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Abstract 

The proliferation of voice-activated devices and systems and over-the-phone bank transactions has 

made our daily affairs much easier in recent times. The ease that these systems offer also call for a need 

for them to be fail-safe against impersonators. Due to the sensitive information that might be shred on 

these systems, it is imperative that security be an utmost concern during the development stages. Vital 

systems like these should incorporate a functionality of discriminating between the actual speaker and 

impersonators. That functionality is the focus of this thesis. 

Several methods have been proposed to be used to achieve this system and some success has been 

recorded so far. However, due to the vital role this system has to play in securing critical information, 

efforts have been continually made to reduce the probability of error in the systems. Therefore, 

statistical learning methods or techniques are utilized in this thesis because they have proven to have 

high accuracy and efficiency in various other applications. The statistical methods used are Gaussian 

Mixture Models and Support Vector Machines. These methods have become the de facto techniques for 

designing speaker identification systems. The effectiveness of the support vector machine is dependent 

on the type of kernel used. Several kernels have been proposed for achieving better results and we also 

introduce a kernel in this thesis which will serve as an alternative to the already defined ones. Other 

factors including the number of components used in modeling the Gaussian Mixture Model (GMM) 

affect the performance of the system and these factors are used in this thesis and exciting results were 

obtained. 
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Chapter 1: Introduction 
 

Speaker identification is the determination of the identity of a speaker from his or her speech. It is 

sometimes referred to as speaker recognition or speaker verification. These terms are sometimes used 

to distinguish the specific functionality of the system. Speaker verification is used to refer to a system 

that confirms the claimed identity of a speaker. So, it is a one to one comparison between the test 

speech features and a model of the supposed speaker’s speech. Meanwhile, speaker recognition can 

refer to a system that tries to discern the identity of a speaker out of a number of possible speakers. In 

both cases, the identity of the speaker is the essence of the operation. 

Because humans easily discern the identity of a person if they are used to hearing the person speak, it 

shows that the human voice has features or characteristics that are peculiar to each individual. How to 

identify and extract these features and characteristics and feed them to a speaker identification system 

is therefore a concern. A few types of speech characteristics have been identified and they will be 

discussed subsequently in this thesis. Similar to how humans must have at least heard a voice once to be 

able to identify the speaker, the voices of the prospective speakers have to be enrolled in the system 

before an identification operation can be carried out.  

1.1  Speech Systems 

Voice features extracted from a person’s speech have identifying capabilities and as such, have been 

utilized to implement different types of technologies with related but specific functionalities. The 

following are examples of such systems. 

1. Gender Identification System 

Males and females are known to have different qualities of voices. While males are usually 

known to have deep sounding voices which correspond to having timbres and formants at low 
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frequencies, females are known to possess voices with higher pitches when compare to the 

males. This difference, including some others such as the size of the vocal fold, the vocal tract 

and the manner of speaking can be used in Gender identification systems to establish the sex of 

a speaker. 

2. Language Identification System 

Several approaches have been utilized in achieving an efficient language identification system. 

Most of the methods are based on using several statistical methods. The general idea is the 

creation of training models for several languages using features peculiar to them. The models 

are then compared to the test languages to confirm a match. 

3. Speech Recognition System 

This application draws similarity to the speaker identification system but differs on what the 

output is. While a speaker identification system establishes “who” is speaking, the speech 

recognition system outputs “what” is being said. This system makes use of Hidden Markov 

Models (HMM) and Gaussian Mixture Models (GMM) among other techniques. The 

performances of the systems have risen overtime and they have numerous commercial 

applications. An example of this system is the SIRI application on apple devices. This application 

takes a speech from a user, detects what is being said and performs instructions based on 

results of the transcription. Such applications are also found in automobiles where uttering 

simple commands are used to execute simple operations without having to touch buttons. 

1.2 Classification of Speaker Identification  

Speaker identification systems can be classified based on several criteria. One such classification 

depends on the nature of the sample speech or text and another depends on the type of features 

extracted from the speech. Classification based on the sample text is reviewed below. 
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1.2.1 Text-dependent Speaker Identification:  

This type of system identifies a speaker by using a pre-meditated word or pass-phrase. The system has 

several models of the same phrase from different speakers. A test speaker has to utter the same phrase 

or word in order to be identified. The test speech from that speaker is then modeled into a form similar 

to that stored in the system and the test model can be aligned with the stored models to establish which 

one has the closest match. 

Another variant of this class is called the text-prompted Speaker identification system. This type has a 

set of phrases that are accepted by the system. So at the point of testing, the system requests that one 

of the accepted phrases be spoken and testing is done subsequently. 

While these types of speaker identification systems are simple to design, they fall short in terms of 

security. An impersonator could practice how someone else talks if he has knowledge of the pass-phrase 

and this leaves the system vulnerable. An improvement over this is achieved in the prompted speech by 

having several pass-phrases the systems can select from.  This increases security if there is a large pool 

of pass-phrases. This category still has some disadvantages because the cooperation of the user is 

needed to ensure the system works as expected. Therefore, in some applications where user 

cooperation is not desired, it will be impossible to utilize this class of speaker identification systems. The 

computational complexity of this system is low and is used in systems where security is not a major 

concern. 

1.2.2 Text-Independent Speaker Identification: 

This category of systems operates without regard to what exactly is being spoken. It attempts to 

efficiently detect the identity of a speaker by extracting speaker-dependent information from the test 

speech. This information is assumed to be available regardless of the words being spoken or the speed 

at which the words are uttered. The voice samples of all likely speakers need to be available to the 
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system and they will serve as the training samples. Depending on the technique used, a model 

representing each speaker is generated and these will serve as the objects of comparison during testing. 

As opposed to the text-dependent type, security in this system is improved upon. Impersonation would 

be difficult because an impersonator might not be aware that a speaker identification process is in 

progress since user cooperation is not desired and there is not a specific word or a pool of words that 

are accepted. On the flip side, however, the computational complexity of this category is quite high. This 

might result into longer computation time and higher resource requirements. 

There is therefore, a trade-off between performance and complexity. With the number of high speed 

chips in the market, computational time should not be a major concern as well as the needed resources. 

In order to utilize the advantages of the text-independent speaker identification system, this method 

will be the focus of this thesis and all subsequent references to speaker identification systems will 

henceforth be assumed to be text-independent. Below is a brief summary of the difference between 

both categories. [1] 

 

Text-dependent Text-Independent 

Spoken text is known before hand by system or is 
prompted 

Spoken text is random 

User cooperation is required User cooperation is not required 

Knowledge of test speech improves performance Higher computational complexity due to random 
nature of test speech. 

Table 1.1: Differences between Text-dependent and Text-independent Speaker Identification Systems 

[1] 

 

1.3 Motivation 

The sophistication of gadgets and devices has grown exponentially in recent years with the 

incorporation of functionalities that were previously assumed impossible. A single device can perform 

video chatting, finger print recognition, video streaming, online banking and shopping etc. These 
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functionalities have eased the way we do a good amount of things in our daily affairs. The downside 

however, is that with all these sophistication, we become more vulnerable to identity thefts and other 

forms of impersonations that might have very dire consequences. 

In addition, due to the fast paced nature of the world today, men of the underworld have also 

developed innovative ways to outsmart people and wreak havoc. As a consequence, law enforcement 

needs to step up to the plate to ensure that lives and property of citizens are not threatened. 

Technology can be of help to curb this social problem. 

An efficient speaker identification system can easily detect a fraud if an imposter is trying to perform an 

illegal over-the-phone financial transaction. This can be done without the knowledge of the imposter. 

An intercepted phone conversation about a crime can also be used to prevent the crime if the city or 

country for example, has a database of the voices of all residents. The speaker identification system 

would take the phone conversation, perform some front end operations and compare it to each of the 

voices in the database so that a match can be made and the crime prevented. 

These few examples go to show the motivation for this work and a system like this has to be almost fail-

safe due to the sensitivity of the issues that might be involved. More efficient ways of developing these 

systems are being researched to reduce the probability of error in these speaker identification systems.  

The following are a few applications of such systems. 

1. Access control 

2. Law enforcement 

3. Speech data management 

4. Transaction authentication 

5. Personalization 
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1.4 Literature Review 

Work on this thesis began with a review of previous work in this field. Reynolds D. A. gave an overview 

of a speaker identification system in his training document: Overview of automatic speaker recognition 

[1]. It took a quick look at the theoretical knowledge needed to understand how a speaker identification 

system works. From features extraction to feature modeling, he discussed the basic components of a 

speaker identification system and how testing is carried out to obtain results. A discussion of the speech 

production process was contained in there including the characteristics of the desired voice features for 

a speaker identification system. The classes of models for voice features were discussed which included 

the generative and discriminative types. The training document offered a simplistic overview to what a 

speaker identification system is about and anyone interested in working on these systems can use the 

document as a good foundation. Another such introductory material is [2], it does a good job in giving 

small details about the concepts needed to understand a speaker identification system. [3] and [4] also 

provide a good starting point to learning about speaker identification systems. 

In [5] and [6], the Gaussian Mixture Model method of modeling was explored in detail and the 

performance was measured with respect to several parameters. The performance was observed as a 

function of the number of components used to model the GMM, the length of the speech signal used 

for training and the length of the test speech. 

[7] and [8] took a different approach to the GMM method, it involved adapting speaker models to a 

universal background model which was formed from the voice samples of all possible speakers. Results 

in [7] showed that this method produced a better recognition performance compared to the system 

where each speaker model is created independently. 

A more modern method of speaker identification was presented in [9]. Support vector machines which 

use a discriminative rather that generative method of classification were used to model the training 
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samples. The support vector machine approach is more exciting lately because of its effectiveness and 

how much they are now used in several top-notch applications. 

Support vector machines are a 2 class classification method which separates data into 2 classes by 

creating a hyperplane between then. It has a training algorithm that seeks to minimize an error function 

with respect to 2 constraining expressions. [10] and [11] are good guides to learning support vector 

machines. Support vector machines are used in conjunction with GMM supervectors in [9] to obtain 

high performance results. A couple of kernels were proposed and these kernels utilized the GMM 

supervectors. 

A kernel is simply a function that returns that value of the dot product between 2 signals in a space of 

higher dimensionality. It is the most important part of the support vector machine and there are a set of 

conditions that help to determine if a function can serve as a kernel function. The conditions are 

referred to as the Mercer conditions. 

The next section will describe this thesis work in general by giving an overview of the work done and the 

techniques used. It seeks to serve as a summary to the rest of this thesis. A quick perusal of the section 

will offer an insight into what is to be expected in the remainder of this work.  

1.5 Thesis overview 

The work of this thesis covers the utilization of some elements of statistical learning methods to design a 

text-independent speaker identification system. The statistical learning elements used are the well-

known techniques in the field of speech and speaker recognition. GMM and Support vector machines 

are those statistical learning methods that would be used to implement the system.  

After this introductory chapter is chapters 2, 3 and 4 which explore the speaker identification system in 

an in-depth fashion. They review the details of how speaker identification is achieved. Chapter 2 goes 
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from how the feature vectors are extracted from voice samples to the types of features used and how 

all front end processing of voice samples are obtained. Chapter 3 discusses the modeling techniques 

available for speaker identification experiments. It gives an insight into the GMM and how it is obtained 

including the adapted GMM. Then, feature testing is discussed in chapter 4. Chapter 5 looks into 

statistical learning and support vector machines and also addresses the theory of support vector 

machine kernels.  

Chapter 6 discusses the experimental design used for this research from the front end processing and 

GMM supervectors to support vector machines and kernel functions. Also included in chapter 6 is the 

detail of the speech database used. The results obtained were also included in chapter 6 including 

discussions of the results. The last chapter concludes the thesis by summarizing what was learned from 

this work and taking a peep into the future on what is expected in the next few years. It is worth a 

mention that while there are systems that might be capable of detecting the identities of multiple 

speakers in a single audio recording, the scope of this thesis is limited to single speaker identification. 

Therefore, subsequent references to speaker identification system in this thesis are assumed to be the 

single-speaker identification system. 

The experimental simulations for this thesis were carried out in Matlab. 

1.6 Notation 

Lowercase alphabets represent the time domain and uppercase non-bold face alphabets represent the 

frequency domain. Matrices are denoted by boldface alphabets, vectors by a letter with an arrow above 

and a scalar is lowercase and carries no arrow. The speech signal will be denoted by 𝑠 =

[𝑠(0), 𝑠(1), … , 𝑠(𝑁𝑇 − 1)]𝑇 where NT is the total number of samples in the entire speech utterance and 

T is the matrix transpose, and once it is broken down into frames, it is denoted by 𝑠𝑖 =

[𝑠(0), 𝑠(1), … , 𝑠(𝑁 − 1)]𝑇. Where 𝑁 = 882 is the number of samples per frame, 𝑖 represents the index 
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of a frame. When the Fourier transform is taken, the frequency domain signal is represented by 𝑆𝑖 =

[𝑆𝑖(0), 𝑆𝑖(1), … , 𝑆𝑖(𝐾 − 1)]
𝑇 where 𝑖 is the index of the frame, 𝐾 is the FFT length and T represents the 

matrix transpose.  With 𝑖 still retains the meaning it had in the time domain and 𝑘 ranges between 1 and 

the size of the FFT = 512. The output of the feature extraction stage (the feature vectors) will be 

denoted by the letter �⃗�𝑖 = [𝑥(0), 𝑥(1), … , 𝑥(𝑁𝑐 − 1)]
𝑇 where 𝑖 is the index of the frame and Nc =12 is 

the number of cepstral coefficients per frame and T is the matrix transpose.  
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Chapter 2: Speech Feature Extraction 

Having gone over the general idea of a speaker identification system in the introductory chapter, this 

chapter will elaborate on the theory and methodology of the speech feature extraction. Like with every 

abstract concept, the key to understanding the methodology is getting a clear picture of the theory 

behind the various methods. This chapter intends to do just that. 

The speaker identification system consists of various steps and techniques and they can be broadly 

categorized into 3 phases. The first phase is known as the feature extraction phase which involves 

extracting the speaker dependent speech information of each speaker. The second phase is referred to 

as training or enrollment and it consists of the techniques that contribute to assisting the system learn 

the characteristics of a sample data before a recognition or detection operation can be carried out. The 

third phase is called testing or detection and it covers the methods used to classify test samples. These 

phases will be covered in this chapter, chapter 3 and chapter 4 respectively. Figure 2.1 shows a diagram 

which describes the 3 phases.  

 

Figure 2.1 Components of a Speaker Identification System 
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2.1 Overview of Feature Extraction 

By auditory perception, humans are able to distinguish the identity of speakers. It therefore means the 

human speech contains information that is specific to each individual. The ability to access this 

information will ease to a large extent, our speaker identification task. Feature extraction is therefore, 

the extraction of speaker dependent features from a speech signal. The speech signal consists of several 

types of features and these features differ in the sort of information they carry. Some features describe 

the structure of the vocal tract while some other gives information about the speaking habits such as 

stress patterns, accent, frequently used words etc. what exact type of feature to use for an operation 

will be the natural question. And for this, there is not a hard and fast rule. A speech feature to be 

utilized for an operation should however have a few characteristics for it to be fit for the speaker 

identification process [2]. A valid speech signal feature should have [2] 

1. High inter-speaker feature variability and low intra-speaker feature variability 

2. High immunity to impersonation 

3. Low variability on changing environmental and speaking conditions 

4. High immunity to changing well-being of the speaker 

5. High frequency of occurrence in speech and should come naturally 

6. A fair ease of measurement 

It is worth a mention that no single type of feature possesses all these desirable attributes. A tradeoff 

therefore has to be made to select the best for a particular operation.  

The following are a few types of speech features. 

2.1.1 Spectro-temporal Features  

These types of features convey information about formal transitions and energy modulation within a 

speech signal [2]. It has proven to be a good way of representing speaker information. The most 
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common form of its implementation is through first and second order time derivations of the spectral 

features. These time derivatives are referred to as delta and double delta coefficients respectively or 

differential and acceleration coefficients respectively. These derivatives are appended to the short term 

spectral feature vectors so the resulting feature vector has a longer dimension than short term features. 

Using the spectro-temporal features this way is known to improve the speaker identification systems’ 

performances. [2] 

The delta coefficient is computed with the formula below.  

𝑑𝑡(𝑐) =
∑ 𝑝(𝑥𝑡(𝑐 + 𝑝) − 𝑥𝑡(𝑐 − 𝑝))
𝑃
𝑝=1

2∑ 𝑝2𝑃
𝑝=1

                                   0 ≤ 𝑐 ≤ 𝑁𝑐                             (1)         [12] 

𝑥𝑡(𝑐) 𝑖𝑠 𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡 − 𝑡𝑒𝑟𝑚 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑡𝑜 𝑏𝑒 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑒𝑑 𝑙𝑎𝑡𝑒𝑟). 𝑁𝑐 is the number of 

cepstrum coefficient and c is the index of the cepstrum coefficients. 𝑡 is the frame index. 

A typical value for P is 2 and the double-delta uses the same formula except that 𝑥𝑡  is replaced with 

𝑑𝑡(𝑐). [12] 

2.1.2 Prosodic Features 

Prosody refers to the components of speech that are non-segmental. It has to do with the properties of 

other larger units of speech like intonation, stress, rhythm, tone etc. Unlike short term features, 

prosodic features span over longer segments of the speech signal and it contains information about a 

person’s speaking style, emotions, and form of utterance [2]. The fundamental frequency is the most 

important prosodic feature and like the spectro-temporal feature, it is sometimes appended to the short 

term spectral features in order to achieve higher and better performance. [2] 
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2.1.3 High Level Features 

This feature type draws information about the type of words that are frequented in a speaker’s 

conversations. This information is used to characterize the speaker by converting the speech signal into 

a sequence of tokens. The arrangement of the tokens within a sequence is used to represent each 

speaker. These tokens can be words, syllables, phonemes etc. [2] 

2.1.4 Short-term spectral features 

The speech signal is continuously changing due to the movement of the components of the vocal tract. 

When the speech signal is then broken down into 10-30ms frames, it is assumed that these frames are 

constant in time and convey a single piece of acoustic information. The spectral envelopes of these 

frames usually obtained through Discrete Fourier Transform (DFT) are then used to represent the 

information conveyed by the signal. These envelopes convey information about the anatomy and 

resonant properties of the vocal tract. The short-term spectral features have been shown to be very 

effective in modeling speaker-independent speech characteristics. And they are relatively easy to 

extract. This is the feature type used in this thesis. 

These features have been used in several operations and the choice for a particular process would 

depend on the designer’s preferences. The short term spectral features were used in this thesis because 

of the ease of extraction and their limited variability over varying speaker moods. The next subsection 

discussed a specific type of short term feature used in this thesis. 

2.1.5 Mel Frequency Cepstral Coefficient (MFCC) 

The MFCC is the most used type of short term spectral feature in speaker identification systems due to 

its accurate estimation of the spectral envelope. An accurate estimation of the spectral envelope 

translates to an accurate modeling of the vocal tract which in turn infers that the phonemes produced 

are well and precisely estimated. The Mel frequency scale is used to create a representation of the 
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human auditory system. This scale is linear below 1000Hz and non-linear above 1000Hz. It is the 

representation of the short term power spectrum of a speech signal using the Discrete Cosine Transform 

(DCT). The DCT helps to de-correlate the energies of the spectrum and this allows the estimation of the 

variances of the features instead of the covariance matrix. The diagonal matrix helps to reduce the 

computational complexity of the implementation. 

The following section describes the MFCC generation process. 

2.2 Description of MFCC Generation 

The MFCC short-term spectral features are the most widely used features for speaker identification 

systems and this section is dedicated to describing the generation steps and the reasons behind them. 

The following are the steps involved: 

1. Divide the digitalized speech signals into frames. 

2. Compute the power spectrum of each windowed frame and estimate the energy 

3. Generate a triangular filterbank and apply it to the power spectrum then sum all energies in a 

filter 

4. Take the logarithm of all filterbank energies. 

5. Compute the DCT of all logarithm filterbank energies 

6. Drop the first coefficient and choose the second to the 
𝑁𝑓

2
th coefficients as the MFCC. Where 

𝑁𝑓 is the number of filters. 

2.2.1 Implementation Steps 

a. Frame the digitalized speech signal into 20ms frames. This step is performed because it is 

assumed that the audio signal changes rapidly but is considered statistically constant when very 

short frames are considered. These frames are assumed to estimate the shape of the spectral 
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envelope if they are appropriately sized. If they are too short, they might not have enough 

samples to model the spectrum and if they are too long, they might not be considered as 

constant any longer. The frames need to be assumed constant over its length so that it can 

represent a single phoneme.  The frames are made to overlap by about 10ms. The number of 

samples in a single frame will depend on the audio signal sampling frequency. If the sampling 

frequency is 44100Hz for example, and the frame duration is 20ms, the number of samples per 

frame would be [12] 

Sampling frequency = 16000samples in 1 sec 

   𝑁 samples in 0.020secs 

   𝑁 = 0.02 x 44100 = 882 samples per frame 

Frames that are not 20ms long can be patched with zeroes to make up the no of samples. 

b. The power spectrum of each windowed frame is then computed. The windowed frame is the 

frame passed through a windowing function (e.g. hamming window). Windowing helps to 

smoothen the transition between one frame and the next. The power spectrum is computed 

using a DFT where the length of DFT is usually 512 but only the first 257 samples (
512

2
 +1) are 

kept.  

𝑆𝑡(𝑘) = ∑ 𝑠𝑡
𝑁−1
𝑛=0 (𝑛)ℎ(𝑛)𝑒−𝑗2𝜋𝑘𝑛/𝑁                           0 ≤ 𝑘 ≤ 𝐾 − 1                        (2) 

K is the length of the DFT, N is the number of samples in a frame 𝑠𝑡(𝑛) is the speech signal in 

the time domain and ℎ(𝑛) is the hamming window coefficient. 𝑆𝑡 is the speech signal in the 

frequency domain and 𝑡 is the frame index. 

Motivation for this step comes from the human ear (the cochlea) which is sensitive to different 

frequencies. The cochlea responds to sounds by the vibration of some of its parts and the rate 

depends on what the frequency of the sound is. The DFT therefore aims to represent this 
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function of the human ear by elaborating on the magnitude of the audio signal available at each 

frequency. The square of the absolute value of the complex spectrum is calculated to obtain the 

power estimates [12]. 

𝑃𝑡(𝑘) =
1

𝑁
|𝑆𝑡(𝑘)|

2                                          0 ≤ 𝑘 ≤ 𝐾 − 1                                   (3) 

       �⃗⃗�𝑡 is the power spectrum estimate and t is the index of a frame. K is the length of the DFT 

and N is the number of samples per frame 

c. A triangular filterbank will now be generated. The filterbank has a purpose of also mimicking the 

human ear. The cochlea does not discern between sounds with very close frequencies and this 

behavior is even pronounced at higher frequencies. The filterbank is a set of narrow triangular 

filters which are closely spaced at frequencies below 1000Hz and a set of wider triangular filters 

which are more widely spaced out at frequencies above 1000Hz [12]. Therefore, the filters take 

the estimate of energies within a frequency range and sum them up to have an idea of how 

much energy exists in the frequency range covered by each filter. This models how the human 

ear works and after this step, we will have a vector that represents the energy bins located in 

that frame. The length of the vector is equal to the number of filters and the number of filters 

used is usually from 20-40 (26 for this thesis). The filterbank is therefore in the form of 26 

vectors each of length 257 (for FFT length = 512). Each vector is mostly zero but is non-zero 

within the range of frequency it is concerned with [12]. The triangular filterbank is actually a Mel 

frequency triangular filterbank (or Mel filterbank for short). Below are steps that show how to 

compute the Mel filterbank. [12] 

i. The upper and lower frequency ranges are converted to the Mel frequency scale. As 

stated previously, the Mel frequency helps model how the human ear functions [12]. 

The upper frequency bound cannot be greater than half the sampling frequency 
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(Nyquist Criterion). So if the sampling frequency is 44.1 KHz, as it is in this thesis, the 

upper frequency bound will be ≤ 22.05 kHz. The formula below is used to convert to the 

Mel frequency band [12]. 

𝑀𝐹(𝑓) = 1125 ln (1 +
𝑓

700
)                                                                             (4) 

               𝑀𝐹(𝑓) 𝑖𝑠 𝑡ℎ𝑒 𝑀𝑒𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑐𝑦 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑜𝑓 𝑓.  𝑓 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 

 Lower bound, 0Hz = 0 Mels, Upper bound, 22.05 Hz = 3916.4 Mels. 

ii. A number of points equal to the number of filters are then linearly created between 

the upper and lower Mel frequencies. For example, if we need 26 filters, we will create 

26 extra Mel frequency points between the lower and upper Mel frequencies to give 28 

Mel frequency points as shown below. [12] 

𝑚= [0, 145.1, 290.1, 435.2, 580.2, 725.3, 870.3, 1015.4, 1160.4, 1305.5, 1450.5, 1595.6, 

1740.6, 1885.7, 2030.7, 2175.8, 2320.8, 2465.9, 2610.9, 2756.0, 2901.0, 3046.1, 

3191.1, 3362.2, 3481.2, 3626.3, 3771.3, 3916.4] 

iii. The Mel frequency points and then converted back to normal frequencies using the 

equation shown below. 

𝑀𝐹(𝑚)−1 = 700(exp (
𝑚

1125
) − 1)                                                                             (5) 

𝑀𝐹(𝑚)−1 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑀𝑒𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑡𝑜 𝑛𝑜𝑟𝑚𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑐𝑦 𝑟𝑎𝑛𝑔𝑒 

𝑚 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑀𝑒𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 

Then we have 28 frequency points which are not linearly spaced out as shown below. 

[12] 

𝑓 = [0, 96, 206, 331, 472, 634, 817, 1026, 1264, 1534, 1841, 2191, 2589, 3041, 3556, 

4142, 4808, 5566, 6429, 7410, 8526, 9796, 11240, 12883, 14752, 16879, 19298, 22050] 
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iv. In order to put the frequencies at the required frequency resolutions, we convert them 

to an FFT bin number according to the formula below. [12] 

𝑓𝑏(𝑗) = 𝑓𝑙𝑜𝑜𝑟 ((𝐾 + 1) ∗
𝑓(𝑗)

𝑓𝑠
)                   0 ≤  𝑗 ≤ 𝑁𝑓 + 1                                     (6) 

                              𝑓𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦,𝑁𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 

   𝑓(𝑗) 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑎𝑏𝑜𝑣𝑒 

      𝐾 = 512 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝐹𝐹𝑇 and 𝑓𝑏 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑏𝑖𝑛 𝑝𝑜𝑖𝑛𝑡𝑠.  

      A sample of the bin points are shown below. 

fb = [0, 1, 2, 3, 5, 7, 9, 11, 14, 17, 21, 25, 30, 35, 41, 48, 55, 64, 74, 86, 99, 113, 130,           

149, 171, 196, 224, 256] 

v. The filterbanks are then computed using the formula below. [12] 

𝐻𝑙(𝑘) =

{
 
 
 

 
 
 

𝑘 − 𝑓𝑏(𝑙 − 1)

𝑓𝑏(𝑙) − 𝑓𝑏(𝑙 − 1)
          𝑓𝑏(𝑙 − 1) ≤ 𝑘 ≤ 𝑓𝑏(𝑙)

𝑓𝑏(𝑙 + 1) − 𝑘

𝑓𝑏(𝑙 + 1) − 𝑓𝑏(𝑙)
         𝑓𝑏(𝑙 ≤ 𝑘 ≤ 𝑓𝑏(𝑙 + 1)

             

0                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 0 ≤ 𝑘 ≤  𝐾/2           (7) 

𝐾 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝐹𝐹𝑇 

𝑙 𝑟𝑎𝑛𝑔𝑒𝑠  1 ≤ 𝑙 ≤ 𝑁𝑓, 𝑤ℎ𝑒𝑟𝑒 𝑁𝑓 = 26 𝑖𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 

Following is a diagram of what the Mel frequency filterbank looks like 
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Figure 2.2 Mel Frequency Triangular Filterbank  

 

d. The filterbank energies are then computed as shown below. 

𝐸(𝑙) = ∑ 𝐻𝑙(𝑘) ∗ 𝑃𝑡(𝑘)
𝐾/2
𝑘=0                           0 ≤ 𝑘 ≤

𝐾

2
         1 ≤ 𝑙 ≤  𝑁𝑓                               (8) 

K is the length of the DFT, 𝑁𝑓 =26 is the number of filters, 𝑃𝑡⃗⃗⃗⃗  is a (257 X 1) vector and 𝐻𝑖⃗⃗⃗⃗⃗ is a 

(257 X 1) vector. Each 𝐻𝑙⃗⃗⃗⃗⃗ represents one filter and there are 26 filters used in this thesis. The 

elements of the power spectrum vector 𝑃𝑡⃗⃗⃗⃗ , obtained from step b above are multiplied by the 

corresponding elements of each of the Mel frequency filters, 𝐻𝑙⃗⃗⃗⃗⃗ and summed up. We have one 

value from the operation described in the last sentence and eventually we obtain 26 values from 

the 26 filters. These coefficients represent the filterbank energies.  
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 We take the logarithm of the energies to mimic the perceptive behavior of the human ear. For 

the ear to perceive a sound 2 times as loud, the energy has to be increased about 8 fold, so this 

operation tries to match this [12]. 

e. DCT is performed on the logarithm filterbank energies (computed in the previous step) to de-

correlate it. 

𝑥𝑡(𝑐) =∑𝑐𝑜𝑠(
𝑐 (𝑙 −

1
2
)𝜋

𝑁𝑓
) [𝑙𝑜𝑔𝐸(𝑙)]          1 ≤ 𝑐 ≤ 𝑁𝑐

𝑁𝑓

𝑙=1

                               (9) 

𝑙 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑡ℎ 𝑓𝑖𝑙𝑡𝑒𝑟, 𝑁𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑎𝑛𝑑 𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒 

 𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑝𝑠𝑡𝑎𝑙 𝑐𝑜𝑒𝑓𝑖𝑐𝑒𝑖𝑛𝑡𝑠 𝑎𝑛𝑑 𝑁𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

f. The first coefficient is dropped because it depends only on the DCT and it is characteristically a 

number greater than the other energies. The second to Nf/2 others are chosen. Where Nf is the 

number of filterbanks used for the processing. The upper 
𝑁𝑓

2
+ 1 coefficients are also dropped 

because they are thought to represent the fast changing part of the filterbank energies and they 

cause a deterioration of the speaker identification performance. Therefore for a 26 filterbank, 

operation, only coefficients 2 -13 are selected [12]. A sample of a frame of feature coefficients is 

shown below. 

�⃗�𝑡 = [-79.3475, -0.9081, -8.5389, 0.6032, 2.3761, 0.2477, -2.1180, 0.9455, 1.9868, -1.8905, 

0.2718, 2.1765, 1.4305, 2.0616, 1.2119, 0.4137, 0.7492, 0.0904, -1.1775, -0.4730, 0.4516, 

0.2948, -0.5236, 0.5048, 1.0820, 0.0216]T 

Dropping the 1st coefficient (obviously larger value) and selecting the 2nd to the 13th, we have 

�⃗�𝑡  = [-0.9081, -8.5389, 0.6032, 2.3761, 0.2477, -2.1180, 0.9455, 1.9868, -1.8905, 0.2718, 2.1765, 

1.4305] T .  

where T is the vector transpose and t is the frame index 
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2.3 Error Compensation methods 

For a speaker identification system to be robust and precise in its detection, it is necessary that all 

potential causes of error be eliminated. One such cause of error is a mismatch in training and testing 

conditions. Effort therefore needs to be made to ensure a similarity in training and testing conditions. 

This will improve the system performance and help to reduce errors. These efforts come in several 

forms and can be applied to different stages of the speaker identification systems. A few error 

compensation or avoidance methods are discussed below. 

Voice Activity Detection (VAD) 

VAD as the name suggests is the scheme that detects voice activity in a speech signal. Testing and 

training speech sometimes contain spaces of silence which might introduce some error during 

enrollment. These spaces of silence can have a grave effect on the speech feature vectors especially 

when there is insufficient training data. To avoid this scenario, VAD was conceived. The VAD works on 

the principle of measuring the signal energy in a speech signal and setting a threshold to screen out 

samples with insufficient energies. Then only samples with sufficient energy are accepted for front end 

processing. 

Feature Normalization 

Normalization of the feature vectors is performed to get rid of external influences on the speech signals. 

The speech signal can be influenced adversely by intersession variability, several effects from the 

channel, recording microphone, environmental noise, electronic noise etc. the magnitude of this 

disturbance will vary depending on the type of recorder used and the serenity of the environment. A 

robust speaker identification system should be able to overcome this challenge and feature 

normalization helps to achieve this.  
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A simple, yet effective method of mean normalization which involves the subtraction of the mean 

feature from the entire utterance can be used [5]. This method is called cepstral mean subtraction 

(CMS). A few sections back, a description of the cepstral features was given and it should be recalled 

that the final step was to take the DCT of the logarithm filterbank. The introduction of the logarithm 

makes this method possible [5].  

A subtraction of the noise component then becomes easier due to the property of the cepstral features . 

The standard deviation of the features can also be used to divide the features to equalize their 

variances. These methods together get rid of the channel effects to an extent and that is the method 

used in this thesis (Cepstral Mean and Variance Normalization). 

�⃗�𝑡
′
=
�⃗�𝑡 − 𝑚𝑥⃗⃗⃗⃗⃗⃗⃗

�⃗�
                                                                                                          (10)  

where 𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ is the mean feature vector obtained as follows            

𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ =
1

𝑇
∑�⃗�𝑡

𝑇

𝑡=1

                                                                                                              (11) 

where t is frame index and the  T is the total number of frames present  

σ⃗⃗⃗ is the standard deviation of the feature vectors 

x⃗⃗t is a feature vector with i denoting the index of the frame and  

x⃗⃗t
′
 is the cepstral mean and variance normalized feature vector 
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Chapter 3: Feature Modeling 

Having extracted the features from the speech signals, the next stage is the creation of a feature model. 

This model is a statistical representation of the acoustic content of the speech signals. Therefore every 

speaker in the database will have a model which is a representation of that speaker’s phonemes. The 

models will serve as the objects of comparison when new speech signals are tested to obtain the 

speaker identity. Several feature modeling techniques exist and they are categorized according to some 

general characteristics. 

3.1 Overview of Feature Modeling 

3.1.1 Vector Quantization (VQ) 

Vector quantization is one of the simplest speaker modeling techniques. In this method, a small set of 

feature vectors is used to represent the acoustic characteristics of the speaker. These small set of 

features is obtained using clustering methods such as k-means. The set of features is referred to as the 

codebook of the speaker. During detection or testing of new speech features, the features are 

compared to the codebooks of all the speakers in the database and the speaker whose codebook has 

the highest likelihood gets detected. This model is simple to implement but is does not work very 

efficiently when the number of feature vector is large.  

3.1.2 Dynamic Time Warping (DTW) 

This method models speech utterances as a sequence of feature vectors. This sequence is aligned with 

the template feature vector sequence using a DTW algorithm. Then the overall distance between 

template and test sequence is used to make a decision [14]. Because this method of modeling depends 

on aligning template with test sequence to observe difference, it is not applicable in text-independent 

speaker identification systems. In text-dependent speaker identification systems, however, it finds great 



24 
 

use because the uttered words would have a similar phonetic structure to the template sequence, then 

a direct comparison of both can be done. 

3.1.3 Hidden Markov Model (HMM) 

HMM is a stochastic method which models the speech signals as a sequence of states and transitions 

between those states. Speech segments are categorized into broad phonetic classes using the multiple 

states. In the training phase, the phonetic categories of each speaker is generated and saved as a 

template. During testing, after the generation of testing phonetic categories, the reference templates of 

each speaker are compared to the test in order to find a match. This method is applied more in speech 

recognition systems. It is not used in text-independent speaker recognition either because the rate of 

recognition was shown to correlate with the number of mixtures regardless of the number of states 

[14]. 

3.1.4 Gaussian Mixture Model (GMM) 

The GMM is also a stochastic model which represents speaker feature vectors as a weighted sum of M 

component density functions. The modeling method has become the industry standard for 

implementing speaker identification systems. GMM in conjunction with its derivatives will be discussed 

in the next section. 

3.2 Gaussian Mixture Model 

 A GMM can be represented by the expression below. 

𝑝(�⃗�|𝜆) =∑𝑤𝑖𝑏𝑖(�⃗�)                                                                                  (12)     [5] 

𝑀

𝑖=1

 

𝑀 is the number of component Gaussian distributions in the GMM and �⃗� is a D dimensional feature 

vector [5].  𝑤𝑖is the mixing weight of each Gaussian density 𝑏𝑖(�⃗�) and satisfies 
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∑ 𝑤𝑖 = 1
𝑀

𝑖=1
                                                                                                                 (13) 

𝑏𝑖(�⃗�) is a multivariate Gaussian function and it is expressed as  

𝑏𝑖(�⃗�) =
1

2𝜋
𝐷
2 |𝛴𝑖|

1
2

𝑒𝑥𝑝{−1/2(�⃗� − 𝜇𝑖)́𝜮𝑖
−1(�⃗� − 𝜇𝑖)}                                                   (14)     [5]  

𝜇𝑖 is the mean vector and 𝜮𝑖 is the covariance matrix. D=12 is the dimension of the feature vector �⃗�𝑡 and 

Gaussian distribution 𝑏𝑖(�⃗�). The parameters of the Gaussian mixture are represented by [5] 

λ={𝑤𝑖, 𝜇𝑖, 𝜮𝑖 }         𝑖 = 1,…𝑀                                                                                      (15) 

𝜇𝑖 is the mean and 𝛴𝑖, a diagonal matrix, is the variance of the feature vectors. This diagonal matrix does 

a good job at modeling the features because the feature vectors had been de-correlated with the DCT 

during feature generation. The full covariance matrix can be used and a single full covariance matrix can 

as well be used for all the components [5]. 

The intuition behind modeling the speaker features using the GMM can be visualized if each component 

multivariate Gaussian is made to represent a single acoustic class. So the number of components in the 

GMM will be the number of acoustic classes represented by the model. To obtain a speaker training 

model, the training data has to be used to evaluate the estimation of the GMM parameters. Several 

methods are available for this, but the most popular is the Maximum Likelihood (ML) estimation 

method. The idea behind this method is that given a set of speech signal features (training data) the 

model parameters which maximize the likelihood of the GMM are estimated. 

If training vectors are X = {�⃗�1, �⃗�2, … , �⃗�𝑇} where D=12 is the dimension of the feature vector �⃗�𝑡 

The GMM likelihood is 𝑝(𝑿|𝜆) =  ∏ 𝑝(�⃗�𝑡|𝜆)
𝑇
𝑡=1                                                                                    (16)  
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Maximizing the likelihood of the above expression with the ordinary form of the maximum likelihood 

will not be feasible because the expression is non-linear due to the GMM. The computation can still be 

obtained, but with a different algorithm called the Expectation Maximization (EM) algorithm [5].  

Expectation Maximization (EM) Algorithm 

This is an iterative algorithm which is used to compute the maximum likelihood of difficult problems. 

Computation of the GMM parameters is made possible by enlarging the samples with latent data. The 

latent data, the given data and estimates of the GMM parameters are therefore used to obtain the 

desired GMM parameters. For example, in estimating the GMM parameters using the EM algorithm, the 

latent data is the probability of data frame 𝑡 belonging to GMM component 𝑖. This information is 

missing. Instead, the expectation of the probability of data frame 𝑡 belonging to GMM component 𝑖 is 

calculated, and called the responsibility [15]. The estimates of the parameters are then used to assign 

the responsibilities according to the relative density of the observation of the training data [15]. This is 

the expectation phase and it facilitates the calculation of the GMM parameters. The maximization phase 

involves updating the estimates of the parameters using the responsibilities in weighted maximum 

likelihoods [15].  

The EM estimates the GMM parameter 𝝀𝑛 (where 𝝀𝑛 is the result obtained from the nth iteration of the 

GMM model) from the previous iteration, 𝝀𝑛−1  and the iteration is continued until some threshold of 

convergence is attained such as  𝑝(𝑋|𝝀𝑛)  ≥ 𝑝(𝑋|  𝝀𝑛−1). The first iteration needs to start with an initial 

estimated model (that can either be random or obtained from a clustering method) and the next 

iteration is computed from the most recent one. The following formulas are used on each step of the 

iteration. [5] 
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EXPECTATION PHASE: 

Mixture Weights:     𝑤𝑖 = 1/𝑇∑ 𝑝(𝑖| 𝑥𝑡 ,⃗⃗ ⃗⃗ ⃗  𝜆)
𝑇
𝑡=1                                                                              (17)      [5] 

Means:             �̂�𝑖 =
∑ 𝑝(𝑖| 𝑥𝑡,⃗⃗⃗⃗⃗⃗  𝜆)�⃗⃗⃗�𝑡
𝑇
𝑡=1

∑ 𝑝(𝑖| 𝑥𝑡,⃗⃗⃗⃗⃗⃗ 𝜆)
𝑇
𝑡=1

                                                                              (18)      [5] 

         Variances:       �̂⃗�𝑖 
2
=

∑ 𝑝(𝑖| 𝑥𝑡 ,⃗⃗ ⃗⃗ ⃗  𝜆) (�⃗⃗⃗�𝑡− �̂⃗⃗⃗�𝑖 )(�⃗⃗⃗�𝑡−�̂⃗⃗⃗�𝑖 )
′ 𝑇

𝑡=1

∑ 𝑝(𝑖| 𝑥𝑡,⃗⃗⃗⃗⃗⃗ 𝜆)
𝑇
𝑡=1

                                                                          (19)     

[5] 

�̂⃗�𝑖 
2

 is the new variance, �̂�𝑖  is the new mean, 𝑡 is the frame index, 𝑇 is the number of frames and 𝑖 is the 

Gaussian component index.  

MAXIMIZATION PHASE: 

A posteriori probability:      

              𝑝(𝑖| 𝑥𝑡 ,⃗⃗ ⃗⃗ ⃗ 𝜆) =
𝑤𝑖𝑏𝑖(𝑥𝑡⃗⃗⃗⃗⃗)

∑ 𝑝𝑘𝑏𝑘(𝑥𝑡⃗⃗⃗⃗⃗)
𝑀
𝑘=1  

                                                                                    (20)   [5] 

𝑀 is the number of component Gaussian distributions 

3.2.1 Universal Background Model  

After the creation of speaker models, some methods of testing (hypothesis testing) involve comparing 

the speaker model to an imposter model or an alternative model. In [7], the idea of the universal 

background model (UBM) was introduced. The UBM is an alternative speaker model that is 

representative of the all the expected alternative speakers during testing. Instead of having different 

alternative speakers to test different test feature vectors, the UBM can be used as a universal 

alternative model against which the test vectors are compared. The UBM is therefore expected to be a 

representation of the expected speech in both type and quality [7]. For example, if test vectors are 
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expected to come from male and female, the UBM should contain both types of speech samples. If the 

test samples can come from speakers with different accents, the UBM should be made from speeches of 

speakers with all such expected accents. This universal background model is modeled from scratch using 

speech samples from all the representative speakers. There are a few ways to create the UBM. One way, 

which is the method used in this thesis is the pooling of all feature vector samples from the available 

speakers in the speech database and creating UBM using the EM algorithm. Another method of creating 

the UBM is by training individual GMM models specific to constituent populations and pooling the 

individual GMM models to create a larger model – the GMM UBM. For example in a database that 

contains British and Americans, a British GMM model is trained from speech samples of all the British 

speakers and an American GMM model is trained from all speech samples from all American speakers. 

The 2 GMM models are then pooled to obtain the larger GMM UBM. Both methods work well but what 

should be kept in mind is that there must be a balanced representation of the constituent sub-

populations in the resulting UBM otherwise there would be a bias towards a particular group during 

testing of the test features. [7] 

3.2.2 Adapted Gaussian Mixture Model 

It has been observed that during training, it is more efficient to create speaker models by adaptation of 

a world or universal model. This has been studied [7] and identified to produce better recognition 

results. An explanation of this is that due to speaker variability, it is better to adapt speaker models from 

a universal model to ensure a better correlation between the speaker model and the universal model. 

To train a new speaker, the parameters of the UBM are adapted to the feature vectors of the new 

speaker. The method used is a form of Bayesian adaptation or the Maximum a posteriori (MAP) method. 

The first step which is the calculation of the sufficient statistics is similar to the expectation phase of the 

EM algorithm. Adapted GMM models are calculated using the expressions below. 
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A posteriori probability:      

                       𝑃(𝑖| 𝑥𝑡 ,⃗⃗ ⃗⃗ ⃗ 𝜆) =
𝑤𝑖𝑏𝑖(𝑥𝑡⃗⃗⃗⃗⃗)

∑ 𝑤𝑘𝑏𝑘(𝑥𝑡⃗⃗⃗⃗⃗)
𝑀
𝑘=1  

                                                                                                    (21)   [7] 

The Sufficient Statistics [7]:  

Mixture Weights:     𝑛𝑖 = ∑ 𝑃(𝑖| 𝑥𝑡⃗⃗ ⃗⃗ )
𝑇
𝑡=1                                                                                                 (22)    [7]            

Means:      𝐸𝑖(𝑥𝑡⃗⃗ ⃗⃗ ) =
∑ 𝑃(𝑖| 𝑥𝑡⃗⃗ ⃗⃗ )𝑥𝑡
𝑇
𝑡=1

𝑛𝑖
                                                                                              (23)   [7]        

Variances: 𝐸𝑖(𝑥𝑡⃗⃗ ⃗⃗
2
) =

∑ 𝑃(𝑖| 𝑥𝑡⃗⃗ ⃗⃗ )𝑥𝑡⃗⃗⃗⃗⃗
2𝑇

𝑡=1

𝑛𝑖
                                                                                            (24)  [7]  

T is the total number of feature vectors, 𝑖 is the index of the mixture component and M is the number 

components. 𝑥𝑡⃗⃗ ⃗⃗
2
is the short form for diag(𝑥𝑡⃗⃗ ⃗⃗  𝑥𝑡⃗⃗ ⃗⃗

′
). The sufficient statistics from the training data is then 

used to update UBM. [7] 

Adaptation [7]:  

�̂�𝑖 = [
𝛼𝑖
𝑤𝑛𝑖
𝑇

+ (1 − 𝛼𝑖
𝑤)𝑤𝑖] 𝛾                                                                                                   (25)          [7]  

�̂�𝑖 = 𝛼𝑖
𝑚𝐸𝑖(𝑥𝑡⃗⃗ ⃗⃗ ) + (1 − 𝛼𝑖

𝑚)𝜇𝑖                                                                                                    (26)          [7]  

�̂⃗�𝑖 
2
= 𝛼𝑖

𝑣𝐸𝑖(𝑥𝑡⃗⃗ ⃗⃗
2
) + (1 − 𝛼𝑖

𝑣)(�⃗�2 + 𝜇𝑖
2
) − �̂�𝑖 

2
                                                                    (27)        [7]  

�̂�𝑖 is the adapted mixture weight, �̂�𝑖 is the adapted mean vector and �̂⃗�𝑖 
2

 is the adapted diagonal 

variance vector.  

𝑤𝑖 , 𝜇𝑖 𝑎𝑛𝑑 �⃗�
2 are the weights, means and variances of the UBM respectively. 
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𝛼𝑖
𝜌 is the adaptation coefficient for each parameter 𝜌 ϵ{w, m, v}and is defined in [7] as 

𝛼𝑖
𝜌 =  

𝑛𝑖
𝑛𝑖 + 𝑟

𝜌
                                                                                                  (28)       [7]  

Where 𝑟𝜌 is the relevance factor. 𝛾 is the scale factor computed over all adapted mixture weights and 

they sum to unity.  [7] 

For this thesis, only the mean vectors are adapted as it was found that this performs almost as well as 

adapting the 2 other parameters. 
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Chapter 4: Speaker Identification 

Having gone over the speech feature extraction and training phase (also called enrollment), this section 

discusses the detection or testing phase. It is necessary to have a method of detection. This phase 

attempts to tell us the identity of the speaker of a new speech signal. Since we have utilized training 

data from all speakers to enroll the respective speakers, we now have our reference models. This 

models can be used as a means of comparison against new feature vectors (test features).  

4.1 Overview of Speaker Identification/Detection Methods 

Several techniques are available to perform testing of new speech signals. Below is a discussion of a few 

of them. 

4.1.1 Euclidean Distance 

This technique is the simplest measure of distance and it produces good results in some applications. 

The measure of distance is carried out as shown in the formula below 

𝑑(𝑚𝑥⃗⃗⃗⃗⃗⃗⃗, 𝜇) =∑(𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ −   𝜇𝑖)
′(𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ − 𝜇𝑖)

𝑀

𝑖=1

                          1 ≤ 𝑖 ≤ 𝑀                                                    (29) 

Where      𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ =
1

𝑇
∑ �⃗�𝑡
𝑇
𝑡=1                                                                                                                                 (30) 

𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ is the mean of all test feature vectors and T is the total number of frames and 𝜇𝑖  is the mean 

parameter of the speaker model. The total distance will be summed up over all the distances from the 

component means. 

Because speaker models are usually created using GMMs, this method does not give very good results 

for text-independent speaker identification system. This is so because there is no consideration for the 

covariance and weights of the models. This method is suitable for text-dependent speaker identification 

systems when schemes like VQ AND DTW are used. 
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4.1.2 Mahalanobis Distance 

This method can produce a better performance result for speaker identification systems due to the 

consideration of the covariance in the distance formula shown below. 

𝑑(𝑚𝑥⃗⃗⃗⃗⃗⃗⃗, 𝜆𝑠) =∑(𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ −   𝜇𝑖)
′𝜮𝑖

−1 (𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ − 𝜇𝑖)

𝑀

𝑖=1

              1 ≤ 𝑖 ≤ 𝑀                                                           (31) 

𝑚𝑥⃗⃗⃗⃗⃗⃗⃗ is the mean test feature vector and is defined in the previous subsection, 𝜆𝑠 is a speaker model,  𝜇𝑖 

is the mean parameter of the speaker model and 𝜮𝑖 is the covariance matrix of the speaker model. The 

total distance can be summed up over all the distances from the component means. This method is used 

to measure the distance between 2 multi-dimensional quantities. It will be the same as Euclidean 

distance if the covariance is replaced by a matrix of ones. It finds use in other related applications like 

cluster analysis and classification techniques. 

4.1.3 Bhattacharya Distance 

This method is similar to the Mahalanobis method because the covariance is considered. it however 

goes a little further by incorporating the covariance of the test samples. So in an operation where the 

inclusion of the test covariance is useful, then this method will outperform the Mahalanobis distance 

[3]. 

The formula is given below 

𝑑(𝜆𝑟, 𝜆𝑠) =
1

2
ln(

|
𝜮𝑖 + 𝜮𝑗
2 |

|𝜮𝑖|
1
2|𝜮𝑗|

1
2

)+ 
1

8
(𝜇𝑖 −  𝜇𝑗)

𝑇
(
𝜮𝑖 + 𝜮𝑗

2
)−1 (𝜇𝑖 −  𝜇𝑗)                                                  (32) 

𝜆𝑟 is the test speaker model and 𝜆𝑠 is the target speaker model. 𝑖  is the index for the component 

parameters of the test speaker model and 𝑗 is the index for the component parameters of the target 
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speaker model. 𝜇 is the mean vector and 𝜮 is the covariance matrix. The second expression looks similar 

to Mahalanobis distance with the exception of the average covariance matrix. 

4.4.4 Kullback-Leibler Divergence Measure 

This is also a measure of distance which can calculate the difference between probability distributions 

using information theory. It is expressed as shown below. 

𝐷(𝑝𝑖||𝑝𝑗) =∑ 𝑝𝑖(�⃗�)𝑙𝑛
𝑝𝑖(�⃗�)

𝑝𝑗(�⃗�)𝑥
                                                                             (33) 

 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖(�⃗�) = 𝑝(�⃗�|𝑖) 𝑎𝑛𝑑 𝑝𝑗(�⃗�) = 𝑝(�⃗�|𝑗) 

Where 𝑝𝑖 is the likelihood of occurrence of �⃗� given that it belongs to class 𝑖 and 𝑝𝑗  is the likelihood of 

occurrence of �⃗� given that it belongs to class 𝑗. 𝑖 and 𝑗 represent 2 different classes and �⃗� is a feature 

vector. The divergence is defined as the amount of information needed to distinguish 𝑝𝑖  and 𝑝𝑗  or the 

amount of information lost when 𝑝𝑖  is used to approximate 𝑝𝑗. While this distance measure is said to be 

non-symmetric, it can be symmetrized and finds a lot of use in many applications. 

4.1.4 Likelihood Function 

The likelihood function finds a lot of use in statistical inferences and is use to estimate a parameter from 

a set of statistics. The likelihood of a parameter Ө, given data X is the probability of X given parameter 

Ө. The likelihood function is widely used in speaker identification systems. 

In a speaker identification system, a group of S speakers {𝑠1, 𝑠2, … , 𝑠𝑆} in our database have speech 

features represented by their GMM parameters{𝜆1, 𝜆2, … , 𝜆𝑠}. During speaker identification, the role of 

the system is to find the parameter that matches a speaker the most, given feature vector, X.  i.e  

𝑝(𝜆𝑟|𝑿)                                  1 ≤ 𝑟 ≤ 𝑆                                               (34)     [5] 

This can be evaluated using Bayes rule as follows 
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arg𝑚𝑎𝑥 𝑝(𝜆𝑘|𝑿) =  
𝑝(𝑿|𝜆𝑟)𝑃(𝜆𝑟)

𝑝(𝑿)
                 1 ≤ 𝑟 ≤ 𝑆                                                 (35) 

Where 𝑆 is the number of speakers, r is the index of the rth speaker,  𝑃(𝜆𝑟) is the probability of 

parameter r (= 1/S) and all parameters are equally likely therefore a constant  

𝑝(𝑿) is the same for all speakers so the above expression simplifies to  

arg𝑚𝑎𝑥 𝑃(𝑿|𝜆𝑟)              1 ≤ 𝑟 ≤ 𝑆                                        (36)            [5] 

The identification process therefore is a likelihood function and logarithm can be introduced plus the 

independence property of the observations to help simplify the resulting expression because 

arg𝑚𝑎𝑥 𝑙𝑜𝑔𝑃(𝑿|𝜆𝑟) = arg𝑚𝑎𝑥 log∏𝑃(�⃗�𝑡|𝜆𝑟)

𝑇

𝑡

        1 ≤ 𝑟 ≤ 𝑆                                       (37) 

= arg𝑚𝑎𝑥  ∑𝑙𝑜𝑔 𝑃(�⃗�𝑡|𝜆𝑟)

𝑇

𝑡=1

       1 ≤ 𝑟 ≤ 𝑆                                        (38) 

𝑇 is the total number of test frames. And 𝑆 is the number of speakers in the database. 

It should be recalled that the GMM, 

𝑝(�⃗�𝑡|𝜆) =∑𝑤𝑖𝑏𝑖(�⃗�𝑡)

𝑀

𝑖=1

                                                                            (39) 

Where 𝑀 is the number of component distributions, 𝑏𝑖(�⃗�𝑡) is the multivariate normal distribution and 

𝑤𝑖 is the weight of the normal distributions. 

arg𝑚𝑎𝑥 𝑙𝑜𝑔𝑃(𝑿|𝜆𝑟) =  arg𝑚𝑎𝑥 ∑𝑙𝑜𝑔∑𝑤𝑖𝑏𝑖(�⃗�𝑡)

𝑀

𝑖=1

𝑇

𝑡=1

                                                                    (40) 

arg𝑚𝑎𝑥 𝑙𝑜𝑔𝑃(𝑿|𝜆𝑟) =  arg𝑚𝑎𝑥 ∑𝑙𝑜𝑔∑𝑤𝑖
1

2𝜋
𝐷
2 |𝜮𝒊|

1
2

𝑒𝑥𝑝{−1/2(�⃗�𝑡 − 𝜇𝑖)́𝜮𝒊
−1(�⃗�𝑡 − 𝜇𝑖)}

𝑀

𝑖=1

𝑇

𝑡=1

          (41) 
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Where 𝜇𝑖 is the mean vector, 𝜮𝒊 is the covariance matrix and D=12 is the dimension of 𝑥𝑡 

The likelihood ratio 

The likelihood function described in the last section selects the speaker with the maximum likelihood 

value as the speaker. In speaker identification applications, a similar technique can also be used for 

detection but is more robust and allows for performance measurement. It is a basic hypothesis test 

which assigns the results of the test to one of the hypothesis depending on the value of the likelihood 

ratio. 

Hypothesis Test: 

X is from target speaker: Ho 

X is from non-target speaker: H1 

𝑃(𝑿|𝐻0)
𝑃(𝑿|𝐻1)

 {
≥   ∅  𝑎𝑐𝑐𝑒𝑝𝑡 𝐻0
≤  ∅ 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0

                                                                                     (42)  [7] 

Where 𝐻0 is the hypothesis that X is from the target speaker and 𝐻1 is the hypothesis that X is from the 

imposter speaker. 𝑃(𝑿|𝐻0) is the likelihood of the hypothesis H0 given X and 𝑃(𝑋|𝐻1) is the likelihood 

of hypothesis H1 given X. ∅ is some threshold that needs to be fixed to ensure that the system 

determines which of the hypothesis is correct.  

From the previous section, we discussed how to obtain H0, which is the likelihood that X is from one of 

the speakers. The hypothesis that X is not the target speaker, however has not been discussed and we 

go on to do so. During testing, we are not sure of the identity of the speaker of the test features. We 

need to find a suitable model that represents the H1 hypothesis, the non-target speaker. A solution can 

be found in the Universal background model concept discussed previously. The UBM is a speaker model 

that contains features from all representative speakers in our database. A single model represents all 
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speakers [7]. This model can be used as the hypothesis, H1, and it has been shown to produce impressive 

results [7]. After obtaining the result of the Log-likelihood Ratio, the decision threshold needs to be set 

in order to observe the performance. The threshold can help determine the probability of False Alarm 

(FA) and Missed Detection. 

The log of the likelihood ratio is the Log-likelihood ratio and it simplifies the calculation. 

Score = log𝑃(𝑿|𝐻0) − log𝑃(𝑿|𝐻1) = 𝑙𝑜𝑔
𝑃(𝑿|𝐻0)
𝑃(𝑿|𝐻1)

                                                                         (43) 

 

 

Figure 4.1: Speaker Identification System based on Likelihood Ratio 

4.2 Score Normalization 

The score after testing is normalized relative to other speakers. This is done to make the scores of 

different speakers reside in a similar range [2]. This eases the threshold setting step and ensures a single 

threshold can be used across all speakers. One such type is Zero-Normalization (Z-Norm) when the 

statistics (mean and variances) are target speaker dependent and they are obtained by matching a set of 

non-target features against the target model and obtaining the mean and standard deviation of the 
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resulting scores. Another method is the Test-Normalization (T-Norm) and it differs from Z-Norm in that 

the statistics depend on the test utterance and are obtained by matching unknown test features and no-

target models then calculating the mean and standard deviation. [2] 

𝑠′ =
𝑠 − 𝑠𝑚

𝜎
                                                                                             (44) 

𝑠′ is the normalized score 

𝑠 is the un-normalized score 

𝑠𝑚 is the score mean 

𝜎  is the standard deviation of the scores 
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Chapter 5: Statistical Learning and Support Vector Machines 

5.1  Introduction to statistical learning 

As can be inferred from the name, statistical learning refers to using statistics to learn from data. It 

involves using the knowledge and techniques of statistics to understand the pattern, trend or other 

latent information embedded in data. This learned information will generally be used to classify that 

same data or a new set of similar data. In simple terms, statistical learning is the ability to utilize 

information from past and current data to predict the outcome or category of future data. Statistical 

learning is the engine for machine learning which finds tremendous use across various industries today. 

This technique is relevant due to the complex nature of the world today. With almost everything around 

us moving at an extra fast pace, it became necessary of researchers, statisticians and other professionals 

to find ways to use available data to make better decisions [15].  

An example of its application is in the financial industry. Trading in the stock market is full of risks and 

predications and the economy of a nation depends a lot on it. The power of statistical learning has been 

put to use by using trade patterns of the past to predict the behaviors of stocks in the present. 

Bioinformatics has also benefited immensely from statistical learning, with the current capability and 

technology, it is now possible to make an early detection of a cardiac arrest or stroke by using 

information from the patient’s past record and his living condition. This is due to the effectiveness of 

statistical learning or machine learning. Several other industries have used statistical learning to advance 

the effectiveness of different applications. Data scientists utilize this in detecting patterns in data that 

can help detect and thwart a network intrusion attempt. Computer scientists use machine learning to 

filter emails coming into an email box and thereby avoid the clogging of user email boxes by these un-

solicited emails. Image detection and recognition supplications have become more efficient with the 

incorporation of this technique. Electrical engineers and computer scientists have also recorded giant 
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strides in using statistical learning to improve the efficiency of speech and speaker recognition systems. 

That use will be showcased in this thesis. [15] 

Due to the ubiquitous nature of statistical learning and machine learning, it has been categorized based 

on a couple of salient features. One of such features is the nature of output. Statistical learning is 

categorized based on the existence and or form of the output from the algorithm. This classification is  

1. Supervised learning  2. Unsupervised learning 

5.1.1 Supervised Learning 

For this category, we have an input and an output. The input data is passed through the learning 

algorithm to understand the pattern and trend so the learned information is stored in a function 

referred to as a model (prediction model). This model is then the prediction tool to discern the output 

from a system. For example, in a spam server, statistical learning uses some information obtained from 

real emails and spam emails to develop a model. This model then classifies incoming emails as SPAM or 

NOT SPAM. In this case the output of the system is if the email is spam or not. Simply put, supervised 

learning involves utilizing previous or current data information to make a decision about the output of 

future data. In this category, there is always an output. 

The type of output has also been used to classify supervised learning methods. Supervised learning can 

be a regression problem or a classification problem. A regression problem is one whose output is 

quantitative of continuous valued. An example would be determining the likelihood of a patient having a 

heart attack in the next week. The output will be a number or percentage which is continuous (within a 

particular range of course). A classification problem, on the other hand, deals with problems whose 

output is one of a discrete number of values or classes. The email example stated earlier is an example. 

Output is either SPAM or NOT SPAM. A speaker recognition or identification system is also designed as a 

classification problem. The system detects if the identity of a speaker is one of several speakers in the 
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database. It can also be designed to detect if the new test speech is for speaker A or not speaker A. in 

this case, it is a binary classification problem. 

5.1.2 Unsupervised Learning 

This class of statistical learning deals with understanding the pattern of a given data input and that is it. 

Ok, there is a little more. It involves understanding the pattern of a data and clustering the data into 

sections based on information learned. So, as opposed to the previous category, there is no new data 

which will be categorized using a model built with information learned from input data. This category 

gets a little more complicated and is the method used in anomaly detection. Anomaly detection involves 

learning information from a collection of data and detecting if the data contains components which do 

not fit the general characteristics exhibited by the others. Then an algorithm which clusters the data into 

pools and omits the outlying (extraneous) data is used. This method is applied in stopping computer 

hacking, preventing financial frauds or in detecting medical problems. 

5.2 Statistical Learning in Speaker Identification Systems 

Speaker identification systems have become more efficient and more accurate in the past decade or 

more. This success, in part, is due to the power of statistical learning methods. Statistical learning has 

several components and these components have their perks. Depending on what the objective is, the 

choice of which one to use for a particular application needs to be made. Speaker identification systems 

have been designed to utilize several of these statistical learning algorithms. Speaker identification 

systems have been designed with neural networks, regression and functional analysis methods. In this 

thesis, 2 basic and important statistical learning components are used. The EM algorithm and the 

support vector machine (SVM). THE EM algorithm was discussed in chapter 2. It was used to compute 

the maximum likelihood of the parameters of the GMM. The method was utilized because Maximum 
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likelihood (ML) estimation could not be efficiently used to compute the results for a non-linear GMM 

likelihood function. Using the EM algorithm, however, simplified the process but in an iterative manner.  

The SVM concept will be the focus of the next section. Its theoretical basis will be explored and its 

concepts will be extended to a speaker identification system. While the SVM has been utilized by 

researchers for speaker identification systems in the past, this thesis looks to improve on previous 

knowledge by going a step further with the creation of a new kernel function that is aimed at improving 

results. It is hoped that by the time a novice in SVM goes thought the next section, he or she will have a 

grasp of what it is about, how it functions and how SVMs are applied to speaker identification systems. 

Later in the chapter, the setup for SVM used in this thesis is described including the proposed new 

algorithm for higher recognition rate of speakers in speaker identification systems. 

5.2.1 Support Vector Machine 

SVM is a 2 class classification system that makes classification decisions by creating a boundary between 

the 2 classes. This boundary separates the classes and is referred to as a hyperplane. The idea is 

therefore to create a hyperplane that best separates elements of the 2 classes.  

 

Figure 5.1:  Class separation in Support Vector Machines 
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The hyperplane is represented by 

�⃗⃗⃗�. �⃗� + 𝑏 =  0                                                                                               (45) 

Where �⃗⃗⃗�. �⃗� represents the dot product of �⃗⃗⃗� 𝑎𝑛𝑑 �⃗�.  �⃗� is the data and �⃗⃗⃗� is the normal to the plane and b 

is called the bias. The margin is shown in the figure above and it is one of the important parts of the 

SVM. The creation of the best hyperplane to classify data is achieved by seeking to maximize the margin 

between data on both sides and the hyperplane. So for a linearly separable data represented by {�⃗�, y} 

where �⃗� belongs to a d-dimensional real space and 𝑦 ∈ {−1, 1}. 𝑦 is called the class label of the data. 

The number of observations is equal to the number of class labels. Data points above and below the 

margin are represented by the following expressions respectively. [16] 

�⃗⃗⃗�. �⃗� + 𝑏 ≥ 1 𝑓𝑜𝑟 𝑦 =  +1                                                                         (46) 

�⃗⃗⃗�. �⃗� + 𝑏 ≥ −1 𝑓𝑜𝑟 𝑦 =  −1                                                                     (47) 

When both are combined  

𝑦. (�⃗⃗⃗�. �⃗�  + 𝑏) ≥ 1                                                                               (48) 

Where �⃗⃗⃗�. �⃗� is the dot product of �⃗⃗⃗� 𝑎𝑛𝑑 �⃗�.The hyperplane is generated by the minimization of the norm 

of �⃗⃗⃗�, subject to 𝑦. (�⃗⃗⃗�. �⃗�  + 𝑏) ≥ 1. This is an optimization problem and is represented as [10] 

min   ||�⃗⃗⃗�||
2
                                                                                    (49) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑦. (�⃗⃗⃗�. �⃗� + 𝑏) ≥ 1                                                            (50)  [10] 

This can be solved using quadratic programming. To obtain the dual of this problem, we can use the 

Lagrange method as thus [10] 

𝐿 =
1

2
∗ ||�⃗⃗⃗�||

2
− ∑ 𝛼𝑖𝑦𝑖(�⃗⃗⃗�. �⃗�𝑡  + 𝑏) − 1 

𝑇
𝑡=1                                                      (51)  
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Where �⃗⃗⃗�. �⃗�𝑡 is the dot product of �⃗⃗⃗� 𝑎𝑛𝑑 �⃗�𝑡 and 𝛼𝑡 is the Lagrange multiplier and T is the number of 

observations in the training data 

The dual is as follows 

𝐿 =∑𝛼𝑖

𝑇

𝑡=1

−
1

2
∗∑∑𝛼𝑡𝛼𝑗𝑦𝑡𝑦𝑗�⃗�𝑡 . �⃗�𝑗

𝑇

𝑗=1

𝑇

𝑡=1

                                                               (52)    [10] 

s𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝛼𝑡𝑦𝑡 and 𝛼𝑡  ≥ 0                                                                            (53)  

where �⃗�𝑡. 𝑥⃗⃗⃗⃗ 𝑡 is the dot product of �⃗�𝑡  𝑎𝑛𝑑 �⃗�𝑗 The above can be solved using quadratic programming and 

a set of values for 𝛼  will be zero but some will be greater than 0. The indices of the Lagrange multipliers 

which are not zero correspond to the indices of the support vectors of the data. Therefore the solution 

for the hyperplane is �⃗⃗⃗�𝑜, described as [10]:  

�⃗⃗⃗�𝑜 = ∑ 𝛼𝑡𝑦𝑡�⃗�𝑡
𝑇
𝑡=1                                                                                    (54)       [10] 

When the data in question is not clearly linearly separable, the solution will be tweaked a little. To 

accommodate data that might violate the margin, a slack parameter is introduced. This slack modifies 

the optimization objective function slightly as follows  

1

2
∗ ||�⃗⃗⃗�||

2

+ 𝐶∑𝐿(𝜉𝑡)

𝑇

𝑡=1

                                                                         (55)     [10] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦. (�⃗⃗⃗�. �⃗�𝑡 + 𝑏) ≥ 1 − 𝜉𝑡                                                                          (56) 

Where �⃗⃗⃗�. �⃗�𝑡 is the dot product of �⃗⃗⃗� 𝑎𝑛𝑑 �⃗�𝑡 and 𝜉𝑡   is the risk associated with violating the margin and 𝐶 

is the cost of violation of the margin. Then the dual optimization problem is the same but the constraint 

is a little different.  
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∑𝛼𝑖

𝑇

𝑡=1

−
1

2
∗∑∑𝛼𝑡𝛼𝑗𝑦𝑡𝑦𝑗�⃗�𝑡. �⃗�𝑗

𝑇

𝑗=1

𝑇

𝑡=1

                                                                          (57) 

subject to         ∑𝛼𝑡𝑦𝑡 and 0 ≤ 𝛼𝑡  ≤ 𝐶                                                                         (58)  [16] 

Where �⃗�𝑡. �⃗�𝑗 is the dot product of �⃗�𝑡  𝑎𝑛𝑑 �⃗�𝑗. 

Non-Linear SVMs 

In real world applications however, it rarely happens that a set of data points will be separable with a 

linear hyperplane. What we find is a set of data points that are inter-mixed with data from another class. 

So it will take a tortuous line to form a boundary between the 2 if a separation is to be achieved (in 2 

dimension of course). Given what was discussed till this moment, it is obviously impossible to achieve 

this. A solution to this deadlock came in what is referred to as a kernel. A solution to this problem is to 

transform the data in the input space to a feature space of high dimensionality. Then, the concept of 

SVM is applied in this space. The hyperplane is achieved in that feature space and it is used to separate 

the data in the feature space. After separation, the feature space data points and the hyperplane are 

transformed back to the input space and a boundary is achieved. But this boundary is not linear in the 

input space. It can be circular or wiggly, depending on the type of transformation used. The figure below 

shows a pictorial description. [10] 

 

Figure 5.2 Transformation of Data from Input to Feature Space 
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5.2.2 Kernels 

A kernel function is a mathematical function used to achieve the transformation of a data set from the 

input space to the feature space. It is expressed as  𝐾(�⃗�𝑡 , �⃗�𝑗) = ∅(�⃗�𝑡)∅(�⃗�𝑗)  [10]. Where �⃗�𝑡 is the 

training vector and �⃗�𝑗 is the testing vector and 𝑡  and 𝑗 are the indices for the training and testing vectors 

respectively. The transformation from input to feature space is represented by ∅(�⃗�𝑡). It can be recalled 

that the solution to the hyperplane is expressed as �⃗⃗⃗�𝑜=  ∑ 𝛼𝑡𝑦𝑡 �⃗�𝑡 and the hyperplane is represented by 

�⃗⃗⃗�. �⃗� + 𝑏 = 0 

Where �⃗⃗⃗�. �⃗� is the dot product of �⃗⃗⃗�. 𝑎𝑛𝑑 �⃗�. Substitution of �⃗⃗⃗�𝑜 in (54) into �⃗⃗⃗�. �⃗� + 𝑏 = 0 gives   

 ∑ 𝛼𝑡𝑦𝑡�⃗�𝑡 . �⃗� + 𝑏
𝑇
𝑡=1                                                                                       (59) 

Where �⃗�𝑡. �⃗� is the dot product of �⃗�𝑡  𝑎𝑛𝑑 �⃗� .  �⃗�𝑡 is the training vector, �⃗� is the testing vector, 𝛼𝑡 is the 

Lagrange multiplier, b is the bias, and 𝑦𝑡 is the input vector label. In a linear SVM, the SVM is 

characterized by the dot product < �⃗�𝑡  �⃗�𝑗 >. In non-linear SVMs, the kernel function achieves the 

transformation of data from input space to feature space by replacing the dot product, �⃗�𝑡 , �⃗�𝑗 in (57) and 

(59) by ∅(�⃗�𝑡)∅(�⃗�𝑗) [10] .  The dual objective function is now represented as [10] 

∑𝛼𝑖 − 1/2∑∑𝛼𝑡

𝑇

𝑗=1

𝑇

𝑡=1

𝑇

𝑡=1

𝛼𝑗𝑦𝑡𝑦𝑗𝐾(𝑥𝑡 , �⃗�𝑗)                                                                    (60) 

Subject to ∑𝛼𝑡𝑦𝑡 = 0   𝑎𝑛𝑑  0 ≤  𝛼𝑡  ≤ 𝐶                                                                        (61)  

And the SVM can now be represented as  ∑ 𝛼𝑡𝑦𝑡
𝑁
𝑡=1 𝐾(�⃗�𝑡 , �⃗�) + 𝑏                                                          (62) 

The kernel makes sure that we do not explicitly transform the data to the feature space. The most 

commonly used kernels are the polynomial and radial basis function (RBF) kernels and they are 

expressed as shown below. 
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Polynomial:  𝐾(�⃗�𝑡 , �⃗�𝑗) = (1 + �⃗�𝑡. �⃗�𝑗)
𝑛                                                                                                                (63)       

Where �⃗�𝑡. �⃗�𝑗 is the dot product of �⃗�𝑡  𝑎𝑛𝑑 �⃗�𝑗.  n is the order of the polynomial kernel 

RBF:  𝐾(�⃗⃗�𝑡, �⃗⃗�𝑗) = exp(
||1+�⃗⃗�𝑡.�⃗⃗�𝑗||

2𝜎2

2

)                                                                                                    (64)              

𝜎 is the width of the RBF, �⃗�𝑡 is the training vector and �⃗�𝑗 is the testing vector. 

Where 𝑡 and 𝑗 are the indices of the training and testing vectors respectively. 

There are several other kernels that have been used in different applications and the matching of a 

kernel to a problem would have to consider the characteristics of the data’s input space. For a kernel to 

be formulated for a particular application, it has to meet a set of requirements known as the Mercer’s 

conditions. [16] 

Having explored an overview of statistical learning and SVMs the stage is now set to see how SVM is 

applied in speaker identification systems. The kernel used in this thesis was formulated from the GMM 

supervector linear kernel in [9] and the polynomial kernel as shown in the next subsection. 

5.3 Speaker Identification System using SVMs 

Speaker identification systems have been discussed in the last 3 chapters. In those chapters, the 

implementation of speaker identification systems using statistical methods was explored. This method 

creates or trains statistical models for speakers using GMMs and a test utterance from an unknown 

speaker is compared to the models to find out which one has the closest match. The comparison is done 

through Maximum Likelihood or Log Likelihood Ratio. By extension, using SVMs for speaker 

identification systems has a generic similarity. The process also consists of feature extraction, training 

and testing.  
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SVMs have enjoyed tremendous success in speaker identification system implementations. Since an 

SVM is as good as the kernel used, the kernel function is the most important part of the SVM with 

regards to its functionality. Researchers have worked tirelessly to come up with kernels that continue to 

achieve better performances in terms of lower false alarms and missed detection probabilities. In [16], a 

special type of the polynomial kernel was used for speaker identification and verification. The kernel 

used was called the normalized polynomial kernel. The well-known polynomial kernel was normalized to 

prevent the generation of a badly conditioned Hessian to prevent a breakdown of the quadratic 

programming optimization. The kernel reportedly achieved impressive results comparable to that 

achieved on the YOHO database. [17] introduced a kernel called the Log-likelihood Ratio (LLR) based 

sequence kernel. In that work, the kernel was composed with the Mercer condition in mind. The 

sequence kernel was represented by the dot product of 2 computable quantities instead of the dot 

product of 2 incomputable functions ∅(. ). The quantity used was the LLR using the Universal 

Background Model (UBM). So the kernel was a dot product between the LLRs of the training and testing 

data. [17] also formed another LLR based sequence kernel by combining the LLR UBM kernel and a LLR 

T-norm kernel. Both kernel functions were added to form a new kernel they called the composite kernel 

function [17]. These kernels performed very well but the composite outperformed its 2 component 

kernels. The Kullback-Leibler (KL) divergence measure was used to develop a kernel in [9]. The GMM 

supervector linear kernel [9] was used to bind the KL divergence measure between GMMs. 2 GMMs 𝝀𝒂 

and 𝝀𝒃 were adapted from a UBM to form supervectors, 𝑠𝑣⃗⃗⃗⃗⃗𝒂, 𝑠𝑣⃗⃗⃗⃗⃗𝒃, respectively where ,  𝒔𝒗⃗⃗⃗⃗⃗ =

[𝜇1
𝑇
, 𝜇2

𝑇
, … 𝜇𝑀

𝑇
]𝑻. The dimension of 𝜇1

𝑇
 is D=12 and the number of Gaussian components, M =512. 

Therefore the dimension of the supervector  𝒔𝒗⃗⃗⃗⃗⃗ is D*M (12*512).The GMM supervector linear kernel is 

defined as follows. 

𝐾(𝑠𝑣⃗⃗⃗⃗⃗𝒂, 𝑠𝑣⃗⃗⃗⃗⃗𝒃) =  ∑𝑤𝑖(𝜇𝑖
𝑎
)𝑇𝜮𝑖

−1(𝜇𝑖
𝑏
)

𝑀

𝑖=1

                                                              (65) 
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Where 𝑠𝑣⃗⃗⃗⃗⃗𝒂 represents the supervectors from speaker ‘a’ and 𝑠𝑣⃗⃗⃗⃗⃗𝒃 are the supervectors from speaker ‘b’. 

𝜇𝑖 is the component mean vector, 𝑤𝑖 is the component weight of the GMM UBM and 𝜮𝑖 is the 

component diagonal covariance of the UBM. M is the number of components of the GMM. [9] 

It should be noted that the kernel covers just one observation of data. That means that each 

observation of the train data (and test data) is a supervector. The technique implicitly maps an adapted 

speaker model to a supervector, making it suitable for a kernel. So the kernel is linear with respect to 

the supervectors. To implement this kernel, there has to be enough utterances that will each be adapted 

to a GMM model. Each model maps to a supervector and each supervector represents an observation in 

the SVM. The concept of the GMM supervector used in [9] will also be used in this thesis.  

This thesis also contributes to knowledge by designing a new kernel from the idea of the GMM 

supervector linear kernel in [9] and the randomization of insufficient data to obtain a superfluous 

amount of data for testing and training the SVM. These will be discussed in the following subsections 

including SVM training and testing. 

5.3.1 New Kernel 

The GMM supervector linear kernel [9] is expressed as shown below  

𝐾(𝑠𝑣⃗⃗⃗⃗⃗𝒂, 𝑠𝑣⃗⃗⃗⃗⃗𝒃) =  ∑𝑤𝑖(𝜇𝑖
𝑎
)𝑇𝜮𝑖

−1(�⃗�𝑖
𝑏
)

𝑀

𝑖=1

                                                                      (66)     [9] 

Where 𝑠𝑣⃗⃗⃗⃗⃗𝒂 represents the supervectors from speaker ‘a’ and 𝑠𝑣⃗⃗⃗⃗⃗𝒃 are the supervectors from speaker ‘b’. 

𝜇𝑖 is the component mean vector, 𝑤𝑖 is the component weight of the GMM UBM and 𝜮𝑖 is the 

component diagonal covariance of the UBM. M is the number of components of the GMM. [9] 

And the polynomial kernel is expressed as  

𝐾(𝑠𝑣⃗⃗⃗⃗⃗𝒂, 𝑠𝑣⃗⃗⃗⃗⃗𝒃) = (1 + [𝑠𝑣⃗⃗⃗⃗⃗𝒂]
𝑇𝑠𝑣⃗⃗⃗⃗⃗𝒃)

𝑛                                                                      (67) 



49 
 

n is the order of the polynomial kernel 

The value of the polynomial order was varied from 2 to 20 in the experimental implementation. It was 

discovered that when using the polynomial kernel, a polynomial order of 3 gave the best result. 

Performance of the kernel in [9] and the polynomial kernel were compared and the polynomial kernel 

was out-performed. A look at both kernels reveals that they have subtle similarities. The GMM 

supervector liner kernel looks like a polynomial kernel of unity order which is scaled with variances and 

its prior probability.  

New kernels have been formulated by the addition or multiplication of existing kernels. The idea 

conceived in this thesis was to combine the characteristics of the 2 kernels above as follows. 

𝐾(𝑠𝑣⃗⃗⃗⃗⃗𝒂, 𝑠𝑣⃗⃗⃗⃗⃗𝒃) =  ∑[1 +𝑤𝑖(𝜇𝑖
𝑎
)𝑇𝜮𝑖

−1(�⃗�𝑖
𝑏
)]𝑛

𝑀

𝑖=1

                                                         (68) 

The new kernel produced exciting results which will be reviewed in the next chapter. As far as the new 

kernel is, it is valid, because it meets the Mercer’s conditions. Its Hermitian is positive semi-definite and 

the kernel is a sum of the products of the test and training features. 

5.3.2 Randomization 

A method of randomization was used to achieve the SVM in this thesis. During these experiments, there 

was a dearth of speaker speech signals. For each speaker, only about 3mins of conversation was 

available per phase (training and testing). The GMM supervector method utilized required that enough 

different speech signals be available from each of the speakers. The SVM using the method in [9] takes 

in supervectors as inputs, and a supervector is the concatenation of the component means of the 

adapted GMM of a speaker from one conversation (about 90 sec long). So if the training of each speaker 

would be we done, there has to be many observations available to the SVM for adequate training of 



50 
 

models. These observations correspond to several adapted GMM models from several utterances from 

each speaker. This method therefore allowed the creation of multiple samples from the 3 min sample 

available. The approximately 3 min (180 sec) long speech signals per speaker were sliced into 2-sec 

blocks. 45 2-sec slices of speech signals were then picked at random and concatenated to form a speech 

utterance that would appear unique to the system. By using this method, it was possible to generate as 

much unique speech utterances as needed to model the SVM speaker models. This same method was 

also used to generate multiple test observations for SVM testing. 

All simulations for this experiment were carried out within Matlab. The statistical toolbox was used for 

the EM algorithm implementation and for SVM testing and training. 

5.3.3 SVM Training 

The training of an SVM model requires using input feature vectors that are representative of the 2 

classes - a positive class and a negative class. If we have 4 speakers for example, and we want to train a 

model for speaker 1, the train feature vectors will consist of feature vectors from speaker 1 and feature 

vectors from a combination of speakers 2-4. Features vectors from speaker 1 will serve as the positive 

class and those from 2 – 4 will be the negative class. If speaker 2 needs to be trained, the positive class 

will contain speaker 2 and the negative class will have speech from the other speakers (1,3 and 4). This 

indicates that the number of training models we have will be determined by the number of speakers 

available in our database – 1 SVM model per speaker. In addition, the amount of input data should be 

sufficient to aid speedy detection but should not be excessive because this can give rise to a large 

number of support vectors which can increase storage requirements and computation time. [16]. When 

an SVM is trained, what we are actually calculating are the �⃗⃗⃗�  and 𝑏  in the equation below 

�⃗⃗⃗�𝑠. 𝑠𝑣⃗⃗⃗⃗⃗ + 𝑏𝑠                  𝑠 = 1,2,… 𝑆,                                                                                                      (69) 

𝑆 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑠 and Where �⃗⃗⃗�. 𝑠𝑣⃗⃗⃗⃗⃗ is the dot product of �⃗⃗⃗� and supervector 𝑠𝑣⃗⃗⃗⃗⃗.  
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For each training model, we have a set of �⃗⃗⃗�𝑠  and 𝑏𝑠.  

A problem that might result due to poor training is when one of the speakers is not represented in the 

imposter speakers’ features. A misclassification of this speaker might result if this speaker feature 

vectors are tested using such a poorly trained model. [16] 

5.3.4 SVM Testing 

During testing of speaker feature vectors, the test features are compared to all the training models to 

obtain the closest match. At this stage, the SVM can either output a class label in terms of the formula 

𝑠𝑖𝑔𝑛(�⃗⃗⃗�. 𝑠𝑣⃗⃗⃗⃗⃗ + 𝑏)                                                                                           (70) 

Where �⃗⃗⃗�. 𝑠𝑣⃗⃗⃗⃗⃗ is the dot product of �⃗⃗⃗� and supervector 𝑠𝑣⃗⃗⃗⃗⃗.  

Or the output can be in the form of a score as shown below.   

𝑆𝑐𝑜𝑟𝑒 = �⃗⃗⃗�. 𝑠𝑣⃗⃗⃗⃗⃗ + 𝑏                                                                                                 (71) 

So if a set of T test supervectors are tested, the score can be averaged over all T supervectors as below 

𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
∗∑�⃗⃗⃗�. 𝑠𝑣⃗⃗⃗⃗ �⃗� + 𝑏

𝑁

𝑗=1

                                                                              (72) 

If 𝑤𝑜=  ∑ 𝛼𝑡𝑦𝑡 𝑠𝑣⃗⃗⃗⃗⃗𝑡 is substituted in the equation, we get  

𝑆𝑐𝑜𝑟𝑒 =
1

𝑁
∗ ∑ ∑ 𝛼𝑡𝑦𝑡

𝑁
𝑗=1 𝑠𝑣⃗⃗⃗⃗⃗𝑡. 𝑠𝑣⃗⃗⃗⃗ �⃗� + 𝑏

𝑇
𝑡=1                                                                         (73)   [16] 

Where 𝑠𝑣⃗⃗⃗⃗ �⃗�. 𝑠𝑣⃗⃗⃗⃗⃗𝑡 is the dot product of 𝑠𝑣⃗⃗⃗⃗ �⃗� 𝑎𝑛𝑑 𝑠𝑣⃗⃗⃗⃗⃗𝑡, 𝑇 is the total number of support vectors obtained from 

the training data 𝑠𝑣⃗⃗⃗⃗⃗𝑡, 𝑁 is the number of test supervectors 𝑠𝑣⃗⃗⃗⃗ �⃗�, 𝑦 is the assigned class label, 𝛼 is the 

Lagrange multiplier of the support vector and b is the bias. 
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This score obtained can be measured against a set threshold so if the score exceeds the threshold, that 

speaker is accepted and rejected when it is below the threshold. This type of scoring can be used to 

obtain a Detection Error Tradeoff (DET) curve. By varying the threshold, the rate of errors are varied. 

These errors are the probabilities of false detection or false alarm (FA) and the probability of missed 

detection. The obtained errors can then be used to characterize how accurate the speaker identification 

system is. An alternative curve is the Receiver Operator Characteristics (ROC) which plots the probability 

of detection against the probability of false detection. Either of the 2 plots can be used depending on 

the type of result we want the plot to convey. To make a decision between a set of 𝑆 speakers, we 

choose the training model that generates the highest testing score. The identity of that model is given to 

the testing data.  

arg𝑚𝑎𝑥
𝑠

1

𝑁
∗∑∑𝛼𝑠𝑡𝑦𝑠𝑡

𝑇

𝑡=1

𝑠𝑣⃗⃗⃗⃗⃗𝑠𝑡 . 𝑠𝑣⃗⃗⃗⃗ �⃗� + 𝑏

𝑁

𝑗=1

                     1 ≤ 𝑠 ≤ 𝑆                                                   (74) 

𝑤ℎ𝑒𝑟𝑒 𝑆 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑎𝑘𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 T is the number of training supervectors and N 

is the total number of testing supervectors. 
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Chapter 6: Experimental Design and Results 

6.1 Experimental Design 

With the discussion of all the essential components of this thesis work, we now discuss the specifics of 

the parameters used for this experiment.  

6.1.1 Speech Corpus 

The speech database used for this experiment is the CHAINS speech corpus. It contains 36 speakers with 

recordings in 2 different sessions of 2 months apart. There were 6 speaking styles during the 2 sessions-

3 different styles in each speaking session. Each speaker read a series of passages in 6 different styles. 3 

of the styles came after 2 months of reading the first 3 styles. There were 36 speakers, 20 males and 16 

females [18]. For the experiment, 16 males and 16 females were selected in order to have an unbiased 

UBM [7]. 1 speaking style from the 1st set of 3 was chosen (called SOLO) and the speakers read the 

passages at conversational pace. This set of audio recordings was used for testing. Another speaking 

style (called FAST) was taken from the second set of 3 styles and the speakers read the passage at a 

much faster rate. This set of speech signals were used for training purposes. All the recordings for each 

speaker in each of the speaking sessions (e.g. SOLO) was pooled. For each speaker, we had a recording 

for training and a recording for testing. 

6.1.2 Front End Processing 

This step involves extracting the speech features vectors from the speech signal. Audio signals were 

discretized using the sampling frequency of the recording. For the audio samples used in this thesis, the 

sampling frequency was 44.1 KHz. The audio signal was framed in 20ms chunks and they overlap by 

10msec. 

  1 sec       44100 samples 

 0.02 sec  0.02*44100 = 882 samples per frame. 
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The number of FFT samples used was 512 using the hamming window for windowing. Only the first 257 

samples of the FFT are kept. 26 triangular Mel frequency filters are generated with their frequencies 

ranging between 0 and 22050 Hz (44100*0.5 Hz). The filterbank is a 26 X 257 matrix with each 257 

vector representing one filter. After obtaining the DCT of the log filterbank energies (26 coefficients), the 

1st coefficient was dropped and coefficients 2 – 13 were kept. Therefore, for each 20msec frame of 

audio signal, we obtain a [1 X 12] feature vector. 

6.1.3 GMM Adaptation 

The extracted feature vectors are ready for modeling at this stage. Before we go ahead with that, a UBM 

will have to be created which will serve as the alternate speaker if LLR testing is used and from which 

the individual speaker GMM models are adapted. Studies in [5] show that higher number of GMM 

components improve the speaker identification system performance. In this thesis, 512 components 

were used to model the GMM UBM and all resulting models. Therefore, a GMM in this thesis will have 

the following dimensions. 

λ={𝑤𝑖, 𝜇𝑖, 𝜮𝑖 }    𝑖 = 1,2, … ,𝑀 

𝑤 = {1 𝑥 512},         𝜇 = {12 𝑥 512},       𝛴 = {12 𝑥 12 𝑥512}  

Where M =512 and is the number of component distributions and 12 is the dimension of the feature 

vectors. When GMMs were adapted, only the means were adapted and a relevance factor of 16 was 

used. 

6.1.4 GMM Supervector 

A GMM supervector in this thesis is the stacking up of the component mean vectors of an adapted 

speaker model to form a single larger vector. The size of a single supervector is  

[1 𝑥 (12 ∗ 512)]  =  [1 𝑥 6144] 
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Where 12 is the dimension of the feature vector and 512 is the number of components of the GMM. 

6.1.5 Support Vector Machine 

SVM was trained with data from 2 classes, the target speaker and the imposter speaker. The training 

feature vectors consisted of: 

100 supervectors from the target speaker 

155 supervectors from the 31 other speakers (5 supervectors from each speaker). 

255 supervectors generated 1 speaker model. 

The effectiveness of an SVM implementation can be measured by the potency of the kernel used. The 

kernel used for this thesis was newly conceived from the idea used in [9], it gave improved results over 

the GMM supervector linear kernel in [9]. In this thesis the idea of the polynomial kernel and the GMM 

supervector linear kernel used in [9] are combined to obtain the new kernel presented below. 

𝐾(𝑠𝑣⃗⃗⃗⃗⃗𝒂, 𝑠𝑣⃗⃗⃗⃗⃗𝒃) =  ∑[1 + 𝑤𝑖(𝜇𝑖
𝑎
)𝑇𝜮𝑖

−1(𝜇𝑖
𝑏
)]𝑛

𝑀

𝑖

                                                                             (75) 

Results obtained in this thesis show that the optimum performance was achieved when a polynomial 

order of 6 was used. The results are presented later in this chapter. 

6.2 Results  

32 (16 male and 16 female)  of the 36 speakers in the CHAINS corpus [18] were selected for the 

experiments due to the explanation offered in [7]. The speech signals used for modeling the Universal 

background model (UBM) was balanced in terms of the representation of the sub-groups contained in 

the corpora [7]. Therefore, 16 males and 16 females were used for this work. Each speaker had 33 

conversations [18]. The 33 conversations are short, so the features from them were concatenated to 

give a feature vector set of approximately 3 minutes long. UBM was formed by pooling features from all 
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speakers and modeling. The GMM generated has 512 components and the individual speaker models for 

training and testing were adapted from the UBM. The result computation process is summarized in a 

flow chart shown in Figure 6.1.  

 

Figure 6.1: Flow chart of result computation 

As discussed in the previous paragraph, the amount of speech available in the CHAINS speech database 

[18] is approximately 3 minutes for each speaker per speaking style. This available speech was used to 

model the speakers. 

Audio Signal

Feature 
Extraction

UBM Modeling

Speaker 
Adaptation

Randomization of 
Speaker Features

SVM

Results
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The SVM method in use in this thesis makes use of the supervector technique as described in [9]. This 

technique uses the GMM supervectors as a higher dimensional feature space for the SVM kernel 

functions. By extension, that makes each observation of the training and testing data a supervector. 

Therefore, a short 3-minute utterance gives one supervector. The SVM requires multiple supervectors 

for training and testing. This presented a challenge which had to be solved to avoid a problem of under-

training during SVM model creation. 

 A solution to the challenge was obtained by using the normalization method explained in section 5.3.2. 

A number of feature vectors were randomly selected, concatenated, and the results would be a unique 

speech feature vector set as far as the speaker identification system is concerned. This method can be 

used to generate 𝐶𝑛
90  unique feature vectors and by extension 𝐶𝑛

90  supervectors per speaker, per 

speaking style. Where n is the number of 2 second mini-blocks. For this thesis, 45 2 second mini-blocks 

were selected randomly and concatenated to give a 90 second feature vector set. Then this selection 

was repeated 100 times to give 100 feature vector sets per speaker, per speaking style. The 100 feature 

vector sets were adapted to the UBM to obtain 100 supervectors per speaker, per speaking style. Since 

2 speaking styles were chosen for this thesis (SOLO and FAST [18]), each speaker had 200 supervectors. 

The first 100 was used for testing and the other 100 for training. 

SVM was trained using the polynomial kernel, the GMM supervector linear kernel [9] and the new 

kernel formulated in this thesis. Training was carried out using 100 supervectors from a target speaker 

and 155 supervectors from the imposter speakers. All 255 supervectors were used to train the SVM 

while assigning the appropriate class labels to each of the supervectors. 

Testing was done by comparing 100 testing supervectors to each of the speaker classifiers to obtain the 

closest match. So this set produced 3200 true trials and 99200 false trials. A score was obtained from 

each testing of a supervector. The output from the SVM testing is in form of a numerical score. The 
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magnitude of the score depends on the level of similarity between the training and testing data. For a 

test supervector whose speaker is the target speaker, the score has a lower magnitude compared to the 

score of a non-target speaker. The identity of a speaker can therefore be obtained by taking the average 

of the scores of N test supervectors. For N test observations, all N observations where compared to the 

32 speaker SVM models. The scores from each speaker model were averaged and the identity of the 

speaker with the minimum score was assigned to that set of test supervectors.  

In order to view how accurate the scores obtained from the SVM testing is, the entire target scores for 

each SVM classifier for all 32 speakers were pooled. All the non-target scores from all SVM classifiers 

were also pooled. A set of thresholds were set to obtain varying values of false alarm and missed 

detection probability. The missed detection and false alarm probabilities were plotted for the 

polynomial kernel, the GMM supervector linear kernel, and the new kernel as shown in figure 6.2 for the 

32 speaker database. Figure 6.3 is the result of a 16 speaker implementation. Subsequent results 

obtained are also shown in the figures 6.4 to 6.10. These results are the DET curves for the new kernel 

with the order of the polynomial componenet varied from 3-10 and 15. The wisdom behind these 

results are discused in the next section.  
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Figure 6.2: DET curves for 32-speaker speaker identification system 
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Figure 6.3: DET curves for 16-speaker speaker identification system 
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Figure 6.4: DET curves for new kernel with polynomial order of 3 to 7 
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Figure 6.5: DET curves for new kernel with polynomial order of 3 to 5 
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Figure 6.6: DET curves for new kernel with polynomial order of 4 to 6 
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Figure 6.7: DET curves for new kernel with polynomial order of 5 to 7 
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Figure 6.8: DET curves for new kernel with polynomial order of 6 to 15 
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Figure 6.9: DET curves for new kernel with polynomial order of 6 to 9 
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Figure 6.10: DET curves for new kernel with polynomial orders of 9, 10 and 15 
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Figure 6.11: Plot of speaker detection error probability as a function of polynomial order 

6.3 Discussion of Results 

Figure 6.2 and Figure 6.3 show the decision estimation tradeoff (DET) curves for the results obtained 

from the SVM. This results show the DET curves for SVMs using 3 different kernels. Figures 6.2 and 6.3 

however, differ in the number of speakers in the database used in the operation. 32 speakers were used 

for figure 6.2 and other results and 16 speakers were used to obtain figure 6.3. The 2 figures show good 

performances but it can be observed that the missed detection probability in 6.3 is slightly better than in 
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figure 6.2. This suggests a slight deterioration of the error performance with an increase in the number 

of speakers. The false alarm probability in figure 6.2 is a bit better than in figure 6.3 though. This might 

be due to the 32 speaker GMM UBM being a better representation of a global model than the 16 

speaker GMM UBM is.  

The polynomial of polynomial order 3 produced the best performance for polynomial orders between 2 

and 20 but the polynomial kernel had the worst performance compared to the other kernels. The likely 

reason for this is even though the polynomial kernel is a well known valid kernel which in this 

implementation used the power of GMM supervectors, it is just a simple inner product of a training and 

test vector. It does not put the prior probabilities and the feature variances into consideration. These 2 

parameters always have a way of offering a better representation of the prevalence of each data 

component. This suggest why the polynomial kernel is not the best kernel to use for SVMs in speaker 

identification systems. 

The next kernel to be discussed is the GMM supervector linear kernel presented in [9]. This kernel was 

derived from the Kullback-Leibler divergence measure and it used the UBM and GMM supervectors. In 

[9], the performance of this kernel was juxtaposed with that of another and this kernel gave the better 

performance in terms of having the lowest error of the 4 methods compared [9]. The success of this 

kernel can be attributed to its derivation from the Kullback-Leibler divergence measure and it takes 

cognizance of the prior probabilities and variances of its data components. Each data is scaled by the 

square root of the variance and the prior probabilities [9]. As can be seen in figure 6.2, this method has 

produce a way better result than the polynomial kernel especially at thresholds that correspond to very 

low false alarm probabilities. 

The intent for this thesis was to create a kernel whose performance will surpass that of existing ones. 

How to obtain it was the question left unanswered until it was. It is known in SVM that kernels must 
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have characteristics that meet some requirements. Those requirements are the Mercer’s conditions. 

New kernels have been created by the addition of 2 existing kernels as obtained in [17]. Results in this 

thesis were obtained from a kernel which was adapted to the characteristics of another kernel. 

Figure 6.2 shows the new kernel which is the GMM supervector linear kernel [9] adapted to the 

characteristics of the polynomial kernel using a polynomial order of 3. This kernel produced a better 

performance and it goes to show that kernel functions can also be formed by the adaptation of one to 

another, provided the Mercer’s conditions are met. The DET curves in figure 6.2 and figure 6.3 show that 

the new kernel outperforms the previous 2 others. This result looks promising for subsequent SVM 

applications of speaker identification systems because the characteristics of very good kernels can be 

adapted to one another to obtain more accurate systems.  

Another striking observation from the result in figure 6.2 is the low probability of false alarm. It can be 

noticed from the plot that for the polynomial kernel which has the worst performance, the highest 

probability of false alarm is about 2.25%. For the probability of missed detection, the worst result 

(polynomial kernel) gave a probability as high as 42%. The interpretation of this is as follows. The 

probability of false alarm is the probability of deciding a non-target speaker is the actual speaker. That 

is, the probability that an imposter would get away with claiming someone else’s identity. On the other 

hand, the probability of missed detection is the probability that the system decides the actual speaker is 

an imposter. The implementation of this result is very interesting because of the applications of speaker 

identification systems. If an over-the-phone bank transaction utilizes this identification system for 

example, this system has a very low probability of allowing an imposter to pass as the real owner of the 

account. This means the system has a high security level. It has a high probability of preventing a fraud 

from occurring. On the flip side though, this system has a much higher probability of missed detection 

which if used in an over-the-phone bank transaction, might screen the real users out sometimes. This 

might be more acceptable to users because they would rather sacrifice a few extra attempts than lose 
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their hard earned money to fraudsters. This shows that the speaker identification system in this thesis 

has an overall high level of security. 

As discussed in the beginning of this section, a polynomial order of 3 was used in the polynomial kernel 

because it gave the best accuracy for polynomial orders between 2 and 20. For the new kernel, a 

polynomial order of 3 was also used. Therefore, the curve for the new kernel in figure 6.2 has a 

polynomial order of 3. Experimental simulations were carried out to vary the polynomial order of the 

new kernel. This was done to ascertain if the order has any effect on the DET curves. Figure 6.4 to figure 

6.10 show the results obtained for polynomial orders 3-10 and 15. The information obtained from 

observing the results are interesting.  

It can be seen that on increasing the polynomial order from 3-6, the error performance of the system 

steadily got better. The difference in performance between polynomial orders 5 and 6 is not very 

pronounced as can be seen in figure 6.6 and figure 6.7. This means that for the new kernel, feature 

spaces of higher dimensions generated better results. As soon as the polynomial order reaches 7, 

however, it can be observed that there is a deterioration of the error performance as shown in figure 

6.7. For polynomial orders of 7 and above, performance gets worse. It can then be inferred from figures 

6.4 to 6.10 that the optimum polynomial order for the new kernel is either 5 or 6 as these are the curves 

with the least overall missed detection and false alarm probabilities. Figure 6.11 then shows the error 

probability plotted as a function of polynomial order. The error probability was obtained by counting the 

number of failed detections per polynomial order and dividing it by the total number of tests per 

polynomial order. The optimum polynomial order is 5 as seen in figure 6.11. The optimum new kernel 

obtained in this thesis is therefore 

𝐾(𝑠𝑣⃗⃗⃗⃗⃗𝒂, 𝑠𝑣⃗⃗⃗⃗⃗𝒃) =  ∑[1 + 𝑤𝑖(𝜇𝑖
𝑎
)𝑇𝜮𝑖

−1(�⃗�𝑖
𝑏
)]5

𝑀

𝑖

                                                                      (76) 
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Chapter 7: Conclusion and Future Work 

7.1 Conclusion  

With this thesis coming to a close, a step back will be taken to view the significance of the work done 

here. The main objective of this work was to create a speaker identification system using statistical 

learning but with a performance which surpasses that of previous works. The new kernel created in this 

thesis did just that and had a performance better that the kernel introduced in [9] and the most 

significant part is the way in which the kernel was obtained. This thesis was able to show that the 

performance of a kernel can be improved by adapting the kernel to the characteristics of another good-

performance kernel. The new kernel achieved better results than the one in [9] and it shows this 

method actually works well. Other researchers can adopt this adaptation method to improve kernel 

performance and create new ones in addition to the method of addition and multiplication of existing 

kernels. 

In addition, the method of randomly selecting pieces of available data to make several data frames was 

a success. The method can be utilized when the amount of training and testing data is insufficient and 

the method used (like the SVM) requires enough data to make better predictions of the identity of 

speakers. 

Another significance of this work is the low false alarm probability obtained from the result. It goes to 

show that the approach used here (same as used in [9]) better suits a speaker identification system 

because of the seeming security it offers against imposters. 

Lastly, the results obtained here are from a 16 speaker and 32 speaker corpus. It was observed that 

there was not a significant deterioration of the results between the 16 and 32 speaker models. It is 

therefore envisaged that as the number of speakers increase, there would not be a severe effect on the 

performance of the speaker identification system using the GMM SVM methods. 
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7.2 Future Work 

Moving on from here, the hope is that subsequent works on speaker identification systems would 

obtain much better performances using the SVMs with much potent kernels or using other state-of-the-

art methods just to make sure the applications that utilize this technology get the desired value. A 

challenge that was faced during this work is the speaker corpus. Despite the availability of robust speech 

corpuses which have many speakers and have very long conversations per speaker, they are relatively 

expensive. Future work will be much easier if there could be free or affordable speech databases 

available to researchers and students. This is important because, the larger the database, the better its 

results can be extrapolated to real life applications. Lastly, the computation time required for the 

simulations of this work is very much. Future works need to develop better ways to execute the 

simulations in much shorter periods of time. 
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