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Abstract

The solar industry has grown immensely in recent years and has reached a point where so-

lar energy has now become inexpensive enough that it is starting to emerge as a mainstream

electrical generation source. However, recent economic analysis has suggested that for solar

to become a truly wide spread source of electricity, the costs still need to plummet by a fac-

tor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of

this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination

current density in the boron doped region of n-type silicon solar cells. This required the de-

velopment of a boron diffusion process that maintained the bulk lifetime of n-type silicon such

that the recombination current density could be extracted by photoconductance spectroscopy.

It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration

can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol

surface passivation the recombination current density of a hydrogenated boron profile is shown

to be less than that of a standard boron profile, by as much as 30%. This is then applied to a

modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.
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Chapter 1

Introduction

This dissertation shows that atomic hydrogen can be used to lower the recombination current

density of boron doped silicon which can boost the efficiency of an n-type silicon solar cell.

1.1 Silicon Solar Cells - State of the Art

Silicon solar cells are the most predominant type of solar technology and represent over 90

percent market share in industry. This dominance is due to the silicon material itself because

of its studied nature brought on by the integrated circuit industry. The ultimate goal of the

application of solar research is to devise materials and methods that allow for a reduction of

the $/W metric, and to greater extent the levelized cost of electricity (LCOE). The cost per

watt ($/W) metric refers to the amount of capital monetary investment needed to generate a

watt of a power. As of writing this dissertation, there are now industrial silicon solar cells of

19% efficiency being produced at a $/W of less than $0.50 [2]. There are two known labora-

tory methods to minimize the $/W, either introduce materials or methods that are less expen-

sive than current ones (reducing $) or increase the efficiency of the device (increase W). The

bulk of the work in this dissertation focuses on the latter point.

Most modern types of silicon solar cells available on the market are known as p-type alu-

minum back surface field (Al-BSF) solar cells. The name comes from the fact that the bulk

of the cell is fabricated from p-type silicon (doped with boron most typically). The backside

of the cell is alloyed with Al to create both a back contact and a BSF structure in one pro-

cessing step. A cross sectional description of such a cell is given in Figure 1.1.

Al-BSF cell architectures cannot achieve efficiencies higher than 20% due to three technol-

ogy limitations. These limitations include recombination at the back surface which lowers

cell output voltage, a lack of diffuse reflectance at the back surface [3] which reduces longer

wavelength light collection and therefore reduces current output, and p-type bulk material is

known to suffer from a phenomenon known as light induced degradation (LID). LID is linked

to a reaction between oxygen and boron in the silicon lattice [4] and increases recombination
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Figure 1.1: Cross-sectional description of an Al-BSF cell. The back Al contact is fired and
partially diffused to create the back p+ region of the cell.
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in the device over time, which reduces cell output efficiency. To overcome the former limita-

tions, processes to redesign the backside have been generated. Such processes have produced

structures known as passivated emitter rear contact (PERC) cells [5]. Such cells overcome the

limitations of the Al-BSF cell by minimizing contact points at the backside and by applying

passivation. The move to PERC architectures does not come without added cost to the manu-

facturing process.

Regarding LID, more modern approaches have been focusing on eliminating this property, but

none are known to be implemented in industry [6]. In fact, such approaches might cause con-

tact issues, which further compromise the solar cell. To combat the inadequacies of p-type

material, individuals have sought to create n-type solar cells. N-type silicon is known to better

withstand metallic impurities that might otherwise cause electronic loss [7]. In addition, n-

type cells are not known to suffer from LID. It has been speculated for sometime now that n-

type cells will become the dominant silicon solar cell technology [2]. The actual percent mar-

ket share of n-type silicon compared with historical forecasts of the market share of n-type sil-

icon is given in Figure 1.2. The two curves, Prediction 1 and Prediction 2, show how analysts

over projected the market share of solar cell architectures [8, 9]. The blue curve shows the ac-

tual market share of solar cell architectures based on n-type silicon [2]. The reason for this

over estimation of how quickly n-type solar cells would saturate the market has to do with

technological limitations of the bulk n-type silicon.

All of the benefits of n-type silicon over p-type silicon more than make the case why it should

be the dominant technology. In fact, the highest efficiency silicon solar cells to date have been

made from n-type silicon [10][11]. N-type technology does not come without its obstacles

which has slowed its dominance. For one, a n-type cell cannot support an Al-BSF structure

on the backside as shown in Figure 1.3. This means extra processing steps, by way of a phos-

phorous diffusion, are necessary to create a BSF in a n-type cell, which adds to cost.

Another barrier to entry for n-type, is that the boron diffusion is required to form the front

side emitter region. Boron (B) moves more slowly through the silicon lattice compared to

Phosphorous (P), which means that B diffusion processes are slower. Slower diffusion process-
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Figure 1.2: Actual market share of n-type cells versus predicted market share.

Figure 1.3: One type of a modern n-type cell architecture with regions of the device labeled.
Note that the BSF is a phosphorous diffused region, and is not created with alloying like the
AL-BSF. ARC = Antireflection Coating
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ing lowers cell manufacturing throughput, which increases cell manufacturing cost.

This dissertation examines how atomic hydrogen can be used to reduce recombination in the

boron doped p+ emitter region of a n-type silicon solar cell. By reducing recombination in

this region, the cell efficiency increases. A gain in cell efficiency can make up for or at least

displace slower manufacturing throughput (as is the case for the B diffusion of n-type solar

cells).

The work in this dissertation provides the scientific backing behind the implementation of the

Hydrogen Selective Emitter (HSE) technology for n-type silicon solar cells. HSE has been be-

ing commercialized by Picasolar, Inc. since 2013. Picasolar has received multiple Department

of Energy Sunshot Incubator awards to commercialize the HSE technology. In addition, many

solar industry players are interested in such a technology. Therefore, the work in this disserta-

tion is of practical value for the solar industry in the near future.

As of writing this dissertation, work on the HSE technology is not complete. However, the

work in this dissertation provides the experimental foundation that shows the technical viabil-

ity of the HSE technology.

1.2 Selective Emitter Technology

The focus of this dissertation is on the front p+ emitter region of a n-type solar cell. This is

because for modern n-type solar cells with high bulk lifetimes and well passivated surfaces, the

front emitter and back BSF place limits on the maximum cell efficiency [12].

Typical p+ emitter regions in n-type silicon solar cells are known as homogeneous emitters.

This is because the same emitter is found all across the front surface of the cell. This is the

standard practice in common industrial cells as it is the least expensive option. This emitter

region must be designed to satisfy efficient collection of carriers by light absorption, low-loss

lateral transport of carriers to the gridlines, and a maximum output voltage by optimum dop-

ing concentration [13]. For a homogeneous emitter this is all accomplished through careful

optimization of the diffusion process that forms the emitter. The emitter profile as a result of

the diffusion process looks like those in Figure 1.4 which comes from Benick et. al. [1]. The
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Figure 1.4: Data from [1] that shows examples of a high efficiency and industrial emitter pro-
files.

emitter profiles (the two plots in Figure 1.4) are created by measuring how the boron dop-

ing concentration in the silicon varies with depth. Each data point represents the measured

boron concentration at a given depth into the silicon (the n region of Figure 1.3). The indus-

trial emitter profile is typical of how the boron concentration would vary with depth for the

cell architecture shown in Figure 1.3 (the region denoted by p+). The high efficiency emit-

ter has a boron concentration that extends further into the n-type silicon with a lower sur-

face concentration, whereas the industrial emitter is more shallow with a higher boron surface

concentration. The solar cell efficiency can vary quite dramatically depending on the how the

concentration of the boron varies with depth near the surface. In fact, Benick et. al. fabri-

cated two different cells each of which uses one of the profiles in Figure 1.4. For the high ef-

ficiency profile, the efficiency of the best cell was 23.4% whereas for the industrial profile the

best efficiency was 21.8% [1].

Benick et. al.’s work illustrates the sensitivity of the cell output to a change in the emitter

profile. However, the high efficiency profile is more resistive, and requires more gridlines on

the front of the cell. In addition, it requires multiple high temperature manufacturing steps
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Figure 1.5: Process flows for solar cell manufacturing which incorporates an industrially rel-
evant SE technology. Extra steps are highlighted in red and extra controls are highlighted in
blue.

to create, which in turn, all act to increase manufacturing cost. This reduces manufacturing

viability in an industrial setting.

A way to have the “best of both worlds” (in regards to the profiles of Figure 1.4) would be

to somehow incorporate both profiles into the solar cell design. The less resistive profile is

more ideal for making contact to the gridlines and the profile with lesser doping concentra-

tion is more useful in areas between metal contacts. Methods of optimizing the profile under

the metal contact and those not under the metal are known as selective emitter (SE) meth-

ods. That is, the doping concentration is selectively controlled in the emitter region. As out-

lined by Rahman, SE methods should 1.) require a minimum of additional processing steps,

2.) possibility of integration into a manufacturing line, 3.) no yield loss, 4.) a boost in cell ef-

ficiency by at least 0.2% absolute [13].

Such SE methods that have been developed that have been shown to have manufacturing

viability include the etch-back SE [13], the laser doped SE [14], and SE based upon doping

pastes [15] . Figure 1.5 summarizes three of the main SE methods used in industry, with the

additional manufacturing steps highlighted [16].

One disadvantage of many of these SE technologies is the required number of extra process-

ing steps or control steps. In particular, all of these methods require extra controls to align

the screen printed metal grid to the top of the cell. These extra control and alignment proce-
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dures are a necessary element to most SE processes because in a SE there are regions where

the emitter doping profile are optimized for metal contact. Since gridlines are applied as one

of the last steps in the cell manufacturing process it is necessary then to align the gridlines to

the patterned regions of higher doping in order to form the SE. The extra controls and pro-

cessing steps lead to extra costs, which has inhibited the adoption of SE technology in indus-

try.

1.3 The Hydrogen Selective Emitter

A way of overcoming the detrimental features of the common industrial SE methods given in

Figure 1.5 is with a method known was the Hydrogen Selective Emitter (HSE). The key idea

behind this method is shown in Figure 1.6. The cell architecture from Figure 1.5 is shown in

Figure 1.6. Pictured is the process of exposing the front surface of the cell to atomic hydro-

gen. The atomic hydrogen is blocked by the metal gridlines on top of the solar cell whereas

in regions not covered by a metal gridline the atomic hydrogen enters into the boron doped

emitter profile.

Atomic hydrogen is used to inactivate boron dopants in the silicon lattice [17]. As a result,

the electrical activity of the boron atom is quenched, which effectively lessens the boron con-

centration of the profile. Because the process occurs after a solar cell is fully fabricated the

gridlines at the front of the cell mask the atomic hydrogen and prevent deactivation. If the

cell is manufactured with an emitter profile having heavier concentration than the industry

standard, atomic hydrogen can be used to inactivate the boron in the heavier doped profile,

making it more ideal as an emitter not contacted by metal.

There are two obstacles to implementation of the HSE process. The first obstacle is the dif-

fusion of atomic hydrogen through the silicon nitride anti-reflection coating and oxide passi-

vation layer that is on the front of industrial solar cells. The second, and separate obstacle, is

showing that the inactivation of atomic hydrogen actually improves the electronic quality of

the emitter layer. The focus of this dissertation is on the second obstacle wherein the methods

here show that the recombination current density of the p+ emitter region can be reduced,
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Figure 1.6: Illustration of HSE method on a n-type solar cell.

which is results in an overall efficiency gain for the cell.
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1.4 Dissertation Overview

This dissertation describes a series of studies that lead up to understanding how atomic hy-

drogen can improve the front surface of n-type silicon solar cells. Chapter 2 of this disserta-

tion discusses and overview of silicon solar cell theory, with emphasis on generation and re-

combination processes. It defines the recombination current density of a boron emitter, J0e.

Chapter 3 gives a high level overview of the characterization techniques that were used. It de-

scribes how the recombination current density of the emitter region is measured using photo-

conductance spectroscopy. Such a method, standard in the PV industry, was a core technique

to show that atomic hydrogen can minimize a fundamental device parameter. Chapter 4 de-

scribes the establishment of a method to measure the bulk lifetime of silicon samples using a

liquid passivation solution, quinhydrone-methanol (QM) and compares the measured lifetime

values to the literature to vet the process on bulk silicon. Because the boron diffusion process

creates the emitter doping profile of a solar cell, Chapter 5 gives an overview of the work that

was necessary to develop a boron diffusion process. Boron nitride solid sources had to be uti-

lized due to infrastructure constraints and two different methods of boron rich layer removal

are compared. QM is then applied as surface passivation to the boron diffusions to measure

J0e. Chapter 6 details the experiments used to show atomic hydrogen lowers the value of the

fundamental device parameter, J0e. The methods discussed in chapters 4-6 are applied to de-

vices and device measurements are analyzed in Chapter 7. Finally, Chapter 8 concludes the

dissertation, and provides future avenues of research work.
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Chapter 2

An Overview of Solar Cell Device Operation

2.1 Introduction

The purpose of a solar cell is to take radiative energy from the sun (or another light source)

and convert it into an electrical current. Various material systems are used to create solar

cells, however the most predominant are solar cells made from crystalline silicon. The basic

operation of almost all solar cells is the same. When exposed to light, atomic processes inter-

nal to the silicon generate charge carriers, which immediately begin to recombine. The key

to engineering the best solar cell is to design a cell such that the charge carriers are forced

outside the device, to produce current, before they recombine. The ultimate goal of solar cell

design is to maximize internal generation processes and minimize recombination processes.

2.2 The Circuit Model of a Silicon Solar Cell

The operation of a silicon solar cell can be understood by examining the well known single

diode circuit model of the solar cell. A circuit schematic for such a model is shown in Figure

2.1. The model features four circuit components including the light generated current density

Jph modeled as an ideal current source, the diode representing the p+/n junction of the solar

cell, a resistor, Rsh that models loss to shunt resistances, and the losses series resistance, Rser.

Figure 2.1: The common single diode model for describing solar cell operation.

Kirchoff’s current law can be used to sum the current densities so that,
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J = Jph − JD − Jsh (2.1)

with JD being the current density lost due to recombination in the diode, and Jsh being the

current density representing losses to the shunt resistances in the cell, and the current density

J being the output current of the cell. The current density, JD, is specified by,

JD = J0(e((V+JRser)/kT ) − 1) (2.2)

where J0 represents the saturation current density, V represents the output voltage of the cell,

JRser is the voltage drop across the resistor, Rser, k is Boltzmann’s constant, and T is tem-

perature of the cell in Kelvin. J0 is also known as the recombination current density, as it

arises in a solar cell due to internal recombination processes. The total voltage term in the

exponential is given by V + JRser as this is the voltage drop found across the diode given in

Figure 2.1. It is also easy to see from the circuit diagram of Figure 2.1 that Jsh can be found

utilizing Ohm’s law so that,

Jsh = (V + JRser)/Rsh (2.3)

By combining the terms Jph, JD, and Jsh the total output current, J can be defined as,

J = Jph − J0(e((V+JRser)/kT ) − 1)− (V + JRser)/Rsh (2.4)

where the solar cell J-V behavior can be defined by the four model parameters Jph, J0, Rser,

and Rsh. When the model parameters specified are defined, equation 2.4 allows for the char-

acteristic J-V output of a solar cell to be calculated and plotted. Figure 2.2 shows the plot of

equation 2.4 with J plotted against V for arbitrarily defined model parameters where Jph is 38

mA/cm2, J0 is 1×10−13 A/cm2, Rsh is 10,000 Ω − cm2, and Rser is 1 Ω − cm2. The purpose

here is not to fit data, but rather, just introduce the reader to a number of the key parameters

that characterize the solar cell output and lead to the efficiency of a cell. Therefore, arbitrary
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values are chosen and meaning is applied to these parameters in the text that follows.

2.3 Output of a Silicon Solar Cell

Figure 2.2 shows the JV plot of a solar cell according to the circuit model introduced in this

previous section. A number of important output parameters are labeled in Figure 2.2, includ-

ing the open circuit voltage, Voc, the short circuit current density, Jsc, the maximum power

point voltage Vmp, the maximum power point current density, Jmp, and the fill factor, FF.

The short circuit current density is the current that flows through the solar cell when its out-

put terminals are shorted together. As can be seen in Figure 2.2, there is no voltage at the

short circuit condition. If the terminals of the circuit model in Figure 2.1 were shorted, then

so long as the series resistance of the cell remains small enough, Jph = Jsc. Jsc is the maxi-

mum current density that can be delivered to a load.

If the terminals of the solar cell are left open, or not connected to a load, then a voltage will

develop at the output terminals, known as open circuit voltage, Voc. This voltage, represents

the maximum voltage value that can be obtained from a cell. At the open circuit condition,

the current output is non-existent, therefore a relationship can be obtained for the open cir-

cuit voltage. This relationship is,

Voc = (kT/q) ln((Jph/J0) + 1) (2.5)

where k, T , Jph, and J0 have their previously defined meanings, and q is the elementary elec-

tron charge of 1.6×10−19 C. To derive this relationship, it is necessary that the shunt resis-

tance be sufficiently high so that the term V/Rsh can be neglected. This assumption is viable

as modern industrial and laboratory solar cells have Rsh > 1000 Ω · cm2.

Any combination of voltage and current density values along the curve between Jsc and Voc

represents power that can be delivered to a load. The maximum power point occurs on the

curve where the value of V ∗ J is found to be the highest. These two points are named the

maximum power point voltage and current, Vmp and Jmp respectively. The ratio of VmpJmp

to VocJsc is known as the fill factor, or FF. This ratio represents a practical form of the FF
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Figure 2.2: JV curve for a solar cell modeled by the circuit model of Figure 2.1 with Jph = 38
mA/cm2, J0 = 1× 10−13 A/cm2, Rsh = 10,000 Ω− cm2, and Rser = 1 Ω− cm2.

that takes into account many of the non-ideal losses that occur in a cell, such as the series

resistance and shunt resistance. However, for cells with very low series resistance and very

high shunt resistants (e.g. the highest performing cells), the FF maximum is set empirically

by [18],

FF = (voc − ln(voc + 0.72))/(voc + 1) (2.6)

where voc represents a normalized open circuit voltage and is given by,

voc = (q/kT )Voc (2.7)

To obtain maximum values of FF, it is necessary to maximize the open circuit voltage.

The overall efficiency of a solar cell can be defined as,

η = Pout/Pin (2.8)
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where Pout represents the output power of the cell and Pin represents the input power of the

cell. From the above discussion, at maximum powerpoint,

η = Pout/Pin = JmpVmp/Pin = (VocJscFF )/Pin (2.9)

The Pin for a solar cell is determined by the incident flux of photons from a given light source,

where as Pout is determined from V oc, Jsc, and the FF . For maximum cell efficiency the Voc,

Jsc, and FF must all be maximized. This is accomplished by maximizing the generation of

electron-hole pairs within a solar cell and minimizing recombination processes. Both of these

topics are now explored.

2.4 Absorption of Light and Generation of Charge Carriers

The sun emits electromagnetic radiation at a number of wavelengths ranging from 250 to 4000

nm as shown in Figure 2.3. Two curves are shown here, one is called the Air Mass 0 (AM0)

curve and the other is called the AM 1.5 Global (G) curve. The data for the two curves comes

from the SMARTS, or Simple Model of the Atmospheric Radiative Transfer of Sunlight, program[19,

20]. The spectra in Figure 2.3 represent international standards which give the spectral irra-

diance produced by the sun at the outer atmosphere, AM0, and that which is used for terres-

trial applications, AM1.5G. The area beneath the AM1.5G curve has been highlighted yellow.

If the total irradiance is integrated over all wavelengths, then one can arrive at a total inte-

grated current density that a flat plate solar collector could produce assuming one photon cre-

ates one charge within the solar collector. For the entire spectrum available at earths surface

(AM1.5G), a device could collect as much as 73 mA/cm2 of current density.

It is the job of a solar cell to convert as much of the spectrum as it can to a usable electrical

current. For a silicon solar cell, it can collect that portion of the spectra up to where the ver-

tical bar is shown in Figure 2.1, about 1100 nm. The reason for this is because Si is a semi-

conductor material that has a bandgap that limits the amount of light that can be collected

and converted to an electrical current. The total maximum amount of current that any Si so-

lar cell can produce, on earth, is no greater than 46 mA/cm2.
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Figure 2.3: Solar spectrum radiation for wavelengths of interest to silicon solar cells. The ver-
tical black line denotes the bandgap of Si. The total amount of current density that any sili-
con solar cell can obtain is no greater than 46 mA/cm2.

Careful optical management is necessary for a Si solar cell to collect a total of 46 mA/cm2 of

the solar radiation available. As shown in Figure 2.4, the radiation incident on a Si material

might be reflected, absorbed or transmitted.

In fact, owing to its index of refraction, for a planar Si surface, 33% of the radiation incident

on the surface will be reflected. The remaining 67% passes through the Si material where it

is either absorbed, or reaches the back surface undergoing a secondary reflection and possible

transmission through the material. Reflections from the front surface are mitigated in mod-

ern solar cells with the implementation of front surface texture and anti-reflection coatings.

Such techniques are designed to reduce reflection most optimally around wavelengths of 500

nm, as this coincides with the peak of incident power. Regarding transmission, modern Si

solar cells are around 180 µm thick, and are trending thinner[2]. The fraction of light that

can be transmitted through the entire thickness of Si is heavily dependent upon its absorp-
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Figure 2.4: Diagram indicating possible transmission, reflection or absorption pathways in sili-
con.

tion coefficient as shown Figure 2.5 (the data comes from [21, 22]. The absorption coefficient

of Si (blue) plotted with the absorption depth (red) for wavelengths of radiation ranging from

300-1150 nm. The absorption depth is the mathematical inverse of the absorption coefficient

plotted here in units of thickness that are meaningful for Si solar cells. The absorption depth

effectively shows how deep a given wavelength of light penetrates the Si. For wavelengths of

light, 800 nm or less, the radiation penetrates no deeper than 10 µm into the material, but

for wavelengths at 1000-1100 nm, most of this light can pass through a modern Si solar cell

of 180 µm thickness, if it is not absorbed in the material itself. The absorption coefficient is

shown to decrease significantly toward zero around the bandgap of Si, 1100 nm.

The importance of the data in Figure 2.5 is that Si solar cells must be designed to prevent ra-

diation from 1000 to 1100 nm from transmitting through the material. Absorption inside the

material plays a role in this, but careful design of the backside is also important to mitigate

optical losses. It is useful to have the back surface entirely coated with a reflector suitable for

reflecting longer wavelengths of radiation. Modern cells incorporate this by applying metal

to the entire backside of the device. A cross sectional view of a modern device architecture is

given in Figure 2.6 and shows those features that maximize the light collection capability of

the Si solar cell.
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Figure 2.5: Absorption coefficient (blue) and absorption depth (red) of silicon.

The optical management of modern cells has been engineered to maximize the amount of light

captured from the spectrum shown in Figure 2.3. In fact, most modern Si solar cells capture

light effectively between 400 to 1000 nm due to this optical engineering. As illustrated in Fig-

ure 2.6, features that maximize the collected light include pyramidal front surface texturing,

an AR coating and a metal back reflector (usually doubling as a back conductor). With mod-

ern cell architectures it is more important to turn the attention of the design for a cell toward

the internal electronic processes that occur within the Si material. This is done by minimizing

the internal recombination processes.

Absorption in semiconductors occurs when light having energy in excess of the bandgap passes

through the Si. This is true for all of the radiation emitted from the sun up to about 1100

nm in wavelength. The energy of the radiation, most often in the form of a photon, gives its

energy to that of an electron inside the material. Conceptually, this is shown in Figure 2.7,
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Figure 2.6: Diagram indicating the effect of texture and a back reflector on the optical man-
agement of a solar cell.

which shows the energy of a photon (yellow arrow) exciting an electron (yellow circle) to a

state that is above the energy level of the conduction band, Ec. The electron leaves behind an

empty state in the valence band (empty circle in Figure 2.7), which is a hole.

Figure 2.7: Schematic of the excitation of an electron in the valence band due to an absorp-
tion event. The red arrow indicates thermalization of the electron to the conduction band
edge.

The difference in energy between the conduction band and the valence band is known as the

bandgap. This is an energy bandgap that represents a range of energy values where states

for electrons are not allowed. The valence band represents those electrons that are held to an
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atom and do not have enough energy to become free of the bonds holding it in place. When

light passes through the semiconductor, it gives its energy to an electron in the valence band,

exciting it, often, to a value greater than the bandgap, 1.1 eV in Si. This electron then ther-

malizes and decays back down to an energy level known as the conduction band, shown as the

red arrow in Figure 2.7. This band represents the energy levels for which electrons can freely

conduct or move about in the Si material. The thermalization process represents scattering

and the loss of energy in the form of phonons, or lattice vibrations, to the material.

Figure 2.8: Relevant time scales involved with absorption, thermalization, and recombination
processes in silicon against excess carrier density. Box plots indicate different time scales.

Figure 2.8 shows a plot of the energy levels present in a semiconductor, such as Si, against

the excess carrier density that is produced as a result of the radiation, or absorption processes

[23]. The gap between the lower and upper sets of boxes represents the bandgap of the mate-
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rial. The yellow arrow indicates an absorption process. After the thermalization process oc-

curring on the time scale of 10−12 seconds, the distributions spread out reaching a point of

thermal and chemical equilibrium within their respective bands. These electrons and holes can

survive until they recombine, which in very pure Si can take as long as 10 to 100 ms of time.

The average Si material used in modern solar cells may have lifetimes on the order of 0.5-4

ms.

To create solar cells with the highest efficiency it is necessary to maximize the time before re-

combination occurs within the device. This time, known as the carrier lifetime, is dependent

upon the carrier density, both the equilibrium density (that obtained without exposure to il-

lumination), and the excess density created due to illumination and excitation of electrons to

the conduction band. Generally, the lifetime can be defined as,

τ =
∆n

U
(p-type Si) (2.10)

τ =
∆p

U
(n-type Si) (2.11)

where τ is the total recombination lifetime, and U represents the net recombination rate. The

carrier lifetime refers to the minority carrier lifetime. The minority carrier can either be an

electron (p-type Si) or a hole (n-type Si), in which case equations 2.10 or 2.11 describe the

recombination lifetime. The quantities ∆n and ∆p represent the excess density of electrons

and holes,

∆n = n− n0 (2.12)

∆p = p− p0 (2.13)

where n and p is the total number of electrons and holes, respectively, generated due to illu-

mination and n0 and p0 represents the equilibrium densities of electrons and holes. The equi-

librium concentrations arise from conditions within the semiconductor when it is not illumi-

nated, that is when it is in the dark. The equilibrium densities can be obtained by integrating
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their distribution over the number of allowed states in the conduction and valence band. Such

an integration yields,

n0 = Ncexp((EF − EC)/kT ) (2.14)

p0 = Nvexp((EV − EF )/kT ) (2.15)

where Nc and Nv are the allowable densities of states in the conduction and valence band, re-

spectively. The quantity EF is the Fermi-energy level, EC is the energy level of the conduction

band, and EV is the energy level of the valence band. k represents Boltzmann’s constant, and

T is the absolute temperature of the material. In an ideal Si material without any surfaces

and no lattice defects, every electron that is thermally excited (there is no illumination in this

case) leaves behind a hole in the valence band, so that n0 = p0 = ni where ni is known as the

intrinsic carrier concentration. Multiplying the n0 and p0 together yields,

n0p0 = n2
i = NCNV exp(−Eg/kT ) (2.16)

where n0p0 is known as the equilibrium pn product and Eg is the bandgap of the material.

2.5 Recombination

The main recombination mechanisms in silicon are radiative recombination, shockley-read-hall

(SRH) recombination, and Auger recombination. A depiction of the process that describes

each of these mechanisms is given in Figure 2.9. Each of these mechanisms will be discussed

in detail in the following subsections, however, we introduce the idea of recombination here by

starting with the most straightforward way to consider it.

Recombination refers to the rate at which electrons and holes recombine to form electron hole

pairs according to the following reaction equation,

e− + h+ → hν + 0 (2.17)

where e− represents a negatively charged electron, h+ represents a positively charged hole,
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Figure 2.9: Diagram showing the different possible recombination mechanisms in silicon.

and hν refers to the energy, in the form of a photon, generated by the recombination of the

electron and hole. Following the equation of the chemical reaction, an equation describing the

reaction rate can be obtained,

R = R0np (2.18)

where, R is the recombination rate, n represents the density of electrons, and p represents the

density of holes. R0 is given as the proportionality constant that determines the rate of the

reaction. This type of equation describes the simple transition of an electron in the conduc-

tion band to a hole in the valence band. It most accurately describes the concept of band-to-

band recombination. Many experiments have been undertaken, especially in the area of silicon

photovoltaics, to form empirical models of the various recombination mechanisms. A brief re-

view of each of these mechanisms follows.

23



Before discussing each recombination mechanism it is important to define an intrinsic recom-

bination process versus an extrinsic recombination process. Intrinsic recombination processes,

are those processes that are inherent to a material. That is, they are not created due to the

manufacture of the material. No matter how chemically pure a piece of Si is, intrinsic recom-

bination will still be present. Radiative recombination and Auger recombination are intrinsic

processes. Extrinsic recombination refers to those recombination mechanisms that occur due

to defects induced by creation of the material. Shockley-Read-Hall (SRH) recombination is an

extrinsic recombination process.

2.5.1 Radiative (Band-to-Band) Recombination

Radiative recombination occurs when an electron in a conduction band minimum recombines

with a hole in a valence band maximum. An analytic equation that describes radiative recom-

bination is given by[18],

Urad = Brad(pn− n2
ieff

) (2.19)

where Brad is the radiative recombination coefficient and is experimentally determined, n is

the population of electrons, p is the population of holes, and nieff is the effective intrinsic car-

rier concentration. Radiative recombination typically has a small impact in silicon devices ow-

ing to silicons indirect bandgap and because of the fact that other recombination processes

are more dominant [24]. However, if a silicon sample is very pure, then the radiative recombi-

nation will have a significant impact. More recently, the temperature dependence of radiative

recombination was explored using spectral photoluminescence with temperature resolution ca-

pability of 10K right around room temperature [25]. This work lead to an updated empirical

expression for Brad,

Brad = 10(−176.98+2.688T−0.018T 2+6.57×10−5T 3−1.21×10−7T 4+8.99×10−11T 5) (2.20)

Radiative recombination is considered an intrinsic recombination process and is a limitation to

obtaining the highest possible efficiencies for a silicon solar cell [26].
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2.5.2 Auger Recombination

Auger recombination is named after the physicist that discovered the phenomenon. In this

case, an electron may give its energy to another electron in the process of recombining with

a hole. This excited electron is driven above the conduction band edge and thermalizes back

down to the band edge. The same process can be hole driven, where a hole recombines with

an electron giving the energy to a hole. The processes are referred to eeh and ehh recombina-

tion. Auger recombination represents one of the largest loss mechanisms in solar cells, espe-

cially in those regions that are heavily doped. This is because there is an increased probability

of Auger recombination in those regions having more charge carriers. An analytical form that

approximates Auger recombination is given by [18],

Uaug = (Cnn+ Cpp)(pn− n2
ieff

) (2.21)

Where p,n, and nieff have their usual meanings and Cn and Cp represent the Auger coeffi-

cients for electrons and holes respectively. The most modern parameterization of Auger re-

combination is given as an intrinsic lifetime term, τintr [27], with,

τintr = ∆n/((np− ni2eff )(2.55× 10−31geehn0 + 8.5× 10−32gehhp0 + 3.0x10−29∆n0.92) (2.22)

where gehh and geeh are expressed as,

geeh(n0) = 1 + 13(1− tanh((n0/N0,eeh)
0.66)) (2.23)

gehh(p0) = 1 + 7.5(1− tanh((p0/N
0.65
0,ehh)) (2.24)

N0,eeh = 3.3x1017 (2.25)

N0,ehh = 7.0x1017 (2.26)

where the subscript eeh refers to an electron-electron-hole Auger process, ehh refers to a electron-

hole-hole Auger process, ∆n is the excess density of electrons, and geeh and gehh are known as
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enhancement factors.

Auger is the other type of intrinsic recombination in crystalline silicon. In limiting efficiency

calculations, Auger and Radiative recombination are treated together to express the minimum

possible recombination [26].

2.5.3 Shockley-Read-Hall Recombination

SRH recombination is referred to as an extrinsic recombination mechanism as it is the only

recombination mechanism that can be controlled by an optimal design. The phenomenon of

SRH recombination involves an impurity center in the crystal lattice that places a localized

energy level in the bandgap of a semiconductor. This energy level, or trap level, minimizes the

required energy for electrons or holes to recombine. The usual form for such recombination is

mathematically described by,

Usrh = (pn− ni2eff )/(τn0(p− p1) + τp0(n− n1)) (2.27)

Again, p,n, and nieff , have their usual meaning. New variables introduced here include the

electron and hole SRH lifetime, τn0 and τp0 and p1 and n1. The SRH lifetime represents the

lifetime of electrons or holes in the presences of a trap state. p1 and n1 give the distribution of

the trap level based upon the given energy of the trap following,

n1 = Nce
(Et−Ec)/kT (2.28)

p1 = Nve
(Ev−Et)/kT ) (2.29)

where Nc and Nv represent the density of states in the conduction and valence bands and Et

is the energy of the trap level.

2.5.4 Surface Recombination

Surface recombination is taken to be a special case of SRH recombination. The truncation of

the crystal lattice creates dangling bonds that act as recombination sites. In an energy band
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view, these sites represent discrete levels in the band gap that facilitate recombination. The

mathematical description of surface recombination follows,

Usurf = Se0Sh0(np− ni2eff )/(Se0(n+ n1) + Sh0(p+ p1)) (2.30)

Here, the Se0 and Sp0 terms represent effective surface recombination velocities in units of

cm/sec. This can best be explained by envisioning that the term represents the real velocity

of the carriers as they approach a viable recombination site at the surface (either a dangling

bond, or another state that has been generated).

2.6 Recombination Current

It is useful to cast the above recombination mechanisms into a formulation known as the re-

combination current density. To introduce this topic, the method of Cuevas is followed by

examining the case of a near intrinsic silicon wafer having only Auger and Radiative recom-

bination [28]. This discussion is based upon experimental work performed by Richter et. al.

[27]. In that work, crystalline silicon wafers were prepared at two different labs using two dif-

ferent techniques to formulate a parameterization of the intrinsic lifetime of a silicon wafer.

The parameterization relates the effective lifetime of the wafer to the excess number of carri-

ers produced throughout the volume of the wafer due to illumination. For a given wafer thick-

ness and doping density, a plot of the effective lifetime versus the excess carrier density can be

produced. This parameterization is applied to 180 µm thick wafer and a doping density of ND

= 1 × 10−16cm−3 to produce the curve shown in Figure 2.10. The blue data points represent

the effective lifetime calculated at a particular excess carrier density. The effective lifetime is

composed of two components in this case, the Auger lifetime component (given by the long

dashes) and the Radiative lifetime component (given by the short dashes). For this example,

the effective lifetime is completely determined by the Auger component.

The parameterization used to create the plot of Figure 2.10 was determined from wafers with

high levels of surface passivation. This means that surface recombination can be neglected

in Figure 2.10. Moreover, because of the high quality of the wafers, the assumption can be
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Figure 2.10: Plot of the effective lifetime of a 180 µm thick n-type wafer with ND = 1 ×
10−16cm−3.

made that the recombination is uniform throughout the bulk of the material. In this way, the

cumulative recombination rate can include the thickness of the wafer such that,

Rcum =
(∆p)W

τeff
(2.31)

where Rcum represents the cumulative recombination rate throughout the wafer in units of

cm−2s−1, ∆p is the excess number of holes generated in the n-type wafer due to illumination,

W is wafer thickness in cm, and finally τeff is the effective lifetime of the wafer. τeff repre-

sents the carrier recombination lifetime of all the recombination mechanisms added together,

thus producing a total effective lifetime. In general, the effective lifetime in any given region

of a cell is made up of components each representing the recombination lifetime associated

with a given mechanism,
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1

τeff
=

1

τSRH
+

1

τRad
+

1

τAug
+

1

τsurf
(2.32)

but in this discussion regarding a wafer with only intrinsic recombination processes we have,

1

τeff
=

1

τRad
+

1

τAug
(2.33)

For the case of band-to-band recombination, the recombination rate is proportional to the

product of the electron and hole concentrations. To show this, Rcum from equation 2.30 is cal-

culated from the effective lifetime data shown in Figure 2.10 and then plotted (in Figure 2.11)

against the term pn/n2
i , which is known as the normalized pn product.

Figure 2.11: Plot of the lifetime of a 180 µm thick wafer with ND = 1x10−16cm−3.

As can be seen Figure 2.11 the plot with the blue data points represents the cumulative re-

combination rate. Because ni, from Eq. 2.33, is a constant value (at a particular temperature,
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assumed here to be 300K), the cumulative recombination rate is proportional to the product

of the concentration of the electrons and holes. This is with the exception of the recombina-

tion rate at higher values of the pn product, corresponding to high concentrations of, in this

case, holes. The equation of the fit line,

Rcum =
R0pn

n2
i

(2.34)

shows that over a wide range of carrier densities, the recombination can be fit by a factor R0.

For the data shown in Figure 2.11, a good fit is found for R0 = 7.39 × 104cm−2s−1. When R0

is multiplied by the electron charge, q, units of C
s·cm2 are obtained. This can be interpreted as

a current density, J0, whose value in this case is 1.18 × 10−14A/cm2. The recombination in a

region of the device can then be treated as a current density, which for the given case, is for

an entire wafer with well passivated surfaces.

2.7 A Recombination Current Model of a Solar Cell

In this section, a cross sectional model of a n-type silicon solar cell is created. The purpose

here is to show that the various regions of a solar cell device each have their own recombina-

tion current density.

Figure 2.12 shows a cross sectional diagram of a modern n-type silicon solar cell with various

regions of the device labeled with different recombination current densities.

The term J0em refers to the recombination that occurs as a result of the metal interfacing with

the heavily doped region at the front of the cell known as the emitter. For an n-type cell, such

as that shown, the emitter region is doped with boron and so it is a p+ emitter. J0e refers to

the recombination occurring within the bulk of the emitter region and at its surface. J0b is the

recombination associated with the base or bulk of the solar cell, here doped with phosphorous

making it n-type. J0bsf refers to the back surface field region of the solar cell, doped n+ with

phosphorous, and like the emitter region, this term represents the recombination occurring

within the bulk of the BSF and at its surface. Finally, the term J0bsfm represents recombina-

tion occurring where metal makes contact to the the solar cell surface.
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Figure 2.12: Cross sectional model for a n-type solar cell with various regions labeled by re-
combination current density.

Mathematically, each of the J0 terms in Figure 2.12 can be summed together to create the

total J0 of the device,

J0 = fJ0em + J0e + J0b + J0bsf + fJ0bsfm (2.35)

The total J0 term is the same term that is used in equation 2.5 that places a limit on the Voc

of the solar cell. The f coefficients on the J0em and J0bsfm terms represents the fractional cov-

erage of metal on the front and back of the device respectively. For instance, if the total grid

coverage on the front of the device was 5% of the area, then f = 0.05 and for a cell with a full

area metal back contact f = 1. Equation 2.35 is a good approximation for most silicon solar

cells under normal operating conditions, but there are exceptions where this model may not

hold [28].

Each of the terms in equation 2.34 can be further broken down into radiative, surface, SRH,

or Auger recombination components in the region described that recombination current den-

sity term. The term of most importance for the work in this dissertation is that of J0e. In

terms of the fundamental recombination components, J0e can be expressed as,

J0e = J0erad + J0eSRH + J0eAug + J0esurf (2.36)
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Emitters are heavily doped regions, and therefore a few of the terms in equation 2.35 can be

neglected. These include J0erad and J0eSRH . This leaves two terms which have to be mini-

mized to reduce overall J0e. That is the Auger component of the recombination and the sur-

face component. In this dissertation, the auger component is reduced by inactivation of the

boron atoms in the emitter by atomic hydrogen and the surface component is reduced through

excellent passivation provided by quinhydrone-methanol.

2.8 Summary

This section was concerned with introducing the reader to the operation of a silicon solar cell

with regard to the the recombination current density. The efficiency of the cell is linked to

J0 through the open circuit voltage. Lowering J0 results in an voltage boost and efficiency

increase for the cell. It was shown that the components of concern in the emitter region are

Auger recombination and the surface recombination component.
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Chapter 3

Methods of Characterization and Data Analysis

Many characterization techniques were used in this dissertation. This chapter provides an

overview of each of the inclusive methods so as to familiarize the reader with how results were

obtained. These descriptions are not meant to be exhaustive, but are meant to provide a solid

(at least conceptual) understanding of each method. Overviews of experimental methods are

presented in the respective section where experimental results are contained.

3.1 Photoconductance Lifetime Spectroscopy

Photoconductance Lifetime (PC-τ) Spectroscopy is a method of illuminating a sample while

either simultaneously measuring its photoconductance or measuring photocondcutance as the

generated light decays in the sample. The setup for such a measurement is shown in Figure

3.1, which shows the Sinton Instruments WCT-120 Photoconductance Lifetime measurement

tool. The setup includes a platform on top of which a sample is placed. Inside this platform,

proprietary electronics are contained that inductively measure the samples photocondcutance

via an eddy current sensor that is housed in the measurement platform. Above the platform

and sample there is a flash lamp, capable of producing an intensity of light many times the

sun’s intensity on earth. This equipment, coupled with a CPU, allows for measurement of the

effective lifetime, recombination current density of the emitter, J0e, and the resistivity of the

sample under test.

A bridge circuit inside the platform is connected to an inductive coil and RF generator. The

generator operates at a frequency so as to ensure the full penetration of the resulting field

formed from the energized coil into the wafer. A NIST traceable photodetector sits on top

of the platform and serves the dual purpose of sensing when the lamp has flashed and also

detecting the intensity of the light in units of suns. The bridge circuit measures a voltage pro-

duced by the inductive coil. This measured voltage changes in the presence of a sample above

the coil, as the sheet conductivity of the sample can alter the voltage of the measurement coil.

The instrument has three different modes of operation: the transient mode, the quasi-steady-
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Figure 3.1: Photograph showing the Sinton Instruments WCT-120 Photoconductance Lifetime
measurement tool.

state (QSS) mode, and the generalized mode. Each of these modes is selected as an option

in the software that is used with the WCT-120. The different modes rely upon different flash

lifetimes, that is, the amount of time that the flash of light from the lamp lasts. In the QSS

mode, the decay of the light from the lamp should be at least 10 times slower than the carrier

lifetime in the sample under test [29]. For the transient mode, a short light pulse is used that

has a total duration of 100-200 µsec. In this case, the system relies upon the generated carri-

ers in the material lasting longer than the length of the flash. For a valid transient measure-

ment, the lifetime of the carriers must be greater than 100 µsec. The user is required to ad-

just the lamp flash settings manually, depending on which mode is used. The different modes

correspond to different models that are applied to the measured coil voltage that allow extrac-

tion of key parameters. The most general version of the applied models is in the generalized

34



mode. To obtain the model from which the effective lifetime is obtained, the continuity equa-

tion for semiconductors is used [30]

∂∆n

∂t
= G− U +

1

q
∇J. (3.1)

In equation 3.1, ∆n represents the number of excess minority carriers that are generated due

to the illumination, G is the photogeneration from the flash lamp, U represents the recombi-

nation rate, q is the elementary charge, and J is the current density (electron in this case).

The light from the flash lamp of the WCT-120 is filtered through a IR-pass filter plate. This

ensures that the light the sample under test is exposed to, uniformly illuminates the sample

over its depth, ensuring uniform photogeneration. If it is assumed that the sample has per-

fect surface passivation, then the carrier density inside the material will be uniform over the

sample depth. In this case, the last term in equation 3.1 can be removed, leaving,

∂∆n

∂t
= G− U. (3.2)

The well known relationship between carrier lifetime (τ), the excess carrier density, and the

recombination rate[18],

U = ∆n/τ (3.3)

can be inserted into Equation 3.1. This results in,

∂∆n

∂t
= G− ∆n

τ
. (3.4)

which replacing τ with τeff and performing some algebraic manipulation results in,

τeff (∆n) =
∆n(t)

G(t)− d∆n(t)
dt

. (3.5)

Now depending on how long the flash from the lamp above the WCT-120 lasts, leads to either

the QSS or trasient mode of operation. If the total amount of photogeneration, G(t) is much
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greater than the time rate of change of the excess carrier density (G(t) >> δn
dt

), then equation

3.5 is simplifies to,

τeff (∆n) =
∆n(t)

G(t)
(3.6)

which is the model used in the QSS mode. For the transient mode, the flash is much shorter

and therefore the change in excess carrier density within in the sample is much larger than the

photogeneration (G(t) << δn
dt

). This causes equation 3.5 to simplify to,

τeff (∆n) =
∆n(t)
d∆n(t)
dt

. (3.7)

which is valid for the transient mode of operation. The lifetime of the flash length is measured

by the NIST traceable photocondcutor in the WCT-120 measurement platform. The gener-

ation in the material is assumed to only change depending on the finish of the surface and

thickness of the sample. An optical constant factor, fopt, adjusts the amount of measured gen-

eration for use in the model. For the WCT-120, a value of fopt = 1 corresponds to a wafer

that would create a current density of 38 mA/cm2, whereas a sample with a highly reflected

polished surface would be assigned an optical constant of 0.7. The transient mode of opera-

tion does not require measurement of the G(t), and in this case, the photoconductor simply

serves as a trigger to notify the software when the flash lamp has turned on.

The remaining factor to determine in equations 3.5, 3.6, or 3.7 to obtain the term τeff is that

of the excess carrier density ∆n(t). This is where the eddy current sensor and RF bridge cir-

cuit come into play. When the sample is illuminated, its photocondcutivity, σL changes due

to the generation of excess electron-hole pairs. The RF bridge circuit measures the sample

during the duration of the decay of the lamp flash. This measured bridge voltage is fit with a

quadratic function against the wafer conductivity, but for most measurement ranges of inter-

est this output is linear and is approximated by,

σL = KBVB (3.8)
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where KB is a constant of proportionality for a linear fit to the measured bridge voltage VB.

The photoconductance σL can be related to the wafer thickness, wafer mobility, and average

minority carrier density according to [31],

σL = q(µn + µp)∆navW (3.9)

The average carrier density ∆nav is calculated based upon the measured voltage, and the mo-

bility values (µn and µp) are assumed to be known based upon tabular values from the liter-

ature and W is the sample thickness (in cm). The effective lifetime of the wafer can then be

calculated according to the equation,

τeff =
σL

Jph[µn + µp]W
(3.10)

where Jph is a current density representing the amount of generation in the sample, due to the

term qG. The term qG is found when solving for ∆n in equation 3.9 and then plugging it into

equation 3.6. This solution is valid for the QSS mode of operation. For the transient mode of

operation the average carrier density is calculated from the illuminated photoconductivity, σL,

given in equation 3.9. This carrier density is then divided by its rate of change with time as

given by equation 3.7.

3.1.1 Extraction of Bulk Lifetime and Surface Recombination

The carrier lifetime is one of the most, if not the most, important parameter for creating de-

vices, specifically silicon solar cells. The carrier lifetime is sensitive to the temperature of pro-

cessing conditions that the silicon samples are exposed to. To that end, it can be useful to

characterize the bulk lifetime of wafers before and after a process. A key way to do this is us-

ing PC-τ measurements. For a bulk silicon wafer featuring no diffusions on either surface a

simple model can be created to describe the total effective lifetime of the wafer. This model

is,

1

τeff
=

1

τbulk
+

2S

W
. (3.11)
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Figure 3.2: Graphic depicting the bulk of a silicon wafer and its two surfaces from which the
effective lifetime can be found.

Equation 3.11 mathematically describes what is shown in Figure 3.2, a graphic of a silicon

wafer having a lifetime described by its bulk properties and then a surface recombination ve-

locity (SRV) term for each of its surfaces. The fact that the sample has two surfaces leads to

the last term of equation 3.11. It is assumed, in this case, that the SRV of the front and back

surfaces is equal. It is necessary to remove either τbulk or S so that the measured τeff gives us

either the surface or bulk contribution. A standard measurement method is to assume that

τbulk is high, such that the term 1
τbulk

can be neglected [32]. This method is valid when using

wafers that are known to have high bulk lifetimes, such as FZ silicon. If the bulk lifetime is

high, then the bulk term in equation 3.11 becomes negligible, and the measured effective life-

time is essentially equal front and back SRV. Obviously, the lower the actual bulk lifetime is

in this method, more error will be introduced into the measurement of the surface lifetime.

This also only works assuming that the diffusion length of the generated carriers exceeds that

of the wafer thickness, W . If this condition is met, then carriers that are generated in the

bulk of the silicon can diffuse toward the surface, and therefore, the recombination activity

is sampled with the eddy current sensor. The diffusion length of the generated carriers in sili-

con can be calculated assuming a known diffusivity for the carriers and a known lifetime. The

equation for calculating the diffusion length is [18],

L =
√
Dτ. (3.12)
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This equation can be applied to either electrons or holes as a minority carriers in either p-type

or n-type silicon. Since the silicon used in this dissertation is all n-type, the focus here will

be on the diffusion length of holes in the bulk of an n-type silicon wafer. A good estimate for

the diffusivity of holes in silicon at 300 K is around 12 cm2/sec. Taking this value for D in

equation 3.12 a plot of diffusion length versus lifetime can be generated. Figure 3.3 shows a

plot of the diffusion length against lifetime with a value of 12 cm2/sec for hole diffusivity.

Figure 3.3: Plot of diffusion length against lifetime from equation 3.12, assuming a fixed value
of D = 12 cm2/sec for minority holes in n-type silicon.

Figure 3.3 also shows a horizontal line that represents the thickness of an average industrial

silicon wafer, 180 µm. The intersection of the wafer thickness with the black line that repre-

sents diffusion length, gives the minimum lifetime that a wafer could possess in order for the

generated carriers to diffuse and reach the surface. For a typical 180 µm wafer, this is found

to be around 30 µsec, a quantity that is much less than the typical n-type wafer lifetime.
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To extract the bulk lifetime, one must make the S term as small as possible so that it can ne-

glected. The preferred method of extraction τbulk is by applying a dielectric coating that gives

very low SRV enabling for extraction of τbulk. This is accepted and practiced in solar research

[32]. Common coatings include silicon dioxide (grown thermally) and silicon nitride (typically

deposited using plasma enhanced chemical vapor deposition) [33]. Other methods use a liq-

uid passivant such as hydrofluoric acid or (as in this dissertation) quinhydrone-methanol [34].

These liquid solutions do not provide a permanent solution to the issue of surface passivation.

However, they can be used as diagnostic tools in evaluating the bulk lifetime of wafers. The

bulk lifetime of the wafer can be broken into each of its recombination components such that,

1

τbulk
=

1

τrad
+

1

τSRH
+

1

τAug
(3.13)

where τrad refers to the lifetime due to radiative recombination, τSRH , represents the lifetime

due to SRH recombination, and τAug represents the lifetime due to Auger recombination. In

general, a measurement of the bulk lifetime (assuming excellent surface passivation so S is

very small if not zero) is a measure of each of these components. Figure 3.4 shows a plot of

the effective lifetime of a n-type wafer that is doped with phosphorous and has a resistivity of

4.58 Ω− cm.

The lifetime versus minority carrier density plot shown in Figure 3.4, shows the effective life-

time (thick black line) with each of its components plotted. With perfect surface passiva-

tion in place (S = 0), then this plot represents equation 3.13 where the effective lifetime is

the same as the bulk lifetime. Notice how at lower carrier densities the lifetime is controlled

by the SRH mechanism of recombination. At higher minority carrier densities the dominant

mechanism becomes Auger recombination. The radiative recombination would only play an

impact at lower carrier densities when SRH recombination is negligible. The plot was gener-

ated using the recombination calculator by PV Lighthouse [35]. When measuring the lifetime

of a wafer with the WCT-120 lifetime tester, the effective lifetime plot in Figure 3.4, resembles

what might be obtained from a measurement assuming the measured injection range was from

1×1012 cm−3 to 1×1017 cm−3.
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Figure 3.4: Lifetime versus minority carrier density for a n-type Si wafer showing how the
bulk lifetime (effective) without surface recombination is made up of each recombination com-
ponent.

3.1.2 Measurement of Emitter Saturation Current Density

If a bulk sample is prepared in such a way so as to introduce a diffusion, then the doping con-

centration throughout the sample is no longer uniform. This means that different recombina-

tion mechanisms are present in the diffused region and the wafer bulk. It is of value to quan-

tify the level of recombination in the diffused regions where Auger processes are more dom-

inant. For wafers with high bulk lifetime and sufficient surface passivation, Auger processes

in the heavily doped areas will limit the Voc and, thus, the efficiency [36]. Because of the im-

portance of controlling recombination in the diffused regions, Kane and Swanson developed a

method of measuring the recombination in 1985 [37].

A graphic describing the test structure used to determine the J0e, or emitter saturation cur-

rent density, is given in Figure 3.5, which shows a silicon sample having a high injection life-
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time τhli (where hli refers to high level injection) and two surfaces which have received diffu-

sions, denoted by J0front and J0back. It should be noted that the terms J0front and J0back are

representative of J0e. In addition, the term τhli describes the bulk lifetime of the wafer under

high level injection conditions (which for an n-type wafer is satisfied by p >> n0, where p is

the concentration of holes and n0 the concentration of electrons.)

Figure 3.5: Graphic showing the test structure used to extract J0e measurements. The arrow
denotes the boundaries for the mathematical analysis of the structure.

By putting diffusions on both sides of a sample, the recombination current density (J0e) signal

is doubled, thus increasing the signal to noise ratio of the measurement. To explain this char-

acterization technique, the method of Kane and Swanson is followed [37]. In that paper, the

authors assume that one wafer surface has no diffusion, but is passivated with an oxide having

a surface recombination, s. In general though, the diffusions on both sides do not change how

J0e is extracted.

The sample is assumed to be measured under QSS conditions. In steady-state one can write

that the spatially varying current density is equivalent to the net recombination less genera-

tion,

1

q

dJe
dx

= U −G (3.14)

where q is the elementary charge (1.6×10−19 C), J represents the current density of the gen-

erated minority carriers, U represents the net recombination rate in the wafer, and G rep-
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resents a time dependent generation term. Equation 3.3. can be substituted in for U and

G = dn/dt (representing a generation of carriers with time),

1

q

dJ

dx
=

∆n

τ
− dn

dt
. (3.15)

Assuming that diffusion currents are the only currents that exist after generation has stopped,

one can substitute J = qD dn
dx

into equation 3.15 and up with,

dn

dt
=

∆n

τ
+Damb

d2n

dx2
(3.16)

According to Kane and Swanson boundary conditions can be applied at the bulk side of the

J0 regions [37],

−J(W−) = J0e
p(W−)n(W−)− n2

i

n2
i

= −qDamb
dn

dx
|x=W− . (3.17)

In equation 3.16, the current into the region marked by J(W−) (the bulk side of J0back in Fig-

ure 3.5), is equivalent to the ambipolar diffusivity of the carriers, Damb, times the spatially

varying carrier concentration dn
dx

evaluated at bulk side of W . This is a diffusion current from

the bulk into the diffused region. The term
p(W−)n(W−)−n2

i

n2
i

, represents the recombination, np,

at the edge of the diffused region. This is similar to the derivation carried out in Chapter 2

following that of [28]. At the boundary where x = 0 a similiar condition can be derived (as-

suming the diffused regions to be symmetrical),

−J(0) = J0e
p(0)n(0)− n2

i

n2
i

= −qDamb
dn

dx
|x=0. (3.18)

where all the terms have the same meaning as before, except that now generated carriers from

the bulk are arriving at the x = 0 interface. The bulk is assumed to be in high level injection

meaning, p = n >> n2
i , such that,

−J(0) = J0e
n(0)2

n2
i

(3.19)
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and

−J(W−) = J0e
n(W−)2

n2
i

. (3.20)

These boundary conditions are both non-linear with respect to the carrier concentration, n,

and therefore a numerical solution is required. Kane and Swanson carried this out with the

major conclusion being that when
√

(Dambτhli) >> W , then the carrier density becomes uni-

form after a few transit times across the wafer [37]. The diffused regions are very narrow and

therefore any signal measured by an eddy current sensor in QSS mode (see previous sections),

will be mostly from the base. The generation is in the bulk of the sample, but the carrier den-

sity becomes uniform throughout the sample with the respective recombination mechanisms in

the bulk and diffused region of the sample under test. This allows for n(0) = n(W−) = navg,

which is the average carrier density sampled by the WCT-120. The total recombination is

then written,

Jrec = −qW navg
dt

= qW
navg
τhli

+ 2J0e

n2
avg

n2
i

(3.21)

where q has its previous meaning, W is the sample thickness (less the diffused regions) as

shown in Figure 3.5, navg is the sampled carrier density, τhli is the lifetime of the bulk region

under high injection. Again following Kane and Swanson, a solution to equation 3.21 is [37],

navg(t) =
navg(0)e−t/τeff

1 + c(1− e−t/τeff )
(3.22)

with c being equal to,

c =
J0eτeffn(0)avg

qWn2
i

(3.23)

and from equation 3.11,

1

τeff
=

1

τhli
+

s

W
. (3.24)
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If the sample represented in Figure 3.5 has no diffusions such that J0e = 0, then c = 0, and

equation 3.22 reduces to,

navg(t) = navg(0)e−t/τeff . (3.25)

However, in the case that J0e is large (which should be the case since the bulk is in high level

injection), then the reciprocal of the effective lifetime, τeff can be plotted against the gener-

ated minority carrier density. The effective lifetime in this case will be,

1

τeff
=

1

τbulk
+

2J0enavg
qn2

iW
(3.26)

where τhli in the previous equations has been replaced by τbulk [29]. Following from equation

3.13,

1

τeff
=

1

τrad
+

1

τSRH
+

1

τAug
+

2J0enavg
qn2

iW
(3.27)

It is reasonable to neglect the τrad term as the radiative recombination term is very large in

silicon (see Figure 3.4). Next, the auger recombination is subtracted out of the measured τeff .

Auger recombination is parameterized according to empirical models so that this is possible.

The term 1
τeff
− 1

τAug
is then equal to,

1

τeff
− 1

τAug
=

1

τSRH
+

2J0enavg
qn2

iW
. (3.28)

Equation 3.28 is then plotted against the measured minority carrier density in the sample.

This produces a linear plot with the intercept being an estimate of the bulk lifetime in high

level injection due to SRH recombination, and the slope of the line being related to J0e and

the material constants, q, W , and n2
i all maintaining their previous meanings. Figure 3.6 shows

equation 3.28 plotted for a symmetrically diffused sample measured by the WCT-120 lifetime

tester.

The slope of the fit line (black dots) in Figure 3.6 is found to be 2 × 10−13, which when using
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Figure 3.6: Inverse lifetime plot showing the linear output from a diffused sample as measured
by the WCT-120. The slope is used to calculate the J0e.

the equation,

slope =
2J0e

qn2
iW

(3.29)

allows for determination of J0e. The quantity navg in this case corresponds to the quantity

Ndop + ∆n, where Ndop is the doping density of the bulk of the sample being tested [29]. In

this particular case, a wafer with a thickness of W = 0.0260 cm and Ndop equal to 1.3 × 1014,

the calculated J0e = 58.1 fA/cm2. This calculation used a value of ni = 9.65x109cm−3 as it

has been determined by [38].
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3.1.3 Calibration of the WCT-120

The measure of the photoconductance of a silicon sample under test is key to the operation

of the WCT-120 lifetime tester. This is true whether a bulk lifetime is being sampled in the

transient mode, or the if the QSS mode is used for extraction of J0e. In order to extract an

accurate photoconductance measurement, the tool requires calibration. Calibration is per-

formed for both the photoconductor sensor and the RF sensor housed in the platform of the

tool. The photocondcutor for the WCT-120 is measured with a one-sun source and calibrated

light sensor [29].

The RF sensor requires calibration in order to assure that the measured coil voltages are ac-

curate for determining measured sheet resistances (photoconductances). In order to calibrate

the RF sensor a set of NIST traceable calibration wafers are utilized. The wafers are 4” SEMI

standard wafers possessing a range of sheet resistance values. The calibration procedure re-

quires that at least 4 wafers are used. The wafer conductance is then plotted against the RF

bridge voltage less the air voltage. From this plot, a quadratic fit is used to determined 3 cali-

bration parameters, A, B, and C. The calibration curve can then be used to convert the mea-

sured voltages to the conductivity according to the equation [29],

σ = A(V − C)2 +B(V − C) (3.30)

where A, B, and C are the aforementioned fit parameters, V is the measured voltage, and σ

is the sampled conductivity. Changes in temperature can shift this calibration curve, due to

changing properties of the coil. Therefore, the quantity V is equation 3.30 is the measured

RF bridge voltage less an air voltage, the voltage of the coil with no sample in place. This

normalizes the calibration curve to temperature shifts and makes data collection more robust.

In addition, the measurement platform maintains 25◦C as a temperature set point for making

measurements.

For the work in this dissertation, the above calibration procedure had to be carried out with

a plastic dish on the measurement platform. The reason for this is that a plastic dish ended

up being the preferred method of containing the liquid quinhydrone-methanol, which was used
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for surface passivation of the samples (to extract τbulk and J0e). The plastic dish places a dis-

tance between where the sample would normally sit on the measurement platform. Therefore,

it was deemed necessary to calibrate the RF bridge voltages with the plastic dish in place,

so that the measured voltages took into account the extra distance. The procedure for cali-

brating with the dish in place was no different than the standard procedure, other than, the

calibration wafers were placed in the dish and the procedure was carried out. This produced a

different set of fit parameters, A, B, and C, that were then stored for use any time the plastic

dish was used with a measurement.

3.2 The Four Point Probe Method

The Four Point Probe method uses four probes, two voltage probes and two current probes,

to measured the sheet resistance of a semiconductor material. Figure 3.7 shows the setup used

to measure the sheet resistance.

Figure 3.7: Image showing the current and voltage probes used in for a four point probe mea-
surement

A good overview and derivation of the four point probe operation is outlined in [39]. The rele-

vant equation that comes from the four point probe method derivation is:

ρ = 2πsFV/I (3.31)
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where s represents the spacing of the probes, F is a geometrical correction factor necessary

finite geometry, and the voltage and current are as measured. This equation works well for

uniformly doped semiconductor samples. The value in using four probes is best explained by

referring the circuit schematic of Figure 3.8.

Figure 3.8: Circuit schematic explaining why a four point method is preferred over a two
point probe method

Typically, a measurement might involve the use of just two probes, but the circuit schematic

of Figure 3.8 shows 2 contacts from the current source as well as two from the voltage source.

There are a total of four connections to the DUT (device under test). There are also four

additional Rw or wire resistances. The voltage measurement features a very high impedance

source, and therefore, the current in the voltage leads is negligible. This allows for the Rw and

Rc values to be neglected and gives us a true measurement of the voltage of the DUT. The

series current in the outer loop is all that is of interest and is not altered due to voltage drops.

As mentioned, an adjustment is necessary to properly measure the sheet values of a non-uniform

layer. An example of a non-uniform layer is that of a boron diffusion profile. For a uniformly

doped semiconductor samples we obtain the sheet resistance from

Rsh =
ρ

t
(3.32)

where ρ is equivalent to the sample resistivity and t is the sample thickness. The change in
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this equation for non-uniformly doped regions comes from a change in the ρ. ρ now varies

with the non-uniform doping profile resulting in,

Rsh =
1

ρdx
(3.33)

where t represents the thickness of the non-uniformly doped area and ρ is the resistivity at

each slice of the sample dx. The sheet resistance is a useful specification for device designs,

but does not quite help in describing the overall shape of a doping profile that would occur at

the surface such as that that would be in a solar cell. For that methods capable of profiling

the doping level with depth are necessary.

3.3 Electrochemical Capacitance Voltage Profiling

Electrochemical Capacitance Voltage (ECV) profiling is a method that uses a chemical elec-

trolyte that simultaneously forms a junction with a semiconductor surface while also having

the ability to etch away the semiconductor. The junction formed can be described using as a

Schottky barrier and the standard application of depletion region analysis allows for the ex-

traction of doping concentration via the measured capacitance value. This section describes

how the ECV measurement is performed and how doping concentration versus depth informa-

tion can be obtained. The discussion focuses on Si as this is pertinent to this dissertation.

For an ECV measurement, modern tool sets equipped with pumps and a system of etch re-

sistance tubes guide a liquid solution (electrolyte) to a silicon surface. Referring to Figure

3.9, the electrolyte is contained within a sealing ring that provides a leak proof, or nearly leak

proof, seal against the silicon surface. The electrolyte contains ions and when a positive volt-

age is applied to the electrolyte, positive ions are attracted to the electrolyte/silicon inter-

face. The buildup of holes at the surface is a familiar phenomenon as when a metal is placed

in contact with the silicon. As seen in Figure 3.10, the positive ions at the electrolyte/silicon

interface act to “deplete” or push away majority carrier holes in the p-type Si. The case of

p-type silicon is discussed as it is most relevant to the boron doped silicon studied in this dis-

sertation.

50



Figure 3.9: Image showing a sealing ring containing electrolyte in contact with a diffused layer
on top of a wafer bulk. The system can be modeled with a standard circuit.

With the electrolyte in contact with the Si, it is useful to model the system using a circuit as

shown in Figure 3.9. Though pictured is a parallel model, the circuit can be changed to a se-

ries model or a 3-term model. Additional resistances might be present as well, especially true

of samples where a layer exists above the substrate. This is shown in Figure 3.9 as a diffused

layer, with series resistance, Rs, leading to two metal contact probes. The metal probes allow

contact to the semiconductor surface for extraction of current density (JV) and capacitance-

voltage (CV) parameters.

Typically, a JV measurement is performed to verify the contact quality of the probes. The JV

curve resembles a diode curve. It is from this curve that a suitable value for the etch voltage

can be obtained. Following JV measurement, one then can collect a CV curve. The CV curve,

1/C2 curve, and dissipation factor curve are all plotted. If the sample conforms to a Schot-

tky diode, then plotted CV curves for each of the 3 mentioned circuit models will converge

together. The 1/C2 will be linear in the region of voltage where depletion is established. It is

in this region that one selects a voltage to be used as the measurement voltage.

Silicon is a bit of an oddity when it comes to the ECV measurement. One reason for this is

that the dissolution valency is not well defined [40]. The dissolution valency refers to the num-

ber of ions participating in the etch process. In addition, hydrogen bubbles can form and ob-

51



Figure 3.10: A conceptual band structure diagram showing how the positive ions in the elec-
trolyte, deplete the semiconductor. The capacitance of this depletion area of with Wd is mea-
sured for doping extraction.

scure measurement. The hydrogen bubble problem is resolved by agitating the solution. An-

other interesting aspect about measuring silicon is that it requires a different etching mech-

anisms as compared to its direct band gap counterparts [41]. The method, known as pulse

anodization, is shown in Figure 3.11. Essentially, a high etch current value is applied to the

silicon that causes oxidation. The growth of the oxide exponentially reduces the current as the

oxide thickness grows. After some pre-determined current or time limit, the current is turned

off, and the electrolyte solution is allowed to circulate and remove the silicon oxide. This pro-

cess can lead to etch times of about 1 µm/hour. It also tends to cause an underestimate of

profile depths which is resolved by post-processing the data.

ECV is useful in that it is a relatively fast and inexpensive way to obtain doping profiles, es-

pecially of boron doping, in silicon. There are disadvantages in that certain surface conditions

can cause deviations from the ideal Schottky behavior, which sometimes compromises the CV

data, and therefore makes profile extraction erroneous or impossible altogether. In addition,

the measurement voltage is dependent upon the doping concentration in Si. This can place

limits on the applicable resolution that can make measurement of lowly doped samples diffi-

cult.

52



Figure 3.11: Graphical illustration of Pulsed Anodization concept. The blue horizontal arrows
represent phase for silicon oxide growth. The red horizontal arrows represent a phase where
the grown oxide is etched away.

3.4 Spreading Resistance Profiling

Spreading Resistance Profiling (SRP) is a method of obtaining dopant information versus

depth from a sample by measuring the spreading resistance of two probes. The depth mea-

surement is possible because the sample is beveled in a way so as to produce a steep angle

from the surface as shown in Figure 3.12.

The spreading resistance term comes from the spreading of current from the probe tip as

shown in Figure 3.12. The equation that governs measurement of the spreading resistance is,

R = 2Rp + 2Rc + 2Rsp (3.34)

where Rp is the resistance of the probe, Rc is the contact resistance the probe makes against

the sample, and Rsp is the spreading resistance. The multiplier of 2 comes from the fact that

there are 2 probes. The Rsp has been determined by comparison to FPP measurements [42]
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Figure 3.12: (Left) Diagram showing how a sample is beveled and two probes are placed on
the bevel for measurement. The dashed lines represents the path taken by the probes to mea-
sure the spreading resistance. (Right) A diagram illustrating the resistances present in one
probe.

which has resulted in,

Rsp =
ρ

4r
(3.35)

where r is the tip radius, and ρ is the resistivity of the underlying material. The two probes

are scanned down the bevel and measurements are made at each point. The resistance is then

compared to calibrated mobility data to determine doping concentrations. The precise control

of the probe scanning and angle of bevel allow for possible depth resolutions of 5-10 nm.

The SRP data provided in this dissertation comes from Solecon Laboratories. More details on

the exact methods use to measure the spreading resistance and apply post-processing analyt-

ics to the data to obtain doping profiles can be found in [43].

3.5 Light and Dark JV Characterization

The most common technique to characterize solar cells, of any type, is that of current-voltage

or, JV, characterization. Though the technique is referred to as a ”current”-voltage, the term

J is used as it is more useful to speak of a solar cell’s current density. This is because different

solar cells can be of different sizes and the current density allows for a more true comparison.

Here, an overview of the measurement system used in this dissertation is given. The reader

should direct their attention to Figure 3.13 for the remainder of this section.

In Figure 3.13 several components are shown. The most important is the black trapezoidal
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Figure 3.13: Block diagram overview of a JV measurement system complete with solar simula-
tor, chiller, vacuum pump, and SMU for sourcing and measuring current and voltage.

box with a sun symbol in the middle. This is meant to represent a solar simulator. Solar sim-

ulators use a specially designed Xenon bulb with a set of optical components to match the

optical output of the simulator to that of the actual sun. This light is cast upon a sample

stage or “chuck” on top of which rests two additional components, a reference cell and a cop-

per (Cu) plate. The reference cell is calibrated to maintain a specific cell output for various

illumination conditions. This is converted to a Sun number ranging from 0 (no output, dark)

to 1 (nominal intensity of the sun). The Cu plate serves as one contact for the back of the cell

and is actually sub-divided into two electrically distinct parts, one for a current contact and

the other for a voltage contact.

A chiller circulates cool water through the sample chuck to remove heat. This allows for the

system to maintain a constant temperature. The properties of a cell, namely the Voc, can

vary depending upon the temperature. The accuracy of the temperature in this case is about

0.1◦C. A vacuum pump is also used to gently hold the sample against the sample chuck.

Finally, a source measure unit (SMU) is used to both supply and measure current and volt-

age. To properly measure the device characteristics of the solar cell, a 4-wire setup is used. In
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this setup there are two voltage contacts, and two current contacts. The voltage connection

to the front side of the cell V+ is sometimes called a “sense” voltage. It’s purpose is to only

sample the voltage by making contact to top busbar or gridline of the solar cell. A current

contact, I+ is also made to the top of the device. For small cells, typically one current contact

is enough, however, for industrial size devices, it is necessary to sample the current along sev-

eral contact points of the busbar. This minimizes voltage drops that might otherwise impair

the measurement. The voltage and current contacts on the backside of the cell act as return

paths.

To carry out a measurement in the dark, a shutter is pulled over the simulator’s output. Then

the SMU supplies a voltage to the device and the resulting current flow is measured. For a

light measurement, the shutter is opened. This time the resulting current produced from the

absorption of light in the device is measured at each voltage point. This produces a set of

curves known as the dark and light JV curves.

The dark JV curve can give information about ideality factor and recombination mechanisms

in the device. The light JV curve can yield information regarding the cell efficiency, open cir-

cuit voltage, short circuit current, maximum current, and maximum voltage. The fill factor

(FF) can also be determined from the JV curve.

3.6 IQE/EQE

Solar cells must respond to a spectrum of light from the sun that contains multiple different

wavelengths of radiation. This includes UV components below 360 nm and even some infrared

up to 1100 nm (or about the bandgap of Si). To assess how individual wavelength components

of the spectrum are absorbed by the solar cell, a technique known as quantumn efficiency

(QE) can be used. There are two types of QE, internal quantumn efficiency (IQE) and ex-

ternal quantumn efficiency (EQE). Internal quantum efficiency takes in to account reflections

that occur at the front side of the device, which it discriminates against and does not consider

to be a loss. EQE assumes that this front reflection is a loss. It is typical for IQE to be higher

than EQE.
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Figure 3.14: Block diagram showing relevant components of a commercial IQE/EQE system.

The system used to measure IQE/EQE is shown as a block diagram in Figure 3.14. A broad-

band light source, such as a tungsten-halogen lamp is used. The light output from this lamp

goes through and optical filter wheel that is connected to a lock-in amplifier. The filter wheel

chops up the light output at a specified frequency that the lock-in amplifier ”locks on to”.

This helps to reduce noise in the measurement. The output from the filter wheel goes to a

monomchromator (MC). Inside the MC is a diffraction grating mounted on a motorized tur-

ret. The grating rotates to produce different outputs of light. This system can produce 320

nm to 1100 nm light output. The single wavelength light output then travels to a network of

detectors, first entering an optical component that splits up the intensity of the output beam

and directs it downward to a sample. Light is either absorbed or reflected from the surface

of the sample, which then is directed to the detector arms. Detector 1 measures the reflected

output from the device and detector 2 measures beam output from the source signal. In ad-

dition, an integrating sphere (IS) that contains a lambertian surface on the inside is used to

gather all diffuse reflectance. The IS allows for the IQE to be measured, as sample surfaces

can be optically rough, such that scattering prevents the reflected light from traveling in a di-

rect path back to the detectors.

In a typical scan, the user sets the wavelength range of interest. The system then scans through
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the wavelength range at intervals specified by a user set resolution (this system can go as low

as 10 nm). A CPU monitors the cell output and beam output from the detectors and formu-

lates the EQE. It can then use the gathered reflectance information to calculate the IQE.

3.7 Summary

This chapter reviewed all of the main experimental methods that were required to carry out

the research in this dissertation. Photoconductance spectroscopoy was introduced, and re-

viewed in detail as it is this method that allows for measurement of the emitter recombination

current density, J0e. In addition, dopant profiling methods ECV and SRP were covered. All of

these methods were used to characterize and design the experiments carried out in Chapters

4,5, and 6.
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Chapter 4

Quinhydrone-Methanol Surface Passivation of Bulk n-type Silicon

For this dissertation, there were two goals in working with Quinhydrone-Methanol (QM). One

goal was to demonstrate that the surface of silicon could be passivated to a high degree. The

second goal was to develop a method for evaluating the lifetime of the silicon wafer samples

used in this dissertation. The effective bulk lifetime of a material can be used as a purity

gauge and is the first step in determining whether or not a material is suitable for recombi-

nation current density testing. The characterization necessary to measure the bulk lifetime

also reveals information regarding the upper bound on the surface recombination velocity that

the QM provides to the silicon sample. In performing the experiments to validate the quality

of the bulk silicon and ability for QM to passivate the silicon, an additional study was under-

taken regarding the stability of the passivation and that is included here for discussion as well.

4.1 Quinhydrone-Methanol Passivation

Liquid solutions for surface passivation of silicon substrates have been shown to provide ex-

cellent passivation, albeit, for short durations of time. To that end, it was necessary to review

the literature to determine in what ways QM had been used and what characteristics it was

known to have. The following is a review of the current state of knowledge of QM passivation

applied to silicon wafers.

QM is an organic compound that is a 1:1 combination of hydroqunione and benzoquinone.

The first published use of QM solution to passivate silicon wafers was given by Takato et.

al. in 2003 [44] . In this work, the authors investigated the stability of passivation on var-

ious bulk substrates and compared it to another liquid passivant, iodine-ethanol (IE). The

next known study, again applied to bulk wafers, came from Chhabra et. al. [45]. This work

involved a study on high resistivity float-zone (FZ) n-type wafers and lower resistivity p-type

Czochralski (Cz) wafers. Bulk lifetimes as high as 3.3 msec (sampled at 1x1015 cm−3 excess

carriers) were measured. In addition, the stability of QM passivaiton was tested. Samples

were placed in a solution of QM, contained in a plastic bag, and measured using a WCT-120
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lifetime tester (as described in Chapter 2). Samples were then removed from the QM solution

and re-measured over a time period of several days. The passivating capability of the QM was

found to degrade significantly, with the sample having measured 3.3 msec, reducing to right

around 0.8 msec after 3 days of degradation. This degradation over time was attributed to the

oxidation of the silicon with oxygen atoms assuming to break the bond between the quinhy-

drone (QHY) molecule and the silicon surface. Researchers have shown that the active com-

ponent in the passivation process is linked to benzoquinone [46]. Still others, have shown that

the passivation quality is so good, that it can yield near perfect Schottky-Mott behavior be-

tween a Hg contact and a Si surface [47]. That is the junction formed between the Hg and Si

produces minimal band-bending near the surface providing an ohmic contact. Despite all of

QM benefits, it does have some drawbacks. For instance, the passivation does not last forever,

and the longest time it has actively passivated has been published to be less than 2000 min-

utes [48]. In addition, the repeatability of the measurement has been called into question, but

this seems to be overcome by careful and rigorous cleaning procedures [49].

The results provided in this section work to confirm those that exist in the literature in terms

of providing high quality surface passivation to silicon surfaces.

4.2 Bulk Lifetime Measurements and Surface Recombination Velocity

In order to passivate silicon substrates with QM it was necessary to first develop a systematic

method to do so. This involved discovering that a controlled removal of a layer of the silicon

where saw damage exists was needed. The saw damage is a 5-10 µm thick region at the sur-

faces of as-sawn silicon. As-sawed silicon refers to that silicon material that has had no sur-

face processing done to it. Typically silicon wafers are etched and polished before before being

purchased. In this work, the material that was used as all as-sawn material. In addition, be-

cause QM is a liquid solution, it was necessary to work out the best containment option for

making measurements. Finally it was required to take multiple lifetime measurements to ob-

serve trends that relate back to the objectives necessary for qualifying that QM can work to

passivate silicon.
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4.2.1 Saw Damage Removal

Most solar grade silicon is manufactured in a multiple step process that involves mining of sil-

icon oxide (quartz), extracting of the silicon, and refinement of the silicon to electronic quality

[50]. It is during refinement that the silicon is pulled into a large crystal boule in the Cz pro-

cess. To obtain single wafers, a diamond wire saw is used to dice out wafers of a particular

thickness from the boule. In doing so, one can obtain wafers, but not without a sub-surface

volume that is populated by micro-cracks generated during the sawing process. An image vi-

sualizing this idea is shown in Figure 4.1.

Figure 4.1: Illustration of bulk silicon with saw damage acting as a high SRV layer on either
side fo the wafer.

This surface layer of “saw damage” is typically on the order of 5-10 µm thick and acts to in-

hibit passivation of the silicon surface [50]. In order to remove such regions in the wafer, wet

chemical etching is typically used. In a solar cell manufacturing process, this etching step also

forms random pyramids at the surface that act to reduce reflections improving the optical

characteristics of the cell. However, in this work, an isotropic etch was sought after in order

to keep the surface as planar as was practically possible. A planar surface provides for simpler

experimental observations and results. A review of the literature showed a viable candidate

for such an etch process was a combination of hydrofluoric and nitric acid with water [51].

Further review revealed that the combination of hydroflouric and nitric acid was a standard

method used to produce a “shiny etch” effect, named as it produces a mirror like wafer sur-

face [32]. This type of etch is standard in solar research to produce a planar surface for passi-
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vation measurement and experiment.

It was not immediately obvious from the literature what ratios of HF and HNO3 would pro-

duce the desired etch rate of silicon. In initial trials, silicon samples that were 200 µm thick

were etched completely in a few minutes. The etch solution would quickly go from a clear so-

lution to a deep yellow to deep red solution and produce a thick cloud of fumes. Due to safety

concerns, this etch process was not repeated and the literature was again consulted to deter-

mine the best way to remove saw damage from the silicon wafer.

The addition of acetic acid in place of H2O in a HF+HNO3 solution prevents the formation of

NO3 or NO2 and also acts to wet the silicon surface for a more uniform etch [52]. It was then

decided to include acetic acid in trial etches to determine the etch rate of silicon. The com-

bination of HF, HNO3, and CH3COOH is termed an HNA etch. An etching trial was carried

out with a mixture ratio of 10:1:2 HNO3:HF:CH3COOH with the results shown in Figure 4.2.

The approximate etch rate of the solution on Cz silicon was determined by taking the slope

of the fit lines shown in Figure 4.2. The etch rate was found to be about 4.4 µm/min. to 5.12

µm/min. This rate was deemed satisfactory for a saw damage etch as it removes about 20 µm

of material in about 3.9 to 4.5 minutes.

Another viable etching solution was trialed which involved the use of tetrameythl ammonium

hydroxide (TMAH). This was determined to be another etchant of silicon after reviewing the

work of Grant et. al. [53]. In that work, samples were submitted to a variety of chemical so-

lutions including TMAH, HF:HNO3 (combination of hydrofluoric and nitric acid), RCA-2 (a

combination of water, hydrogen peroxide, and hydrchloric acid), HNO3 (nitric acid), RCA-1

(traditionally a combination of water and ammonium hydroxide), and H2SO4 (sulfuric acid).

The samples were then immersed in HF acid following a special procedure [54]. Measured of

the wafer lifetime were taken using the WCT-120 lifetime tester. It was found that a TMAH

etch acted to provide the best chemical treatment to the surface of the silicon to enable high

passivation in HF. This better passivation was attributed to the fact that the TMAH etch-

ing turns a <100> surface partially into a <111> surface through some slight texturing. The

<111> silicon surface has a higher number of atoms than a <100> surface, and therefore, it
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Figure 4.2: Thickness of a silicon wafer sample versus time showing linear etch rate of 10:1:2
HNA solution.

was concluded that there is more surface area for hydrogen (from the HF) to stick to. It was

determined that the TMAH could provide an etch rate dependent on the temperature of the

etch solution.

The data in Figure 4.3 reveal the effects that saw damage can have on a wafer surface.

The data is shown for FZ material that was received in an ”as-sawn” condition and no pro-

cessing was performed on it before placing it in QM solution. Next, the sample was subjected

to a Piranha solution, which does etch the surface but only a few nanometers deep at most

[55]. Almost no change in the measured lifetime was observed, indicative of the fact that the

surface had high recombination given the flat measurement profile. Finally, after a 90◦C 25%

TMAH etch the lifetime of the sample is measured to be near 6 msec at 1x1015cm−3 revealing

that the saw damage had been removed from the sample. Without saw damage in place, the
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Figure 4.3: Lifetime measured on same sample with no processing, after a Piranha clean pro-
cess, and finally after etch in 90◦C 25% TMAH.

QM is able to passivate the surface of the silicon revealing the characteristics of its lifetime

curve without surface SRH effects.

4.2.2 Containment

An issue with choosing to use liquid passivation for silicon wafers is a means by which to con-

tain the liquid. Two obvious options for containment are chemically resistant plastic bags or

a plastic dish [45, 53]. Plastic bags have the advantage being thin enough so as not to place a

large distance between the sample and measurement platform of the WCT-120 lifetime tool.

This distance is important as the larger the distance, the larger the separation between the

measurement coil inside the platform, thus weakening the eddy current signal that develops

in the sample. Plastic dishes require recalibration of the WCT-120 to take into account the

increased separation between the sample under test and the measurement coil. Some key dis-

advantage to using plastic bags were found to be air bubbles in solution and the limitation of
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how much solution can be placed in the bag. This is best seen by examining Figure 4.4, which

shows the minority carrier density (MCD) vs. lifetime plot for two Cz silicon samples having

undergone the same cleaning processes and etch treatments. The only difference between the

two measurements is that one sample was measured in a plastic bag and the other was mea-

sured in a plastic dish placed on top of the measurement platform.

Figure 4.4: Comparison of transient photoconductance output between two samples having
been passivated in QM but with two different containment methods.

Of the two curves in Figure 4.4, the curve with the higher MCD range was measured in the

plastic dish. The curve with the shorter MCD range was measured in a plastic bag. This plot

is representative of the typical results that were obtained when using a plastic bag for contain-

ment or a plastic dish. Note that the plastic dish has a higher lifetime over the entire MCD

range and its MCD range is longer, giving more information about lifetime over the entire in-

jection level.
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In addition to the lifetime results, the method involving the use of a plastic bag to contain the

liquid QM and sample on the measurement platform was unreliable. It was often that the bag

would leak out the top or the bag would be punctured by the edge of the silicon, resulting in

a failed measurement. Therefore, for the sake of measurement reliability and consistency, the

standard method became to contain the sample and liquid passivation in a polypropylene dish

that would sit on top of the measurement platform. This was possible through re-calibration

of the constants used in the fitting routine in the WCT-120 lifetime tool, which was covered in

Chapter 2.

4.2.3 Lifetime Data and Discussion

One of the main goals in working with QM was to make sure that it was viable as surface pas-

sivation. This could be done through use of the WCT-120 lifetime measurement tool. Samples

that are poorly passivated have recombination dominated by the surface. In such a case, a

flat lifetime curve is obtained. A qualitative indication that a sample is passivated is that the

lifetime curve exhibits curvature that approaches the intrinsic recombination limits (radiative

and Auger) of that sample. The degree to which a sample was passivated (determination of

the surface recombination velocity (SRV)) was harder to determine, but was qualitatively de-

termined and an upper bound to the SRV was calculated.

During the course of work in this dissertation 18 sets of lifetime measurements were performed

on bulk silicon samples. Though the focus of this dissertation was on determining the effects

of hydrogenating a boron diffusion, it was necessary to validate the surface passivation method,

QM, on bulk silicon. The reason for this is two fold, previous research exists on the topic of

passivating bulk Si with QM and it removes the added complexity of the boron diffusion from

the sample. This allows for easier interpretation of the results. Table 4.1 provides a summary

of the types of sample that were measured, the nominal doping ranges of such samples, the

MCD at which the lifetime value was sampled, the maximum average effective lifetime value,

and a calculated upper bound to the surface recombination veloicty (SRV), SRVUB.

66



Summary of Sample Types

Type Doping (cm−3) MCD Max. Avg. τeff (msec) SRVUB (cm/sec)

FZ 1.11 - 1.48× 1014 2× 1015 4.424 3.16

Cz-1 1.55 - 5× 1015 2× 1015 1.511 5.79

Cz-2 4.5× 1014 − 5× 1015 1× 1015 0.311 24.12

Cz-3 4.5× 1014 − 5× 1015 1× 1015 0.505 17.82

The doping ranges provided in Table 4.1 reflect the nominal doping ranges of the materials

measured as taken from the material manufacturer. As per the explanation in Chapter 2, the

MCD represents a data point through which a fit is made to determine the effective lifetime

measurement. The effective lifetime values in Table 4.1 represent the average maximum life-

times for each type of material measured. In total, there were 2 FZ samples measured, 2 Cz-1

samples, 6 Cz-2 samples, and 8 Cz-3 samples measured. The process for measurement was

to place the samples in QM and take measurements for several minutes at one minute inter-

vals. This resulted in a collection of measurements for each material type and sample which is

considered a “set” of measurements. The maximum average lifetime was then determined by

taking an average over all the sets of measurements for each material.

In order to determine the upper bound on the SRV, the equation,

1

τeff
=

1

τbulk
+

2S

W
(4.1)

was used (the explanation of this equation is given in Chapter 2). Given a lifetime measure-

ment, if one assumes that the sample τbulk is infinite, then the measured effective lifetime τeff

will be entirely attributed to the SRV, S. This method provides a way to obtain the upper

bound of surface passivation [32]. The upper bound SRV obtained on the FZ silicon of 3.16

cm/sec is lower than that reported by literature [45] for a similar material. This provides the

evidence that the QM is a suitable passivation technique and shows that the method devel-

oped here to do so works.

The curves shown in Figure 4.5 provide the measured output from the WCT-120 with an ex-
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ample given for each of the measurements provided in Table 4.1. The highest value of lifetime

is near 10 msec for the FZ silicon, above 1 msec for the Cz-3 material, and Cz-2 and Cz-3 pro-

vide peak lifetimes around 0.4 msec. The Cz-1 and Cz-2 samples show lifetime curves char-

acteristic of SRH defects, which is why the effective lifetime decreases with a decrease in the

MCD. The FZ material actually is shown to possess fewer defects as one would expect out of

a FZ material given the higher purity of FZ manufacturing. Since all of these measurements

were conducted in QM it is likely that any defects captured are due to SRH recombination

and not just surface effects. Although, given that QM is not perfectly passivating the surfaces,

some of the measured effective lifetime might be due to the lack of surface passivation. Given

the upper bound SRV values in Table 4.1 it is assumed that these surface effects on the life-

time curves are minimal.

Figure 4.5: Comparison of transient photoconductance output between FZ and Cz silicon pas-
sivated with QM.
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The highest value of lifetime is near 10 msec for the FZ silicon, above 1 msec for the Cz-3 ma-

terial, and Cz-2 and Cz-3 provide peak lifetimes around 0.4 msec. The Cz-1 and Cz-2 sam-

ples show lifetime curves characteristic of SRH defects, which is why the effective lifetime de-

creases with a decrease in the MCD. The FZ material actually is shown to possess fewer de-

fects as one would expect out of a FZ material given the higher purity of FZ manufacturing.

Since all of these measurements were conducted in QM it is likely that any defects captured

are due to SRH recombination and not just surface effects. Although, given that QM is not

perfectly passivating the surfaces, some of the measured effective lifetime might be due to the

lack of surface passivation. Given the upper bound SRV values in Table 4.1 it is assumed that

these surface effects on the lifetime curves are minimal.

These measurements show that the samples are suitable for J0e measurements as the mea-

sured effective lifetimes yield diffusion lengths of around 1030 µm for Cz-1 and Cz-2, around

1944 µm for Cz-1, and a value of 3446 µm for the FZ material. These diffusion lengths are

much greater than the thicknesses of the materials which is around 180 µm for the Cz mate-

rial and is about 270 µm for the FZ material. This qualifies all of the material as suitable for

boron diffusion processes to extract J0e.

4.2.4 Stability of Quinhydrone-Methanol Passivation

In passivating several bulk samples with QM, observations were made about its stability over

time. It was known from the literature that the passivation would degrade when the sample

was taken out of solution [45]. Researchers suggested that this had to do with the oxygen

from the atmosphere breaking the QHY bond at the Si surface. Further research showed that

benzoquinone, a constituent of QHY, was shown to have degradation while samples remained

in the solution, again attributed to oxidation of the silicon [48]. The observations made were

in contrast to the literature and are shown in Figure 4.6.

The data in Figure 4.6 reflect a measurement of three different Cz silicon samples with the

measured lifetime plotted against the measurement time. The increase in the measured effec-

tive lifetime with time suggests an increase in the surface passivation with time. This result
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Figure 4.6: Stability of QM passivation over a short time period.

shows that the QM is at least temporarily stable for short measurement times on the order of

several thousand seconds (about 15 minutes). It is not an issue that the passivation changes

with time in so much as a measurement can be taken within seconds of the sample being sub-

mersed in the passvation solution.

4.3 Summary

This chapter explained observations made with experimentation performed on bulk silicon

samples using QM passivation. A method was developed that allowed for removal of saw dam-

age on as-sawn silicon samples so that QM could passivate the surface. Lifetime data sup-

ported the removal of the saw damage shown by the dramatic increase of the measured life-

time in a FZ sample. It was determined that a dish used to contain the QM provided for a
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more manageable measurement. Multiple measurements on multiple different kinds of Si con-

firmed that the QM was effective in passivating the silicon surface with an upper bound of the

SRV being achieved on FZ Si of 3.16 cm/sec. The measurements also confirmed that the dif-

fusion length of carriers generated in the Si support use for J0e extraction. Finally, QM was

shown to provide better passivation with time. The goals of this work in this chapter were

obtained which support the use of QM as use for passivation in determining the impact of

atomic hydrogen on boron diffusions. Though the wafers in this chapter did not contain boron

diffusions, the fact that the QM can effectively passivate bulk samples provides evidence that

it may also passivate boron diffused surfaces.
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Chapter 5

Boron Diffusions from BN Solid Sources

The development of a boron diffusion process was necessary in order to provide samples for

assessing whether or not an atomic hydrogen treatment could reduce the recombination cur-

rent density of the diffused region in a solar cell. Because of this, a brief overview of boron

diffusion into silicon from boron nitride (BN) solid sources is given. The experimental work in

developing and working with boron diffusions using BN solid sources is covered. A compari-

son of two different methods for removing the boron rich layer (BRL) is provided. The boron

diffusion profile in the silicon is important to solar cell device operation because of the J0e pa-

rameter. This is because the boron profile serves as a point of collection for generated minor-

ity holes in the n-type base of the solar cell. The doping density of the boron profile can have

an impact on the dominant recombination mechanisms in this region, and thus effect device

performance.

5.1 Background

Boron diffusions were the first form of diffusion used to form silicon solar cells. Dating back

to 1961 Queisser described slip patterns generated from boron diffusions into n-type silicon

[56]. The cost of solar compared to competition for other energy sources limited the applica-

bility of such devices in the 1960s. Instead, more emphasis was placed upon using solar cells

for space applications. In space, the cost is not necessarily the driving metric for solar cell de-

sign, but rather, its energy density. Since early solar cells were silicon based, it was necessary

to use a material that was hardened for the radiation exposure in space. This caused the bulk

of research to be placed into the development of p-type silicon for which a phosphorous diffu-

sion was used at the front side to generate a n+/p structure. It is interesting that according

to Green, that efficiencies in early solar cells rose quite quickly from 6 % in 1954 for a p+/n

structure to greater than 10 % within 18 months [57]. However, the transition to p-type cells

saw the progression of the efficiency slow such that by 1971 only 14.5 % efficiency had been

obtained on a n+/p structure [57]. It is probably a bit speculative to suggest that the effi-
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ciency rise was, in part, due to the use of n-type silicon as the base material, but it is curious

to ponder. This is especially true with the knowledge that n-type silicon is more resistance to

metallic impurities [58], something which was harder to avoid due to technology limitations in

the 1950s/1960s.

Because of the creation of p-type cells and the innovation in the aluminum back surface field

(Al-BSF) cell design, there was not too much interest in the use of boron diffusions for sili-

con solar cells for some time. Instead, the focus was on the phosphorous diffusion for n+/p

structures, with the aluminum screen printed metal on the backside of the cell allowing for a

n+/p/p+ structure to be created. So, it has only become a more recent research topic to in-

vestigate the boron diffusion for the development of n-type silicon solar cells.

Boron diffusions typically have a reduced manufacturing throughput when compared to phos-

phorous diffusions [59]. This manufacturing throughput reduction is felt in industry due to

the diffusivity of boron in silicon. Boron diffusions require higher temperatures and longer

times to obtain a similar sheet resistance as compared to P diffusion conditions. Interestingly,

research on selective emitters have indicated that deeper boron diffusions are more beneficial

for selective emitter device design [60]. But, there is also established research that shows that

boron diffusions typically create dislocations in the silicon bulk, which lowers carrier lifetime,

and thus, diminishes cell efficiency [7]. If carrier lifetime is made too low, then extraction of

thermal recombination current via photoconductance measurements can be compromised,

which makes the electronic measurement of hydrogenation’s effect on the boron diffusion diffi-

cult to measure.

The necessity to extract meaningful emitter recombination current density data coupled with

the lack of previously existing boron diffusion recipes were the driving factors in the work of

this chapter. The boron doped silicon is the vessel into which atomic hydrogen diffuses and is

the main phenomenon that is examined in the whole of this dissertation. To that end, it was

necessary to develop a boron diffusion process to obtain desired boron concentration profiles,

examine the impact of the effects of boron diffusion on the wafer material, and attempt to

characterize the boron diffusion to better understand and frame the interaction with atomic
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hydrogen in later chapters.

5.2 Boron Diffusion from a Boron Nitride Source Wafer

Boron diffusion from a solid boron nitride source involves the boron nitride wafer, silicon wafers,

a quartz boat, and a furnace capable of reaching temperatures as high as 1100◦C to allow for

the diffusion of the boron. In general, the chemical process of liberating the boron from the

source wafer follows [61]:

4BN + 3O2 => 2B2O3 + 2N2(activation) (5.1)

B2O3 + 3Si => 3SiO2 + 4B(deposition) (5.2)

The first chemical process is obtained by placing the source wafers in an oxidizing ambient

to activate them. This process grows a layer of boric oxide on the source wafer which acts as

the source of boron in later steps. After the source wafers are oxidized they are loaded into a

quartz boat as shown in Figure 5.1.

The quartz boat is loaded onto the furnace arm and then is driven into the furnace tube. To

achieve boron diffusion into the silicon wafer, high temperatures (> 800◦C) are used such that

the boric oxide at the surface of the boron sources vaporizes and diffuses to the silicon wafer

surface as shown in Figure 5.2. Once on the surface, a reaction occurs forming silicon dioxide

and liberated boron atoms as shown in the deposition equation. These liberated boron atoms

are then free to diffuse into the silicon lattice where they either travel by vacancy assistance,

interstitial kick out, or interstiticialy assistance [62].

An excellent overview of the microscopic mechanisms responsible for B diffusion are given by

[62], but a few key ideas are highlighted here to aid in understanding how the boron diffuses

into silicon. For the specific case of B diffusion it is given a fraction of 1.0 for the interstitial

mechanism suggesting it diffuses at the atomic scale by interstitial processes. The activation

energies of dopant diffusion is about 1 eV lower than for silicon self diffusion, which suggests

a barrier lowering. Coulombic effects do not contribute to this lowering entirely. One possi-
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Figure 5.1: Image showing how boron nitride source wafers (white) are loaded into a quartz
boat with silicon wafers.

ble mechanism to barrier lowering is lattice relaxtion around the Si atoms, with theoretical

calculations indicating B causes inward relaxation of the silicon lattice by 12 percent. Full

coupling of the dopant defect interactions gives a better match to experimental data for a B

diffusion. The flux of the boron species diffusing in the silicon is governed by the gradient of

dopant concentration, the gradient of interstitials, and the electric field. Charged point defect

diffusion is dependent on the Fermi level of the charged point defect.

The deposition of a boric oxide on the surface of the silicon wafer provides for a source of B

atoms. However, it is well known that a boron rich phase forms between this boric oxide and

the silicon surface [61, 63]. Termed the boron rich layer (BRL) this material system thick-

ness depends upon diffusion conditions and has been published to be composed of SiBx with

x = 4 or 6 [64]. It has also been published that such a layer acts as an efficient gettering en-

gine to remove impurities that might otherwise cause lifetime degradation in the wafer bulk.
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Figure 5.2: This image shows how Nitrogen gas forms a column of nitrogen around the
sources and wafers. This allows for the diffusion of the B2O3 from the source to the wafer sur-
face.

Gettering refers to the physical process by which defects move through the lattice and are

gathered together in a particular region of a material system. This BRL has to be removed

to reveal a functioning boron diffusion, otherwise, the lifetime of the material is compromised

from trapped defects in the BRL layer. In fact, historical methods to remove this BRL in-

volved the used of an oxidation to oxidize the silicon underneath the BRL (oxygen can dif-

fused through the BRL) which then allowed for a simple HF etch to lift off the BRL exposing

the boron doped silicon underneath. There are thermal diffusion conditions that exist under

which a BRL is not known to form, while others suggest that the BRL will always form in the

presence of heavy B concentrations and Si. In the diffusions studied here, the BRL was always

observed.

5.3 Experimental Methods

Different sets of samples were used to develop the B diffusion recipes used within this chapter

and the dissertation. Table 5.1 gives an overview of the characteristics of the samples used.

Prior to any diffusion, samples underwent a strict cleaning process. Some of the materials

used above (UWCZ-XX and UWCZ2120-XX) were solar grade materials and were received
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Table 5.1: Nominal characteristics of wafer material used to study boron diffusions.
Sample Name Material Resistivity Type Orientation Size

UWCZ-XX Cz 1-10 ohm-cm n <100> 6” pS
UWCZ2120-XX Cz 1-10 ohm-cm n <100> 6” pS

G35XY-XX FZ 30-40 ohm-cm n <111> 6”
P0A9 Cz 4.8 ohm-cm n <111> 6” pS

Table 5.2: Standard cleaning process that most samples go through before a diffusion process
Step Number Cleaning Chemicals and Ratios Time (mins) Temp. (◦C)

1 Rinse DI Water 3 25
2 Organic 1:1 H2SO4:H2O2 10 (> 130)
3 Oxide Strip 1:10 HF:H2O 2 25
4 Saw Damage TMAH variable 90-100
5 Organic 1:1 H2SO4:H2O2 10 (> 130)
6 Oxide Strip 1:10 HF:H2O 2 25
7 Metallic Ion Clean DI Water 10 60-70
8 Oxide Strip DI Water 2 25

with saw damaged surfaces. The cleaning process involved an organic clean, oxide strip, saw

damage etch, and finally finished with a full RCA clean. The details of such a cleaning pro-

cess are shown in Table 5.2

Diffusions were carried out in a Bruce BDF4 diffusion stack featuring 3-zone temperature con-

trol and automated boat drive-in. The source of boron during the diffusion process was from a

BN solid source. The initial diffusion recipe that was tried was provided by Saint-Gobain, the

manufacturer of the BN solid sources. A thermal profile of such a diffusion recipe is shown in

Figure 5.3.

The diffusion temperature profile of Figure 5.3 corresponds to the measured boron dopant

profile of Figure 5.7. The soak times from Figure 5.3 is 1 minute. The control system of the

Bruce BDF4 was able to repeat this short soak step without issue. The total diffusion times

from Figure 5.3 is 91.98 minutes. The temperature profile begins with an initial temperature

of 400◦C and ramps to an intermediate 800◦C set point wherein the wafers in the furnace are

allowed to thermally stabilize before the 1000◦C soak step. The thermal profile in Figure 5.3

can be used to estimate the total diffusion time of the boron into the silicon wafer. In addi-
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Figure 5.3: Thermal profile of diffusion recipes showing temperature variation with time.
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tion, the data is important for replicating the work described in this section.

After the diffusion process the BRL layer is present which must be removed. Samples are then

characterized using electrochemical capacitance voltage (ECV) to obtain information about

the boron doping density versus depth. To obtain the sheet resistance of the diffused layer

the four point probe (FPP) method is utilized. Photoconductance measurements are taken to

extract the J0e. Each of these three characterization methods are discussed in Chapter 2.

5.4 Two Methods of Removing the BRL

In performing the work in this dissertation, it was the recommendation of the manufacturer

of the BN sources that a low temperature oxidation (LTO) process be used to remove the

BRL. More recent research articles about the removal of such a BRL have been shown that

a chemical etch procedure can also remove the BRL [65]. The advantages of the etch proce-

dure are that the detrimental effects of the LTO can be avoided. During the LTO, samples are

subjected to a oxidation process where temperatures can be as high as 750◦C or 800◦C. This

higher temperature process can cause the creation of crystal defects due to thermal stressing

at the BRL/Si interface [66].

In the LTO method used in this dissertation, an oxidizing ambient is used to oxidize a thin

layer of silicon underneath the BRL, which then allows for a follow up chemical etch proce-

dure to remove the BRL layer. This method is performed at 750◦C for variable amounts of

time according to the thermal profile in Figure 5.4 (a). It is assumed that the composition of

the BRL does not change significantly from run to run and that it also only becomes thicker

for an increase in diffusion time. With these assumptions in hand, one can perform an ex-

periment where various oxidation times are used. After each oxidation run, the BRL is lifted

off and the sheet resistance is measured. By tracking the percent change in sheet resistance

(∆Rsh) after each subsequent oxidation and etch, a plot can be created of ∆Rsh against time

as shown in Figure 5.4 (b). The data points in Figure 5.4 (b) each represent a separate oxida-

tion process carried out on a different diffusion sample. The time of the oxidation process in

Figure 5.4 (b) relates to the time the sample is maintained at 750◦C in Figure 5.4 (a).
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Figure 5.4: (a) Thermal profile of LTO recipe with (b) measured ∆ Rsh versus oxidation time.

Examining Figure 5.4 (b) one can see evidence for two different slopes as labeled by the fit

lines. These slopes arise because after the LTO, if any part of the BRL remains, it gives a

lower effective Rsh measurement. Once the BRL is totally removed via oxidation and etch, the

slope changes as there is no longer a BRL to interfere with the Rsh measurement. The oxida-

tion times were chosen based on experience in performing the LTO at a known oxidation time

(20 minutes) recommended by the manufacturer of the BN solid sources [67]. Since it was de-

sired to see the two slopes created by repeated oxidation, a collection of shorter times, 0, 5,

and 10 minutes, were chosen, as well as longer times at 20, 40, and 100 minutes. The removal
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Figure 5.5: Parallel resistor model that explains measured Rsh values using FPP with a BRL
in place.

or partial removal of the BRL layer is best explained by imagining a parallel resistor type sit-

uation as shown in Figure 5.5. The parallel resistor model shown has a value of a resistance

for each material layer after a boron diffusion process. The resistance, RT , represents the total

resistance which is what would be measured by a FPP.

The resistance of the BRL layer is quite low in comparison to Rbulk but not nearly as low in

comparison to RBdiff . In this way, the BRL acts to load down the measured RT value that

would be seen by a FPP measurement. When the RBRL resistor is fully removed via etching

or oxidation, a much simpler model emerges, where the total resistance measured is simply

the boron diffusion (due to its low sheet resistance compared to Rbulk). Any intermediate ox-

idation that only partially removes RBRL, does not change the total resistance, RT , so much

as to drastically alter the calculated ∆ Rsh value. So long as the BRL is still in place, small

changes in the measured Rsh are found which is shown by the first two data points at 0 and 5

minutes in Figure 5.4 (b). Finally, after the full BRL is removed, larger changes in the sheet

resistance are observed. These larger changes are due to the fact that the extended oxidation

times are removing part of the boron diffusion, thus increasing the resistance RBDiff , which

is shown by the data points at 10, 20, 40, and 100 minutes in Figure 5.4 (b). This allows for

repeated oxidations to occur on different samples that have undergone a boron diffusion. The

data shown in Figure 5.4(b) are for a 1000◦C 1 minute soak time (the thermal profile as given
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Figure 5.6: Percent Rsh change plot against etch time for chemical removal of the BRL.

in Figure 5.3). To arrive at an estimate for how long it was necessary to oxidize the samples

to remove the BRL, six oxidations were carried out as shown in Figure 5.4 (b). The intersec-

tion of the two fit lines represents the approximate time needed for full removal of the BRL.

Another method to remove the BRL is to subject the BRL to a chemical etch procedure. The

BRL is actually not chemically soluble in hydrofluoric acid (HF) like the BSG layer, but an

oxidizing etch, such as a combination of HF:HNO3:CH3COOH can be used to etch away the

BRL on top of the silicon. A disadvantage of this method is that it can etch the underlying

silicon. However, the same method of plotting ∆Rsh against etch times can be used to ex-

tract estimated experimental etch times to fully remove the BRL layer. This was performed

on several samples having undergone the boron diffusion process at 1000◦C (thermal profiles

as shown in Figure 5.3). The ∆Rsh plots against etch time in seconds is shown in Figure 5.6.
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To create the plot in Figure 5.6 six diffused samples, still having the BRL, were subjected to

an etch in a solution of 1080 mL CH3COOH + 108 mL HNO3 + 12 mL of HF. The Rsh was

measured using FPP on each sample, followed by a 2 minute dip in 1:10 HF to remove any

accumulated surface oxide during the FPP measurement. Then the samples were dipped in

the etching solution at specified times (see Figure 5.6). Two fits lines were generated for the

data, as was done for determination of the LTO process oxidation time. The intersection of

the two fit lines indicated that the etch time needed to remove the BRL layer for the 1 minute

diffusion process was approximately 30 seconds.

5.5 Measurement of Boron Diffusions and Extraction of J0e

Important parameters in a boron diffusion include doping concentration profile, surface con-

centration, and junction depth. As covered in Chapter 3, a way to measure the boron diffu-

sion profile, and hence obtain the diffusion parameters, is to use ECV. For the profiles in this

chapter, ECV profiling was used.

Figure 5.7 shows a boron diffusion profile measured using ECV as well as a complementary

error function (ERFC) fit to the measured data. The ERFC fit is used to help estimate the

junction depth of the boron diffusion. Practical limitations with the ECV tool used to gather

this data limited the collection of data to no more than 1018 cm−3 for the measured diffusion

profile. The surface concentration was found to be at 1.6x1020 cm−3 and the experimental

profile tends to follow the ERFC shape until the experimental data starts to drop off. This

behavior is seen in the last three data points of the measured profile in Figure 5.7. A straight

line (dashed) was added to the plot in Figure 5.7 to aid in seeing the junction depth. The

junction depth is determined to be where the boron concentration profile crosses the bulk sub-

strate doping, which for the samples used here occurs at a value of about 2x1015 cm−3 and is

indicated by the thick black horizontal line at the bottom of Figure 5.7. The estimated junc-

tion depth from the ERFC fit was determined to be 0.64 µm, where as the guideline for the

measured profile in Figure 5.7 indicates a junction depth of 0.5 µm.

In examining the measured profile in Figure 5.7, the box-like behavior of boron can be seen
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Figure 5.7: Boron diffusion profile as measured by ECV along with an ERFC fit to the data.
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in how the last three data points begin to form a linear trend. This box behavior is typical of

boron and is known to come from a diffusivity that is concentration dependent [62]. This sug-

gests that measured profile has a junction depth less than the prediction made by the ERFC

fit, as is indicated. The measured Rsh of the measured diffusion profile was found to be 48.8

Ω/sq., whereas the calculated value was found to be 52.75 Ω/sq., a 7.7% difference. It is pos-

sible that the ECV measurement is in slight error, and that either the surface concentration is

lower, or the junction is a bit deeper, closer to the ERFC fit junction depth estimate. Both of

these options would bring the calculated Rsh value closer to the measured value. Despite the

difference, there is still strong confidence that the measured profile data is an accurate depic-

tion of the diffusion process described in previous sections.

Figure 5.8 shows the output of EDNA 2 calculations for the boron diffusion profile shown in

Figure 5.7. EDNA 2 is an online software that calculates diffused region recombination in sil-

icon. It has been compared and validated against both PC1D and Sentaurus, a commercially

available TCAD software for semiconductor device simulation [68–71].

The plot in Figure 5.8 shows the breakdown of the variation in J0e with changes in the ef-

fective SRV. The dashed lines in each plot show the constituents of the total J0e (dark black

line in the figure). This calculation allows for the determination of what can be termed the

”Auger Limit” of the diffusion profile. When the effective SRV tends to 0 cm/sec (perfect

passivation) it is evident that Auger recombination becomes the limiting factor in determin-

ing the total J0e of the emitter. This value of J0e where SRV tends to 0 cm/sec is the ”Auger

Limit”. For the measured profile of Figure 5.7, the ”Auger limit” occurs at 51.4 fA/cm2. This

calculated J0e value is useful in a comparison against measured J0e values.

For the diffusion profile shown in Figure 5.7, photoconductance (PC) measurements were per-

formed on symmetrically diffused lifetime structures. As outlined in Chapter 3, the symmet-

rical lifetime structure allows for deduction of J0e from a PC measurement. Multiple symmet-

rical lifetime structures, featuring the diffusion process discussed in previous sections, were

generated over a number of weeks. The samples were then measured using a WCT-120 Sintion

lifetime tester (as described in Chapter 3) with quinhydrone-methanol (QM) used for surface
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Figure 5.8: EDNA 2 calculations showing J0e plotted against effective SRV for the profile
shown in Figure 5.7.

passivation. All measurements were performed in a solution of 0.07 M QM. This concentra-

tion of solution was found to give the best results on bulk silicon (Chapter 4) and in addition,

it is the solubility limit of quinhydrone in methanol.

It is natural to pose a question at this point regarding the use of QHY-ME passivation on sil-

icon samples featuring B diffused surfaces. The behavior of QM passviation on a boron dif-

fused surface is something that is not readily found in the literature. All of the studies found

concerning QM involve the passvation of bulk n and p-type silicon, but no studies found had

used QM passivation on boron diffused samples. A reason for the lack of available research

on such a topic probably has to do with the fact that QM is a temporary passivation tech-

nique and would not typically be applied to a boron diffusion to form a finished device. It was

deemed useful for the experiments in this dissertation because it seemed to provide excellent
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passivation (Chapter 4) to bulk silicon and was expected to passivate boron diffusions equally

well. In addition, as alluded to in Chapter 1, atomic hydrogen does not readily permeate the

dielectrics used on commercial solar cells. Since the focus of this dissertation was on the un-

derlying impact of the atomic hydrogen on the J0e of a boron diffusion, QM seemed to provide

an excellent tool through which to suppress surface recombination to be able to extract J0e

using the lifetime tester tool on symmetrically diffused test structures.

The focus here is on showing that QM can adequately passivate a boron diffused surface and

to make sure that the passivation is stable enough to obtain a measurement that yields J0e.

Given the age of the diffusion furnaces used to produce the boron diffusions for the lifetime

test structures, there was some experimental uncertainty regarding whether or not the boron

diffusions were of device quality. To dispel this uncertainty, measurements were also performed

on samples produced at an outside lab with completely different equipment on different sili-

con. These samples were treated as a known good that should possess a low J0e value.

All samples were cleaned using a Piranha process then dipped in HF 2 minutes prior to being

submersed in QM. The QM was contained in a polypropylene dish as discuss in Chapter 3.

Figures 5.9 and 5.10 show the results of the measurements for the G35XY FZ samples and

P0A9 Cz samples (obtained from an outside lab), respectively. For each sampled measured,

the J0e was extracted over a series of minutes. The error was calculated from the collective

standard deviation of each measured sample as determined from its average J0e. The average

J0e was found by averaging the measured values for a given sample. For the FZ material in

Figure 5.9, the population average J0e was found to be 66.28 ± 8.53 fA/cm2. The data shown

in Figure 5.10 was determined to have an average J0e of 68.026 ± 16.52 fA/cm2.

Examining the data in Figure 5.9 and 5.10 the measurements can be seen to be fairly stable

over short time periods. With most samples there was a slight drift in the measured value of

J0e upward over time which was attributed to methanol evaporating out of the dish during

the course of the measurement. The data in Figure 5.9 and 5.10 are shown to occur above

and below the auger limit calculated by EDNA 2. Probable reasons for this might be drift of

the diffusion furnace temperature and variations in sample temperature during the diffusion
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Figure 5.9: Measured J0e for B diffusions in G35XY FZ material.
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Figure 5.10: Measured J0e for B diffusions in P0A9 material from an outside lab.
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Figure 5.11: Comparison between boron diffusion profile created locally versus one that is
from an industrial process.

process creating slightly different emitters with differing surface concentrations and junction

depths. This is why it was decided to collect enough data to form population averages and

observe the natural variation in the measurement as a result of environmental factors.

The profile shape of the 1000◦C 1 minute diffusion closely resembles an industrial diffusion

profile. An industrial diffusion profile was provided by a commercial partner of Picasolar, Inc.

ECV measurements were obtained from this sample and compared to that created locally.

The profiles are shown together in Figure 5.11. However, this industrial process profile is not

the profile that was used on the P0A9 samples.

The main differences between the two profiles are a lower surface concentration for the in-

dustrial B diffusion profile and a slightly deeper junction depth. The sheet resistance of the

two diffusion profiles are 49.7 Ω/sq. for the industrial profile and 53.2 Ω/sq. for the 1000◦C 1
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Figure 5.12: EDNA 2 calculation of boron diffusion profiles shown in Figure 5.11. Colors are
coordinated between the plots.

minute diffusion. The reduction in the surface concentration for the industrial B diffusion pro-

cess is a by-product of the BRL removal for the diffusion. Whereas the chosen method in this

work is a chemical removal process, that of the industrial profile shows how segregation into

an oxide layer has reduce the doping at the near surface. The J0e surface curves were gener-

ated for both profiles in EDNA 2 and are shown in Figure 5.12.

The reduction of the doping concentration in the near surface of the industrial profile causes

a shift in the J0e versus effective SRV curve. This is due to the fact that the surface in an un-

passivated state will always have a maximum number of recombination sites (due to abrupt

ending of the cyrstal lattice). Since the 1 minute ”in-house” diffusion has a heavier surface

doping, there exists more Auger recombination in the emitter as compared to the in-house

diffusion. This Auger recombination acts to passivate the surface in the sense that the SRV
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will be, overall, a lesser impact on the emitter performance. In practice, this means that the

industrial diffusion will require much better surface passivation than that of the heavier dif-

fusion. Give the short diffusion time necessary to form such an emitter, and its comparable

characteristics, the ”in-house” diffusion is more ideal for a device. This data supports the fact

that the boron diffusion process developed in this work possess a J0e that is comparable to

industrial-like processes. In addition, the diffusion profile that was created shares characteris-

tics (in terms of its profile shape) with that of an industrial boron profile.

5.6 Summary

This section gave the reader an overview of the effort taken to develop a thermal boron diffu-

sion process using BN solid sources and a Bruce BDF4 diffusion stack. Two different methods

of the removing the BRL were explored, an LTO and a chemical removal process. The chem-

ical removal process was preferred over the LTO due to the fact it lessens a high temperature

furnace step in processing. It also occurs in minutes on a wet bench as opposed to close to 1.5

hours at 750◦C. The boron diffusion was profiled using ECV to obtain information regarding

surface concentration, junction depth, and the doping concentration with depth. The surface

concentration for the diffusion profile studied was found to be 1.6 × 1020cm−3. The junction

depth was determined to be from 0.55 to 0.64 µm, however FPP measurements increased the

confidence that it was closer to 0.55 µm. The 1 minute diffusion profile was chosen as a base-

line profile as it most closely resembled that of an industrial diffusion profile. EDNA 2 calcu-

lations were used to estimate the “Auger Limits” of each profile. Measurements of the actual

J0e using a WCT-120 Sinton Lifetime tester were taken on a number of samples. The mea-

surements in FZ and Cz silicon were compared to samples obtained from a partner of Picas-

olar, Inc. The average measured J0e of each profile was found to correspond closely with one

another, however, the deviation in the outside samples was found to be nearly double of that

than the locally created diffusions. The in-house boron diffusion profile was also compared to

an industrial boron diffusion profile. This vets the boron diffusion process developed in this

chapter as well as the QM passivation of the boron diffusions as being consistent with a calcu-
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lated total bound (error) on the measurement.
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Chapter 6

Hydrogenation of Boron and Reduction in Recombination Current

As explained in Chapter 2, the fundamental device parameter, J0e, provides a description of

the recombination activity in a given region of the device. Reducing J0 is a key design role

in making the best silicon solar cells. In this chapter, atomic hydrogen is applied to symmet-

rically diffused test structures and the J0 is measured using photoconductance spectroscopy.

Surface passivation is provided by quinhydrone-methanol (QM) as was done in Chapter 4 for

bulk silicon and in Chapter 5 for boron diffusions. Without surface passivation in place, sur-

face recombination processes dominate, and a measure of J0e is not possible. Several samples

are passivated and compared to control samples in order to obtain an experimental error on

the measurement, as was done in Chapter 5 for boron diffusions.

6.1 Experimental Methods

The silicon used for extraction of J0e was scribed to 2” squares from full size industrial-like 6”

psuedo-square wafers to increase sample count and to meet local infrastructure requirements.

After dicing, the silicon underwent an initial Piranha clean (H2O2:H2SO4 1:1) for 10 minutes,

followed by a saw damage etch in Tetra-Methyl-Ammonium-Hydroxide (TMAH) at 90◦C for

10-14 minutes. TMAH was chosen as an etchant as it has been previously shown to promote

the creation of a surface that provides better passivation [53]. After the TMAH etch, samples

went through a full RCA clean including a second Piranha clean for 10 minutes, a dip in 1:10

HF, and finally an RCA-2 clean (1:1:5 HCl:H2O2:H2O) at 70◦C for 10 minutes.

To prepare samples with boron diffusions, the same process as outlined in Chapter 5 was used.

BN sources were used with a Bruce BDF4 diffusion furnace and diffusions were carried out

at 1000◦C for 1 minute to produce a diffusion profile similar to an industrial profile (Chap-

ter 5). Following the boron diffusion, samples were allowed to cool to room temperature and

placed in a 1:10 HF solution for 2 minutes to remove the boro-silicate-glass (BSG) layer. Fol-

lowing the removal of the BSG, samples under went an etch in an Nitric acid ,Acetic acid, and

HF solution to remove the boron-rich-layer as discussed in Chapter 5. The samples were then
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taken to a custom built hydrogenation chamber for exposure to atomic hydrogen.

Additional samples were prepared using the same method as above. However, the samples

were diced to smaller 1” squares. Samples that were diced to 1” square were used for Rsh test-

ing to determine how the hydrogenation chamber parameters effected the resulting Rsh of the

boron diffusion. Clean Si samples that sit for an extended period of time typically begin to

grow a thin native oxide. In order to make sure that each sample was free of native oxide,

samples were periodically dipped in 1:10 HF:H2O solution. Following hydrogenation of these

samples, the Rsh was measured using a four point probe tester.

In Figure 6.1 (A) an external view of the custom hydrogenation chamber is shown. The arm

out of the front of the chamber is a magnetically coupled transfer arm for placing and remov-

ing the sample substrate holder. On top of the chamber sits the turbo pump, which is an Agi-

lent Twistorr 304FS. Figure 6.1 (B) shows a view of the opposite side of the chamber. In Fig-

ure 6.1 (B) one can see the Proton On-Site hydrogen generator. This unit functions to turn

deionized water into hydrogen gas on demand. Figure 6.1 (C) shows the inside of the hydro-

genation chamber. At the bottom of the image is the substrate platform beneath which is the

substrate heater. The substrate heater is a solid block of aluminum that has coaxial heaters

in one side of the block. Tests were performed to make sure of the temperature uniformity

of the block, and all tests confirmed that for a given temperature set point, the block had a

uniform temperature. The sample holder sits on top of the substrate heater and can accom-

modate a full size 6” solar cell. Above the sample platform in Figure 6.1 (C) the tungsten

(W) filaments can be seen. The filaments are high purity (>99%) W from Midwest Tungsten

Service. They are stretched across the substrate platform 5” above the sample holder plat-

form. The tungsten filaments are secured at their ends with heat resistant standoffs secured

to a block of boron nitride. Just above the filaments in Figure 6.1 (C) the gas shower head

can be seen. This shower head is a coil of stainless steel pipe that is perforated so as to allow

hydrogen gas to be emitted directly over the filaments. The filaments are powered through a

DC power supply to produce a temperature compatible with dissociating hydrogen gas into

atomic hydrogen. Not pictured are mass flow controllers for nitrogen and hydrogen as well as
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the mechanical pump.

Figure 6.1: Series of images showing the hydrogenation apparatus used in this work to expose
boron diffused samples to hydrogenation.

The only process gases used in the hydrogenation chamber are hydrogen. Nitrogen is used as

a venting gas to remove samples. The ultimate base pressure was found to be 8x10−7 mbar

after an overnight pump and baking. There is no load lock on the chamber, so each vent pro-

cess opens the entire process chamber to atmosphere.

Symmetrically diffused samples were used in order to extract J0e from PC measurements. In

order to hydrogenate both sides of a sample, the sample was first exposed to hydrogen on one

side. The system was vented, the sample was removed and the sample was flipped. The back-

side hydrogenation was then carried out in an identical fashion. Samples were then remove

from the hydrogenation chamber and taken to a cleanroom where the WCT-120 lifetime tester

was kept at the time of this study.
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Figure 6.2: From left to right: The step involved in creating a symmetrical diffusion having
undergone double sided hydrogenation.

6.2 Experiment to Control Sheet Resistance

When first experimenting with the hydrogenation chamber in Figure 6.1, it was necessary to

determine how the hydrogenation parameters would effect the sheet resistance of the boron

diffusion. It was known from previous experiments in an older chamber that increases hydro-

genation times or high filament currents would lead to sheet resistance increases of the boron

diffusion. This increase in sheet resistance comes as a result of the electrical deactivation of

the hydrogen bonding to the boron and silicon atoms in the lattice [72]. In order to eluci-

date the behavior of the hydrogenation chamber as it relates to increases in sheet resistance

an experimental design was created using the software package JMP 12. The custom design

included 40 samples featuring 10 replicate designs and 11 center point runs. The samples were

cut from boron diffusions into 1” squares to facilitate a large sample count. The sample count

was chosen to be as high as practically possible in an attempt to observe trends that were

considered statistically significant. The samples were Cz silicon with a <100> surface orien-

tation. Prior to diffusion, the preparation of the samples followed the procedure described in

Chapter 5. The center point runs were included in order to determine if any response curva-

ture existed. The response was chosen to be the percent change in sheet resistance. The fac-

tors for the experiment as well as their minimum, mid-range, and maximum values is given in

Table 6.1.

The factors were chosen based on the practical limits of the equipment used and information

from the literature. The minimum temperature was chosen based upon a literature search
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Table 6.1: Factors Used in Experimental Design for Sheet Resistance Testing
Factor Minimum Middle Maximum

Substrate Temperature (◦C) 100 150 200
Processing Pressure (Torr) 0.1 1.1 2

Hydrogenation Time (minutes) 0.5 2.75 5
Filament Current (A) 10 11.5 13

that revealed the the boron-hydrogen complex forms for temperatures as low as about 60◦C,

but an optimum is found at a 100◦C [73]. Though the minimum temperature was chosen to

be 100◦C, it was thought that increases in temperature might create a faster hydrogenation

process, therefore a maximum of 200◦C was used. The processing pressure was chosen to be

at the extremes of what the throttle valve could maintain with the given flow rate of hydrogen

gas that the mass flow controller could maintain. This flow rate was chosen to be 100 sccm of

hydrogen. There was an interest in performing the hydrogenations in a short time from the

perspective of technology implementation. In addition, short processing times could better en-

sure a faster experimental process. In working the tungsten filaments, it was found that cur-

rents much beyond 15 A degraded the tungsten significantly. Therefore, the filament current

was kept between 10 A and 13 A. The results of the experimental design were modeled to pro-

duce a response surface showing the relationship between temperature and pressure on the

hydrogenation process and this is given in Figure 6.3.

The trend that was observed in the response surface model was that with increasing pressure

and temperature, a very rapid increase in the diffusion sheet resistance occurs, in this case, by

as much as 3000%. While the experimental design focused strictly on what parameters maxi-

mized the sheet resistance, the actual target sheet resistance was desired to be much less than

what was predicted by the response surface model for high temperatures and pressures. If the

sheet resistance of a diffused layer increases too much, this could lead to losses in the solar cell

efficiency, due to the resistance of the lateral transport of carriers between gridlines on the top

of the solar cell. Therefore, it was desired to only marginally increase the sheet resistance of

the diffusion, targeting no more than a 100% increase for 50 Ω/sq. diffusion. This experimen-

tal design lead the acceptance of a standard set of parameters for temperature and pressure
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Figure 6.3: Response surface showing relationship between temperature and pressure against
sheet resistance percentage change.

at 150◦C and 1 Torr pressure. According the response surface model shown in Figure 6.3, this

should keep the change in sheet resistance below 500%. In addition, the filament current was

chosen to be even lower than than what was used in the experimental design, at 8 A, to make

sure the hydrogenation process was controllable for a target sheet resistance.

6.3 Initial J0e Measurements

For the initial test of J0e symmetrical diffusions were prepared in accordance with the method

given previously (Experimental Methods). For the first study that was conducted, the experi-

mental design was used to establish hydrogenation parameters at 8A, 150◦C, and 1 Torr pres-

sure. Symmetrically diffused samples were hydrogenated on both sides at these parameters for

5 minutes, 15 minutes, and 60 minutes with the results shown in Figure 6.4.
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Figure 6.4: Degradation of J0e with increase hydrogenation time.

Based upon the results in Figure 6.4 it was hypothesized that one of three things was occur-

ring. The first was that the tungsten filaments were producing some form of contamination

on the surface of the samples. The second was that the atomic hydrogen was actually creating

lattice defects within the silicon or boron diffusion. The third possibility was that the QM was

not as effective as passivating the now lightly doped hydrogenated surface. The first hypoth-

esis was developed due a visual observation inside the hydrogenation chamber. After several

runs (in excess of a hundred), the sample substrate holder was noted to have the outline of

the sample remaining on the substrate holder. This created cause for the concern of W con-

tamination. The second hypothesis was proposed based upon research that showed atomic

hydrogen could actually etch the sample surface and insert defects into the crystal lattice [74–

76].The third hypothesis was developed as a result of a publication that showed QM to be less

effective than another liquid passivant at passivating lightly doped silicon [49].
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It was determined that one of the easiest ways to investigate the various hypotheses was to

have secondary ion mass spectroscopy (SIMS) analysis ran on a few samples. SIMS can quan-

tify the relative concentration of atoms of a material with depth into the sample. This is simi-

lar to ECV, but SIMS is capable of looking at the total chemical concentration of an element,

whereas ECV is limited to only electrically active elements. The result of the SIMS analysis

to investigate the impact of W contamination is shown in Figure 6.5.

Figure 6.5: SIMS analysis of two samples, a control, and a hydrogenated sample.

The data in Figure 6.5 allowed for the elimination of the idea that W contamination was a

problem, at least to some extent. The control sample had not undergone any processing in

the hydrogenation chamber, yet, the detected amount of W at the surface was the same as

the hydrogenated sample. Both signals show detection of W that is at the noise floor of the

sensitivity of the measurement. When the SIMS analysis was performed, samples were also

measured for B and H concentration with the results shown in Figure 6.6.
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Figure 6.6: Enlarged view SIMS analysis of two samples, a control, and a hydrogenated sam-
ple.

The data in Figure 6.6 shows four different curves, for two different samples. One sample was

a control sample having a boron diffusion, but not having undergone any processing in the hy-

drogenation chamber. The control sample is shown to have a boron diffusion (blue squares)

that has a peak concentration near 1× 1020 cm−3 and decreases with increasing depth into the

sample beyond 1 µm in depth. The hydrogenated sample shows a similar boron concentration.

The main differences in the two samples, however, is the amount of atomic hydrogen that

is measured. The control sample is shown to have some amount of atomic hydrogen within

the first 0.04 µm of the sample. This quickly decays down to a value of about 5 × 1017 cm−3,

where the profile is shown to flatten out. This level is the detection limit of the SIMS analysis

for atomic hydrogen due to the background noise of atomic hydrogen. The hydrogenated sam-

ple shows a quick peak at the surface exceeding 1×1020 cm−3 in concentration, which then de-

cays down into a flat plateau that extends to almost 0.2 µm within the sample. At this point,
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the hydrogen profile quickly drops off to the noise floor of the measurement. This behavior of

the atomic hydrogen profile in showing a peak near the surface with a plateau into the sam-

ple depth has been reported in the literature previously [77]. This behavior was modeled by

Mathiot and shown to relate to the position donor level of the hydrogen atom in boron doped

silicon [78].

The hydrogen peak at the surface of the samples shown in Figure 6.7 was observed to be a

possible validation for the second hypothesis, that atomic hydrogen might be damaging the

sample surface. A blown up plot of the region of interest (the atomic H peak) in Figure 6.7 is

shown in Figure 6.8.

Figure 6.7: SIMS analysis of two samples, a control, and a hydrogenated sample.

The data presented showed evidence that W may not be a problem and that atomic H might

be inhibiting the surface passivation of the samples. However, it was decided that an easy way

to test to see if something was inhibiting the surface was to develop a slow etching procedure
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that could be controlled and allow for the removal of a few tens of nanometers of the sample

surface (enough to remove the hydrogen peak shown in Figures 6.6 and 6.7). This etchback

process might also act to either etch W from the sample surface (if that were to be the issue)

or at least lift if off. It was decided to trial TMAH etches at various temperatures in order to

determine an etch rate. The result of the TMAH etch is shown in Figure 6.8.

Figure 6.8: SIMS analysis of two samples, a control, and a hydrogenated sample.

The standard TMAH procedure that was developed to remove saw damage on the silicon

samples was carried out at near 100◦C, so it was decided to start there. The results in Figure

6.8 indicate that that temperature could be used to slow down the TMAH etch rate. An etch

temperature of 50◦C, was deemed appropriate for controlled removal of tens of nanometers of

the boron diffused silicon surface. A 20 second etch might remove around 100 nm of material.

With this etch process in hand, it was decided to retrial symmetrical diffusions as a means to

prove that atomic hydrogen can lower the J0e of a boron diffusion.
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6.4 Hydrogenation Results on Symmetrical Diffusions

The Baseline curve in Figure 6.9 shows the result of measuring the industrial boron diffusion

profile (Chapter 5 Figure 5.11) using ECV. This diffusion was applied to multiple different

samples and each piece then underwent hydrogenation using 8 A of filament current, a 100

sccm hydrogen flow rate, a substrate temperature of 150◦C, and a pressure of 1 Torr of hydro-

gen for 30 seconds, 1 minute, and 2 minutes as Figure 6.3 depicts.

Figure 6.9: Impact of hydrogenation process on industrial boron diffusions.

The hydrogenation process acts to decrease the surface doping concentration of the boron dif-

fusion profiles and also shaves off part of the peak exhibited in the baseline profile. The back-

ground doping of the samples here was 1x1015cm−3, such that the junctions depths all occur

right around 0.5 µm. While it may appear that the hydrogenation process alters the junction

depth, the spread in the data can be attributed to error in the ECV measurement. Each of

these profiles was put into EDNA 2 for calculation of its J0e dependent upon effective SRV.
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The output of such calculations is shown in Figure 6.4.

Figure 6.10: EDNA2 simulations of diffusions shown in Figure 6.9.

With increasing hydrogenation time, a trend is seen in the reduction of Auger recombination.

This is result of lessening the boron doping concentration of the emitter profiles. The sur-

face recombination component of J0e is also plotted for each diffusion profile of Figure 6.9 in

dashed lines. This calculation predicts that the hydrogenations of the diffusion profiles in Fig-

ure 6.3 should result in a lower J0e. In addition, the hydrogenated emitters tend to become

more sensitive to the surface passivation conditions. The hydrogenation results behave not

unlike the retrograde profile given by the industrial diffusion that was discussed in Chapter

5. The idea being that the reduction in Auger recombination causes the surface recombina-

tion to become a bigger component of the total recombination. Therefore, the sample must

be passivated more adequately in order to observe any J0e reduction due to the hydrogenation

process.
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To establish that the theory behind the EDNA 2 calcuations was sound an experiment was

devised wherein multiple types of symmetrical diffused samples were exposed to similiar hy-

drogenation conditions as those used to produced the profiles of Figure 6.9. The symmetrical

diffused samples were partly taken from the data displayed in Chapter 5 for the FZ and P0A9

material. In addition, samples beyond those presented in Chapter 5 were produce. The sam-

ples underwent a double sided hydrogenation process according to the flow described in Figure

6.2. The hydrogenation times were allowed to vary from 10 minutes to 20 or 30 minutes, but

the other hydrogenation parameters remain fixed. The goal of this experiment was to hydro-

genate samples and compare them to non-hydrogenated controls to 1.) determine if atomic

hydrogen can reduce J0e and 2.) to calculate a standard deviation from which it would be

possible to tell if the hydrogenation process had an effect greater than the error of measure-

ment.

Samples were measured in QM according to the same procedure used to measure boron diffu-

sions in Chapter 5. The measured J0e and Rsh is given for each sample that was hydrogenated

compared against a control and the data are shown in Figures 6.11 and 6.13. Figures 6.12 and

6.14 show the corresponding measured Rsh values for each of the samples that were hydro-

genated.

The averages of all 14 control samples was found to be 87.43 ± 21.706 fA/cm2 where as the

average of all 14 hydrogenated samples was found to be 60.725± 13.75 fA/cm2 for the FZ ma-

terial. For the Cz samples the control data had a J0e of 99.035±34.56 fA/cm2 and the hydro-

genated samples had a J0e of 62.732 ± 13.75 fA/cm2 It is seen from this data set that the hy-

drogenation process seems to reduce the overall spread in the measurement data. In addition,

the hydrogenation process lowers the J0e by 36.05% on the FZ material and by 36.6% on the

Cz material. The Rsh data is shown in Figure 6.12 for the FZ material and in Figure 6.14 for

the Cz material. The variation in the increase in Rsh is because various hydrogenation times

were tried in trying to obtain the J0e reduction. This data proves that atomic hydrogen can

reduce the J0e of a boron diffusion as suggested by the EDNA 2 calculations. However, it is

important to note that due to the reduction in Auger recombination, that better surface pas-
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Figure 6.11: Measured J0e of 14 control samples and hydrogenated samples on FZ silicon
(G35XY). Averages for each sample population are shown by horizontal dashed bars.

sivation would be required if implemented into a cell architecture. In order to rule out the

possibility that the TMAH etch process was removing the atomic hydrogen from the sample

surface, ECV data was collected on control sample, and a sample having undergone hydro-

genation, a TMAH etch of the surface, and subsequent dehydrogenation. The data for this is

shown in Figure 6.15.

The samples in Figure 6.15 show that after the sample is hydrogenated, the surface doping is

reducing and the overall concentration of the profile is reduce to a depth of 200 nm. The sam-

ple having undergone a TMAH etch shows the same profile shape as the hydrogenated sam-

ple, indicating that it does not remove any substantial amount of the hydrogenated silicon.

Finally, after annealing the hydrogenated sample (dehydrogenation) the profile is restored

back to its original shape. This data proves that the TMAH etch process does not remove any

substantial amount of silicon, thus strengthening the conclusion that atomic hydrogen does, in

fact, reduce the J0e of a boron diffusion. Figure 6.16 shows the measured J0e of the 1000◦C 1
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Figure 6.12: Measured Rsh of 14 control samples and hydrogenated samples on FZ silicon
(G35XY). Averages for the control sample population are shown by horizontal dashed bars.

minute profile from Chapter 5 plotted against the measured sheet resistance.

This graph was created by taking a standard boron diffusion and repeatedly etching it back

in a TMAH etching solution. As the emitter profile is etch, sheet resistance increases as more

the profile is removed (becomes shallower) and the surface concentration is reduced. After

each etch step, the sample was taken to a FPP tool to measure Rsh, then it was rinsed and

cleaned using a Piranha process. Following the Piranha process, the sample was then passi-

vated using QM. Each measurement was performed in a fresh QM solution. The process was

repeated until it seemed as though the emitter had been completely etched through. This was

repeated on both a hydrogenated sample and a nonhydrogeanted sample.

The intention in the data shown in Figue 6.7 was to capture the fact that the hydrogenated

emitter showed reduced J0e until the hydrogenated portion of the emitter was completely

etched away. Then once the hydrogenated portion of the emitter was etched, the measured

J0e should return to measured the same as its non-hydrogenated counterpart. It is typical for
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Figure 6.13: Measured J0e of 14 control samples and hydrogenated samples. Averages for each
sample population are shown by horizontal dashed bars.

a diffusion profile to have an exponential decay in the J0e with increasing sheet resistance es-

pecially when the surface recombination velocity is at a fixed value. The SRV would remained

fixed in this case assuming since the same type of passivated was used for each measurement.

The plot shows that the boron emitter actually has a lower J0e initially, but then the hydro-

genated emitter is shown to out perform until the values decay and converge back to a com-

mon average (around 190Ω/sqaure). However, based upon other measurements presented in

this chapter and in chapter 5, it is likely that the data do not show an improvement in this

case much beyond the error of measurement. Nonetheless the exponential behavior of J0e ver-

sus Rsh is seen for both emitter profiles.
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Figure 6.14: Measured Rsh of 14 control samples and hydrogenated samples. Averages for the
control sample population are shown by horizontal dashed bars.
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Figure 6.15: Measured Rsh of 16 control samples and hydrogenated samples. Averages for
each sample population are shown by horizontal dashed bars.
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Figure 6.16: Emitter etchback study on a hydrogenated emitter versus a non-hydrogenated
emitter.
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6.5 Summary

This chapter showed the apparatus used to hydrogenate boron diffusions. It was shown that

a hydrogenated emitter was capable of about a 36% reduction in the J0e value of a boron dif-

fusion. This was determined by hydrogenating multiple different sample types. This result

proves that a hydrogenated emitter experimentally outperforms a non-hydrogenated counter-

part boron diffusion. Thus showing that atomic hydrogen treatment does in fact reduce the

J0e of a boron diffusion.
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Chapter 7

Device Concept and Fabrication

The demonstration of a J0 reduction on the hydrogenated boron diffusions warrants the inclu-

sion of a hydrogenated diffusion into real silicon solar cell devices to demonstrate the potential

of the technology. The hydrogenation process was carried out on full-size industrial silicon so-

lar cell that were fabricated by the Georgia Institute of Technology. A special process flow

was developed to fabricate such cells to accommodate the HSE technology. This chapter gives

an overview of such a process and then includes an analysis of the results. Under the correct

conditions, efficiency could be enhanced by 0.4% absolute over a baseline process.

7.1 Fabrication Overview of Silicon Solar Cells

The fabrication process flow for the cells used in this dissertation is outlined in Figure 7.1.

The wafers that were utilized were Cz, <100> orientation. Prior to cleaning, the cells were

put through a KOH solution to form < 111 > pyramids across the surface. After this, a

full RCA clean was performed. Next a B implantation was performed into the front side of

the cell, followed by a P implantation to form the backside BSF. Implantation processes re-

quire the annealing of the implant to activate the dopant atoms. This was performed after

both species were implanted into the front and rear. During this annealing process, an oxide

is formed on the front and back that acts to passivate the wafer surfaces. A SiNx layer is then

put down on the backside to provide further passivation.

Following application of the back silicon nitride, contact holes are opened in the back passi-

vation stack to allow for local contacts to be made via silver printing. Next the front grid-

lines and a full back metal are applied and fired. Hydrogenation is then admitted to the cell

through the front oxide layer. The metal gridlines act as a natural mask for the hydrogen,

preventing the inactivation of boron beneath the contacts. Next a low temperature silicon

nitride is applied to the hydrogenated oxide-coated cell. The SiNx deposition is kept below

220◦C in order to prevent driving out the boron-hydrogen bonds. Because the SiNx/SiOx

stack does not provide sufficient enough passivation to a p-type surface, the cells are then sub-
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Figure 7.1: Image that shows steps in creating HSE enhanced cells with modified silicon solar
cell fabrication process.

jected to a proprietary dielectric charging process that implants negative charges in the SiNx

layer by changing the K+ centers to K− centers [79].

7.2 Analysis of Hydrogen Selective Emitter On Industrial-Like Solar Cells

Following fabrication, hydrogenation, and dielectric charging, the cells are measured using JV

analysis to extract the relevant cell parameters Voc, Jsc, FF, and η. Cells were hydrogenated

according to a 4-factor experimental design in JMP 12. The 4 factors that were varied in-

cluded Substrate Temperature, Process Pressure, Filament Current, and Process Time. The

design included a total 24 experiments all of which are listed in Table 7.1 with the resulting

output data.

A visual depiction of the data presented in Table 7.1 can be found in Figure 7.2 which gives

a histogram of the compiled efficiency data for all 24 cells as well as histogram data for cells

that had not undergone the hydrogenation process. A summary of the statistics from the his-

togram is given in Table 7.2

The data in Table 7.2 shows the compiled quantile information for the histogram data of Fig-
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Table 7.1: Tabulation of 24 experiments conducted for 4 factor experimental design to test
hydrogenation of industrial like silicon solar cells.

Number Temperature (◦ C) Pressure (Torr) Current (A) Time (min) η
1 100 500 10 120 16.9
2 100 500 12.5 20 17.56
3 100 500 15 75 17.7
4 100 2750 10 20 17.6
5 100 2750 15 120 17.27
6 100 5000 10 75 17.84
7 100 5000 12.5 120 17.9
8 100 5000 15 20 17.77
9 100 5000 15 20 17.94
10 150 500 10 20 18.41
11 150 500 15 120 16.85
12 150 2750 12.5 75 17.91
13 150 2750 12.5 75 17.37
14 150 2750 12.5 75 18.03
15 150 5000 10 120 18.51
16 200 500 10 20 18.57
17 200 500 10 75 18.25
18 200 500 12.5 120 17.64
19 200 500 15 20 17.12
20 200 2750 10 120 18.24
21 200 5000 10 20 18.12
22 200 5000 15 20 18.32
23 200 5000 15 120 16.89
24 200 5000 15 120 17.7

Table 7.2: Tabular summary of maximum, median, and minimum values obtained form his-
togram analysis of data in Table 7.1.

Qauntile % Quantile Label η - H η Control
100 Maximum 18.57 18.21
50 Median 17.805 18.04
0 Minimum 16.85 17.8
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Figure 7.2: (Left) Histogram analysis for N = 24 total cells that had undergone the cell fabri-
cation process of Figure 7.1. (Right) Population, N = 5, of control cells.

ure 7.2. The η-H column gives the efficiency values measured after the entire fabrication pro-

cess of Figure 7.1 was carried out on N = 24 cells. The η Control column gives the same data

for a limited number, N = 5, cells. The control cells went through the entire process of Figure

7.1 with the exception of the hydrogenation step to form the selective emitter.

The histogram of Figure 7.2 shows a distinct difference in the distribution that was obtained.

The hydrogenation process gives increases in the variance of the data set and creates some-

thing of a normal distribution. The control data has a much tighter variance. The only dif-

ference between the two fabrication process is that of the hydrogenation process. This does

not mean that the hydrogenation process possesses a large variance. The fact that there is

such a wide variance has to do with the fact that several different combinations of hydrogena-

tion factors were carried out from experiment to experiment (see Table 7.1). In fact, a narrow

distribution similar to the control histogram would be indicative of a non-effect from the hy-

drogenation, which should not be the case given the J0 results presented in Chapter 6. A key

takeaway from this data is that the maximum hydrogenated cell is nearly 0.4% better in ef-

ficiency than that of the control population. However, some caution should be added to this

as a conclusion, given the limited number of cells in the control population. Nonetheless, the

data seems to indicate that, under the proper hydrogenation conditions, a 0.4% enhancement

in cell efficiency can be had.
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7.2.1 JV Analysis

To show the behavior of the JV analysis throughout the processing steps listed in Figure 7.1,

a singular sample of the cell data from Table 7.2 was taken. The result of the light JV mea-

surement from the cell at different processing steps is given in 7.3. The ”OoB” label indicates

an ”Out-of-Box” condition, or the condition of the cell with only oxide passivation at the

front side. The Post-H data shows the same JV analysis carried out on the cell but after the

hydrogenation process. Note that only a small boost to Jsc and Voc is given. The oxide passi-

vation tends to inhibit the ability of the hydrogenation to give a larger boost due to the lack

of surface passivation. Following the nitride deposition and charging process, the cell gains in

both Jsc and Voc. The gain in Jsc is largely thought to come from the nitride deposition. The

boost to Voc and even, to some extent Jsc, comes from a reduction of the J0e due to the hydro-

gen shaping of the boron doped region at the front of the cell.

Figure 7.3: Light JV curves collected on full size cells with just thermal oxide passivation
(OoB), right after the hydrogenation process (Post H), and following SiNx deposition and di-
electric charging (Post Charge).
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Figure 7.4 shows a comparison of the JV curves of the best hydrogenated cell and the best

control cell. The scale makes it a bit difficult to observe, however, the hydrogenated cell has a

slight boost to Jsc and Voc, as expected.

Figure 7.4: The highest efficiency hydrogenated cell versus the highest efficiency control cell.
Though not visible because of the scale of the graph, the Voc of the H cell is 2 mV greater
than that of the Non-H cell.

The JV data given in Figures 7.3 and 7.4 do not show dramatic gains in the efficiency or other

cell parameter. It should be noted that the hydrogenation conditions presented, do not repre-

sent the optimum. Under the correct conditions the cell can lose efficiency as shown in Table

7.2, but, according to the study presented herein, an absolute gain of 0.4% can be had over a

control cell with the hydrogenation process.

7.2.2 EQE

An unknown contact issue prevented the cells of Table 7.2 from being able to be measured

using EQE. However, a different set of research cells was chosen to exemplify the effect of the
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atomic hydrogen process on the cell EQE. Shown in Figure 7.5 are the EQE curves of several

oxide-coated solar cells (having no SiNx coating).

Figure 7.5: EQE plots of small oxide cells that were passivated with thermal oxide, put
through the hydrogenation process, and then charged with negative charges. The red high-
lighting indicates the increase in short wavelength response obtained from the selective emit-
ter structure.

The EQE data of four different cells are shown in Figure 7.5, 10-1, 10-2, 10-4, and 10-5. The

OoB condition for all of the cells shows a tight clustering of the EQE data, indicating there is

little processing difference between the four the cells. 10-1 and 10-2 were subjected to a hy-

drogenation process and the EQE data measured after this process is given by the curves la-

beled “10-1 H” and “10-2 H”. The EQE decreases in the range from 300 nm to 700 nm, from

an average of about 50% to less than 40%, and as low as 10% at around 400 nm. The reason

for this is because of the poor quality passivation of the oxide layer in conjunction with the

lighter doping in the near surface region. The hydrogenated cells, 10-1 and 10-2, were charged
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with a negative charge, along with 10-4 and 10-5, to act as controls. The EQE plots of Fig-

ure 7.5 show the results, with the red shading indicating the gain experienced in cells 10-1 and

10-2 due to the hydrogenation process. This enhancement of the blue wavelength EQE is con-

sistent with the Jsc and Voc boost presented in Figures 7.3 and 7.4.

7.3 Summary

This chapter showed the application of atomic hydrogen to an industrial like silicon solar cell

fabrication process. The atomic hydrogen treatment was required to be enhanced by use of

a negative dielectric charging to bolster field effect passivation. The best result obtained was

0.4% boost with a hydrogenated cell over a control cell. The increase in efficiency comes from

the reduction in J0e due to the inactivation of majority carriers lessening the effect of Auger

recombination. This can only be the case with high enough quality surface passivation. These

results demonstrate that a hydrogenated selective emitter, under the right conditions, can pro-

vide an enhancement to a cell process by post-diffusion shaping of the boron diffused/implant

region of a device.
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Chapter 8

Conclusions and Future Work

In this chapter, conclusions and future work are laid out to encourage additional research in

this topic area.

One remaining obstacle for successful implementation of the HSE process into cell manufac-

turing is to show that atomic hydrogen can penetrate silicon nitride layers. Not only must the

atomic hydrogen penetrate the silicon nitride layers, but it must do so without damaging ei-

ther the SiO/Si interface or the bonds in the emitter lattice. A promising way to potentially

drive atomic hydrogen through the silicon nitride ARC is with a biasing method. In such a

method, atomic hydrogen is driven by an electric field through the ARC into the emitter.

This is akin to ion implantation, except the energy levels in this case will be lower. Though

the work in this dissertation shows that atomic hydrogen can have a beneficial impact on a

p+ emitter layer, it is necessary to combine the hydrogenated emitter with good passivation.

This needs to be accomplished without altering the cell architecture for the largest cell effi-

ciency gains to be had.

The recombination current density was shown to be reduced through comparison to control

samples with two different types of silicon. The contained work could benefit from additional

experimentation to find the maximum reduction that could be obtained. In addition, for work

on real silicon solar cells, it will be necessary to explore the hydrogenation of oxide layers on

silicon, and oxide/nitride stacks. Oxide/nitride passivation/ARC stacks are the most common

layers on the front of silicon solar cells and, the nitride at least, is a barrier to hydrogen dif-

fusion. Therefore, it is necessary to explore ways to either drive the atomic hydrogen through

the nitride/oxide stack to create a selective emitter. A suggested method of doing this is to

use biasing to drive the hydrogen inward through the nitride layer. Care must be taken to

evaluate the electron and optical properties of the passivation layers following such a process

though, it is possible that biasing through these layers could alter their material properties

for the worse (or perhaps the better). Another viable option might be the use of a controlled

laser rastered over the surface of the cell to release atomic hydrogen from the front silicon ni-
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tride layer on a solar cell. This however may pose a significant challenge as the temperature

release from the nitride layer maybe different than that required to bond atomic hydrogen

with boron.

Successful introduction of atomic hydrogen into the front boron emitter region of a solar cell

through the oxide and nitride layers will allow for implementation as the last step in indus-

trial fabrication.
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