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ABSTRACT 

The purpose of this research is to design and fabricate sensors for glucose detection using 

inexpensive approaches.  My first research approach is the fabrication of an amperometric 

electrochemical glucose sensor, by exploiting the optical properties of semiconductors and 

structural properties of nanostructures, to enhance the sensor sensitivity and response time.  

Enzymatic electrochemical sensors are fabricated using two different mechanisms: (1) the low-

temperature hydrothermal synthesis of zinc oxide nanorods, and (2) the rapid metal-assisted 

chemical etching of silicon (Si) to synthesize Si nanowires.  The concept of gold nano-electrode 

ensembles is then employed to the sensors in order to boost the current sensitivities by enhancing 

the rate of electron transfer during the electrochemical reaction.  High crystallinity and good 

alignment of the nanostructures lead to increase in the electrode surface area, thereby leading to 

higher current sensitivities compared to other published works. 

My second research approach is to design an optical sensor for evaluating long-term 

glycemic state in diabetic patients.  Glycated hemoglobin (HbA1c) is a minor component of 

blood hemoglobin to which glucose is bound.  The HbA1c test is a common medical test used to 

indicate the average blood glucose level over the past 12-16 weeks.  The National Institute of 

Diabetes and Digestive and Kidney Diseases has established a direct relationship between the 

percentage of HbA1c and the blood sugar level.  Our sensor instrumentation design is based on 

the Beer’s law of optical absorption.  Major device components include two commercial light 

emitting diodes, a cuvette holder, a Si photodiode, and an ATmega328P microcontroller.  It is 

observed that the absorbance of diluted HbA1c samples and the corresponding photodiode output 

voltage are inversely related.  The photodiode voltages as a function of HbA1c percentage 

concentrations show an exponentially decaying curve.  An algorithm for multiple variable 



  

regression analysis is then used for sensor calibration.  The percentage of HbA1c is then 

anticipated based on the obtained output voltage using the calibrated curve results.  The proposed 

portable optical sensor proves to be a promising step towards the prediction of the long-term 

glycemic levels in diabetic and pre-diabetic patients non-invasively. 
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CHAPTER 1. INTRODUCTION 

Diabetes Mellitus is a serious metabolic disease that can strike any person at any age in 

their life.  About 422 million people around the world are diabetic [1].  The chronic disorder 

arises due to insulin deficiency, thereby leading to increased blood glucose levels.  Over 90% of 

these diabetic people have developed type-2 diabetes, which occurs when the body becomes 

resistant to insulin or is incapable to produce enough insulin [1].  Other common forms of 

diabetes are (1) type-1 diabetes that usually leads to absolute insulin deficiency, and (2) 

gestational diabetes mellitus that emerges with onset or first recognition during pregnancy.  

Classification of diabetes is important for determining the clinical diagnosis and disease 

progression.  Western countries are at a greater risk of developing diabetes, particularly type-2.  

Obesity, poor diet, and lack of physical activity, mainly due to population ageing account for the 

common reasons in such countries.  Family history is an unavoidable factor leading to the 

development of type-2 diabetes.  Diabetes mellitus is capable of affecting almost every human 

body system.  People with diabetes are twice as likely to be affected by heart diseases, kidney 

failure, stroke, eye cataracts, feet amputation, or sudden mortality.  Regular glucose 

measurement is important for determining the daily insulin dosage, food diet type, and exercise 

schedule.  Frequent, periodic, and accurate blood glycemic level detection is therefore crucial for 

diabetes prone patients.  Pre-diabetes is classified into two levels of glucose concentrations: (1) 

impaired fasting glucose (IFG) level, ranging from 5.6 to 6.9 mM/L and (2) impaired glucose 

tolerance (IGT) level, ranging from 7.8 to 11.0 mM/L [2].  Both IFG and IGT are known as pre-

diabetes conditions, where blood glucose levels are higher than normal but not high enough to be 

diagnosed as type-2 diabetes.  Every year, there are more than 3 million American individuals 

that are diagnosed by Pre-diabetes.  Recently, pre-diabetes is detected by slightly raised glycated 
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hemoglobin A1c (HbA1c) levels.  Identifying pre-diabetes and taking precautionary measures is 

essential in reducing the overall type-2 diabetes cases around the world [3].   

1.1 Literature Review 

Sensors are devices that detect and respond to any change in the physical environment.  

All sensors comprise of an active sensing material and a signal transducer.  Sensors are broadly 

classified into chemical sensors and biosensors.  Electrochemical sensors are a combination of 

chemical sensors and biosensors, where electrochemical methods are used in the construction 

and the working of a biosensor [4].  During 1980s, the development of glucose biosensors 

became an important research topic.  However, in 1962, Clark and Lyons from Cincinnati 

Children's Hospital, for the first time proposed an electrochemical glucose sensor incorporating 

glucose oxidase (GOx) enzyme-based electrode [5].  Today, there exist three electrochemical 

methods to detect blood glucose levels in diabetic patient namely (1) invasive, (2) minimally 

invasive, and (3) non-invasive methods [6].   

The most successful, accurate, and economical glucose measuring technique is the 

invasive blood glucose monitoring method.  However, such self-monitoring glucose sensors 

require pricking of finger tissues several times a day to extract capillary blood and are associated 

with several long-term disadvantages.  The electrochemical glucose sensors, both enzymatic and 

non-enzymatic, have emerged as the most investigated device technologies in the past four 

decades [7].  The concept of electrochemical sensors for glucose detection first emerged in 1962 

[5].  Since then various electrochemical and optical approaches are used to develop cost effective 

and highly sensitive glucose sensors for precise glycemic measurement and control [8] [9].  

Minimally invasive glucose sensors reduce pain, and the risk of bio-fouling effects and infections 

[10] [11].  However, inaccurate sensor measurements due to noise and patients’ movements, and 
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skin irritations due to direct sensor contact with dermal tissue hamper the use of minimally 

invasive sensors. Non-invasive glucose sensor technology is the most recent technique that is 

pain free and is attributed to direct measurement of glucose level through body tissues from the 

skin, eyes, or the tongue [6]. Recently, various alternative approaches are being explored, like 

reverse iontophoresis [12], tear glucose dynamics [13] [14], and dielectric spectroscopy [15], to 

develop cost effective and highly sensitive glucose sensors for precise glycemic control.  Optical 

sensors are the least invasive form of biological instruments.  Yet, testing glucose non-invasively 

using optical methods have not yielded consistent results so far in literature [16].  The 

development of advanced optical glucose sensing technologies would lead to better selectivity, 

stability, and accuracy of glucose monitoring. 

In the recent decade, efficient electrochemical sensors are developed by utilizing the 

properties of nanostructures in the working electrode.  Nanostructures increase the active sensing 

area and have properties like good mechanical stability, light weight, enhance the current sensing 

capability, and reduce the sensor operating potential.  Zinc oxide (ZnO) is an inorganic 

compound that is soluble in water.  It is a low cost, non-toxic, environmental-friendly, 

biocompatible, and biodegradable semiconducting material.  Other significant properties of ZnO 

are high thermal stability, large binding energy (60 meV), piezo electric response, and a direct 

wide band gap of 3.37 eV.  ZnO has a surface work function of 5.30 eV, melting point of 1975 

°C, boiling point of 2360 °C, relative molecular mass of 81.37 g mol-1, and density of 5.67 g cm-

1.  The crystal lattice constants of ZnO are a=3.25 Å and c=5.21 Å.  ZnO has wurtzite hexagonal 

crystal structure with crystallographic group P63mc [17].   Nanostructures and thin-films of ZnO 

has vast device applications in light emitting diodes (LEDs) [18] , solar cells [19], gas sensors 

[20] [21], and optical waveguides [22].  The most commonly used and cost-effective method to 
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synthesis ZnO nanorods is called the sol-gel hydrothermal method.  The word hydro refers to 

water and thermal means heat.  In other words, the hydrothermal reaction is defined as any 

chemical reaction that takes place at an aqueous or non-aqueous solvent at a temperature above 

room temperature and pressure above 1 atm in a closed system [23].  The hydrothermal sol-gel 

recipe of ZnO nanorods synthesis used in this research is discussed in more details in chapter 2 

and 4. 

Silicon (Si) is a semiconductor that is an integral part of all electronic devices.  The 

indirect band gap of bulk Si is about 1.1 eV, and therefore Si has a very poor optical radiative 

efficiency and produces light outside the visible range [24].  Black Si refers to Si surfaces that 

have nano- or micro-structures on the surface [25].  Such Si samples have low reflection that 

enhances optical properties like light scattering and absorption [25].  One dimensional (1D) 

nanostructures exhibit different electrical, optical, and physical properties compared to bulk and 

quantum dots [26].  The phenomenon of quantum confinement is obeyed by 1D nanostructures 

that leads to the enhancement of the electron-hole recombination rate, higher band gap energy 

(1.6 eV), and luminescence efficiency [26].  Nanowires based electrochemical sensors exploit 

the advantage of nanoscopic size scale, and aspect ratio to enhance the electron transport 

properties during the electrochemical reaction [4].  However, the electrical conductivity of the 

nanowires depends upon their crystalline structure.  This means lower the defects, lesser the 

surface scattering in the nanowires, and better the electron transport behavior.  There are various 

synthesis techniques that are used for the synthesis of Si nanowires depending upon the required 

sensor application, properties, dimensions, or morphology [4].  The metal assisted chemical 

etching technique for Si nanowires synthesis is discussed in further details in chapter 3. 
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Red blood cells are biconcave disk-shaped with an average diameter of about 7.0-8.5 µm, 

outer thickness of 2.0-2.5 µm and central thickness of 0.8-1 µm [27].  The cytoplasmic matrix of 

the red blood cells consists of the hemoglobin molecules [28].  Hemoglobin is the oxygen 

carrying protein that gives blood its red color.  The most common hemoglobin type is called 

Hemoglobin A, where A stands for adult.  Hemoglobin A comprises of 90% all hemoglobin 

molecules in the red blood cell.  Only about 8% of the hemoglobin A is made up of minor 

components called A1c, A1b, A1a and A1a2 [29]. Hemoglobin (Hb) A1c is modified 

hemoglobin, where non-enzymatic attachment of glucose to the N-terminal of β-chains of 

hemoglobin takes place [30].  The formation of HbA1c in red blood cell is shown in Fig. 1.1.  

The percentage of HbA1c in blood is used as an indicator of long-term blood glycemic level.   

 

 

 

 

 

 

 

 

 

In normal individuals the HbA1c level is about 5% of the total hemoglobin but is about 

15% in patients with diabetes mellitus [31].  The HbA1c level is tested to indicate the average 

blood glucose level over the past 12-16 weeks [32] as the average functional lifespan of red 

blood cells in human body is 120 days.  Factors like genetic and medical conditions affect 

 

Figure 1. 1 Schematic representation for the formation of glycated hemoglobin 
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HbA1c levels even at constant glucose levels [30].  In 1976, HbA1c was first used to monitor the 

degree of control of glucose metabolism in diabetic patients [33].  Since then several studies 

have been conducted to standardize HbA1c level in correlation to the average glucose 

measurements [34].  The American Diabetes Association has established the equations 1.1.1 and 

1.1.2 to calculate the estimated Average Glucose (eAG) level from the percentage of HbA1c in 

blood hemoglobin [34], [35].   

𝑒𝐴𝐺	(𝑚𝑚𝑜𝑙/𝐿) = 1.59	 × 𝐻𝑏𝐴1𝑐	(%) 	− 2.59                                      (1.1.1) 

𝑒𝐴𝐺	(𝑚𝑔/𝑑𝐿) = 28.7	 × 𝐻𝑏𝐴1𝑐	(%)	− 46.7                                      (1.1.2) 

Using these equations, a direct relationship between the percentage of HbA1c and the estimated 

average glucose in units of mmol/L and mg/dL is established and is represented in Table 1. 1.   

Table 1. 1 Chart showing the relationship between percentage of HbA1c and the estimated 
average blood glucose levels in humans. 

HbA1c (%) eAG 
(mmol/L) 

eAG 
(mg/dL) Stage 

4 3.8 68 
Super Optimal 

4.5 4.6 82 

5 5.4 97 Optimal 

5.5 6.2 111 Normal 

6 7.0 126 Pre-diabetes 

6.5 7.8 140 

Diabetes 7 8.6 154 

7.5 9.4 169 

8 10.2 183 Dangerous 

1.2 Motivation 

Today about one out of three American adults are pre-diabetic [36].  The optimal 

percentage of HbA1c level for Diabetic, pre-diabetic and non-diabetic people is shown in Fig. 1. 
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2.  Pre-diabetic people are on the path to develop type-2 diabetes and over 90% of them are 

unaware of their current health condition.  During the pre-diabetic state, the risk of 

cardiovascular diseases is moderately increased.  However, pre-diabetes could be treated by early 

diagnosis and by taking precautionary measures [36].  Continuous glucose monitoring devices 

play an important role toward indicating and controlling glycemic state in such patients.  An 

alternative method to estimate glycemic level in blood is through a compound called glycated 

hemoglobin (HbA1c) found in red blood cells.  In normal individuals, the HbA1c level is about 

5% of the total hemoglobin but is about 15% in patients with poor glycemic levels [31].  The 

HbA1c level is tested to indicate the average blood glucose level over the past 3-4 months [32] 

as the average functional lifespan of red blood cells in human body is 120 days.  The currently 

available commercial electrochemical HbA1c sensors are based on liquid chromatography, 

immunoassay, electrophoresis, or spectrophotometry techniques that require invasive blood 

extraction.  The invasive needle based electrochemical sensors are associated with disadvantages 

like excessive pain, damaged finger tissues, and high risks of blood infections like tetanus.  

Therefore, there is a pressing need for the development of advanced non-invasive optical HbA1c 

sensors with better selectivity, stability, and accuracy. 

 

Figure 1. 2  Diabetic, Pre-diabetic, and normal levels of percentage HbA1c. 

Normal 
< 5.7% 

A1c Level 
Diabetes > 6.5% 

Pre-diabetes 
5.7% - 6.5% 
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1.3 Dissertation Objectives 

The first part of this dissertation aims toward the fabrication and testing of an 

electrochemical glucose sensor.  Electrochemical sensors with high sensitivity and fast response 

time are fabricated by employing ZnO nanorods and Si nanowires, and gold (Au) nanoelectrodes 

ensembles (NEEs).  Hydrothermal synthesis of ZnO nanorods and chemical synthesis of Si 

nanowires are discussed in detail.  The structural and optical characterization of both ZnO 

nanorods and Si nanowires are performed via X-ray diffraction (XRD), and scanning electron 

microscopy (SEM) techniques and absorbance, and Micro-Raman spectroscopy techniques, 

respectively.  The enzymatic electrochemical glucose sensor working electrodes are fabricated 

using enzyme GOx and nafion polymer-modified sensor surface.  The sensor characterization is 

performed by means of the cyclic voltammetry (CV) and the amperometric techniques.  We 

hypothesize that the presence of NEEs may contribute toward enhancement of sensor 

performance by reducing response time and improving current sensitivity.   

The second part of my research aims at studying the feasibility of designing an optical 

HbA1c sensor to indicate glucose levels in recent past.  A cost-effective device is designed by 

means of simple electronic components like LEDs, photodiode, and microcontroller.  An optical 

method to measure the molar absorbance coefficients and the percentage concentration of HbA1c 

is described.  Detailed explanation of the instrumentation objectives, and results obtained from 

testing chemical dyes and a commercial chemical assay with known HbA1c percentage level, is 

presented to verify the device measurements. 
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1.4 Material Characterization Equipment 

1.4.1 X-Ray Diffraction 

The X-Ray diffraction (XRD) characterization technique is used to study the 

composition, structure and physical properties of the materials.  This is a laboratory based non-

destructive analytical technique used for the study the position of the crystal at selected 

orientations and the atomic spacing.  In 1912, Max von Laue discovered that crystalline material 

act as three-dimensional (3D) diffraction gratings for X-ray wavelengths similar to the spacing in 

a crystal lattice [37].  The principle of XRD technique is based on the constructive interference 

of monochromatic X-rays and the crystalline powder sample.  A crystalline material has a 

definite order of 3D crystallinity. The interaction of the incident X-rays with the sample 

produces a diffracted ray such that the angle of incidence is equal to the angle of reflection and 

thereby satisfying the Bragg’s Law.  The Bragg’s Law is given by equation (1.4.1), where d is 

the inter-planar spacing, θ is the Bragg’s angle, n is the order of reflection, and λ is the X-ray 

wavelength.  The schematic of Bragg’s law is represented in Fig. 1.3.   

2𝑑 sin 𝜃 = 𝑛𝜆                                                            (1.4.1) 

 

 

 

 

Figure 1. 3 A schematic of incident rays interacting with the sample leading to constructive 
interference thereby satisfying Bragg’s Law. 

 
The Philips Xpert MPD X-ray diffractometer shown in Fig. 1. 4 comprises of an X-Ray 

tube, a sample holder, and an X-ray detector.  The X-rays are produced inside a cathode ray tube 

due to the heating of a filament.  As a result, the electrons are produced, and accelerated towards 

q q d 
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a target by an applied voltage, thereby bombarding the target material with electrons.  The source 

used is a Copper Target X-Ray tube.  When electrons are sufficiently energized, the inner shell 

electrons dislocate the target material and then the X-ray spectra are produced [38].  These X-

rays are then aligned and directed onto the crystalline powder sample.  The sample rotates in the 

path of the aligned X-ray beam at an angle of θ, and the diffractometer collects the diffracted X-

rays and rotates at an angle of 2θ.  The X-ray scan for the random orientation of the powdered 

crystalline sample varies in all directions with angles 2θ in the range from 3° to 136°. 

 

Figure 1. 4 Philips PW-3040 XPert MRD High Resolution X-Ray Diffractometer [39] 
 
1.4.2 Scanning Electron Microscopy 

In 1948, researchers from the electrical department at Cambridge University assembled 

the first scanning electron microscope that produced 3D images.  The scanning electron 

microscope consists of an electron gun that generates a highly concentrated beam of electrons 
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through a series of electromagnetic lenses inside a vacuum chamber.  The power of the 

magnification depends upon the concentration of the electrons.  When the sample is hit by the 

electron beam, it emits X-rays along with three kinds of electrons, (1) primary backscattered 

electrons, (2) secondary electrons, and (3) Auger electrons.  The imprints of bouncing 

backscattered electrons is recorded and displayed in the form of 3D images.  Sample preparation 

is a very important step to produce satisfactory images showing sample size, texture, and 

topography.  Samples with any form of metals do not require any preparation because they 

respond favorably well to the electron beam.  However, non-metallic samples require to be 

placed on a thin layer of conductive material called sputter coater.  The most common sputter 

coater material used is Au foil that is negatively charged.  Removal of water or any form of 

liquid is important during sample preparation.  Water molecules vaporize in the vacuum creating 

complications for the electron beam to target the sample surface.  We use the FEI XL-30 

Environmental Scanning Electron Microscope shown in Fig. 1. 5 has a field emission electron 

gun that generates a very strong electric field capable of dissociating electrons from the atoms in 

the sample.  The FEI XL-30 Environmental Scanning Electron Microscope operates in three 

modes (1) conventional high vacuum mode, (2) low vacuum mode, and (3) true environmental 

mode.  These capabilities make it possible to scan any sample with the exception of liquids and 

gasses. 
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Figure 1. 5 FEI XL-30 Environmental Scanning Electron Microscope [40] 

1.4.3 Absorbance Spectroscopy 

The Varian Cary 500 Spectrophotometer is a UV-VIS-NIR spectrophotometer as shown 

in Fig. 1. 6.  It is used to measure the absorbance and transmission properties of materials in the 

ultraviolet to near infrared wavelength range from 175 – 3300 nm.  Spectrophotometers consists 

of (1) light sources (tungsten lamp that produces white light, ultraviolet, and near infrared light), 

(2) a monochromator (diffraction grating as the wavelength selector), (3) sample holder, (4) 

photodetector (measures the light intensity and compares to the light intensity incident on the 

sample), (5) signal processor, and (6) a computer readout.  The absorption of photons from the 

light source in the ultraviolet, visible, or near infrared region of the light spectrum leads to 

electronic transition in the molecule of the sample.  The electrons are then promoted from ground 

state to higher electronic states.  The amount of energy absorbed from the incident light source is 

measured by the detector and registered as absorbance of the sample. 
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Figure 1. 6 Snap shot of the Varian Cary 500 UV-VIS-NIR spectrophotometer in the lab. 

According to the Beer’s law, the absorbance of a solution is proportional to the sample 

concentration and the optical path.  The equation 1.4.2 represents the Beer’s law equation, where 

𝜀 is the wavelength-dependent molar absorption coefficient (M-1 cm-1), c is the concentration of 

the sample (M), and x is the path length of the sample holder (cm).  The proportionality constant, 

𝜀 is called the molar extinction coefficient, molar absorption coefficient, or the molar 

absorptivity.     

A = 𝜀	*	C	*	x																																																																		(1.4.2)	

The Beer’s law relates color intensity to the sample concentration.  A colored solution undergoes 

selective absorption when irradiated with white light.  This is due to the energy associated with 

the electrons in the molecules of the sample.  Under the effect of irradiated white light, the 

electrons get excited to higher energy levels.   The energy depends upon the wavelength of the 

electromagnetic radiations.  Visible light is a form of electromagnetic radiation.  When light is 

not absorbed by the sample, it is transmitted through.  Absorbance of a solution in terms of 

transmittance percentage is given by equation 1.4.3.   
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A = -log (%H
IJJ

)                                                                 (1.4.3) 

The absorbance of light by a sample is inversely proportional to the percentage of transmittance.  

The transmittance percentage is the ratio of transmitted intensity (I) and the incident light 

intensity (I0) as given by equation 1.4.4. 

%T = K L
LM
N ∗ 100                                                                (1.4.4) 

The transmitted intensity of light (I) as a function of wavelength (λ) is given by equation 1.4.5 

and Fig 1.7, where Io is the intensity of the light incident on the sample. 

I (l) = 𝐼𝑜	∗	exp	(−𝜀	(l)	∗	𝑐 ∗𝑥)                                                    (1.4.5) 

Beer’s law and its application in the assembly, design, and testing of an optical sensor is further 

discussed in detail in chapter 5. 

 

 

 

 

 

 

Figure 1. 7 Schematic of Beer’s Law for transmitted intensity of incident light. 

1.4.4 Micro-Raman Spectroscopy 

The Micro-Raman spectroscopy is a non-destructive material characterization method, 

where a photon of light interacts with a sample to produce scattered radiation of different 

wavelengths.  In 1928, the Indian physicist, Sir Chandrasekhara Venkata Raman first introduced 

the Raman spectroscopy technique that is now used to determine the molecular vibrations and 

rotation, effects of bonding, chemical composition, and crystal structure of the material sample.  

Transmitted  
Intensity, I(x) 

Incident light  
Intensity, Io 

𝜀 

C 
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A Raman spectroscope consists of a laser source for excitation, a sample illumination system, 

and spectrometer as shown in Fig 1.8.  The laser source selection plays a very important role in 

the experimental capabilities.  When the monochromatic laser radiations are incident on the 

sample surface, absorption, reflection, and scattering of photons take place.  The analysis of 

wavelength of the scattered photons gives the wavelength of the incident photons (Rayleigh 

scattering) as well as the wavelength of the scattered photons at different wavelengths (Stokes 

and Anti-Stokes Raman scattering) [41].  These Raman scattered photons intensities provide the 

chemical, and structural information and are about 0.001% of the intensity of the laser source. 

 

 

 

 

 

 

Figure 1. 8 The schematic of the Raman spectroscope instrumentation. 

Figure 1. 9 shows the Horiba LabRam HR Evolution Raman-PL microscope system in our 

laboratory that allows both Micro-Raman and photoluminescence (PL) measurements on the 

same instrument.  The system is designed with multi laser excitation sources (blue laser, 325 nm 

and red laser, 633 nm) ranging from UV to NIR wavelengths.  The system is equipped with 

multiple detectors like the charge-coupled device (CCD) detector and InGaAs detector for a wide 

spectral range analysis for both Raman and PL.  The Horiba Micro Raman-PL system is 

configured with the LabSpec 6 software platform that allows user friendly sample measurement 

set-up, visualization, and simple interpretation of data and final results.  The Raman spectrum of 

a sample is displayed on the computer system that shows a number of peaks representing the 

Laser source 

Sample 

cell 
Wavelength 

selector 

Radiation 

transducer 
Computer 

data system 
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intensity and wavelength position of the Raman scattered light.  The micro-Raman spectrum of 

ZnO nanorods presented and discussed further in chapter 2 and 4, and Si nanowires are presented 

in chapter 4.   

 

Figure 1. 9 Snap shot of the LabRAM HR Evolution – Horiba Raman-PL microscope in the lab. 
 
1.4.5 Electron Beam Evaporation  

The electron beam (e-beam) evaporation technique is a physical vapor deposition 

technique used for thin-film deposition of high quality and high purity metals or alloys on 

substrates.  Figure 1. 10 represents the e-beam evaporator used in our lab and is known as the 

Angstrom Nexdep Electron Beam Evaporator.  A high voltage is applied between a tungsten 

filament and the vacuum chamber that accelerates a beam of electrons towards the crucible 

containing the metal or alloy to be deposited.  The electron beam steered via electric and 

magnetic fields causing the source material to evaporate and deposit on the substrate.  The e-

beam thin-film deposition technique has advantages like (1) high deposition rates, (2) allows 

evaporation of high temperature elements like Au, tungsten, tantalum, or graphite, (3) dense and 

high purity thin-film deposition, and (4) more than one material deposition is possible via the 

motorized rotary pocket containing different source materials.  The e-beam deposition of 50 nm 
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of metal Au over 10 nm of titanium used in the fabrication of electrochemical sensor working 

electrode is discussed further in chapter 4.   

 

Figure 1.10 Snap shot of the Angstrom Nexdep Electron Beam Evaporator in the lab. 
 
1.4.6 Source meter Keithley 2410 

Device characterization of the electrochemical sensor (further discussed in chapter 2, 3, 

and 4) is performed using the Keithley 2410 source meter shown in Fig 1. 11.  The model of this 

source meter has a maximum power rating of 20 W.  The maximum current source and 

measuring range is up to 1 A and the maximum voltage source or measuring range is up to 1100 

V.  The measurement resolution is 1 pA/100 nV.  We primarily use the source meter to perform 

the amperometric iterations at a fixed potential applied across the cathode and anode immersed 

in an electrochemical cell (further discussed in chapter 2, 3, and 4). 
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Figure 1. 11 Snap shot of the Keithley 2410 source meter used in the lab. 
 
1.4.7 Gamry Reference 600 Potentiostat 

Cyclic voltammetry (CV) is an electrochemical device characterization technique used to 

measure the current developing in an electrochemical cell under the effect of a range of applied 

potential.  We derive information like the oxidation reduction potentials of the electrochemical 

sensor through the CV results.  The CV characterization results for the fabricated 

electrochemical sensors based on different nanostructures are discussed further in chapter 2, 3, 

and 4.  All the CV measurements are performed using the Gamry Reference 600 Potentiostat 

shown in Fig. 1. 12.  The Gamry Reference 600 potentiostat is a high-performance, research 

grade electrochemistry testing instrument that is highly stable and produces reliable, reproducible 

results.   The Gamry potentiostat has a USB 2.0 connection that is used to interface with the 

windows operating system for data analysis by means of the open source software package called 

Gamry Echem Analyst.  The instrument has a maximum applied potential of + 11.00 V and a 

maximum current rating of + 600 A.   The minimum potential step possible is 12.50 µV with a 

minimum rise time of less than 250 ns. 
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Figure 1. 12 Gamry Reference 600 potentiostat (at the High-Density Electronics Center, 
Engineering Research Center, University of Arkansas, Fayetteville) 
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CHAPTER 2. ELECTROCHEMICAL GLUCOSE SENSOR BASED ON ZINC OXIDE 

NANORODS 

2.1 Chapter Overview 

In this chapter, we use the hydrothermal sol-gel technique to synthesis ZnO nanorods on 

a glass substrate coated with indium tin oxide (ITO).  The as-synthesized nanostructures are then 

characterized using structural and optical characterization methods like XRD, SEM, absorption 

spectroscopy and micro-Raman spectroscopy.  The ZnO nanorods are then employed to fabricate 

an electrochemical sensor for glucose detection that is characterized by means of the cyclic 

voltammetry and the amperometry device characterization techniques.  The low temperature, 

high pressure, cost effective, rapid and simple hydrothermal sol-gel technique is optimized to get 

high purity, homogeneous, hexagonal shaped ZnO nanorods (as shown in Fig. 2.2 (a)).  The 

current sensitivity, response time, and limit of detection (LOD) of the fabricated sensor under 

test are compared to previously reported electrochemical sensors. 

Fabrication of an Electrochemical Sensor for Glucose Detection using ZnO Nanorods 

Sanghamitra Mandal1*, Mohammed Marie2 and Omar Manasreh1 
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Abstract 

An electrochemical glucose sensor based on ZnO nanorods is fabricated, characterized 

and tested.  The ZnO nanorods are synthesized on indium titanium oxide (ITO) coated glass 

substrate, using the hydrothermal sol-gel technique.  The working principle of the sensor under 

investigation is based on the electrochemical reaction taking place between cathode and anode, 

in the presence of an electrolyte.  A platinum plate, used as the cathode and Nafion/Glucose 
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Oxidase/ZnO nanorods/ITO-coated glass substrate used as anode, is immersed in pH 7.40 

phosphate buffered saline (PBS) as the electrolyte to test for the presence of glucose.  Several 

amperometric tests are performed on the fabricated sensor to determine the response time, 

sensitivity and limit of detection (LOD) of the sensor.  A fast response time less than 3 s with a 

high sensitivity of 1.15 mA cm-2mM-1 and low LOD of 0.089 mM is reported.  The glucose 

sensor is characterized using the cyclic voltammetry method in the range from -0.8 – 0.8 V with 

a voltage scan rate of 100 mV/s. 

Keywords:  X-ray diffraction (XRD); sol-gel; nanostructure 

2.2 Introduction 

Today, health issues caused by diabetes have affected 350 million people in the world, 

causing high rates of illness and deaths [1].  Glucose is the most important form of sugar in the 

human blood that acts as the prime source of energy for the human body.  Monitoring normal 

blood glucose level prevents the risks of suffering from the chronic disease diabetes.  It is 

reported that ZnO nanowires are biodegradable and biocompatible in bio fluids [2].  The 

isoelectric point of ZnO is 9.5 that make nanostructured ZnO materials to easily absorb enzymes 

in buffer solutions [3].  The stability of ZnO in air is high [4].  The oxide layers naturally formed 

on zinc do not form a passivating film, which prevents its corrosion [5].  In the recent years, 1D 

ZnO nanorods are synthesized using the hydrothermal growth technique [6].  In this paper, an 

enzyme based amperometric electrochemical glucose sensor is reported.  In such sensors, high 

rate of enzyme mobilization with an appropriate transducer material is desired [7].  The working 

of amperometric sensors are based on the detection of hydrogen peroxide (H2O2) during the 

enzymatic reaction by anodic oxidation [8].  Platinum is one of the most commonly used 

transducer electrodes used in amperometric sensors [8].  A sensitivity of 1151 µA/cm2 mM is 
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reported for the investigated Nafion/GOx/ZnO nanorods/ITO coated glass substrate electrode.  

The sensitivity is derived from the linear response slope obtained for a glucose concentration 

ranging from 0.01 – 1.60 mM.  The acquired sensitivity slope is extremely high compared to 

peer results reported on glucose sensors based on ZnO nanocombs [11], ZnO nanorods arrays 

[10, 12], ZnO nanotubes [9, 13], ZnO nanowires [14] and ZnO inverse opal [14] (See Appendix:  

Table 2.1).  Also, the LOD varies between 0.001 – 0.070 mM [9, 10-17] as compared to 0.089 

mM reported in this paper.  In this paper, a response time less than 3 s is reported that is faster 

considering previous papers reported on enzymatic glucose sensors based on different 

nanomaterials like titanium sol-gel membrane [15], carbon decorated ZnO nanowires on titanium 

[16], and nanostructured cerium oxide film [17] (See Appendix:  Table 2.1). 

2.3 Experiment 

 All the chemicals used during the experiment were purchased from VWR International or 

Sigma-Aldrich without further purification.  A 0.50 M ZnO sol-gel is prepared by stirring 1.10 g 

of zinc acetate in 10 mL of mono-ethanolamine for 1 hour at a temperature of 70 ◦C.  A milky 

dull solution is formed to which 0.30 mL of ethanolamine is added and stirred for an hour at 70 

◦C.  The ZnO sol-gel is spin-coated on indium titanium oxide (ITO) coated glass substrate to 

form a thin-film over the substrate surface.  A 0.05 M ZnO nanorods growth solution is prepared 

by stirring 0.30 g of zinc nitrate hexa-hydrate, and 0.14 g of hexamethylenetetramine, 

respectively in 10 mL of DI water at room temperature for an hour.  The ITO substrate coated 

with thin film is immersed into the growth solution upside down at a temperature of 85 ◦C for 4 

hours.  The sample is then, rinsed with DI water and annealed at room temperature for 30 min at 

a temperature of 110 ◦C. 
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            The sample with well-aligned hexagonal ZnO nanorods is characterized using 

absorbance, Raman and scanning electron microscopies, and Gonio mode X-ray diffraction 

(XRD) using Cary 500 Scan UV-Vis-NIR spectrophotometer, Horiba LabRAM HR Raman 

spectroscope, scanning electron microscope, and Philips PW 1830 double system diffractometer, 

respectively.  Sensor fabrication is performed using an enzyme that is prepared by sonicating 40 

mg Bovine serum albumin and 20 mg GOx in 0.40 mL phosphate buffered saline (PBS).  The 

polymer nafion (0.20 µL) is dropped on the sample to stabilize the GOx and prevent enzyme 

leakage.  The sample with Nafion/GOx/ZnO nanorods/ITO-coated glass substrate, and platinum 

plate are, respectively used as anode and cathode, to measure current response for a constant 

voltage of 0.80 V by means of the Keithley 2410 source meter.  Redox state studies are 

performed using cyclic voltammetry for a voltage range from -0.80 V – 0.80 V with a voltage 

sweep rate of 100 mV/s.  

2.4 Discussion  

The ultraviolet - visible absorbance spectroscopy is measured at room temperature for the 

hydrothermal ZnO nanorods grown for a wavelength ranging from 200 nm to 1000 nm.  A 

prominent exciton band peak is observed at 365 nm as depicted in Fig. 2. 1 (a).  A blue shift is 

witnessed when compared to the absorbance of bulk ZnO at 374 nm [18].  The particle size of 

ZnO nanorods with radius 1.1 + 0.1 nm slightly decreases when compared to the bulk ZnO 

exciton Bohr’s radius ~ 2.34 nm [19].  The band gap expansion and blue shift in the absorbance 

spectrum occurs due to quantum confinement in the ZnO nanorods [19] synthesized using the 

sol-gel growth method.  Raman spectroscopy is utilized to determine the lattice distortions in 

ZnO nanorods caused by oxygen vacancies and impurities.  The Raman spectrum shown in Fig. 

2. 1 (b) has dominant peaks at 332.0, 380.0, 439.7, and 584.0 cm-1.  These peaks are called the E2 
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low second order Raman mode, A1 transverse optical mode, non-polar E2 high optical phonon 

mode, and the E1 longitudinal optical mode, respectively.  The location of the modes is 

determined by the crystal orientation, and polarization of the incident and Raman scattered lights 

[20]. 
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The top view scanning electron microscopy (SEM) image of the sample substrate with 

ZnO nanorods is represented in Fig. 2. 2 (a).  The nanorods are hexagonal in shape, well-aligned 

and evenly distributed throughout the surface of the ITO-coated glass substrate.  The length and 

diameter of the ZnO nanorods is ~ 1.5 µm and ~ 70.0 nm, respectively.  The aspect ratio is 

calculated as 21.  Aspect ratio is referred to as the ratio of the average length to the average 

width of the nanorods.  The crystal structure and orientation of the ZnO nanorods are studied 

using the Gonio-mode XRD pattern as shown in Fig. 2. 2 (b).  The most dominant peak appears 

at 34.36° representing the (002) orientation of the ZnO 2Theta scan XRD pattern.  Other peaks at 

36.21°, 47.47°, 62.76°, and 72.43°, denote the (101), (102), (103), and (004) orientation XRD 

peaks of ZnO.  The lattice constants calculated using the (002) orientation is a = 3.011 Å and c = 

 

Figure 2. 1 (a) Absorbance spectrum of hydrothermally grown ZnO nanorods measured at 
room temperature. (b) Micro-Raman spectrum for ZnO nanorods grown on ITO coated glass 
substrate after hot plate annealing at 120°C. 
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5.22 Å, which are in good agreement with the bulk ZnO [21].  The Scherrer’s equation given 

below [22] is used to determine the average crystal size (~ 7.64 Å) for (002) orientation ZnO. 

𝜏 = 	 T∙V
W∙XMYZ

                                                                 (2.4.1) 

In equation 2.4.1, K, λ, β, and θ are shape factor (0.9), the X-ray wavelength (1.54 Å), FWHM 

(0.19°), and Bragg’s diffraction angle (17.18°), respectively. 

 

 

Figure 2. 2 (a) SEM image of ZnO nanorods grown using the sol-gel hydrothermal method on 
ITO and measured at room temperature. (b) Gonio-XRD pattern of ZnO nanorods at room 
temperature. 

The sketch of the working electrode Nafion/GOx/ZnO nanorods/ITO-coated glass 

substrate is shown in Fig. 2. 3 (a).  The substrate with ZnO nanorods are rinsed with PBS to 

create a hydrophilic surface. 1.0 µL of GOx is dropped onto ZnO nanorods at room temperature 

and allowed to dry for a couple of hours.  2.0 µL Nafion polymer is dropped onto the substrate 

with GOx adsorbed ZnO nanorods and dried in air for a couple of hours.  Nafion is highly 

permeable in water and is capable of resisting chemical attack.  The ion exchanging properties of 

nafion creates a biocompatible layer for the enzymes and stabilizes GOx.  Figure 2. 3 (b) 

illustrates the schematic for the glucose sensing electrochemical experiment setup.  The working 
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electrode Nafion/GOx/ZnO nanorods/ITO acts as the anode, and a platinum plate as the cathode 

that are immersed into the pH 7.40 electrolyte PBS.  A potential of 0.80 V is applied across the 

two electrodes to record the current responses of the sensor. 

  

Figure 2. 3 (a) Nafion/GOx/ZnO nanorods/ITO electrode. (b) Schematic illustration of the 
electrochemical test cell with anode and cathode immersed in PBS. 

The current response for different concentrations of glucose in PBS is recorded to obtain 

the calibration curve shown in Fig. 2. 4 (a).  The calibration curve is achieved utilizing the 

steady-state amperometric response for increasing glucose concentrations, added to the pH 7.40 

PBS inside the test cell.  Steady-state amperometric response refers to the current versus time 

response.  The error bars represent 4% data variability or the standard error for 10 consecutive 

amperometric responses.  During the phenomenon of electrolysis inside the test cell at 0.80 V, 

glucose gets oxidized by GOx to produce an enzyme that is given by the equation 2.4.2.   

𝑂\ + 𝐺𝑙𝑢𝑐𝑜𝑠𝑒	
`ab
c⎯e 	𝐸𝑛𝑧𝑦𝑚𝑒 +	𝐻\𝑂\                                      (2.4.2) 

Reaction of this enzyme with oxygen produces H2O2.  Reduction of H2O2 chemically occurs 

according to equation 2.4.3. 

4 pH 7.40 PBS 
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𝐻\𝑂\		
.
→ 𝑂\ + 2	𝐻 + 2𝑒j                                                  (2.4.3) 

The electrons given out into the electrolyte during the electrochemical reaction gives the sensor 

sensitivity.  Based on the amperometric measurements, response time of the sensor is calculated 

to be < 3.0 s, which is faster than the sensors reported earlier with an aspect ratio of 30 [10].  The 

slope and the intercept of the curve in Fig. 2. 4 (a) exhibits a sensitivity of 1.15 mA/cm2 mM, for 

a linear range of increasing glucose concentration ranging from 0.01 – 1.60 mM, measured at a 

fixed potential of 0.80 V.  The sensitivity achieved is high compared to peer reviewed results 

reported on glucose sensors based on ZnO nanorods arrays [10, 12].  Limit of detection (LOD) is 

given by equation 2.4.3 and is defined as the minimum amount of glucose analyte concentration 

in PBS that is distinguished from zero [23].   

LOD = k		×			lmnopnqp	rqqsq
ltsuv

                                                  (2.4.4) 

Inequation 2.4.3, the y-intercept of the linear fit is considered as the standard error.  The LOD for 

the sensor is calculated as 0.089 mM.  The normal glucose level in humans, fall in between the 

range from 3.5 – 6.1 mM, whereas in case of a diabetic person it could be as high as 18.00 mM 

[14].  This clinical glucose range justifies the detection range and achieved LOD reported in this 

paper.  The cyclic voltammogram presented in Fig. 2. 4 (b) has a reduction peak at -0.45 V 

indicating reduction of H2O2, and an oxidation peak at 0.45 V demonstrating the oxidation of 

glucose.  It can be inferred that with the increase in the glucose concentration successively added 

to PBS leads to an increase in the rate of glucose oxidation by enzyme GOx that are seen as the 

redox peaks in the voltammogram (Fig. 2. 4 (b)). 
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Figure 2. 4 (a) Calibration curve plotted using the amperometric response measured at a 
potential of 0.80 V, for glucose concentration ranging from 0.01 – 20.0 mM, (b) Cyclic-
voltammogram of electrochemical glucose sensor for a potential ranging from -0.80 V – 0.80 
V with a sweep rate of 100 mV/sec. 
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2.5 Conclusion 

An enzymatic electrochemical glucose sensor based on the phenomenon of GOx 

adsorption by hydrothermally grown ZnO nanorods is reported.  The high isoelectric point of 

ZnO aids in easy absorption of enzymes, whereas its stability in air, and biocompatibility creates 

an atmosphere for retaining enzyme activity.  A simple and low-temperature method known as 

the hydrothermal sol-gel technique is used to synthesize ZnO nanorods with high aspect ratio.    

The immobilization efficiency of GOx being absorbed by the ZnO nanorods depends upon the 

aspect ratio of the nanorods.  The hydrothermal synthesis growth conditions control the surface 

morphology and distribution of the ZnO nanorods, grown on the desired substrate.  High aspect 

ratio ZnO nanorods are utilized to improve the electrical contact for the redox reaction taking 

place between GOx and platinum electrode along with the use of biocompatible nafion 

membrane.  Well aligned ZnO nanorods with high aspect ratio contribute to the best performance 

in terms of sensitivity for glucose detection.  The low-cost fabrication method, with the achieved 

high sensor sensitivity, encourages further investment and research towards commercialization 

of such electrochemical glucose sensors. 

Table 2. 1 Performance parameters of peer reported electrochemical glucose sensors. 
Working 

electrode material 
Sensitivity 

(µA/cm2mM) 
Response 
time (s) LOD (mM) 

Linear range 
(mM) Reference 

ZnO nanotubes/Au 21.7 3 0.001 0.05 – 12 9 
ZnO 

nanorods/Si/Ag 
106.6 < 2 0.001 0.01 – 17.00 10 

ZnO nanocomb/Au 15.33 < 10 0.02 0.02 – 4.5 11 
ZnO nanorods/Au 23.1 < 5 0.01 0.01 – 3.45 12 

ZnO nanotubes 30.85 < 6 0.01 0.01 – 4.2 13 
ZnO inverse opal 
ZnO nanowires 

22.5 
24.56 

_ 
_ 

_ 
_ 

0.01 – 18 
0.01 – 7 

14 
14 

TiO2 sol-gel film 7.2 < 6 0.07 0.07 – 15 15 
C-ZnO 

nanowires/Ti 
35.3 ~ 5 0.001 0.01 – 1.6 16 

CeO2/Au 0.0029 < 5 0.012 2.8 – 22.2 17 
ZnO nanorods/ITO 1151 < 3.0 0.089 0.01 – 1.6 This work 
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Appendix 

The comparison of the performance parameters of other peer reported glucose sensors 

based on other nanomaterials grown on different substrates has been presented in Table 2.1. 

2.6 Chapter Summary 

The employment of high aspect ratio, well aligned ZnO nanorods in the sensor working 

electrode plays an important role in increasing the active sensing area.  This allows the ZnO 

nanorods to adsorb higher amounts of enzyme GOx that enhances the oxidation-reduction 

reaction inside the electrochemical cell.  In other words, higher the amount of enzyme GOx 

adsorbed by the ZnO nanorods, longer will the electrochemical redox reaction last.  The rate of 

oxidation of glucose is be higher and longer, leading to higher amount of H2O2 formed inside the 

electrochemical cell.  As a result, more amount of H2O2 gets reduced, leading to the generation 

of higher number of electrons.  This then leads to high current sensitivity detection of the sensor.  

The enzyme GOx primarily catalyzes the oxidation of glucose and causes the formation of H2O2.  

In Table 2.1, we compare the current sensitivity, response time and LOD of our electrochemical 

sensor with other published works.  In this work, the main reason towards superior sensor 

performance parameters is the high quality ZnO nanorods fabricated using our optimized 

hydrothermal sol-gel synthesis technique. 
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CHAPTER 3. ELECTROCHEMICAL GLUCOSE SENSOR BASED ON SILICON 

NANOWIRES 

3.1 Chapter Overview 

In this chapter, we fabricate and characterize an electrochemical sensor for glucose 

detection using silicon (Si) nanowires.  The Si nanowires are fabricated from p-type Si wafer by 

means of the metal assisted chemical etching (MACE) technique as described in this chapter.  

The MACE is a simple, cost-effective chemical wet etching method that allows control over the 

morphology of the nanostructures fabrication.  In this etching process, silver ions deposit on the 

surface of the Si wafer when immersed in an etching solution low ratio of HF/AgNO3.  Under 

optimized etching time and temperature, the silver metal ions slowly sink into the Si wafer 

forming porous structures.  The Si nanowires are then characterized using SEM, absorption 

spectroscopy and micro-Raman spectroscopy.  The Si wafer sample with the optimized 

nanowires are then utilized in the fabrication of the working electrode for the electrochemical 

glucose sensor.  The concept of gold nanoelectrode ensembles were used to enhance the sensor 

sensitivity. 

Fabrication of Nanoelectrode Ensembles using Silicon Nanowires in an Electrochemical 

Glucose Sensor 

Sanghamitra Mandal1*, Mohammed Marie2 and Omar Manasreh1 

1 Department of Electrical Engineering, University of Arkansas, Fayetteville, AR  72701, U.S.A.  

2 Microelectronics Photonics Program, University of Arkansas, Fayetteville, AR  72701, U.S.A. 

Abstract 

Gold (Au) nanoelectrode ensembles (NEEs) were investigated after the synthesis of 

silicon nanowires using the metal assisted chemical etching technique.  Structural and non-



 38 

destructive optical characterization of silicon nanowires are carried out to determine its 

morphology and crystallinity.  The cyclic voltammetry technique is used to determine the 

oxidation-reduction potentials of the sensor at different voltage scan rates of 100, 200, and 300 

mV/s.  Amperometric measurement at a fixed oxidation potential of 0.60 V is performed to 

measure the sensitivity, response time, and LOD of the sensor.  The presence of Au NEEs 

improve the signal to noise ratio of the sensor.  Therefore, the sensor exhibits a high sensitivity 

of 0.40 mA/mM cm2 with a response time of 1.0 s, and a limit of detection 0.077 mM.   

Keywords:  Electrochemical sensor; silicon nanowires; nanotechnology; metal assisted 

chemical etching; nanoelectrode  

3.2 Introduction  

Silicon (Si) is the most commonly used semiconducting material in the nanotechnology 

industry.  Semiconductor Si has replaced other semiconductors like germanium due its 

abundance on earth’s crust, wide energy band-gap, chemical stability, thermal stability, and easy 

fabrication of passivation layer.  Likewise, Si nanowires demonstrate unique morphological, 

electrical, optical, and thermal characteristics that have led to research advancements and 

commercialization of Si nanowires-based devices [1].  The properties of the Si nanowires depend 

on its fabrication technique [2].  The performance of a sensor depends upon the physical and 

chemical properties of the material used in its fabrication [3].  Electrochemical sensors for 

glucose detection has emerged as a major research interest area in the past decade due to the 

rising number of people affected by the metabolic disorder known as Diabetes.  

In this paper, we report the fabrication and characterization of an electrochemical glucose 

sensor based on Si nanowires.  Metal assisted chemical etching (MACE) technique is used to 

synthesize Si nanowires.  Optical and structural characterization of the as-synthesized Si 
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nanowires is performed using the absorbance spectroscopy, micro-Raman spectroscopy, and 

scanning electron microscopy (SEM).  The characterization of the glucose sensor is carried out 

using the cyclic voltammetry technique and the amperometric tests.  It is inferred that the 

existence of Au NEEs reduce the signal to noise ratio thereby enhancing the current response of 

the sensor under investigation. 

3.3 Sensor Design and Fabrication 

3.3.1 Silicon Nanowires Synthesis 

The Si nanowires are synthesized using the MACE technique that is a directional wet 

etching technique, where silver is deposited on the surface of the Si wafer.  This etching 

procedure is used because there is no definite requirement on the morphology of the resultant 

etched nanostructures.  The Si wafer with (1 0 0) orientation allow etching along the <1 0 0> 

direction using a low HF/AgNO3 ratio [4].  In this technique, silver as the cathode catalyzes the 

Si atoms to form a silicon di-oxide layer on the sample surface.  This is possible because the 

electronegativity of silver (9.3) is higher than Si (9.0).  Thereafter, the HF molecules vertically 

etch the silicon di-oxide film to form Si nanowires.  The depth of the etched nanostructures 

depends on the concentration of the etching solution and the etch time.  

Samples with a dimension of 1 cm x 1 cm are cut from a 4” p-type Si wafer, single side 

polished, with (1 0 0) orientation, 0.5 mm thick, and doped with dopant boron.  The 1 cm2 Si 

substrate samples are cleaned ultrasonically with trichloroethane, acetone, ethanol, and DI water, 

respectively for 10 mins in each solution.  The passive oxide layer of silicon di-oxide formed on 

the Si is removed by immersing the samples into a 1:10 ratio solution of hydrofluoric acid (HF) 

and DI water for 60 s.  Each sample is then immersed in an etching solution of 30.0 mM silver 

nitrate (AgNO3) and 4.60 M solution of HF, for 1200 s at a temperature of 40◦C.  The sample is 
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then immersed into nitric acid (HNO3) for another 1200 s to remove silver atoms from the 

surface of Si substrate.  The sample with Si nanowires is then cleaned using DI water and dried 

using nitrogen gas. 

3.3.2 Sensor Fabrication and Characterization 

The Angstrom Nexdep Electron Beam Evaporator is used to deposit 50 nm of highly pure 

Au film over the chemically etched Si nanowires.  During the process, Au NEEs are naturally 

formed in between Si nanowires in the substrate surface as shown in Fig. 3. 1 (b).  The NEEs are 

made of many small ultra-microelectrodes confined in a small space.  These NEEs are useful 

tools for testing electrochemical sensors that demonstrate LOD values two or three orders lower 

than the regular electrodes [5] [6]. 

 
The most common enzyme used for the detection of glucose in enzymatic sensors is 

GOx.  The Si/Au/Si nanowires sample is modified by drop casting 1.0 µL of enzyme GOx on the 

substrate surface.  The sample is allowed to dry in atmosphere for 3 hrs.  Enzyme GOx is 

prepared by sonicating 40.0 mg bovine serum albumin and 20.0 mg GOx, in 0.40 mL of PBS for 

  

Figure 3. 1 Schematic showing (a) Si nanowires on Si wafer with 50 nm coating of Au (b) Au 
NEEs in between Si nanowires. 

(a) 
(b) 
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60 mins.  Bovine serum albumin is a protein substitute used to stabilize GOx and prevent the 

adhesion of GOx on the Au/glass substrate surface.  Around 2.0 µL of Nafion is drop casted over 

the substrate once the GOx dries.  The sample is allowed to dry in atmosphere for 120 mins.   

3.4 Results and Discussion 

3.4.1 Structural and Optical Characterization of Si nanowires 

The structural characterization of Si nanowires at room temperature is performed using 

the FEI XL-30 Environmental Scanning Electron Microscope.  The general morphology of the Si 

nanowires synthesized using the MACE technique is depicted by the scanning electron 

microscopy (SEM) image (top view) in Fig. 3. 2 inset.  The Si nanowires with an approximate 

length of 1.0 µm and diameter of 50 nm are witnessed.  The properties of the nanowires are 

dependent on its diameter [7].  Fig. 3. 2 exhibits the absorbance spectrum of bare Si and Si 

nanowires at room temperature.  Cary 500 Scan UV-Vis-NIR spectrophotometer is used to 

measure the absorbance of the sample for a wavelength ranging from 500 – 1500 nm.  According 

to literature [2], bare crystalline Si has a band gap of 1.1 eV.  This is exhibited by a wavelength 

of 1126 nm.  Also, the absorbance shoulder of Si nanowires is observed at a wavelength of 1094 

nm, demonstrating a blue shift in the optical absorption of Si.  The shift of 32 nm justifies the 

phenomenon of quantum confinement demonstrating bandgap expansion and an increase in 

bandgap energy.   
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Figure 3. 2 Absorbance spectrum of bare Si and Si nanowires.  Inset: SEM image illustrating 
the top view of Si nanowires synthesized using MACE. 

The micro-Raman spectrum for bare Si wafer (1 0 0) and Si nanowires is presented in 

Fig. 3. 3.  Horiba LabRAM HR Raman spectroscope is used to investigate micro-Raman 

spectrum of the sample in the range from 300 – 1000 cm-1.  The Raman peak of bare Si wafer 

(black) observed at 538.0 cm-1 is in agreement with the already published work [8].  The first 

order optical phonon modes for the Si nanowires with a diameter of 50 nm (red) is observed at 

523.00 cm-1.  The narrow spectral width and high intensity of the Si nanowires micro-Raman 

peak indicate high crystal quality of the nanowires. 
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Figure 3. 3 Micro-Raman spectrum of bare Si wafer and Si nanowires measured at room 
temperature. 
 
3.3.2 Electrochemical Characterization and Testing of the Sensor 

The occurrence of NEEs due to Au deposition in between the Si nanowires plays a very 

important role in reducing the signal to noise ratio when compared to microelectrodes.  The 1.0 

µm tall Si nanowires increase the electrode surface area, and reduce the electrode resistance, 

thereby demonstrating higher current sensitivity.  Gamry Reference 600 potentiostat is utilized to 

execute cyclic voltammetric tests on the sensor under investigation at different voltage scan rates 

of 100, 200, and 300 mV/s as displayed in Fig. 3. 4.  The hysteresis characteristic of the cyclic 

voltammograms describes the electron transfer mechanism between the anode and the cathode 

inside the electrochemical cell.  A shoulder at +0.60 V due to the anodic oxidation current and at 

-0.35 V due to the cathodic reduction current is observed. These shoulders represent the redox 
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(oxidation-reduction) reaction taking place inside the test cell during the electrochemical 

reaction.  The anodic oxidation potential of 0.60 V is henceforth used as the applied potential 

during the amperometric tests.  Oxidation and reduction shoulders are observed at all voltage 

scan rates in the presence of 2.0 mM glucose.  These shoulders do not appear when samples are 

tested in the absence of glucose thereby justifying the sensor glucose sensitivity.  A linear 

relationship between current and voltage scan rates is noticed.  Faster scan rate (300 mV/s) show 

higher current and more prominent shoulder, while slower scan rate (100 mV/s) provide 

sufficient time for glucose to reduce in the presence of catalyst GOx, which generate H2O2. 

 

Figure 3. 4 Cyclic voltammograms obtained in the presence and absence (dotted line) of 
glucose at a sweep rate of 100, 200, and 300 mV/s. 

  The sensor under investigation is tested using the two-electrode system, where platinum 

(cathode) is the counter electrode, and Si/Au/Si nanowires/GOx/nafion (anode) is the working 
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electrode.  Keithley 2410 source meter is used to test the sensor under a constant applied voltage 

of 0.80 V.  The current response of the sensor is examined to determine its sensitivity and 

response time.  The sensor is tested inside a closed beaker containing 7.40 pH PBS.  The glucose 

concentration is increased step wise (0.50 mM) with time (10 s) and the corresponding current is 

noted.  This current response versus time is called the amperometric response of the sensor.  The 

amperometric measurements presented in inset of Fig. 3. 5 are current versus time response of 

the sensor.  A response time of 1 s is observed from stepped curve (blue) in inset.  The linear 

calibration curve (red) shown in Fig. 3. 5 is used to calculate sensor sensitivity and LOD using 

values of slope and intercept obtained.  The LOD is calculated to be 0.77 mM, using the equation 

3.4.1 [9]. 

LOD = 	 k∗lmnopnqp	rqqsq
ltsuv

                                               (3.4.1) 

In equation 3.4.1, the value 3 is the signal to noise ratio [10], and the standard error is the error of 

the y-intercept in the linear fit. 
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Figure 3. 5 Calibration curve derived from the amperometric measurements performed for a 
glucose concentration ranging from 0.01 – 7.0 mM.  Inset:  Steady state amperometric 
measurements at a constant potential of 0.60 V, for successive addition of 0.50 mM glucose. 
 
3.5 Conclusion 

An electrochemical glucose sensor is fabricated and characterized by synthesizing Si 

nanowires using MACE technique.  The as-grown Si nanowires show a blue shift in the 

absorbance spectrum indicating a bandgap expansion due to the phenomenon of quantum 

confinement.  The deposition of Au on the nanowires leads to the formation of Au NEEs.  The 

NEEs reduce signal to noise ratio and increase current sensitivity of the sensor.  Such NEE 

arrays act as individual sensors by increasing the overall sensor active surface area.  The 

electrochemical sensor under investigation demonstrates high current response, faster response 

time and low LOD.  Considering the increasing demands of nanoscale technology in biomedical 

engineering, the concept of NEE arrays is promising and demands further research.   
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3.6 Chapter Summary 

The working electrode of the electrochemical glucose sensor fabricated using MACE 

synthesized Si nanowires, are further modified by depositing Au on the substrate.  The e-beam 

evaporator is used to deposit 10 nm of titanium followed by 50 nm of Au on the Si substrate with 

as-synthesized Si nanowires.  This leads to the formation of Au NEEs that act as individual 

islands of metal Au.   Thereby, there is an increase in the transfer of electrons inside the 

electrochemical cell during the electrochemical redox reactions.  It is observed that the concept 

of employing Au NEEs lead to an enhanced sensor sensitivity and faster response time of the 

sensor.  However, the sensor sensitivity is an order lower than that observed in the 

electrochemical glucose sensor based on ZnO nanorods discussed in the previous chapter no. 2.  

Therefore, we employ the concept of Au NEEs to fabricate ZnO nanorods based electrochemical 

glucose sensor in the following chapter. 
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CHAPTER 4.  ELECTROCHEMICAL GLUCOSE SENSOR BASED ON ZINC OXIDE 

NANORODS AND GOLD NANO-ELECTRODE ENSEMBLES 

4.1 Chapter Overview 

In this chapter, we employ the concept of Au NEEs on the working electrode with as-

synthesized ZnO nanorods, in the fabrication and characterization of an electrochemical sensor 

for glucose detection.  The ZnO nanorods synthesis recipe is similar to the one described in 

chapter 2 and the perception of employing Au NEEs in the working electrode is derived from the 

work explained chapter 3.  Here, we study the degree of enhancement in the sensor sensitivity, 

after the modifying the ZnO nanorods based working electrode, as reported in chapter 2, by 

employing Au NEEs. 

Sensitivity enhancement in an in-vitro glucose sensor using gold nanoelectrode ensembles 

Sanghamitra Mandal,a* Mohammed Marie,b Andrian Kuchuk,c M.O. Manasreh,a and Mourad 

Benamarac 
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Abstract 

Enzymatic electrochemical sensor for glucose detection is fabricated based on 

hydrothermally grown zinc oxide (ZnO) nanorods.  The conception of gold (Au) nanoelectrode 

ensembles (NEEs) is applied to enhance the sensitivity of the electrochemical sensor under 

investigation.  The characterization of as-synthesized ZnO nanorods on Au and indium tin oxide 

substrates is performed using X-ray diffraction, scanning electron microscopy, and micro-Raman 

spectroscopy.  The current sensitivity of sensors with and without Au NEEs are computed using 
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the cyclic voltammetry and amperometric tests executed for the glucose level ranging from 0.01 

– 11.00 mM/L.  Current sensitivity of 7.50 µA/mM for a linear range of glucose concentration 

from 0.01 – 6.50 mM is testified.  Response time of 1 s and a low limit of detection of 0.065 mM 

is reported for the sensor based on Au NEEs.  The need of ZnO nanorods in the sensor working 

electrode, to immobilize enzyme GOx is justified.  The presence of Au NEEs boost the sensor 

current sensitivity by enhancing the rate of electron transfer during the electrochemical reaction. 

Keywords: Cyclic voltammetry; electrochemical sensor; gold nanoelectrode; sol-gel 

process; ZnO nanorods 

4.2 Introduction 

Electrochemical glucose sensors have emerged as a major research interest in the past 

few decades due to the rising number of people affected by the metabolic disorder called 

Diabetes.  The concept of electrochemical glucose sensor was first proposed in 1962 [1].  Since 

then different approaches have been used to develop cost-effective and extremely sensitive 

electrochemical sensors to control Diabetes [2-9].  The performance parameters for glucose 

sensors based on different nanomaterial growth approaches are presented in Table 4.1. The two-

electrode measurement technique creates a concentration gradient during an electrochemical 

reaction, which facilitates determination of pH change, diffusion coefficients, electron transfer 

kinetics and detection of final analyte [4].  The growing number of patient morbidity and 

mortality due to imprecise blood glucose analyzers lead to the need of accurate glycemic control 

measurement.  The factual challenge concerning glucose sensors is to be able to measure glucose 

concentrations in the normal and the diabetic blood sugar range.  Diabetic people are classified 

into two levels of glucose concentrations:  impaired fasting glucose level, ranging from 3.90 

mM/L to 7.80 mM/L and impaired glucose tolerance level, ranging from 7.80 mM/L to 11.0 
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mM/L [10].  Therefore, electrochemical glucose sensors should be designed to be able to detect 

up to 11.0 mM/L of glucose concentrations.  There are very few papers that report on glucose 

sensors with high stability and sensitivity in the glucose range above the impaired glucose 

tolerance level [7, 8, 9] (Table 4.1). 

Glucose oxidase (GOx) is the most common enzyme used in enzymatic glucose sensor 

due to its high stability [3].  Enzyme GOx is a homodimer that catalyzes the oxidation of glucose 

into H2O2 and gluconolactone at high potential [3, 6, 11].  Zinc oxide (ZnO) is a low cost, non-

toxic, environmental-friendly, biocompatible, and a biodegradable II-VI semiconducting material 

with a direct band gap of 3.37 eV [9, 12, 13].  The ZnO nanorods in 100 nm range dimensions 

provide large surface area to volume ratio, cations with valence states, anions with deficiencies 

and carrier depletion [12]. Isoelectric point of ZnO is 9.5 and GOx is 4.2 [14, 15].  Consequently, 

electrostatic interaction between positively charged ZnO nanostructures and negatively charged 

GOx takes place that leads to easy immobilization of GOx by ZnO nanostructures.  Also, the 

absorption of enzymes in presence of buffer solution becomes easier.  Advanced application of 

Au nanostructures in nanotechnology has emerged in the recent decades due to its unique optical, 

electronic, and mechanical properties, different from the bulk Au [16].  Recently, Au NEEs are 

widely used in electrochemical sensing applications since they provide high current densities, 

high signal to noise ratio, low double layer capacitance, and a larger surface area [16].  

The bottom-top approach of cultivating nanostructures is commonly used in 

nanofabrication processes due to lesser defects, low internal stress, and more homogeneous 

chemical composition [13].  The simple and cost effective, hydrothermal sol-gel growth 

technique used to synthesis ZnO nanorods is advantageous over metal-organic chemical vapor 

deposition, vapor phase epitaxy, vapor phase transport, and vapor–liquid-solid method.  The 
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aqueous hydrothermal sol-gel synthesis method is capable of large scale production of 

anisotropic ZnO nanorods at a low temperature [13].   

In this paper, we report the comparison in sensor sensitivity with and without the 

presence of Au NEEs.  The   electrochemical glucose sensors are fabricated using the 

hydrothermal growth synthesis of ZnO nanorods.  The current sensitivity with and without Au 

NEEs are calculated and discussed.  Structural and optical characterization of the as-grown ZnO 

nanorods on ITO and Au coated glass substrates are studied briefly.  The electrochemical 

characterization of the glucose sensor with and without Au NEEs is performed.  The cyclic 

voltammograms for the sensor with and without ZnO nanorods in the presence and absence of 

glucose is compared and analyzed.  The sensor current sensitivity, response time, and LOD 

measured using the amperometry technique is in discussed details.  It is concluded that the 

presence of Au NEEs in an electrochemical sensor enhances the sensor current sensitivity under 

constant experimental conditions.  Also, the presence of ZnO nanorods for the immobilization of 

GOx is essential to enable precise working of the sensor. 

4.3 Experimental 

4.3.1 Hydrothermal synthesis of ZnO nanorods 

The hydrothermal synthesis is a crystal growth technique performed at low temperature 

and high-pressure conditions.  In this technique, properties of superficial water allow the control 

of particle size and morphology of metal oxides that are insoluble in water under room 

temperature and normal pressure [17].  Glass samples of dimension 0.70 x 0.70 cm2 are coated 

with 10 nm titanium film and 50 nm of Au film using the e-beam metallization technique.  The 

metal Ti improves Au adhesion on the glass substrate.  The glass/Ti/Au substrate and indium tin 

oxide (ITO) substrates of dimension 0.70 x 0.70 cm2 are cleaned with acetone and isopropyl 
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alcohol inside the ultra-sonication bath for 10 mins each, respectively.  The resistance of the Au 

and ITO coated glass substrates are measured using a multi-meter is 1.5 Ω and 76.0 Ω, 

respectively. 

A 0.50 M ZnO sol-gel is prepared using 1.10 g of zinc acetate dissolved in 10 mL of 2-

methoxyethanol.  A magnetic stirrer is used to mix the solute and the solvent at a temperature of 

70◦C for 60 mins, and then sonicated for 30 mins to dissolve the solute particles completely.  A 

milky white solution is obtained that is stirred with 0.30 mL of hexamethylene-amine at a 

temperature of 70◦C for 60 mins.  The ZnO sol-gel is aged at room temperature for 24 hrs before 

use.  The glass/Ti/Au and ITO samples are coated with the sol-gel by means of the spin coating 

technique at an RPM of 4000 rms.  The samples are annealed on a hot plate at 120◦C for 5 mins 

to remove solvents from the surface of the ZnO thin film.  The process is repeated two more 

times and finally annealed at 120◦C for 30 mins.  The ZnO growth solution with a molarity of 

0.05 M is prepared with 0.29 g zinc nitrate hexahydrate and 0.14 g hexamethylene-amine, each 

dissolved in 10 mL of DI water and mixed by means of a magnetic stirrer bar at room 

temperature for 60 mins.  The hexamethylene-amine solution is added dropwise to zinc nitrate 

solution with continued stirring for another 60 mins.  The final solution is filtered from particles 

using a 0.20 µm syringe filter.  The ITO and glass/Ti/Au samples coated with ZnO sol-gel are 

immersed upside down inside the ZnO growth solution at 85◦C for 3 hrs.  The process is repeated 

for another 3 hrs to increase the ZnO nanorods length.  The ITO/ZnO nanorods sample surface 

appears matte white while the Au/ZnO nanorods sample surface appears unchanged.  The 

samples are rinsed thoroughly with DI water to remove unwanted solid particles, dried with 

nitrogen gas, and annealed on a hot plate at 110◦C for 60 mins. 
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4.2.2 Electrochemical Glucose Sensor Design 

The ITO and glass/Ti/Au samples with ZnO nanorods are rinsed with PBS and allowed to 

dry in atmosphere.  This makes the sample surface hydrophilic in nature.  Enzyme GOx is 

prepared by sonicating 40 mg of bovine serum albumin and 20 mg of GOx in 0.40 mL of PBS at 

room temperature for 60 mins.  Bovine serum albumin is a protein substitute used to stabilize 

GOx and prevent the adhesion of GOx on the Au/glass substrate surface.  A droplet of enzyme 

GOx is drop casted on the ITO/ZnO nanorods and glass/Ti/Au/ZnO nanorods sample surface and 

allowed to dry at 4◦C for 12 hrs.  The enzyme GOx easily gets adsorbed physically by the as-

synthesized ZnO nanorods on the hydrophilic sample surface.  Nafion is drop casted on the 

sample surface to produce an ion exchanging membrane and dried at 4◦C for 4 hrs.  Nafion 

membrane prevents GOx enzyme leakage during the electrochemical reaction because the size of 

glucose molecules is larger than oxygen and H2O2.  Nafion membrane stabilizes GOx enzyme 

and provides a biocompatible atmosphere for the sensor [18].  The samples are stored at 4◦C 

when not in use to avoid reactivity of GOx with atmospheric humidity and moisture. 

4.4 Results and Discussion 

4.4.1 Structural and optical characterization of ZnO nanorods 

The X-ray diffraction (XRD) patterns of the as-synthesized ZnO nanorods on ITO and 

Au are shown in Fig. 4. 1 (a) and (b), respectively.  Crystalline structure and crystallographic 

orientations of the nanorods were examined ex-situ using the Philips X'Pert-MRD diffractometer 

with Cu Kα-radiation, λ=0.15 nm, in Bragg–Brentano geometry.  The well-defined peaks in the 

spectra indicate toward the hexagonal (wurtzite) structure of ZnO phase [19].  It should be 

emphasized that no extra impurity phases are observed by XRD analysis and the formation of 

pure wurtzite-type ZnO is realized.  However, a few Bragg peaks from planes with different 
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Miller indexes are observed for the ZnO nanorods on ITO sample, whereas only one peak 

appears for the ZnO nanorods on Au sample. The peak at ~ 34.45° in both ITO and Au samples 

correspond to the (002) plane of ZnO.  The occurrence of just one XRD peak from ZnO 

nanorods on Au sample, indicate the growth of ZnO only along the c-axis direction, which is the 

direction normal to the surface of the substrate.  The occurrence of several XRD peaks from ZnO 

nanorods on ITO sample, indicate random orientation of ZnO nanorods.  The relative degree of 

preferred orientation (texture) along c-axis for ZnO nanorods grown on ITO is given by equation 

4.2.1 for texture coefficient.  

𝑇(JJ\) =
{(||})
{~(||})

�
�
∑
{(���)
{~(���)

                                                           (4.2.1) 

In equation 4.2.1, 𝑰(𝒉𝒌𝒍) and 𝑰𝒐(𝒉𝒌𝒍) are the measured intensity and standard integrated intensity 

for (hkl) reflection, respectively, and N is the number of reflections [19].  The 𝑻(𝟎𝟎𝟐) is 

calculated to be ~ 2.05 for ZnO nanorods on ITO substrate.    This indicates that for ZnO 

nanorods on ITO the c-axis is the preferred growth direction.  By considering that the broadening 

of Bragg peaks results from pure size effects, the lateral coherence length or diameter (d) of ZnO 

nanorods is directly deduced from the full width at half maximum (β(hkl)) of the (0 0 2) peak.  The 

mean diameter of ZnO nanorods calculated using the classical Scherrer equation given by 

equation 4.2.2. 

  𝒅(𝟎𝟎𝟐) =
𝟎.𝟗	l

𝜷(𝟎𝟎𝟐)𝐜𝐨𝐬	(𝜽)
                                                      (4.2.2) 

The mean diameter of the ZnO nanorods is measured as 40 nm for the ITO sample and 54 nm for 

the Au sample. 
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Figure 4. 1 X-ray diffraction spectra measured at room temperature for as-grown 
ZnO nanorods on (a) ITO substrate (b) Au/glass substrate. 
 

Figure 4. 2. (a) and (b) display the alignment, shape, and distribution of the as-

synthesized ZnO nanorods on ITO and Au substrate, respectively.  The top view image of the 

general morphology is obtained by the field emission - scanning electron microscope (SEM).  

The majority of the nanorods are evenly distributed with similar lengths and diameters.  

However, the SEM image for ZnO nanorods on Au in Fig. 4. 2. (b) show better alignment than 

Fig. 4. 2. (a), and correlate well with the XRD data (Fig. 4. 1).   
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Figure 4. 2 SEM images of ZnO nanorods grown using the hydrothermal sol-gel technique on 
(a) ITO and (b) Au. 
 

Raman spectroscopy is a non-destructive optical characterization method used to analyze 

the vibrational properties of ZnO nanorods.  The Raman spectrum of ZnO nanorods is slightly 

different from the spectrum of bulk ZnO due to larger surface to volume ratio [20].  The Horiba 

LabRAM HR Raman spectroscope is used to investigate the crystallization, structural disorder, 

and defects in ZnO nanorods [20].  The optical phonon modes in single crystalline ZnO is 

classified as Γ = A1+2B1+E1+2E2.  The modes observed in a Raman spectrum depend on the 

orientation of the crystal, and the polarization of incident and Raman scattered light.  Fig. 4. 3 

represents the micro-Raman spectra for ZnO nanorods on ITO and Au measured at room 

temperature in the range from 200 – 800 cm-1.  The highly intense, narrow and strong peak 

known as the non-polar optical phonon E2 high mode, occurs at 441.2 cm-1 and 439.9 cm-1 for 

ITO and Au samples, respectively.  This signifies the presence of highly crystalline ZnO 

nanorods in wurtzite hexagonal crystal phase [20].  The peak at 335.8 cm-1 corresponds to the 
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second order Raman mode due to the E2 (high) - E2 (low) multiple-phonon scattering process of 

ZnO.  The intensity of the second order E2 mode is low due to the strong intensity of the E2 high 

mode, thus indicating toward lower levels of oxygen (O2) defects.  The A1 transverse optical 

mode is confirmed by a peak around 382.9 cm-1 that signify structural disorders in the ZnO 

lattice [20].  In Fig. 4. 3. the absence of a strong A1 mode direct toward good lattice structure of 

ZnO.  The peak around 580.6 cm-1 denotes the presence of structural defects and impurities.  

Comparing the two Raman spectra (dotted and straight lines) and the A1 and E2 peak intensities, 

it is noticed that the ZnO nanorods on Au have reduced levels of defects compared to the ITO. 

 

Figure 4. 3 Micro-Raman spectra of as-grown ZnO nanorods on ITO (dotted 
line) and Au (straight line) measured at room temperature. 

 
4.4.2 Electrochemical characterization of glucose sensor 

A four-probe instrument called the Gamry Reference 600 potentiostat is used to perform 

cyclic voltammetry (potentio-dynamic) measurements utilizing the two-electrode setup.  The 
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electrochemical cell consists of a working electrode, electrolyte, and counter electrode while the 

voltage drop is measured across the whole cell.  The glass/Au/ZnO nanorods/GOx/nafion (Fig. 4. 

4. (a)) and ITO/ ZnO nanorods/GOx/nafion samples are used as the working electrode (anode), 

platinum plate as the counter electrode (cathode), and PBS as the electrolyte that are depicted in 

Fig. 4. 4. (c).  The electrochemical cell made of glass is closed by means of a plastic lid having 

holes for source meter probes connected to alligator clips at the end to hold the sample and the 

platinum plate, unlike as shown in Fig. 4. 4. (c).  Keithley 2410 source meter is used to produce a 

potential difference between the anode and the cathode.  This potential drop is sufficient enough 

to initiate the redox reactions at the surface of the working electrode.  The small size of Au 

nanoelectrodes in between ZnO nanorods as displayed in Fig. 4. 4. (b) enable high speed electron 

transfer within the electrochemical cell and direct low volume analysis [16].  The electron 

transfer takes place between the anode and cathode via the electrolyte PBS at a constant applied 

potential under different glucose concentrations.  These are the major driving factors behind high 

current sensitivities of the sensor using ZnO nanorods on Au NEEs (this work) when compared 

to ITO [9]. 

 

 

(a) (b) 
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Figure 4. 4 Schematic illustration of (a) the working electrode with ZnO nanorods on 
Au/Ti/glass substrate, immobilized with GOx and covered with nafion membrane (b) the Au 
nanoelectrodes ensembles in between nanorods (c) experimental set up for the amperometric test 
carried at room temperature. 

4.4.2.1 Cyclic Voltammetry 

The electron transfer mechanism between the sensor anode and cathode inside the 

electrochemical cell is described by the hysteresis characteristic obtained from cyclic 

voltammetry measurements.  The electrochemical characterization of the glucose sensor using 

Au NEEs and ITO is compared employing the cyclic voltammograms shown in Fig. 4. 5. (a) - (f) 

measured for a potential ranging from -0.80 V to 0.80 V. 

Figure 4. 5. (a) represent the oxidation reduction mechanism for Au NEEs based sensor at 

a voltage scan rate of 50 mV/s in the absence and presence of 2.0 mM glucose in 30 mL of PBS.  

Similarly, Fig. 4. 5. (b) illustrates the electrochemical redox reaction for the sensor based on ZnO 

nanorods on ITO at a voltage scan rate of 50 mV/s in the absence and presence of 2.0 mM 

glucose in 30 mL of PBS.  A noticeable oxidation potential shoulder at ~0.150 V is observed in 

(c) 
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Fig. 4. 5. (a) and (b).  The relationship between sensor current and oxidation-reduction reaction 

rate is explained by the Butler-Volmer equation [21] shown below. 

  𝑖 = 𝑛 ∗ 𝐹 ∗ 𝐴 ∗ �𝑘�[𝑜𝑥] −	𝑘�[𝑟𝑒𝑑]�                                   (4.4.1) 

In equation 4.4.1, i is the net current at the electrode equal to either anodic or cathodic current, n 

is the number of electrons transferred, F is Faraday constant (96485 C/mol), A is the electrode 

surface area, [ox] is the oxidant concentration, [red] is the reductor concentration, kf is the 

forward (oxidation) reaction rate and kb is the backward (reduction) reaction rate.  It can be 

inferred that sensor current is negative when the rate of reduction of glucose by GOx in the 

presence of O2 is more than the oxidation of H2O2.  Whereas the sensor current is positive when 

the rate of reduction of glucose by GOx in the presence of O2 is lesser than the oxidation of 

H2O2.  Figure 4. 5. (c) indicate a linear relationship between sensor current and voltage scan 

rates.  Faster and higher scan rate (100 mV/s) show higher current and more prominent shoulder.  

Slower scan rate (20 mV/s) provides sufficient time for glucose to reduce in the presence of 

catalyst GOx, which generates non-electroactive products one of which is H2O2.  Figure 4. 5. (d) 

compares the voltammograms for both the sensors using Au NEEs and ITO in the presence of 

2.0 mM glucose.  It is seen that the oxidation potential in both sensors occurs at around 0.15 V.  

Figure 4. 5. (e) and (f) illustrates the importance of ZnO nanorods in both the sensors.  In Fig. 4. 

5. (e), cyclic voltammetry tests for glass/Au/ZnO nanorods/GOx/nafion sample is performed in 

the presence (straight line) and absence (dashed line) of 2.0 mM glucose.  Another sample 

glass/Au/GOx/nafion without ZnO nanorods, is tested in the presence of 2.0 mM glucose (dotted 

line).  It is seen that there is not much difference in the current obtained for the samples with 

(dashed line) and without (dotted line) ZnO nanorods.  Therefore, it is concluded that the 

presence of ZnO nanorods allow the adsorption of catalyst GOx to increase the reduction of 
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glucose to H2O2.  The role of ZnO nanorods in the working electrode is to increase the active 

reaction area from a 2D to a 3D area.  This further allows more amount of GOx being adsorbed 

in the 3D nanostructured active area of the working electrode.  Figure 4. 5. (f) show consistent 

voltammetry results for the sensor without Au NEEs indicating the functional importance of 3D 

ZnO nanorods in the working electrode.   

  

Figure 4. 5 Cyclic voltammograms measured at room temperature for (a) ZnO nanorods on Au 
in the presence and absence of glucose (b) ZnO nanorods on ITO in the presence and absence of 
glucose (c) ZnO nanorods on Au in the presence of glucose at different scan rates of 20 mV/s, 50 
mV/s, and 100 mV/s (d) ZnO nanorods on Au and ITO in the presence of glucose (e) ZnO 
nanorods on Au in the presence (straight line) and absence (dashed line) of glucose compared to 
sample without ZnO nanorods (dotted line) (f) ZnO nanorods on ITO in the presence (dotted 
line) and absence (green) of glucose compared to sample without ZnO nanorods (straight line). 
 
4.4.2.2 Amperometric response to glucose 

The current – time response for the sensor, also known as the steady state amperometric 

response is illustrated in the inset of Fig. 4. 6.  The amperometric test is performed separately on 
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the sensors using Au NEEs (dotted line) and ITO (straight line) with successive addition of 

glucose ranging from 0.01 mM – 11.0 mM to 20.0 mL of PBS after every 10 s.  The tests are 

executed at a constant applied potential of 0.15 V selected from the cyclic voltammogram 

oxidation potential (Fig. 4. 5. (d)).  The response time observed from the inset figure, is 1 s and 2 

s, for the sensor based on Au NEEs and ITO, respectively.  During the amperometric test, 

reduction of glucose into H2O2 in the presence of GOx takes place according to equation 4.4.2 

[3]. 

  𝑂\ + 𝐺𝑙𝑢𝑐𝑜𝑠𝑒	
`ab
c⎯e 	𝐸𝑛𝑧𝑦𝑚𝑒 +	𝐻\𝑂\                                        (4.4.2) 

The rate of reduction is proportional to the amount of glucose concentrations added to the PBS 

[3].  The current response increases with higher generation of H2O2.  Oxidation of H2O2 takes 

place according to the equation 4.4.3 [3] 

		𝐻\𝑂\		
.
→ 𝑂\ + 2	𝐻� + 2𝑒j                                              (4.4.3) 

Diffusion of H2O2 towards the platinum electrode (cathode) takes place followed by oxidation of 

H2O2 where platinum acts as the transducer.  Higher concentration of glucose in PBS leads to 

higher generation of H2O2, thus displaying higher sensor current (Fig. 4. 6 inset).  The calibration 

curve derived from the amperometric response data for the sensors using Au NEEs (round 

buttons) and ITO (square buttons) are shown in Fig. 4. 6.  The current sensitivity for sensor with 

Au NEEs is calculated to be 7.50 µA/mM for a linear range from 0.01 – 6.5 mM of glucose.  The 

current sensitivity for sensor based on ITO is measured as 6.8 µA/mM for a linear range from 3.0 

– 8.0 mM of glucose.  The current saturates at 0.13 mA due to saturation of enzyme GOx with 

higher glucose concentrations.  The LOD for the sensor using Au NEEs is calculated to be 0.065 

mM by means of equation 4.4.4 [22]. 

𝐿𝑂𝐷 = 	 k	b	 ¡¢£¤¢¥¤	¦¥¥M¥
 §M¨©

                                                    (4.4.4) 
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In equation 4.4.4, the value 3 is the signal to noise ratio, and the standard error is the error of the 

y-intercept of the linear fit.  Limit of detection is the minimum amount of glucose analyte 

concentration in PBS that is distinguished from zero.  

Table 4.1 shows a list of previously reported work on amperometric glucose sensors 

derived from the synthesis of different nanomaterials and nanostructures.  The sensor sensitivity, 

response time, LOD, range of glucose concentration under test, and the range of glucose 

concentration exhibiting linear dependence in current response of each sensor are extracted for 

comparison.  It is observed that the sensitivity of [5] and [9] are extremely high for a very small 

range of linear detection.  This range does not fall within the desired glucose detection level in 

 
Figure 4. 6 Calibration curve of sensors at different glucose concentrations for an applied 
oxidation potential of 0.15 V.  Inset:  Amperometric response of sensors to successive 
additions of glucose with increasing molarity from 0.01 mM – 11.0 mM after every 10 s 
time at an applied potential of 0.15 V. 
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diabetic patients as mentioned earlier (in section 1).  The Au NEEs based glucose sensor 

presented in our work depicts the desired linear detection range of 3.0 – 8.0 mM.  The fabrication 

process in [8] uses a 1.0 mm thick poly-methyl-siloxane film with 0.02 cm2 drilled holes as a 

template to form Au electrodes.  This fabrication method is time consuming and challenging 

considering the precision of the drilled holes.  The sensor reported in our work uses the simple 

metallization procedure to fabricate Au NEEs between ZnO nanorods.  The sensor response time 

of 1 s is the fastest compared to the other peer reported sensors. 

 

4.5 Conclusion 

Amperometric glucose sensors based on enzyme GOx are the ideal models for screening 

diabetes.  However, challenges like enhancing sensitivity, speed, and stability are being 

considered for extensive research and investigation.  An electrochemical glucose sensor is 

fabricated by means of the hydrothermal sol-gel technique to synthesize ZnO nanorods.  The 

concept of Au NEEs is employed to enhance the sensitivity of electrochemical glucose sensor.  

Table 4. 1 The Performance Parameters for Glucose Sensors based on different nanomaterial 
growth Approachs. 

Working electrode 
material 

Sensitivity 
(mA/mM.cm2) 

Response 
time (s) 

LOD 
(µM) 

Test range 
(mM) 

Linear 
range 
(mM) 

Reference 

3D Graphene-Cobalt 
Oxide 

3.39 3.70 2.50x10-2 0.01 – 2.75 0.01 – 0.08 [5] 

Graphene nanosheets 
wrapped Copper 
Oxide nanocubes 

2.85x10-1 9.00 3.30 0.30 – 7.8 0.30 – 3.3 [6] 

ZnO nanowires on Au 
coated polyester 

1.95x10-2 5.00 50.0 0.20 – 5.4 0.20 – 2.0 [7] 

ZnO inverse oval 2.30x10-2 - - 0.01 – 35.0 0.01 -18.0 [8] 

ZnO nanorods on ITO 10.9 3.00 0.220 0.01 – 2.0 0.60 – 1.4 [9] 

ZnO nanorods on ITO 1.39x10-2 1.00 88.0 0.01 – 11.0 3.00 – 8.00 This work 

Au NEEs in between 
ZnO nanorods 

1.53x10-2 1.00 65.0 0.01 – 11.0 0.01 – 6.5 This work 
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The ZnO nanorods increase the active reaction area from 2D to 3D area.  The as-grown ZnO 

nanorods are characterized using the XRD, SEM, and micro-Raman spectroscopy.  The glucose 

sensor is characterized by means of the cyclic voltammetry and amperometric test under 

different glucose concentrations.  The simple and cost-effective ZnO nanorods synthesis 

technique along with the bio-compatibility of GOx and nafion polymer contributes to the best 

performance of sensors in terms of current sensitivity for glucose detection.  The achieved results 

indicate that Au NEEs based working electrode demonstrate higher current response and faster 

response time compared to previously reported enzymatic electrochemical sensors.  An intensive 

comparison between sensors based on Au NEEs and ITO is performed.  It is verified that the 

presence of ZnO nanorods in the sensor is essential for the immobilization of enzyme GOx, 

which aids in the transfer of electrons from the anode to cathode in the presence of the 

electrolyte.   

4.6 Chapter Summary 

In this chapter, the glass substrate coated with thin film of ITO and the as-synthesized 

ZnO nanorods and 50 nm of metallized gold is characterized for structural and optical 

effectiveness via XRD, SEM, absorbance spectroscopy and micro-Raman spectroscopy.  The 

enzyme GOx is drop casted on the high aspect ratio ZnO nanorods for the fabrication of the 

working electrode.  Nafion polymer membrane is then spin coated on the modified electrode to 

prevent enzyme leakage during the electrochemical redox reactions taking place inside the 

electrochemical cell.  Device characterization through CV and amperometric iterations is carried 

out to determine the sensor current sensitivity, response time and the LOD.  One of the 

challenges in the working of electrochemical sensors is insufficient amount of enzyme in the 

working electrode that leads to inefficient and slow electron transfer during the redox reactions 
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inside the electrochemical cell.  In this study, we observed that the use of Au NEEs along with 

the ZnO nanorods in the fabrication of electrochemical glucose sensor yield high sensor 

sensitivity when compared to Si nanowires with Au NEEs.   

The work reported in chapters 2, 3, and 4 represent invasive electrochemical sensor 

fabrication techniques for glucose detection.  Non-invasive blood glucose testing involves 

extraction of blood via needles and is associated with disadvantages like (1) excessive pain, (2) 

damage to the figure tissues, and (3) blood infections like tetanus.  In the following chapter, we 

study the possibility of designing and testing an optical sensor that could non-invasively and 

optically detect blood glucose levels. 
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CHAPTER 5.  OPTICAL GLUCOSE SENSOR PROTOTYPE DESIGN 

5.1 Chapter Overview 

In this chapter, we report the design of an optical sensor for determining the percentage 

of HbA1c in hemoglobin.  The working principle of the proposed sensor is based on the Beer’s 

law of optical absorption.  The final prototype is like a black box of dimension 6.0 x 6.0 cm2 that 

comprises of two LEDs, a silicon photodiode and a microcontroller.  The sensor is programmed 

through an algorithm that is capable of (1) determining the molar absorption coefficient of 

HbA1c and (2) the percentage of HbA1c in hemoglobin.  In this work, we are using a chemical 

assay of HbA1c called Control FD Glycohemoglobin A1c to test the proposed optical sensor 

prototype.  
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Abstract 

The purpose of this research is to design an optical sensor for evaluating glycated hemoglobin 

(HbA1c) percentage in hemoglobin.  The A1c sensors available in the market use invasive 

methods while our device explores the possibility of non-invasive monitoring of HbA1c levels in 

diabetic patients.  A prototype is assembled using two light emitting diodes with peak emission 

wavelength of 535 nm and 593 nm, a photodiode, and a microcontroller.  The proposed sensor 

measures the transmitted intensity in the form of an output voltage.  We devise an approach to 

estimate the percentage of HbA1c in hemoglobin for a given solution.  This estimation is based 
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on the relative change in absorbance due to change in path length and molar absorption 

coefficients of hemoglobin and HbA1c, at the two wavelengths.  We calculate the molar 

absorption coefficient of HbA1c at 535 nm and 593 nm wavelengths using the sensor, which is 

performed by a multiple variable regression analysis algorithm fed through the microcontroller.  

Specifically, the sensor output voltage with respect to the sample concentration is fitted to an 

exponentially decaying equation model.  We use a commercial chemical assay called Control FD 

Glycohemoglobin A1c with known percentage HbA1c levels to verify our device measurements. 

Keywords:  Optical sensor; glycated hemoglobin (HbA1c); absorbance spectroscopy; 

Beer’s law; diabetes 

5.2 Introduction 

Diabetes Mellitus is a serious metabolic disease that has severely affected 422 million 

people around the world [1].  Diabetic patients are twice as likely to be affected by heart 

diseases, kidney failure, stroke, eye cataracts, feet amputation, or sudden mortality.  Therefore, 

frequent glucose monitoring is vital for adjusting treatment and retaining normal blood glucose 

levels.  Over the past four decades, enzymatic and non-enzymatic electrochemical glucose 

sensors have emerged as the most investigated device technologies [2-7].  The glucose 

monitoring sensors available in the market are mostly electrochemical sensors that are 

economical and highly accurate [3] [8] but require pricking of finger tissues several times a day 

to extract capillary blood.  The long-term disadvantages of using such invasive needle-based 

glucose sensors are damaged finger tissues, excessive pain experience, and high risks of 

infections like tetanus.  Other disadvantages of invasive sensors include inaccurate sensor 

measurements due to noise and patients’ movements, and skin irritations caused by direct sensor 

contact with dermal tissue.   
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In the past, several types of sensors for glucose sensing have been investigated and 

developed.  However, non-invasive glucose sensor technology is the most recent technique that 

is pain free and is attributed to direct measurement of glucose level through body tissues from 

the skin, eyes, or the tongue saliva [9].  The review by Bruen et al [10] focusses on various non-

invasive glucose monitoring approaches through biological fluids like interstitial blood, sweat, 

breath, saliva, and ocular fluid.  Lately, various alternative approaches are being explored, like 

reverse iontophoresis [11], tear glucose dynamics [12-13], and dielectric spectroscopy [14], to 

develop cost effective and highly sensitive glucose sensors for precise glycemic control.  

However, optical sensors are the least invasive form of biological instruments.  Yet, testing 

glucose non-invasively using optical methods have not yielded consistent results so far in 

literature [15].  Since the 1980s, HbA1c concentration started to be accepted as a clinical 

standard to assess the blood glucose levels in diabetic, pre-diabetic, and pregnant diabetic 

patients.  The challenges involved in using HbA1c as a reliable tool in the routine testing and 

management of glycemic state is very well described by Weykamp [16].     

The estimation of long-term glycemic level in blood is performed using a compound called 

glycated hemoglobin (HbA1c) found in red blood cells.  Hemoglobin (Hb) A1c is a minor red 

cell constituent that comprises 5 % of the total Hb in normal individuals but up to 15 % in 

patients with poorly controlled diabetes mellitus [17].  The HbA1c level is tested to indicate the 

average blood glucose level over the past 12-16 weeks [18] since the average functional lifespan 

of red blood cells in human body is about 120 days.  In 1976, HbA1c was first used to monitor 

the degree of control of glucose metabolism in diabetic patients [19].  Since then several studies 

have been conducted to standardize HbA1c level in correlation to the average glucose 

measurements [20].  The American Diabetes Association has established equations (5.2.1) and 
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(5.2.2) to calculate the estimated Average Glucose (eAG) level from the percentage of HbA1c in 

blood hemoglobin [20-21]:     

eAG	(mmol/L) = 1.59	 × HbA1c	(%) 	− 2.59 (5.2.1) 

eAG	(mg/dL) = 28.7	 × HbA1c	(%) 	− 46.7 (5.2.2) 

In this paper, we report the possibility of designing an optical HbA1c sensor.  We begin with 

the description of the experimental setup and then define the chemical assays used to conduct the 

experiments.  Next, we discuss the molar absorbance spectrum, and the calculation of molar 

absorbance coefficient of the samples using the setup.  Calculations are executed by means of 

multiple variable regression analysis.  Finally, we describe the steps to estimate the percentage of 

HbA1c in the glycohemoglobin A1c samples. 

5.3 Methodology 

 A portable in-vitro sensor is designed for the estimation of HbA1c percentage level.  The 

major device components include two commercially purchased LEDs, a cuvette holder, a 

photodiode, and an ATmega328 microcontroller.  The two LEDs used in the setup are: (1) green 

LED (HLMP-CM1A-560DD, Broadcom Limited, San Jose, CA, USA) with a peak spectral 

emission of 535 nm and a bandwidth of 33 nm and (2) yellow LED (TLCY5800, Vishay 

Semiconductor, Hicksville, NY, USA) with a peak spectral emission of 593 nm and a bandwidth 

of 11 nm.  Disposable polystyrene cuvettes with path length of 1.0 cm are used to hold the 

chemical assays during the test.  A silicon photodiode (FD11A, Thorlabs, Newton, NJ, USA) is 

used as the light detector that detects the photons emitted by the LED and transmitted through 

the chemical assays.  The photodiode detection ranges from a wavelength of 320–1100 nm of the 

visible spectrum.  The Arduino Uno R3 is an 8-bit microcontroller build onto a single printed 

circuit board based on the ATmega328P (AVR microcontroller Atmel, San Jose, CA, USA) with 
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a 32KB of flash memory and 2KB of random access memory.  Appendix B presents the code 

written in C programming language.  This code is used for the measurement of photodiode 

voltage response, and the calculation of molar absorption coefficient via multiple variable 

regression.   

Figure 5. 1 represents the schematic of the experimental setup.  The room temperature 

electroluminescence of the commercial green and yellow LEDs is measured using the Horiba 

LabRAM HR Evolution spectroscope (Horiba, Irvine, CA, USA) while biased through the 

Keithley 2410 source meter (Keithley, Cleveland, OH, USA).  The Varian Cary 500 Scan UV-

Vis-NIR spectrophotometer (Varian, Palo Alto, CA, USA) is used to measure the absorbance of 

the reagents used in the experiment.  The current prototype is tested by means of a commercially 

purchased chemical marker called Control FD Glycohemoglobin A1c Level-2 (Audit 

MicroControls-Product No. K061M-6, Lot No. 06621, Audit MicroControls, Eatonton, GA, 

USA) [22].  It is a reference control consisting of human blood-based solutions intended to 

simulate human blood samples containing HbA1c.  Various laboratories utilizing FDA approved 

instruments and reagents have estimated the percentage of HbA1c in the chemical marker 

Control FD Glycohemoglobin A1c, and reported it to be in the range from 8-13 percentage with 

a mean around 10 %  [22].  The pH for glycohemoglobin A1c is measured using a digital pH 

meter (Omega-PHH-7011, Omega, Stamford, CT, USA) and is observed to be equal to 6.85 at 

19.50℃.  We use crystal violet dye (Sigma Aldrich-32675) diluted in DI water, and rhodamine 

6g dye (Sigma Aldrich-R4127) dissolved in ethyl alcohol, to validate the molar absorption 

coefficients estimated using our device against the previously reported results.   
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Figure 5. 1 (a) The schematic of the experimental setup used to calibrate and test 
glycated hemoglobin concentration. (b) Snapshots of the designed prototype. 

5.4 Results and Discussion 

Here we study the feasibility of designing an optical HbA1c sensor to be able to indicate 

average glucose level in the last 100-120 days.  The working principle of the proposed optical 

sensor is based on the Beer’s law of optical absorption.  According to Beer’s law, the absorbance 

(A) of the light wave of wavelength, λ (nm) with an intensity (I0) passing through a solution of 

concentration, x (mol L-1) over the path length, l (cm) is given by equation (3) [24-25].  In other 

words, absorbance (A) is defined as log of ratio of transmitted intensity (I) to incident intensity 
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(I0) of the light wave [equation (5.2.3)].  The proportionality constant, ε (L mol-1cm-1) is called 

the molar absorptivity or the molar absorption coefficient for a given sample that depends upon 

the specified wavelength (λ).  The transmitted intensity of light (I) as a function of wavelength 

(λ) is given by equation (5.2.4).                                                

𝐴(𝜆) = −ln(
𝐼
𝐼J
) = 	𝜀(𝜆) ∗ 𝑙 ∗ 𝑥 (5.2.3) 

𝐼(𝜆) = 𝐼J	 ∗ exp	(−𝜀(𝜆) ∗ 𝑙 ∗ 𝑥) (5.2.4) 

The properties of the Beer’s law are valid even if more than one material absorbs light in the 

medium.  Each absorber contributes to the total absorbance and resulting total absorbance Atotal is 

a superposition of the individual absorbing processes.  The total absorbance of hemoglobin due 

to glycated and non-glycated hemoglobin is given by equation (5.2.5).   

Atotal = AHb,A1c+AHb,NonA1c = εHb,A1c * l * xHb,A1c + εHb,NonA1c* l * xHb,NonA1c        (5.2.5) 

Here we consider that all the parameters are averaged over oxyhemoglobin and 

deoxyhemoglobin.  The arterial blood in normal humans comprises of roughly 98 % oxy-

hemoglobin and 2 % deoxyhemoglobin [26].  The percentage of HbA1c (% HbA1c) in total 

hemoglobin in terms of molar concentrations of HbA1c (xHb,A1c), non-glycated hemoglobin 

(xHb,NonA1c) and total hemoglobin (xHb) is given by equation 5.2.6. 

% HbA1c = ·¸¹,»�¼
·¸¹,»�¼�·¸¹,½¾¿	»�¼

∗ 100 = ·¸¹,»�¼
·¸¹

∗ 100 (5.2.6) 

We calculated the % HbA1c in total hemoglobin using parameter R and the molar absorption 

coefficient for glycated hemoglobin (εHbA1c) and non-glycated hemoglobin (εHbNonA1c) using 

equation 5.2.7.  The parameter R is defined as the ratio of change in absorbance as the path 

length changes (l1 to l2) at two different wavelengths 𝜆1 and 𝜆2 [equation 5.2.8].  The detailed 

derivation of equations 5.2.7 and 5.2.8 are stated in Appendix B.                                                 
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%	HbA1c = 	
εÁÂ,ÃsoÄIÅ(λ1) − R ∗ εÁÂ,ÃsoÄIÅ(λ2)

R ∗ KεÁÂ,ÃsoÄIÅ(λ2) 	− 	εÁÂÄIÅ(λ2)N − (εÁÂÃsoÄI(λ1) − εÁÂÄIÅ(λ1))
∗ 100			 (5.2.7) 

 

𝑅 =	
𝛿𝐴VI
𝛿𝐴V\

=
ln 𝐼(𝑙1)𝐼(𝑙2)VI
ln 𝐼(𝑙1)𝐼(𝑙2)V\

 

(5.2.8) 

The two wavelengths selected for the above calculations are based on the selective absorbance of 

HbA1c in the wavelength ranging from 520-610 nm [discussed in section 3].  Similar principle is 

employed in pulse oximetry or photoplethysmography to recognize oxygen saturation only for 

the arterial compartment of blood  [25].   

The molar absorbance coefficients used in equation 5.2.7 for εHbNonA1c is derived from [27] 

and εHbA1c is estimated using our device.  More specifically we use multi-variable regression 

analysis method described as follows.  The transmitted intensity of the LED after it passes 

through the sample for a fixed path length (l), varies with respect to the sample concentration (x) 

[equation 5.2.4].  The proposed sensor measures the transmitted intensity in the form of 

photodiode output voltage.  The output voltage is then plotted as a function of concentration that 

is then fitted along an exponentially decaying expression [equation 5.2.9].                                                    

𝑦 = 𝐴 + 𝐵 ∗ exp	(−𝐶 ∗ 𝑥) (5.2.9) 

In equation 5.2.9 A, B, and C are three unknown variables, x is the concentration, and y is the 

output voltage.  Equation 5.2.9 is modelled against the transmitted intensity equation 5.2.4.  By 

comparing equations 5.2.4 and 5.2.9, we get molar absorption coefficient 𝜀=C/l, where l is the 

path length of the cuvette, equal to 10 mm.   

The first objective of our analysis is to determine the wavelengths at which we observe 

selective absorbance due to glycated hemoglobin (HbA1c) in blood hemoglobin.  Figure 5. 2 

represents the absorption spectra of Control FD Glycohemoglobin A1c.  It is observed that 
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glycohemoglobin A1c demonstrates strong absorption around 412 nm (Soret Band), and 541 nm 

and 577 nm (Q Bands).  The wavelength around 412 nm corresponds to the blue light region of 

the visible spectrum, while 541 nm and 577 nm corresponds to the green and yellow light range 

of the visible spectrum.  Since, glycohemoglobin A1c shows a strong absorbance in the 

wavelength range of 520-610 nm, we use green and yellow LEDs as the light emitter in the 

proposed setup.  We did not use a blue LED as the light emitter in our prototype because color 

blue is complementary to color red [23].  As shown in Fig. 5.2, on passing a blue light through a 

red colored material, all the light photons are absorbed by the material and there are no 

transmitted photons.  The photo-detector used in our prototype was not be able to detect any 

photons transmitted through the material which in our case is Control FD glycohemoglobin A1c.  

 

 

Figure 5. 2  Schematic showing a cuvette containing a red sample under the influence of (a) 

White light 

Red light 

Blue light 

No light 

(a) 

(b) 
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white light, we see the red color of the sample and (b) blue light, all photons are absorbed, and 
no photons are transmitted.   

In Figure 5. 3, we also show the electroluminescence (EL) intensities of the green and 

yellow LEDs.  It is seen that the peak emission wavelength for green LED is at 535 nm and the 

full width at half maximum spectral bandwidth is about 33 nm.  The yellow LED has a peak 

emission spectrum at 593 nm and the full width at half maximum spectral bandwidth is about 11 

nm.  The overlapping of the EL emission spectra of the green and yellow LEDs, and the 

absorbance spectrum of HbA1c show that the green LED used in the setup can very well be used 

to detect HbA1c. We also measure the absorbance of two dyes to verify our method of 

estimating molar absorption coefficient.  It is understood from Figure 5. 2 that the absorbance 

spectra of rhodamine 6g, and crystal violet overlaps the EL spectra of the green, and yellow 

LED, respectively.   
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Figure 5. 3 Electroluminescence of green and yellow LED measured at room temperature 
compared to the absorbance of Glycohemoglobin A1c, crystal violet, and rhodamine 6g 
solutions. 

5.4.1 Molar Absorption Coefficient Calculation 

We show the photodiode voltage response with respect to the concentrations of crystal violet 

dye using the yellow LED in Figure 5. 3 (a) and rhodamine 6g dye using green LED in Figure 5. 

4 (b).  In Figure 5. 3 (a) and (b) each of the voltage data points corresponding to the sample 

concentrations are averaged over 500 voltage readings. The regression statistics of Figure 5. 4 (a) 

shows an adjusted R-square value of 99.71 %, which indicates how well the data points fit the 

exponential model.  In Figure 5. 4 (b), the adjusted R-square value is 96.36 % that indicates the 

goodness-of-fit for our regression model.  The voltage data points then are fitted (red line) to the 

exponentially decaying function model given by equation 5.2.9.  From the value of variable C, 
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the molar absorption coefficient for crystal violet at yellow light wavelength is 116.48 + 14.82 

mM-1cm-1 and for rhodamine 6g at green light wavelength is 115.96 + 23.42 mM-1cm-1.  These 

calculated molar absorption coefficients for crystal violet and rhodamine 6g are in good 

agreement with the published values of crystal violet, 112 cm-1 mM-1  [28] and rhodamine 6g, 

116 cm-1 mM-1 [29].  Thus, the proposed method reliably estimates the molar absorption 

coefficient for a given solution. 
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Figure 5. 5 (a) represents the room temperature absorbance spectra of glycohemoglobin 

A1c solutions for concentrations ranging from 0.01-0.07 mM.  It is observed that an increase in 

the concentration leads to an increase in the absorbance, specifically around 541 nm and 577 nm.  

This implies that as the concentrations increase, the transmitted light intensity of the green and 

yellow LEDs should decrease.  The photodiode voltage response corresponding to different 

glycohemoglobin A1c concentration is shown in Figure 5. 5 (b) using green LED, and Figure 5. 

5 (c) using yellow LED.  Each of the voltage data points are averaged over 500 readings 

measured at the corresponding concentrations.  The exponential fit variable C gives the molar 

absorption coefficient of glycohemoglobin A1c solution under green light to be, 101.34 + 15.32 

  
Figure 5. 4 Photodiode output voltage (averaged over 500 voltage readings) as a function of 
concentration of (a) Crystal Violet synthetic dye using the yellow LED and (b) Rhodamine 6g 
fluorescent dye using the green LED.  The data points are fitted to an exponentially decaying 
equation model via a three-variable regression analysis to find molar absorption coefficient. 
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mM-1cm-1.  Similarly, the molar absorptivity of glycohemoglobin A1c solution under yellow 

LED is calculated as 34.12 + 10.41 mM-1cm-1.  The marker Control FD glycohemoglobin A1c, 

comprises of glycated hemoglobin and non-glycated hemoglobin.  Therefore, to calculate the 

molar absorption coefficient for 100 % glycated hemoglobin, we factor out the absorbance due to 

non-glycated hemoglobin according to equation 5.4.1.  The detailed derivation of equation 5.4.1 

is specified in Appendix C.                                    

εÁÂ,ÄIÅ =
100 ∗ 	εÁÂ −	 	εÁÂ,Ãso	ÄIÅ ∗	 (100 −%Hb,A1c)

%HbA1c	  
(5.4.1) 

The molar absorption coefficient of non-glycated hemoglobin	𝜀Ì�,ÍM£	ÎIX  is 48.34 mM-1cm-1 at 

535 nm wavelength (green LED) and 9.07	mM-1cm-1 at 593 nm wavelength (yellow LED)  [27].  

The estimated molar absorption coefficient of the marker glycohemoglobin A1c solution is 

represented by 𝜀Ì� .  Since the percentage of HbA1c level of marker lies between 8-13 

percentage [22], we estimate the molar absorption coefficient of HbA1c,	𝜀Ì�,ÎIXvalue for both 

the upper and lower limits.  Using equation 5.4.1,	𝜀Ì�,ÎIX	is calculated to be 456.06 + 117.82 

mM-1cm-1 (for, % HbA1c = 13 %) and 710.88 + 191.46 mM-1cm-1 (for, % HbA1c = 8 %), at 535 

nm wavelength (green LED).  Similarly, 	𝜀Ì�,ÎIX  is calculated to be 201.77 + 80.04 mM-1cm-1 

(for, % HbA1c = 13 %) and 322.20 + 130.06 mM-1cm-1 (for, % HbA1c = 8 %) at 593 nm 

wavelength (yellow LED).  
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5.4.2 Estimation of HbA1c percentage in a solution 

Here, we estimate the molar absorption coefficient of glycohemoglobin A1c solutions by 

employing our device.  However, one can estimate the molar absorption coefficients of the 

samples under test via other methods  [30-32].  In that case the proposed sensor will only 

measure the value of R parameter using equation 5.2.8.  Next the percentage of HbA1c level is 

estimated through equation 5.2.7 by substituting the pre-determined molar absorption coefficient 

values and the calculated R values.  The calculation of R parameter is performed by measuring 

transmitted intensity for the samples at 𝜆1 and 𝜆2 equal to 535 nm (green LED) and 593 nm 

(yellow LED), respectively for the path lengths of 10 mm and 5 mm.                                                                      

 
Figure 5. 5 (a) The absorption spectra of diluted concentrations of glycohemoglobin A1c 
solutions measured at room-temperature.  (b) Photodiode output voltage (averaged over 500 
voltage readings) as a function of concentration for diluted concentrations of glycated 
hemoglobin using green LED and (c) yellow LED.  The data points are fitted to an exponentially 
decaying equation using a three-variable regression analysis. 
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𝑅 =	
ln 𝐼(10	𝑚𝑚)𝐼(5	𝑚𝑚) `¥©©£
ln 𝐼(10	𝑚𝑚)𝐼(5	𝑚𝑚) Ï©§§MÐ

 

(5.4.2) 

Table 5.1 represents the observed R values for different samples of marker glycohemoglobin 

A1c calculated using the proposed sensor.  Here, the molar absorption coefficients values of 

	𝜀Ì�,ÍM£	ÎIX  and 	𝜀Ì�, declared in section 3.1. are used for the percentage of HbA1c estimation 

[Equation 5.4.1].  Table 5.1 lists the final percentage values of HbA1c calculated in the marker 

glycohemoglobin A1c solutions and are found to be in close agreement with the measurements 

from other laboratories  [22]. 

5.5 Conclusions  

The use of glycated hemoglobin (HbA1c) sensors for tracking long term glycemic state in 

diabetic patients is more convenient as compared to the temporal information gained from blood 

glucose sensors.   The currently available electrochemical HbA1c sensors are based on liquid 

chromatography, immunoassay, electrophoresis, or spectrophotometry techniques that require 

invasive blood extraction.  There is a pressing need for the development of advanced non-

invasive optical HbA1c sensors with better selectivity, stability, and accuracy.  This research 

proposes the design of an inexpensive optical sensor prototype to calculate (1) the molar 

absorption coefficients of a solution using multiple variable regression analysis, and (2) the 

Table 5. 1 Estimated percentage of glycated hemoglobin 

Sample No. 
Molar Concentration 
of Control FD HbA1c 

(mmol/L) 
R HbA1c (8%) HbA1c (13%) 

1 0.030 2.82 10.31 % 16.75 % 
2 0.035 2.97 7.99 % 12.98 % 
3 0.040 2.86 9.54 % 15.50 % 
4 0.050 2.96 8.16 % 13.27 % 
5 0.053 2.97 8.02 % 13.03 % 



 87 

percentage of HbA1c in a solution.  The working principle of the proposed sensor is based on the 

Beer’s Law of optical absorption.  The molar absorption coefficients measured for two known 

dyes using our prototype is in good agreement with the previously established results.  Also, the 

calculated percentage of HbA1c in the solution falls within the standard range of values 

established by other laboratories.  However, it is important to mention that not all instruments 

measure values in good agreement with each other.  Few of the possible sources of errors include 

gravimetric and volumetric error, path length error, beam alignment error, reflection error, and 

error due to stray radiations  [33].  We use a range of molar concentrations of the chemical assay 

at which our current setup is the most sensitive.  This is one of our device limitations.  However, 

the concentration of whole blood is much higher and requires a setup enhancement by using a 

high sensitivity photodiode sensor and brighter LEDs.   Further research and enhancement of our 

current prototype by testing pure glycated blood samples and actual human blood samples is 

required, which could eventually lead to a commercialized portable HbA1c sensor. 
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Appendix A 

#include <EEPROM.h> 
#include <Math.h> 
                                                 // Sensor input variables 
int sensorPin = A0;                  // select the input pin for the photodiode 
int ledPin2 = 7;                        // select the pin for the LED 
int sensorValue = 0;                // variable to store the value coming from the sensor 
int eeAddress = 0;                   // Location we want the data to be put in EPROM. 
//sequentially stores 10 readings from your analog sensor into an array, one by one. 
//With each new value, the sum of all the numbers is generated and divided 
//producing an average value 
const int numReadings = 500;       // Number of sensor readings you want to take at one 
concentration                        
int total = 0;                                   // sensor reading: 
double volts = 0; 
double current = 0; 
double totalV = 0;                        // the running total Voltage 
double totalI = 0;                         // the running total Current 
double averageV = 0;                  // the average Voltage 
double averageI = 0;                   // the average Current 
double concentration = 0;           // sample concentration 
int maxcount = 11;                     // No. of sample concentrations 
//variables for exponential regression 
double x[11];            // always set the size of array equal to maxcount 
double y[11];            // always set the size of array equal to maxcount 
double dx[10];           // always set the size of array equal to (maxcount-1) 
double dy[10];           // always set the size of array equal to (maxcount-1) 
double cx[10];           // always set the size of array equal to (maxcount-1) 
double dq[10];           // always set the size of array equal to (maxcount-1) 
double b_initial[9];      // always set the size of array equal to (maxcount-2) 
double a_initial[10];    // always set the size of array equal to (maxcount-1) 
double b_int_avg=0; 
double a_avg=0; 
double c_initial[11];     // always set the size of array equal to maxcount 
double lnyc[11];          // always set the size of array equal to maxcount 
double xbar=0; 
double ybar=0; 
double xybar=0; 
double xsqbar=0; 
double slope=0; 
double intercept=0; 
double syx = 0; 
double std_err = 0; 
double stderr_Slope = 0; 
double stderr_Intercept = 0; 
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double a=0; 
double b=0; 
double c=0; 
double a_err=0; 
double b_err=0; 
double c_err=0; 
int abor(double y[11],double cc)         // always set the size of array equal to maxcount 
{ 
  int returnpara=0; 
  double e=0; 
   for (int i=0; i<maxcount-1; i++) 
      { 
       e = (y[i+1]-cc)/(y[i]-cc); 
       if(e<=0) 
         { 
          returnpara=1; 
          break; 
         } 
        }  
  return returnpara; 
} 
                                // always set the size of array y and x equal to maxcount, dx equal to 
maxcount-1 
double Devi(double cc, double y[11], double x[11],double dx[10])   
{ 
    double avG=0; 
    double pre_ee=0; 
    double ee=0; 
    double growthfactor[maxcount-1]; 
    double Deviation = 0; 
    for (int i=0; i<maxcount-1; i++) 
         { 
          pre_ee = (y[i+1]-cc)/(y[i]-cc); 
          ee = log(pre_ee);//denominator                    
          avG = avG + ee; 
          growthfactor[i] = exp(ee/dx[i]);                    //save 
         } 
  avG = exp(avG/(x[maxcount-1]-x[0]));                //exp added 
  ee = 0; 
  for (int i=0; i<maxcount-1; i++) 
      { 
      Deviation = Deviation + abs(avG-growthfactor[i]); 
      }   
return Deviation; 
}   
   void setup()  
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        {                                                                  // initialize serial communication with computer: 
         Serial.begin(9600);                                     // Set data rate to 9600 bps 
         pinMode(ledPin2, OUTPUT); 
        }    
   void loop()  
   { 
   digitalWrite(ledPin2, HIGH);   
   delay (3000);                                                    // delay to start recording values or LED 
stabilizing delay  
   for (int j=0; j<maxcount; j++) 
       { 
        totalV = 0; 
        total = 0; 
        totalI = 0; 
        for (int i = 0; i<numReadings; i++) 
           { 
             sensorValue = analogRead(sensorPin);                      // read the value from the sensor: 
             volts = double (sensorValue) * (5.0 / 1023.0);          // map it to the range of the analog 
out: 
    
             Serial.print("\t Sensor = ");                                        // print the results to the serial 
monitor: 
             Serial.println(sensorValue); 
             Serial.print(" Volts = "); 
             Serial.println(volts,4); 
             delay(10);                                                     // wait 10 milisecond before the next loop 
                                                                                  // for the analog-to-digital converter to settle 
                                                                                  // after the last reading: 
             total = total+ sensorValue; 
             totalV = totalV+volts ; 
           } 
        averageV = totalV / numReadings;                    // calculate the average Voltage:       
        if (j==1) 
        concentration=concentration + 4; 
        else if (j>1)  
        concentration = concentration + 2; 
        Serial.print(" \t Average Voltage(Volts) = ");       // print the result to the serial monitor                                 
        Serial.println(averageV,4);                                  // send it to the computer as ASCII digits  
        Serial.print(" Concentration (mM) = ");               // print the result to the serial monitor                                 
        Serial.println(concentration,3);                            // send it to the computer as ASCII digits  
        x[j] = concentration; 
        y[j] = averageV;         
        delay(14000);                                                      // delay to change sample concentration 
       } 

// Exponetial curve fitting t equation y = 
A+B*exp(C*x) 
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// Estimation of c using a and b. 
// initial variables 

       for (int j=0; j<maxcount-1; j++) 
       { 
        dx[j] = x[j+1]-x[j]; 
        dy[j] = y[j+1]-y[j]; 
        cx[j] = (x[j]+x[j+1])/2; 
        dq[j] = dy[j]/dx[j]; 
        } 
                                                                                     // pre-estimation of b 
       b_int_avg =0;         
       for (int jj=0; jj<maxcount-2; jj++) 
       { 
        b_initial[jj] = (log(dq[jj+1]/dq[jj]))/(cx[jj+1]-cx[jj]); 
        } 
       for (int jj=0; jj<maxcount-2; jj++) 
       { 
        b_int_avg = b_int_avg + b_initial[jj]; 
       } 
       b_int_avg = b_int_avg/(maxcount-2); 
  Serial.print(" b-initial = ");   
  Serial.println(b_int_avg,4);        
                                                                                     // pre-estimaton of a        
       for (int j=0; j<maxcount-1; j++) 
       { 
        a_initial[j]= dy[j]/(exp(b_int_avg*x[j+1])-exp(b_int_avg*x[j]));        
       } 
       a_avg =0; 
       for (int j=0; j<maxcount-1; j++) 
       { 
         a_avg += a_initial[j];  
       } 
      a_avg = a_avg/(maxcount-1);     
      Serial.print(" a-initial = ");   
      Serial.println(a_avg,4);     
                                                                                       // estimation of c and stanndard error in c; 
       for (int j=0; j<maxcount; j++) 
       { 
        c_initial[j] = y[j] - a_avg*exp(b_int_avg*x[j]);  
       } 
       for (int j=0; j<maxcount; j++) 
       { 
        c += c_initial[j];        
       } 
        c=c/maxcount; 
       double scaledY = 0.001; 
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       c=y[maxcount-1]-scaledY; 
       double deltaC =0; 
       if (a_avg>0) 
          deltaC = -scaledY;                                                 //move away from asymptote first 
        else  
          deltaC = scaledY; 
      double abortt=0; 
      abortt = abor(y,c);      
      while (abortt>0) 
            { 
            c=c+deltaC; 
            abortt = abor(y,c); 
            } 
    Serial.print(" c-initial = ");   
    Serial.println(c,4);    
  double Bvar1=0; 
  double Bvar2=0; 
  Bvar1=Devi(c,y,x,dx); 
  deltaC=-deltaC; 
  Serial.print(" delta C = ");   
  Serial.println(deltaC,4);   
 
  double w = 0;    
while(abs(deltaC)>0.00001 && w<100) 
  { w=w+1; 
    Serial.print(" w = ");  
    Serial.print(w); 
    Serial.print(" deltaC = ");  
    Serial.println(deltaC,6); 
    Serial.print(" c = ");  
    Serial.println(c,6); 
    Serial.print(" Bvar1 = ");   
    Serial.println(Bvar1,4);   
    abortt = abor(y,c+deltaC); 
    Serial.print(" abort = ");   
    Serial.println(abortt,4);   
    if (abortt>0)   
      { 
       deltaC=deltaC/2; 
      }  
    else 
       { 
        c=c+deltaC; 
        Bvar2 = Devi(c,y,x,dx);   
        Serial.print(" Bvar2 = ");   
        Serial.println(Bvar2,4); 
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          if (Bvar2<Bvar1) 
            { 
              Bvar1=Bvar2; 
             } 
         else    
            { 
              deltaC=-deltaC/2;  
            } 
       }   
  }  
                           // linear regression on ln(y-c) = ln(a) + b*x using estimated c value  
                           // consider a linear plot for ln(y-c) vs. x; slope=b and intercept = ln (a) => a = 
exp (intercept)  
       for (int j=0; j<maxcount; j++) 
       { 
         lnyc[j] = log(y[j]-c);        
       } 
       for (int j=0; j<maxcount; j++) 
       { 
        xbar+=x[j]; 
        ybar+=lnyc[j]; 
        xybar+=x[j]*lnyc[j]; 
        xsqbar+=x[j]*x[j]; 
       } 
       xbar=xbar/maxcount; 
       ybar=ybar/maxcount; 
       xybar=xybar/maxcount; 
       xsqbar=xsqbar/maxcount; 
       slope=(xybar-(xbar*ybar))/(xsqbar-(xbar*xbar)); 
       intercept=ybar-(slope*xbar); 
       double x_dev =0; 
       for (int j=0; j<maxcount; j++) 
          { 
           x_dev += sq(x[j] - xbar); 
          } 
        double y_cap[maxcount];   
       for (int j=0; j<maxcount; j++) 
          {         
           y_cap[j] = slope*x[j] + intercept; 
           syx += sq(y[j] - y_cap[j]); 
          } 
  std_err = sqrt(syx/(maxcount-2) ); 
  stderr_Slope = std_err / sqrt(x_dev) ;  
  stderr_Intercept = stderr_Slope * sqrt(xsqbar);    
  b = slope; 
  b_err = stderr_Slope; 
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  a = exp(intercept); 
  a_err = exp(stderr_Intercept); 
  Serial.print(" Exponential fit to the equation: Y = B*exp(C*X)+ A. \n B = ");   
  Serial.println(a,4); 
  Serial.print(" C = "); 
  Serial.println(b,4); 
  Serial.print(" A = "); 
  Serial.println(c,6);            
                                                                    //save the slope and intercept data in EPR0M 
  EEPROM.put(eeAddress, a); 
  eeAddress += sizeof(a); 
  EEPROM.put(eeAddress, a_err); 
  eeAddress += sizeof(a_err);       
  EEPROM.put(eeAddress, b); 
  eeAddress += sizeof(b); 
  EEPROM.put(eeAddress, b_err); 
  eeAddress += sizeof(b_err);       
  EEPROM.put(eeAddress, c); 
  eeAddress += sizeof(c); 
  EEPROM.put(eeAddress, c_err); 
  eeAddress += sizeof(c_err);       
  delay (1000); 
  exit(0); 
} 
 
Appendix B 

From equation 5.2.5, the total absorbance of light at wavelength 𝜆1 is,                   

A(λ1) = εÁÂ,ÄIÅ(λ1) ∗ 𝑙 ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ1) ∗ 𝑙 ∗ xÁÂ,Ãso	ÄIÅ 
(a) 

Similarly, at wavelength 𝜆2,                   

A(λ2) = εÁÂ,ÄIÅ(λ2) ∗ 𝑙 ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ2) ∗ 𝑙 ∗ xÁÂ,Ãso	ÄIÅ 
(b) 

The molar absorption coefficients are depended on the wavelength, but the path length and 

concentrations are independent of the wavelength (𝜆). At a fixed concentration (x) and 

wavelength	(𝜆), the change in absorbance with change in path length (l) is given as follows:                 

𝛿A(λ) = 	δ(εÁÂ,ÄIÅ(λ) ∗ 𝑙 ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ) ∗ 𝑙 ∗ xÁÂ,Ãso	ÄIÅ) 
(c) 
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In humans the pulse pressure leads to the change in the diameter of the arterioles in tissues  [34].  

Therefore, there is a change in path length leading to a change in the absorbance  [35].  The path 

length change is same for both glycated and non-glycated hemoglobin,                         

δA(λ) = 	 (εÁÂ,ÄIÅ(λ) ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ)xÁÂ,Ãso	ÄIÅ) ∗ 	δ𝑙 
(d) 

The R parameter is given by the ratio of change in absorbance as the path length changes at 

wavelengths  𝜆1 and 𝜆2. From the equations, it is given by:                         

𝑅 =	
δAÒI
δAÒ\

= 	
(εÁÂ,ÄIÅ(λ1) ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ1) ∗ xÁÂ,Ãso	ÄIÅ) ∗ 	δ𝑙	
(εÁÂ,ÄIÅ(λ2) ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ2) ∗ xÁÂ,Ãso	ÄIÅ) ∗ 	δ𝑙	

 
(e) 

R = 		
εÁÂ,ÄIÅ(λ1) ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ1) ∗ xÁÂ,Ãso	ÄIÅ	
εÁÂ,ÄIÅ(λ2) ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ(λ2) ∗ xÁÂ,Ãso	ÄIÅ	

 
(f) 

R parameter estimated from the measurements of transmitted light intensity (I) and incident light 

intensity (I0) is given by:                           

𝑅 =	
𝛿𝐴VI
𝛿𝐴V\

= 	
𝛿 Óln 𝐼𝐼J

Ô
VI

𝛿 Óln 𝐼𝐼J
Ô
V\

=
Õln 𝐼(𝑙1)𝐼J(𝑙1)

− ln 𝐼(𝑙2)𝐼J(𝑙2)
Ö
VI

Õln 𝐼(𝑙1)𝐼J(𝑙1)
− ln 𝐼(𝑙2)𝐼J(𝑙2)

Ö
V\

=
ln 𝐼(𝑙1)𝐼(𝑙2)VI
ln 𝐼(𝑙1)𝐼(𝑙2)V\

 

 

(g) 

Here, l1 and l2 are the two path lengths for which the change in absorbance is calculated.  In our 

device, 𝐼J(𝑙1) = 𝐼J(𝑙2) at both wavelengths 𝜆1 and 𝜆2. 

Therefore the % HbA1c is given by:                                

%HbA1c =
xÁÂ,ÄIÅ

xÁÂ,ÄIÅ + xÁÂ,Ãso	ÄIÅ
∗ 100 

(h) 

The molar concentration of glycated hemoglobin (𝑥Ì�,ÎIX) and non-glycated hemoglobin 

(𝑥Ì�,ÍM£ÎIX ) in terms of % HbA1c are given by: 
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𝑥Ì�,ÎIX =
%𝐻𝑏,𝐴1𝑐
100 ∗ 	𝑥Ì� 

(i) 

xÁÂ,Ãso	ÄIÅ = ×1 −
%Hb,A1c
100 Ø ∗ xÁÂ 

(j) 

By substituting the molar concentration from equation (i) and (j) in equation (f), we get: 

R = 		
εÁÂ,ÄIÅ(λ1) ∗

%Hb, A1c
100 ∗ 	xÁÂ + εÁÂ,Ãso	ÄIÅ(λ1) ∗ K1 −

%Hb, A1c
100 N ∗ xÁÂ	

εÁÂ,ÄIÅ(λ2) ∗
%Hb, A1c
100 ∗ 	xÁÂ + εÁÂ,Ãso	ÄIÅ(λ2) ∗ K1 −

%Hb, A1c
100 N ∗ xÁÂ	

 

xHb cancels out in numerator and denominator and rearrange the expression, 

𝑅 =		
εÁÂ,Ãso	ÄIÅ(λ1) + (εÁÂ,ÄIÅ(λ1)−εÁÂ,Ãso	ÄIÅ(λ1)) ∗

%Hb, A1c
100 	

εÁÂ,Ãso	ÄIÅ(λ2) + (εÁÂ,ÄIÅ(λ2)−εÁÂ,Ãso	ÄIÅ(λ2)) ∗
%Hb, A1c
100 	

 

Thus, the percentage of glycated hemoglobin is given by, 

%	HbA1c = 	
εÁÂ,ÃsoÄIÅ(λ1) − R ∗ εÁÂ,ÃsoÄIÅ(λ2)

R ∗ KεÁÂ,ÃsoÄIÅ(λ2) 	−	εÁÂÄIÅ(λ2)N − (εÁÂÃsoÄI(λ1) − εÁÂÄIÅ(λ1))
∗ 100 

Appendix C 

The total absorbance of glycohemoglobin A1c is due to both glycated and non-glycated 
hemoglobin as follows:   

A = AÁÂ,ÄIÅ + AÁÂ,Ãso	ÄIÅ 

εÁÂ ∗ l ∗ xÁÂ = εÁÂ,ÄIÅ ∗ l ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ ∗ l ∗ xÁÂ,Ãso	ÄIÅ 

εÁÂ ∗ xÁÂ = εÁÂ,ÄIÅ ∗ xÁÂ,ÄIÅ + εÁÂ,Ãso	ÄIÅ ∗ xÁÂ,Ãso	ÄIÅ 
(k) 

Substituting equations (i) and (j) from Appendix A, in equation (k), and cancelling xHb on both 
sides we get: 

εÁÂ = εÁÂ,ÄIÅ ∗
%Hb, A1c
100 + εÁÂ,Ãso	ÄIÅ ∗ ×1 −

%Hb,A1c
100 Ø 
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εÁÂ,ÄIÅ =
100 ∗ 	εÁÂ −	 	εÁÂ,Ãso	ÄIÅ ∗ 	 (100 −%Hb, A1c)

%HbA1c	  

5.6 Chapter Summary 

We designed and assembled an optical sensor for estimating the percentage of HbA1c in 

hemoglobin.  A multivariable regression model is used to predict the value of molar absorption 

coefficient of HbA1c at the wavelengths of 535 nm and 593 nm.  The working of our prototype 

is tested by using a chemical assay of HbA1c called Control FD Glycohemoglobin A1c Level-2 

that is commercially purchased from Audit MicroControls (Product No. K061M-6, Lot No. 

06621).  It is a reference control consisting of human blood-based solutions intended to simulate 

human blood samples containing HbA1c.  Various FDA approved laboratories with different 

instruments and reagents have estimated the percentage of HbA1c in this chemical marker and 

reported it to be in the range from 8-13 percentage with a mean around 10 %.  It is observed that 

the final percentage values of HbA1c in this marker calculated using our proposed prototype is in 

close agreement with the measurements reported by other laboratories.  Our method and the 

optical sensor under consideration, proves to be a promising step toward non-invasively 

estimating the long-term glycemic state in diabetic patients. 
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CHAPTER 6. CONCLUSION 

In this chapter, section 6.1 provides a summary of this dissertation, the limitations of the 

current work are pointed out the in section 6.2, and the outline for the directions of possible 

future work is described in section 6.3. 

6.1 Summary of the Dissertation 

The aim of this research is to design and fabricate glucose sensors using simple and 

inexpensive approaches.  The first research approach is the fabrication of amperometric 

electrochemical glucose sensors by exploiting (1) the optical properties of the semiconductors 

like zinc oxide (ZnO), and silicon (Si), (2) the electrical properties of metal like gold (Au), silver, 

titanium and platinum, and (3) the structural properties of nanostructures like nanorods and 

nanowires.   

In this dissertation, chapters 2 focuses on the optimized recipe for the synthesis of high 

aspect ratio, pure, homogeneous, crystalline, hexagonal-shaped ZnO nanorods.  The structural 

and optical characterization results are discussed in detail.  The ZnO nanorods are then employed 

in the fabrication of a working electrode that is used in a two-electrode electrochemical cell for 

glucose testing.  The modified working electrode (device) is characterized using the cyclic 

voltammetry and the amperometry methods.  We report higher sensor sensitivity and faster 

response time compared to other published works.  The quality of the ZnO nanorods play a 

crucial role in the adsorbing larger amounts of enzyme glucose oxidase.  As a result, the 

electrochemical reduction oxidation reaction inside the cell lasts longer, thereby demonstrating 

higher oxidation potentials and resulting in higher sensor current sensitivities.    

The chapter 3 introduces the concept of using Au nano-electrode ensembles (NEEs) to 

enhance the sensitivity of the electrochemical sensor.  The Au NEEs act as individual islands of 
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metal that contribute to an increase in the rate of electron transfer during the electrochemical 

reaction.  The chapter also focusses on the recipe optimization of the metal assisted chemical 

etching technique for synthesizing Si nanowires.  This wet etching technique is a simple, rapid, 

and cost-effect method that allows etching of Si wafers in a controlled manner.  The dimension 

of the nanowires to be synthesized is controlled by optimizing the etch time and the etching 

temperature.  In this work, we observe that there is an enhancement in the sensor sensitivity after 

modifying the sensor working electrode with Au NEEs.   

 In chapter 4, we use the concept of Au NEEs in enhancing the sensitivity of ZnO 

nanorods based electrochemical sensor discussed in chapter 2.  We report that this approach 

leads to the enhancement in the current sensitivity, faster response time, and lower limit of 

detection of electrochemical sensors.  The electrical conductivity of the nanorods depends upon 

the degree of their crystallinity.  Lower the crystal defects, lesser is the surface scattering in the 

nanorods, and better be the electron transport behavior during the electrochemical reaction.  The 

sensor sensitivity results are also compared to other peer reported works on nanostructures based 

electrochemical sensors.   

The chapters 2, 3, and 4 in this dissertation discuss different approaches for fabricating 

electrochemical sensors that are mostly used for invasive glucose detection.  In literature, testing 

glucose non-invasively using optical methods have not yielded consistent results so far.  

Therefore, diabetic patients primarily dependent upon invasive electrochemical sensors. 

However, there are various disadvantages associated with the needle-based electrochemical 

sensors available in the market.  Some of the disadvantages include (1) excessive pain, (2) 

damaged figure tissues, and (3) blood infections like tetanus due to the use of unclean needles.  
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Therefore, next we wanted to study the possibility of designing a non-invasive optical sensor for 

computing the long-term glycemic state in patients with diabetes and pre-diabetes.     

The second research approach is discussed in chapter 5 that focusses on the design of an 

optical sensor based on the absorbance properties of glycated hemoglobin (HbA1c).  The 

working of the proposed sensor is grounded on the principles of the Beer’s law of optical 

absorption.  We assembled a device using LEDs of two different wavelengths (535 nm and 593 

nm), a Si photodiode, and a microcontroller that is capable of (1) measuring the molar extinction 

coefficient of HbA1c in hemoglobin using a multi-variable regression analysis and (2) detecting 

the percentage of HbA1c in hemoglobin.  In our study to test the proposed sensor, we use 

different molar concentrations of a chemical marker of HbA1c called Control FD 

Glycohemoglobin A1c-Level 2 that is commercially purchased from Audit MicroControls. Inc.  

The photodiode output voltage values with respect to the molar concentration of the HbA1c 

samples is used for the molar extinction coefficient calculation.  The molar extinction coefficient 

values of HbA1c and non-glycated hemoglobin are then used to calculate the percentage of 

HbA1c in total hemoglobin by means of measuring a parameter called R.  The parameter R is 

defined as the ratio of change in absorbance as the path length changes at two different 

wavelengths of light source.  The predicted values of HbA1c percentage obtained by our optical 

sensor prototype are in close agreement with the anticipated results.  Our study of the possibility 

of designing a portable HbA1c optical sensor proves to be a step towards the non-invasive 

measurement of long-term glycemic state in diabetic and pre-diabetic patients. 

6.2 Research Limitations and Recommendations 

Besides ZnO nanorods and Si nanowires, titanium oxide nanotubes were also synthesized 

to attempt the fabrication of electrochemical glucose sensor.  We used the electrochemical 
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anodic oxidation technique for synthesizing (1) nanoporous and (2) free standing titanium oxide 

nanotubes from commercial foils of pure titanium with a thickness of about 250 µm.  However, 

the limitation we faced in the process of fabricating a working electrode for the electrochemical 

cell was that the thin titanium foils were not sturdy enough to act as a substrate by itself.  Also, 

we could not find a good approach to transfer the titanium oxide nanotubes on to a glass 

substrate without damaging the nanostructures. 

The metal assisted chemical etching (MACE) technique was used for the synthesis of Si 

nanowires.  In this method, thoroughly clean Si wafers are immersed in a low ratio (1:10) 

solution of hydrofluoric (HF) acid and deionized water.  Also, the etching solution used for he 

MACE method is a solution of silver nitrate (AgNO3) and HF acid.  It is highly recommended to 

be very careful while working with HF acid.  There exists no material that is completely resistant 

to HF acid degradation.  It is a corrosive acid that is capable of dissolving any oxide.  Also, there 

is no concentration of HF that could be called safe.  It is advised to have the commercial 

Calgonate Gel (calcium gluconate) handy while using HF acid during your research in your 

laboratory.  

The electrochemical sensor technology for glucose detection began in 1962, with the 

sensor proposed by Clark and Lyons.  Since then, electrochemical glucose sensors have emerged 

as a topic for research because of the low-cost, fast time-response, operational simplicity, and the 

robust nature.  However, there are disadvantages associated with electrochemical sensors and 

one of the major disadvantage is the need for the extraction of blood via sharp needles.  

Electrochemical glucose sensors are invasive in nature that leads to excessive pain, damaged 

finger tissues and high risks of blood infections like tetanus, Human immunodeficiency virus 

(HIV), and Hepatitis C.  Another disadvantage of using electrochemical sensors is their 
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reusability.  In this research, we start with numerous samples of ZnO nanorods or Si nanowires 

synthesized together, under the same temperature, pressure, and time conditions.  Few of these 

samples were used for characterization purposes while the others were used in device fabrication 

and testing.  Here, we make an assumption that all samples depict consistent structural and 

optical properties before employing them in the device fabrication and characterization. 

6.3 Future works 

The possibility of non-invasively detecting glucose will benefit pre-diabetic patients, who 

are ignorant about their current health conditions.  The optical sensor prototype discussed in 

chapter 5 offers a potential method of estimating long-term glycemic levels by taking the 

advantage of the absorption properties of the marker compound HbA1c.  However, the prototype 

in its current state is not completely ready for non-invasive detection.  We need to further 

enhance the setup before conducting the finger testing experiments.   

Prior to the setup enhancement, there is a need of testing our current setup using pure 

glycated and non-glycated blood samples.  Such blood samples can be obtained from hospitals or 

clinics, who would also need to run invasive HbA1c tests for the same samples.  The results from 

these invasive tests would be used to compare the results obtained from our prototype.  This 

would be a step towards genuine validation of our sensor outputs. 

Another method to validate the results from our prototype is by purchasing a HbA1c 

point-of-care analyzer or testing kit from a pharmacy or departmental store to run the samples for 

the percentage of HbA1c analysis.  Such a test kit evaluation could prove to be a valid method to 

determine the accuracy of the proposed optical sensor. 
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