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ABSTRACT 

This thesis presents the results of research targeted at automating the behavioral modeling 

process for switching voltage regulators. These regulators are commonly used in many 

application areas including discrete use in larger systems, integrated in a System on a Chip 

(SoC), or as the primary use case for a design. When used in an integrated system these 

regulators can be a significant force in slowing down simulations. A common method for 

removing this slowdown is to use a behavioral model of the switching regulator. Creating 

behavioral models can be very time consuming and requires expertise. 

The thesis discussion begins by developing a fundamental understanding of switching regulators, 

introduces common modeling methods used for switching regulators, and justifies the selection 

of the PWM switch modeling method. After discussing the fundamentals, the various methods of 

model generation and optimization are described and an examination of the software structure 

and development process is undertaken. The thesis concludes with a results presentation 

comparing automatically generated models with real-world measurement data. 
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NOMENCLATURE 

Duty Cycle Ratio of time a signal is high to the period of the signal. 

Line Regulation Ability of a system to maintain a constant output in relation to changes on 

the input. 

Load Regulation Ability of a system to maintain a constant output in relation to load 

variation. 

Compensation 

Network 

The combination of passive and active components used in a switching 

regulator controller to shape and extend its frequency response capability. 

GUI Graphical user interface. 

Pareto Frontier The set of parameterized data that are Pareto efficient. 

Pareto Efficient As applied to this work Pareto efficient is the state that exists when a 

parameterized dataset is optimal in at least one dimension and moving to a 

dataset that is less optimal in that dimension results in an improvement in 

the other dimension. 

OTA Operational transconductance amplifier 

EVM Evaluation module. A standard reference design that is sent to potential 

customers to evaluate part performance. 

Test-driven 

development 

Abbreviated as TDD. Test-driven development is a development 

philosophy that puts testing and code verification first. This allows the 

developer to confidently write code and stop as soon as all the tests pass, 

resulting in less time wasted developing unnecessarily. It also allows 

changes to be made in the code and know that the changes aren’t causing 

breakage. 

Functional 

programming 

A programming paradigm in which the immutability of data is considered 

paramount. The paradigm itself is based off of the mathematics of lambda 

calculus and lends itself nicely to following a TDD philosophy. See “Test-

driven development” 

Object-oriented 

programming 

A programming paradigm in which data structures are “objects” that 

contain data which is acted on by methods. This is often the first learned 

programming paradigm due to how intuitively it can be analogized to 

objects in the real-world. 

ESR Equivalent series resistance, a parasitic resistance associated with a 

capacitor or inductor 

ESL Equivalent series inductance, a parasitic inductance associated with a 

capacitor 

Prototype A common programming paradigm in which the parent class defines 

functions but leaves them unimplemented and requires any subclasses to 

implement the functions. 

PWM Pulse-width modulation 
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1. INTRODUCTION 

The work presented within demonstrates methods and software tools for automatically 

generating behavioral models of switching regulators given a set of AC and transient data that 

adequately characterizes the device. 

These models are useful on two fronts. On one side they can save engineers massive amounts of 

time in the design phase by reducing simulations times by a factor of more than 10000. These 

models can also be used to provide potential customers with accurate and fast models of devices 

that they may be interested in purchasing. 

Automation is achieved through use of the iterative and analytical power of modern computers as 

well as the simplifying assumption that the most important characteristics of a typical switching 

regulator will be dominated by the selection of the compensation network. The validity of this 

approach and the assumptions made is described in the following sections. 

1.1 Background of Switching Regulators 

Voltage regulation has been required in some form or another since the dawn of electronics. One 

example of a common requirement for a voltage regulator is to take an input voltage and step it 

down to a lower voltage, then maintain that voltage even if the output load changes. 

As an illustrative example consider a computer power supply. In the United States this might 

take a 120 volt AC supply voltage from the wall and rectify it to a steady 24 volts DC, AC to DC 

is a form of voltage regulation. After rectification there remains significant regulation that needs 

to take place. Modern computers require several different voltage rails such as ±12V, ±5V, and 

±3.3V. The multiple voltage rail requirement implies that the power supply must be able to step 

down and invert the input to several different levels. Furthermore the voltage should remain 
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nearly constant and independent of the output load. This requirement and how it can be achieved 

will be discribed further in following sections. 

The computer power supply is only one example of voltage regulation. In practice nearly every 

electronic system requires some sort of regulation which makes this class of circuit very popular, 

thus ensuring that the field of power supply design remains an active field in electrical 

engineering. 

This thesis does not attempt to provide a full reference on power supply design and modeling. 

Rather, the intent is to provide enough background information to properly motivate the research 

and ensure the reader maintains full comprehension throughout the document. 

1.1.1 Linear Regulators 

The simplest class of voltage regulator is the linear regulator. These regulators typically have 

the following characteristics: 

 small footprint at low power, few to no external components required, often sold in a 

small package as well 

 cheap, ~$0.10-$0.80 fully integrated as compared to ~$1-$2 plus components for 

switching regulators 

 low noise, ≤ 10 μVrms 

 can have fixed or variable output voltage 

 may have integrated protection circuitry 

The absolute most basic "regulator" would be a simple voltage divider circuit, though this circuit 

provides little in the way of regulation. The theory of operation is illustrated through a brief 

example and analysis. 
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Voltage Divider 

The most general circuit for a voltage divider is shown in Fig. 1. 

 

Fig. 1. Schematic of generic voltage divider. 

In the ideal case where there is no output current the circuit can be described by the following 

three equations: 

 𝑖𝑍1 + 𝑖𝑍2 = 0 (1) 

 
𝑉1−𝑉𝑜𝑢𝑡

𝑍1
= 𝑖𝑍1 (2) 

 
𝑉2−𝑉𝑜𝑢𝑡

𝑍2
= 𝑖𝑍2 (3) 

Substituting Eq. (2) and Eq. (3) into Eq. (1) gives 

 
𝑉1−𝑉𝑜𝑢𝑡

𝑍1
+

𝑉2−𝑉𝑜𝑢𝑡

𝑍2
= 0 (4) 

and solving this equation for 𝑉𝑜𝑢𝑡 yields 

 𝑉𝑜𝑢𝑡 =
𝑉1𝑍2+𝑉2𝑍1

𝑍1+𝑍2
 (5) 

or the more common form where 𝑉2 = 0 gives 

 𝑉𝑜𝑢𝑡 =
𝑍2

𝑍1+𝑍2
𝑉1. (6) 
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This equation is useful for developing an intuitive understanding of the circuit but in reality 

systems rarely operate under no load conditions. If the circuit shown in Fig. 1 were attached to 

another system then Eq. (1) would become 

 𝑖𝑍1 + 𝑖𝑍2 = 𝑖𝑜𝑢𝑡. (7) 

The result of this change is the introduction of an 𝑖𝑜𝑢𝑡 term in the system equation such as 

 𝑉𝑜𝑢𝑡 =
𝑉1𝑍2+𝑉2𝑍1−𝑍1𝑍2𝑖𝑜𝑢𝑡

𝑍1+𝑍2
 (8) 

indicating that the output current has quite a large effect on the output voltage proportional to 

𝑍1𝑍2! This effect is visualized in Fig. 2. 
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Fig. 2. Comparison of voltage divider with loading effects and without.  

In Fig. 2 V1=5V and V2=0. The x-axis is an output load (iout) sweep from 0 to 2 mA while the y-

axis indicates the output voltage Vout. Solid lines indicate that the model considers output 

loading, while dashed lines show no response to the load change. 

It is clear from this figure that any change in output load has a dramatic effect on the output 

voltage. Voltage dividers can easily be designed to provide a certain voltage at a certain load, but 

any deviation of load current will quickly cause the design to fail. 
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Simple Series Regulator 

A more robust linear regulator design is the simple series regulator utilizing a bipolar transistor 

and a Zener diode. This design includes a bipolar transistor in an emitter follower configuration 

as well as a Zener diode attached to the transistor's base. An example of such a design is shown 

below in Fig. 3. 

 

Fig. 3. A simple series regulator using a bipolar transistor and Zener diode. 

In this circuit it is clear that the voltage across the load (𝑍2) is being completely generated by the 

emitter current of Q1, therefore 

 𝑉𝑜𝑢𝑡 = 𝑖𝐸𝑍2 (9) 

The behavior of this circuit changes non-linearly as the transistor moves from cutoff, through the 

active region, and into saturation. The response then changes again when the transistor base 

begins pulling too much current from the Zener diode and causes the circuit to lose its regulatory 

ability. The mathematics behind this behavior are more detailed than is required to motivate this 

thesis. As an alternative an intuition can be developed through visual means. 

In Fig. 4 the three operating modes of a bipolar junction transistor (BJT) appear in the response. 

The first region when the input voltage is below about 1 V is the cutoff region. In this region the 

transistor is completely off so the output load isn't able to draw any power. Soon after that the 
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transistor enters in to the active region where the output voltage is rising nearly linearly with the 

input voltage. 

The behavior in this region looks quite similar to a BJT entering in to the saturation region but in 

fact in this simulation as the output approaches 4 V the Zener diode begins to become strongly 

reverse biased and starts conducting current to ground, causing the observed flattened response. 

This reverse biasing keeps the base of the transistor near the breakdown voltage of the Zener 

diode and thus keeps the transistor on and biased at around the same voltage regardless of output 

conditions. 

 

Fig. 4. Three different simulations of the simple series regulator. 

Now consider this same circuit under load variation, shown in Fig. 5. 
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Fig. 5. This shows a comparison of four load current sweeps of the simple series regulator. 

The tests in Fig. 5 swept the output current load from 0.1 mA up to 1 A. The other parameters 

varied include the Z1 value and the input voltage. Comparing this to Fig. 2 there is a noticeable 

improvement in the voltage regulation capability of the circuit. Changing the load current on the 

simple voltage divider caused a dramatic shift in the output voltage. With only a 1 mA load 

increase the output dropped more than a 1 V. In the case of the simple series regulator even the 

worst design is capable of operating correctly up to 500 mA load or higher. 

The regulation capability of linear regulator circuits such as the simple series regulator can be 

further improved through the addition of feedback control, and functionality can be extended by 

adding more features such as overcurrent protection or thermal shutdown. 
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For all of the redeeming qualities of linear regulators they do come with some drawbacks, most 

notably linear regulators: 

 Are highly inefficient for any significant load – implying that a significant amount of 

power is simply wasted as heat. 

 Only perform one function – linear regulators are only capable of lowering the input 

voltage. If the system requires a negative voltage rail then another solution must be 

found, likewise if the system requires a higher voltage than is supplied externally. 

Fortunately another class of circuit, the switching regulator, addresses these shortcomings. 

1.1.2 Switching Regulators 

Switching regulators assume a much more active role in voltage regulation. As the name implies 

this class of regulator relies on a switching element, usually a power MOSFET or BJT, to control 

the voltage at the output terminal. 

Basics of Switching Circuitry 

The simplest switching regulator circuit would just be a MOSFET with gate connected to a 

control signal and the drain connected to an output load. An example of such a circuit is shown 

in Fig. 6. 
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Fig. 6. A simplistic switching regulator circuit. 

In this circuit if the MOSFET is conducting then the output node is essentially connected to the 

input voltage. If the MOSFET is off then the output node remains floating and the output voltage 

is ideally equal to 0 V. 

For the purpose of developing some new concepts we will assume that the controller sends a 

signal to the MOSFET that is ON half of the time and OFF half of the time. This would give a 

duty cycle of 0.5 since duty cycle can be defined by 

 𝐷 =
𝑡𝑜𝑛

𝑇
= 𝑓𝑠𝑤𝑡𝑜𝑛 (10) 

Where: 

 𝑡𝑜𝑛 is the time in seconds that the input signal is high. 

 𝑇 is the period of the control signal in seconds. 

 𝑓𝑠𝑤 is the switching frequency of the control signal. 

In the simplest case 𝑇 = 𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓 but as the analysis becomes more complex an additional 

term will be introduced. With this knowledge, the circuit from Fig. 6 can be analyzed with 

varying duty cycle values. The results of this analysis are shown in Fig. 7. 
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Fig. 7. Simulation results from analysis of the simple switch circuit.. 

The simulation shown above used an input voltage of 10 V, a load value of 10k and set the duty 

cycle to 0.1, 0.5, and 0.8 The output of this circuit is noticeably similar to the control input, being 

essentially the same square wave with a scaled up voltage. A square wave supply voltage is not 

of much use in the vast majority of electronics systems, but two important concepts can be 

extracted from Fig. 7. 

The first concept is that of averaged voltage. Looking at a single period of the 𝐷 = 0.5 

waveform it is clear that over a single period the waveform has an average value of 

 𝑉𝑎𝑣𝑔 =
𝑉𝑖𝑛𝑡𝑜𝑛+0∗𝑡𝑜𝑓𝑓

𝑇
. (11) 

with a little bit of simplification Eq. (11) becomes 
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 𝑉𝑎𝑣𝑔 = 𝑉𝑖𝑛𝐷 (12) 

implying that the average output voltage is directly proportional to the input voltage by a factor 

of the duty cycle of the control signal; this duty cycle relation is the second important concept. 

Knowing that the average value of the output voltage can be controlled simply by varying the 

duty cycle of the control signal, it would be useful to actually be able to average this signal so 

that it could be used to power other systems. This can essentially be accomplished through the 

addition of an LC output filter. 

Adding an Output Filter 

The output filter, in this case a series LC circuit, is composed of an inductor and a capacitor. The 

inductor can be thought of as storage energy to supply current while a capacitor stores charge to 

maintain voltage. 

 

Fig. 8. Simple switch circuit with an LC output filter and blocking diode added. This is the basic 

circuit for a buck converter. 

When the MOSFET is conducting it first must energize the inductor, and then current will flow 

through the inductor and charge the capacitor as well as provide an output voltage. When the 

MOSFET opens, the voltage stored on the capacitor discharges to supply the output voltage 

while the stored current in the inductor’s magnetic field flows in to the capacitor to keep it near 
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the same voltage. This can be thought of as two separate modes of operation and the equivalent 

circuits of these two modes are shown in Fig. 9. 

 

Fig. 9.  A schematic comparison of the equivalent circuit formed when the transistor is ON or 

OFF. 

In Fig. 9 above, (A) shows the equivalent circuit of a buck converter when the transistor is on 

while (B) shows the equivalent circuit when the transistor is off. 

Switching Regulator Examples 

With the basic switching regulator design concepts developed a more thorough analysis can be 

performed; for this purpose two types of switching regulators will be analyzed. 

Buck Converter 

The first example, a buck converter, is the switching regulator equivalent of a linear regulator. 

Buck converters are only capable of reducing the input voltage, but can do so with very high 

efficiency and can generally deliver much more current than a typical linear regulator. The 

circuit for a buck converter is shown above in Fig. 8. 

In this topology the output voltage is directly proportional to the input voltage multiplied by the 

duty cycle. The three most important characteristic equations for the buck converter are 

 𝑉𝑜𝑢𝑡 ≤ 𝑉𝑖𝑛 (13) 
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 𝑖𝑖𝑛 ≤ 𝑖𝑜𝑢𝑡 (14) 

 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛𝐷 (15) 

Most switching regulators can be thought of as having two modes of operation, continuous and 

discontinuous mode. In continuous mode the current through the inductor (𝐼𝐿) does not rest at 0 

A. By contrast in discontinuous mode the current through the inductor may stay at 0 A for an 

indefinite time during a single switching period. The difference between the two modes is 

illustrated in Fig. 10. 

 

Fig. 10.  A comparison of the two modes of operation for switching converters.  

In the figure above (A) shows the inductor current for a regulator in the discontinuous mode 

while (B) shows continuous mode, this figure clearly shows the discontinuity observed in the 

discontinuous mode from 𝑡2 to 𝑇 while the continuous waveform is never broken. The 

significance of this difference is explored in the following two sections. 
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Continuous Mode 

For a buck converter in continuous mode the circuit can be considered to be in one of two states; 

either the transistor is ON or the transistor is OFF. When the transistor is on the difference in 

voltage from 𝑉𝑖𝑛 to 𝑉𝑜𝑢𝑡  is given by the voltage drop across the inductor 

 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = 𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
. (16) 

As long as the current through the inductor is continuous then 

 
𝑑𝑖

𝑑𝑡
=

𝐼2−𝐼1

𝑡𝑜𝑛
 (17) 

and substituting Eq. (17) into Eq. (16) and solving for 𝑡𝑜𝑛 gives 

 𝑡𝑜𝑛 = 𝐿
𝐼2−𝐼1

𝑉𝑖𝑛−𝑉𝑜𝑢𝑡
 (18) 

When the transistor turns off an interesting phenomenon occurs. It is physically impossible to 

instantaneously change the current through an inductor, however when the voltage source is 

disconnected from the output then the current in the inductor needs to reverse direction. Rather 

than breaking the rules the inductor causes an effect known as inductive kick [1] which causes 

the voltage polarity of the inductor to immediately reverse. This implies that at this state 

transition 𝑉𝐿 = −𝑉𝑜𝑢𝑡 and therefore 

 −𝑉𝑜𝑢𝑡 = 𝐿
𝐼1−𝐼2

𝑡𝑜𝑓𝑓
. (19) 

Solving Eq. (19) for 𝑡𝑜𝑓𝑓 gives 

 𝑡𝑜𝑓𝑓 = 𝐿
𝐼2−𝐼1

𝑉𝑜𝑢𝑡
 (20) 
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Since 𝐼2 − 𝐼1 is the same during both the on state and the off state then Eq. (18) and Eq. (20) can 

be rearranged and set equal giving 

 
𝑉𝑖𝑛−𝑉𝑜𝑢𝑡

𝐿
𝑡𝑜𝑛 =

𝑉𝑜𝑢𝑡

𝐿
𝑡𝑜𝑓𝑓. (21) 

Simplifying Eq. (21) then gives the expected result of 

 (𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡)𝑡𝑜𝑛 = 𝑉𝑜𝑢𝑡𝑡𝑜𝑓𝑓 (22) 

 𝑉𝑖𝑛𝑡𝑜𝑛 − 𝑉𝑜𝑢𝑡𝑡𝑜𝑛 = 𝑉𝑜𝑢𝑡𝑡𝑜𝑓𝑓 (23) 

 𝑉𝑖𝑛𝑡𝑜𝑛 = 𝑉𝑜𝑢𝑡𝑡𝑜𝑛 + 𝑉𝑜𝑢𝑡𝑡𝑜𝑓𝑓 (24) 

 𝑉𝑖𝑛𝑡𝑜𝑛 = 𝑉𝑜𝑢𝑡(𝑡𝑜𝑛 + 𝑡𝑜𝑓𝑓) (25) 

 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛
𝑡𝑜𝑛

𝑡𝑜𝑛+𝑡𝑜𝑓𝑓
 (26) 

therefore, 

 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛𝐷. (27) 

This implies that the buck regulator multiplies the input voltage by the duty cycle of the 

switching signal, since 𝐷 is by definition less than one the output voltage will always be less than 

the input voltage. 

Discontinuous Mode 

The alternative to a regulator operating in the continuous mode would be operation in the 

discontinuous mode. This often happens when the regulator load is light, or in other words when 

the output current is low. The discontinuous mode can most simply be considered the mode of 

operation in which the inductor current falls to zero and the reason this occurs under light-load 
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conditions can be intuitively explained. As defined below in Eq. 33 the energy stored in a 

conductor is proportional to the current change through the inductor over a certain period. Thus, 

during light load conditions a small current will be passing through the inductor and it will not 

store enough energy to sustain current all the way through the next cycle.  

Much of the circuit behavior in the discontinuous mode is very much the same as in the 

continuous mode with one exception. In continuous mode the circuit can be thought of as 

operating in one two states: 

 State 1 – Transistor ON, inductor current rising 

 State 2 – Transistor OFF, inductor current falling 

In the discontinuous mode an additional state must be considered where the transistor is off but 

no current is flowing through the inductor, this state will be defined as: 

 State 3 – Transistor OFF, no inductor current 

In this third state the inductor has discharged all of the stored magnetic energy and the output 

voltage is being supplied entirely by the output capacitor. The derivation of the output to input 

voltage relationship for the discontinuous mode is omitted here for brevity but can be found in 

[1], the result is given below as 

 𝑉𝑜𝑢𝑡 =
2

1+√1+4𝐿(1−𝐷) 𝐿𝐶⁄
𝑉𝑖𝑛 (28) 

 where the critical inductance 𝐿𝐶 is defined as 

 𝐿𝐶 =
𝑅(1−𝐷)

2𝑓𝑠𝑤
. (29) 
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With the transfer functions of both continuous and discontinuous modes well defined, some 

further visualizations of these equations and other circuit behavior can be helpful. The first 

figure, Fig. 11, shows the relationship of the regulator transfer function 𝑉𝑜𝑢𝑡/𝑉𝑖𝑛 over varying 

duty cycle with the regulator in various states of inductor current continuity. 

 

Fig. 11.  Buck regulator open loop response. This figure visualizes how the transfer 

function of the regulator varies as the regulator enters or leaves discontinous mode. 

As Fig. 11 shows, when the regulator is in continuous mode the voltage ratio is directly related to 

the duty cycle, as the regulator inductor current becomes increasingly discontinuous the voltage 

ratio becomes increasingly eccentric; this indicates that it is highly sensitive to duty cycle 

changes and thus more difficult to control. 
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Fig. 12 shows an example of a simple buck regulator operating at three different fixed duty cycle 

settings. The regulator was supplied with a 10 V input and simulated for 40 ms total. 

 

Fig. 12.  Buck converter output voltage over time with various duty cycle settings. 

Note the significant overshoot at the beginning of the simulation as well as the output ripple as 

the system settles in to steady state operation. The overshoot shown in Fig. 12 can be minimized 

through several methods. Since the duty cycle in this system is fixed this can effectively be 

considered the natural response of the inductor capacitor (LC) system, a true switching regulator 

would have some sort of dynamic control of the duty cycle that would significantly reduce the 

overshoot error. Another method for reducing overshoot is to use a soft start procedure which 

very slowly increases the output voltage to the desired level before entering into normal 
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operation. Output ripple on the other hand is simply expected in any switching system, the effect 

of this ripple can be minimized through careful components selection in the output filter but it 

will always be present. 

Boost Converter 

The second important regulator type, a boost converter, has no equivalent in the linear regulator 

analogy. Boost converters are able to produce a higher output voltage than is supplied on the 

input. The mechanism for this will be discribed along with an analysis of various other factors 

that arise. Fig. 13 shows what a typical boost converter would look like. 

 

Fig. 13.  A basic boost converter circuit where the switch is implemented with a MOSFET 

device. 

Notice the switch, diode, and inductor have all switched places in comparison to the buck 

converter topology shown in Fig. 8. 
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Fig. 14. A schematic comparison of the equivalent circuits of a boost converter formed when the 

transistor is ON or OFF. 

In the figure above (A) shows the equivalent circuit of a buck converter when the transistor is on 

while (B) shows the equivalent circuit when the transistor is off. Much like the analysis in the 

Buck Converter section, the analysis of the boost converter will be split into continuous and 

discontinuous modes and the regulator will be considered to operate in the same three distinct 

states. As a reminder the states of operation are defined as: 

 State 1 – Transistor ON, inductor current rising 

 State 2 – Transistor OFF, inductor current falling 

 State 3 – Transistor OFF, no inductor current 

Continuous Mode 

In state 1 the transistor-diode combination notably separates the input voltage source from the 

load. While in this state the inductor current is increasing as it stores energy from the input 

voltage source. If the output capacitor is charged then it is the sole supplier of current to the load. 

During the first few startup cycles the capacitor will not have enough stored charge to power the 

load for very long, if at all. However, in this steady state analysis it will be assumed that the 

capacitor is sufficiently charged to keep the boost regulator in the continuous mode. Therefore, 

to fully analyze state 1 it must be clear how much energy the inductor gains, and how much 
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charge the capacitor loses. Once again referring to Fig. 10b we can see that during state 1 the 

inductor current is increasing from 𝐼1 to 𝐼2. As shown in Eq. 16 the voltage across an inductor is 

𝑉𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
. Furthermore from Fig. 14 it is clear that 𝑉𝑖𝑛 = 𝑉𝐿 therefore: 

 𝑉𝑖𝑛 = 𝐿
𝐼2−𝐼1

Δ𝑡
 (30) 

During this state Δ𝑡 is interchangeable with 𝑡𝑜𝑛, the change in energy stored in the inductor 

during this period can then be found by starting with the general form: 

 Δ𝐸 =
1

2
𝐿(𝐼2 − 𝐼1)2 (31) 

Rearranging Eq. 30 for 𝐼2 − 𝐼1 and substituting that into Eq. 31 gives the final form of 

 Δ𝐸 =
1

2𝐿
𝑉𝑖𝑛

2 𝑡𝑜𝑛
2  (32) 

Once the inductor current is approaching its peak value the transistor will switch to the off 

position and this analysis moves into state 2 where the inductor current is decreasing. The 

equivalent circuit for this state is shown in Fig. 14. 

As before, in the analysis of the buck converter, the transistor switching action attempts to cause 

an instantaneous change in the current through the inductor but inductors do not allow such 

action and thus the phenomenon of inductive kick once again reverses the polarity of the voltage 

on the inductor. It is also clear from Fig. 14 that if the diode forward voltage is ignored the 

voltage across the inductor must be: 

 𝑉𝐿 = 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 (33) 
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During this time, the current in the inductor is falling from 𝐼2 down to 𝐼1 so referring to Eq. 30 it 

can now be determined that 

 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 = 𝐿
𝐼1−𝐼2

Δ𝑡
. (34) 

During state 2 Δ𝑡 is interchangeable with 𝑡𝑜𝑓𝑓, it is also known that the 𝐼1 and 𝐼2 values are the 

same during both states so therefore from states 1 and 2 

 𝐼2 − 𝐼1 =
𝑉𝑖𝑛𝑡𝑜𝑛

𝐿
=

(𝑉𝑜𝑢𝑡−𝑉𝑖𝑛)𝑡𝑜𝑓𝑓

𝐿
. (35) 

Substituting in 𝑡𝑜𝑛 = 𝐷𝑇 and 𝑡𝑜𝑓𝑓 = 𝑇(1 − 𝐷) and solving for 𝑉𝑜𝑢𝑡/𝑉𝑖𝑛 gives the following 

voltage ratio: 

 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

1

1−𝐷
 (36) 

So it can be deduced from this equation that, like the buck converter, the boost converter output 

voltage is proportional to the input voltage and the duty cycle. However, in this configuration the 

output is inversely proportional to 1 − 𝐷 rather than directly proportional to 𝐷. This relationship 

shows that as the duty cycle increases so does the output, from a minimum of 𝑉𝑖𝑛 up to a value 

that is theoretically infinite, but practically limited by the size and performance of the 

components selected. 

Discontinuous Mode 

As in the buck converter section, the derivation of the boost regulator performance in 

discontinuous mode is omitted for brevity but can be found in [1]. The basic theory of operation 

is similar to continuous mode with the addition of an extra state as shown before. The voltage 

ratio for a boost converter in discontinuous mode is given by: 
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𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

1

2
[1 + √1 +

4𝐷𝐿𝑐

𝐿(1−𝐷)2
] (37) 

A comparison of the ideal boost converter over varying duty cycle and in various modes of 

operation is shown below in Fig. 15. 

 

Fig. 15. Open-loop transfer function of boost converter in different modes of operation. 

As Fig. 15 makes clear the boost converter output voltage increases with increasing duty cycle, 

one interesting difference from the buck converter open-loop response is that as the regulator 

enters further into discontinuous mode the eccentricity of the response actually decreases. In 

other words, rather than becoming more difficult to maintain a particular voltage, it actually 

becomes easier. 



25 

 

Fig. 16.  Output voltage of a boost converter over time. 

This system was also supplied with a 10 V input. The increased magnitude of the output ripple in 

comparison to the buck converter waveforms is a characteristic of boost converters but could be 

significantly reduced through a more intensive design process. 

Switching Regulator Compensation Networks 

Thus far the only switching regulator systems analyzed have been in the form of ideal open-loop 

regulators. While this type of analysis is instructive it is not representative of how switching 

regulators operate in regular use cases. In reality the duty cycle of a switching regulator is rarely, 

if ever, fixed. 



26 

Take for example a buck regulator with 𝑉𝑜𝑢𝑡 = 𝐷𝑉𝑖𝑛, if the input voltage is coming from a 

battery that is slowly draining then the input voltage will slowly drop. If the duty cycle is fixed 

then the output voltage will drop along with the input voltage. If however the duty cycle is 

variable and controlled then it can be raised as the input voltage drops in order to maintain a 

steady output voltage. The figure-of-merit in that example is line regulation which refers to the 

ability of the regulator to maintain a constant output voltage despite changes on the input. 

Now consider an industrial DC motor that is powered by a switching regulator. If the motor is 

off, then the regulator should have no trouble holding a constant output voltage but if the motor 

is suddenly turned on then it will impart a large load on the switching regulator and if the control 

scheme is poorly designed then this load change may cause the output voltage to drop down far 

enough that the motor never even starts spinning. If the regulator were able to react more quickly 

to load changes then it would increase its load regulation figure-of-merit. 

In both of these cases the primary factor in how well the regulator responds is how well the 

switch controller is designed, generally the dominating factor in designing this control scheme 

will be the components chosen for the compensation network. For a full reference on designing 

switching regulator control schemes the reader is referred to [1, 2]. In many cases the control 

scheme used will be a type of pulse-width modulation (PWM) where the duty cycle of the 

switching regulator is raised or lowered depending on the pulse width of a relatively high 

frequency signal. A typical voltage-mode PWM control scheme is shown in Fig. 17. 
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Fig. 17. Voltage-mode pulse width modulation control scheme on a buck regulator. 

This figure shows 𝑍1 and 𝑍2, the two impedances which form the error amplifier feedback loop. 

The feedback loop combined with the error amplifier form what will be referred to in this work 

as well as within the tool as the compensation network. While this terminology is not universal it 

is commonly used in industry and will be consistently used throughout this work. 
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Table 1. Compensation network types as used within this thesis and modeling tool. 

II-A II-B 

  

III-A III-B 

  

IV-A IV-B 

  

This table shows a fairly straightforward naming system where increasing the numeral increases 

the order of the input filtering function and changing from type A to type B removes C2 from the 

error amplifier feedback loop. 

1.2 Regulator Behavioral Modeling Background 

Simulation is an important part of any electronic product design and will be for the foreseeable 

future. Many designs incorporate a switching regulator in one form or another whether it is 

integrated as a system-on-chip (SOC) IC component or as a monolithic IC at the board level. 

Either way, the design engineer will want to simulate their system to ensure that all of the 
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components work correctly together. This is generally good practice but switching regulators 

tend to complicate matters and can easily make simulations take hours where they would 

otherwise take minutes or even seconds. It is therefore common practice to use a simplified 

regulator model when it is convenient and useful to do so. As a result, there is significant interest 

in switching regulator modeling and there are many methods aimed at creating the best model 

that is both accurate and fast. An overview of the most common modeling methods is provided 

below in Table 2. 

Table 2. Summary of common switching regulator modeling methods. 

Method Description 

State-space averaging [3] The state-space modeling method is the classic technique for 

creating many types of circuit models but proves specifically 

useful for switching regulator models since these circuits 

tend to have only 2-3 “states”.  

PWM switch averaging [4, 5, 2] Used in the current research, averages out behavior of 

switching element to provide a fast drop-in replacement. 

Discrete time modeling [6] Using state-space averaging in the discrete time domain. 

Produces highly accurate models but are not SPICE 

compatible. 

Black-box modeling [7] Parameterized models where parameters have no correlation 

to physical parameters. 

Gray-box modeling Similar to black-box models but parameters have a direct 

physical interpretation. Supplied as a built in set of functions 

in Matlab. 

While there appear to be many different approaches to modeling switching regulators there are 

only two methods that have reached wide adoption. The first, state-space averaging is the oldest 

method and was proposed by Drs. Middlebrook and Ćuk in the 1976 conference paper “A 

general unified approach to modelling switching-converter power stages” [3]. The second 
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method, and the approach used in this work, is the PWM switch average model. This method is 

also fairly mature though not as extensively employed as the state-space averaging method. The 

PWM switch average model was developed for continuous conduction mode (CCM) and 

discontinuous conduction mode (DCM) over a two paper series by Dr. Vorpèrian in the May 

1990 issue of IEEE Transactions on Aerospace and Electronic Systems [4, 5]. The two methods 

were later unified to create a model that works in both operating modes [2]. The objective for 

both of these modeling methods is much the same, average out the switch but maintain the 

behavior that it imparts with the difference being how each method accomplishes that task. 

In state-space averaging the modeler considers all of the states that the switching regulator can 

exist in and derives a duty-cycle based transfer function for each state. The transfer function is 

representative of all the components in the system from transistors down to diodes. 

The PWM switch model is less flexible than the state-space averaging method in that it can only 

be used in regulators that are controlled using either the voltage or current controlled PWM 

control scheme. However, within this subset of switching regulators the PWM switch model is 

powerful and is incredibly easy to apply. Rather than requiring the modeler to derive a new set of 

state-space equations for each circuit this approach attempts to average the behavior of the 

switch itself while leaving the rest of the circuit untouched. Generally this means that the PWM 

switch model can serve as a direct drop-in to the original circuit. In addition to simplicity the 

most important feature of the PWM average switch model is that it is thousands of times faster to 

simulate than a cycle-by-cycle model using a simple switch element, and orders of magnitude 

faster to simulate than a transistor level cycle-by-cycle model. 

Both methods have their advantages and disadvantages but due to the simplicity of implementing 

the PWM switch method, it appears to lend itself better to automation and thus is the chosen 
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method applied in the rest of this work. This decision is revisited in the Conclusions and Future 

Work section. 

1.3 Transient and AC Measurements of Switching Regulators 

Performing measurements on switching regulators is essential to verifying that they are operating 

as expected, and it is useful for determining what the regulator is capable of. For the purposes of 

this research, high fidelity measurement data is essential in constructing an accurate model. 

While there are many different types of switching regulator measurements that produce valuable 

results, there are three specifically which are most relevant to creating behavioral models. These 

three measurement types are des in the sections below. 

1.3.1 Transient Load Change Measurement 

The transient load change measurement is accomplished by using the switching regulator in its 

normal mode of operation, observing the output voltage under a constant load, and then rapidly 

pulsing that load up and then back down. Ideally the output voltage of the regulator will not 

change. More realistically it will only show a small glitch before returning to the previous steady 

state value. In the worst case scenario the pulsed load will cause the regulator control loop to 

enter into an unstable condition and the output voltage will either rise uncontrollably until a 

critical component is damaged or it will fall as low as possible. The canonical testbench for a 

switching regulator under transient load change test is shown in Fig. 18. 
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Fig. 18. Canonical testbench schematic for a switching regulator under transient load test. 

In this schematic and for the remainder of this work the COMP pin is the output of the 

operational amplifier in the compensation network while the FB pin is the inverting input to the 

same operational amplifier. 

The purpose of a transient load change test is twofold. On one hand the test provides quantitative 

results showing how a particular switching regulator will respond to load changes on the output, 

on the other hand the test can be useful for exploring or identifying the effects of load changes 

that put the system into an unstable state. 

1.3.2 AC Loop Measurement 

While the transient load change test can be useful for identifying instabilities, the AC loop 

measurement is purpose built to do so. The canonical testbench for the AC loop measurement is 

shown below in Fig. 19. 
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Fig. 19. Canonical testbench schematic for a switching regulator under AC loop test. 

At a schematic level the essential difference between and AC loop measurement and a transient 

load change measurement is fairly clear. It is important that the compensation network be 

detached from the output node in order to break the loop. This terminology refers to the fact that 

disconnecting R1 from the Vout pin disconnects the compensation network from the output and 

thus breaks the feedback loop. 

In order to perform an AC loop test the RSense resistor should be chosen as a small-resistance 

low-inductance resistor. A resistance of 50 Ohms or less is generally safe, though the exact value 

depends on the values of R1 and R2. With the RSense resistor in place a wide-bandwidth step-

down signal transformer should also be introduced into the circuit; this is both to electrically 

separate the AC signal injection and AC signal measurement points and to ensure that the signal 

injected from the signal generator is truly as small-signal as possible. Finally, a small-signal AC 

voltage can be injected into the primary windings of the step-down transformer while the 

response is measured on the secondary side across the sense resistor. The parameters obtained 

from this measurement are then: 
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𝐴𝑙𝑜𝑜𝑝 = 𝑑𝐵 (
𝑉(𝑜𝑢𝑡)

𝑉(𝑎𝑐𝑖𝑛)
) 

and 

𝜙𝑙𝑜𝑜𝑝 = ϕout − 𝜙𝑎𝑐 

These parameters represent the overall system response to forced voltage variations on the output 

node. The AC loop measurement is the most commonly produced AC measurement on 

commercial switching regulator devices and is thus the measurement that is used in comparisons 

in the Results section. For more information on the purpose of the AC loop measurement and 

how it is performed refer to [8]. 

1.3.3 AC Plant Measurement 

Finally the AC plant measurement is similar to the AC loop measurement but rather than 

observing the response of the entire regulator and compensation network system this test 

bypasses the compensation network entirely and removes it from consideration. The purpose of 

this test is to determine how the switching regulator controller responds to forced voltage 

variations on the output with no compensation network to improve stability. These test results 

can be used to analyze the robustness of the switching regulator controller separately from the 

rest of the system. More commonly however, the AC plant measurement is used by the board 

level designer in order to select the optimal components for the compensation network. The 

testbench schematic for the AC plant measurement is show in  



35 

 

Fig. 20. Canonical testbench schematic for a switching regulator under AC plant test. 

For further discussion on AC plant measurement and its utility refer to [8]. 

1.4 Thesis Statement 

With a firm understanding of both what device this modeling method is aimed at and the PWM 

switch method as it is used in this work it is now possible to explore the topic of automating the 

modeling process. The work presented herein rests on the following assumptions: 

A1.  The PWM switch modeling method is robust and accurate in a wide variety of 

applications under the condition that the regulator control scheme is PWM based. 

A2.  The dominating factor in switching regulator behavior is the selection and design of the 

compensation network.1 

A3.  Given a bode plot for a switching regulator and loose constraints on the compensation 

networks allowed, modern computers are capable of effectively exploring a design space 

to find a unique solution to what system produced the original plot. 

With these assumptions in mind, this work attempts to prove that: 

                                                 
1 This assumption proves true in general cases, however is less robust when faced with a system 

that is significantly affected by parasitics. 



36 

P1. It is both possible and feasible to automatically generate a behavioral model of a PWM 

switch controlled switching regulator from AC and transient data. 

P2. The developed software effectively implements this method in a manner that is usable, 

useful, and extensible. 
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2. MODEL GENERATION METHODS 

This section introduces the modeling method and explains how the underlying software is 

designed. The operation of the tool will initially be described through an example of how a 

model would be created by hand. Finally automation of the model generation process is 

described. 

There are currently three identified methods for creating models in the tool, user configured, 

constrained optimization, and fully automated. Only the user configured and constrained 

optimization methods have been implemented since further work is required on the fully 

automated method but all three are described in the following subsections. 

2.1 User Configured Process 

The first step in the regulator modeling process is to define which switching regulator topology 

is in use. This will usually be one of the more common topologies such as buck, boost, or buck-

boost though there are many others. The tool currently only implements these three but due to 

the modular way in which this is implemented it would be simple to add others. 

The next step is to identify the control type for the compensation network. As has been described 

in previous sections the compensation network samples the output node and determines how the 

switch should be modulated to maintain the output node’s correct value. There are several 

methods that can be used to monitor and respond to the output. The three common methods are: 

 Voltage sampling – Directly measure the voltage at the output using a voltage divider or 

other simple circuit. 

 Peak current sampling – Measure the peak current through the output inductor. 
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 Average current control – This control scheme modulates the switch based on the 

average current through the inductor, this is of course similar to the peak current 

sampling method but can better compensation for operating mode transitions. 

Next, the modeler identifies the parameters associated with the chosen compensation network. 

This includes component values, design parameters such as switching frequency of the PWM 

controller, and intrinsic device characteristics such as the open loop gain and gain-bandwidth 

product of the operational amplifier. 

The switching regulator modeling process concludes with an analysis of system level non-

idealities as well as major component level non-idealities. In this case, a non-ideality is 

considered anything that deviates from the canonical model. This includes common non-

idealities such as inductor and capacitor equivalent series resistance, as well as less common 

non-idealities such as using a dual-switch configuration with both a low-side and high-side 

switch. 

 

Fig. 21. Example of a buck regulator with non-ideal considerations for the output inductor and 

output capacitor. 

The user configured modeling method presented here has been implemented in the software 

package in order to make the manual model creation process straightforward. 
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2.2 Constrained Optimization Model Generation Method 

The constrained optimization model generation method takes the next logical step beyond the 

user configured process and allows the modeler to optimize the generated model based on a 

specified set of parameters. For the purposes of explanation it will be assumed that the modeler 

is optimizing the switching regulator model to a target AC response, but the method theoretically 

applies just as well to transient models. 

The first few steps in the process are generally the same as in the user configured method; the 

simulation still must know what the regulator topology is and what the switching frequency is set 

at as well as similar basic information. After this information has been supplied the modeler will 

input a target frequency sweep dataset that includes gain in dB and phase in degrees. This dataset 

will be referred to as the target set, the target set is interpolated to produce a frequency axis with 

graduations at regular intervals and gain/phase values which occur at the same point. While data 

is often regularly spaced when obtained from a simulator or from a measurement this is almost 

never the case when working from digitized data. 

Next the modeler must identify which parameters he believes will be dominant in optimizing the 

model; for each of these parameters an allowed range and a step size should be defined. Once all 

of the parameters have been identified and bounded, several parametric simulations will be 

initiated. For each of these parametric variations another AC dataset is created, these sets will be 

individually referred to as the generated set and collectively as the parametric space. 

When optimizing an AC response both the phase response and the gain response must be 

considered when calculating error. This implies that for each comparison of a generated set to the 

target set there will be two errors to consider. The optimal agreement between target set and 

generated set occurs when the total error is minimized as compared to all other generated sets in 
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the parametric space. This means that the only remaining task is to calculate the two values of 

error for each generated set in the parametric space when compared to the target set. 

For this work a simple model of error calculation was assumed where the error of a single dataset 

can be calculated according to 

𝐸𝑅𝑅 =  
∑ |𝑥𝑇𝑖 − 𝑥𝐺𝑖|𝑛

𝑖=1

𝑁
 

Where 𝑥𝑇𝑖 and 𝑥𝐺𝑖 refer to the quantity under consideration, such as phase, gain, or voltage, for 

the target and generated sets respectively and 𝑁 is understood to be the number of interpolated 

data points in the set. In an AC optimization this leads to two well defined coefficients of error, 

the coefficient of error of gain and the coefficient of error of phase which can be defined by: 

𝐶𝑜𝐸𝐺 =
∑ |𝐴𝑇𝑖 − 𝐴𝐺𝑖|𝑛

𝑖=1

𝑁
 

and 
𝐶𝑜𝐸𝑃 =

∑ |𝜙𝑇𝑖 − 𝜙𝐺𝑖|𝑛
𝑖=1

𝑁
 

Finally, the optimal generated set can be found by finding the set within the parametric space 

which minimizes 𝐶𝑜𝐸𝐺 + 𝐶𝑜𝐸𝑃. For verification of this process refer to the Results section in 

which this optimization routine is successfully applied to various switching regulator models. 

2.3 Fully Automated Model Generation Method 

Considering that the constrained optimization method successfully optimizes switching regulator 

models the next logical jump is to make the entire process as hands-off as possible. Such a 

process has been identified though not yet tested or implemented in the tool. The process 

requires a minimum viable data set of: 

 regulator DC input voltage 

 regulator steady state DC output voltage 

 sawtooth wave switching frequency 
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 compensation network control type 

 AC loop transfer function magnitude and phase response 

 transient load test for model verification purposes 

Given this information the modeling tool executes the following process to identify key regulator 

characteristics and build a model. Comparing the input voltage to the output voltage can lead to a 

unique solution for which type of regulator topology is in use. If the core types of buck, boost, 

and buck-boost are the only allowed types this comparison should map uniquely, however if 

other types of topologies are allowed the modeling tool may require further user input for this 

step. Once the topology is determined the next step is to determine the compensation network 

characteristics. The first part to this step is to identify what type of compensation network is in 

use in the regulator. This information can be determined by simply determining the number of 

poles and zeroes (roots) in the measured AC response. Each of the types of identified 

compensation networks has a specific number and location of roots and if data analysis functions 

were implemented which could identify these roots it would theoretically be possible to 

automatically determine what type of compensation network is in used solely from the AC 

response data. Furthermore, if the location of each pole and zero were able to be determined 

relatively precisely then they could be used to back-calculate the value of each component in the 

compensation network. With the compensation network parameters reasonably approximated the 

remainder of the process can be continued by proceeding forward with the previously described 

Constrained Optimization Model Generation Method where the limits and step sizes of 

parameters are programmatically determined.  
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3. MODELING TOOL ARCHITECTURE AND IMPLEMENTATION 

This section discusses the high level architecture of the modeling tool as well as implementation 

details. At the highest level there are four main components in this system, they are the plot 

digitizer, circuit simulator, Python core, and the graphical user interface (GUI). Throughout this 

section and for the remainder of the document code snippets or concepts which have a direct 

implementation in code will be formatted in this manner. 

The plot digitizer component is forked from the original source code of the open-source Plot 

Digitizer project. This software is described by its creator as follows [9]: 

Plot Digitizer is a Java program used to digitize scanned plots of functional 

data. Often data is found presented in reports and references as functional X-Y 

type scatter or line plots. In order to use this data, it must somehow be 

digitized. This program will allow you to take a scanned image of a plot (in 

GIF, JPEG, or PNG format) and quickly digitize values off the plot just by 

clicking the mouse on each data point. The numbers can then be saved to a text 

file and used where ever you need them. Plot Digitizer works with both linear 

and logarithmic axis scales. Besides digitizing points off of data plots, this 

program can be used to digitize other types of scanned data (such as scaled 

drawings or orthographic photos). 

The modifications required of this tool were minor. The only changes made were to remove 

unusable functionality, rename button labels to make them more intuitive, and add a mechanism 

whereby the plot digitizer tool automatically sends data back to the regulator modeling tool 

without requiring extra steps from the user. 
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The second component, the circuit simulator, is not a tool that was developed upon directly but 

tight integration was still required. Furthermore, rather than developing the modeling tool so that 

it could only interact with one simulator it was desired that the tool would be able to use any 

arbitrary simulator that meets the minimum requirements. This means that Interface-Adapters 

needed to be developed in order to support that level of modularity [10]. These adapters are 

described in the Python Core section. 

The next component, the Python core, is the main collection of tools in the entire software 

package and is composed of six submodules. The details of this component will be described 

further in their own section. Development of this component comprised the majority of time 

spent in development and it is correspondingly the largest and most technically interesting 

component of the modeling tool. This portion of the tool is largely independent of the other 

components in the tool and is completely usable from the command line but has been developed 

in a manner such that it can easily cooperate with a simpler user interface. 

The final component in the switching regulator modeling tool is the graphical user interface 

(GUI). The GUI can be considered the “glue” holding everything together and making the four 

distinct components operate as a cohesive unit. The interface design was carefully considered in 

order to provide a user experience that is intuitive without sacrificing technical capability. More 

on the development and usage of the GUI will be covered in the Graphical User Interface 

section below. 

Fig. 22 below visualizes the interaction of these four separate components and their submodules 

in an effort to provide a comprehensive overview of the architecture of the tool. The two main 

components of the Python core and the graphical user interface are described more thoroughly in 

the following section. 
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Fig. 22. Switching regulator modeling tool high level architecture. 

Worth noting from Fig. 22 is the range of languages used in the project. The main core was 

written in Python, the GUI was developed in C++ against the Qt library, and modifications to 

Plot Digitizer were performed in Java. Additionally data sharing between components was 

performed using JSON syntax and the simulator specific templates were written using the third-

party Python library Mako which has its own unique syntax. Data sharing between Plot Digitizer 

and the GUI was accomplished through a direct “pipe” between the two programs. 

3.1 Python Core 

As previously stated, the Python core is an umbrella term for the submodules that perform the 

primary functions of the switching regulator modeling tool. These submodules are model.py, 

devices.py, connections.py, testbench.py, identifier.py, and 
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simulator.py. The purpose and implementation of each of these submodules is described in 

the following sub-sections. 

3.1.1 model.py 

model.py is the main entry point of the Python core and essentially serves as a command-line 

UI. The two primary purposes of this submodule are: 

 Contain the majority of the error checking that is required through the program in order 

to minimize the likelihood that the modeler will enter into an unnecessarily long 

simulation. 

 Provide a simple interface into the more low-level submodules described in the following 

sections. 

The majority of what is implemented in the submodule is standard Python and not technically 

interesting so it does not need to be described in detail here, but it can be easily understood 

through the source code comments. 

3.1.2 devices.py 

This submodule provides a general interface to the devices required in a typical simulation 

model. Devices provided by this submodule are enumerated and described in Table 3 below. 
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Table 3. Summary of simulation devices provided by devices.py. 

Device Name Parameters Description 

Device device_name, nodes, 

hashed_nodes 

The parent device which provides methods 

and properties which are common to all 

simulation devices. These more specific 

devices are created by sub-classing this class. 

Resistor value, device_name, 

type 

Implements the basic functionality of an ideal 

resistor. If a more complex resistor model is 

required then this class should be sub-classed 

with the additional parameters, and the 

corresponding simulator templates should be 

added. Simulator templates are described in 

section 3.1.7 below. 

Inductor value, device_name, 

type, 

initial_condition 

An ideal inductor with an optional initial 

current condition. Sub-classing 

recommendations are the same as for a 

Resistor. 

Capacitor value, device_name, 

type, 

initial_condition 

An ideal capacitor with an optional initial 

voltage condition. Sub-classing 

recommendations are the same as for a 

Resistor. 

Voltage Various, depends on type A generic voltage device that can implement 

several types of voltage sources such as DC, 

AC, sine, pulse, and piecewise linear. 

Current Various, depends on type A generic current device, internally 

implemented exactly the same as Voltage. 

PWM device_name, 

control_type, 

inductor_value, 

switching_frequency, 

duty_cycle_*, others 

depending on previous 

variables 

This is the first of the devices which is not 

native to any simulator. It is implemented 

through a template and models the switching 

behavior in a switching regulator by using the 

PWM modeling method. 
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Device Name Parameters Description 

Compensation device_name, 

device_type, 

control_type, 

**compensation_kwargs 

The second device that is non-native. Main 

determinant of the frequency response of the 

control system. It is implemented as three 

terminal subclass of Device with four 

required parameters. 

Ground None Ground connection for the circuit. One 

weakness of this implementation is that there 

can only be one ground in the entire circuit, 

though this is okay for the vast majority of 

models. 

In addition to providing an interface for these devices, this submodule contains a small collection 

of helper functions, classes, and exceptions. These helpers are not novel or technically interesting 

and are not described here, but are thoroughly documented in source code comments. 

3.1.3 connections.py 

This submodule is responsible for handling the interconnection between devices. It serves as a 

proxy for a formal netlist definition such as what is used in SPICE or Spectre. Instead of a netlist, 

the connections are described in an object-oriented paradigm where each device has a specified 

number of unique nodes which can then be connected to each other by resolving one of the node 

names to be the same as the other. The unique node identifiers are generated using a standard 

version 4 UUID generator that is then truncated down to 10 characters [11]. Multiple devices can 

be connected to each other by resolving all of the device nodes to the same unique node. Devices 

can be disconnected by changing the unique node name of one of the devices to a new UUID. 

In addition to tracking device connections this submodule also handles part of the functionality 

of testbenches. As will be decribed in the following section the testbench module makes it 

simple to prepare a testbench that will work in multiple simulators. The connections module 
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is responsible for tracking which nodes should be used for AC and Transient analysis. More 

specifically, the connections module tracks which nodes should receive the input signal and 

which node should be monitored as an output. 

3.1.4 testbench.py 

The testbench module is the third and final module that aims to make it simple to produce 

netlists and simulation commands for multiple types of simulators. In this case the module 

provides an abstraction for two types of testbenches, an ACTestbench and a 

TransientTestbench, both of which are a subclass of the prototypical Testbench class.  

The Testbench class is a prototype that implements some of the basic features that are 

common to all of the testbench types, it also handles bookkeeping that is common to all types of 

testbenches such as: 

 input_node and output_node – These nodes indicate where the test signal should 

be injected and where the response should be measured, respectively. They are specified 

by naming a node on a specified device in the connection map. 

 simulator, simulation type – These parameters are used internally when 

looking up the templates to use when actually producing the netlist. Otherwise unused. 

 load_type – Within the tool switching regulators can be loaded either with a specified 

current or with a specified resistance/capacitance. The allowed parameter values are 

current or rc. 

 input_voltage and output_load – Two parameters which are an internal 

representation of the devices used for powering or loading the switching regulator circuit. 
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Subclassing Testbench is the first type of testbench, the ACTestbench. This type of 

testbench is, as the name implies, used for AC simulations. In addition to the base methods 

defined in Testbench the ACTestbench adds and implements the following parameters: 

 start_frequency and end_frequency – These two parameters set the lower and 

upper limits on the AC sweep frequency, respectively. 

 sweep_type – This can be one of three string values, “decade”, “octave”, or “linear”. 

The sweep_type parameter controls the spacing of the simulation data points. 

 points_value – The points_value parameter is used to set the number of 

simulation points. In a logarithmically scaled simulation (“decade” or “octave”) this 

parameter is used to set the number of points in a single segment. In a “linear” simulation 

this parameter sets the total number of data points. 

Finally the TransientTestbench class implements the methods for running a transient 

simulation. This class is simpler than the ACTestbench and thus requires fewer parameters. 

These parameters are described below: 

 print_step – This is the time interval between successive data points. This is not 

necessarily related to the simulator. If the simulator is not capable of exporting data 

according to this specification then the data will be interpolated through the identifier.py 

submodule. 

 end_time – The time in seconds at which this simulation should finish. 

While most simulators offer other types of simulation such as noise analysis, Monte Carlo, or 

parametric sweeps the basic AC and Transient simulation are the core of any simulator and are 
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most important in this work, thus they were implemented first. Others could be added if desired, 

though that may make compatibility difficult to maintain across various simulators.  

3.1.5 identifier.py 

This submodule is currently a collection of helper functions for working with generated 

simulation data. This submodule is intended to contain the functions used for automatically 

identifying poles and zeroes, as well as other data analysis features. However, as most of these 

features have not yet been implemented this module name is a bit of a misnomer. 

The most important functions currently contained in this submodule are the interpolation 

functions and their helpers. This includes the linear_interpolation() function and the 

spline_interpolation() function, and their helpers linear_axis() and 

logarithmic_axis(). 

The linear axis function expects two parameters, where the first, x_data, is a single set of data 

points and the second is an increment parameter which tells the function how far apart each 

x-axis point should be. The minimum and maximum data values in x_data are used as the 

lower and upper bounds of the new axis with each data point spaced one increment from the 

last. 

The logarithmic axis function is similar to the linear axis function with the exception being that 

the values it returns are spaced logarithmically and the increment parameter refers to how many 

data points there are per decade or octave, it also requires an extra parameter to specify if the 

data is divided into octaves or decades. 
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This difference between the two functions is important for analyzing data that was captured over 

a logarithmic scale. Attempting to interpolate data from a frequency sweep that goes from 1 Hz 

to 1 MHz using a linear axis produces a prohibitively large data set. 

Consider for example a linear axis from 1 to 1,000,000 at an increment of 1. From 1 to 10 there 

are 10 data points, this is manageable. From 10 to 100 there are 100 data points, this is 

manageable. However, from 100,000 to 1,000,000 there are 900,000 data points and the data 

becomes difficult to analyze. Analyzing the same data set using a logarithmic axis with an 

increment of 100 produces instead 100 data points from 1 to 10, 100 data points from 10 to 100, 

etc.  The end result being that rather than analyzing 1,000,000 data points we only need to 

consider 6,000. Analyzing a smaller dataset means that more data can be analyzed at once which 

more quickly leads to results. 

The other two functions, linear_interpolation() and spline_interpolation() 

are essentially just interfaces to the SciPy functions interp1d() and 

InterpolatedUnivariateSpline(). The interface pattern [10] is adopted here for two 

primary reasons: 

 Providing a function locally means that the function name and parameters can be 

specified regardless of the implementation in SciPy. If the SciPy library were to change 

the name of one of these functions it would simply mean that I have to change the name 

in one place rather than many times throughout the code. 

 Passing the data through another function before calling on SciPy allows the data to be 

validated first, this allows for more robust error prevention and error handling. 
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In addition to the interpolation functions this module is planned to be used to implement the 

other data analysis functions previously mentioned in the Fully Automated Model Generation 

Method section such as pole and zero identification, identification of compensation network type 

from frequency sweep, and Pareto frontier comparison of parametric sweeps. 

3.1.6 simulator.py 

As shown in Fig. 22 the simulator.py submodule operates as a two-way link to send 

commands to and receive data from simulators that are supported by the modeling tool. The most 

important function of this submodule is to act as an interface-adapter between the modeling tool 

and the selected simulator. This means the submodule is responsible for implementing a uniform 

API for running specific simulations regardless of the simulator, as well as implementing an API 

for reading data in from a specified simulation and translating that data into a common format 

which can be used throughout the rest of the modeling tool. 

Understandably this submodule is critical to the reliable operation of the modeling tool. There 

are several helper functions contained in the simulator.py submodule but the two most 

important functions are run_simulation() and get_simulation_data().  Both of 

these functions are essentially wrapper functions that verify the supplied parameters and then 

pass the arguments on to more specific sub-functions. 

The run_simulation() function expects at least three parameters but is capable of 

accepting an arbitrary number of parameters in order to flexibly support more advanced options 

that are available in one simulator but not in others. The required parameters are simulator, 

id, and sim_file.  
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 simulator will just be a string with the internal_name of the simulator to use. 

Currently supported simulators are pspice and spectre. 

 id is a string or a raw Python UUID object which uniquely identifies this simulation run. 

 sim_file is either the Python file-like object or the decoded string contents of such an 

object that will be sent to the simulator. 

 Additionally a fourth kwargs parameter is allowed for, this is a standard Python 

declaration that allows an arbitrary number of parameters to be passed into the function 

as a single dictionary. 

The get_simulation_data() function is similar to the run_simulation() function in 

the parameters that it expects though it is more simple. This function expects the id parameter in 

order to uniquely identify and locate the simulation file and allows for an optional simulator 

parameter in order to specify which simulator produced the dataset. If this is known ahead of 

time, as it usually is, then it is best to supply this to the function directly. If the simulator 

parameter is not known ahead of time then the function will attempt to identify the simulator 

automatically based off of the file syntax and storage format. 

3.1.7 Template Library 

The template library is the submodule that truly brings everything together. While the other 

submodules are used to provide general functionality internal to the tool, the template library is 

used to make the internal circuit and testbench description usable in a specific simulator. There 

are currently two types of templates that are used in the modeling process, the first that will be 

described are regulator templates which are used by connections.py to properly handle the 

specified regulator topology, the other type of template is simulator templates which are used by 
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devices.py to know what syntax the simulator expects for a variety of device types as well as 

simulator commands. 

Regulator Templates 

The specification for regulator templates is as follows: The regulator template files should be 

proper Python files, meaning the filenames are expected to end with the .py extension and be 

fully Python 3.4 compatible. The templates should be placed in the “templates/regulators/” 

directory relative to the program installation directory. Regulator template files are then required 

to implement three functions. 

The first required function, program_usage_details(), is straightforward and is only 

required to return a single dictionary with three keys of information. The dictionary should 

contain one key which is the internal_name the value associated with the 

internal_name key should be all lowercase with any spaces being replaced with underscores 

or hyphens and this value specifies how to regulator will be referred to in the code. The 

external_name value should be a human friendly name for the regulator topology, this is the 

name that is shown to the user. Finally, the description key should contain a brief 

description of what this regulator topology is used for, this is used in the GUI as a tooltip 

reminder to the user. 

The other required functions are connect_transient_model() and 

connect_ac_model(), these functions handle all of the operations required to connect 

devices into the expected configuration for the specified test. The parameters required by these 

functions are uniform and are detailed in Table 4 below. 
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Table 4. A table describing the parameters required by the connect_*_model() functions. 

Parameter Description 

regvars A dictionary containing all of the switching regulator 

parameters that aren’t directly related to the compensation 

network. 

compensation_information A dictionary containing all of the information related to the 

compensation network, this includes components values, 

network type, and similar parameters. 

cmap This should be the global ConnectionMap that is created 

at program initialization.  

testbench Testbench should be a subclass of the Testbench class which 

was previously described. This parameter is used to create 

the devices for input voltage and output loads. 

These parameters are used to create and connect the required devices and implement a particular 

regulator topology. An alternative use for this system is described in the Conclusions and Future 

Work section. 

Simulator Templates 

The simulator templates are used primarily by the devices.py module to provide a 

straightforward method of using the same devices across different simulators. If the 

devices.py module can be thought of as providing the general interfaces for using these 

devices then the simulator templates library can be considered to be the module that brings the 

two together. These template files are written using the Mako template language from the Mako 

library for Python [12]. 

At the top level a simulator template package is simply a directory of several files where the 

directory name is the internal_name of the simulator it is implementing, and each file is 
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either a .template file for a device model or device reference, or it is a .sim_directive 

indicating that it is used by simulator.py for properly running simulations. For each device 

defined in devices.py there are generally at least two .template files; one file with the 

filename format of [device]_reference.template and another with the format of 

[device]_model.template. The reference files are used when instantiating the device and 

can be called upon multiple times, while the model file is generally only called upon once per 

simulation and is used to inform the simulator how a non-native device should behave. For 

example given a SPICE netlist such as: 

Line1: * A contrived sample circuit 

Line2: R1 1 2 1k 

Line3: R2 2 0 2k 

Line4: X1 1 0 sample 

Line5: .subckt sample in out 

Line6: V1 in out 5 

Line7: .ends 

Line8: .end 

Lines 2-3 are what would result from calling on the resistor_reference.template file 

while line 4 is the result of a call to sample_reference.template. Lines 5-7 are used to 

generate the subcircuit model and are thus the result of a call to sample 

_model.template. In addition to the device templates there are simulator-specific file 

templates that are expected as well, in the above example line 1 would be generated by the 

header.template file and line 8 would be generated by the footer.template file. Fig. 

23 shown below details the process of converting device.py objects into SPICE and Spectre 

netlists. 
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Fig. 23. Composite image showing the usage of the simulator template library. 

Device types which can have multiple permutations may require more than just two template 

files; for example the compensation networks require a separate template file for each type of 

compensation network identified in Table 1. In addition to these device templates another class 

of file is used to inform the modeling tool how to direct the simulator to perform each type of 
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simulation, these files have a .sim_directive file extension and use the same template 

method as .template files. 

3.2 Graphical User Interface 

The graphical user interface (GUI) has been developed in order to provide easier access to the 

functionality of the tool that would otherwise be difficult to perform using the command line 

alone. The remainder of this section discusses the main features provided by the GUI and how it 

is used when generating a model. The first interface the user sees upon opening the tool is shown 

in Fig. 24. 
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Fig. 24. Main tab in the modeling tool GUI, collects general information about the regulator. 

This is the first screen shown and is used to collect basic information about the regulator such as 

name of the model as it will be referred to in the simulator, topology (buck, boost, buck-boost), 

control mode type (voltage, current-peak, current-average), PWM controller switching 

frequency, and duty-cycle information. Below all of the data entry is an image viewer which 

provides a dynamic preview of the selected regulator topology. The next step is to collect 

information about the compensation network as shown in Fig. 25. 
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Fig. 25. Compensation network tab for regulator modeling tool. 

Starting from the top of this screenshot is the first visible feature of selecting a model 

optimization method. Three methods are presented and are implemented as follows: 

 User Specified (“User Configured” in image) – A fully manual model generation 

method. In this mode the tool is essentially a specialized template generation tool.  

 Constrained Optimization (“User Hinted” in image) – Implements the interface for 

using the constrained optimization modeling approach previously described. 
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 Fully Automated – The method for just importing a dataset, entering a minimal set of 

information, and generating a simulation model. This is disabled since the necessary 

identification functions have not been implemented. 

The area labeled Configuration Area contains a QWidget 2 that is independent from the rest of 

the interface and changes depending on which configuration method is selected. The user 

specified method is currently shown. In this mode the compensation network type is first 

selected and then the values of the devices are set below that. The image viewer shown below the 

form is updated when the compensation network type changes. In constrained optimization mode 

the interface is very similar with the addition of a few interface elements to allow the user to 

control which values are parameterized, what ranges are allowed, and how big of a step the 

parametric analysis uses for each value. Since the fully automated modeling method is not yet 

implemented there is no interface developed. 

The final configuration tab is for setting up the testbench in order to perform measurements on 

the developed models. The different types of testbenches available have previously been 

described in the Transient and AC Measurements of Switching Regulators section. The default 

state for this tab is shown below in Fig. 26. 

                                                 
2 A QWidget is the basic graphical unit in Qt, and is the base class for most graphical elements. 

It can be used independently or as a container for other elements. For example, a QPushButton is 

a subclass of QWidget but several QPushButtons can be grouped into a QGroupBox which is 

also a subclass of QWidget. 
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Fig. 26. Testbench definition tab showing options for an AC sweep testbench. 

This screenshot presents the available options for a switching regulator AC simulation. The 

default AC test is the loop transfer test since this is much more common than the plant transfer 

test. The only identified drawback to this interface as it is currently implemented is that the input 

voltage and output load must be specified through a specific syntax that is defined in the source 

code comments. This makes it more difficult than necessary for the user to create simulation 

ready models, though the problem could be easily addressed with some UI improvements. 

Finally, the simulator connection pane is presented below in Fig. 27. 
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Fig. 27. Initial version of simulator connection pane. Provides an interface for fitting 

compensation network parameters to supplied data. 

The simulator connection version presented here is an older concept designed for direct 

interaction with the simulator without leaving the modeling tool. A new module is currently 

being implemented which more fully abstracts the simulator and will make it easier to implement 

the constrained optimization and fully automated model generation methods. 
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4. RESULTS 

Now that a full understanding has been developed towards learning what switching regulators 

do, how they are modeled, and how the model generation process and tool works, the results 

from this work are presented for further comment and analysis. This section presents the results 

of applying the constrained optimization model generation method to the datasheet measurement 

data of three switching regulators and compares these results. The parts analyzed include: 

 Texas Instruments TPS54320 – A current mode controlled buck converter with fully-

integrated high-side FET. 

 Texas Instruments TPS54350 – A voltage mode controlled buck converter with 

integrated high-side FET and external low-side FET. 

 Freescale MC34713 – A voltage mode controlled buck converter with fully integrated 

high-side FET. 

As will be described further in the following sections the data presented lends more validation to 

the PWM modeling method and validates the constrained optimization model generation method 

as applied to the PWM model. 

4.1 Texas Instruments TPS54320 

The TPS54320 is a current mode controlled buck converter with an integrated switching FET, 

the device is capable of handling an input voltage of 4.5 V to 17 V input and can supply an 

output current of up to 3 A continuously. The switching frequency on the device is adjustable 

from 200 kHz to 1.2 MHz and it includes a collection of extra features such as slow-start, 

overcurrent protection, and enable/disable capability. 
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For the measured evaluation module the switching frequency was set at 480 kHz, the input 

voltage was designed for 12 V regulated down to 3.3 V with the capability of maintaining a 

constant output load of 3 A. The compensation network selected for this part is a type 3-A 

network and the output filter components selected were a low ESR 6.8 µH inductor and a low 

ESR 47 µF capacitor. The schematic for this evaluation module is shown below in Fig. 28. 

 

Fig. 28. Texas Instruments TPS54320 evaluation module schematic. 

In order to verify the model generation method the AC and transient data from the TPS54320 

datasheet was digitized and used by the tool in constrained optimization mode. This optimization 

was performed in two steps. Initially all of the compensation network component parameters 

were parameterized with relatively narrow ranges of variation and small step sizes. After 

selecting the best result from this sweep the compensation network component values were held 

steady while the output components and their respective ESRs were parameterized and swept. 
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The result from this optimization is shown in Fig. 29 below in comparison to the digitized 

datasheet information. 

 

Fig. 29. AC gain and phase comparison for the Texas Instruments TPS54320. 

This regulator shows a fairly uninteresting AC response with little variation over a 1MHz range. 

The simulation model shows close agreement with the measured data until the phase begins to 

diverge around 60 kHz and the gain begins to diverge around 200 kHz. It is common behavior in 

switching regulators that as the AC stimulus approaches 
1

2
𝑓𝑠𝑤 the device performance will begin 

to decline from the optimal and it is clear that the model used does not capture this non-ideality. 

It is also possible that the divergence seen in the datasheet data is from the measurement 

equipment or test set-up but that explanation is less likely. Overall this is considered an excellent 

-180

-150

-120

-90

-60

-30

0

30

60

90

120

150

180

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

100 1000 10000 100000 1000000

P
h
as

e 
(d

eg
re

es
)

M
ag

n
it

u
d
e 

(d
B

)

Frequency (Hz)

TPS54320 AC Comparison

gain (simulation) gain (datasheet)

phase (simulation) phase (datasheet)



67 

fit. Next, the AC optimized model is converted to a transient testbench and compared to the 

datasheet transient measurements, the results of this comparison are shown in Fig. 30. 

 

Fig. 30. Transient comparison for the Texas Instruments TPS54320. 

The results shown above come from directly transferring the AC optimized model into a 

transient simulation. The test procedure was to subject the regulator to a 0.75 A initial load, pulse 

the load up to 1.5 A for 100 µs, then bring it back down to 0.75 A and observe the regulator 

response. The model shows excellent agreement through the relatively steady sections of the 

graph with a small non-optimal response in the pulse peaks. The model does not exhibit the same 

intensity of overshoot and undershoot, but the small non-ideality is considered acceptable in 

exchange for a practically negligible simulation time. 
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4.2 Texas Instruments TPS54350 

The TPS54350 is a voltage mode controlled buck converter with one integrated and one external 

switching FET. The device is capable of handling an input voltage of 4.5 V to 20 V input and 

can supply an output current of up to 3 A continuously or 4.5 A briefly. The switching frequency 

on the device is adjustable from 250 kHz to 700 kHz and it includes extra features of slow-start, 

power-good signal, and enable/disable capability, among others. 

The evaluation module design set the switching frequency at 500 kHz with an input voltage of 12 

V regulated down to 3.3 V on the output and the capability of maintaining a constant output load 

of 3 A. The compensation network selected for this part is a type 4-A network and the output 

filter components selected were a low ESR 10 µH inductor and a low ESR 100 µF capacitor. The 

schematic for this evaluation module is shown below in Fig. 31 
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Fig. 31. Texas Instruments TPS54350 evaluation module schematic. 

Similar to the TPS54320, the TPS54350 datasheet measurements were digitized and used by the 

tool in constrained optimization mode. For this model the optimization was performed in a single 

sweep, with only the R1, R5, C8, and R2 from the compensation network and C2 and L1 from 

the output filter being parameterized. Results from this optimization are shown in Fig. 32 below 

in comparison to the digitized datasheet information. 
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Fig. 32. AC gain and phase comparison for the Texas Instruments TPS54350. 

The TPS54350 AC response proves more interesting than the TPS54320 AC response and the 

simulation model appears to be just as accurate in this case. The model and measured data begin 

to diverge in phase around the 300 kHz point while the gain begins to diverge around 200 kHz. 

As previously mentioned, this is expected behavior near the 
1

2
𝑓𝑠𝑤 point. Interestingly the phase 

and gain diverge in opposing directions in this regulator suggesting that the OTA in the 

compensation network is the weak point in the system as it is likely entering into an inverting 

behavior. This simulation shows close agreement with the measured data. 

Unlike the previous test results, for this modeling test an attempt was made to use a separate 

optimization process for the transient simulation model, as this process was not yet implemented 
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into the tool it was done by hand and thus may not be a perfect implementation. The results of 

this optimization and simulation are shown in Fig. 33. 

 

Fig. 33. Transient Comparison for the Texas Instruments TPS54350. 

The first feature worth noting in this dataset is the significantly subdued response to a load 

change when compared with the TPS54320. Where the TPS54320 had a variation of 0.1 V from 

the mean, this regulator shows a variation closer to 0.025 V from the mean. Much like the 

previous simulation though, while the model agrees with the measured data in the steady state it 

is only a close approximation during the pulses. Considering the significant increase in 

simulation speed such a small mismatch in responses is likely not significant. 
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4.3 Freescale MC34713 

The MC34713 is a voltage mode controlled buck converter with an integrated switching FET, 

the device is capable of handling an input voltage of 3 V to 6 V input and can supply an output 

current of up to 5 A continuously or 6.5 A briefly, it has an output voltage range of 0.7 V to 3.6 

V. The switching frequency on the device is adjustable from 200 kHz to 1 MHz and it includes a 

collection of extra features such as slow-start, power-good, overcurrent and short-circuit 

protection, and a shutdown signal. 

The evaluation module for this part established the switching frequency at 1 MHz, the input 

voltage of 5 V is regulated down to 3.3 V on the output with the capability of maintaining a 

constant load of 5 A. The compensation network selected for this part is a type 4-A network and 

the output filter components were chosen to be a low ESR 1.5 µH inductor and three low ESR 

100 µF capacitors. The schematic for this device is shown below in Fig. 31 
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Fig. 34. Freescale MC34713 switching regulator evaluation module schematic. 

For the MC34713 the optimization routine was also performed in a single sweep. Despite being 

shown as several separate devices the split PVIN capacitors were added together and simulated 

as a single device, as were the VOUT capacitors. This arrangement results in far fewer 

parameters to sweep through. The AC results from this optimization are shown below in 

comparison to the digitized datasheet information. 
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Fig. 35. AC phase and gain comparison results for the Freescale MC34713. 

This simulation shows close agreement with the measured data. Most importantly this 

comparison does not show any significant divergence in the gain plot, and only begins to diverge 

on the phase plot around 250 kHz. This improved range of agreement between model and 

measurement lend further support to the suggestion that the earlier models diverged due to non-

idealities that begin to occur near 
1

2
𝑓𝑠𝑤 since the regulator is operating at ~2x 𝑓𝑠𝑤 of the 

previously examined regulators. The datasheet for this part did not provide transient data to 

compare against and therefore no transient comparison is shown. 
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5. CONCLUSIONS AND FUTURE WORK 

This thesis has described the development and usage of a tool that makes the creation of 

switching regulator behavioral models easy and fast. The main contribution of this work is how 

the PWM average switch modeling method can be automated through the use of constrained 

optimization. In addition to the implemented constrained optimization method, a fully automated 

model generation method was developed and described. 

The results from model-to-real-world comparisons proved that the proposed model generation 

method is highly effective at capturing the ideal and first-order non-idealities in a switching 

regulator for AC responses and that this AC optimized model transfers sufficiently well to the 

transient domain. In order to provide a roadmap for future work to build on, some suggestions 

are provided for what should be implemented differently in the future or what otherwise could be 

improved. 

First, it is suggested that other modeling methods be investigated to be used in place of the PWM 

average switch method or as an alternative. Namely the state-space averaging method is 

suggested for further consideration. The PWM method is inherently attractive for a number of 

reasons; it is simple, easy to apply, and works well under ideal conditions. Unfortunately the 

PWM method makes it difficult to deal with non-idealities such as ESR and ESL on output filter 

components, dual switching component configurations, and other internal non-idealities as 

observed in the Results section. When using the PWM method each non-ideality must be 

addressed in the model separately, this can rapidly increase model complexity and complicates 

the automation procedure. The state-space modeling method on the other hand is designed such 

that it considers each state of the switching regulator as an independent mathematical system 

with the non-ideal behaviors inherently considered in the model. While this mathematical basis 
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may make the method more intimidating or difficult to implement for the average modeler it 

would likely lend itself well to the already developed constrained optimization method for model 

generation. One drawback to this suggested improvement is that if another modeling method 

were selected to replace the PWM method it would render much of the existing tool useless since 

it is largely developed around the PWM method. 

Next, it is suggested that the separation between the GUI and the Python core be removed and 

the two designed to work more closely together. The modularity of separating the GUI from the 

Python core may have been a wise decision in a multi-developer environment where one 

developer could proceed with advancing the GUI and the other proceeds with advancing the 

Python core. Unfortunately, this separation just increases overhead and makes it more difficult to 

move forward in a single-developer environment. In addition to the decrease in development 

complexity a more tightly integrated GUI would make it possible to have a more dynamic UI and 

perform advanced operations such as running multiple simulations simultaneously across 

different simulators or dynamically adding new topologies or devices without recompiling the 

GUI. This suggested improvement is currently in-progress as it is considered a necessity for 

properly implementing the constrained optimization and fully automated model generation 

methods. 

For the final suggestion on tool improvements, it is concerning that the simulator.py 

module and devices.py module are not as modularized as the other parts of the program. If 

the user wanted to add more device types to the tool they would have to open up the source code 

and modify these files directly. Ideally the simulator.py and devices.py modules would 

be implemented in a Python package where each device type is separate module. The lack of 
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modularity in these two modules is not a significant concern but this could be a simple point of 

improvement. 

Finally, a potential spin-off project is proposed that could add value to the field of modeling and 

simulation in electrical engineering. The suggested project is to use portions of the Python core 

to create a generic netlist generator and simulation interface tool. This could feasibly be 

implemented in only a few weeks based off of the previously completed work on the switching 

regulator modeling tool. Such a project could prove indispensable to engineers that commonly 

work in multiple simulation environments or would like to verify their designs across multiple 

simulators. This spin-off project would additionally make a good addition to the open-source 

community and could be hosted by the University of Arkansas or personally by the author.  
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7. APPENDIX A: BRIEF NOTE ON DEVELOPMENT PHILOSOPHY  

In an effort to produce the best code possible in the shortest amount of time this software was 

developed with the following best-practices guidelines: 

1. Test-driven development (TDD) leads to less unexpected bugs and makes identified 

bugs easier to track down. These two advantages combine to result in much less time 

spent debugging [13]. 

2. There is no such thing as too much documentation. 

3. Functional programming is superior to object-oriented at minimizing the amount of 

state complexity in a program. The functional paradigm is especially useful when 

performing complex data processing or operating with concepts that do not rely on 

state. 

4. Object-oriented programming is best suited when maintaining state information is a 

necessity [10]. 

The two former suggestions on this list are intended to help the developer confidently and 

quickly write code that is easily improved in the future. While TDD taxes the developer with a 

large initial investment in designing and implementing test suites it pays dividends when 

implementing new functionality or improving existing code, this is true for two primary reasons: 

1. With a carefully crafted test suite, the developer can stop coding as soon as all the tests 

pass. 

2. When improving existing code the developer can make sweeping changes without fear of 

breakage as long as all of the tests still pass when the changes are finalized. 
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The suggestion that more documentation is better is meant to ease the burden on incoming 

developers looking to improve upon code, though it can also be useful for other reasons. The 

latter two suggestions are targeted more at helping the developer decide on the right tool for the 

job. 

In addition to these general suggestions, strict adherence to the Python PEP8 style guidelines was 

enforced. This adherence was assured through the use of JetBrains PyCharm editor which has an 

always-on PEP8 verification tool built in.  Adherence to PEP8 ensures code is consistent 

throughout the program and as consistent as possible with commonly accepted conventions in 

the Python community. 
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