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Abstract

The goal of this project is to introduce an automatic movement classification technique of

finger movement signals using Hilbert-Huang Transform (HHT). Due to the nonlinear and

nonstationary processing behavior, movement signals are analyzed with the Hilbert-Huang

Transform (HHT). The slope of auto-correlation function and mean of frequency from first

three Intrinsic Mode Functions (IMFs) was used as feature parameters for each category.

Finally, performing support vector machine (SVM) for pattern classification completes clas-

sifying types of finger movement. According to the records of 669 trial samples of two types

of finger movement signals (thumb and pinky), average accuracy is 93.28%. In another case

of movement (thumb and pinky), average accuracy is 100%. All in all, the feature extraction

method based on Hilbert-Huang transform (HHT) can be used to achieve effective movement

classification.
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Chapter 1

Introduction

1.1 Background and Motivation

For people with severe disabilities, their daily activities and actions are always limited. Thus,

the assistive technology switches are used by disabled people in order to help them in daily

life.

Assistive technology switches provide people who experience a severe physical disability

or limitation to interact with devices or technologies that would otherwise require a lot of

body movements. Such technology utilizes binary switch whose output is toggled on and off

when activated. One common usage of assistive technology switch is in controlling power

wheelchair that requires upper limb movement. For people who cannot control their limb

movements (e.g., Muscular Dystrophy), assistive technology switches allow them to control

the wheelchair by head movements or even by breathing. Another common usage of assistive

technology switches is to control electronic devices such as laptops and smart phones which

usually require mouse, keyboard or touchscreen [1].

In our case study, a disabled woman was left with only her thumb and pinky as reliable

communication methods and switch access movements due to her brain stem stroke. A switch

developed using the IMU is intended to increase her ability to reliably access switches. The

machine learning aspect is intended to give us the ability to train the switch to recognize

the user’s switch access movement to generate the switch closure.
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The goal of this thesis is to extract useful information from signals of different finger

movements and to propose an automatic classification technique of finger movements.

Due to the fact that the movement signal is nonlinear and nonstationary, the application

of traditional data analysis, such as spectrum analysis based on Fourier transform, has

problems. However, Hilbert-Huang transform (HHT) represents an effective signal processing

for nonlinear and nonstationary data.

HHT was developed by Norden E. Huang in the 1990s [2]. Hilbert-Huang transform can

show the physical mechanisms hidden in data by empirical basic functions. Through this

way, the signals are decomposed into a finite number of components which are referred to

intrinsic mode functions (IMFs) by an empirical mode decomposition (EMD) process [3].

The EMD is based on the local behavior of signal, so it is suitable for nonlinear and nonsta-

tionary processes. The relationship among instantaneous amplitudes and frequencies, and

time can be found by Hilbert transform. The combination of EMD and Hilbert transform is

called Hilbert-Huang transform. The application of the HHT is growing in many fields. In

this thesis we presented a new application of Hilbert-Huang transform method on movement

classification. With the Hilbert-Huang transform, the relationship of instantaneous frequen-

cies and time of movement signals and the slope of auto-correlation function of energy-time

distribution which was used as features parameters for each class was computed and the

support vector machine(SVM) method was applied for classification.

1.2 Literature Survey

Some literature are reviewed before this thesis work. [1] introduces the disability assistive

technology, sensor technology, and the hardware device used to determine switches.
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[2] is the original paper introducing the methods of HHT which was written by Norden

E. Huang. It offers very detailed information about HHT including some concepts and

applications. HHT contains two parts which are termed as empirical mode decomposition

(EMD) and Hilbert spectrum and is suitable for nonstationary and nonlinear time series

analysis. It transfers the signal from time domain to amplitude-frequency-time domain.

This paper also talks about how to achieve EMD by using the sifting process and some

mathematical and physical relationships among amplitude (or energy), frequency, and time.

The last section gives some examples about the application of HHT on classic nonlinear data

analysis.

[3] gives an application of HHT on electroencephalogram’s signal (EEG) to classify sleep

stages. It describes the basic principle of HHT including EMD process and Hilbert spec-

trum. The physical meaning of Hilbert spectrum is also discussed. Furthermore, the feature

extraction of sleep EEG signal based on HHT is performed. Both [4] and [5] are good papers

to learning how to use HHT on signal analysis.

Support vector machine is a supervised learning algorithm for classification machine

learning problems. It separates data into two groups by building a hyperplane with maximum

margin between them.

[6] and [7] introduce the method of SVM including how the algorithm is established and

the knowledge of Gaussian kernels.

[8] offers a method predicting if the putt is successful or not based on EEG data by SVM.

It describes some concepts of SVM, Gaussian radial basis kernels, and important parameters

in detail. Moreover, [9] applied SVM to speaker identification and speech recognition. It

provides another good example of SVM application on time series signal analysis.
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The next section will give a outline of this thesis work including the organization and

content of every chapter.

1.3 Thesis Outline

This thesis includes the movement data collecting system, feature extraction, statistical

learning methods, especially support vector machine (SVM), experiment results, and future

work.

Cheaper 1 gives an overview of the whole thesis. It introduces the background and

motivation of this thesis work, literature survey and the organization of this thesis. Chapters

2 covers the application of the switch device and the data collecting system. How the switch

device was used and how movement signals were achieved will be reviewed in detail.

Chapter 3 introduces the HHT method and how to process this method. Furthermore,

how the features are extracted from movement signal based on HHT will be discussed in

detail. Chapter 4 starts from a review of statistical learning including supervised learning

and unsupervised learning. Especially, the method of SVM and Gaussian radial basis kernels

will be discussed. Moreover, how to apply this algorithm on our movement classification

problem will be introduced.

Chapter 5 discusses the experimental simulation results. The simulation accuracies with

different features will be listed. The last chapter will summarize the whole thesis, give some

conclusions and discuss the future work based on the previous results.
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Chapter 2

Movement Detection Data

2.1 Overview of Switch Devices

We obtained data from a disabled person when she made movement with her pinky or

thumb. Our goal is to train a model to classify the types of her movement: thumb or pinky.

Furthermore, we collected another type of movement data in order to classify the types of

movement: activation and non-activation.

Fig. 2.1 shows the switch device we used to collect movement data. An Inertial Measure-

ment Unit (IMU) sensor embedded in a 3D printed ring is included in the hardware [1]. The

ring should be worn on the middle finger. Other two additional 3D printed rings are also

shown in Fig. 2.1. These two rings should be worn on the thumb and pinky respectively.

How switch devices were assembled on the body is displayed on Fig. 2.2.

The device collected the data using a 3-axis magnetometer, a 3-axis accelerometer, and

a 3-axis gyrometer. Each of them consist of three sensing axes with the common orthogonal

axis system. Thus, the finger movement can be defined in nine degree-of-freedom. The

magnetometer can measure the distance and location of a magnet relative to the sensor.

The Accelerometer is used to measure acceleration along a defined axis. The gyrometer is

designed to relative the rotation functioned by the around a fixed axis [1].
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Figure 2.1: The switch device with IMU [1]

(a) Assembled on Hand (b) Assembled on Wrist

Figure 2.2: Complete Setup Assembled on: (a) Hand and (b) Wrist [1]

2.2 Movement Detection Data

For thumb and pinky case, there are N trials in the database where N = 667. There are

Nthumb = 306 trials representing thumb and other Npinky = 361 trails representing pinky

among the database. Each trial is a signal whose duration is T = 4 seconds with a sampling

frequency fs = 100Hz of 9 axis of sensor measurements including accelerated movements on

axis X, Y, Z, gyroscopic movements on axis X, Y, Z, and magnetic movements on axis X, Y,

Z. An example of the movement signals is shown on Table 2.1. Furthermore, Fig. 2.3 and

Fig. 2.4 are curves of an example of the movement signals from thumb and pinky.
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Time/s
Accel GYRO MAG

X Y Z X Y Z X Y Z

0.01 132 -9234 11413 122 -126 -324 591 285 781

0.02 162 -9209 11447 177 -200 -407 593 279 793

0.03 389 -9105 11482 199 -227 -463 591 285 789

... ... ... ... ... ... ... ... ... ...

3.99 419 -9251 11433 142 42 -262 600 278 802

4.00 199 -9280 11336 95 186 25 599 279 799

Table 2.1: The Movement Data

The accelerated movement signals on axis X, Y, Z are denoted as xan(t), yan(t), zan(t)

respectively. The gyroscopic movement signal on axis X, Y, Z are denoted as xgn(t), ygn(t),

zgn(t) respectively. The magnetic movement signal on axis X, Y, Z are denoted as xmn
(t),

ymn
(t), zmn

(t) respectively, where n = 1, 2, 3, ...., N and t = 0.01, 0.02, 0.03, ...., 4s. Each of

them is a column vector including 400 elements.

Thus, every trial is a 400× 9 dimension matrix denoted as

Mn = [xT
an
(t), yTan(t), z

T
an
(t), xT

gn
(t), yTgn(t), z

T
gn
(t), xT

mn
(t), yTmn

(t), zTmn
(t)]

where n = 1, 2, 3, ...., N and t = 0.01, 0.02, 0.03, ...., 4s.
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2.3 Data of Activation and Non-activation

The activation case contains the movement of thumb, pinky and together. The type non-

activation does not mean the hand keep static. The hand can still move, but fingers do not

move relatively, such as shaking hands. These kind of data is not from the disabled person.

They were from two candidates who used 3 hours to collect the data at the Intelligent

Information Processing lab at the University of Arkansas.

For activation and non-activation case, there are totally 654 trials collected. For the

first candidate, there are N (1) = 374 trials including N
(1)
non = 185 trials representing non-

activation and N
(1)
act = 188 trials representing non-activation. For the second candidate, there

are N (2) = 180 trials including N
(2)
non = 92 trials representing non-activation and N

(2)
act = 88

trials representing activation. Each trial is also a signal whose duration is T = 4 seconds

with a sampling frequency fs = 100Hz of 9 axis of sensor measurements. An example of the

non-activation signals is shown on Table 2.2. The Fig. 2.5 and Fig. 2.6 are curves of an

example of the movement signals from activation and non-activation.
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Time/s
Accel GYRO MAG

X Y Z X Y Z X Y Z

0.01 -22 -3630 14164 -65 -226 83 258 736 370

0.02 -82 -3446 13960 -3 -312 63 262 730 368

0.03 -104 -3344 13888 -43 -445 -19 254 732 364

... ... ... ... ... ... ... ... ... ...

3.99 711 -3358 14250 21 -105 -46 320 724 512

4.00 696 -3408 14351 -38 41 -110 323 731 517

Table 2.2: The Movement Data of non-activation

time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
m

p
li
tu

d
e

0

5000

10000

15000
Accel-Pinky

x
y
z

(a) The acceleration of activa-

tion

time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
m

p
li
tu

d
e

-1500

-1000

-500

0

500

1000

1500
Gyro-Pinky

x
y
z

(b) The gyroscope movement

of activation

time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
m

p
li
tu

d
e

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000
Mag-Pinky

x
y
z

(c) The magnetism movement

of activation

Figure 2.5: The movement signal of activation

10



time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
m

p
li
tu

d
e

×104

-1

-0.5

0

0.5

1

1.5
Accel-Non-activation

x
y
z

(a) The acceleration of non-

activation

time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
m

p
li
tu

d
e

-6000

-4000

-2000

0

2000

4000

6000

8000
Gyro-Non-activation

x
y
z

(b) The gyroscope movement

of non-activation

time(s)
0 0.5 1 1.5 2 2.5 3 3.5 4

A
m

p
li
tu

d
e

460

480

500

520

540

560

580

600

620

640
Mag-Non-activation

x
y
z

(c) The magnetism movement

of non-activation

Figure 2.6: The movement signal of non-activation

11



Chapter 3

Feature Extraction

3.1 Basic Principle of Hilbert-Huang Transform

Feature extraction is the most important analysis in this thesis, which directly affects the

classification result. From the simulation result, we can see the accuracy is just 76.53% if

we only use original data. Thus, our goal is to extract a meaningful difference as the feature

between two classes from the data.

Hilbert-Huang Transform is a process that is widely used to decompose signals into a

number of Intrinsic Mode Function (IMF), and further to obtain the instantaneous frequency

and Hilbert spectrum from the signals. As the definition, it can be split into two sequential

processes, which are known as the empirical mode decomposition (EMD) and Hilbert spectral

analysis [3].

In the EMD process, signals will be decomposed into a series of IMFs until it meets

a pre-defined criteria. Intrinsic Mode Function (IMF) is a special function satisfying the

following two properties: 1) The difference between the number of extrema and the number

of zero crossings is less than 1 and 2) the mean value between the upper and lower envelop

(derived from local maxima and local minima respectively) is always 0. The following steps

describe a special sifting process to extract all IMFs.

To prepare for the sifting process, for a given signals x(t), calculate its upper-envelope

u(t) and its lower-envelope v(t) and the mean value between the two envelopes m1(t), which
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are shown on Fig. 3.1.

m1(t) = [u(t) + v(t)]/2 (3.1)

First, get the difference between the original signals and its calculated mean vector.

h1(t) = x(t)−m1(t) (3.2)

To get a IMF that meets the two criteria, this sifting process usually need to be applied

multiple times, in which case the obtained difference hk(t) becomes the signal in the next

sifting step. After the (k+1)th sifting, take the difference h1k(t) = h1(k−1)(t)−m1k(t) as the

first IMF if it satisfies the two properties of IMF. This first IMF will be denoted as c1(t):

c1(t) = h1k(t) (3.3)

In practice, a standard deviation (SD) criterion will be checked to help decide whether
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the h1k(t) is good enough to satisfy the IMF properties or not using the following inequality:

SD(k) =
T
∑

t=0

|h1(k−1)(t)− h1k(t)|2
h1(k−1)2(t)

6 0.2 (3.4)

Where T is the length of the data.

Next, the second IMF c2(t) can be obtained using the same sifting process where the

first residual r1(t) = x(t) − c1(t) will be treated as the new signals. Repeat this process n

times until the last residual rn(t) becomes monotonic. In this way, the original signals can

be represented by the series of IMF and the final residual as:

x(t) =
n

∑

i=1

ci(t) + rn(t) (3.5)

Now since all the IMFs have been extracted from the signals, we can obtain the Hilbert

spectrum and the instantaneous frequency based on them.

Get the Hilbert transform of all IMFs ci(t) using:

H [ci(t)] =
1

π

∫ +∞

−∞

ci(t)

t− τ
dτ (3.6)

Form a complex function zi(t) with the ci(t) as the real part and the Hilbert transform

of ci(t) as the imaginary part:

zi(t) = ci(t) + jH [ci(t)] = ai(t)e
jθi(t) (3.7)

Where j =
√
−1, ai(t) is called the instantaneous amplitude and θi(t) called the in-

stantaneous phase of IMF ci(t). Then calculate the instantaneous frequency ωi(t) of ci(t)

using:

ωi(t) =
dθi(t)

dt
(3.8)
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In this way, we can represent the original signals x(t) as the following equation:

x(t) = Re[
n

∑

i=1

ai(t)e
j
∫
ωi(t)dt] + rn(t) (3.9)

where the residue rn(t) is ignored. On the time-frequency plane, plot the instantaneous

amplitude which provides a special distribution of each IMF signals’ energy. Equation (3.9)

enables us to represent the amplitude and the instantaneous frequency as functions of time

in a three-dimensional plot, in which the amplitude can be contoured on the time-frequency

plane. This time-frequency distribution of the amplitude is designated as the Hilbert ampli-

tude spectrum H(ω, t).

With the Hilbert spectrum defined, we can also define the marginal spectrum, h(ω), as

h(ω) =

∫ +∞

−∞

H(ω, t)dt (3.10)

The marginal spectrum is a function of amplitude respect to frequency. It represents

such the energy appeared with a high probability at the frequency w.

3.2 Feature Extraction Based on HHT

Feature extraction of movement signals for each axis, x(t), based on HHT transform is

performed:

1) EMD: The movement signal for each axis x(t) is decomposed into a series set of IMFs.

a) Mean value calculation: Calculate upper-envelope u(t) and lower-envelope v(t) of x(t).

For the upper-envelope, the local maxima should be obtained firstly. Then it can be achieved

by using cubic spline interpolant to those local maxima points. In the same way, the lower-

envelope can be obtained just by replacing local maxima with local minima. Secondly, the

mean value m1(t) of them can derived got by equation (3.1).
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Figure 3.2: The empirical mode decomposition components

b) Sifting process and IMFs computation: Take the difference h1(t) between x(t) and

m1(t) using equation (3.2). In most cases, h1(t) can not satisfy the two IMF properties.

Treat h1(t) as new signal and repeat previous steps by using equation (3.1) and (3.2) until it

satisfies (SD) criterion (3.4). If h1k(t) satisfies (SD) criterion (3.4) after the (k+1)th sifting,

it will be denoted as c1(t) which is the first IMF component. Next, the second IMF c2(t)

can be obtained using the same sifting process where the first residual r1(t) = x(t) − c1(t)

will be treated as the new signals. Repeat this process n times until the last residual rn(t) is

monotonic. The movement signal can be decomposed as 5 IMFs in Fig. 3.2 When the EMD

is completed. The residue is negligible.

2) Hilbert Spectrum: Once the IMFs are obtained, the Hilbert transform will be applied

on them in order to get the relationship among amplitude, frequency, and time.
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Implementing the Hilbert transform to every IMF component by equation (3.6). Then

we can achieve the instantaneous frequencies of each IMF component according to equation

(3.8) and fi(t) = ωi(t)/2π. Corresponding instantaneous frequencies of first 3 IMFs is given

in Fig. 3.3

In our case, we try to find the significant difference from Hilbert Spectrum between

different classes. Fig. 3.4 is the Hilbert Spectrum from thumb and pinky.

From those figures, we can get the frequencies (first 3 IMFs) from thumb are higher than

the frequencies (first 3 IMFs) from pinky. So we decide to use the mean of frequency from

the first 3 IMFs,

Y1 = [mf (1), mf(2), mf(3)]
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Figure 3.4: Hilbert Spectrum of Movement from Thumb and Pinky
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as a feature, where

mf(i) =
1

K

K
∑

k=1

fi(k), K = 400 (3.11)

Another way we get the feature by computing the auto-correlation function of the energy

from first 3 IMFs in different classes.

Ei(t) = a2i (t) (3.12)

Ri(τ) =

∫

Ei(t)Ei(t− τ)dt (3.13)

Fig. 3.5 is the plot of the auto-correlation function from thumb and pinky.

From those figures, we can get the slopes (first 3 IMFs) from thumb cases are higher

than the slopes (first 3 IMFs) from pinky cases. So we decide use the points from R(10) to

R(30) from the first 3 IMFs,

Y2 = [R1(10), R1(11), ..., R1(30), R2(10), R2(11), ..., R2(30), R3(10), R3(11), ..., R3(30)]

as another feature which is a 1× 63 vector.

Now we get Xl which is a 1× 66 vector,

Xl = [mf (1), R1(10), ..., R1(30), mf(2), R2(10), ..., R2(30), mf(3), R3(10), ..., R3(30)]

as the feature for each axis. l ∈ {xa, ya, za, xg, yg, zg, xm, ym, zm} represents the axes.

Thus, for total signal, the feature X is a 1× 634 vector,

X = [Xxa, Xya, Xza, Xxg, Xyg, Xzg, Xxm, Xym, Xzm]

.
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Chapter 4

Classification Method

4.1 Introduction to Statistical Learning

Statistical learning is a method which refers to using statistical models to analyze and predict

data. The object of statistical learning is data including number, text, image, video, audio,

and their combinations. Statistical learning use the knowledge of statistics to mine the

structure, property, law, and other information hidden in the data. There is an assumption

that the same or similar types of data share the same statistical property in applications.

With statistical learning people can use past data and current data to predict the outcome of

future data. Statistical learning is also called machine learning which can give computers the

ability to learn and improve by themselves like human beings. It is a popular technology for

Artificial Intelligence and other industry fields and its application is widely used nowadays.

For example, a person need to evaluate the price of a new house before he buy it. He need

to consider several factors such as location, size, age, facilities nearby, and other information

of the house in order to make the best decision. He can collect such data and use them

to analyze the relationship between the price of the house and those information by using

statistical learning method. Then he can predict the price of a new house and make a

better decision. Another example of its application is spam filters in email services. As we

known, many email services are able to decide spam from emails received with high accuracy
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automatically. Building a spam classifier is based on choosing features from spam and non-

spam emails. For spam, the content of that email always contains the word like ‘buy’, ‘deal’

or something like that. If the word ‘discount’ occurs in the text, this email is more likely to

be spam. However, if my name appears in a piece of email, it is probably non-spam, because

the sender has already known who I am. According to the number of those sensitive words

occur in email, the computer can classify the emails to non-spam and spam.

From previous two examples, we can find a common point in both of them: the output

has been told either a real number or a category labeled. However, in the real world, a lot

of unlabeled data need to be classified into different groups for some special cases. Speech

recognition and social network analysis in Facebook are examples for this type of statistical

learning problem.

According to previous discussion, there are two major kinds of problems in statistical

learning and machine learning: supervised learning and unsupervised learning.

4.2 Supervised Learning

Supervised learning refers to the type of machine learning problem whose goal is to infer

a model from labeled data. For instance, the examples from last section, we know what

the output is. In the housing price case, the output is a real number. In the spam filters

case, the output is labeled category: non-spam and spam. Therefore, there are also two

types of problems in supervised learning depending on value of output. When predicting a

continuous value output, we call this case a regression problem. Another type of problems

has been termed a classification problem if the output is discrete.

All in all, if the problem is to study a labeled dataset in which a dependent or target
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variable (Y) is always provided given a set of independent variables (Xs), it can be called a

supervised learning problem. A supervised learning algorithm studies the training data and

provides prediction for any new sets of independent variables. It can be furthered divided

into a classification or a regression problem based on the type of the target variable. If the

target variable is a numeric value, it is called a regression problem. Linear regression is one

of the most common regression algorithms, which tries to minimize the square error between

the predicted value and the true target variable. If the target variable is a categorical value,

in which case you are trying to classify each input into one of the known classes, it is a

classification problem. There are a wide range of classification algorithms including naive

Bayes, decision tree, support vector machine and so on. Supervised learning requires data

to be divided into training and testing dataset or use other cross-validation methodologies

to prevent over-fitting, to decide which algorithm to use and to tune the model parameters.

Such evaluation of accuracy or error is unique to supervised learning.

4.3 Unsupervised Learning

On the other hand, if the model is only trained on independent variable (such data is not

labeled) and the purpose of the model is to learn the structure or relationship between

different observations (rows) or different variables (columns), it is called an unsupervised

learning problem. One of the most common unsupervised learning is clustering in which you

are trying to group observations into different clusters in order to maximize the difference

between clusters and to minimize the difference within each cluster, and in this way to learn

the structure of the data. Another common usage of unsupervised learning is to extract

hidden information from the dataset to explain the variance in the data, such as Principle
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Component Analysis, component analysis and singular value decomposition. Since the data

is unlabeled, there is no concept of evaluating the model based on the accuracy or the error.

Sometimes it requires domain knowledge to decide which is the most suitable unsupervised

learning model.

4.4 Introduction of SVM

Support Vector Machine (SVM), which is the algorithm of separating data with a wide gap,

was first introduced by Bernhard E. Boser [6]. It is a popular supervised learning algorithm

for classification problem.

4.4.1 Basic Concepts

For binary case, the input of the data can be labeled as two classes which are negative and

positive examples. SVM can determine a hyperplane separating those data into two groups.

This hyperplane is an optimal decision boundary with a large gap to classify two classes

examples. We denote the data xi ∈ Rn, i = 1, 2, 3, ...., l, labeled by yi ∈ {−1,+1} and try

to create a decision function f(x) to divide those data in the high dimension space.

Fig. 4.1 is an example of binary SVM classifier. f(x) = wTx+ b is the decision function.

The hyperplane

{x : f(x) = wTx+ b = 0} (4.1)

separates the data into two groups: the points above the hyperplane are negative examples

labeled by -1 and the points under the hyperplane are positive examples labeled by +1.
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Figure 4.1: Binary SVM classifier

4.4.2 The Optimal Margin Classifier

In general, there are a lot of separating hyperplanes which can be found between two different

classes in the space. The goal is to find the separating hyperplane that maximizes the margin,

since it can predict new data with a very high accuracy.

Mathematically, the distance of i-th data piont from wTx+ b = 0 is

di =
|wTxi + b|

||w|| =
yi(w

Txi + b)

||w|| (4.2)

Comparing Fig. 4.1 and Fig. 4.2, there is a hyperlane with a large margin in second

figure. Obviously, the smallest distance between the positive and negative examples is 2
||w||

.

We try to maximize 2
||w||

which is equal to minimize ||w||2

2
. Thus, the objective function should
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Figure 4.2: Optimal Margin

be

min
w,b

1

2
||w||2 (4.3)

s.t. yi(wxi + b) ≥ 1 (4.4)

From the knowledge of logistic regression, the probability that y = +1 given x is

Pr(y = 1|x) = 1

1 + exp(Af(x) +B)
(4.5)

Thus, if yi(wxi+b) ≥ 1, the probability that y = +1 is very high. Equally, the probability

that y = 1 is very high when yi(wxi+ b) ≤ 1. That is the reason why we use yi(wxi+ b) ≥ 1

instead of yi(wxi + b) ≥ 0 in order to strengthen the confidence. We can get the optimal

margin classifier from its solution.

In order to solve this problem, we construct the Lagrangian with the Lagrange multiplier
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λ ≥ 0:

L(w, b, λ) =
1

2
||w||2 −

m
∑

i=1

λi[yi(wxi + b)− 1] (4.6)

Then take the partition differential of L respect to w, b

d

dw
L(w, b, λ) = w −

m
∑

i=1

λiyixi = 0 (4.7)

We get

w =

m
∑

i=1

λiyixi (4.8)

d

db
L(w, b, λ) =

m
∑

i=1

λiyi = 0 (4.9)

Plugging the equation (4.7) and equation (4.8) into equation (4.5) and simplify, we can get

the dual problem

max
λ

n
∑

i=1

λi −
1

2

m
∑

i=1

m
∑

j=1

λiλjyiyjx
T
i xj (4.10)

Subject to

0 ≤ λi ≤ C for i = 1, 2, 3, ...., n (4.11)

w can be got by equation (4.6), since we know the value of λ. Furthermore, the decision

function f(x) would be

f(x) = sgn(

m
∑

i=1

λiyix
T
i xi + b) (4.12)

The x in equation (4.12) is the input which we want to classify.

4.4.3 Kernels

The application of SVM in real-world problems is more complicated than what we discussed

before, because real-world would not have such clean data and perfect assumptions. In

most cases, as Fig. 4.3 shows, the separating hyperplane is non-linear, since positive and
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Figure 4.3: Linear and nonlinear classifier.

negative examples have overlaps. In order to solve those problems, a more efficient non-linear

classifier, kernels, will be introduced.

There are several kernel functions such as sigmoid kernels, polynomial kernels, and Gaus-

sian radials basis kernels. Gaussian radial basis function (RBF) is powerful and widely used.

It is defined as:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0 (4.13)

In addition, if there is a feature Φ extracted from the data, the kernel would be

K(xi, xj) =< Φ(xi),Φ(xj) > (4.14)

Replacing the xT
i xj in function (4.12) with K(xi, xj), we can obtain the non-linear separating

hyperlane which cuts data space into two parts. Thus, the final decision function f(x) would

be equation (4.15).

f(x) = sgn(
m
∑

i=1

λiyiΦ(xi)
TΦ(xi) + b) (4.15)
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4.4.4 SVM Parameters

Both C and γ are important parameters which affects the classification accuracy of the SVM

model. The parameter C balances the relative weighting between two goals of ensuring

that most examples have functional margin at least 1 and of making the ||w||2 small. If

the parameter C is very large, the hypothesis will have a low bias and a high variance,

which means the hypothesis will be over-fitting. On the other hand, if the parameter C

is very small, the hypothesis will have a lower variance and a high bias, which means the

hypothesis will be under-fitting. For parameter γ, the hypothesis will have a low bias and a

high variance and the features are less smooth when γ is large. If the parameter γ is small,

the hypothesis will have a low variance and a high bias and the features are more smooth.

In this thesis, cross validation and iterative grid search techniques are used in order to reach

the best optimal parameter pair C and γ. In general, all data should be divided into two

groups for training and testing. Training data is used to establish SVM model including

parameter pair C and γ. In the search, the values of C and γ are bounded in the same sets

{10−4, 10−3, · · · , 102, 103}. In order to get the optimal parameter pair C and γ, we perform

the 4-fold cross validation. We cut all training data into 4 groups with equal size. Then use

three of them to train the model and use the rest of them to test. Thus, for any combination

of C and γ, there is an accuracy corresponding. The best parameter pair C and γ are picked

with the best accuracy.
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4.5 Muli-class Classification

All have been discussed above is in binary case whose output is labeled into two classes.

However, multi-class SVM is designed to classify three or more categories. Suppose k cate-

gories need to be classified, we train k SVMs. Each one distinguish y = i with the rest, for

i = 1, 2, 3, ..., k. We can get w(1), w(2), ..., w(k) and pick class i with largest fi(x) = w(i)Tx+ b.

In the future work, the movement data that have been used above would be separated

in 3 groups corresponding to non-activation, thumb and pinky. We will treat the movement

of thumb and pinky as activation in order to transfer the problem to binary case.

4.6 Application of SVM on Movement Data

Obviously, the movement data is nonlinear. To demonstrate the performance of the pro-

posed method, we will use support vector machine with Gaussian kernels to analyze 667

movement trials collected by the procedure given in the previous section. In our method,

the input (X) of SVM is the mean frequency and slope of auto-correlation function of

energy from the first 3 IMFs among 9 axis vector defined in the previous section, X =

[Xxa, Xya, Xza, Xxg, Xyg, Xzg, Xxm, Xym, Xzm]. The output (y) is positive (y = 1) when the

pinky moved. On the other hand, y is negative (y = 0) when the thumb moved. In activation

and non-activation case, y is positive (y = 1) when the the type of movement is non-activation

and y is negative (y = 0) when the the type of movement is non-activation. We will compare

prediction accuracies using this feature with those using different combinations of elements

in it to show the proposed feature is superior than the other features.
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Chapter 5

Experiment Result

5.1 Classification of Pinky and Thumb

We use our feature X which is a 1× 634 vector

X = [Xxa, Xya, Xza, Xxg, Xyg, Xzg, Xxm, Xym, Xzm]

as input for SVM. For each axis, the feature is

Xl = [mf (1), R1(10), ..., R1(30), mf(2), R2(10), ..., R2(30), mf(3), R3(10), ..., R3(30)]

Secondly, we choose 80% data (Ntrain = 533) to train model and the rest 20% data

(Ntest = 134) to test. For 5-fold cross validation, cutting all data into 5 parts. We use each

of them for testing and others for training. That means we did 5 tests whose training data

includes 244 thumb trials and 289 pinky trials and testing data includes 62 thumb trials

and 72 pinky trials. Also, for the elements from the feature, we use each one of them and

then combine them together in order to find average error for model complexity. In the

experiment, the training data are randomly selected and the result changed with different

feature combinations. Because the vector [R1(10), ..., R1(30)] represents the slope, we treat

it as an element and denote it as L1 = [R1(10), ..., R1(30)] which is a 1×21 vector. Similarly,

we have L2 = [R2(10), ..., R2(30)] and L3 = [R3(10), ..., R3(30)]. Thus, the whole feature is

Xl = [mf (1), L1, mf(2), L2, mf(3), L3]
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Figure 5.1: Cross Validation

There are 6 elements in the feature which are mf (1), L1, mf(2), L2, mf (3), and L3, so

62− 1 = 63 combinations can be got from them. The result is shown on the Appendix A. In

that table, we denote the prediction error rate of pinky as ep and the prediction error rate

of thumb as et.

Comparing all of the 63 combinations, we found that the accuracies from some combina-

tions are higher than others. Next, we perform best subset selection by calculating accuracy

for each possible combination of the 6 elements in the feature. Firstly, if a new feature just

has one element, there are 6 possible combinations. Calculate accuracy for all of them and

choose the highest one. Secondly, if a new feature has two elements, there are

(

6

2

)

= 15

possible combinations. Calculate accuracy for all of them and choose the highest one, and

so forth. The cross validation curve shows on Fig. 5.1
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The best accuracy from the simulation results is 93.28% from the feature

Xl = [mf (1), L1, mf(2), L2, mf(3), L3]

The confusion matrix in this case is shown on Table 5.1.

Confusion matrix(%)
Actual label

pinky thumb

Prediction
pinky 93.3 5.3

thumb 7.9 94.7

Table 5.1: Confusion matrix using all features

Now, we try to compare this result with the feature not using HHT. If we use original

data as the feature which is

X = [xT
a (t), y

T
a (t), za(t), x

T
g (t), y

T
g (t), z

T
g (t), x

T
m(t), y

T
m(t), z

T
m(t)]

The accuracy from simulation result is 76.53% and the confusion matrix is shown on Table

5.2.

Confusion matrix(%)
Actual label

pinky thumb

Prediction
pinky 73 21

thumb 27 79

Table 5.2: Confusion matrix using original data
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If we still use the slope from the auto-correlation function as the feature without HHT.

The feature is

Xl = [R(10), R(11), ..., R(29), R(30)]

The accuracy from simulation result is 87.32% and the confusion matrix is shown on Table

5.3.

Confusion matrix(%)
Actual label

pinky thumb

Prediction
pinky 85 11

thumb 15 89

Table 5.3: Confusion matrix without HHT

5.2 Classification of Activation and Non-activation

Now, we use the same algorithm and method to classify activation and non-activation move-

ment. Due to the fact that the data from different people, we need to analyze separately.

The results listed in this section using the data (N1 = 374) from the first candidate. The

results from second candidate is similar.

5.2.1 Feature Extraction

We still try to find the significant difference from Hilbert Spectrum between different classes.

Fig. 5.2 is the Hilbert Spectrum from non-activation and activation. From those figures, we

can get that the frequency (first 3 IMFs) from non-activation is not obviously different from

the frequency (first 3 IMFs) from activation. So the mean of frequency from first 3 IMFs
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Figure 5.2: Hilbert Spectrum of Movement from Thumb and Pinky

is not a good features in this case. However, we still try computing the auto-correlation

function of the energy from first 3 IMFs in different classes.

Fig. 5.3 is the auto-correlation function from activation and non-activation. From those

figures, we can get the slope (first 3 IMFs) from non-activation is higher than the slope (first

3 IMFs) from activation. So we decide use the points from R(10) to R(30) from first 3 IMFs,

Xl = [L1, L2, L3] as the feature.
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Figure 5.3: Auto-correlation of Energy of Movement from Thumb and Pinky
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5.2.2 Experiment Result

Now we get the feature X which is a 1× 63 vector

Xl = [L1, L2, L3]

as our final feature.

Now, we use our feature X as input for SVM, and we use 80% data to train model and

rest 20% data to test. For 5-fold cross validation, cutting all data into 5 parts. We use

each of them for testing and others for training. Also, for the elements from the feature,

we use each one of them and then combine them together in order to find average error

for model complexity. In the experiment, the training data are randomly selected and the

result changed with different feature combinations. There are 3 elements in the feature which

are L1, L2, and L3, so 7 combinations can be got from them. The result is shown on the

Appendix B.

Comparing all the 7 combinations, we found that the accuracies are almost 100% in most

cases. The best accuracy from that simulation results is 100% and the false alarm PFA = 0,

PD = 1 from the feature

Xl = [L1, L2, L3]

The confusion matrix is shown on Table 5.4.
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Confusion matrix(%)
Actual label

activation non-activation

Prediction
activation 100 0

non-activation 0 100

Table 5.4: Confusion matrix using all features

Now, we try to compare this result with the feature not using HHT.

If we use original data as the feature which is

X = [xT
a (t), y

T
a (t), za(t), x

T
g (t), y

T
g (t), z

T
g (t), x

T
m(t), y

T
m(t), z

T
m(t)]

The accuracy from simulation result is 81.63% and the false alarm PFA = 0.29, PD = 0.99.

The confusion matrix is shown on Table 5.5.

Confusion matrix(%)
Actual label

activation non-activation

Prediction
activation 99 29

non-activation 1 71

Table 5.5: Confusion matrix using original data

If we still use the slope from the auto-correlation function as the feature without HHT.

The feature is

Xl = [R(10), R(11), ..., R(29), R(30)]

The accuracy from simulation result is 98% and the false alarm PFA = 0.02, PD = 1. The

confusion matrix is shown on Table 5.6.
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Confusion matrix(%)
Actual label

activation non-activation

Prediction
activation 100 2

non-activation 0 98

Table 5.6: Confusion matrix without HHT
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Chapter 6

Conclusions and Future Work

This chapter will discuss some conclusions from the results and give some advice for future

work.

6.1 Conclusions

Up to now, the main object of this project is to extract feature from data and build the

algorithm to classify the two types of finger movement. According to the non-linearity and

non-stationary of movement signals, we presented an automatic classification technique using

Hilbert-Huang Transform. Hilbert-Huang transform includes the empirical mode decompo-

sition method and the associated Hilbert spectral analysis. The feature which was used get

accuracy 93% classification of thumb and pinky and accuracy 100% classification of non-

activation and activation with a low false alarm. The result is much better than extracting

the feature without using HHT. Thus, the Hilbert-Huang transform based method can be

used as an effective movement classification. The process of empirical mode decomposition

(EMD) can mine data deeply. It can analyze the correlation and the feature hiden among

the data.

Moreover, the classification method, support vector machine (SVM) with Gaussian kernel

is a effective way to realize binary classification. From the cross validation curve, we can

figure out the error decreases as the model complexity increases. That means more elements
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in feature, more accuracy we will get.

6.2 Future Work

Due to the result we got previously, the expectation is that future work on finger movement

classification would obtain better performances using more advanced algorithm such as deep

learning to achieve higher accuracy and classify more than two types of movement with

significant features. This way, we can obtain more information just from finger movements

helping severe disability people communicate with others in their daily life.
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Chapter 8

Appendix

Appendix A: Results of different combination of feature

Feature Accuracy(%) ep(%) et(%)

X = [mf (1)] 86.3 12.3 14.4

X = [L1] 87.2 13.8 11.5

X = [mf (2)] 89.5 13.7 8.7

X = [L2] 88.8 12.5 9.4

X = [mf (3)] 86.4 13.8 14.2

X = [L3] 87.3 8.2 18.1

X = [mf (1), L1] 90.8 6.9 11.5

X = [mf (1), mf(2)] 88.5 12.7 10.9

X = [mf (1), L2] 88.2 11.7 9.6

X = [mf (1), mf(3)] 89.1 12.5 9.0

X = [mf (1), L3] 89.5 13.7 8.7

X = [L1, mf (2)] 88.9 13.7 8.1

X = [L1, L2] 88.7 12.5 9.0

X = [L1, mf (3)] 90.2 12.5 92.3

X = [L1, L3] 88.9 12.8 8.9
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Appendix A (Cont.)

Feature Accuracy(%) ep(%) et(%)

X = [mf (2), L2] 87.2 13.8 11.5

X = [mf (2), mf(3)] 88.5 10.6 89.2

X = [mf (2), L3] 87.3 8.2 18.1

X = [L2, mf (3)] 89.7 12.5 7.8

X = [L2, L3] 88.8 12.5 9.4

X = [mf (3), L3] 89.5 12.7 9.1

X = [mf (1), L1, mf (2)] 90.1 11.3 8.3

X = [mf (1), L1, L2] 90.8 6.9 11.5

X = [mf (1), L1, mf (3)] 88.9 12.7 9.1

X = [mf (1), L1, L3] 88.5 13.7 9

X = [mf (1), mf(2), L2] 91.0 8.2 9.9

X = [mf (1), mf(2), mf(3)] 90.5 7.3 11.8

X = [mf (1), mf(2), L3] 89.5 11.1 9.9

X = [mf (1), mf(2), mf(3)] 91.7 6.8 9.9

X = [mf (1), L2, mf (3)] 89.7 12.5 7.8

X = [mf (1), L2, L3] 90.1 11.3 8.3

X = [mf (1), mf(3), L3] 89.5 12.7 9.1

X = [L1, mf (2), L2] 90.9 8.3 9.9
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Appendix A (Cont.)

Feature Accuracy(%) ep(%) et(%)

X = [L1, mf (2), mf(3)] 90.9 8.3 9.8

X = [L1, mf (2), L3] 91.0 8.2 9.9

X = [L1, mf (2), L3] 90.2 4.2 16.4

X = [L1, L2, mf(3)] 89.5 12.5 8.2

X = [L1, L2, L3] 90.3 12.3 6.6

X = [L1, mf (3), L3] 91.3 8.3 9.2

X = [mf (2), L2, mf (3)] 89.6 11.3 8.3

X = [mf (2), mf(3), L3] 89.7 12.5 7.8

X = [L2, mf (3), L3] 90.1 11.3 8.3

X = [mf (1), L1, mf (2), L2] 91.9 8.2 8.1

X = [mf (1), L1, mf (2), mf(3)] 87.3 10.9 14.8

X = [mf (1), L1, mf (2), L3] 91.7 6.9 9.9

X = [mf (1), L1, L2, mf(3)] 91.0 8.2 9.9

X = [mf (1), L1, L2, L3] 92.0 8.2 8.1

X = [mf (1), L1, mf (3), L3] 89.5 10.3 10.7

X = [mf (1), mf(2), L2, mf (3)] 91.7 6.9 9.9

X = [mf (1), mf(2), L2, L3] 90.3 10.8 8.5
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Appendix A (Cont.)

Feature Accuracy(%) ep(%) et(%)

X = [mf (1), mf(2), mf(3), L3] 91.7 6.9 9.9

X = [mf (1), L2, mf (3), L3] 90.4 9.9 9.4

X = [L1, mf (2), L2, mf(3)] 90.5 7.3 11.8

X = [L1, mf (2), L2, L3] 92.5 8.5 6.2

X = [L1, mf (2), mf(3), L3] 89.3 12.5 7.8

X = [L1, L2, mf(3), L3] 91.8 6.8 9.9

X = [mf (2), L2, mf (3), L3] 91.7 6.9 9.9

X = [mf (1), L1, mf (2), L2, mf(3)] 93.2 8.2 4.2

X = [mf (1), L1, mf (2), L2, L3] 92.0 9.1 6.8

X = [mf (1), L1, mf (2), mf(3), L3] 91.1 8.3 9.6

X = [mf (1), L1, L2, mf(3), L3] 93.2 9.5 4.3

X = [mf (1), mf(2), L2, mf (3), L3] 93.2 8.2 4.2

X = [L1, mf (2), L2, mf(3), L3] 93.1 8.1 5.7

X = [mf (1), L1, mf (2), L2, mf(3), L3] 93.3 7.9 5.3
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Appendix B: Results of different combination of feature

Feature Accuracy(%) PFA(%) PD(%)

X = [L1] 98.7 2.8 1

X = [L2] 99.1 1.7 1

X = [L3] 98.9 2.1 1

X = [L1, L2] 1 0 1

X = [L1, L3] 1 0 1

X = [L2, L3] 1 0 1

X = [L1, L2, L3] 1 0 1
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