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ABSTRACT 

 

Operating system (OS) identification tools, sometimes called fingerprinting tools, are 

essential for the reconnaissance phase of penetration testing.  While OS identification is 

traditionally performed by passive or active tools that use fingerprint databases, very little work 

has focused on using machine learning techniques.  Moreover, significantly more work has 

focused on IPv4 than IPv6.  We introduce a collaborative neural network ensemble that uses a 

unique voting system and a random forest ensemble to deliver accurate predictions.  This 

approach uses IPv6 features as well as packet metadata features for OS identification.  Our 

experiment shows that our approach is valid and we achieve a neural network ensemble average 

accuracy of 85% over 100 sets of neural networks with a highest accuracy of 96%.  Furthermore, 

we explore the impact of additional training for poor neural network accuracy, and we show that 

our system can achieve an average accuracy of 93%, which is an 8% improvement over the 

previous approach.  A random forest of 30 decision trees attains an average accuracy of 93.6% 

and a best accuracy of 96% when given a dataset of Windows and Linux packets.  Finally, as 

packets from the Mac OS is introduced into the dataset, the random forested performed with an 

average accuracy of 89.6% and a best accuracy of 93.2%. 
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1.  INTRODUCTION 

1.1  Motivation 

Internet Protocol version 6 (IPv6) is the most recent numbering system that provides 

more IP addresses than Internet Protocol version 4 (IPv4).  The growing need for IPv6 is slow 

but inevitable with rising IP address consumption.  The new address space uses eight sets of four 

hexadecimal addresses separated by a colon (:) like: xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx 

(x would be a hexadecimal value) providing up to 3.42 x 1038 total addresses.  IPv6 simplified 

header structures lead to faster routing compared to IPv4.  Different operating systems (OS) have 

different implementations of IPv6 that exhibit slight variations in the protocol.  These features 

can be used to do passive identification of the operating system, which is called OS 

identification.  

OS identification is important to network security with its relationship to the 

reconnaissance phase of penetration testing.  Knowing the OS is essential for attackers to 

accordingly use tools and programs when gaining access to their targets.  The network layer of 

the Open Systems Interconnection (OSI) model does not contain any explicit information about 

the operating system of the network device generating traffic.  However, certain features are 

unique to each operating system.  

Machine learning focuses on the ability for computers to learn without being explicitly 

programmed.  This is achieved with a combination of algorithms, simulated neural networks, and 

ensembles of learning methods for classification.  These simulated neural networks are 

intertwined weights that adjust after passing in features (input) transformed by an activation 

function and taking the difference between the actual labels and the prediction (output).  A 

greedy algorithm known as backpropagation provides a fast solution to pattern recognition in this 
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supervised learning experiment.  Random forests provide an even faster solution that rely on a 

multitude of decision trees as an ensemble to make fast predictions with controlled variance. 

Present passive OS identification methods match the gathered network traffic with 

previously developed IPv6 signature databases.  This thesis is an extension to a previous work 

that applied neural networks to fingerprint IPv6 packets from Windows and Linux OSs [18]. The 

extensions to [18] include using decision trees, random forests, and Mac OS packets.  The 

approach in this work is to use supervised machine learning techniques and random forests to 

learn the slight variations in the IPv6 network implementations of different OSs.  

1.2  Objective 

The objective of this work is to identify operating systems by passively observing the 

IPv6 protocol packets, unlike active techniques that send packets to the target system.  This 

passive identification of OSs uses multiple machine learning algorithms such as neural networks 

and random forest to learn the implementation differences of the IPv6 protocol stacks in different 

OSs for identification.  Then, algorithms are evaluated by their accuracy and the speed that they 

can process the packets. 

1.3  Approach 

The process is to identify candidate machine learning algorithms, gather IPv6 traffic from 

a network with computers running known operating systems, identify IPv6 features, and 

test/verify.  First, the limits and capabilities of current machine learning algorithms are explored 

including neural networks, decision trees, and random forests.  For example, different neural 

network configurations perform better with different problems, such as image recognition, 

pattern prediction, or robots that mimic actions observed and adjusts to various environments 
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[24, 7, 2].  Secondly, IPv6 traffic is gathered from a network with computers running known 

operating systems to provide a realistic dataset that contains IPv6 traffic.  Then, IPv6 features are 

identified to determine how effective the features can be used to identify operating systems.  

Finally, part of the dataset is used to train the chosen machine learning algorithms and the 

remaining portion of the dataset is used to test the accuracy and speed of the machine learning 

algorithms.  

1.4  Organization of this Thesis 

 The rest of the paper is organized as follows: Section 2 covers the foundation of IPv6 

and the contrast to IPv4, as well as an overview of OS identification and machine learning 

techniques.  The methods for performing passive OS identification are discussed in Section 3.  

Section 4 presents the results comparing a variety of setups.  Conclusions and future work are 

discussed in Section 5.  
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2.  BACKGROUND 

2.1  Key Concepts 

A basic understanding of the following topics is important to comprehend the work in 

Section 3.  First, an overview of IPv6 is discussed and compared with IPv4.  Then, we cover 

some basics on the Stateless Address Autoconfiguration mechanism. Afterwards, an overview of 

OS identification and fingerprinting is presented.  Lastly, machine learning techniques used in 

this work are introduced. 

2.1.1  Comparison of IPv4 and IPv6 

While the IPv4 address space contains just over four billion unique addresses, the 

availability of these addresses is quickly becoming scarce.  IPv6, the successor to IPv4, increases 

the address space to three hundred and forty undecillion (undecillion = 1036) addresses by 

changing the 32-bit address to a 128-bit address.  Along with the larger addressing space, IPv6 

brings other technical benefits.  As shown in Figure 1, the format of the IPv6 header is designed 

to be simpler than the IPv4 header.  The IPv6 header reduces the fourteen fields in the IPv4 

header to eight fields. While seven fields are removed from the IPv4 header, the functionality of 

these fields are combined into the next header field of the IPv6 header.  The next header field is 

optional, yet can chain additional headers if the packet requires additional options or 

information.  Four of the field names and positions have changed and a new field, known as the 

flow label, is introduced.  The flow label is a quality of service mechanism to avoid congestion 

of the network [1].  
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Figure 1. IPv4 Header and IPv6 Header Comparison [23] 

2.1.2  Neighbor Discovery Protocol (NDP) 

The Neighbor Discovery Protocol (NDP) is essential for any host to connect and to stay 

on a Local Area Network (LAN) when using IPv6.  There are five Internet Control Message 

Protocol (ICMP) packet types: Router Solicitation (RS), Router Advertisement (RA), Neighbor 

Solicitation (NS), Neighbor Advertisement (NA), and Redirect.  There is constant 

communication using these packets on the LAN for host machines to know its neighbors and 

routers.   

As introduced in RFC 4862, IPv6 Stateless Address Autoconfiguration (SLAAC) is a 

mechanism that requires no manual configuration in hosts, minimal configuration for routers, 

and no additional servers [25].  SLAAC provides a new stateless method that off-loads router 

computing to the host.  SLAAC relies on the NDP features such as Duplicate Address Detection 

(DAD), router discovery, prefix discovery, parameter discovery, address resolution, next-hop 

determination, and host reachability.  The SLAAC process is shown in Figure 2. 

When a new host uses SLAAC to join a network, a multi-cast NS packet containing a 

generated address is sent on the LAN.  The solicitation message is used to determine whether 

any other host currently uses the address.  If a host replies with a NA packet, then the new host 
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cannot use the proposed address and must try again.  Otherwise, the proposed address is assigned 

to an interface.  Then, a RS packet is sent on the LAN to discover any routers and request any 

necessary parameter or prefix information for generating network traffic.  While a few packet 

header fields have some necessary values, there is some flexibility on a subset of IPv6 header 

fields.  These field values are determined by the OS.  While there is no harm in having different 

values for these header fields during implementation, it does give these packets unique 

characteristics. 

 

Figure 2. SLAAC Process 
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2.1.3  Operating System Identification 

Operating system (OS) identification is important to penetration testing as this 

information can help the attacker predict known vulnerabilities.  Any layer of the Open Systems 

Interconnection (OSI) model does not contain any explicit information about the operating 

system of the network device generating traffic.  However, network tools can be used to 

distinguish OSs based on unique features within network packets.  These OS identification tools 

can be categorized as either passive or active. 

Passive OS identification tools perform a packet analysis on captured network traffic by 

looking for subtle differences between packets.  The most popular passive tools include p0f, 

Satori, and NetworkMiner.  These tools have several common techniques based on analyzing IP 

TTL/hop limit values, IP ID values, TCP window size, TCP options, DHCP requests, ICMP 

requests, and observing many other particular fields within a packet [15].  These tools take a 

combination of values to form a signature.  Then, this signature is compared to a database that is 

constantly growing with OS signatures.  These passive tools do not probe the victim host and do 

not generate network traffic.  This can make for detection of passive OS identification very 

difficult. 

Active OS identification tools probe the victim host and compare the response to a 

database.  Active OS identification tools are usually quicker than passive OS identification tools 

as they can actively query the victim for packets, but can be easily detected as these active tools 

are generating network traffic.  The most popular active OS identification tool is Nmap.  Nmap 

sends a series of TCP and UDP packets to the victim host and examines the response to generate 

a signature.  Like passive OS identification tools, the signature is compared to a database 

containing several thousand OS signatures. 
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2.1.4  Machine Learning 

Machine learning focuses on the ability for computers to learn without being explicitly 

programmed.  Through a combination of algorithms and data structures, machine learning has 

proven to be an effective method for classifications, as shown by [10, 14].  This work uses 

machine learning ensembles based on artificial neural networks and random forests.  Artificial 

neural networks (ANNs) are intertwined weights that adjust after passing in features (input) 

transformed by an activation function and taking the difference between the actual labels and the 

prediction (output).  The ANNs of this work use a greedy algorithm known as backpropagation 

which provides a fast solution to pattern recognition in this supervised learning experiment.  In 

addition, the ANNs’ hidden layers are changed often to represent complex models.  More details 

on the performance of neural networks can be found in [8, 16].  Random forests are comprised of 

multiple decision trees which are generated binary trees that pivot on the dataset features.  

Random forests make predictions based on a majority vote of the collection of decision trees.  

More details of the performance of random forests can be found in [20]. 

2.2  Related Work 

While the use of machine learning ensembles is being applied to multiple fields of 

application, it is important to acknowledge the work of others to acquire new perspectives, to 

prevent duplication of another work, and explore new approaches.  This section is a summary of 

the works reviewed relating to this thesis. 

2.2.1  Active OS Identification 

In [21], five algorithms from the popular data mining toolkit Weka are used to generate 

fingerprints to identify several OSs.  These algorithms include J48, JRip, random forests, support 
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vector machines (SVMs), and IBk.  The algorithms are applied to packet responses that were 

obtained from probing the hosts on the network.  This active approach uses carefully constructed 

TCP/IP packets designed to strengthen implementation differences between OSs.  The features 

of this work used multiple fields from the TCP/IP stack of IPv4 packets.  It is mentioned that the 

tool only used crafted IPv4 packets so the dataset consists of only IPv4 packets.  The work could 

be applied using IPv6 packets as the TCP/IP fields should mostly match, but this exploration was 

not mentioned.  This work is based on [6] where conjunctions and decision lists were used to 

generate fingerprints.  The exploration of using IPv6 packets is a central goal of this thesis that 

differed from this work in OS fingerprint generation. 

Another work [22] uses neural networks for operating system detection between 

Windows versions or between several OSs.  When distinguishing between Windows versions, a 

3-layer supervised learning neural network uses 413 features, 42 neurons for the hidden layer, 

and 25 outputs.  Remote Procedure Call (RPC) query response packets contain unique identifiers 

that correspond to details of programs installed on the remote host.  These identifiers are used as 

the 413 features, while each version and edition of Windows and service pack of Windows 

correspond to each of the 25 outputs.  While the neural network is similar to a neural network 

setup in this thesis, our neural network has considerably less neurons across all layers.  Training 

of this neural network takes 14 hours, while the training of our neural network ensemble takes 

several seconds due to the smaller size of each layer.  In addition to using neural networks, this 

work continues to use a combination of signature databases and conditioned analysis to further 

refine their system, unlike the work in this thesis that does not use any databases. 

Another active approach uses Nmap to fingerprint the OS of IPv6 packets [11].  There are 

154 crafted network packets that are used to probe the hosts on the network.  These hosts will 
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respond and those response packets will be analyzed for features.  Their dataset consisted of 26 

different OSs and versions.  Similar to common fingerprinting techniques, the work analyzes 

several TCP fields for OS identification, but also includes the use of ICMPv6 and NS packets to 

determine response implementation differences when probing the hosts.  The IPv6 features used 

are total packet length, value of the traffic class, and guessed initial hop limit.  The machine 

learning technique used in this work is a L2-regularized logistic regression linear model.  This 

work decided to use the traffic class as they are also trying to identify OSs remotely, while this 

thesis does not use the traffic class as our dataset is reliant on the local area network SLAAC 

process which does not require the traffic class for any component of the communication.  

Additionally, 154 network packets probing each host can be notable, which is the drawback to 

active approaches.  Furthermore, the work decided to use a linear model, but arguably the 

number of fields used and data are too complex to conveniently fit into a linear model.  They 

were able to achieve 70.2% accuracy, but this could have been improved by using a more 

complex model that can better fit to the data such as neural networks or random forests.  

In [9], IPv4 OS fingerprinting methods are applied to IPv6 along with newly enabled 

methods to confirm that fingerprinting methods did not fundamentally change.  Some methods 

that were common for both protocols were identification through fragmentation flags, TTL or 

hop limit, and ICMP unreachable port messages.  Newly enabled methods mentioned include 

identification through IPv6 extension headers, MTU discovery, and NDP.  Eckstein references 

another work [4] that NDP has implementation differences between operating systems, but not 

enough to distinguish OS versions.  The work in [4] used several different OSs that are different 

with the OS versions used in this thesis, and took an active approach to generate fingerprints 

because NDP based passive IPv6 OS fingerprinting was determined to not be feasible.  However, 
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this thesis shows that NDP based passive IPv6 OS fingerprinting is feasible through the use of 

machine learning ensembles. 

2.2.2  Passive OS Identification 

Passive tools are constantly evolving in the research field [3] but lack the same level of 

interest as the amount of effort put into active tools.  A passive approach like [5] uses another 

machine learning algorithm, Naive Bayes classifier, to identify OSs based on TCP/IP fields.  

This approach used features from IPv4 packets such as Time To Live (TTL), presence of a Don't 

Fragment (DF) bit, TCP window size, SYN packet size, and TCP options.  Moreover, one goal 

of this work was to determine the number of hosts behind NAT devices, which will be obsolete 

in IPv6 as NAT will not be used and inapplicable.  Various approaches to OS identification, such 

as this one, use multiple fields of TCP, which is different from this thesis as the number of TCP 

fields used is kept to a minimum. 

The most popular tool used for passive OS identification is p0f [26].  The idea for this 

tool dates back to June 10, 2000, and is used in a variety of projects that perform passive attacks 

such as ettercap, Satori, pfsense, and PRADS.  Documentation of these projects often point out 

important IP header fields in the identification process, such as TTL, type of service, and flags 

set in the IP header.  Although some of these fields do transfer over in functionality and name 

change, such as TTL to Hop Limit, there is less mention of which IPv6 header fields are used in 

the OS fingerprinting process.  Furthermore, p0f has not been worked on in 3 years since 2014, 

accordingly to its GitHub [27].  Therefore, as new OSs are released, updates to its signature 

database is required to keep a high OS identification accuracy but has not been apparent on either 

the host website or GitHub.  p0f and other passive tools that depend on signature databases are 
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reliant on constant development, whereas machine learning ensembles can use the same or 

similar configurations to determine any additional OSs. 

2.2.2  Machine Learning in other IPv6 areas 

Machine learning techniques have been applied to other IPv6 areas, such as [12].  An 

unsupervised machine learning DBSCAN algorithm is used for clustering active IPv6 addresses 

to generate potentially valid addresses.  While the IPv6 address space is huge, this approach 

achieved a 40% success rate of generating valid addresses.  The dataset is composed of 3.5 

billion IPv6 addresses and no additional features.  At first, IPv6 addresses were almost 

considered as features for this thesis, but the educated outcome from generating IPv6 addresses 

is that the characteristics of IPv6 addresses can help predict other IPv6 addresses but not 

necessarily any other characteristics that relate to operating system implementation differences.  

Their dataset was split into servers, routers, and clients, but all three of these sets can have 

multiple options for OSs, so it did not seem viable to use an IPv6 address as part of OS 

identification. 
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3.  APPROACH 

3.1  Methodology 

The methodology is to choose and compare machine learning algorithms to identify an 

operating system (OS) based upon a set of features that can be extracted by passive observation 

of IPv6 network traffic.  The chosen machine learning algorithms for this work are neural 

networks, neural network ensemble, decision trees, and random forests.  Then, IPv6 network 

traffic is gathered from a computer network that has computers running known OSs.  The 

computer network traffic is analyzed to determine a set of features that are useful for identifying 

the OS.  Next, the machine learning algorithms are trained using a portion of the measured 

computer network traffic and tested on the remaining portion to determine how effective each 

algorithm performs.  The machine learning algorithms, data collection, feature selection, 

machine learning training and testing, and accuracy calculation are described below. 

3.1.1  Neural Network Ensemble 

A neural network ensemble consists of multiple neural networks as shown in Figure 3.  

Multiple neural networks predict the OS based upon features and then a voting scheme or 

another neural network is used to give the final identification based on the predictions from the 

neural networks.  In this work, the neural network ensemble determines the operating system of a 

packet by using an internal unanimous voting system.  Each neural network is configured 

diversely with various number of weights.  This design allows for the neural network ensemble 

to encompass more accurate predictions for different types of packets that have varying 

parameters.  
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Figure 3. Neural Network Ensemble 
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3.1.2  Decision Trees and Random Forests 

 Random forests make a prediction based on a collection of decision trees that provide 

individual votes for a prediction.  The random forest ensemble identifies the OS based on the 

prediction with the most votes.  Several layouts of random forests are implemented and 

compared to evaluate the optimal number of decision trees to identify the operating systems.  As 

shown in Figure 4, multiple decision trees give an OS prediction for any particular packet, and 

the random forest will make a prediction for the ensemble of decision trees based on which OS 

received the most votes. 

 

Figure 4. Random Forest 
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3.2  Data Collection 

Twenty dual-boot computers are used to collect the Linux and Windows IPv6 packets.  

Wireshark, an open source packet analyzer, is used by a laptop to capture all traffic.  The data 

collection setup is shown in Figure 5.  Although all the computers are connected to the same 

switch, without special configuration on the switch the laptop will only collect a portion of all 

traffic because NS and NA packets may be sent to a unicast address where only the sender and 

receiver can see that packet.  This is addressed by configuring the switch with a port that has 

mirroring enabled to send a copy of all traffic to the one port where the laptop is connected, 

allowing capture of any traffic that flows through the switch.  The router in this setup allows for 

a completion of the NDP and SLAAC between all hosts.  

 

Figure 5. Data Collection Setup 
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To ensure the capture of all packets during the NDP, the router and switch are turned off.  

There is a total of 50 computers, 20 dual-boot Windows/Linux computers and 30 Mac 

computers.  With so many computers, data is collected separately in sets of 10 computers.  As 

shown in Figures 6 and 7, ten computers are connected to the switch as well as the router and the 

collecting laptop which is connected by the yellow UTP cable.  All computers are booted to run 

the same OS and are on standby at the login screen to prevent additional services from starting 

and creating noise from application data.  Even without a user login, every machine will 

participate in the Neighborhood Discovery Protocol (NDP) to obtain an IPv6 address.  Once the 

setup is ready, the laptop begins capturing live network data using Wireshark.  Then, both the 

switch and router are powered on at the same time.  The packet collection is flooded with RA, 

RS, NA, and NS packets until each host, including the router, has assigned a link-local and 

global IPv6 address to an interface.  After a few minutes, the transmission of these packets slows 

down and then each computer will occasionally send a NS and NA packet to all neighbors to 

keep an updated list of all neighbors.  The setup and process is repeated with all computers 

booted with each OS, Windows, Linux, and Mac OS.  There are three datasets, Windows 10, 

Linux Ubuntu 16.04 LTS, and Mac OS X El Capitan version 10.11.6. 
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Figure 6. Data Collection Photo 1 

 Once data collection is complete, the pcap (packet capture) files contain more 

information than needed.  Using Wireshark’s filtering system, any non-IPv6 packets and any 

packets that originated from the link-local or global IPv6 address of the router and collecting 

laptop are removed.  Only packets that were sent from the fifty computers remain.  To use the 

packet information outside of Wireshark’s interface, the data is exported to a PDML XML file.  

In this format, the contents of each packet can be filtered using regular expressions.  After 

deciding which features are needed, which is discussed in Section 3.3, a parser program, coded 

specifically for this experiment, extracts the desired features from the PDML XML file and 

translates the requested information into an Attribute-Relation File Format (ARFF). 
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Figure 7. Data Collection Photo 2 

Table 1 categorizes the number of packets per OS and the number of packets from that 

OS that were used in training and testing of the machine learning models.  Theoretically, more 

packets from one OS would bias and overfit the model towards that OS.  This is not the case for 

the neural network model. The models require more packets from the Linux OS to reduce the 

false identification of Linux packets when compared to Windows packets.  Even with the 

inclusion of extra Linux packets, the model does not appear to overfit and favor a Linux 

prediction.  The majority of the packets used are ICMP packets from the NDP, with the 

remaining packets consisting of DHCPv6 solicitations from NDP, UDP standard queries, DNS 

queries, and errors.   
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Table 1. Number of Packets per OS 

OS Overall Average Training Set Average Test Set 

Windows 6,482 5,186 1,296 

Linux 9,494 7,595 1,899 

Mac 2,193 1,754 439 

Total 18,169 14,535 3,634 

 

3.3  Feature Selection 

The IPv6 header is shown in Figure 8.  Every header field in the IPv6 header was 

evaluated to be a possible feature for the machine learning models used for OS identification.  As 

the number of features increases, input nodes for neural networks will increase and decision trees 

will require more splits.  Increasing features can exponentially increase the run time and training 

time of both models.  Therefore, each feature is carefully considered as to whether the feature 

could potentially aid in the OS identification by IPv6 packets.   

Source address and destination address were taken out as features as these addresses are 

created based on either prefixes given by routers, derivatives of the MAC address on the network 

card, or the most likely case of being randomly generated as recommended in RFC 4941 [17].  

The version field indicates whether the packet is using IPv4 or IPv6 and this work is only using 

IPv6 packets for OS identification, so the version field is not necessary as a feature.  As 

described in RFC 6437 [1], the flow label can use a uniform pseudo-random generator to create a 

flow label value for a given transport session.  Randomly generated values will not aid in the 

identification of OSs, so the flow label field is not used as a feature.  The traffic class is a 
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prioritization feature in IPv6, but the data is comprised of packets from the NDP where no 

prioritization takes place and the value of this field is always zero, so the traffic class field is not 

used as a feature.  The three remaining fields that are used as features are the payload length 

field, next header field, and hop limit field. 

 

Figure 8. IPv6 Header 

Three features from the network layer may not be sufficient data for the machine learning 

models to distinguish OS characteristics.  Looking at the next layer of the OSI model, the 

transport layer, was under consideration, but after inspecting several packets there are many 

more protocols that had to be taken into consideration.  With multiple protocols, the fields within 

these protocols varied and the machine learning models would require an input from the field 

whether the field existed or not for any particular packet.  If the field did not exist, then the 

question was what to put as input for that field.  Inputting a “0” for a non-existent field is not 
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acceptable considering that a zero value still has value and can misrepresent the data.  With all 

these considerations, the next option was to explore the metadata of the packet, the frame 

pseudo-protocol, which is generated from Wireshark's pseudo dissector that does not show fields 

that actually appear from the packet, but are relevant to the packet [19].  Upon manual inspection 

of the metadata, there were a few fields that were subtlety different.  These fields include the 

packet size, the protocols used, and the transport layer used for a given packet.  These metadata 

fields were always present since the frame protocol is at the top of every protocol tree.  Knowing 

the contents of the transport layer may prove most useful, but just knowing the transport layer 

protocol used for a given packet was sufficient.  The final set of features used to do OS 

identification are listed in Table 2 below.  

The packet size is the size of the network packet in bytes.  The protocols feature is a 

string that lists all the protocols from the physical layer up to the application layer that are used 

in the packet.  The transport layer protocol feature is a string that shows the transport layer 

protocol used in the packet, which in this work is mostly ICMP and UDP.  The two previous 

features are considered categorical values and are enumerated before being used in the machine 

learning ensembles.  The IPv6 payload length is the length of the content in bytes, this does not 

include the size of the IPv6 header.  The IPv6 next header is an optional extension header that 

allows for additional IPv6 packet options.  The IPv6 hop limit is a counter that is decremented at 

every intermediate node before the destination.  The packet is discarded when this value reaches 

0.  Some protocols require this to be a specific value for certain messages to be valid, like the 

maximum value at 255. 
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Table 2. Feature Set 

Protocol Fields 

Frame (packet metadata) Packet Size (Numerical) 

Protocols within Packet (Categorical) 

Transport Layer Protocol (Categorical) 

Internet Protocol version 6 (IPv6) Payload Length (Numerical) 

Next Header (Numerical) 

Hop Limit (Numerical) 

 

3.4  Neural Network System 

The Java neural network toolkit used in this work is based on the open-source machine 

learning toolkit Waffles [13] to build an OS identifier.  The goal of this approach is to use a 

neural network to perform passive OS identification.  A neural network with a feed-forward 

backpropagation gradient descent using no hidden layers was first used to establish a model to 

perform OS identification with a small data set of roughly 2,000 packets containing only IPv6 

packets from the Windows OS and Linux OS.  Experimentation on the learning rates, 

momentum, activation functions, and additional hidden layers with varying sizes were used to 

determine the best configuration for learning IPv6 packets.  Figure 9 presents a neural network 

setup with one hidden layer using three neurons.  With a learning rate that is too small, the 

convergence may be very slow, while a high learning rate may cause the model to never 

converge.  The preferred learning rate was found to be 0.01 to balance these two issues.  

Momentum has a noticeable difference in accuracy.  Through several runs using a momentum 
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ranging from low momentum to high momentum it was empirically determined that a good 

momentum lies at 0.5.  Several activation functions were used such as the hyperbolic tangent 

function “tanh”, identity function, inverse tangent function “arctan”, logistic function, and 

rectified linear unit.  The tanh function was proven best with accuracy of OS identification, while 

the other activation functions gave poorer results in accuracy. 

 

Figure 9. Neural Network Layout 

After fine tuning the parameters, the average accuracy of the neural network was 

approximately 65% which is not satisfactory.  Adding a hidden layer of any number of units 

gave a slight decrease in average accuracy.  In order to determine how to improve this model, the 

gradient is analyzed as the model trains.  Through gradient analysis, the model showed that 
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convergence does take place whether the model had various hidden layers or no hidden layer, yet 

the accuracy of each setup was within a small range of one another.  One interpretation for the 

neural networks' behavior is that the data has local optima adjacent to the global optimum and 

the various hidden layer layouts are converging close to one another but are situated in separate 

local optimum.  So, the next step is to see the accuracy of identification per OS.  Through 

different hidden layer layouts, the accuracy of identifying Windows OS was consistent while the 

identification of Linux OS varied. 

A comparison using different layouts through training and predicting OSs show that the 

hidden layer layout can accurately predict a subset of IPv6 packets that are sent from a Linux 

OS.  Bootstrap aggregation, also known as bagging, is an ensemble method used to take a 

collective response from several models.  Multiple neural networks with differing hidden layers 

can be used together to represent a more complex model.  Therefore, three neural networks of 

various hidden layouts were created and trained to give individual predictions to be aggregated 

into a unified prediction.  The idea is that whichever OS got the most votes, then that should be 

the prediction.  However, this did not work well.  The accuracy did increase but there still was a 

significant amount of error.   

After careful observation between the predictions and actual labels, the label for any 

given packet was always Linux if any one neural network made a Linux prediction.  In other 

words, the neural networks can individually identify a Linux OS packet but may not be the 

consensus among all the neural networks.  The bootstrap aggregation turned into a Windows OS 

unanimous voting system, where if any one neural network voted for a Linux OS prediction, then 

the ensemble will predict Linux and that means Windows OS will require a unanimous vote 



 26 

across all the neural networks.  This new approach proved to be the most effective across 

multiple runs of the experiment. 

The average accuracy of this setup was significantly higher, but the accuracy variance 

was still high.  This is most likely due to the initial weights of the neural networks.  When neural 

networks are created, the weights are set to small random values calculated using the Gaussian 

distribution.  However, this randomness could set the neural network weights close to a local 

optimum that incorrectly identifies the packets.  Experimentation of the initial weight value 

range showed minimal improvement.  Neural network models falling into local optimum does 

not always provide the best possible solution and is prone to occur for any given dataset.  The 

only combatant to the randomness of weight initialization that was discovered is extra training. 

Extra training is the re-training of a neural network if the performance of the neural 

network is poor.  When training a neural network, the features are loaded into matrices, 

randomly re-ordered and then split into a training set and a testing set.  The training set consists 

of about 80% of the data and allows for the neural networks to learn and adjust weights to better 

accommodate the data for more accurate predictions.  The testing set consists of the remaining 

20% of the data and are packets that the neural network did not encounter during training.  The 

testing set is used as a validation on whether the neural network can make accurate predictions.  

The predictions during validation do not modify or change any weights of the neural network 

and are compared to the testing set labels.  The prediction and label comparison provide a count 

of misclassifications for the testing set.  The number of accurately identified packets are divided 

by the total number of packets in the testing set to receive an OS identification accuracy for that 

neural network ensemble.  If the neural network does not perform well, extra training reuses the 

training set to train the neural network again in hopes to leave the local optimum and shift closer 
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to the global optimum.  In the extra training process, the existing neural network is trained on the 

original training set.  Extra training does improve the neural network sometimes.  Other times the 

neural network stay the same, whether it stays in the same local optimum or moved to a different 

local optimum is difficult to say.  Occasionally the extra training may push the neural network 

into a worse local optimum, which causes more misclassifications.  The extra training is a 

successful technique that improves average accuracy, but does require more time for the 

additional training.  

After identifying a good neural network model, a new dataset is used consisting of 

Windows, Linux, and Mac.  Although the number of Mac machines are equivalent to the number 

Linux and Windows machines used during data collection, there was significantly less IPv6 

packets that came from Macs.  This lead to concerns on whether the amount of data from Mac 

computers was adequate.  Without access to more Mac computers, several models were 

attempted to determine if the neural network system would require a different setup when 

identifying three OSs.  

First, a single neural network is used, but as observed before with the Linux and 

Windows dataset, the accuracy was poor.  Then three neural networks are used and bagging is re-

introduced into the voting system.  This quickly became an issue on how voting ties should be 

handled. With three possible predictions, no combination of neural networks could handle ties 

properly for bagging.  For instance, three neural networks can result in a three-way tie, four 

neural networks can result in a two-way tie of two votes each, five neural networks can result in 

a two-way tie of two votes each with the last vote going to the third OS, and so forth.   

 Bagging is only one of the ensemble neural network meta-algorithms.  The other 

ensemble setups that were tested were gating and stacking.  Gating, as shown in Figure 10, uses a 
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neural network interpreter and learns from the predictions of the neural networks to determine 

what the actual prediction should be by comparing the given predictions to the label.  The neural 

network will learn from the mistakes and successes of the other neural networks.  The gating 

ensemble seems like the neural network interpreter should work well.  Yet, gating performed 

poorly with an average accuracy of 60.8%.  The next attempt was to include an additional neural 

network to the gating ensemble.  The interpreter may improve its accuracy with four neural 

networks.  However, the additional neural network worsened the average accuracy to a 

staggering 46.2%. 

 

Figure 10. Gating Ensemble 

 With no success using the gating ensemble, the stacking ensemble, as shown in Figure 

11, could show promise.  The experimentation starts out similarly by using three neural networks 

to train using only the training set.  Then the outputs from these neural works as well as the six 

features from the IPv6 packet are fed into the neural network interpreter.  The result of this setup 

is an average accuracy of 57.2% with a very similar median and standard deviation to that of the 

gating ensemble.  As tested before, an additional neural network is introduced to see if there 
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would be any improvements.  The ensemble interpreter using four neural networks and IPv6 

packet features show an average accuracy of 58.7%.  While there was a slight improvement, the 

standard deviation was still high at about 23.4%.  Both the gating and stacking ensembles did not 

prove to be effective for identifying OSs by the IPv6 packets.  

 

Figure 11. Stacking Ensemble 

The next configuration explored used two additional neural networks that were trained to 

only two of the three OSs.  One neural network trained on an equal number of packets from 

Windows and Mac OS, while the other neural network trained on an equal number of packets 

from Linux and Mac OS.  The assumption was that these neural networks would become experts 

in distinguishing between the two OSs it knew.  The two additional neural network datasets are 

different, but the packets are derived from the original training set. 

As shown in Figure 12, the system starts where the first 3 neural networks each make a 

prediction.  If any prediction was for Mac OS, then the ensemble skips the next two neural 
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networks and votes for Mac OS.  Otherwise, if there was a Linux prediction, then the vote will 

be Linux, unless if either of the two additional neural networks say it was a Mac OS, then the 

vote would change to Mac OS.  Finally, if all three original predictions were Windows OS, then 

we look at the prediction from the neural network that trained on only Windows and Mac OS 

packets.  If the prediction is for Mac OS, then the vote will be for Mac OS.  Otherwise, the same 

is true for a Windows OS prediction.  This ensemble is the best one discovered during 

experimentation, but with only achieved an average accuracy of 76%. 

 

Figure 12. 5-Neural Network Ensemble for Windows/Linux/Mac 

The last technique introduced into the neural network system is a rule-based pipeline to 

quickly identify an OS.  If any packet contains a particular feature that has only appeared in a 

single OS, then a rule can be used to forgo all the neural network prediction computations and 

output the appropriate OS.  One rule is implemented in this neural network system to identify a 

Windows OS if the protocols feature included the Link-Local Multicast Name Resolution 

(LLMNR) protocol.  All the packets were checked for the LLMNR protocol and only appeared 

for the Windows OS.  The LLMNR protocol has been a part of the Windows OS network traffic 

from the most current version Windows 10 back to Windows Vista.  This protocol is cross-

checked to see if it could potentially appear in a different OS.  There is a daemon known as 
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LLMNRD for Linux that implements the LLMNR protocol to respond to name resolution 

queries sent by a Windows client.  However, this daemon is not installed in Linux by default and 

must be installed separately as an additional package if desired.  There is potential for more rules 

for features that are OS exclusive and additional rules can further increase OS identification 

accuracy beyond neural network predictions. 

3.5  Random Forests 

Random forests are a quicker OS identifier than neural networks.  Random forests can 

consist of n decision trees.  An increasing number of decision trees will improve OS 

identification up to a threshold that is dependent on the dataset.  Beyond this unexplored 

threshold, the random forest may not or may insignificantly improve OS identification accuracy.  

One goal is to determine the appropriate number of decision trees to balance run time and 

identification accuracy.  Several configurations are compared to determine the best number of 

decision trees without sacrificing accuracy. 

The implementation of this machine learning ensemble is simpler than that of neural 

networks.  At first only Windows and Linux packets were used to make sure that the creation and 

implementation of decision trees are working correctly.  The random forest code is based on the 

open-source machine learning toolkit Waffles [13].  The random forest ensemble was very easy 

to use and maintained high accuracy after including the Mac OS packets into the dataset.  The 

same datasets from the neural network ensemble were used, as well as randomization and 

splitting the data 80%/20% for the training set and testing set, respectively. 

After ensuring the ensemble was working correctly, the number of decision trees was 

varied and the average accuracy of 100 experiments was measured.  As shown in Table 3, the 

use of five decision trees seemed sufficient for the dataset.  However, thirty decision trees were 
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used to prevent the concern of the unlikely chance where two or three badly constructed decision 

trees can negatively influence a five or even fifteen tree ensembles. 

Table 3. Accuracy of Different Number of Decision Trees for a Random Forest 

Number of Decision Trees Average Accuracy of 100 experiments 

5 89.2% 

15 89.5% 

30 89.6% 

60 89.2% 

  

In general, the use of random forests was more accurate than the neural network 

ensemble when identifying the OS when the dataset contained Windows, Linux, and Mac OSs.  

Each decision tree takes roughly less than 25 milliseconds to create so even with thirty decision 

trees, random forests were much quicker than the neural network ensemble that took 3.4 seconds 

on average to create and train. 

3.6 Training and Testing 

After training the neural networks on 80% of the measured dataset, packets from the 

remaining 20% of the dataset are fed through the ensemble to obtain a prediction.  The prediction 

is compared to the withheld label, and if the two do not match then a misclassification count is 

incremented.  Similarly, the random forest is randomly created by training it with 80% of the 

measured dataset.  Then, packets from the remaining 20% of the dataset are fed through the 

ensemble to obtain a prediction.  The majority prediction is compared to the withheld label, and 
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if the two do not match then the misclassification count is incremented.  The reciprocal of 

misclassifications is the measurement of accuracy for both ensembles. 

3.7 Accuracy 

As the testing set is created, a tally of the number of packets that came from each OS is 

kept.  Since the data is randomized before the training set and testing set split, the number of 

testing set packets from any particular OS may not be exactly the same between experiments.  As 

misclassifications occur, a separate tally is kept for each OS misclassification alongside an 

overall misclassification count.  The experiment is executed over a hundred times and the 

misclassifications for each experiment is averaged and several statistics are computed, such as 

best, median, worst, and standard deviation accuracy.  Ensemble accuracy can be computed as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 % = 	1 −	
𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑇𝑒𝑠𝑡𝑖𝑛𝑔	𝑆𝑒𝑡	𝑃𝑎𝑐𝑘𝑒𝑡𝑠 

 

Accuracy for a specific OS is computed as: 

𝑂𝑆	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 % = 	1 −	
𝑂𝑆	𝑀𝑖𝑠𝑐𝑎𝑙𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑃𝑎𝑐𝑘𝑒𝑡𝑠	𝑓𝑟𝑜𝑚	𝑂𝑆	𝑖𝑛	𝑇𝑒𝑠𝑡𝑖𝑛𝑔	𝑆𝑒𝑡 
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4.  RESULTS AND ANALYSIS 

 The results of this work consisted of two machine learning ensembles with multiple 

configurations being applied to two datasets.  First, we use a Windows and Linux dataset to a 3-

neural network ensemble.  Followed by results of the same ensemble with extra training.  Then, 

results from a dataset containing Windows, Linux, and Mac packets used in a 5-neural network 

ensemble.  Next, results from random forests using 30 decision trees are applied to a Windows 

and Linux dataset, followed by results from the same ensemble to a Windows, Linux, and Mac 

dataset.  Finally, runtimes of all ensembles are discussed. 

4.1  Results 

 As shown in Table 4, the overall accuracy over 100 separate ensembles with the 

Windows and Linux OS dataset is 85%, which is a 20% improvement over the use of one neural 

network at 65%.  Every time the ensemble is created and trained, the Windows identification is 

always correct, while the Linux identification has some variance and misclassifications.  The 

Linux identification accuracy median is 90%, which shows that at least 50% of experiments 

consist of 90% or greater accuracy among both OSs. However, in the worst-case scenario, almost 

every Linux packet was identified incorrectly standing at a 4% accuracy.  This worst-case neural 

network configuration occurs rarely, which may be caused by poor random weight initialization 

or unusual distribution of training data during data randomization. 
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Table 4. OS Identification Accuracy of Windows/Linux using Neural Network Ensemble 

Accuracy Windows Accuracy Linux Accuracy Overall Accuracy 

Average 100% 74% 85% 

Best 100% 93% 96% 

Median 100% 90% 94% 

Worst 100% 4% 43% 

Standard Deviation 0% 24% 14% 

 

Figure 13 is a distribution of the 100 experiments for Windows and Linux neural network 

ensemble accuracy.  While a majority of the experiments consist of a high accuracy of at least 

90%, about a quarter of all experiments drop in accuracy to around 62.4% to 71.8%.  The several 

experiments that fell below 53% have little to no accuracy with Linux OS identification.  The 

few outlier experiments that performed poorly cause the average accuracy to drop and skews the 

distribution of ensemble accuracies. 

 

Figure 13. Distribution of Neural Network Ensemble Accuracy with Windows/Linux 
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 Table 5 shows the effects of more training on the neural network ensemble.  Extra 

training is given to those ensembles that performed poorly, and reuses the original training set.  

Extra training has improved the overall accuracy from 85% to 93%.  The standard deviation for 

Linux OS identification is reduced by almost one half, and Windows identification kept its 

perfect identification accuracy. 

Table 5. OS Identification Accuracy of Windows/Linux using Neural Network Ensemble 
with Extra Training 

Accuracy Windows Accuracy Linux Accuracy Overall Accuracy 

Average 100% 88% 93% 

Best 100% 93% 96% 

Median 100% 91% 95% 

Worst 100% 5% 43% 

Standard Deviation 0% 13% 8% 

 

Figure 14 shows a major improvement of the number of neural network ensemble 

accuracies over 100 experiments.  When the ensemble performs unsatisfactorily at less than 

90%, using extra training often improves the neural network ensemble resulting with less than 

ten experiments achieving accuracies less than 90%.  Although most of the ensembles were 

affected positively, there were a few that were affected negatively or no change occurred in 

accuracy. 
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Figure 14. Distribution of Neural Network Ensemble with Extra Training Accuracy with 
Windows/Linux 

The results of a 5-neural network ensemble identifying Windows, Linux, and Mac is 

shown in Table 6.  When introducing the Mac OS into the dataset, the Windows accuracy stays 

preserved while the Linux average accuracy decreases to 75.5%.  Linux best and median 

accuracies are similar to the previous dataset; however standard deviation dramatically increases 

to 34.1%.  In the rare occurrence that the neural networks identified Mac OS packets, the highest 

accuracy was 75.9%, but most experiments were not able to identify Mac OS features and results 

in a 0% accuracy.  On average, Mac accuracy was low at 6.9% and overall obtained a standard 

deviation of 20.1%.  In the overall worst case of 34.4%, the neural networks were only able to 

identify Windows OS and incorrectly identify Linux and Mac OS. 
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Table 6. Five Neural Network Ensemble Accuracy with Windows/Linux/Mac 

Accuracy Windows Linux Mac Overall 

Average 100% 75.5% 6.9% 76% 

Best 100% 93.2% 75.9% 89.1% 

Median 100% 91.3% 0% 83.3% 

Worst 100% 0% 0% 34.4% 

Standard 
Deviation 

0% 34.1% 20.1% 16.4% 

 

 The above experiment accuracy distribution can be found in Figure 15.  A majority of 

experiments received an accuracy in the 81.2% to 90.5% range.  However, when this occurs Mac 

OS accuracy was always very low to none.  In the few instances where Mac OS identification 

accuracy started to increase, Linux OS identification accuracy dropped, so these experiments 

overall accuracy fell into lower accuracy ranges. 

 

Figure 15. Distribution of 5-Neural Network Ensemble Accuracy with Windows/Linux/Mac 
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Table 7 presents the accuracy of random forests using the same dataset containing 

Windows and Linux packets from the neural network ensemble.  The overall accuracy is 93.6% 

which is approximately equivalent to the accuracy of the neural network ensemble with extra 

training.  However, using random forests generates misclassifications for both OSs.  

Furthermore, Windows OS identification is worse with this ensemble as shown by the worst-case 

accuracy for Windows at 55.5% as compared to the Linux worse case accuracy at 91.7%.  This 

dramatic difference gave Windows a standard deviation of 9.5%, which is greater than six times 

the standard deviation for Linux at 1.5%. 

Table 7. Random Forest Accuracy with Windows/Linux 

Accuracy Windows Linux Overall 

Average 92.4% 94.5% 93.6% 

Best 100% 98.5% 96.4% 

Median 96.9% 94.5% 95.3% 

Worst 55.5% 91.7% 80.7% 

Standard Deviation 9.51% 1.5% 3.3% 

 

As shown in Figure 16, the distribution of random forests experiments is better than the 

neural network ensemble.  Any experiment would have at least 81.2% accuracy when using a 

random forest.  Although the number of experiments that achieve at least 90.6% accuracy is not 

as many as the neural network ensemble with extra training, the random forest distribution does 

not fall into lower accuracies ranges as does the neural network ensemble. 
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Figure 16. Distribution of Random Forest Experiment Accuracy with Windows/Linux 

 After achieving a functioning high accuracy random forest using Windows and Linux 

packets, Table 8 displays the statistics of when Mac OS packets are introduced into the dataset.  

On average the accuracy for this dataset using a random forest was at 89.6%.  With this new 

dataset, Windows OS identification accuracy average is even lower with Mac OS packets in the 

dataset.  The average for Windows average accuracy fell from 92.4% to 88.3%, while still 

maintaining a best accuracy of 99.9%.  Windows still holds the worst accuracy at 54.6% and the 

highest standard deviation at 10.6% across all three OSs.  The average, best, and worst Linux OS 

accuracies stayed above 90%, which is very comparable when using the previous dataset.  While 

the Mac OS average accuracy lies at 77.2%, the worst-case scenario only fell to 65%, which is 

much better than Windows worst accuracy at 54.6%.  Although the Mac OS identification does 

not perform as well as the Windows or Linux OS, the variance of identification accuracy is 

smaller in Mac OS than that of the Windows OS as shown by the standard deviations at 6.8% 

and 10.6%, respectively. 
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Table 8. Random Forest Accuracy with Windows/Linux/Mac 

Accuracy Windows Linux Mac Overall 

Average 88.3% 93.4% 77.2% 89.6% 

Best 99.9% 97.7% 95.2% 93.2% 

Median 90.8% 93.4% 75.8% 90.4% 

Worst 54.6% 90.1% 65.0% 79.4% 

Standard 
Deviation 

10.6% 1.5% 6.8% 3.1% 

 

 As shown in Figure 17, the distribution of experiment accuracy starts to level out the 

90.6%-100% range to be roughly equivalent to the 81.2%-90.5% range.  There are several 

random forest accuracies that fell to a lower range of 71.8%-81.1%.  These lower accuracies are 

most likely affected by the poorer performance of identifying the Mac OS packets. 

 

Figure 17. Distribution of Random Forest Experiment Accuracy with Windows/Linux/Mac 



 42 

 Table 9 is a list of run times per machine learning ensemble per dataset, which includes 

both the training and the identification phases.  By a wide margin, random forests perform faster 

than the neural network ensemble counterpart.  There is some time deviation between 

experiments, which is most likely caused by Java’s garbage collection running at various 

instances throughout runtime.  Regarding speed, the biggest random forest configuration is faster 

than the smallest neural network configuration.  In general, the ensembles require more runtime 

as the dataset grows. 
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Table 9. Run Times Per Ensemble Per Dataset 

Dataset Ensemble Run Time (100 
Experiments) 

Deviation 

Windows/Linux Neural Network 5 minutes 30 seconds +/-  15 s 

Windows/Linux Neural Network with 
Extra Training 

6 minutes 45 seconds +/-  17 s 

Windows/Linux/Mac Neural Network 6 minutes 10 seconds +/- 15 s 

Windows/Linux Random Forest 1 DT 9 seconds +/- 1 s 

Windows/Linux Random Forest 5 DT 15 seconds +/- 2 s 

Windows/Linux Random Forest 10 DT 21 seconds +/- 2 s 

Windows/Linux Random Forest 20 DT 33 seconds +/- 2 s 

Windows/Linux Random Forest 30 DT 48 seconds +/- 2 s 

Windows/Linux Random Forest 50 DT 1 minute 10 seconds +/- 4 s 

Windows/Linux Random Forest 75 DT 1 minute 47 seconds +/- 6 s 

Windows/Linux Random Forest 100 DT 2 minutes 18 seconds +/- 10 s 

Windows/Linux/Mac Random Forest 5 DT 19 seconds +/- 1 s 

Windows/Linux/Mac Random Forest 15 DT 36 seconds +/- 3 s 

Windows/Linux/Mac Random Forest 30 DT 1 minute 4 seconds +/- 7 s 

Windows/Linux/Mac Random Forest 60 DT 2 minutes 3 seconds +/- 14 s 

 

All ensembles ran on the same hardware using a 1.6 GHz Intel Core i5 processor with 8 

GB 1600 MHz DDR3 RAM.  Tables 10 and 11 show the run times broken down by the training 

phase and testing phase.  The training phase consists of initializing the ensembles as well as 

going through the training set.  The testing phase consists of the ensemble predicting through all 

the testing set packets and counting misclassifications.  The average runtime for training a neural 
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network is 3421 milliseconds, which is over 7 times the speed of the average training time for a 

random forest at 441 milliseconds.  However, the average runtime for making predictions with a 

neural network is 7.6 milliseconds, which is faster than the random forest speed at 10.3 

milliseconds.  In general, the neural network ensemble will require more time for training, but it 

can make faster predictions than random forests. 

Table 10. Training Time in Milliseconds (ms) per Ensemble 

Runtime 
(ms) 

Neural 
Network 
Ensemble 

Neural 
Network 
Ensemble 
with Extra 
Training 

5-Neural 
Network 
Ensemble 

Random Forest 
30-Decision 
Trees; Dataset: 
Windows/Linux 

Random Forest 30-
Decision Trees; 
Dataset: 
Windows/Linux/Mac 

Average 3421 4917 5977 441 559 

Maximum 4150 10719 6796 883 766 

Median 3370 3845 5889 426 551 

Minimum 3266 3280 5604 364 483 

Standard 
Deviation 

154 1838 256 68 43 

Table 11. Testing Time in Milliseconds (ms) per Ensemble 

Runtime 
(ms) 

Neural 
Network 
Ensemble 

Neural 
Network 
Ensemble 
with Extra 
Training 

5-Neural 
Network 
Ensemble 

Random Forest 
30-Decision 
Trees; Dataset: 
Windows/Linux 

Random Forest 30-
Decision Trees; 
Dataset: 
Windows/Linux/Mac 

Average 7.6 8.1 15.6 10.3 13.6 

Maximum 12 13 22 40 27 

Median 7 8 15 10 13 

Minimum 6 6 13 8 11 

Standard 
Deviation 

0.9 1.2 1.9 3.2 2.3 
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The training and testing times were calculated using 102 separate ensembles.  However, 

the first two runs were outliers compared to other runs.  Due to these outliers, these two runs 

were taken out and the remaining 100 runs were used to generate the statistics in Tables 10 and 

11.  One reason for these outliers could be that the hardware is using branch prediction causing 

every run after the second run to go faster with predicted pre-loaded instructions. 

4.2  Analysis 

There are advantages and disadvantages to each machine learning ensemble when 

presented with a dataset that contains both Windows and Linux IPv6 packets.  While the neural 

network ensemble guarantees no misclassifications for Windows OS packets, there is a larger 

variance when identifying Linux OS packets despite the larger number of Linux packets within 

the training set.  Alternatively, the random forest generally has higher accuracies for both OSs 

but misclassifications can occur for either OS.   

When the neural network ensemble predicts Linux on any particular packet, it can be 

almost guaranteed that the packet originated from a Linux host.  Since the only misclassifications 

occur from packets that originated from a Linux host, there is a small chance that the packet gets 

identified as a Windows OS packet.  Therefore, when looking at final predictions, every Linux 

prediction must be from a Linux host while a Windows prediction has a small chance that it 

originated from a misclassified Linux host. 

90% overall accuracy was considered a good experiment with the neural network 

ensemble so in the event that the experiment achieved less than 90% accuracy the ensemble will 

complete another training iteration using the original training data.  Then the accuracy is 

measured with the same validation data.  With this additional step, the average accuracy for 

Linux predictions increased to 87% with an improvement of 11% from 76%.  Moreover, the 
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worst case increased slightly from 2% to 4%.  The neural network ensemble may get closer to 

the ideal global optimum but depending on the data in the training set, it may get stuck in a local 

optimum.  The extra training allows the model to move along the error surface, and this extra 

push can often find the global optimum of this complex model.  However, it does rarely occur 

where the model will get pushed into a worse local optimum and in result cause the neural 

network ensemble to perform worse than before. 

When the Mac OS packets were introduced into the dataset, the neural networks 

fluctuated in accuracy between Linux and Mac OS.  Windows preserved its 100% accuracy 

rating, which could be that the features from a Windows OS packet is very distinguishable from 

features of other OSs.  In many configurations, Mac did not achieve an accuracy above 0%, and 

even with the two neural networks, a higher accuracy occurred rarely.  The additional two neural 

networks were supposed to distinguish Mac OS packets, but with no success.  There may be 

features that the Mac OS shares or very similar to features of both Windows and Linux OS. 

When the Windows and Linux OS dataset is used in a random forest, the runtime is much 

quicker than that of the neural network ensemble runtime.  The neural network ensemble can 

guarantee that an IPv6 packet originated from a Linux host, whereas the random forest does not 

have this quality as misclassifications can occur from either OS.  In the perspective of an 

attacker, a guaranteed OS prediction is more beneficial than a highly accurate prediction.  While 

training does take the most time with neural networks, this step only needs to be performed once.   

As seen by run times broken down by each ensemble, training for neural networks is 

significantly longer than training for random forests.  This may be a drawback, but the training 

phase only needs to run once before making as many predictions as desired.  When it comes to 

making predictions, the neural network ensemble is faster when the dataset consists of Windows 
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and Linux OSs.  However, a random forest can execute faster than the 5-neural network 

ensemble when using a dataset of Windows, Linux, and Mac OSs.  Between both machine 

learning techniques, the neural network ensemble generally has smaller standard deviations than 

random forests.  As mentioned before, each approach is advantageous whether accuracy or speed 

is more desirable. 

However, when introducing a dataset with Windows, Linux, and Mac OS packets, the 

random forest predicts with higher accuracy on average.  This may be caused by consistencies 

among field values when leaf nodes are being constructed as well as having that value 

consistency when using the decision trees for predictions.  Random forests are the better 

ensemble to use when datasets include Windows, Linux, and Mac OS packets as they are faster 

and highly accurate. 

Mac OS generally performed poorer when introduced into the dataset.  A number of 

reasons may include not having enough Mac OS packets which can underfit the model, field 

values matching with other OSs field values, inconsistent field values between Mac OS packets, 

and overfitting with Windows and Linux predictions.  Having enough data is essential for any 

machine learning technique.  With limited resources and access to Mac OS computers, getting 

more data was rather difficult.  A solution could have been to reuse the same packets twice, but 

that may bias results.  When the training set and testing set is created, the ensembles would only 

have experience with the training set and has never encountered the testing set, which is great for 

validation.  If there were two copies of each Mac OS packet, there is a likely chance that a 

duplicate packet would be in both the training set and testing set, which would make results not 

as notable since the ensemble has seen the packet before. 
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Generally, datasets are best kept roughly equal to reduce bias and overfitting.  However, 

with the neural network ensemble in this work, an equal number of packets per OS in the dataset 

lacked sufficient accuracy for Linux packets.  An increase to the number of Linux packets 

improved accuracies, while keeping consistent accuracy of Windows predictions.  The issue 

came with Mac OS packets, since there were so much fewer packets, 2193, the dataset could not 

shrink without underfitting the models.  The gradient of the neural network did not stabilize with 

such few packets, so increasing the dataset size with the data that was available was the best 

approach to stabilize the neural network ensemble.  The random forest performed well, but 

potentially could be improved further with more Mac OS data. 



 49 

5.  CONCLUSIONS 

5.1  Summary 

In this thesis, machine learning neural network and random forest ensembles are 

developed and validated as a passive OS identification technique using IPv6 features from the 

network layer of the OSI model and packet metadata.  The neural network ensemble model uses 

three neural networks with varying hidden layers that feed a prediction into a unique Windows-

unanimous voting scheme that is on average 85% accurate with Windows and Linux OS packets 

and can provide a guaranteed Linux host prediction.  Random forests are excellent, fast OS 

predictors especially for IPv6 packets that originate from Windows, Linux, and Mac OS that is 

on average 89.6% accurate. 

In areas of weak performance, a neural network can rely on the predictions from other 

neural networks.  As each neural network has a unique design layout, this allows for each neural 

network to be proficient at OS identification of any Windows packet and a subset of Linux 

packets.  Each neural network in the ensemble is trained to identify Linux packet features. 

Therefore, if any of the neural networks in the ensemble identifies the OS as Linux, then most 

likely it is the Linux OS.  This neural network ensemble configuration was able to achieve a 

maximum of 96% accuracy when distinguishing between Windows and Linux OSs.  The average 

neural network ensemble accuracy in 100 experiments was 85%.  However, when the neural 

network ensemble is given extra training due to poor performance it will achieve an average 

accuracy of 93% in 100 experiments. Although the neural networks can provide excellent results 

for this dataset, the reliability and accuracy of this ensemble diminishes when the Mac OS is 

introduced into the dataset. In general, the neural network ensemble was unable to identify the 

Mac OS with usable accuracy. 
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Random forests provide a roughly equivalent accuracy to the neural network ensemble 

with extra training when distinguishing differences between the Windows and Linux OSs, 93.6%  

compared to 93%, but provides better accuracy when distinguishing differences among the 

Windows, Linux, and Mac OSs, 89.6% compared to 76%.  A random forest ensemble with thirty 

decision trees is a faster solution with runtimes six times faster than neural network ensembles 

while achieving a maximum accuracy of 93.2%.  The average random forest ensemble accuracy 

was 89.6% when distinguishing among Windows, Linux, and Mac OSs.   

5.2  Contributions 

The contributions of this work are that it uses machine learning algorithms, is passive 

instead of active, and uses IPv6 features.  First, in this work machine learning ensembles can 

learn to identify the different OSs instead of using a constantly growing database of packet 

signatures.  Or the machine learning ensembles can be used in combination with packet 

signatures to create a more compact representation that can quickly identify the OS.  Secondly, 

this work uses passive identification instead of active identification that is stealthier and does not 

introduce more traffic into the network.  Finally, this work is the first known work that uses 

passive identification based on IPv6 features. Passive identification tools today use IPv4 features.  

5.3  Future Work 

While this thesis provides the basic framework for OS identification using machine 

learning ensembles as a tool, more work is needed in several areas.  With some ensembles 

performing better over others on specific datasets, the combination of several various classifiers 

can create an ensemble with predictions that reduce the variance of different features of the data.  

Therefore, the use of a neural network, a random forest, and another classifier such as Naive 
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Bayes could potentially make a machine learning ensemble with an OS identification accuracy 

that surpasses the ensembles of this work.  Another area of improvement is a wider availability 

of data including more packets from Mac OS as well as applying these ensembles to different 

versions of the same OS.  While the data was collected from separate machines, the OS image is 

the same for the Windows computers, the OS image is the same for the Linux computers, and the 

OS image is the same for the Mac computers.  Diversity with machines can give a wider range of 

outcomes with OS identification.  Finally, these ensembles have yet to be applied to operating 

systems running as virtual machines on a host with a different operating system.  The use of a 

virtual interface may affect the IPv6 packet features that are selected in this work. 
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