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Abstract 

In this research, nanomaterial-based packaging materials for photovoltaic (PV) panels are 

investigated.   A hydrophobic/anti-reflective surface coating which not only repels water 

from the top glass of a PV panel but at the same time reduces its light reflectance is 

investigated.  COMSOL simulation results indicate that taller ellipsoid rod (aspect ratio = 

5) reflects less light than shorter rod (aspect ratio = 0.5) in the desired spectrum for solar 

energy harvest from 400nm-700nm.  The addition of a polymer layer on these ellipsoid 

rods broadens the light incident angle from 23° to 34°, from which light can be efficiently 

absorbed.  Based on optical simulation results and surface wetting mechanics, the design 

of a combined anti-reflective and hydrophobic surface for PV panel is investigated.  Deep 

reactive-ion and wet etching are used to fabricate a unique ellipsoid-shaped silicon stamp on 

a silicon wafer. The nano-imprinting process yields a super hydrophobic silicone coating on 

glass that can improve light transmittance by 1.5% with a water contact angle larger than 

150°.  The light transmittance of nano silica coating with a surface assembled monolayer 

of 1H,1H,2H,2H-Perfluorododecyltrichlorosilane prepared from a sol-gel growth is 3% 

higher (400nm-700nm) than that for a bare glass slide.  This coating passed the 

MIL-STD-810G felt abrasion test, 100 cycles of temperature cycling test (-45°C-120°C), 

heat endurance test (200°C for 500 hours), and UV test (2.7mW/cm2 UVA radiation for 

1000 hours).   

The second PV packaging material investigated is the nano-particle embedded EVA 

encapsulation. To block the migration of harmful free radicals that cut the co-polymer 

network into smaller molecules by chemical reaction in EVA, nano silica particle or 



 

 

functionalized nano diamond particles are embedded into EVA sheets.  A difference of 1% 

light transmittance between pristine EVA sheet and nano particle embedded EVA sheet 

indicates that the nano particles slow down the degradation of EVA after 2.7 mW/cm2 UVA 

radiation for 2 months. The embedded EVA sheet exhibits better adhesion strength on glass 

surface indicated by a conventional tape peeling test. 
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Chapter 1. Introduction and Motivations 

1.1 Development of Solar Energy 

In recent years, environmental stress caused by fossil fuel burning leads to an increasing 

pursuit of sustainable green energies generated by solar and wind. Electrical energy, in 

particular from solar energy and in spite of a “production capacity surplus problem” in 

recent years, undergoes a rapid cumulative 49% annual growth globally since 2003, 

according to the International Energy Agency Solar PV Technology Roadmap 2014 [1.1].  

The percentage of electricity provided by photovoltaic (PV) modules is predicted from 

about 1% in 2015 to 16% in 2050. 

The future of the PV industry appears to be optimistic, however, this does not mean the 

current PV technologies can support this predicted huge increase. In fact, their low 

conversion efficiencies and relative high manufacturing costs are preventing the PV panels 

from being economically sustainable. To find solutions, researches focus on several broad 

areas.  These are:  

1) Reduce the cost of materials, so the solar cells can be fabricated economically. For the 

silicon wafer, these new technologies include, blending in mc-silicon crystallization, the use 

of diamond saw instead of slurry-based wafer saw to reduce the material lose at the cutting 

joint, the use of thinner silicon, reduce the silver or aluminum paste consumption for the top 

contact pattern of the solar cells, etc. [1.2] 

2) Design more sophisticated junction structures to improve the light-electricity conversion 
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ratio. These structures include single-junction, two-junction, three-junction, junction with 

concentrator, etc. [1.2] 

3) Utilize innovative material or packaging structure to increase light harvest and prolong 

life expectancy of the photovoltaic panels. Anti-reflective coating on the top glass of PV 

panel is desired to reduce light reflection. 

1.2 Research Objective 

Among the three aspects of research areas to improving the overall performance of solar or 

PV panels, this work will focus on the third approach to increase the PV panel packaging 

efficiency and durability. 

In a typical solar cell package, five layers are laminated together to configure a functional 

and protected solar or PV panel as shown in Figure 1.1. The top layer is a tempered 

low-iron glass panel and it protects the lower layers consisting of ethylene-vinyl acetate 

(EVA) encapsulation and solar cells from weathering, and mechanically supports the entire 

panel. The second and fourth layers are the EVA copolymer encapsulations. They 

surrounded the entire solar cells to prevent oxygen or moisture from degrading these solar 

cells and the metal grid on top. It also functions as a shock absorber and an optical coupling 

layer. The third layer is the solar cell layer, which is in the middle of the five-layered 

structure. In this layer, solar radiation is converted into electricity by the solar cells. The 

bottom layer is the back sheet that mechanically supports the entire PV module.  
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Figure 1.1 A sketch of a typical solar cell packaging 

In this five-layer stack, specifically, two individual layers will be studied here. The first is a 

nano-structured coating on the top glass of the solar or PV panel. This coating will be 

anti-reflective and self-cleaning. Second, a new nano particles embedded ethylene-vinyl 

acetate (EVA) encapsulation material will be proposed and investigated. 

These two research areas are crucial to the solar industry.  First, the coating on the top 

glass panel manages light in an efficient way. The glass panel is directly exposed to the 

ambient air. Hence, it is susceptible to environmental contaminates. Many researches 

indicate that the light blockage caused by the dust accumulation on the tempered glass could 

degrade its conversion efficiency by as much as 33.5% in one month, and up to 65.8% in 6 

months [1.3]. Elminir et. al. [1.4] reported a light transmittance reduction of about 15% in 6 

months. Furthermore, light reflection on the interface between air and glass reduces an 
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additional 4% - 5% of sunlight. This efficiency reduction is too valuable to lose, especially 

considering the percentage that the industrial PV module efficiency improvement from 2003 

to 2012 was just over 5% as shown in Figure 1.2. 

 

Figure 1.2 Solar photovoltaic module efficiency trends, 2003 to 2012 [1.5] 

The solution to the efficiency loss on the tempered glass is an anti-reflective/hydrophobic 

coating.  This coating featured a nano/micro-scaled structure and a low surface energy 

which not only help to keep the glass surface free of dust but also reduces light reflection as 

well.  

Second, EVA copolymer degrades in climate weathering. In 1990s, more than 45% light 

transmittance lose was observed in a few years. Later on, various additives were added in to 

the copolymer. However, the “yellowing” degradation problem remains a major issue that 

worries solar plants. Here, a new method is proposed to effectively reduce the EVA 

degradation. 
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1.3 Brief Overview of Chapters 

There are five chapters in this dissertation. Chapter 1 gives the background information on 

solar cell industry, fundamentals of solar panel, and research objectives. Chapter 2 focuses 

on the anti-reflective/self-cleaning coating, including the optical theories applied for the 

anti-reflective coating, the simulation of light transmittance of various nano structure 

patterned surface based on COMSOL simulation tool, and the physics behind hydrophobic 

surfaces. In Chapter 3, experimental processes of preparing anti-reflective/self-cleaning 

coating will be described, tests data will be organized and analyzed, and conclusion will be 

made. Chapter 4 discusses EVA degradation mechanisms, process of making durable EVA 

encapsulation, degradation tests, and results and discussion. Chapter 5 concludes the 

contribution of this dissertation research and gives future research suggestions. 

 

1.4 References 

[1.1] “Technology Roadmap Solar Photovoltaic Energy - 2014 edition”, International 

Energy Agency. 

[1.2] “International Technology Roadmap for Photovoltaic (ITRPV), 2015 results including 

maturity reports”, seventh edition, October 2016. 

[1.3] Hassan AH, Rahoma UA, Elminir HK, Fathy AM. “Effect of airborne dust 

concentration on the performance of PV modules”. J Astron Soc Egypt 2005;13(1):24–38. 

[1.4] H.K. Elminir et al.  Energy Conversion and Management 47 (2006) 3192–3203 

[1.5] Data: Photon 2/2003-2009, Photon Profi 2/2010-2/2012. Graph: Willeke Fraunhofer 

ISE 2013 



6 

 

 

Chapter 2. Anti-Reflective and Hydrophobic Surfaces 

2.1 Anti-Reflective Surfaces 

2.1.1 Light Reflections 

Light reflection is a directional change of a light wave front as it propagates to an interface 

of two different media. Because of this, a certain part of wave front returns back into the 

media where it originates. Most objects can reflect light. For example, the reflected lights 

are collected by human eyes so substances that are not light sources can be seen. Another 

good example of light reflection occurs on mirrors, smooth water or other specular surfaces, 

on which images of other objects can be formed. These two examples represent two 

categories of reflection, diffuse reflection and specular reflection. 

Both these diffuse and specular reflections can be explained by Laws of reflection derived 

from Fresnel equations. The Laws of reflection state that the incident ray, normal, and the 

reflected rays are all in the same plane. The angle between the incident and normal rays is 

equal to that between the angle between the normal and reflected rays. The incident and 

reflected rays are on two different sides of the normal ray. In diffuse reflection, the 

microscopic irregular on the rough surface can be considered as groups of micro-scaled 

specular surfaces with various tilt angles assembled together. The reflected ray bounces off 

the surface in different directions, some of them strike the surface material again, and 

absorbed or reflected. Lambert's cosine law [2.1] gives a common model of diffuse 

reflection macroscopically. 
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Light reflection gives our surrounding its appearance and it contributes to human’s modern 

lives, scientific researches, and industries. However, not all the light reflections are 

beneficial. For example, insects want to hide the reflected light to keep them safe from 

predators, huge glass wall of sky scrapers cause light pollution problems, and as in this 

research, light reflection prevent us from harvesting solar energy in an efficient way. Both 

insects and humans strive to eliminate the unwanted light reflection, but it seems insects are 

doing better than us.  

The following sections discuss different methods of reducing light reflection using artificial 

technology and from the wisdom of nature.   

a) Use Rough Surface to Reduce Light Reflection 

As mentioned in the last section, diffuse reflection takes place when light impinges on a 

rough surface and a proportion of the reflected light is absorbed by the adjacent bumps. This 

increases light absorbency on the rough surface. This technology is widely used on solar 

cells to reduce the reflection on the silicon surface from more than 30% to less than 10% 

[2.2]. Alkaline solutions such as potassium hydroxide (KOH) can be used to etch the silicon 

surface into micron sized pyramid shaped structures. In this method, surface roughness 

contributes to reduce light reflection. 

b)  Single-Layer Anti-Reflective Coating 



8 

 

 

This single layer interference anti-reflective coating employs a thin layer of material with 

reflective index of 𝑛1 on the substrate with a reflective index of 𝑛𝑠 as shown in Error! 

Reference source not found.. [2.3] Two reflected lights will interfere with each other due 

to the same frequency. If the thickness of the 𝑛1 layer is selected such that the phase 

difference between reflected ray 𝑅1 and 𝑅2 is half a wavelength, then the superposition of 

the two rays will be destructive.  This means that less or no energy will be reflected. The 

optimal thickness of the coating should be one fourth of the wavelength of the ray. 

Normally, in a broad wavelength application, a middle wavelength is used to obtain an 

overall better anti-reflection effect over a broad spectrum. This technology requires accurate 

control on the thickness of the coating. 

c) Index Matching 

Like the interference layer discussed in (b), the index matching technique utilizes a thin film 

on the substrate. When light incident in the normal angle, the reflectance at the interface is 

given by Fresnel equation: 

Figure 2.1 Sketch of single layer interference anti-reflection coating   
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 𝑅 = (
𝑛0 − 𝑛𝑠
𝑛0 + 𝑛𝑠

)
2

 (2.1) 

This equation indicates that if the difference of refractive index (RI) of adjoining media is 

small, the reflectance is small. The same rule applies on the general incident situation, that 

is, for a ray with any incident angle, a smaller RI difference will yield a weaker reflectance. 

It can be shown that the total reflection in the presence of the thin layer with 𝑛1as shown in 

Fig. 2.2 [2.3] is given as 

 𝑅01𝐼 + 𝑅1𝑆 ∙ 𝑇01 ∙ 𝐼 < 𝑅 ∙ 𝐼 (2.2) 

 

Figure 2.2 Sketch of single layer anti-reflection coating 

To obtain the best optical coupling effect, it is important to choose the right material. The 

optimal value of the RI of the thin film is, 

 𝑛1 = √𝑛0 ∙ 𝑛𝑠 (2.3) 

The RI of glass is around 1.5, and air is 1. So, the RI of the thin film anti-reflective coating 

on glass should be about 1.23, which is much lower than all the materials we know. In 

industry, materials with lowest RI are used as anti-reflective coating on glass, such as 

magnesium fluoride [2.4]. 
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d) Moth’s Eye Structure 

To enhance performance, anti-reflective coating usually combines interference and index 

matching in one layer. The coating thickness is one fourth of the middle wavelength of 

incident light and with a RI equals to the square root of that of the substrate. If roughness is 

introduced into the coating, then the low refractive index coating can be hundreds of nano 

meters thick. That is exactly what nature gives insects the moth’s eye structure as shown in 

Fig. 2.3 for instance. This structure contains all the three elements discussed in the artificial 

anti-reflection coatings. 

 

Figure 2.3 Moth’s eye structure [2.5] 

These arrays of nano sized tapered protuberance on the moth’s eyes are about 200nm tall 

and with the same length of period. Using this structure as a camouflage, moths reduce the 

light reflection on their eyes to prevent them being found by their predators, such as owls. 

Unlike the single layer anti-reflective (SLAR) coatings, which perform within a narrow 

spectrum, the moth’s eye structure efficiently reduces light reflection over a broad 

bandwidth and angle. The structure of moth’s eye has been discovered and studied for 

decades. In 1967, Bernhard first found the corrugation and proposed that the tapered bumps 
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form a graduate change of refractive index, which explains the broad bandwidth 

anti-reflective property [2.5]. The basic principle and physics behind the phenomenon has 

been understood for a long time. One of the best theories is the effective medium theory or 

effective medium approximations. [2.6] 

 

Figure 2.4 Illustration of effective refractive index [2.6] 

The effective medium theory uses an effective refractive index to describe macroscopic 

optical properties of inhomogeneous media. In a composite material, for example glass and 
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air (holes) composed of tapered nano protuberance as shown in Figure 2.4, its effective 

refractive index can be approximated to describe the overall RI of the composite. 

Specifically, in this figuration of the bumps, every horizontal layer of the material can be 

considered as a homogeneous plate. Suppose there are four planes labeled A, B, C, and D 

that cut through the tapered structure, then there are four cross sections indicated in the low 

portion of Figure 2.4. Each cross section consists of different portions of glass and air. If we 

know the exact percentage of the glass material or the air, then the overall RI of the cross 

section can be calculated. In cross section A, the glass takes only a little portion of the area 

due to the shape of the protuberance, as such, the effective RI is predominantly dominated 

by the RI of the air. While for the plane D, the glass density is very high compared with the 

air, then the effective RI is close to the glass. If the cutting planes are myriad instead of the 

four A, B, C, and D planes, the effective RI would continuously increase from 1 (RI of the 

air) to 1.5 (RI of the glass). This graded refractive index reduces light reflection in two ways. 

First, because the differences between RIs of each adjacent cross section are very small, 

according to equation 2.1, the reflection between these two cross sections is very low, so is 

the overall reflection. Second, light propagates from optically thinner media to thicker 

media on each interface of different cross sections, so the incident angles are larger than the 

refracted angles. This results in bending of the light toward the normal direction. The 

change of incident direction further reduces the reflection. 

Many industrial applications make used of this optical property of sub-wavelength structure. 

For example, the AR coatings on eyeglasses, optical lenses, solar panels, etc. Intensive 
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researches are carried out to develop technologies of this artificial optical media. These 

technologies generally include microelectromechanical systems (MEMS) methods, 

nanoimprint process, and sol-gel approach. As for solar power industry, a high yield and 

low cost coating is desired, as such nanoimprinting and sol-gel process are being studied. 

2.1.2 Anti-Reflective Surface Structure Design Based on COMSOL Simulation 

a) COMSOL Simulations 

COMSOL Multiphysics Modeling Software (wave optics module) [2.7] can be used to 

simulate light reflection on different surfaces with various configurations of nano structure 

or with a silicone layer covering the nano structures to mimic the two-layer structure of an 

anti-reflective/hydrophobic surface. 

In COMSOL simulations, the structure dimensions, materials properties, boundary 

conditions, and formulas are first defined. Then meshing is defined, followed by the 

simulation and plotting. In the appendix, simulation of light reflectance of a surface with 

ellipsoid roughness (Figure 2.5) is explained with details. The sketch shows a nano 

structured hemisphere coated on a glass square column. In a practical application, there are 

actually billions of the hemispheres built on the glass substrate. For the calculation 

convenience, only one smallest periodic unit of the whole structure is considered. To 

understand how the aspect ratio of the nano structures affects the light reflectance, three 

configurations of the structure are studied with the simulation software. The aspect ratio of 

them are 0.5 (Figure 2.5), 2.5 (Figure 2.6), and 5 (Figure 2.7) respectively. Besides the 

simulation of these three configurations (results are plotted in Figure 2.8 as a, c, and e), 
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three more structures are investigated. There three structure are with an additional polymer 

coating on the ellipsoids compared with a, c, and e. The simulation results are numbered as 

b, d, f in Figure 2.8. 

 

Figure 2.5 Sketch of a nano structure (aspect ratio: 0.5) coated on glass substrate 

 

Figure 2.6 Sketch of a nano structure (aspect ratio: 2.5) coated on glass substrate 
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Figure 2.7 Sketch of a nano structure (aspect ratio: 5) coated on glass substrate 

b) Simulation Results 

The simulation results are plotted in Figure 2.8 (a) and (b) to show the reflectance base on 

the same dimension of the roughness, periodic semi-ellipsoid structures with a diameter of 

the base section of 0.33 micron and a height of 0.17 micron.  

The different between Figure 2.8(a) and (b) is that there is an additional silicone layer on 

structure Figure 2.8 (b). The same differences are for Figure 2.8 (c) and (d), as well as 

Figure 2.8 (e) and (f). The semi-ellipsoids shown in Figure 2.8 (c) and (d) are 0.85 microns 

in height and 0.33 micron in width. This is the same foot print as sample shown in Figure 

2.8 (a) and (b), but five times taller in height. Samples shown in Figure 2.8 (e) and (f) are 10 

times taller but having the same width as those shown in Figure 2.8 (a) and (b). 

c) Discussion 

There are distinct differences in reflection between the samples with silicone coating (b, d, f) 

and those without silicone coating (a, c, e).  
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As shown, there is a strong reflection occurring at about 400 nm at 0.6 rad (about 34°) 

incident angle. This wavelength is crucial in the absorbing range of solar cell absorption 

spectrum. As such, a relative high reflectance lowers the efficiency of the solar module. 

Based on these results, it can be concluded that a thin layer of silicone layer can increase the 

performance of the solar panel at a larger incident angle. 

  

              (a)                                 (b) 

   

               (c)                                 (d) 
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               (e)                                 (f) 

Figure 2.8 Simulation results of light reflectance on different surfaces 

As shown in Figure 2.8, at wavelength longer than 300nm with incident angle less than 0.4 

rad or about 23°, the light reflectance reduces as the semi-ellipsoids become taller. This 

means that tall semi-ellipsoid structures increase the light absorbance and favors the solar 

panel overall efficiency. The surface structure with the best absorbance would be the 

slender needle structure. However, considering the difficulties of a practical manufacturing 

process and the fragile nature of the slender structure in practice, the semi-ellipsoid 

structure cannot be built too tall. 

As shown in Figure 2.8, samples (b) and (d) show a strong reflectance below 300 nm at an 

incident angle below 0.6 rad (about 34°). This indicates that more light below 300 nm is 

blocked by the EVA encapsulation in the solar panel from degradation. Ultra-violet (UV) 

radiation plays a crucial role in degradation to the EVA and solar cells. 
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2.2 Hydrophobic Surfaces 

2.2.1 Introduction: Surface Wetting and Its Measurement 

a) Wetting on Ideal Solid Surface 

Surface wetting measures the ability of a liquid to maintain its contact with a solid surface. 

When a liquid drop sits on top of a solid surface, it undergoes two forces. One is the 

adhesion forces between liquid molecules and solid molecules. This force pulls the liquid 

outward and spread the liquid across the solid surface. The other is the cohesive force. This 

is the force inside the liquid and it strives to shape the liquid into a sphere. For a 

combination of liquid and solid, one of these forces prevails to a certain degree and as such, 

the liquid is shaped accordingly to be a perfect ball, a flat plate, or anything in between. If 

liquid has very little contact with the solid surface in the form of a perfect ball, this is 

perfect wetting or complete wetting. On the contrary, if the liquid spreads out completely, it 

is perfect non-wetting. Any wetting between these two can be called partial wetting. 

Contact angle (CA) is used to quantitatively describe the wetting property of a liquid on a 

solid surface. 

 

Figure 2.9 Illustration of contact angle 



19 

 

 

Contact angle forms by the liquid-air interface and the liquid-solid interface is shown as 𝜃𝐶  

in Figure 2.9.  If water contact angle is less than 90°, the surface is called hydrophilic to 

the liquid; If CA is between 90° and 150°, it is called hydrophobic. If it is larger than 150°, 

it is known as super hydrophobic. The properties of liquid, internal properties of the solid 

surface, and structure of the solid surface determine the contact angle. In the photovoltaic 

panels, the main purpose of the top coating is to repel water, so our investigation focuses on 

the material properties and the surface structure that yields a hydrophobic or super 

hydrophobic surface. 

To study solid surface properties, concept of ideal solid surface is introduced. The surface is 

assumed to be perfectly flat, hence the effect on WCA made by the surface roughness is 

neglected. The chemical properties of the surface are homogeneous, and with no WCA 

hysteresis, which means the advancing and receding angles are equal. As such, surface 

energy is the predominant factor to affect the surface wetting property. Solids can be 

categorized into high surface energy or low surface energy. For example, glass, metal, and 

ceramics are very hard with strong chemical bonds (ionic, metallic, or covalent). As such, 

large energy is needed to break these bonds, so they are called high surface energy solids. 

Other solids are hold up by weak bonds such as hydrogen bonds and van der Waals force.  

Weak forces can separate these solids, for example some polymers, they are called low 

surface energy solids. 

On an ideal solid surface, magnitudes of surface energy determine water contact angles 

(WCAs). When the bond forces in these solids are much larger than the hydrogen bond in 
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water, the molecules of the surfaces “pull” water molecules to spread out as a thin plate on 

the surfaces, these forces prevail the bond force of water which fights against the surface 

forces and trying to “ball up” the water drops. These surfaces are hydrophilic to water. For 

some chemical bonds that not as strong as the hydrogen bonds in water, they hardly affect 

the shapes of the water drops, the water drops will hold together as a sphere on the surfaces. 

These solid surfaces are hydrophobic. [2.8] 

b) Wetting on Non-Ideal Rough Solid Surface 

In practice, no surface is perfectly smooth and as such the wettings are complicated by its 

surface roughness. For example, in the lotus leaf structure, a typical hydrophobic surface in 

the nature, water is repelled from wetting itself though its rough and wax-coated surface. 

This lotus surface is intensively studied and many models are proposed to explain their 

wetting properties. Among these models, two of them are widely accepted. The first model 

is given by the Wenzel’s model [2.8] and is given by: 

 cos 𝜃∗ = 𝑟 cos 𝜃 (2.4) 

The second model is given by the Cassie-Baxter model [2.8]: 

 cos 𝜃∗ = 𝑟𝑓𝑓 cos 𝜃
𝑌 + 𝑓 − 1 (2.5) 

In the Wenzel’s model, θ* is the WCA of a textured rough surface,𝜃𝑌is the WCA of an ideal 

solid surface made with the same material but without any textures or heterogeneity on the 

surface.  r is the roughness ratio and it is defined as the ratio of the true surface area to its 

projection, as such it is always greater than 1. The equation suggests that if θ is less than 90°, 
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then θ* is less than θ; if θ is larger than 90°, then θ* is larger than θ. From the above, it is 

clear that introducing roughness onto a perfect hydrophilic surface will make the surface 

more hydrophilic, while introducing roughness onto a perfect hydrophobic surface will 

make the surface more hydrophobic. As such, the factor r measures how roughness effects 

on a perfect solid surface. 

Compared to the Wenzel’s model, Cassie-Baxter model provides a better modeling when 

deal with a heterogeneous surface. In equation (2.5), similar to the r in the Wenzel’s model, 

𝑟𝑓 describes the roughness ratio, f is the proportion of solid surface area that wet by the 

liquid. 

 

Figure 2.10 Cassie-Baxter model [2.8] 

Figure 2.10 shows a sketch of wetting on a surface with rectangular roughness. The width, 

spacing, and height of the bumps are a1, b1, and H1. Then, f is, 

 𝑓 =
1

[(𝑏1 𝑎1⁄ ) + 1]2
 (2.6) 
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Equation (2.6) indicates how the configuration of the protuberance affects the parameter 𝑓, 

and WCA. If a1 goes small, then f becomes small, then the value of cosθ* decreases and this 

will result in a larger WCA θ*. 

Both the Cassie-Baxter and Wenzel models enlighten many designs of hydrophobic 

surfaces. In applications, the WCA larger than 150° (super hydrophobic) is preferred, 

surface with such high WCA shows non-wetting and self-cleaning capabilities. To achieve 

the WCA above 150°, low surface energy material is needed. Polymer material has the 

lowest energy, the WCA of perfect polymer surface range from 100° to 110°. Based on 

these WCAs, according to calculation, an aspect ratio of surface nano-scaled configuration 

need to be larger than 5 to increase the actual WCA to 150°. This is very challenging to 

create such slender rods from soft polymers. A new angle to approach super hydrophobicity 

without building tall and fragile rods is needed. Luckily, the microscopic structure of lotus 

leaves gives clues to this approach. 
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2.2.2 The Lotus Leaf Structure 

 

Figure 2.11 SEM imagine of lotus leaf surface structure [2.9] 

Hydrophobicity has been studied half a century ago. In 1977, Barthlott and Ehler [2.10] 

studied the self-cleaning effect of lotus leaf structure and they called this water repelling 

phenomenon as the lotus effect. Later in 1980s, chemists and biologist begin to apply the 

lotus effect to handle fluid. In recent two decades, the application of lotus effect on 

self-cleaning, protective coatings has emerged. 

The microscopic structure of lotus leaves is well studied. There are arrays of papillae on the 

lotus leaves, with 10 to 20 micron in height and 10 to 15 micron in width as shown in 

Figure 2.11 [2.9]. Beside this micron scaled roughness, epicuticular wax coated nano rods 

are grown on the micro papillae. This lotus structure inspires a new approach to create super 

hydrophobic surfaces without elaborate processes. 

The lotus structure has a two-scaled roughness consisting of both micron and nano sized 

configurations on the surface. Because water droplets (size of rain drops are around 0.5 mm 
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to 4 mm, the tiny droplet in cloud, fog, mist are around 10 to 15 microns in diameter) are a 

few orders of magnitude larger than the nano rods on the lotus leaves, these water droplets 

cannot “see” these nano rods. As such, this nano rod coated surface is an ideal solid surface 

with a higher WCA than any known polymer.  If this ideal surface is shaped with micron 

scaled protuberance, the overall WCA will be greater than 150°. In another word, if the 

factor f (configuration of the micro scale roughness) is not changed, an ideal polymer coated 

nano rods can be formed. This results in a larger 𝜃𝑌, which ultimately obtains a larger θ*. 

 cos 𝜃∗ = 𝑟𝑓𝑓 cos 𝜃
𝑌 + 𝑓 − 1 (2.7) 

2.3 Design of New Rough Hydrophobic/Anti-Reflective Surface 

To design a surface with both hydrophobic and anti-reflective properties, we need to 

combine the two desired structures that discussed in section 2.1 and section 2.2 into one 

structure. According to the analysis in the section 2.2, for a hydrophobic surface, a desired 

microscopic structure, as showed in Figure 2.12 (a), should meet the following requirements. 

(i), the pillars are with high aspect ratio, (ii) there are nano-scale roughness on the surface of 

pillars, (iii) surface energy is low, (iv) the pillars are properly spaced apart, (v) the size of 

the structures are below 10 microns. 
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Figure 2.12 Design of a hydrophobic/anti-reflective surface 

As for an anti-reflective surface structure, the requirements are different (showed in Figure 

2.12 b). (i) The prominences are shaped as ellipsoid, but not pillar, (ii) there is no space 

between the ellipsoid prominence, so the light reflection from the flat surface between the 

prominence can be eliminated, (iii) the surface roughness or low energy is not necessary, (iv) 

the dimension of the roughness is hundreds of nanometers. 

If we put the requirements of Figure 2.12 (a) and (b) together, a structure showed in Figure 

2.12 (c) meets all the criteria of (a) and (b) at the same time. The structure in the Figure 2.12 

(c) should be with these properties. (i) high respect ratio ellipsoid prominence, (ii) there are 

spaced out with a proper distance, (iii) the whole surface is with nano-scaled surface 

roughness and low surface energy, (iv) the flat valley floor between ellipsoids should be 

shaped as inverted ellipsoids, (v) the dimension of the roughness is hundreds of nanometers. 

In the next chapter, experimental methods of fabrication this designed nano structure will be 

discussed, and the prepared samples will be tested and studied. 

2.4 References 

[2.1] Wikipedia, “Lambert’s cosine law”. 



26 

 

 

[2.2] D.H. Macdonald, A. Cuevas, M.J. Kerr, C. Samundsetta, D. Ruby, S. Winderbaum, A. 

Leo, “Texturing industrial multicrystalline silicon solar cells”, Volume 76, Issues 1–3, 

January–March 2004, Pages 277–283 

[2.3] Wikipedia, “Anti-reflective coating”. 2017 

[2.4] Michael Fink, “Types of anti-reflective treatments and when to use them”, the 

photonics solutions update, p 28-31 

[2.5] Michael Berger, “Moth eyes inspire self-cleaning antireflection nanotechnology 

coatings”, nanowerk, Oct, 28, 2008 

[2.6] Hemant Kumar Raut, V. Anand Ganesh, A. Sreekumaran Nair and Seeram 

Ramakrishna, “Anti-reflective coatings: A critical, in-depth review”, Energy Environ. Sci., 

2011, 4, 3779. 

[2.7] Comsol, “Wave optics module,for simulating electromagnetic wave propagation in 

optically large structures”, https://www.comsol.com/wave-optics-module, 2017. 

[2.8] Wikipedia, “Wetting”, 2017 

[2.9] Sanjay Lakshmanan, “An analysis of hydrophobic fabric using electron microscopy”, 

http://www.optics.rochester.edu/workgroups/cml/opt307/spr16/sanjay/IndexNew.html. 

[2.10] Barthlott, Wilhelm; Ehler, N. 1977. "Raster-Elektronenmikroskopie der 

Epidermis-Oberflächen von Spermatophyten". Tropische und subtropische Pflanzenwelt. 

Akad. Wiss. Lit. Mainz. 19: 110, 1977 

  

https://www.comsol.com/wave-optics-module
http://www.optics.rochester.edu/workgroups/cml/opt307/spr16/sanjay/IndexNew.html


27 

 

 

Chapter 3. Fabrication and Characterization of Anti-Reflective & Hydrophobic 

Surfaces 

3.1 Nano Silica Based Anti-Reflective and Hydrophobic Surfaces 

3.1.1 Preparation of Nano Silica Based Anti-reflective and Hydrophobic Surfaces 

There are two major steps to create a nano silica based anti-reflective and hydrophobic 

surface. First, a scaled roughness of nano silica layer is coated onto the glass. Second, a 

self-assembled monolayer is grown on top of this nanosilica layer. 

a) Experiment Preparation 

Experimental Cleanliness is crucial to the process. All experimental glassware must be 

cleaned with VWR Labtone solution consisting one oz. of the compound in two gallons of 

water. Properly cleaned glassware retains a thin water layer on its surface and this water 

does not flow down as a stream but rather hangs onto the glass surface as a water drop. 

Glassware that does not shows this property after the soap cleaning cannot be used in the 

process. The contamination on experimental glassware changes the wetting properties 

which makes the nano silica film non-uniform in the spin coating process. Moreover, it 

further poisons the SAM growing solution and makes the layer non-uniform.  

Silica nano particles with particle size between 5nm and 10nm in diameter, 

gama-glycidoxypropyltrimethoxysilane, formic acid, tridecafluoro-1, 1, 2, 2, 

-tetrahydro-octyltrichlorosilane [CF3 (CF2)5(CH2)2SiCl3, FOTS], hexadecane, and carbon 

tetrachloride are purchased from Sigma Aldrich. Polystyrene nanoparticle aqueous 

suspension (7 microns in diameter, 5% weight) is acquired from Spherotech Inc. 
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b) Nano Silica Coating Process 

For the first nano silica layer, polystyrene nano particles were used as templates to create a 

surface with different configurations onto the nano silica particle coating. A sol-gel process 

was employed [3.1]. Nano silica particles are first dissolved in an ethanol/water mixture 

(10g:1g) and dispersed using ultra-sonication for 10 minutes. Then 0.05g formic acid and 

0.05g of (3-Glycidyloxypropyl)trimethoxysilane are added.  After ultra-sonication for 

another 10 minutes, the mixture is stirred at 40°C overnight. Then, 2 mL of 5% weight of 

polystyrene beads suspension is added and ultra-sonicated for 10 minutes, which is 

followed by a spin coating process for 30 seconds at a spin rate of 6000 rpm. Lastly, the 

coated glass slides are dried in air atmosphere and calcinated at 500°C in an oven for 60 

minutes to burn out the polystyrene particles. 

Weighing the nano silica particles needs extra attention due to its environmental concerns.  

As such, it is performed in a fume hood. Before weighing, the fume hood is cleaned 

thoroughly.  After this, water saturated paper sheets are placed on the fume hood to fully 

cover the entire working surface inside the fume hood. After that, the venting fan of the 

fume hood is switched off and nano silica powder is weighed using a chemical balance. The 

nano silica particles with be blown and contaminate the entire fume hood chamber. After 

weighing, the nano silica powder is covered and the fume hood is cleaned with wet paper.   

In the silica calcination process, a furnace is first calibrated with a thermal couple and the 

calcination process is carried out using the furnace temperature profile as shown in Figure 

3.1. 
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Figure 3.1 Thermal profile of silica calcination process 

For a uniform coating, the spin process recipe consists of several stages as shown in Table 

3.1. 

Table 3.1 Spin coating recipe 

Stage Revolutions per 

minute (rpm) 

Ramp time 

(seconds) 

Duration Process 

1 100 1 3 Apply 

Solution 

2 0 0.1 2 Coverage 

3 150 0.1 2 Coverage 

4 0 0.1 2 Coverage 

5 800 1 5 Spread out 

6 6000 1 45 Settlement 

7 1500 2 10 Recovery 

8 0 2 3 End 

At stage one, while the glass substrate rotates at a slow rate on the chuck of the spin coater, 

coating solution is dispensed onto the central part of substrate using a burette. After that, the 
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substrate rotates and stops twice from stage 2 to stage 4. This motion shakes the coating 

solution and distributes it uniformly onto the entire glass substrate. Then the spin rate 

increases to 800rpm at stage 5 to shake off the excess coating solution from the glass 

substrate, and leaves only a thin uniform layer on the glass substrate. At stage 6, the spin 

rate is set to the highest spin speed that determines the thickness of the film. Last, the glass 

substrate spins at 1500rpm to compensate the non-uniform thickness on different glass 

substrate areas. The centrifugal force on each point on the glass substrate is proportional to 

the distance between this point and the rotation center. This results in a larger centrifugal 

force in the center than that in its periphery. Reducing the spin speed increases the uniform 

distribution of centrifugal force, hence, making the thickness more uniform on the entire 

glass substrate. 

In general, thickness of spin coated film is inversely-proportional to the square root of 

angular velocity [3.2] given by 

 𝑡 ∝
1

√𝜔
 (3.1) 

In the experiment, different spin rates are applied at the stage 6 to obtain coatings with 

different thickness. The spin rates are 1000, 2000, 3000, 4000, 5000, 6000, and 7000 rpm. 

Before the spin coating process, small pieces of Kapton tapes are attached onto the glass 

substrate. After coating, the tapes are removed. This tape forms a step with and without 

nano silica film.  These steps are used for the measurement of thickness using a surface 

profilometer. 
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c) SAM Growing Process 

The coated glass substrates are rinsed in DI water, methanol, and carbon tetrachloride 

sequentially for 15 minutes at each step. After, the substrates are immerged in 50 mL of 

tridecafluoro-1, 1, 2, 2, - tetrahydro-octyltrichlorosilane precursor solution (0.05mL FOTS, 

40mL hexadecane, and 10mL carbon tetrachloride). Then, samples are took out of the 

solution and cleaned in carbon tetrachloride, methanol, and DI water sequentially. Lastly, 

the SAM layers are cured at 150°C for 10 minutes. The glass beakers used in the process are 

kept still to prevent any disturbance of the solution, this helps to maintain the uniformity of 

the SAM layer. All these steps are performed inside a fume hood and a full-face mask along 

with a cartridge respirator. Glass substrates are handled with a stainless-steel tweezers 

which is also cleaned with acetone, IPA, and DI water.  

Growing time is an important parameter for the density of the SAM layer on the nano silica 

coated surface. Samples are kept in solution for from zero minute to 20 minutes. 

3.1.2 Measurements of Coated Nano Silica Surfaces 

The thickness of nano silica coating is measured using a Dektak 3030 profilometer with a 

measurement range of 50Å to 1,310Å. A VCA Optima video contact angle system is utilized 

to measure the water contact angle on the prepared samples. A DU 730 Life Science UV/Vis 

Spectrophotometer (Beckman Coulter) is used to measure the light transmittance of 

samples. 
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3.1.3  Measurement Results and Discussion 

a) Concentration of Nano Silica Solution versus Film Thickness 

According to the simulation results discussed in Chapter 2, the thickness of nano silica 

coating should be less than 200nm. Spin speed and concentration of the nano silica solution 

are controlled to yield different thicknesses of coated nano silica film.  

The maximum spin speed for the 6800 Spin Coater Series (Special Coating Systems) is 

7000rpm. At this spin speed, the vacuum holds the glass substrates firmly during spinning. 

The thickness of the coated film is 200nm when a nano silica solution with a 10% (by 

weight) concentration is coated onto the glass substrates at 7000rpm. For a thinner silica 

coating, less concentrate nano silica solutions are prepared while the spin coating speed is 

kept at 7000rpm. Six samples are prepared according to the recipes shown in Table 3.2 

Table 3.2 Coating recipes of the samples 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 

Concentration 

of nano silica 

solution 

(weight %) 

10.0% 6.15% 4.44% 2.76% 2.00% 1.60% 

Spin 

Speed(rpm) 
7000 7000 7000 7000 7000 7000 

Thicknesses of the coatings on samples 1, 2, 3, 4, 5, and 6 are measured and are shown in 

Figure 3.2 to Figure 3.7. 
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Figure 3.2 Thickness measurement of sample 1 is 195nm 

 

Figure 3.3 Thickness measurement of sample 2 is 185nm 

 

Figure 3.4 Thickness measurement of sample 3 is 150nm 
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Figure 3.5 Thickness measurement of sample 4 is 120nm 

 

Figure 3.6 Thickness measurement of sample 5 is 113nm 

 

Figure 3.7 Thickness measurement of sample 5 is 65nm 

The thickness versus concentration of nano silica concentration is plotted in Figure 3.8.  

As can be seen, as the concentration for the nano silica increases, its thickness increases.   
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Figure 3.8 Relation between concentration of silica solution and  

thickness of the coating 

The transmittance of the samples is measured and shown in Figure 3.9. Sample 5 shows the 

highest light transmittance of 94.3%, 95.0%, and 94.3% respectively at wavelength 400nm, 

550nm, and 700nm. The glass slide with a 113nm thick silica film transmits nearly 4% more 

light compared to that of a bare glass with transmittance of 90.5%, 91.3%, and 91.4% 

respectively at the same wavelengths. 

 

Figure 3.9 Transmittance measurements of the silica films 
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b) Light Transmittance versus Concentration of Polystyrene Beads 

Four samples of polystyrene beads embedded silica coating are prepared. The thickness of 

these samples is 113 nm which is the optimum thickness found in the last section. The 

concentration or weight percent of polystyrene beads from sample 1 to sample 4 are 0.125%, 

0.25%, 0.5%, and 1%, respectively. The transmittances of these samples are measured and 

shown in Figure 3.10. The results indicate that from 450nm to 800nm wavelengths, light 

transmittance raises as the weight percentage of polystyrene increases from 0.125% to 0.5%. 

After that, the transmittance reduces with further increase of the percentage of the 

polystyrene beads. This can be explained by the template effect of polystyrene beads. After 

calcination in air flow at 500 °C, the polystyrene beads are burnt out (the ignition 

temperature of polystyrene is 488 °C to 496 °C), leaving crater-shaped roughness on the 

silica surface as shown in Figure 3.11. The roughness is the same size as that of the 

polystyrene beads. This results in an increase on light transmittance. At low concentrations 

of polystyrene, increasing its concentration increases the area of the crater-shaped 

roughness which results in a better light transmittance. As multi-layer of polystyrene beads 

(mixed with nano silica particles) spread over the entire surface of the glass slides, the 

relationships between polystyrene concentration and light transmittance change. In a high 

polystyrene loading silica film, part of the polystyrene beads is buried deeply within the 

nano silica layer. These polystyrene beads are either not decomposed in the 500 °C thermal 

process due to the lack of oxygen or there is residual left after burning. In either case, the 

light transmittance will be affected negatively. 
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Figure 3.10 Light transmittance of the coating as a function of polystyrene concentration. 

[3.1] 

 

Figure 3.11 AFM image of the silica coating after calcination 

c) Water Contact Angle versus Growing Time of SAM Layer 

Five samples are prepared with the same silica coating thickness (113nm) and same 

concentration of polystyrene in the solution (0.5%). However, the growing time of the SAM 

layers on the 5 samples varies as 0, 6, 12, 17, and 20 minutes. The water contact angle is 

measured as shown in Figure 3.12 and plotted in Figure 3.13. 
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Figure 3.12 A water droplet sits on a silica base hydrophobic surface 

 

Figure 3.13 Relations between water contact angle and SAM growing time. [3.1] 

Figure 3.13 shows that the water contact angle increases with the SAM growing time. At 12 

minutes, the WCA reaches the peak value of around 150 degrees. After 12 minutes, the 

WCA decreases slightly. These results indicate that it takes about 12 minutes for the 

tridecafluoro-1,1,2,2,-tetrahydro-octyltrichlorosilane molecules to build up the silicon 

oxygen bond with nano silica particles covering the coating surface. After the coverage is 

complete, the WCA will not increase anymore.  
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d) Light Transmittance versus Growing Time of SAM Layer 

The light transmittance of the 5 samples in the last section are determined and plotted in 

Figure 3.14. The plots show that in the first 17 minutes of growing of SAM layer, the light 

transmittance does not change much. At minute 12, the light transmittance increases slightly. 

However, at 20 minutes, the light transmittance dropped by about 3%-4%. This is because 

after 12 minutes’ process, a uniform mono molecular layer has been deposited on the silica 

surface, extending the processing time allows more molecule start to unnecessarily 

accumulate on the surface and in the solution in a random orientation, this accumulation 

blocks light. The change of the chemical reaction can be also observed by the color of the 

solution. In the first 15 minutes, the solution is transparent, after that, it quickly turns into 

semi-milky in two minutes. 

 

Figure 3.14 Light transmittance as a function of growing time of SAM layer. [3.1] 
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e) Water Contact Angle versus Growing Time of SAM Layer 

Four samples with similar thickness of silica layer, same growing time for the SAM layer 

but different concentrations of the polystyrene beads in the silica/polystyrene solution are 

prepared. Results are plotted to investigate how the concentration of polystyrene in the 

silica affects the WAC of the coating. Figure 3.15 shows the WCA increases from 125° to 

150° as the polystyrene bead concentration increases from 0.125% to 0.5%. At the 

concentration of 1%, the water contact angle decreases. Figure 3.14 reveals that the increase 

of the polystyrene loading enhances the surface roughness at the beginning, then after a 

point, adding more polystyrene will not help to roughen the surface but rather it may even 

make it smooth. 

 

Figure 3.15 Water contact angle as a function of concentration of polystyrene. [3.1] 
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f) A Test on the Self-Cleaning Efficiency of the Coating. 

  

(a)                                  (b) 

  

 (c)                                  (d) 

Figure 3.16 Demonstration of a self-cleaning surface 

In Figure 3.16, self-cleaning efficiency of two glass samples are tested. The glass sample on 

the left is a normal glass, cleaned with a piranha solution, the right glass is coated with the 

silica hydrophobic layer. In Figure 3.16(b), same amount of red dusts are sprinkled on both 

slides. Water drops are dripped onto the two slides as shown in Figure 3.16 (c). On the left 

glass, water mixed with the particles and stuck onto the glass surface; while on the right, 

water drops rolled away with particles. As shown in Figure 3.16 (d), the silica hydrophobic 

glass on the right is perfectly cleaned while the normal glass shown in Figure 3.16 (d) still 
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has red particles remaining on it. 

3.1.4 Reliability Test of Silica Based Hydrophobic/Anti-Reflective Coating 

a) Abrasion Test 

The test method used is MIL-STD-810G, and an Ecomet 4 variable speed grinder-polisher 

is used for carrying out the test. In the test setup (Figure 3.17), a felt covered disc is 

connected to a rotor, and apply abrasion force on to the sample, which is placed on top of 

the felt surface. The coated side of the glass sample faces down, the upper side of the glass 

is glued onto an aluminum sample holder, which connects to the pressure head. In the test, 

the pressure exerted on the sample is 1.9 × 104 N/m2. The total stroke length in the test is 

60 meters. 

After the abrasion test, the sample is cleaned in ethanol and DI water orderly. After that, the 

light transmittance and water contact angles of the samples are examined.  

No light transmittance decrease is observed. The water contact angle decrease is less than 

5%. 
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Figure 3.17 Abrasion test setup 

b) UV Test 

UV radiation test is carried out in a closed chamber with a Spectroline X-series UV bench 

and lamps (UVA). The radiation intensity of the UVA on the surface of samples is measured 

to be 2.7Mw/cm2 by a UV light meter (Spec scientific UVA/B light meter 850009). The test 

lasts for 1000 hours. 

The water contact angle and light transmittance are measured afterwards. No degradation on 

transmittance or WCA is observed. 

c) Temperature Cycling Test 

A test chamber (Delta 9023) is used to provide a cycling temperature in the test, from -45°C 

to 120°C. The chamber connects to a liquid nitrogen tank as a cooling source (Figure 3.18), 

and uses heater strips to heat up the inner environment and the samples. When the setting 
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temperature reached the maximum or the minimum, it stays still for 5 minutes to soak up 

the sample. It takes 28 minutes to complete one cycle, and in the test, 100 cycles are 

completed. 

 

Figure 3.18 Temperature cycling test setup 

The WCA and light transmittance measurements show no change on the thermal cycling 

processed samples. 

d) Heat Test 

The samples are placed in an furnace (Cole-Parmer 750-14) set to 200°C for 500 hours. No 

degradation on light transmittance or WCA is observed. 

3.2 Polymer Based Anti-Reflective/Hydrophobic Surface using Nano Imprinting 

Technology 

In the section 3.1, a bottom-up approach is utilized to grow nano structures on substrate. A 

bottom-up synthesis method implies that the nano structures are fabricated by adding atoms 

on a substrate. In this section, a top-down approach is used to create nano surface 
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configurations. In the top-down approach, atoms are etched out of the substrate to form 

nano structures. 

3.2.1 Preparation of Polymer Based Anti-Reflective & Hydrophobic Surface. 

There are two major procedures to prepare a polymer based anti-reflective and hydrophobic 

surface. The first step is to use silicon etching method to create the desired configurations 

on a silicon wafer. The second step is to transfer the patterns on the silicon wafer on to 

transparent polymer thin films using a nanoimprinting method. 

Specifically, in the first procedure, silicon substrate is first patterned using photo 

lithography as shown in Figure 3.19 (a). Then a deep reactive-ion etching is performed to 

etch down vertically to create pillars as shown in Figure 3.19 (b). After that, an isotropic 

etching process is carried out to taper off the pillar as shown in Figure 3.19 (c) which makes 

the configuration more desirable in terms of light transmittance based on the simulation 

performed in Chapter two. 

 

Figure 3.19 Silicon patterning process 

a) Designing Mask for the Photolithography Process. 

The mask design is shown in Figure 3.20 (a), (b), and (c). 
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(a) 

 

(b) 

 

 (c) 

Figure 3.20 Mask design 

Two big square blocks are designed on the mask as shown Figure 3.20 (a) with dimensions 

of 10 mm by 10mm. The left block consists of circles with diameters of 2 microns. The 

right block is built up by the same circles, with some of them removed. The space between 

two circles in the Figure 3.20 (c) is 1.5µm. Figure 3.20 (b) and (c) are complementary to 
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each other, that is, if Figure 3.20 (a) rotates around the origin for 180°, it fills up all the 

removed circles in Figure 3.20 (c). There are two alignment markers on the two sides of the 

mask. This design was to enable a two-layer photo lithography process to realize a 

hydrophobic and anti-reflective rough surface.  However, due to low resolution of the 

exposer, the alignment between two layers cannot be achieved. So the two block in the 

mask, Figure 3.20 (a) and (b) are used as single layer masks, respectively.  A quartz 

photomask is fabricated for this purpose. 

b) Photo Lithography 

In this process, photo resist with patterns will be coated onto silicon wafer. First, a silicon 

wafer is cleaned in DI water and dried in nitrogen for 3 minutes, respectively. Then 

hexamethyldisilazane (HMDS) is coated onto the cleaned wafer in a spin coating system 

(6800 Spin Coater Series, Specialty Coating Systems) to enhance the adhesion between 

silicon wafer and photo resist, which is coated next. The AZ 4110 photo resist is spin coated 

at 5000rpm to form a one micron thick layer on the wafer. After coating, the wafer is baked 

on a hot plate at 110oC for 110 seconds. This baking process solidifies the photo resist and 

removes the solvent.  A well-coated silicon wafer has a uniform green color.  After the 

baking process, the wafer is cooled down and then exposed in an exposing system (Suss 

Microtec MA150 Contact aligner).  The expose time is 17 seconds with the 65 µm gap 

between the photomask and wafer. 

In the next step, the exposed wafer is emerged in a developer (AZ 300 MIF) for 

approximately 150 seconds to remove the unwanted photoresist. Then the wafer is removed 
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from this developer solution, rinsed in DI water and dried.  Lastly, the wafer is examined 

under a microscope.  Figure 3.21 (a) shows the resultant photoresist patterned by the mask 

block on the left and Figure 3.21 (b) shows the resultant photoresist patterned by the mask 

block on the right. 

 

(a) 

 

(b) 

Figure 3.21 Microscopic image of photo resist on silicon wafer 

c) Anisotropic Etching 

The anisotropic etching is processed on a deep reactive ion etch (DRIE) system. This 

reactive ion etch utilizes sulfur hexafluoride (SF6) and O2 to etch off the silicon that is not 
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protected by the masking mask. This DRIE recipe includes two procedures, one is the etch 

off of the silicon to build vertical wells in the silicon, and the other procedure is to use 

octafluorocyclobutane (C4F8) gas to passivate the side walls of the wells after every several 

seconds of etching to prevent side wall from being bombarded by the plasma. Because of 

this protection, the side wall is vertical and the aspect ratio is high.  

Considering this reactive ion etch has a high etch selectivity (larger than 300) over silicon 

and silicon dioxide, the thermal oxide layer on the wafer surface is used as etching mask. 

Thus, before DRIE process, both the samples with photoresist pattern indicated as Figs. 

3.19 (a) and (b) (the two samples are numbered as sample (a) and sample (b)) are etched in 

buffered oxide etching (BOE) solution to remove the unwanted oxide layer. As a result, part 

of the silicon is exposed, and ready to be removed in the next etching process. After BOE 

etching, sample (a) is processed in DRIE system for approximately 2 minutes. The recipe of 

the etching is shown in Table 3.3. 

Table 3.3 Recipe of deep reactive ion etch 

Step Cycles 

(#) 

Time 

(sec) 

SF6 flow 

(sccm) 

O2 flow 

(sccm) 

C4F8 flow 

(sccm) 

Coil Power 

(W) 

Platen Power 

(W) 

Etch 5 12 150 15 0 650 12 

Passivate 5 5 0 0 95 650 0 

Sample (b) is etched in a reactive ion etch (RIE) system.  

The recipe is indicated in Table 3.4. 

Table 3.4 Recipe of reactive ion etch 

Step O2 flow 

(sccm) 

SF6 flow 

(sccm) 

Pres. 

(mTorr) 

Power 

(W) 

Time 

(Min:Sec) 

Etch 13 112 275 325 5:00 

Stability 13 112 275 0 0:10 
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After DRIE and RIE processes, samples (a) and (b) are examined in scanning electron 

microscope and atomic-force microscopy (AFM), respectively.  Figure 3.20 shows the 

SEM of the DRIE etched sample. The etched features have consistent shape and dimensions.  

They also have consistent depth. Figure 3.23 shows the AFM photo of sample (b).  As can 

be seen, the features are very consistent and are similar to those shown in the SEM photo of 

Figure 3.22. 

  

Figure 3.22 SEM image of sample (a) 

 

Figure 3.23 AFM image of sample (b) 
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d) Isotropic Etching 

The two samples are etched in a HF/Nitric/Acetic Acid (HNA) solution. The solution 

consists of 110 mL acetic acid (>98%), 70 mL nitric acid (70%), and 40 mL hydrofluoric 

acid (49%). The etching process is complete in a Teflon container in a fume hood. Etching 

time is controlled to be 55 seconds. After the etching process, the wafer is rinsed in DI 

water for 3 minutes. The sample is scanned in a SEM, and the image is shown in Figure 

3.24.  The unique features created after the HNA etching can be clearly shown in Figure 

3.24.  Figure 3.25 shows the AFM photo of the similar sample after HNA etching.  As 

can be seen, unique sharp features are clearly seen in these AFM photos.  

  

Figure 3.24 SEM image of sample (a) after HNA etching (the sample on the left image is 40° 

tilt, and on the right 60° tilt) 
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Figure 3.25 AFM image of sample (b) after HNA etching 

e) Nanoimprinting Process 

In a typical nanoimprinting process, substrate, moldable material, and mold are the basic 

elements. In this nanoimprinting step, the etched silicon samples (a), and (b) are used as 

mold, glass slides are the substrate, and silicone elastomer (silicone elastomer R-2187, 

purchased from Silicon Technology) is used as the moldable layer. There are several 

properties that this silicone elastomer possesses that make the material a good candidate 

moldable layer, such as high light transmittance, easy cure process, and chemical stability. 

Figure 3.26 shows the process steps for the nanoimprinting process. 

 

Figure 3.26 Sketch of nanoimprinting process 
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To transfer the patterns from the etched silicon samples onto glass substrates, the first step is 

to coat the silicone on the glass slides. Glass slides are first cleaned with acetone, IPA, and 

DI water for 15 minutes, then dried in nitrogen. Silicone elastomer part A and part B are 

mixed with the ratio of 1:10, the mixture is stirred with a glass bar for 5 minutes. After 

mixing, the silicone is placed in a centrifuge and spin at 4000 rpm for 30 minutes to remove 

the bubbles induced during stirring. All the processes need to be well planned and prepared, 

so they can be completed as quickly as possible. Because the work time for silicone is three 

hours after mixing, the mixture becomes more viscous every minute passes. 

The second step is coating the silicone onto the cleaned glass slides. Spin rate is set at 8000 

rpm to form a layer of silicone with the thickness of about 10 microns. After coating, the 

samples are placed in a refrigerator (-15°C) for 30 minutes to let the silicone self-level to 

the surface. The low temperature prevents curing while allowing the silicone to level over 

the surface. 

The next step is nanoimprinting. A mold release is first sprayed onto the silicone samples (a) 

and (b). After 5 minutes, sample (a) and (b) are placed on the glass slides, with the patterned 

surface of silicon facing the silicone side. The two stacks are put in a vacuum oven, with a 

100g weight on each of the samples to apply pressure when curing. The oven is set at 150°C 

at 5 KPa pressure. The curing process lasts for 15 minutes. 

At last, samples are removed from the oven. After samples cooling down to the room 

temperature, silicon molds are removed from the glass slides. Glass slides are cleaned in 
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acetone, IPA, and DI water to remove mold release residual. 

The sample prepared using the DRIE yielded the tallest roughness on its surface. In the 

nanoimprinting surface, the cured silicone was not peeled off as expected, and the residual 

contaminated the silicon sample (a). In the next section, tests are made only on the samples 

that prepared from RIE etching. 

3.2.2 Measurement of the Samples and Discussions 

Sample (a) is measured with an AFM system and the surface feature is plotted in Figure 

3.27. From the image, we can see that the period of the roughness is approximately 3 

microns, with a height of about 0.5 micron. 

 

 

Figure 3.27 AFM image of the nanoimprinting processed silicone surface 

The light transmittance of this silicone coated sample is 93% at 550 nm wavelength. That is 

1.5% higher than the bare glass slides. Compared with the silica coated glass sample, the 
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transmittance enhancement is not so much. That is due to the stronger reflectance at the 

silicone/glass interface than that at the silica/glass interface.  
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Chapter 4. Nano Particle Embedded Ethylene-Vinyl Acetate Encapsulation 

4.1 Introduction of Ethylene-Vinyl Acetate Copolymer 

Ethylene-Vinyl Acetate (EVA) is also known as poly (Ethylene-Vinyl Acetate). It is a 

copolymer synthesized from two monomers of ethylene and vinyl acetate as shown in 

Figure 4.1.  EVA was first patented by DuPont in 1956. Due to its desirable mechanical, 

chemical, and optical properties, it has been used as an encapsulation for solar cells in 

photovoltaic panels for decades. 
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Figure 4.1 Ethylene-Vinyl Acetate copolymer 

With different portions of vinyl acetate, the copolymer exhibits diverse physical appearance 

and properties. At low concentration of vinyl acetate, EVA is similar to a low-density 

polythene due to its high crystallization of ethylene, which is stiff and relatively fragile. 

With increase of vinyl acetate concentration of vinyl acetate, crystallization reduces and the 

copolymer becomes flexible similar to rubber. Most of the EVA used for solar cell 

encapsulation has a vinyl acetate weight percent from 10% to 50% [4.1,4.2]. In general, 

EVA with this range of vinyl acetate weight percentage exhibits excellent light 

transmittance, good thermal properties, and toughness. EVA with a lower than 10% vinyl 

acetate weight percentage is normally considered as an acetate modified polyethylene while 

those with higher than 50% vinyl acetate are referred to as ethylene vinyl acetate rubber. In 

this dissertation work, we only investigate EVA for solar cell encapsulation in photovoltaic 

(PV) panels. 

4.2 EVA Degradation in Solar Cell Encapsulation 

Although EVA encapsulation is relatively chemically stable, it degrades under ultra violet 
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radiation, extreme heat, and humidity environment.  

In the later 1980s, yellowing or browning problems were observed on the EVA 

encapsulations for solar cells as shown in Figure 4.2 [4.3-4.5]. As the EVA turning yellow or 

brown, its light transmittance drops dramatically which reduce the overall efficiency of 

solar energy conversion in solar cells. From 1986 to 1990, the annual power output at the 

Carrisa photovoltaic (PV) power plant in California dropped by more than 45% due to EVA 

browning as shown in Figure 4.3 [4.6]. 

 

Figure 4.2 Browning of EVA encapsulation [4.5] 
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Figure 4.3 EVA transmittance degradation [4.6] 

Besides degradation of light transmittance, the yellowing of EVA also decreases its adhesion 

strength with the top glass panel and the solar cells. This may accelerate the degradation of 

solar cells due to the lack of physical protection and even may lead to a mechanical failure 

of the PV panel. To address the yellowing or browning problem, many researchers studied 

the mechanisms behind this phenomenon and proposed solutions to reduce or eliminate the 

degradation of the EVA copolymer. 

In Pern’s work [4.7], the degradation of EVA is attributed to “free radicals” which were 

mainly generated by UV radiation in combination of oxygen. These “free radicals” migrate 

into the copolymer matrix, severe the cross-linked polymer network into smaller molecules, 

and generate aldehyde and acetic acid to cause the degradation [4.7]. Other research groups 

[4.8] also proposed similar explanation of EVA degradation. To reduce and mitigate this 

degradation mechanism, UV absorbers that reduce the UV radiation by decreasing the 
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generation of free radicals, UV stabilizers that react with free radicals generated by UV 

radiation, and antioxidant which chemically reduce the oxidation process are added into the 

EVA copolymers. These additives have been shown to efficiently prolonging the lifespan of 

EVA in solar cell encapsulation over the years.  

However, the demand for more durable PV panel never ended. In this work, a new approach 

to further reduce the UV degradation based on the nano particle embedding into the EVA 

copolymer is investigated. The objective of embedding nano particles into the EVA 

copolymer is to restrict “free radicals” and oxygen in a small localized area, hence stopping 

them from propagating into the copolymer matrix.  

4.3 Gas/Particle Diffusion in Polymers 

Both the “free radicals” and the oxygen gas follows similar manner to propagate in the EVA. 

Two major factors influence diffusion rate [4.9]. First, there must be holes available in the 

polymers. In a diffusion process, a hole is filled up by impurities, and at the same time 

another hole is created at the adjacent location, which is previously occupied by the 

impurities. The newly created holes could be filled up later by polymer molecules or other 

impurities. Second, a continuous path through the polymer is present in the polymer matrix. 

This means that the relocation of the holes and impurities should be continuous and lasts for 

a long-time span.  Thus, in macroscopic view, impurities diffuse in the matrix and change 

its composition along its path. 

All polymers have voids due to their molecular structures. The only way to change the gas 
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or particle diffusion is to add microscopic particles into the polymer to form a barrier. These 

barrier particles will cut off the path along which gases and particles propagate. In this 

blocking process, particle dimensions play a crucial role. 

 

Figure 4.4 Sketch of diffusion mechanism in polymer [4.9] 

Cui el al [4.10] studied the modeling of barrier properties in nanocomposites. With the 

existence of embedded fillings, the gas or particles have to travel along a longer and more 

torturous path when displace from point A to point B in a given direction, specifically 

vertically from the top side to the bottom side of the polymer.  This torturous path results 

in a reduced diffusion thickness. Cui el. al. [4.10] further explained that the diffusion rate is 

positively correlated with the width of the filling particle (W) and distance between adjacent 

particles (D), and negtively correlated with the side length of the particles (L) as shown in 

Figure 4.5. 

where D is a parameter that relates to the loading of the filling particles, L and W are the 
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factors determined only by the particle dimension.  According to this model, particles with 

relatively big area but small thickness are preferred when a reduced diffusion is desired.  

 

Figure 4.5 Tortures diffusion pathway in a nanocomposite [4.10]. 

4.4 Nano Diamonds Embedded EVA Encapsulation 

4.4.1 Nano Diamond Nanoparticles 

Nano diamonds are relatively inexpensive material.  They possess special mechanical, 

optical, thermal, and magnetic properties due to their nano size and large surface to volume 

ratio.  Nano-composites involving nano diamond particles have been studied [4.11-4.13].  

The property enhancement of these nano diamond nano-composites, compared with a pure 

matrix, in terms of mechanical strength, adhesion strength, thermal conductivity, 

degradation, refractive index is reported in many literatures [4.11-4.13]. However, there is 

no reported work on nano diamond EVA composite. This work reports on the preparation 

and characterization of the nano diamond EVA composite for the encapsulation of solar 

cells. 
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4.4.2 Functionalization of ND 

Although nano diamond reveals diverse advantages in preparing a functional composite, 

commercial nano diamonds are seldom directly used in practice due to the impurities and 

agglomeration which will considerably change the properties of NDs. There are metal 

residuals and agraphitic carbon surround the NDs cores, as well as varied chemical groups.  

By removing these impurities and groups, NDs can be “purified” to obtain their desired 

quality. Most of the industrial ND products are purified in liquids oxidants to remove 

non-diamond carbon and followed by a hydrochloric acid (HCl) clean to wash away 

non-carbon composites.  In this work, an air oxidation method is adopted and followed by 

an HCl clean to achieve the same goal for consideration of environmental impacts [4.14]. 

Besides purification, there is another pre-treatment needed before NDs can be used to mix 

with polymers since chemical groups need to attach onto the NDs in order to functionalize 

them. Different chemical groups will modify NDs properties differently. In general, there 

are two categories of functional groups: groups that are grafted by a high temperature gas 

process and groups that are grafted by a solution process [4.14]. Carboxyl (-NH2) group 

readily reacts with polymers and achievable through a relatively safe solution process is 

adopted in this work. 

4.4.3 Preparation of ND Embedded EVA Encapsulation 

a) Purification of NDs and Attachment of –COOH groups 

Nano diamond particles are oxidized in air environment in an oven for 5 hours at 425 °C 

[4.15].  For an evenly oxidation process, these nano diamond particles should be spread 
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out into a thin layer with a cover to prevent them from being swept away by the strong air 

flow in the oven. After oxidation, ND particles are cleaned with a 37% hydrochloric acid 

(HCl) solution for 24 hours and extracted from the solution using a centrifugation process. 

Following this, these ND particles are further rinsed several times in DI water until a PH 

value of 5.3 is obtained. Then, ND particles are precipitated using a centrifuge, the excess 

water is removed with a burette, and then dried in a vacuum oven overnight at 60°C. After 

these steps, surrounding impurities such as metal, metal oxide and agraphitic carbon, due to 

the detonation synthesis process, would have been removed to reveal their carbon atoms 

with –COOH groups connected to them.  As such, the surface of the ND particles has been 

activated and –COOH group has been obtained. 

b)  –Cl Groups and –NH2 Groups 

Subsequently, the –COOH group is substituted with a –Cl and then the –Cl is replaced with 

a –NH2. The activated ND particles (1.5g) are mixed with 50 mL thionyl chloride (SOCl2) 

and 0.5 mL N, N-dimethylformamide in a flask. The flask is then sealed using a glass 

stopper and ultra-sonicated for 10 min to disperse the agglomerated ND particles.  After 

this, the flask is connected to a condenser with running chill water.  At the other end of the 

condenser, a desiccating tube is installed to prevent ambient water vapor from entering the 

reaction flask. The reaction is maintained at 70 °C with constant stirring for 24 hours.  

Then, thionyl chloride is removed in vacuum at 30°C.  The remaining solid particles are 

rinsed with anhydrous tetrahydrofuran for 5 times, the suspension is left to precipitate ND 

particles at each rinse. Finally, the NDs-Cl particles are dried in vacuum. 
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The ND-NH2 is prepared as follows. One gram of ND-Cl is mixed with 50 mL of anhydrous 

ethylenenediamine followed by ultra-sonicated. Again, the reaction flask is connected to a 

condenser with running chill water and the reaction is maintained at 60oC with constant 

stirring for 24 hours. After that, the prepared ND-NH2 is repeatedly washed with THF until 

the pH paper reveals a neutral pH (pH=7) solvent. This pH test is performed by taking a few 

drops of THF from the upper surface of the solvent.  After mixing with 20mL of DI water, 

a pH paper is used to check. Then, the cleaned ND-NH2 is dried in vacuum with desiccant. 

c)  Preparation of EVA-ND Composite 

Two grams of commercial EVA sheets are first dissolved in 10 mL THF solvent, the 

solution is ultra-sonicated for 30 minutes for a better dissolution. Then 0.1 g ND-COOH 

NH2 is dissolved in THF, ultra-sonicated for 10 minutes. The two solutions are then mixed 

together by stirring and ultra-sonication. In this way, ND particles are embedded into the 

EVA polymer. The nano-diamond/EVA composite sheet is obtained by vaporizing away the 

tetrahydrofuran. After this, samples are prepared using a lamination structure of glass-EVA 

sheet, half of the samples have ND-NH2 embedded into the EVA sheet and the other half of 

the samples are pristine EVA sheet for comparison. These samples are cured together in 

vacuum at 150 °C for 90 minutes to facilitate crosslinking. 

Three samples are prepared for adhesion test. Sample one has only EVA film coated on the 

glass slide. Sample two has an EVA film with 0.4% nano diamonds. Sample three has EVA 

film with 2.2% weight diamond nanoparticles. The concentration of EVA solid sheet 

dissolved in the solution remains essentially the same for these 3 samples. These samples 
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are spun coated and undergone identical curing process. 

4.4.4 Characterization 

Functionalized ND particles and commercial NDs are mixed with KBr separately and are 

compressed into pellets, these pellets then are measured using a Fourier transform infrared 

spectroscopy (FTIR) to verify chemical bonding species.  The transmittance of all the 

samples is first determined using a Cary 500 UV-VIS-NIR spectrophotometer.  Their 

adhesion strength measurements are performed using a Sebastian five adhesion puller. 

Metal bars are attached onto EVA surface to prepare for adhesion test on a Sebastian five 

tester.  Before the testing, samples are cured at 150°C for one hour and left at room 

temperature for 24 hours.  From the FTIR test results as shown in (Figure 4.6), a peak 

around 1580 1/cm indicates the existence of the –NH2 group. The 3200 cm-1 peak represents 

N-H bonding, which further confirms that 1580 peak is due to NH2 group but not the C=C 

bonding.   

Figure 4.7 shows that ND-NH2 embedded EVA exhibits approximately 1% increase in light 

transmittance compared with pristine EVA encapsulation. For pristine EVA encapsulation, 

the adhesion strength between EVA and glass is 106 N/m2, the measurement between the 

ND-NH2 embedded EVA and glass slides is 107N/m2. 
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Figure 4.6 Absorption spectrum of ND and functionalized ND 

 

Figure 4.7 Transmittance of EVA and ND embedded EVA sheets 
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Figure 4.8 ND embedded EVA film adhesion on silicon substrate 

From Figure 4.8, samples 2 and 3 have a better coverage than sample 1. Two pieces of 

sample 1 have been prepared just for crossing out the possibility that poor substrate 

cleanliness causes the bad coverage. After being cured, sample 3 have the most solid 

content on the glass substrate while that of sample 1 has the least. 

The adhesion of the cured EVA films was performed using tape tests. As showed in the 

Figure 4.9 (1a), (2a), (3a) are the optical microscopy images of samples 1, 2, and 3, 

respectively.  Figures 4.9 (1b), (2b), and (3b) are the EVA films after being taped peeled 20 

times.  
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Figure 4.9 ND embedded EVA films after tape peeling tests 

From sample 1 to sample 3, EVA sheet changes from small dots into big blocks. Note that 

these figures are taken using the same optical magnification. Compared with small EVA 

dots, big EVA blocks are more difficult to be removed by the tape. Sample 3 has the biggest 

block EVA sheet as it has the most weight percentage of nano diamond particles. 

4.4.5 Degradation Study of Nano Diamond Embedded EVA Encapsulation. 

Four samples of glass-EVA-glass stacks are prepared. Sample 1 and sample 2 use primitive 

EVA sheets, and samples 3 and 4 use nano diamond embedded EVA sheets. Samples are 

exposed in room environment for four years (from May 2013 to May 2017). The light 

transmittance of the four samples is measured as shown in Figure 4.10. As shown by these 

plots, all transmittance of the four samples is decreased compared with the transmittance 

(90%) of the new EVA encapsulation. The difference between degraded primitive EVA and 

degraded ND embedded EVA occurs between the wavelength from 350nm to 500nm. The 
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ND embedded EVA shows 20% to 30% better light transmittance than EVA. 

 

Figure 4.10 Light transmittance of degraded EVA encapsulations 

Adhesion strength between EVA and glass is measured using a pull test. After four year of 

room-temperature degradation, the adhesion strength between ND embedded EVA sheet and 

glass is average above 1.0×106 N/m2, while the adhesion between primitive EVA and glass 

has been decreased to 2.3×105 N/m2. 

The light transmittance and adhesion strength measurement shows that the embedded ND 

particles enhance the performance of the EVA encapsulation. 

4.5 Nano Silica Embedded EVA Encapsulation 

4.5.1 Preparation of Nano Silica Embedded EVA Encapsulation 

There are two major steps to prepare the nano silica embedded EVA encapsulation. First, 
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nano silica particles are first embedded into the EVA sheets. Then, the EVA sheet is 

laminated between the tempered glass and solar cells.   

Preparing a silica/EVA nanocomposite. First, a 5% weight EVA is dissolved in 

dichloromethane and mixed in an acoustic mixer for about 60 minutes. After that, 0.01% 

weight nano silica particle is added, and the solution is ultra-sonicated for 15 minutes. The 

solution is poured out onto a glass panel and the solvent was dried out in an oven. Thirty 

minutes later, a nano silica embedded EVA film is formed. 

The characteristics of the nanosilica/ EVA film were evaluated in a sandwiched structure 

between the solar cell and the tempered glass as in a photovoltaic (PV) panel. Several 

laminated structures were made from the nano silica embedded EVA and pristine EVA. To 

form the laminated structures, the stacks were placed in a vacuum oven, with weights 

applied to the top of the laminated structures. The lamination process first consisted of a 

pump-down to below 3 mmHg. This was followed by a quick ramp up to 120°C and held 

for 20 minutes to melt the EVA sheet as well as to remove potential air bubbles. After that, 

the temperature was increased to 150°C, and held for 1 hour until the copolymer was well 

cross linked. Then, the laminated structures were allowed to cool down.  Finally, the 

vacuum was released. 
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4.5.2 Test Results and Discussion 

a) Light Transmittance 

 

Figure 4.11 Transmittance of EVA films with nano silica fillings. [3.1] 

Figure 4.111 shows the transmittance of various glass/EVA laminated samples with nano 

silica embedded EVA and pristine EVA. As can be seen, the nano silica embedded EVA 

shows a slight (approximately 1.5%) increase in optical transmittance. 

b) Adhesion Between Silica Embedded EVA Film and Glass Substrates. 

Pull tests indicates that after embedding silica nanoparticles into the EVA sheet, the 

adhesion strength remains the same. 

4.5.3 Degradation Study of Silica Nano Particles Embedded EVA Encapsulation 

After 1000 hours of UVA radiation at the intensity of 2.7Mw/cm2, the silica embedded EVA 

encapsulation shows 1% high light transmittance than the pristine EVA encapsulation. 

Considering the quantity of the radiation approximately equals to 6 months, this UVA test 
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will continue to yield more convincing data. 
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Chapter 5. Conclusions and Recommendations for Future Work 

The aim of the dissertation work is to develop innovative nanomaterials for packaging the 

photovoltaic (PV) panels to improve its overall performance. Two types of photovoltaic 

panel packaging materials are developed and investigated to realize this objective. The first 

is the hydrophobic/anti-reflective surface coating which not only repels water from the top 

glass of a PV panel but at the same time reduces the light reflectance between the top glass 

and air ambient. The second packaging material is the nano particle embedded EVA 

encapsulation material with preferable mechanical and degradation properties. 

5.1 Hydrophobic/Anti-Reflective Coating  

COMSOL simulation tool is used to understand the relations between configuration of 

ellipsoid-shaped nano structures and light reflectance, and how a polymer layer on top of 

the nano structures affects the optical property of the coating. The results indicate that taller 

ellipsoid rod (aspect ratio = 5) reflects less light than shorter rod (aspect ratio = 0.5) in the 

desired spectrum for solar energy harvest (400nm-700nm wavelength). The polymer layer 

increases the light transmittance when the light incident angle is from 23° to 34°. As such, 

with a polymer layer, light is able to propagate though the glass with a high transmittance at 

an incident angle from 0° to 34° compared to the scenario without the polymer layer when 

the light transmittance decreases if the incident angle is larger than 23°. In practical 

application, this polymer layer will largely increase the PV module efficiency in the early 

morning or late afternoon when the incident angles are large. This is the first time to our 
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knowledge that COMSOL simulation is used to simulate a combined nanostructure and 

polymer anti-reflective structure.  For future work, a parabolic-shaped nano structure 

deserves further investigation due to its unique shape advantage in optical component 

design. Also, patterned polymer material may improve the light transmittance. 

There are many reports focused either only on the design of a hydrophobic surface or an 

anti-reflective surface. In this research work, the design of a combined anti-reflective and 

hydrophobic surface for PV panel is investigated.   This approach may inspire future 

surface coating design to consider both the surface wetting and optical properties for 

application-specific purposes.  For example, the surface coating can be focus more on its 

wetting property than its optical property for dusty or icy applications or be more optical 

property orientated in dry and clean air environments. 

A sol-gel process is developed to prepare a hydrophobic/anti-reflective coating. The light 

transmittance of the coated glass slides is 3% higher (between the wavelength 

400nm-700nm) than that for a bare glass slide.  This is the same improvement in 

transmittance (if not better than) than similar surface coatings on the market.  For example, 

the 94.9% overall light transmittance of our coating is higher than Pilkinton’s Sunplus glass 

with a light transmittance of 93.9%. The water contact angle of the sol-gel prepared coating 

reaches 150° which indicates that it is a super hydrophobic coating. The coating passed the 

MIL-STD-810G felt abrasion test, 100 cycles of temperature cycling test (-45°C-120°C), 

heat test (200°C for 500 hours), and UV test (2.7Mw/cm2 UVA radiation for 1000 hours).  

Furthermore, all the variations (silica thickness, polystyrene concentration, SAM growing 
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time) are investigated as factors that affect transmittance and water contact angle.  The 

established methodology in this research can be used in future coating research. 

A nanoimprinting process is developed and used for preparing a silicone material based 

hydrophobic/anti-reflective coating. The resultant coating increases the light transmittance 

of bare glass slides by 1.5% with a water contact angle above 150°. This nanoimprinting 

method has the potential of large scale production in industry. However, the silicone 

material is relatively soft, cannot resist the environment weathering very well. In future, a 

better moldable material instead of silicone or nanocomposite materials can be used to 

enhance the mechanic property of silicone. In this process, DRIE etching and wet etching 

are used together to create a new and unique silicon surface configuration. This surface is 

used as a mold for this research work, but due to its super low light reflectance, it can also 

be used as anti-reflective pattern on the silicon solar cell, or other plasmonic structure 

research. 

5.2 Nanoparticle embedded EVA encapsulation 

Silica nano particles and functionalized nano diamonds are embedded respectively into the 

EVA matrix to reduce the degradation rate of the polymer. This is a new approach to protect 

the EVA from aging, compare with traditional methods which use additives to react with 

free radicals that may harm the EVA. The embedded particles block the path of radicals and 

prevent them from moving through the matrix and creating damage. UV tests for 2 months 

at 2.7 mW/cm2 indicate that the EVA with silica or nano diamond particles doping degrades 
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slightly slower than the primitive EVA sheet. The difference is a 1% light transmittance 

difference after UV radiation between the nano-particle embedded EVA and the pristine 

EVA encapsulation. UV test should be continued further to yield more convincing data. The 

embedded EVA sheet exhibits better adhesion strength with glass surface indicated by a 

conventional tape peeling test. In the future, graphene or graphene oxide nano flakes with 

different surface functionalization can be studied as fillings in the EVA nanocomposite. The 

optical, chemical, and mechanical properties of these nano materials may serve as a good 

radical blocker. 
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Chapter 6. Appendix 

 

COMSOL Simulation Report 

Reflectance simulation of a silica coated glass slide. 

(a) Global Definitions 

Date Mar 13, 2017 3:23:05 PM 
 

Global settings 

Name Sample 1.mph 

Path G:\March\Sample 1\sample 1.mph 

COMSOL version COMSOL 5.2a (Build: 199) 
 

Used products 

COMSOL Multiphysics 

Wave Optics Module 
 

Parameters 

Name Expression Value Description 

Na 1 1 Refractive index, air 

Nb 1.2 1.2 Refractive 

index,dielectric 

D 0.11[um] 1.1E−7 m Grating constant 

lam0 100[nm] 1E−7 m Vacuum wavelength 

f0 c_const/lam0 2.9979E15 1/s Frequency 

Alpha 0 0 Angle of incidence 

Beta asin(na*sin(alpha)/n

b) 

0 rad Refraction angle 

 

（b）Component 

Component settings 
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Unit system SI 

 

Definitions 

Selections 

Explicit 1 

Selection type 

Explicit 
 

Selection 

Boundaries 22–24 
 

Explicit 2 

Selection type 

Explicit 

 

Selection 

Boundaries 15–17 

 

Coordinate Systems 

Boundary System 1 

Coordinate system type Boundary system 

Tag sys1 

 

Coordinate names 

First Second Third 

t1 t2 N 

 



80 

 

 

Geometry 1 

Units 

Length unit M 

Angular unit Deg 

 

Geometry statistics 

Description Value 

Space dimension 3 

Number of domains 4 

Number of boundaries 24 

Number of edges 40 

Number of vertices 21 

 

Block 3 (blk3) 

Position 

Description Value 

Position {0, 0, -750*d} 

Base Center 

 

Axis 

Description Value 

Axis type z – axis 

 

Size and shape 
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Description Value 

Width 3*d 

Depth 3*d 

Height 1500*d 

 

Block 4 (blk4) 

Position 

Description Value 

Position {0, 0, 20*d} 

Base Center 

 

Axis 

Description Value 

Axis type z – axis 

 

Size and shape 

Description Value 

Width 3*d 

Depth 3*d 

Height 40*d 

 

Sphere 1 (sph1) 

Position 
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Description Value 

Position {0, 0, 0} 

 

Axis 

Description Value 

Axis type z – axis 

 

Size 

Description Value 

Radius 1.5*d 

 

Block 5 (blk5) 

Position 

Description Value 

Position {0, 0, -150*d} 

Base Center 

 

Axis 

Description Value 

Axis type z – axis 

 

Size and shape 

Description Value 



83 

 

 

Width 3*d 

Depth 3*d 

Height 300*d 

 

Block 6 (blk6) 

Position 

Description Value 

Position {0, 0, 10*d} 

Base Center 

 

Axis 

Description Value 

Axis type z – axis 

 

Size and shape 

Description Value 

Width 3*d 

Depth 3*d 

Height 20*d 

 

Materials 

air (Ciddor) 

Selection 
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Geometric entity level Domain 

Selection Domains 2–3 

 

Material parameters 

Name Value Unit 

Refractive index, real part 1 1 

Refractive index, 

imaginary part 

k_interp(1[1/m]*c_const/fre

q) 

1 

 

Refractive index Settings 

Description Value 

Refractive index, 

real part 

{{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Refractive index, 

imaginary part 

{{k_interp(1[1/m]*c_const/freq), 0, 0}, {0, 

k_interp(1[1/m]*c_const/freq), 0}, {0, 0, 

k_interp(1[1/m]*c_const/freq)}} 

 

soda-lime (Rubin-clear) 

Selection 

Geometric entity level Domain 

Selection Domains 1, 4 

 

Material parameters 

Name Value Unit 

Refractive index, real part n_interp(1[1/m]*c_const/f 1 
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req) 

Refractive index, 

imaginary part 

k_interp(1[1/m]*c_const/f

req) 

1 

 

Refractive index Settings 

Description Value 

Refractive index, 

real part 

{{n_interp(1[1/m]*c_const/freq), 0, 0}, {0, 

n_interp(1[1/m]*c_const/freq), 0}, {0, 0, 

n_interp(1[1/m]*c_const/freq)}} 

Refractive index, 

imaginary part 

{{k_interp(1[1/m]*c_const/freq), 0, 0}, {0, 

k_interp(1[1/m]*c_const/freq), 0}, {0, 0, 

k_interp(1[1/m]*c_const/freq)}} 

 

Electromagnetic Waves, Frequency Domain 

Used products 

COMSOL Multiphysics 

Wave Optics Module 

 

Electromagnetic Waves, Frequency Domain 

Selection 

Geometric entity level Domain 

Selection Domains 1–4 

 

Equations 
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Settings 

Description Value 

Electric field Quadratic 

Value type when using splitting of complex 

variables 

Complex 

Solve for Full field 

Activate port sweep Off 

Enable Off 

 

Wave Equation, Electric 1 

Selection 

Geometric entity level Domain 

Selection Domains 1–4 

 

Equations 

 

Settings 

Description Value 

Electric displacement field model Refractive index 

Refractive index, real part From material 

Refractive index, imaginary part From material 

 

Properties from material 
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Property Material Property group 

Refractive index, real part air (Ciddor) Refractive index 

Refractive index, imaginary 

part 

air (Ciddor) Refractive index 

Refractive index, real part soda-lime 

(Rubin-clear) 

Refractive index 

Refractive index, imaginary 

part 

soda-lime 

(Rubin-clear) 

Refractive index 

 

Variables 

 

Shape functions 

Na

me 

Shape 

function 

Unit Description Shape frame Selection 

Ex Curl 

(Quadratic) 

V/m Electric field, x 

component 

Material Domains 1–4 

Ey Curl 

(Quadratic) 

V/m Electric field, y 

component 

Material Domains 1–4 

Ez Curl 

(Quadratic) 

V/m Electric field, z 

component 

Material Domains 1–4 

 

Weak expressions 

Weak expression Integration order Integration frame Selection 

-mu0_const*(-ewfd.dHdt

x*ewfd.curltestdepEx-e

wfd.dHdty*ewfd.curltest

depEy-ewfd.dHdtz*ewfd

.curltestdepEz+ewfd.iom

ega*(ewfd.Jx*ewfd.testd

epEx+ewfd.Jy*ewfd.test

depEy+ewfd.Jz*ewfd.tes

tdepEz)) 

4 Material Domains 1–4 

 

Perfect Electric Conductor 1 

Selection 
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Geometric entity level Boundary 

Selection No boundaries 

 

Equations 

 

Settings 

Description Value 

Apply reaction terms on All physics (symmetric) 

Use weak constraints Off 

Constraint method Elemental 

 

Initial Values 1 

Selection 

Geometric entity level Domain 

Selection Domains 1–4 

 

Port 1 

Selection 

Geometric entity level Boundary 

Selection Boundary 10 

 

Equations 

 

Settings 

Description Value 

Port name 1 

Wave excitation at this port On 

Port input power 100[W] 

Mode phase 0 

Specify deposited power Off 

Activate slit condition on interior port Off 

Type of port Periodic 

Input quantity Electric field 

Electric mode field amplitude {sin(pi/4), cos(pi/4), 0} 

Elevation angle of incidence alpha 
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Azimuth angle of incidence 0 

Refractive index, real part {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} 

Maximum frequency f0 

 

Variables 

 

Weak expressions 

Weak expression Integration 

order 

Integrati

on frame 

Selection 

ewfd.iomega*mu0_const*(-(ewfd.tHmodez_1*e

wfd.ny-ewfd.tHmodey_1*ewfd.nz)*conj(ewfd.t

Emodex_1)-(-ewfd.tHmodez_1*ewfd.nx+ewfd.t

Hmodex_1*ewfd.nz)*conj(ewfd.tEmodey_1)-(e

wfd.tHmodey_1*ewfd.nx-ewfd.tHmodex_1*ewf

d.ny)*conj(ewfd.tEmodez_1))*test(1+if(abs(arg

(ewfd.beta_1))<=0.25*pi||abs(arg(ewfd.beta_1))

>=0.75*pi,ewfd.S1x,0))*(-1+if(abs(arg(ewfd.bet

a_1))<=0.25*pi||abs(arg(ewfd.beta_1))>=0.75*p

i,ewfd.S1x,0)) 

4 Material Boundary 

10 

 

Shape functions 

Constraint Constraint force Shape function Selection 

tEx-ewfd.Por

tConstrx 

test(tEx)-ewfd.PortConstrx_weak Curl 

(Quadratic) 

Boundary 

10 

tEy-ewfd.Por

tConstry 

test(tEy)-ewfd.PortConstry_weak Curl 

(Quadratic) 

Boundary 

10 

tEz-ewfd.Por

tConstrz 

test(tEz)-ewfd.PortConstrz_weak Curl 

(Quadratic) 

Boundary 

10 

 

Port 2 

Selection 

Geometric entity level Boundary 

Selection Boundary 3 

 

Equations 

 

Settings 
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Description Value 

Port name 2 

Wave excitation at this port Off 

Mode phase 0 

Activate slit condition on interior port Off 

Type of port Periodic 

Input quantity Electric field 

Electric mode field amplitude {cos(pi/4), sin(pi/4), 0} 

Elevation angle of incidence -beta 

Azimuth angle of incidence 0 

Refractive index, real part {{n_interp(1[1/m]*c_const/freq), 0, 0}, 

{0, n_interp(1[1/m]*c_const/freq), 0}, 

{0, 0, n_interp(1[1/m]*c_const/freq)}} 

Maximum frequency f0 

 

Variables 

 

Weak expressions 

Weak expression Integration order Integration frame Selection 

ewfd.iomega*mu0_const*(-(e

wfd.tHmodez_2*ewfd.ny-ewf

d.tHmodey_2*ewfd.nz)*conj(

ewfd.tEmodex_2)-(-ewfd.tHm

odez_2*ewfd.nx+ewfd.tHmod

ex_2*ewfd.nz)*conj(ewfd.tE

modey_2)-(ewfd.tHmodey_2*

ewfd.nx-ewfd.tHmodex_2*ew

fd.ny)*conj(ewfd.tEmodez_2)

)*test(if(abs(arg(ewfd.beta_2))

<=0.25*pi||abs(arg(ewfd.beta_

2))>=0.75*pi,ewfd.S2x,0))*if(

abs(arg(ewfd.beta_2))<=0.25*

pi||abs(arg(ewfd.beta_2))>=0.

75*pi,ewfd.S2x,0) 

4 Material Boundary 

3 

 

Shape functions 

Constraint Constraint force Shape function Selection 

tEx-ewfd.Por

tConstrx 

test(tEx)-ewfd.PortConstrx_weak Curl (Quadratic) Boundary 3 
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tEy-ewfd.Por

tConstry 

test(tEy)-ewfd.PortConstry_weak Curl (Quadratic) Boundary 3 

tEz-ewfd.Por

tConstrz 

test(tEz)-ewfd.PortConstrz_weak Curl (Quadratic) Boundary 3 

 

Periodic Condition 1 

Selection 

Geometric entity level Boundary 

Selection Boundaries 1, 4, 7, 22–24 

 

Equations 

 

 

Settings 

Description Value 

Type of periodicity Floquet periodicity 

k-vector for Floquet periodicity From periodic port 

Apply reaction terms on All physics (symmetric) 

Constraint method Nodal 

Transform to intermediate map Automatic 

 

Variables 

Name Expression Uni

t 

Description Selection 

ewfd.kF

loquetx 

ewfd.kPeriodicx rad/

m 

k-vector for Floquet 

periodicity, x component 

Boundaries 1, 4, 7 

ewfd.kF

loquety 

ewfd.kPeriodicy rad/

m 

k-vector for Floquet 

periodicity, y component 

Boundaries 1, 4, 7 

ewfd.kF

loquetz 

ewfd.kPeriodicz rad/

m 

k-vector for Floquet 

periodicity, z component 

Boundaries 1, 4, 7 

ewfd.kF

loquetx 

ewfd.kPeriodicx rad/

m 

k-vector for Floquet 

periodicity, x component 

Boundaries 22–24 

ewfd.kF

loquety 

ewfd.kPeriodicy rad/

m 

k-vector for Floquet 

periodicity, y component 

Boundaries 22–24 

ewfd.kF

loquetz 

ewfd.kPeriodicz rad/

m 

k-vector for Floquet 

periodicity, z component 

Boundaries 22–24 
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Shape functions 

Constraint Constraint force Shape 

function 

Selection 

if(root.comp1.ewfd.inco

ntact_pc1,ewfd.tEsdimx

-ewfd.dst2src_pc1(ewfd

.tEsdimx)*exp(j*(-ewfd

.kFloquetx*(ewfd.rsrcx

_pc1-ewfd.rdstx_pc1)-e

wfd.kFloquety*(ewfd.rs

rcy_pc1-ewfd.rdsty_pc1

)-ewfd.kFloquetz*(ewfd

.rsrcz_pc1-ewfd.rdstz_p

c1))),0) 

if(root.comp1.ewfd.incontact_pc1

,test(ewfd.tEsdimx)*exp(j*(-ewfd

.kFloquetx*(ewfd.rsrcx_pc1-ewfd

.rdstx_pc1)-ewfd.kFloquety*(ewf

d.rsrcy_pc1-ewfd.rdsty_pc1)-ewf

d.kFloquetz*(ewfd.rsrcz_pc1-ewf

d.rdstz_pc1)))-test(ewfd.dst2src_

pc1(ewfd.tEsdimx)),0) 

Curl 

(Quadrat

ic) 

Boundarie

s 1, 4, 7 

if(root.comp1.ewfd.inco

ntact_pc1,ewfd.tEsdimy

-ewfd.dst2src_pc1(ewfd

.tEsdimy)*exp(j*(-ewfd

.kFloquetx*(ewfd.rsrcx

_pc1-ewfd.rdstx_pc1)-e

wfd.kFloquety*(ewfd.rs

rcy_pc1-ewfd.rdsty_pc1

)-ewfd.kFloquetz*(ewfd

.rsrcz_pc1-ewfd.rdstz_p

c1))),0) 

if(root.comp1.ewfd.incontact_pc1

,test(ewfd.tEsdimy)*exp(j*(-ewfd

.kFloquetx*(ewfd.rsrcx_pc1-ewfd

.rdstx_pc1)-ewfd.kFloquety*(ewf

d.rsrcy_pc1-ewfd.rdsty_pc1)-ewf

d.kFloquetz*(ewfd.rsrcz_pc1-ewf

d.rdstz_pc1)))-test(ewfd.dst2src_

pc1(ewfd.tEsdimy)),0) 

Curl 

(Quadrat

ic) 

Boundarie

s 1, 4, 7 

if(root.comp1.ewfd.inco

ntact_pc1,ewfd.tEsdimz

-ewfd.dst2src_pc1(ewfd

.tEsdimz)*exp(j*(-ewfd

.kFloquetx*(ewfd.rsrcx

_pc1-ewfd.rdstx_pc1)-e

wfd.kFloquety*(ewfd.rs

rcy_pc1-ewfd.rdsty_pc1

)-ewfd.kFloquetz*(ewfd

.rsrcz_pc1-ewfd.rdstz_p

c1))),0) 

if(root.comp1.ewfd.incontact_pc1

,test(ewfd.tEsdimz)*exp(j*(-ewfd

.kFloquetx*(ewfd.rsrcx_pc1-ewfd

.rdstx_pc1)-ewfd.kFloquety*(ewf

d.rsrcy_pc1-ewfd.rdsty_pc1)-ewf

d.kFloquetz*(ewfd.rsrcz_pc1-ewf

d.rdstz_pc1)))-test(ewfd.dst2src_

pc1(ewfd.tEsdimz)),0) 

Curl 

(Quadrat

ic) 

Boundarie

s 1, 4, 7 

 

Periodic Condition 2 

Selection 

Geometric entity level Boundary 
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Selection Boundaries 2, 5, 8, 15–17 

 

Equations 

 

 

Settings 

Description Value 

Type of periodicity Floquet periodicity 

k-vector for Floquet periodicity From periodic port 

Apply reaction terms on All physics (symmetric) 

Constraint method Nodal 

Transform to intermediate map Automatic 

 

Variables 

Name Expression Uni

t 

Description Selection 

ewfd.kF

loquetx 

ewfd.kPeriodicx rad/

m 

k-vector for Floquet 

periodicity, x component 

Boundaries 2, 5, 8 

ewfd.kF

loquety 

ewfd.kPeriodicy rad/

m 

k-vector for Floquet 

periodicity, y component 

Boundaries 2, 5, 8 

ewfd.kF

loquetz 

ewfd.kPeriodicz rad/

m 

k-vector for Floquet 

periodicity, z component 

Boundaries 2, 5, 8 

ewfd.kF

loquetx 

ewfd.kPeriodicx rad/

m 

k-vector for Floquet 

periodicity, x component 

Boundaries 15–17 

ewfd.kF

loquety 

ewfd.kPeriodicy rad/

m 

k-vector for Floquet 

periodicity, y component 

Boundaries 15–17 

ewfd.kF

loquetz 

ewfd.kPeriodicz rad/

m 

k-vector for Floquet 

periodicity, z component 

Boundaries 15–17 

 

Shape functions 

Constraint Constraint force Shape function Selection 

if(root.comp1.ewfd.incont

act_pc2,ewfd.tEsdimx-ew

fd.dst2src_pc2(ewfd.tEsdi

mx)*exp(j*(-ewfd.kFloqu

etx*(ewfd.rsrcx_pc2-ewf

if(root.comp1.ewfd.incont

act_pc2,test(ewfd.tEsdim

x)*exp(j*(-ewfd.kFloquet

x*(ewfd.rsrcx_pc2-ewfd.r

dstx_pc2)-ewfd.kFloquet

Curl (Quadratic) Boundaries 

2, 5, 8 
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d.rdstx_pc2)-ewfd.kFloqu

ety*(ewfd.rsrcy_pc2-ewf

d.rdsty_pc2)-ewfd.kFloqu

etz*(ewfd.rsrcz_pc2-ewfd

.rdstz_pc2))),0) 

y*(ewfd.rsrcy_pc2-ewfd.r

dsty_pc2)-ewfd.kFloquetz

*(ewfd.rsrcz_pc2-ewfd.rd

stz_pc2)))-test(ewfd.dst2s

rc_pc2(ewfd.tEsdimx)),0) 

if(root.comp1.ewfd.incont

act_pc2,ewfd.tEsdimy-ew

fd.dst2src_pc2(ewfd.tEsdi

my)*exp(j*(-ewfd.kFloqu

etx*(ewfd.rsrcx_pc2-ewf

d.rdstx_pc2)-ewfd.kFloqu

ety*(ewfd.rsrcy_pc2-ewf

d.rdsty_pc2)-ewfd.kFloqu

etz*(ewfd.rsrcz_pc2-ewfd

.rdstz_pc2))),0) 

if(root.comp1.ewfd.incont

act_pc2,test(ewfd.tEsdim

y)*exp(j*(-ewfd.kFloquet

x*(ewfd.rsrcx_pc2-ewfd.r

dstx_pc2)-ewfd.kFloquet

y*(ewfd.rsrcy_pc2-ewfd.r

dsty_pc2)-ewfd.kFloquetz

*(ewfd.rsrcz_pc2-ewfd.rd

stz_pc2)))-test(ewfd.dst2s

rc_pc2(ewfd.tEsdimy)),0) 

Curl (Quadratic) Boundaries 

2, 5, 8 

if(root.comp1.ewfd.incont

act_pc2,ewfd.tEsdimz-ew

fd.dst2src_pc2(ewfd.tEsdi

mz)*exp(j*(-ewfd.kFloqu

etx*(ewfd.rsrcx_pc2-ewf

d.rdstx_pc2)-ewfd.kFloqu

ety*(ewfd.rsrcy_pc2-ewf

d.rdsty_pc2)-ewfd.kFloqu

etz*(ewfd.rsrcz_pc2-ewfd

.rdstz_pc2))),0) 

if(root.comp1.ewfd.incont

act_pc2,test(ewfd.tEsdim

z)*exp(j*(-ewfd.kFloquet

x*(ewfd.rsrcx_pc2-ewfd.r

dstx_pc2)-ewfd.kFloquet

y*(ewfd.rsrcy_pc2-ewfd.r

dsty_pc2)-ewfd.kFloquetz

*(ewfd.rsrcz_pc2-ewfd.rd

stz_pc2)))-test(ewfd.dst2s

rc_pc2(ewfd.tEsdimz)),0) 

Curl (Quadratic) Boundaries 

2, 5, 8 

 

Mesh 

Size (size) 

Settings 

Description Value 

Maximum element size 441[nm]/5 

Minimum element size 441[nm]/10 

Curvature factor 0.4 

Resolution of narrow regions 0.7 

Maximum element growth rate 1.4 

Predefined size Finer 

Custom element size Custom 

 

Free Triangular 1 (ftri1) 

Selection 
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Geometric entity level Boundary 

Selection Boundaries 1, 4, 7 

 

Free Triangular 1 

Free Triangular 2 (ftri2) 

Selection 

Geometric entity level Boundary 

Selection Boundaries 2, 5, 8 

 

 

Free Triangular 2 

Free Tetrahedral 1 (ftet1) 

Selection 

Geometric entity level Remaining 

 

 

Free Tetrahedral 1 

Settings 

Description Value 

Method Delaunay (legacy version) 

 

(c) Study 

Study 1 

Computation information 

Computation time 44 min 2 s 

CPU Intel(R) Core(TM) i7-4790S CPU @ 

3.20GHz, 4 cores 

Operating system Windows 7 

 

Parametric Sweep 

Parameter name Parameter value list 

alpha range(0,0.19634954084936207,0.7853981

633974483) 
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Wavelength Domain 

Study settings 

Description Value 

Include geometric nonlinearity Off 

 

Wavelengths: lam0 lam0*2 lam0*3 lam0*4 lam0*5 lam0*6 lam0*7 lam0*8 lam0*9 

lam0*10 lam0*11 lam0*12 

Physics and variables selection 

Physics interface Discretization 

Electromagnetic Waves, Frequency 

Domain (ewfd) 

physics 

 

Mesh selection 

Geometry Mesh 

Geometry 1 (geom1) mesh1 

 

Solver Configurations 

Solution 1 

Compile Equations: Wavelength Domain (st1) 

Study and step 

Description Value 

Use study  

Use study step  

 

Dependent Variables 1 (v1) 

General 

Description Value 

Defined by study step  

 

Initial value calculation constants 

Description Value 

Parameter initial value list lam0 lam0*2 lam0*3 lam0*4 lam0*5 lam0*6 lam0*7 

lam0*8 lam0*9 lam0*10 lam0*11 lam0*12 

 

Electric field (comp1.E) (comp1_E) 

General 

Description Value 
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Field components {comp1.Ex, comp1.Ey, comp1.Ez} 

 

S-parameter (comp1.Sparam1) (comp1_Sparam1) 

General 

Description Value 

State components comp1.ewfd.S1x 

 

S-parameter (comp1.Sparam2) (comp1_Sparam2) 

General 

Description Value 

State components comp1.ewfd.S2x 

 

Stationary Solver 1 (s1) 

General 

Description Value 

Defined by study step  

 

Results while solving 

Description Value 

Probes None 

 

Advanced (aDef) 

Assembly settings 

Description Value 

Allow complex-valued output from 

functions with real input 

On 

 

Parametric 1 (p1) 

General 

Description Value 

Defined by 

study step 

 

Parameter 

value list 

lam0 lam0*2 lam0*3 lam0*4 

lam0*5 lam0*6 lam0*7 lam0*8 

lam0*9 lam0*10 lam0*11 

lam0*12 

Run No parameter 
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continuation 

for 

 

Fully Coupled 1 (fc1) 

General 

Description Value 

Linear solver  

 

Parametric Solutions 1 

alpha=0 (su1) 

General 

Description Value 

Solution alpha=0 

 

alpha=0.19635 (su2) 

General 

Description Value 

Solution alpha=0.19635 

 

alpha=0.3927 (su3) 

General 

Description Value 

Solution alpha=0.3927 

 

alpha=0.58905 (su4) 

General 

Description Value 

Solution alpha=0.58905 

 

alpha=0.7854 (su5) 

General 

Description Value 

Solution alpha=0.7854 

 

(d) Results 
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Data Sets 

Study 1/Solution 1 

Solution 

Description Value 

Solution  

Component Save Point Geometry 1 

 

 

Data set: Study 1/Solution 1 

Study 1/Parametric Solutions 1 

Solution 

Description Value 

Solution  

Component Save Point Geometry 1 

 

Data set: Study 1/Parametric Solutions 1 

Derived Values 

Global Evaluation 1 

Data 

Description Value 

Data set  

 

Expressions 

Expression Unit Description 

abs(ewfd.S11)^2 1  

 

Output 

Evaluated in  

 

Tables 

Table 1 

Global Evaluation 1 (abs(ewfd.S11)^2) 

Table 1 

alpha lambda0 (µm) abs(ewfd.S11)^2 (1) 

0.0000 0.10000 0.30760 
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0.0000 0.20000 0.011065 

0.0000 0.30000 0.22745 

0.0000 0.40000 0.057059 

0.0000 0.50000 0.011722 

0.0000 0.60000 0.0043945 

0.0000 0.70000 0.0061400 

0.0000 0.80000 0.0097903 

0.0000 0.90000 0.013602 

0.0000 1.0000 0.017136 

0.0000 1.1000 0.020177 

0.0000 1.2000 0.022770 

0.19635 0.10000 0.053594 

0.19635 0.20000 0.065050 

0.19635 0.30000 0.0014149 

0.19635 0.40000 0.23970 

0.19635 0.50000 0.014659 

0.19635 0.60000 0.0066754 

0.19635 0.70000 0.0090121 

0.19635 0.80000 0.0090188 

0.19635 0.90000 0.013150 

0.19635 1.0000 0.015525 

0.19635 1.1000 0.019403 

0.19635 1.2000 0.026863 

0.39270 0.10000 0.038540 

0.39270 0.20000 0.029231 

0.39270 0.30000 0.0089399 

0.39270 0.40000 0.14642 

0.39270 0.50000 0.14380 

0.39270 0.60000 0.0083296 

0.39270 0.70000 0.0029566 

0.39270 0.80000 0.025711 

0.39270 0.90000 0.023138 

0.39270 1.0000 0.026528 

0.39270 1.1000 0.017842 

0.39270 1.2000 0.022813 

0.58905 0.10000 0.24589 

0.58905 0.20000 0.20141 
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0.58905 0.30000 0.28074 

0.58905 0.40000 0.59701 

0.58905 0.50000 0.012214 

0.58905 0.60000 0.024837 

0.58905 0.70000 0.014544 

0.58905 0.80000 0.045079 

0.58905 0.90000 0.062500 

0.58905 1.0000 0.038661 

0.58905 1.1000 0.0076160 

0.58905 1.2000 0.081639 

0.78540 0.10000 0.35819 

0.78540 0.20000 0.088762 

0.78540 0.30000 0.16248 

0.78540 0.40000 0.021971 

0.78540 0.50000 0.10186 

0.78540 0.60000 0.029787 

0.78540 0.70000 0.027823 

0.78540 0.80000 0.034865 

0.78540 0.90000 0.090554 

0.78540 1.0000 0.11903 

0.78540 1.1000 0.035855 

0.78540 1.2000 0.11977 

 

Plot Groups 

Electric Field (ewfd) 

alpha(5)=0.7854 lambda0(12)=1.2 µm Multislice: Electric field norm (V/m) 

1D Plot Group 2 
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Global: Transmittance (1) 

Electric Field (ewfd) 1 

 

lambda0(12)=1.2 µm Multislice: Electric field norm (V/m) 

2D Plot Group 4 
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