋ = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑢𝑑  
y = 𝐶𝑥                         

           𝑤𝑖𝑡ℎ  𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑝, 𝑢𝑑  ∈ ℝ
𝑚 𝑎𝑛𝑑 𝑦 ∈ ℝ𝑞.      (3.21) 

Suppose two functions f and g defined in (3.22) and (3.23) as follows: 

𝑥̇ =  𝑓(𝑥, 𝑢, 𝑢𝑑) = [𝑓1(𝑥, 𝑢, 𝑢𝑑) 𝑓2(𝑥, 𝑢, 𝑢𝑑)… 𝑓𝑛(𝑥, 𝑢, 𝑢𝑑)]
𝑇 ,                           (3.22) 

and    𝑦 =  𝑔(𝑥, 𝑢, 𝑢𝑑) = [𝑔1(𝑥, 𝑢, 𝑢𝑑)  𝑔2(𝑥, 𝑢, 𝑢𝑑)… 𝑔𝑞(𝑥, 𝑢, 𝑢𝑑)]
𝑇 .                        (3.23) 

These two functions can be approximated by the first order term of Taylor series expansion as 

follow: 

𝑓(𝑥, 𝑢, 𝑢𝑑) ≈  𝑓(𝑥̅, 𝑢̅, 𝑢̅𝑑) +
𝜕𝑓

𝜕𝑥
|
(𝑥̅,𝑢,𝑢̅𝑑)

𝛥𝑥 +
𝜕𝑓

𝜕𝑢
|
(𝑥̅,𝑢,𝑢̅𝑑)

𝛥𝑢 +
𝜕𝑓

𝜕𝑢𝑑
|
(𝑥̅,𝑢,𝑢̅𝑑)

𝛥𝑢𝑑  ,               (3.24) 

𝑔(𝑥, 𝑢, 𝑢𝑑) ≈  𝑔(𝑥̅, 𝑢̅, 𝑢̅𝑑) +
𝜕𝑔

𝜕𝑥
|
(𝑥̅,𝑢,𝑢𝑑)

𝛥𝑥 +
𝜕𝑔

𝜕𝑢
|
(𝑥̅,𝑢,𝑢𝑑)

𝛥𝑢 +
𝜕𝑔

𝜕𝑢𝑑
|
(𝑥̅,𝑢,𝑢𝑑)

𝛥𝑢𝑑 .               (3.25) 

Where (𝑥̅, 𝑢̅, 𝑢̅𝑑) represents the equilibrium point and the quantities 𝛥𝑥 = 𝑥 − 𝑥̅, 𝛥𝑢 = 𝑢 − 𝑢̅ and 

𝛥𝑢 = 𝑢𝑑 − 𝑢̅𝑑 measure the perturbation from that point.  

It follows that the linearized system becomes 

𝛥𝑥̇ = 𝐴̅𝛥𝑥 + 𝐵̅𝛥𝑢 + 𝐹̅𝛥𝑢𝑑 ,                                         (3.26) 

𝛥𝑦 = 𝐶̅𝛥𝑥 + 𝐷̅𝛥𝑢 + 𝑀̅𝛥𝑢𝑑 ,                                           (3.27) 
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where 𝐷̅ and 𝑀̅ are zero matrices and the rest of the others are given by the expressions below. 

𝐴̅ =  

[
 
 
 
 
𝜕𝑓1

𝜕𝑥1
|
(𝑥̅,𝑢,𝑢̅𝑑)

⋯
𝜕𝑓1

𝜕𝑥𝑛
|
(𝑥̅,𝑢,𝑢̅𝑑)

⋮ ⋱ ⋮

𝑐
𝜕𝑓𝑛

𝜕𝑥1
|
(𝑥̅,𝑢,𝑢̅𝑑)

⋯
𝜕𝑓𝑛

𝜕𝑥𝑛
|
(𝑥̅,𝑢,𝑢̅𝑑)]

 
 
 
 

, 𝐵̅ =  

[
 
 
 
 
𝜕𝑓1

𝜕𝑢1
|
(𝑥̅,𝑢,𝑢𝑑)

⋯
𝜕𝑓1

𝜕𝑢𝑚
|
(𝑥̅,𝑢,𝑢̅𝑑)

⋮ ⋱ ⋮
𝜕𝑓𝑛

𝜕𝑢1
|
(𝑥̅,𝑢,𝑢𝑑)

⋯
𝜕𝑓𝑛

𝜕𝑢𝑚
|
(𝑥̅,𝑢,𝑢̅𝑑)]

 
 
 
 

, 

𝐹̅ =  

[
 
 
 
 
 
𝜕𝑓1
𝜕𝑢𝑑1

|
(𝑥̅,𝑢,𝑢̅𝑑)

⋯
𝜕𝑓1
𝜕𝑢𝑑𝑙

|
(𝑥̅,𝑢̅,𝑢̅𝑑)

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑢𝑑1

|
(𝑥̅,𝑢,𝑢̅𝑑)

⋯
𝜕𝑓𝑛
𝜕𝑢𝑑𝑙

|
(𝑥̅,𝑢̅,𝑢̅𝑑)]

 
 
 
 
 

 , 𝑎𝑛𝑑  𝐶̅ =  

[
 
 
 
 
 
𝜕𝑔1
𝜕𝑥1

|
(𝑥̅,𝑢,𝑢𝑑)

⋯
𝜕𝑔1
𝜕𝑥𝑛

|
(𝑥̅,𝑢̅,𝑢̅𝑑)

⋮ ⋱ ⋮

𝑐
𝜕𝑔𝑙
𝜕𝑥1

|
(𝑥̅,𝑢,𝑢𝑑)

⋯
𝜕𝑔𝑙
𝜕𝑥𝑛

|
(𝑥̅,𝑢̅,𝑢̅𝑑)]

 
 
 
 
 

 . 

Also,  𝑥 = [𝑖1𝑑 𝑖1𝑞 . . . 𝑖7𝑑 𝑖7𝑞 𝑣𝐶𝐷𝐶1 𝑣𝐶𝐷𝐶2 𝑣1𝑑 𝑣1𝑞 . . . 𝑣4𝑑 𝑣4𝑞]𝑇 , 

𝑢 = [𝜇1𝑑 𝜇1𝑞 𝜇2𝑑 𝜇2𝑞 𝜇3𝑑 𝜇3𝑞 𝜇4𝑑 𝜇4𝑞]𝑇 ,  𝑎𝑛𝑑  𝑢𝑑 = [𝑣𝑑 𝑣𝑑 𝑖𝑃𝑉𝑑 𝑖𝑃𝑉𝑞]𝑇. 

The system’s matrices for the linearized model are given below in a compact form. Explicit forms 

are provided in appendix E, and their nonzero elements are given in Table II and Table III.   

𝐴̅ = [

𝑎1,1 ⋯ 𝑎1,24
⋮ ⋱ ⋮

𝑎24,1 ⋯ 𝑎24,24
]. 

𝐵̅ = [

𝑏1,1 ⋯ 𝑏1,8
⋮ ⋱ ⋮

𝑏24,1 ⋯ 𝑏24,8

]. 

F̅ = [

𝑓1,1 ⋯ 𝑓1,4
⋮ ⋱ ⋮

𝑓24,1 ⋯ 𝑓24,4

]. 
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TABLE II  

STATE MATRIX ELEMENTS 

      

Element Formula Element Formula Element Formula 

𝑎1,1 

𝑅𝑇  

𝐿𝑇
 

𝑎11,12 𝜔 𝑎23,7 

1

𝐶4
 

𝑎1,2 𝜔 𝑎11,16 
−
μ̅3𝑑
𝐿3

 
𝑎23,9 

−
1

𝐶4
 

𝑎1,17 
−
1 

𝐿𝑇
 

𝑎11,21 

1 

𝐿3
 

𝑎23,13 
−
1

𝐶4
 

𝑎2,1 −𝜔 𝑎12,11 −𝜔 𝑎23,23 −(𝑅𝐿2𝐶4)
−1 

𝑎2,2 
−
𝑅𝑇 

𝐿𝑇
 

𝑎12,12 
−
𝑅3 

𝐿3
 

𝑎23,24 𝜔 

𝑎2,18 
−
1 

𝐿𝑇
 

𝑎12,16 
−
μ̅3𝑞

𝐿3
 

𝑎24,8 

1

𝐶4
 

𝑎3,3 
−
𝑅1 

𝐿1
 

𝑎12,22 

1 

𝐿3
 

𝑎24,10 
−
1

𝐶4
 

𝑎3,4 𝜔 𝑎13,13 
−
𝑅4 

𝐿4
 

𝑎24,14 
−
1

𝐶4
 

𝑎3,15 
−
μ̅1𝑑
𝐿1

 
𝑎13,14 𝜔 𝑎24,23 −𝜔 

𝑎3,17 

1 

𝐿1
 

𝑎13,16 
−
μ̅4𝑑
𝐿4

 
𝑎24,24 

−
1

𝑅𝐿2𝐶4
 

𝑎4,3 −𝜔 𝑎13,23 

1 

𝐿4
 

𝑏3,1 
−
V̅𝐷𝐶1
𝐿1

 

𝑎4,4 
−
𝑅1 

𝐿1
 

𝑎14,13 −𝜔 𝑏4,2 
−
V̅𝐷𝐶1
𝐿1

 

𝑎4,15 
−
μ̅1𝑞

𝐿1
 

𝑎14,14 
−
𝑅4 

𝐿4
 

𝑏5,3 
−
V̅𝐷𝐶1
𝐿2

 

𝑎4,18 

1 

𝐿1
 

𝑎14,16 
−
μ̅4𝑞

𝐿4
 

𝑏6,4 
−
V̅𝐷𝐶1
𝐿2

 

𝑎5,5 
−
𝑅2 

𝐿2
 

𝑎14,24 

1 

𝐿4
 

𝑏11,5 
−
V̅𝐷𝐶2
𝐿3

 

𝑎5,6 𝜔 𝑎15,3 

μ̅1𝑑
𝐶𝐷𝐶1

 
𝑏12,6 

−
V̅𝐷𝐶2
𝐿3

 

𝑎5,15 

μ̅2𝑑
𝐿4

 
𝑎15,4 

μ̅1𝑞

𝐶𝐷𝐶1
 

𝑏13,7 
−
V̅𝐷𝐶2
𝐿4

 

𝑎5,19 
−
1 

𝐿2
 

𝑎15,5 
−
μ̅2𝑑
𝐶𝐷𝐶1

 
𝑏14,8 

−
V̅𝐷𝐶2
𝐿3

 

𝑎6,5 −𝜔 𝑎15,6 
−
μ̅2𝑞

𝐶𝐷𝐶1
 

𝑏15,1 

I2̅𝑑
𝑉𝐷𝐶1

 

Table II. STATE MATRIX ELEMENTS (CONT.) 

      

Element Formula Element Formula Element Formula 

𝑎6,6 
−
𝑅2 

𝐿2
 

𝑎16,11 

μ̅3𝑑
𝐶𝐷𝐶1

 
𝑏15,2 

I2̅𝑞

𝑉𝐷𝐶1
 

𝑎6,15 

μ̅2𝑞

𝐿4
 

𝑎16,12 

μ̅3𝑞

𝐶𝐷𝐶1
 

𝑏15,3 
−
I3̅𝑑
𝑉𝐷𝐶1
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TABLE III 

 STATE MATRIX ELEMENTS (CONT.) 

      

Element Formula Element Formula Element Formula 

𝑎6,6 
−
𝑅2 

𝐿2
 

𝑎16,11 

μ̅3𝑑
𝐶𝐷𝐶1

 
𝑏15,2 

I2̅𝑞

𝑉𝐷𝐶1
 

𝑎6,15 

μ̅2𝑞

𝐿4
 

𝑎16,12 

μ̅3𝑞

𝐶𝐷𝐶1
 

𝑏15,3 
−
I3̅𝑑
𝑉𝐷𝐶1

 

𝑎6,20 
−
1

𝐿2
 

𝑎16,13 
−
μ̅4𝑑
𝐶𝐷𝐶1

 
𝑏15,4 

−
I3̅𝑞

𝑉𝐷𝐶1
 

𝑎7,7 −
𝑅 

𝐿
 a16,14 

−
μ̅4𝑞

𝐶𝐷𝐶1
 

𝑏16,5 

I6̅𝑑
𝑉𝐷𝐶2

 

𝑎7,8 𝜔 𝑎17,1 

1

𝐶1
 

𝑏16,6 

I6̅𝑞

𝑉𝐷𝐶2
 

𝑎7,19 
2

3𝐿
 𝑎17,3 

−
1

𝐶1
 

𝑏16,7 

I7̅𝑑
𝑉𝐷𝐶2

 

𝑎7,21 −
1

3𝐿
 𝑎17,18 𝜔 𝑏16,8 

I6̅𝑞

𝑉𝐷𝐶2
 

𝑎7,23 −(3𝐿)−1 𝑎18,2 (𝐶1)
−1 𝑓1,1 (𝐿𝑇)

−1 

𝑎8,7 −𝜔 𝑎18,4 −(𝐶1)
−1 𝑓2,2 (𝐿𝑇)

−1 

𝑎8,8 −
𝑅 

𝐿
 𝑎18,17 −𝜔 𝑓23,3 

1

𝐶4
 

𝑎8,20 

2

3𝐿
 𝑎19,5 

1

𝐶2
 

𝑓24,4 

1

𝐶4
 

𝑎8,22 −
1

3𝐿
 𝑎19,7 

−
1

𝐶2
 

𝑎10,24 

1

3𝐿
 

𝑎8,24 −
1

3𝐿
 𝑎19,20 𝜔 𝑎11,11 

−
𝑅3 

𝐿3
 

𝑎9,9 
−
𝑅 

𝐿
 𝑎20,6 

1

𝐶2
 

𝑎22,22 −𝜔 

𝑎9,10 𝜔 𝑎20,8 (𝐶2)
−1 𝑎22,22 −(𝑅𝐿1𝐶3)

−1 

𝑎9,19 
1

3𝐿
 𝑎20,19 −𝜔 𝑎10,10 −

𝑅 

𝐿
 

𝑎9,21 −
2

3𝐿
 𝑎21,9 

1

𝐶3
 

𝑎10,20 

1

3𝐿
 

𝑎9,23 

1

3𝐿
 𝑎21,11 

−
1

𝐶3
 

𝑎10,22 −
2

3𝐿
 

𝑎10,9 −𝜔 𝑎21,21 
−

1

𝑅𝐿1𝐶3
 

𝑎21,22 𝜔 

𝑎22,10 

1

𝐶3
 

𝑎22,12 
−
1

𝐶3
 

  

 

Table II. STATE MATRIX ELEMENTS (CONT.) 

      

Element Formula Element Formula Element Formula 

𝑎6,6 
−
𝑅2 

𝐿2
 

𝑎16,11 

μ̅3𝑑
𝐶𝐷𝐶1

 
𝑏15,2 

I2̅𝑞

𝑉𝐷𝐶1
 

𝑎6,15 

μ̅2𝑞

𝐿4
 

𝑎16,12 

μ̅3𝑞

𝐶𝐷𝐶1
 

𝑏15,3 
−
I3̅𝑑
𝑉𝐷𝐶1
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III.5 Linear Model Validation  

In this section, the process of comparing the obtained mathematical model and the actual 

model is presented. The need for this validation is first discussed and followed the process 

undertaken and the comparison results are demonstrated.  

The accuracy of mathematical models has crucial role in controller development. This is 

explained by the fact that the controller relies on these mathematical relationships in order to 

determine the required signal to be sent to the system so that it can achieve a desired equilibrium 

in the shortest time while satisfying other design specifications. If the mathematical model does 

not accurately describe the system, the task of controlling a plant may become impossible. It is 

important; however, to note that there exist more advanced control techniques designed to control 

systems with uncertainties in their model. This topic is considered to be beyond the scope of this 

thesis and will therefore not be presented in any further details.  

 

Fig. 12.  Actual circuit model as modeled in Matlab/SimulinkTM. 
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Having briefly discussed the importance of the need for an accurate model, three specific reasons 

make it imperative to validate how accurate is the mathematical model derived in this work: 

 The first reason is to make the mathematical model matches the physical model. In doing 

so, it is ensured that this model is reliable and that any controller developed using this 

system model has a foundation to work with. This is particularly important because other 

researchers could use this model to develop different control schemes.  

 The second reason is to validate the actual modelling technique. There are many ways 

used to deal with the nonlinearity associated with the control of power electronics. 

However, the linearization technique used in this work has not been used extensively yet 

to deal with the nonlinearity associated with power electronics devices.  

 Finally, another reason is to check for errors. The likelihood to make mathematical errors 

increases with the complexity of the modelled system. In this case, checking errors is 

necessary due to the fact that the derived system model has twenty four equations. Through 

typing, rearranging and transforming equations into the rotating frame, there is a high 

chance of making errors. As a result, an independent way to check for any discrepancies 

is also an objective of this section.  

III.5. a)    Validation Process 

To ensure that the obtained mathematical model matches the actual one, a comparison of 

their open-loop responses was used. On one hand, the actual microgrid system was modelled using 

MATLAB/Simulink™ as shown in Fig. 12. All capacitor voltages and inductor currents of interest 

are measured, and their respective rotating frame components are computed and plotted in real 

time so that their dynamics can be evaluated. On the other hand, the same software is used to solve 

the final system of DEs representing the obtained linear mathematical model for comparison.  
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Fig. 13.  Mathematical model. 

 

 

Fig. 14.  Mathematical model equations sample. 
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Fig. 13 and Fig. 14 depict sample MATLAB/Simulink™ blocks used to solve the equations, which 

represent the mathematical model. Both simulations were run independently and the simulation 

times were set to be the same in both cases, so that the dynamics of each model can be easily 

compared.   

III.5. b)    Comparison Results 

The two models are compared based on two criteria. The first criterion is whether or not 

both systems have the same dynamics while the second one is to verify if they converge to the 

same steady state value or not. Inductor currents for the actual model are shown in Fig. 15, and 

Fig. 17 shows those for the mathematical model. Fig. 16 and Fig. 18 convey the capacitor voltages 

at different nodes throughout the microgid and the two dc-link capacitor voltages.  

 

Fig. 15.  Filtered inductor currents for the actual circuit model. 
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Fig. 16.  Filtered capacitor voltages for the actual circuit model. 

 

Fig. 17.  Filtered inductor currents for the mathematical model. 
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A comparison of the data shown in Fig. 15 through Fig. 18 shows that the state variables in both 

models have almost the same state dynamics and nearly converge to the same steady state values. 

For example, each plot in the inductor currents for the actual model shown in Fig. 15 resembles its 

counterpart for the mathematical model shown in Fig. 17. The same outcome is observed for 

voltages in Fig. 16 and Fig. 18, which represent the actual and mathematical models respectively. 

In order to summarize this comparison between both models, the modulus for each inductor current 

and capacitor voltage, is calculated using (3.28) and (3.29). 

 

(3.28) 

 

(3.29) 

 

Fig. 18.  Filtered capacitor voltages for the mathematical model. 

‖𝐼‖ = √𝐼𝑑
2 + 𝐼𝑞

2 . 

‖𝑉‖ = √𝑉𝑑
2 + 𝑉𝑞

2 . 
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The obtained values are tabulated in Table IV. In addition, the percent error is calculated using 

formula (3.30) and included in the same table. 

       (3.30) 

In (3.30), the variable “x” represents either I or V from equations (3.17) and (3.18) respectively.  

Table IV and Table V facilitate the comparison by compiling the necessary information in one 

place. The percent error is not expected to be zero because the models do not exactly match. 

However, the percent error is considerably small and close to zero for almost all state variable. For 

this reason it can be concluded that both models match without loss of generality.  

TABLE IV  

COMPARISON BETWEEN ACTUAL AND MATHEMEATICAL 

MODELS – INDUCTOR CURRENTS 
    
Sate Variable 

Modulus 

Actual Model 

Value (A) 

Mathematical 

Model Value (A) 

Percent Error 

Difference (%) 

I1 4062.06 4092.85 0.75 

I2 4023.42 4039.86 0.41 

I3 3442.29 3516.17 2.10 

I4 3277.62 3339.22 1.84 

I5 1638.83 1670.11 1.87 

I6 752.71 796.43 5.49 

 

TABLE V 

 COMPARISON BETWEEN ACTUAL AND MATHEMEATICAL 

MODELS – CAPACITOR VOLTAGES 
    

Sate Variable 

Modulus 

Actual Model 

Value (V) 

Mathematical 

Model Value (V) 

Percent Error 

Difference (%) 

V1 392.11 393.11 0.25 

V2 322.02 331.43 2.84 

V3 325.48 335.78 3.07 

V4 325.48 335.78 3.07 

Vdc1 873.20 910.00 4.04 

Vdc2 836.50 863.00 3.07 

% 𝐸𝑟𝑟𝑜𝑟 = |
𝑥𝐴𝑐𝑡𝑢𝑎𝑙−𝑥𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙

𝑥𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙
 | × 100 . 
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It is important to remember that the mathematical model was linearized around the equilibrium 

point, but the actual is not linear by nature. Therefore, the actual model can be expected to slightly 

deviate from this point by a certain margin of error as in fact is the case particularly for I6.  

 In conclusion, the comparison between the linearized mathematical and actual models 

show that they both have the same dynamics and converge to the same steady state values with a 

low percent error. This implies that the obtained linear model can be utilized to develop a linear 

controller for the actual system. This also means that linearization technique employed could be 

used, with verification, to linearize a different microgrid system or any other nonlinear system. 

The root of the percent error is believed to be due to the deviation from the equilibrium point at 

which the mathematical was linearized by the actual nonlinear model.  
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CHAPTER IV       SYSTEM POLE-BASED STABILITY ANALYSIS 

IV.1 Introduction 

The chapter is intended to investigate the effect of a weak connection between the electric 

grid and a given microgrid on the stability of the formed system. The microgrid model discussed 

in the previous chapters will be used as an example, and Fig. 19 shows the topology of this grid-

connected microgrid.  

Renewable energy resources are increasingly being deployed throughout the electric utility 

grid [13]. As a result, use of power electronics based power converters as means of interconnection 

between the different elements of the future grid is projected to increase. However, this 

interconnection can result in system power flow instability [14]. Likewise, the electrical instability 

of microgrid systems comprising wind farms and its relationship to the system’s parameters are 

presented in [10]. In this chapter, a similar analysis is perfumed to explore the effect of varying 

the input impedance on the microgrid system stability.  

 

Fig. 19.  Microgrid systems - input impedance [27]. 
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The input impedance is shown in Fig. 19 and determines the system’s short circuit capacity at the 

point of interest.  This chapter analyzes how input impedance can affect the system stability 

therefore impacting the size of a microgrid, which can be interfaced at a given electrical node. 

IV.2 A Weakly Connected Microgrid 

A weak grid connection can be defined as a situation where the power generated by a wind 

farm is comparable to the transport power capacity of the power grid to which it is connected [9]. 

For the scope of this thesis, however, the analysis is based on the variability of the impedance 

characteristics at the PCC. In fact, the authors [10] argue that there is a correlation between the 

short circuit magnitude at the PCC in networked voltage systems containing wind farms and the 

stability thereof.  To some degree, the same approach is taken to analyze the stability of the 

microgrid system shown in Fig. 19.  

 

Fig. 20.  Input impedance variation range. 
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IV.3 Stability Analysis Method 

The pole-based stability analysis is used for this analysis. When the overall impedance seen 

by the microgrid (Zin) is varied over a certain range, the system poles are shifted in the s-plane 

accordingly. This dependence is due to the fact that the degree to which the microgrid sees the 

central electric grid as an ideal voltage source changes with the input impedance, Zin.  During this 

study, the input impedance is varied as shown on Fig. 20, and the poles of the system are plotted 

in the s-plane. 

In the complex s-plane, a pole has 2 components: one on the real axis and the other on the 

imaginary one. When all real axis components are negative the system is stable. The system is said 

to be unstable if at least one pole has a positive real axis component. It is worth noting that the 

further to the left the pole’s real component (more negative) is, the more stable the system becomes 

and vice-versa.  

 

Fig. 21.  Change in eigenvalues with variation of input impedance. 
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Marginal stability is used to refer to the case when at least one of the pole has a zero real part. 

Finally, the imaginary component indicates the frequency of oscillation of the associated system 

state. Thus, it is less considered for this analysis. 

The effect of varying the system input impedance on the system poles is illustrated by the 

shift in pole locations as Fig. 21 and Fig. 22 show. Each subplot portrays the variation of the pole 

location for a given system state (capacitor voltage or inductor current). As indicated in the graphs, 

most of the poles approach zero when the input impedance increases. This implies that electrical 

connection weakens as this input impedance rises. 

 

Fig. 22.  Change in eigenvalues with variation of input impedance (Cont.). 
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IV.4 Stability Analysis Implications and Potential Benefits 

Dynamic stability analysis is one of the most important and effective elements for greater 

security and reliability of planning, design, operation and economic aspects of electric power 

network [16]. This type of analysis can be beneficial in many applications including but not limited 

to: 

• Designing advanced control schemes for a stable operation of grid-connected 

distributed energy resources (such as solar, wind, etc…). This is because a deep 

understanding and analysis of stability margin is needed to design a robust 

controller. 

• Power system planning engineers who must determine optimal locations where 

renewable energy resources can be interfaced with the existing electrical grid 

without jeopardizing it reliability.   

• Determining the generation capacity limit of a microgrid depending on its locations 

in relation to the electric grid.  
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CHAPTER V       LINEAR QUADRATIC OPTIMAL CONTROLLER DESIGN 

V.1 Introduction 

This chapter briefly introduces the reader to the optimal control theory for the proposed 

linear quadratic optimal controller. The theoretical background is revisited to better clarify the 

motivation, and the appreciation for optimal control theory. A solution to the optimal control 

problem, the linear quadratic regulator (LQR), is discussed.  Also, the Matlab/SimulinkTM 

implementation of the proposed control scheme is presented to elaborate the process undertaken 

to get the results presented in chapter VI. Moreover, the multiple inputs multiple outputs (MIMO) 

systems, and the transfer functions for MIMO systems are introduced towards the end of the 

chapter. 

V.2 Linear Quadratic Optimal Control 

The linear quadratic optimal control problem seeks to stabilize a system while minimizing 

the associated cost function [17], [23]. Otherwise stated, this control technique reduces the 

magnitude of the cost function associated with the controller while improving the system’s 

response to a stimulus. In linear quadratic optimal control literature such as in [23], the cost 

function is usually defined by equation (5.1) as  

𝐽 =  ∫ [𝑥𝑇(𝑡) 𝑄𝑥(𝑡) + 𝑢𝑇(𝑡) 𝑅𝑥(𝑡)]
∞

0
𝑑𝑡                         (5.1) 

with the matrix Q being symmetric, semidefinite and positive, and R is a positive, symmetric, and 

definite matrix.  

The LQR controller is a solution to the optimal control problem where a full state feedback 

is assumed, and the disturbance input is considered to be zero. With this assumption, an optimal 

state feedback law u (t) = K (t), which corresponds to the minimum solution to the cost function 
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(5.1) is obtained. In this static state-feedback controller, the matrix K is determined using (5.2) in 

which P constitutes the distinct definite and positive solution to Algebraic Riccati equation (ARE) 

given in (5.3). In the last-mentioned equation, variables are matrices. Another way to calculate the 

matrix K is to use the Matlab/SimulinkTM function, lqr(). 

𝐾 = 𝑅−1𝐵𝑇 𝑃 .                                                                       (5.2) 

𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 .                                                    (5.3) 

Fig. 23 shows the implementation of an LQR for a system having all states available for 

measurements.  

In practice however, all states might not be available for measurements or one might need 

to reduce the number of sensors. In such a case, a linear quadratic Gaussian (LQG) or Kalman 

filter state estimator (LQE) can be used to estimate the states. The estimated states are those, which 

are not available for measurements from the system’s input and output according to linear states 

observer equation (5.4) [23].  

 

Fig. 23.  LQR for a system with all states available for measurement. 



 

43 

𝑑𝑥̂

𝑑𝑡
= 𝐴𝑥̂(𝑡) + 𝐵𝑢(𝑡) + 𝐿[𝑦(𝑡) − 𝑦̂(𝑡)] .                                      (5.4) 

In (5.4), the optimal estimator gain L is given by equation (5.5) in and P is the unique matrix 

solution to ARE in (5.6). 

𝐿 = 𝑃𝐶𝑇𝑉−1 .                                                              (5.5) 

𝐴𝑃 + 𝑃𝐴𝑇 − 𝑃𝐶𝑇𝑉−1𝐶𝑃 +𝑊 = 0 .                                               (5.6) 

For a general case where only certain states are available for measurement, both the LQE and the 

LQR can be used to stabilize a control system in the optimal sense. A typical implementation of 

such a controller is shown in Fig. 24. It is important to mention that the integral term is often used 

to help drive the error between the reference input and the desired output to zero quickly. In such 

a case, the error signal results in system states augmentation by one or more states depending on 

the designer’s choice and the number of inputs and outputs of available. This state augmentation 

results in a controller configuration shown in Fig. 25.  

 

 

Fig. 24.  Implementation of an LQR with a Kalman filter. 
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V.3 Implementation in Matlab/SimulinkTM 

The microgrid system presented in this work constitutes a multiple inputs multiple outputs 

(MIMO) system from a control perspective. MIMO systems are well known and have been 

extensively covered in modern control textbooks as in [23]. Fig. 26 illustrates the microgrid as 

MIMO system. 

Revisiting the mathematical model obtained in Chapter III, the system dynamics are represented 

by the following system of equations 

{
ẋ = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑢𝑑  
y = 𝐶𝑥                         

           𝑤𝑖𝑡ℎ  𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑝, 𝑢𝑑  ∈ ℝ
𝑚 𝑎𝑛𝑑 𝑦 ∈ ℝ𝑞      (5.7) 

where x represents the state variable, u denotes the controlled-input, ud is the disturbance input 

matrix and y is the output vectors. The matrices A, B, F and C are the non-constant respective 

matrices of appropriate sizes with the notation of [23] adopted. 

 

Fig. 25.  Implementation of an LQR with a Kalman filter and integral of the error. 



 

45 

 

Let Y(s) and U(s) be the Laplace transform of y and u respectively, and assume the absence of the 

disturbance input. The system can be represented using (5.8) in which the input is directly related 

to the output.  

𝒀(𝑠) = 𝑮(𝑠)𝑼(𝑠)                                                                          (5.8) 

The matric G(s) is the transfer matrix of dimension h × p. With h being the number of outputs and 

p is the number of inputs such that 

𝐆(s) = [

G(s)1,1 ⋯ G(s)1,p
⋮ ⋱ ⋮

G(s)q,1 ⋯ G(s)q,p

]                                   (5.9) 

From equations (5.8) and (5.9), the relationship between a given input and output can be deduced 

to obtain (5.10). 

 

Fig. 26.  MIMO system representation of the microgrid system. 
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Y(s)i = G(s)𝑖𝑗U(s)j .                                                                          (5.10) 

With i = [1, …, q] and j = [1, …, p]. Sample transfer functions relating obtained using is provided 

in Appendix B. The input-output relationship for the system can then be calculated using equation 

(5.11) as follows: 

Y(s)i = G(s)𝑖1U(s)1 + G(s)𝑖2U(s)2 +⋯+ G(s)𝑖𝑝U(s)p .                             (5.11) 

The Matlab/SimulinkTM tf() command was used to convert the space-model in (5.7) to the transfer 

matrix of (5.9). The step response can then be plotted using the Matlab/SimulinkTM step() 

command. 

The mathematical derivations, which are briefly presented in this chapter were used to design the 

proposed LQR controller for the microgrid system covered by this work. Moreover, the controller 

was implemented using Matlab/SimulinkTM, and the obtained results are covered in the following 

chapter.  
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CHAPTER VI       SIMULATION RESULTS AND ANALYSIS 

VI.1 Introduction 

This chapter presents the results obtained by implementing the optimal LQR controller 

designed in Chapter V on the microgrid system explained in previous chapters. By means of plots, 

the system’s response to a step change in input is demonstrated for selected state variables. The 

performance of the proposed controller is compared to that of a proportional plus integral (PI) one. 

Finally, an analysis of the obtained results concludes this chapter. 

VI.2 The Controlled Systems and Output States Selection 

The controlled system has twenty-four state variables, but only six of them are chosen as 

the system output. This choice is solely based on brevity and the significance of the selected states. 

The output is comprised of the two dc-link voltages for the VVVF and Regen converters and the 

two load voltages. The results consist of the step responses of the selected states to a step change 

in switching functions. Each load voltage accounts for two state variables because the model is in 

the synchronous rotating frame. This means that there are two components, a direct axis and a 

quadrature axis, for each load voltage.  

Throughout the results presented in this chapter, the performance of the proposed control 

scheme proves to be particularly effective in bringing the state to its steady state value within a 

short rising time and zero percent overshoot. For each state, both a step response with an LQR 

controller and that with a PI controller are provided for comparison. It is seen that the optimal LQR 

outperforms the conventional PI controller. The following six states are chosen as output of the 

controlled system: the dc-link capacitor voltages for the VVVF and the Regen drives respectively, 

and direct axis and quadrature axis components for each of the two load voltages.  
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The first reason for the above choice is that the power flow must maintain a balanced state, 

and the back-to-back dc-link voltage regulation is crucial for this equilibrium [18]. As a result, for 

either active power conditioner (APC) in the microgrid system in Fig. 27, the dc-link voltage is 

chosen as a system output. Also, there is always a trend to decrease the cost associated with the 

dc-link capacitor usually by making it smaller. However, if the reduction of the dc-link capacitor 

is sought after, then the requirement for a fast control is needed accordingly [19]. These are some 

of the many reasons why dc-link regulation is always a concern in power converters control and 

operation. These reasons, too, explain why the dc-link voltages were chosen in this chapter, to 

discuss the performance of an LQR controller. It is observed that the last-mentioned controller has 

a fast response that can also be used in dc-link capacitor minimization presented in [19]. 

In addition, the control objectives should keep in line with any standards applicable for the 

controlled system. For example, the American National Standard Institute (ANSI) defines 

voltage levels and voltage ranges in its ANSI C84.1 section to limit how much the load voltage 

should deviate from the nominal value.  

 

Fig. 27.  Arbitrary nodes used to states presented in this chapter. 
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ANSI C84.1 sets the service voltage to stay within a ±5% margin that is a minimum of 95% and a 

maximum of 105% of the nominal voltage for its preferred range commonly known as Range A. 

This standard applies to 120V- 600V systems; the microgrid covered in this thesis is a 480V line-

to-line system. ANSI C84.1 standards cover more than what is mentioned above, but the point 

being made here is to ensure that the load voltage reaches its steady state value within its acceptable 

range in a short time as the controller brings the system to its steady state in response to a given 

scenario. There are numerous causes that can trigger the controller action. For instance powering 

a large motor is a common reason that momentarily affects the system’s voltage. Also, losing one 

of the voltage sources that feed the microgrid system can be another reason. This is why the load 

voltages were utilized to show the efficacy of the proposed control scheme. 

VI.3  Results  

It was previously introduced that the system’s input matrix has eight elements, and change 

in a given input has a specific effect on a certain output as determined by a characteristic transfer 

function. System transfer functions are discussed in chapter V and formula (5.10) explicitly shows 

this mathematical relationship between an input and an output. Moreover, the transfer functions 

specific to this work were calculated using Matlab/SimulinkTM, and appendix B provides a few 

samples. These transfer functions were used to obtain the results covered in this section, which are 

step responses to a step input to the system.  

Fig. 28 shows the step responses of the VVVF drive dc-link voltage (top) and that of the 

regen drive (bottom) to a step change of the switching functions. The dashed blue plot is the step 

response obtained when a PI controller is employed while the solid red plot results from using an 

LQR one. It is observed that for the proposed LQR controller, the step response reaches 90 percent 

of the steady state value in about 10 milliseconds. 



 

50 

This performance index is known as the rise time and measures how fast the controller responds 

to a system input. Also, the voltage percent overshoot is zero for this controller, which indicates 

that the response does not exceed the steady state final value. Furthermore, the settling time, which 

indicates how fast the response reaches and stays within 2 percent of the final value, is 18 

milliseconds for the proposed LQR controller. 

 

 

Fig. 28.  Step response of dc-link voltages: VVVF (top) and regen drive (bottom). 
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In comparison with the LQR controller, it is observed that the PI controller resulted in a slower 

response with a 10 percent overshoot. In fact, for the Vdc1, a 32 milliseconds rise time and a 124 

settling time are obtained when a PI controller is used. Nearly the same results are obtained for 

Vdc2 with the exception that the rising time is reduced to 19 milliseconds and the settling time 

lowered to 73 milliseconds for a PI controller. 

 

Fig. 29.  Step response for load voltage at node 3: direct axis (top) and quadrature axis (bottom). 
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The rest of the performance characteristics remain almost the same for both controllers of the two 

dc-link voltages. 

In Fig. 29, the step responses for the load voltage at node 3 are shown with the direct axis 

component on the top graph and the quadrature axis component on the bottom one. Likewise, the 

dashed blue plot is the step response obtained when a PI controller is employed while the solid red 

plot results from using an LQR one. It is noticed that the difference between the step responses for 

the voltages at node 3 and those for the dc-link voltages is that there is a particularly low overshoot 

for both controller schemes in the former case. For the LQR controller, the direct axis component 

exhibits a zero percent overshoot and the quadrature axis one a 0.24 percent overshoot. For the PI 

controller, the direct axis component does not exceed its final value while the quadrature axis one 

overshoots with only 2.5 percent. However, both the rising and settling times observed for the 

voltage at node 3 indicate the same dissimilarities between the controllers as do the step responses 

for the dc-link voltages. For example, the quadrature axis voltage component has a 173 

milliseconds settling time for a PI controller while it only has 21 milliseconds with an LQR 

controller. These results continuously emphasize that the proposed LQR controller is faster and 

more effective than its PI coequal.  

Fig. 30 shows the step responses for the load voltage at node 4. The direct axis component 

is shown on the top and the quadrature axis component on the bottom of the Fig. 30. The step 

response obtained with a PI controller is shown by the dashed blue plot while that resulting from 

use of an LQR one is shown in solid red plot. It is clearly seen that the performance characteristics 

are identical to those observed for the load voltage at node 3. For this reason, they are not repeated 

to avoid redundancy. However, it is important to note any arguments, which explain this similarity. 

One of the plausible explanations for this homogeneity is the symmetry of the microgrid system 

of Fig. 26. As shown in the last-mentioned figure, both loads are located at the ring-type 
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configuration of the microgrid. The two load voltages are expected to have the same dynamics 

because the LC-filters 3 and 4 are identical, and the transformers T3 and T4 are similar. This 

assumption may not hold true for the case when only the PV array is supplying the voltage, but it 

still helps to explain why both load voltages have the same behavior. 

  

 

 

Fig. 30.  Step response for load voltage at node 4: direct axis (top) and quadrature axis (bottom). 
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To summarize the results, Table VI provides the average performance characteristics of 

each controller. The average is based on the results presented in this section. In terms of the rising 

time, the proposed LQR controller outperforms its PI counterpart by a factor of 5.3 on average. 

Table VII also indicates that the LQR controller offers a settling time, which is about 10 times 

better than that resulting from using a PI controller. Finally, the overshoot associated with using 

an LQR controller is 50 times smaller than that observed with a non-networked PI controller.  

VI.3 Results Analysis 

The often-desired outcome in many control applications is for the closed-loop output to 

optimally track a given trajectory with minimal error and at the lowest possible cost [20]. This 

optimization is usually the goal in virtually all areas where control theory is applied including but 

not limited to aerospace, energy, manufacturing and medicine [20]. In addition, it is always desired 

that a controller’s action on a given plant results in the fastest attainable response with minimum 

overshoot. As a result of the controller’s performance enhancement, the system’s resilience 

improves. 

As the trend towards a highly interconnected smart electric grid gets more favorable, extra 

renewable resources will be added especially at the distribution level. That being the case, control 

will keep to play a vital role in maintaining the stability of modern interconnected power systems 

[21]. The proposed LQR controller offers improved performance in comparison to the often-used 

PI controller as shown in the results.  

TABLE VI  

CONTROLLER PERFORMANCE COMPARISON 
    

Controller Rising Time (s) Settling Time (s) Percent Overshoot (%) 

LQR 8.333E-03 1.750E-02 0.48 

PI 4.433E-02 1.615E-01 25.6 
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This implies that some operational challenges might be mitigated when an LQR controller is used 

as a substitute for its PI counterpart. Furthermore, this stability improvement suggests the ability 

to include larger generation capacities to microgrid systems. 
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CHAPTER VII       CONCLUSIONS AND FUTURE WORK 

VII.1 Introduction 

In this chapter, the thesis’ objectives are revisited in order to better present major 

conclusions drawn from the results of different studies contained herein. Through these 

conclusions, the author points out what he believes the results obtained can contribute to on-going 

grid improvement. Future works in support of this contribution are suggested. 

The electric grid continues to undergo new changes, which challenge its traditional and 

unidirectional operation. This has attracted efforts to apply advanced control theories to the 

stabilization of microgrids and the integration of renewable resources [18, 19, 20, and 21]. 

Moreover, system analysis and simulation methods need to continuously be revised and improved 

for robust and cost-effective operation of the electric grid. [21]. In light of this trend, the main 

objective of this thesis is to design a linear quadratic regulator (LQR) optimal controller for a 

cascaded inverters-based microgrid system. In order to accomplish this task, three sub-objectives 

are identified in chapter I as follows:  

1. Develop an accurate mathematical model, which represents a physical system and matches 

the simulation model. This ensures that the developed controller reflects the dynamics of 

the system and controls a realistic, accurate system model. In addition, the developed 

model can be used for other research initiatives and analysis.  

2. Perform a stability analysis of the system to determine some of the factors that can affect 

its stability margin. The effect of the change of the input impedance on the system’s 

stability is analyzed.  
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3. Design an LQG optimal controller to improve the system’s stability margin and analyze its 

performance in that regard.  

VII.2 Conclusions 

In chapter three, a non-linear mathematical model was derived for the microgrid system 

using Kirkoff’s current and voltage laws. The twenty-four differential equations obtained 

constitute this non-linear model and represent the physical microgrid, which is presented in chapter 

II. To overcome the inherent nonlinearity due to switching of power electronics devices, a 

linearization technique using Taylor series expansion is proposed and applied in chapter III. The 

obtained linear model was validated for accuracy in the same chapter. It is shown that both the 

linear mathematical model and the Matlab/SimulinkTM one, which represents the physical model, 

converge to the same values.  Not only did they converge to the same values, but they also have 

the same dynamics as presented in chapter III. The results of this independent model validation 

suggest that the obtained linear representation can be reliable for controller development. They, in 

return, prove that the linearization technique can indeed be used to linearize non-linear models. 

In chapter IV, the pole-based stability analysis of the microgrid system is evaluated to study 

how the system stability margin is affected by the change in input impedance. It was observed that 

as the input impedance increases, the real parts of the system poles move toward zero, which 

suggests a reduction in system stability. The author believes that this kind of analysis has potential 

benefits as follows:  

 Designing advanced control schemes for a stable operation of grid-connected distributed 

energy resources (such as solar, wind, etc...). In this application, a deep understanding and 

analysis of stability margin is essential to robust designs.  



 

58 

 Power system planning for engineers who must determine optimal locations where 

renewable energy resources can be interfaced with the existing electrical grid while 

keeping its reliability intact. 

 Determining the generation capacity limits for a microgrid based on its location in relation 

to the electric grid.  

Finally, in chapter V the proposed optimal LQR controller was designed and implemented for 

the linear model. Also, the background of the proposed control scheme in terms of the cost function 

minimization is presented, and the advantages of this optimization leading to a robust controller 

are discussed. Additionally, the Matlab/SimulinkTM implementation of the proposed controller is 

covered in the mentioned chapter.  

The obtained results are presented in chapter VI. A comparison with the results obtained using 

a non-networked PI controller shows that the proposed LQR offers great improvements. It can be 

concluded that as the number of distributed resources seen by the electrical grid continues to rise, 

some operational challenges might be mitigated by using an LQR controller in place of its PI 

counterpart. Furthermore, the proposed controller enhances the stability of the system, which 

means that larger generation capacity is attained.   

VII.3 Future Work 

There are numerous activities that can be undertaken to further the work presented in this thesis 

to a higher level in terms of applicability and usefulness. Likewise, more work can be 

accomplished to validate and further explore the scope of this contribution and how to widen it for 

microgrid applications. The suggested ideas include but are not limited to: 
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 Distributed controllers could be considered in spite of the proposed central one. This would 

reduce the complexity in the developed model as each local controller can regulate a well-

defined subsystem and share information with other controllers. 

 A linear quadratic estimator (LQE), also known as a Kalman Filter, could be explored for 

systems modeled using the same linearization technique presented in this work. The 

benefits of this control scheme include alleviating uncertainties in developed models due 

to linearization as well as those due to actual parameter value measurements.   

 Finally for stability analysis, more advanced methods such as the relative gain array can be 

explored to analyze the effect of input impedance on the overall stability of the system.  
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APPENDICES 

Appendix A: NCREPT Microgrid System Parameters 

Appendix A summarizes the parameters and their values for the microgrid modelled in chapter III. 

TABLE A.1 

 TRANSFORMERS 

     
Transformer 

Name 

Connection 

Type 

Voltage  

(kV) 

Rated Power  

(kVA) 

Impedance 

(~ %) 

T1 ∆/Y 0.480/13.8 2500 5 

T2 ∆/Y 0.480/13.8 2500 5 

T3 ∆/Y 0.480/13.8 2500 5 

T4 ∆/Y 0.480/13.8 2500 5 

T5 ∆/Y 0.480/13.8 2500 5 

T6 ∆/Y 0.480/13.8 2500 5 

Utility Txmr Y/Y 12.47/0.480 15000 5 

 

TABLE A.2  

REGENERATIVE DRIVE (REGEN) - PARAMETERS 

Name Unit Value Set Up Total Value 

EMI Filter Cap  20 μF 1 per line, input side  20 μF 

Filter Cap 3 x 96 μF, ∆ 5 on each side 3 x 480 μF 

Filter Inductor 20 μH @ 2500 A 1 on each side 20 μH 

DC Capacitor 2700 μF 28 || of series pairs 37800 μF 

Rectifier Switching Frq 4 kHZ  4 kHz 

Inverter Switching Frq. 5 kHZ  5 kHz 

       

    
 

TABLE A.3 

VARIABALE VOLTAGE VARIABLE FREQUENCY (VVVF) DRIVE - RATINGS 

Name Unit Value 

Input Voltage  120 - 528 Vac 

Output Voltage  ------------ 

Output Current  2000 A (RMS) @ 30 ⁰C 

IGBT Current  1500 A DC, Continuous 

Input Frequency  47-63 Hz 

Output Frequency  ----------- 

Overload Capacity  110 % for 60 sec, 125 % for 3  sec 
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TABLE A.4 

VARIABALE VOLTAGE VARIABLE FREQUENCY (VVVF) DRIVE - PARAMETERS 

Name Unit Value Set Up Total Value 

EMI Filter Cap  20 μF 

2 per line, on input 

side only  40 μF 

Filter Cap 3 x 96 μF, ∆ 10 on each side  3 x 960 μF 

Filter Inductor 110 μH @ 750 A 1 on each side  110 μF 

DC Capacitor 2700 μF 28 || of series pairs   37800 μF 

Rectifier Switching Frq 8 kHZ  8 kHz 

Inverter Switching Frq 10 kHZ   10 kHz 

 

TABLE A.5 

VARIABALE VOLTAGE VARIABLE FREQUENCY (VVVF) DRIVE - RATINGS  

Name Unit Value 

Input Voltage 360 - 528 Vac 

Output Voltage 120 - 520 Vav 

Output Current 685 A (RMS) @ 40 ⁰C 

IGBT Current 1500 A DC, Continuous 

Input Frequency 47-63 Hz 

Output Frequency 45-66 Hz 

Overload Capacity 

150 % for 60 sec, 175 % for 3  

sec 
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Appendix B: Sample Transfer Functions in the Laplace Domain  

This appendix provides sample transfer functions for the multiple inputs multiple outputs (MIMO) 

system designed in chapter V. 

𝑇3 =
𝑉𝑑𝑐1(𝑠)

𝑈1(𝑠)
= 

 

𝑇2 =
𝑉𝑑𝑐2(𝑠)

𝑈1(𝑠)
= 

 

𝑇3 =
𝑉𝑑𝑐1(𝑠)

𝑈1(𝑠)
= 
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Appendix C: Actual Model Measured States before Applying a Low Pass Filter 

This appendix provides raw data by means of graphs for actual circuit model for the model 

comparison results presented in chapter III. 

 

 

Fig. C. 1.  Inductor currents for the actual model. 
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Fig. C. 2.  Capacitor Voltages for the actual model. 
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Appendix D: Mathematical Model Measured States before Applying a Low Pass Filter 

This appendix provides raw data by means of graphs for linearized mathematical model for the 

model comparison results presented in chapter III. 

 

 

Fig. C. 2.  Inductor Currents for the actual model. 
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Fig. C. 2.  Capacitor Voltages for the actual model. 
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Appendix E: Controller Performance Evaluation – Supplemental Data 

This appendix shows how the controller performance characteristics presented in chapter V were 

measured using Matlab/SimulinkTM. 
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Appendix F: System Matrix for the Linearized Mathematical Model  

Appendix F gives the explicit system matrices for the linearized model, which was derived in 

chapter III.  

 A̅ =
∂f

∂x
|
(x̅,u̅)

= [
A̅11 A̅12
A̅21 A̅22

] where: 

 

A̅11 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
RT
LT

ω 0 0 0 0 0 0 0 0 0 0

−ω −
RT
LT

0 0 0 0 0 0 0 0 0 0

0 0 −
R1
L1

ω 0 0 0 0 0 0 0 0

0 0 −ω −
R1
L1

0 0 0 0 0 0 0 0

0 0 0 0 −
R2
L2

ω 0 0 0 0 0 0

0 0 0 0 −ω −
R2
L2

0 0 0 0 0 0

0 0 0 0 0 0 −
R

L
ω 0 0 0 0

0 0 0 0 0 0 −ω −
R

L
0 0 0 0

0 0 0 0 0 0 0 0 −
R

L
ω 0 0

0 0 0 0 0 0 0 0 −ω −
R

L
0 0

0 0 0 0 0 0 0 0 0 0 −
R3
L3

ω

0 0 0 0 0 0 0 0 0 0 −ω −
R3
L3]
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𝐴̅12 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 −

1

𝐿𝑇
0 0 0 0 0 0 0

0 0 0 0 0 −
1

𝐿𝑇
0 0 0 0 0 0

0 0 −
𝜇̅1𝑑
𝐿1

0
1

𝐿1
0 0 0 0 0 0 0

0 0 −
𝜇̅1𝑞

𝐿1
0 0

1

𝐿1
0 0 0 0 0 0

0 0
𝜇̅2𝑑
𝐿1

0 0 0 −
1

𝐿2
0 0 0 0 0

0 0
𝜇̅2𝑞

𝐿1
0 0 0 0 −

1

𝐿2
0 0 0 0

0 0 0 0 0 0
2

3𝐿
0 −

1

3𝐿
0 −

1

3𝐿
0

0 0 0 0 0 0 0
2

3𝐿
0 −

1

3𝐿
0 −

1

3𝐿

0 0 0 0 0 0
1

3𝐿
0 −

2

3𝐿
0

1

3𝐿
0

0 0 0 0 0 0 0
1

3𝐿
0 −

2

3𝐿
0

1

3𝐿

0 0 0 −
𝜇̅3𝑑
𝐿3

0 0 0 0
1

𝐿3
0 0 0

0 0 0 −
𝜇̅3𝑞

𝐿3
0 0 0 0 0

1

𝐿3
0 0

]
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A̅22

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 −
R4
L4

ω 0 −
μ̅4d
L4

0 0 0 0 0 0
1

L4
0

−ω −
R4
L4

0 −
μ̅4q

L4
0 0 0 0 0 0 0

1

L4
0 0 0 0 0 0 0 0 0 0 0 0
μ̅4d
CDC2

μ̅4q

CDC2
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 ω 0 0 0 0 0 0
0 0 0 0 −ω 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ω 0 0 0 0
0 0 0 0 0 0 −ω 0 0 0 0 0

0 0 0 0 0 0 0 0 −
1

𝑅𝐿1C3
ω 0 0

0 0 0 0 0 0 0 0 −ω −
1

𝑅𝐿1C3
0 0

−
1

C4
0 0 0 0 0 0 0 0 0 −

1

𝑅𝐿2C4
ω

0 −
1

C4
0 0 0 0 0 0 0 0 −ω −

1

𝑅𝐿2C4]
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B̅ =
∂f

∂u
|
(x̅,u̅,u̅d)

= [
B̅11
B̅21

] with: 

B̅11 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−
v̅DC1
L1

0 0 0 0 0 0 0

0 −
v̅DC1
L1

0 0 0 0 0 0

0 0
v̅DC1
L2

0 0 0 0 0

0 0 0
v̅DC1
L2

0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 −
v̅DC2
L3

0 0 0

0 0 0 0 0 −
v̅DC2
L3

0 0
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

𝐵̅21 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 0 0 0 0 0 0 −

𝑣̅𝐷𝐶2
𝐿4

0

0 0 0 0 0 0 0 −
𝑣̅𝐷𝐶2
𝐿4

𝑖2̅𝑑
𝐶𝐷𝐶1

𝑖2̅𝑞

𝐶𝐷𝐶1
−
𝑖3̅𝑑
𝐶𝐷𝐶1

−
𝑖3̅𝑞

𝐶𝐷𝐶1
0 0 0 0

0 0 0 0
𝑖6̅𝑑
𝐶𝐷𝐶2

𝑖6̅𝑞

𝐶𝐷𝐶2

𝑖7̅𝑑
𝐶𝐷𝐶2

𝑖7̅𝑞

𝐶𝐷𝐶2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 ]
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F̅ =
∂f

∂ud
|
(x̅,u̅,u̅d)

= 

[
 
 
 
 
 
 
 
 
1

LT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0
1

LT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

C4
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

C4]
 
 
 
 
 
 
 
 
𝑇

 

 

The state variable, input and disturbance matrices are given below.  

 𝐱 = [i1d i1q . . . i7d i7d vCDC1 vCDC2 v1d v1q . . . v4d v4q]T, 

𝐮 = [μ1d μ1q μ2d μ2q μ3d μ3q μ4d μ4q]T,  and  𝐮𝐝 = [vd vd iPVd iPVq]𝐓. 
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