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Abstract

Smart camera networks are real-time distributed embedded systems able to

perform computer vision using multiple cameras. This new approach is a confluence of

four major disciplines (computer vision, image sensors, embedded computing and sensor

networks) and has been subject of intensive work in the past decades. The recent

advances in computer vision and network communication, and the rapid growing in the

field of high-performance computing, especially using reconfigurable devices, have enabled

the design of more robust smart camera systems. Despite these advancements, the

effectiveness of current networked vision systems (compared to the operating costs) is still

disappointing. The main reason is the poor coordination of the camera entities at runtime

which results from the lack of a clear formalism to dynamically and autonomously

capture and address the self-organization problem. In this dissertation, we investigate the

use of a declarative-based modeling approach for capturing runtime self-collaboration of

distributed smart cameras. Combining modeling approaches borrowed from logic

programming, computer vision techniques, and high-performance computing, we propose

an autonomous and cooperative smart camera system. We also propose a compact

modeling approach based on Answer Set Programming for architecture synthesis of a

system-on-chip camera that is able to support runtime collaboration with other camera

nodes in a distributed network setup. Finally, we propose a declarative approach for

enabling runtime camera self-coordination in case of distributed object tracking wherein

moving targets are decentrally handed over and successfully recovered after node failure.
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I Introduction

The recent technological advances in circuit design, computer vision, machine learning,

and sensor networks, have led to a proliferation of intelligent vision systems as a response

to the increasing insecurity in many countries around the world. Indeed, many of the

existing video systems can now support very sophisticated computer vision operations,

such as object detection and tracking, behavior recognition, and activity analysis from

multiple camera sources. However, despite the decreasing price of equipments and the

available technology, the effectiveness of these networked systems are still disappointing

and their operating costs, very high [1], as could be illustrated with the following

application examples.

I.1 Motivating Applications

I.1.1 In-store Observation for addressing Shoplifting in Retail Stores

According to the National Retail Security Survey Final, retailers experienced shrinkage of

1.51% to sales in 2008, which translated to roughly $36.6 billion in retail lost annually

[2, 3]. Despite millions of dollars that retail companies spend every year on asset

protection and theft detection, yet they still incur tremendous losses. The efficiency of

current theft detection and prevention systems, such as exception reporting, cameras

surveillance, and article/customer monitoring, is only marginal, resulting in negligible

positve results compared to the overall losses [4]. Current In-Store Observation systems

use many surveillance cameras installed in a Closed Circuit Television (CCTV)

architecture. While CCTV provide a global view of the in-store activities, operators are

needed to check and detect potential theft in real-time. This process is less than trivial.

In fact, with the number of cameras installed in store and the amount of customers

(particularly in period of high traffic), an army is required to check each customer,

identify potentials suspects and follow them across the store. Moreover, recording

suspicious activities, such as putting an item into a bag, is not enough and should not

always be assumed as theft, since the customer might have dropped the item later

without the camera picking up the dropping part.
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I.1.2 Autonomous Guided Vehicles for Material Transport in Industry

Autonomous Guided Vehicles (AGV) have the potential to revolutionize operation in

areas such as manufacturing, distribution, transportation, and military. In these areas,

AGVs can efficiently be used to accomplish mundane and often repetitive tasks such as

transporting materials in manufacturing or deploying troops or equipments on

battlefields. Despite obvious advantages of AGVs, the dream of having hundreds of such

vehicles, collaboratively and autonomously performing tasks has not materialized so far.

The biggest impediment to date has been the lack of models and technologies to actively

capture the world with semantically labeled objects, actions and events, and to generate

goals, priorities, and plans. On board computational limitations coupled with complexity

of the environment have resulted in highly specialized, brittle and non-scalable solutions.

Efficient, cost-effective, and dynamic localization and collaboration needed for indoor

navigation has not been satisfactorily addressed. Radio frequency communications

proposed in the literature and used in teleoperation of unmanned ground vehicles still

pose huge challenges, particularly in indoor environment, due to interference and noise,

potential for jamming, bandwidth, and latency [5]. Approaches that rely on dense scene

reconstruction from a variety of sensor data such as LIDAR and video imagery relay are

still too expensive [6].

The distributed nature of the aforementioned applications and the complexity of the

running environment necessitate the use of a robust and decentralized approach wherein a

network of self-collaborative, resource-efficient smart cameras will be used for gapless

identification, tracking, and coordination of targets of interest (people or vehicles) across

the entire monitoring region. Improving the efficiency and maximizing operations in such

dynamic multi-camera vision environments present some challenges that have motivated

the research in the present dissertation.

I.2 Challenges

I.2.1 Limitations of Centralized Networked Architectures

The possible integration of hundreds and more nodes into a single camera network has

increased the complexity of a remote monitoring. Most of the current surveillance

systems are made up of CCTV-Based cameras that simply transmit raw videos to a
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central location for processing and analysis. In such a network system, human operators

are completely responsible for monitoring ongoing activities on dozen (or more) of TV

screens, analyzing the scenes, and coordinating the different cameras. In addition to

having a single point of failure, such network setups have also proven to be ineffective

because of the burden placed on the operators and the communication costs involved.

Monitoring in this case requires to visually analyze hours of video footage and it has been

shown in [7] that an operator will often miss up to 95% of all scene activity after

approximatively 22 minutes when viewing two or more sequencing monitors.

Furthermore, with recent advances in image resolution, CCTV-Based systems require a

high bandwidth communication network and a reliable interconnection mechanism among

nodes, usually provided only through fixed and broadband protocols such as Ethernet.

This brings the necessity of implementing vision processing directly within the cameras

and enabling a strong cooperation among nodes to improve the system productivity.

I.2.2 Lack of Coordination in current Smart Camera Networks

Distributed smart camera (DSC) provide more flexibility in a network by disseminating

processing and analysis on the end nodes. A smart camera is generally viewed as a

system able to perform on-site processing and extract meaningful information within

video frames. However, without a compact formalism that would allow those information

to be exchanged among cameras, the effectiveness of the whole network would be

seriously mitigated. For example, let’s assume that every camera node in a typical

surveillance system performs video processing on-situ and generates 5 events in average

every second (person running, car parking, pedestrian crossing the street, etc.). For a

network of only 20 cameras, this amounts to almost a hundred of abstract information

that has to be merged and analyzed every second at the remote station. It is obvious that

this task cannot be performed manually by a human, but instead, an auto-collaboration

scheme among cameras has to be investigated.

Over the past few years, while tremendous efforts have been done (both in industry and

academia) to increase the processing power of embedded camera systems, very few works

have focused on improving the self-collaboration of networked nodes. Existing smart

cameras are powerful enough to implement very complex computer vision operations such

as the automated face recognition and tracking in a crowd [8]. The ongoing progress in
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chip technology yields a steadily increasing processing power and it is obvious that in the

near future even the weakest sensor node in a network will have enough computational

power to share its resources as services with others. Unfortunately, self-coordination of

nodes is an important aspect that has been overlooked very often when designing network

of smart cameras, although it has been proven [9] that the effectiveness of a such a

network could be drastically improved when the different nodes collaborate for efficient

problem solving. Enabling self-coordination of distributed cameras presents many

advantages, such as: more flexibility and interoperability, increase in scalability and

reliability, reduced bandwidth utilization and system response time.

I.2.3 Unsuitable Solutions for Addressing Self-Coordination in DSC

Practical examples demonstrating the use of self-coordination properties in embedded

smart camera systems are still lacking. Although many researches have focused on

developing heuristics for the self-coordination in computer system [10, 11, 12, 13], none of

these works has successfully addressed the complexity of modeling the coordination of

distributed cameras, especially considering the network dynamics (nodes failure or nodes

overwhelming) and the tight resource and power constraints on the available embedded

infrastructures. Additionally, many of the existing solutions, such as the multi-agent

systems [14, 15], mostly focus on improving the software functionality of the system and

are developed for platforms with minimal or non-existent SWaP constraints (size, weight,

and power). In contrary, embedded smart cameras are generally battery-powered with a

limited lifetime and hardware capabilities (CPUs, memories, and buses). Therefore, to

build such camera systems with tight resource constraints that could support the complex

operations required for self-coordination in a dynamic environment, the prerequisites are:

1) a rigorous formalism that captures all facets of the self-coordination problem together

with the resource constraints on the computing infrastructure, 2) a computational

tractable and accurate strategy to devise a solution from the previous formulation, and 3)

a flexible computing infrastructure for each smart camera that could be modified on the

fly to adapt to runtime changes in the network.

4



I.2.4 A Hardware/Software Co-Design Approach for Optimizing Resource

Utilization

When addressing self-coordination, software solutions are usually implemented without

considering the infrastructure on which they will be executed. As result, the optimal use

of the computing platform is hardly achieved because either solutions are not

implementable on the available architectures (over-utilization) or resources are not used

efficiently (under-utilization). An illustration might be the execution of a convolution

function in software while a hardware implementation could have provided more speedup.

As a solution, the hardware and software design should be tackled in tandem by using a

multi-objective SoC synthesis methodology that would perform a systematic mapping of

application blocks unto the available hardware while optimizing resource utilization.

I.3 Contribution of the Dissertation

The main contributions of this dissertation are:

• a self-coordinating methodology based on a declarative modeling approach to

autonomously adapt the behavior of cameras to runtime environmental changes,

including node failures.

• a holistic approach for the synthesis of a system-on-chip computing infrastructure

that will allow hardware restructuration at runtime.

In this dissertation, we propose the use of Answer Set Programming (ASP), a declarative

programming paradigm, as a viable alternative for efficiently implementing

self-coordination among a set of collaborative nodes in a DSC network. Basically, the

self-coordination issue is addressed by first modeling the problem on each node as a logic

program that captures the network environment (camera topology), the internal state of

the camera (target properties, tracking capacity, etc.), and the system objectives (balance

load distribution, minimize object-to-camera distance, etc.). Then, the logic program is

solved using an embedded answer set solving engine wherein all possible coordination

scenarios (from each camera perspective) are dynamically evaluated and only those that

do not violate the objectives stated in the input problem will be generated as stable

solutions. Each solution consists in a sequence of actions/commands that individual

cameras will execute in order to bring the networked system into the target state. In
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existing methodologies [16, 17, 18, 19], solutions to self-coordination consist of

step-by-step algorithms that are hardwired among other camera functionalities. This

follows the imperative programming approach where the focus is usually on how to solve

a given problem. With such a paradigm, however, the difficulty of encoding an algorithm

to solve a given problem increases proportionally with the system complexity. In contrary,

our proposed declarative-based approach focuses on defining what is the problem to be

solved and then relies on existing powerful solvers to generate efficient solutions to the

specified problem. By focusing on what to self-coordinate rather than how to

self-coordinate, the proposed approach relieves the designer from manually programming

a solution to camera coordination and reduces the addressed problem to the complexity of

modeling runtime self-coordination. This methodology offers, therefore, benefits like

interoperability and reusability since the modeling of the coordination problem is

explicitly separated from the specification of problem instances. In other words, once the

coordination problem is encoded, it can be applied/tested on different network scenarios

without modification. Also, programmability could be considered as a benefit since the

bulk of work is henceforth shifted from programing complex algorithms for implementing

self-coordination to modeling the problem itself.

In order to efficiently address real-time requirements and all changes in the surrounding,

low-level architecture on each node in a distributed network should be designed in such a

way to maximize operations and support runtime readjustment. Consequently, adaptivity

and flexibility must be key factors when designing the smart camera infrastructures. By

using Field Programmable Gate Arrays (FPGAs) as the main processing infrastructure

on cameras, we intend to provide the required processing power and flexibility at runtime

through the combination of hardware and software on a single chip and the possibility of

restructuring the hardware at runtime. In such a decomposition, while complex and

repetitive computations of a processing chain are implemented directly in hardware, the

control part is carried out by an embedded processor. Moreover, due to their parallel

nature and reconfigurable capacity, FPGAs are becoming increasingly attractive for image

processing as they can easily exploit parallel structures in many computer vision problems

and operate in different computation modes, compared to fixed architecture devices such

as serial CPUs, ASICs, and DSPs [20, 21]. Nevertheless, the resource limitations on

FPGAs and the possibility of swapping tasks between hardware (HW) and software (SW)

increase the design complexity on such architectures and require the use of an automatic
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design process. In this regard, we propose a multi-objective synthesis methodology of

FPGA-Based systems-on-chip (SoC) for the camera nodes in the network. The synthesis

approach leverages ASP to i) capture the network environment (topology, resource and

power constraints on camera and synthesis goals), ii) perform the design exploration of all

possible SoC configurations, and iii) produce only the optimum architectures regarding

user-defined objectives.

I.4 Thesis Structure

The presentation in this dissertation follows a bottom-up approach. First, we present in

Chapter II, the concept behind Answer Set Programing, a declarative-based modeling

approach that is used in this research to both encode the synthesis of systems-on-chip and

to model the self-coordination problem. Then, the synthesis methodology to devise a

reconfigurable system-on-chip for the smart cameras will be presented in Chapter III.

Next, Chapter IV will provide a more detailed presentation of the generated camera SoC;

especially how the architecture has been designed so as to support runtime

self-coordination operations. Afterward, a runtime object tracking and self-coordinated

camera handover system will be presented in Chapter V as an application example to

validate the proposed concept. Finally, a summary and conclusion to the dissertation will

be provided in Chapter VI.
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II Answer Set Programming

II.1 Definition

Answer Set Programming (ASP [22]) is a form of declarative programming oriented

towards difficult (primarily NP-hard) search problems and which stems roots in the area

of nonmonotonic reasoning and logic programming [23]. It has already been used in

various domains including multi-processor system synthesis [24], decision problems [25],

reasoning tools in system biology [26, 27], or package configuration in Linux [28] and has

proven to yield satisfactory performances compared to other synthesis methodologies such

as Integer Linear Programming or evolutionary algorithms [29].

The basic idea behind ASP is that, computational problems are reduced to logic

programs whose stable models –sets without conflicting statements like {a, not a}–
correspond to solutions to the initial problem. A logic solver is then used to search for

stable models and produce the answer sets, which are basically the minimum set among

all possible stable solutions. The computation of answer sets relies on instantiation of the

input logic program, also known as grounding, which produces a so called variable-free

program. The new generated program is a propositional object made of a set of clauses

–finite disjunction of literals like {a ∨ ¬b ∨ c}– that will be given to a satisfiability solver

for being resolved following a SAT-based solving approach (Boolean Satisfiability [30]).

This solving methodology is almost similar to the SLDNF-resolution scheme [31] used in

Prolog programming, but with the significant difference that the search for stable models

is guaranteed to always terminate. We refrain in this Dissertation from delving into too

much semantic details and therefore refer the reader to [22] for a deeper understanding.

II.2 Syntax and Semantics of ASP

ASP uses facts, constraints, rules, and other language elements, mostly derived from

Prolog, to specify an instance of a logic problem. For the sake of readability, the language

specification will be hereafter given according to the traditional mathematical notation of

ASPCore2.0 [32]. A rule r in ASP is an expression of the form:

{a1; . . . ; ak} ← b1, . . . , bm, not c1, . . . , not cn. (II.1)
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with k,m, n ≥ 0 and a1, . . . , ak, b1, . . . , bm, c1, . . . , cn being classical literals. We call head

of the rule r, denoted by head(r), any subset of {a1, . . . , ak}. Similarly, the body of the

rule r is the set body(r) = {b1, . . . , bm, not c1, . . . , not cn}, where {b1, . . . , bm} represents

the positive body literals denoted by body+(r), and {c1, . . . , cn}, the negative body literals

denoted by body−(r). A rule (II.1) is a fact if body(r) = ∅ and it is a constraint (or

integrity constraint) when head(r) = ∅. r is called a normal rule if |head(r)| = 1 and a

choice rule if |head(r)| > 1 (|.| expresses the cardinality of a set). Intuitively, the rule r is

interpreted as: if literals {b1, . . . , bm} are true and there is no evidence that any of the

atoms ci (1 ≤ i ≤ n) holds, then an arbitrary subset of {a1, . . . , ak} can be chosen as true.

The language also defines weighted constraints or aggregate [33] as follows:

l < #aggr{ v0; v1; . . . ; vn} < u where aggr can be either sum, max, min, or count. This

constraint describes the fact that a subset A ⊆ {v0, . . . , vn} of true atoms exists, such that

the sum (resp. maximum, minimum, or number) of weights is within the boundaries [l;u].

In case #aggr would be omitted, the aggregate would default to computing the sum of

atoms vi.

For the computation of answer sets, let’s consider P to be a logic program, and let’s X be

a consistent set of literals, i.e for every atom a ∈ X, {a,¬a} 6⊆ X (where the symbol ¬ is

the classical negation). We say that X satisfies a rule r of the form (II.1), iff

head(r) ∩X 6= ∅ whenever body+(r) ⊆ X and body−(r) ∩X = ∅. Similarly, X is said to

satisfy the program P –or X is closed under P– iff it satisfies all the rules in P . We say

that X is a stable model or an answer set for the logic program P if it is minimal (relative

to set inclusion) among the sets that satisfy P .

For an illustration, let’s consider the following example:

a. (II.2)

c, d← a, not b. (II.3)

e← c. (II.4)

← a, d. (II.5)

This program consists of one fact (II.2), two rules (II.3) and (II.4), and one integrity

constraint (II.5). The fact in (II.2) denotes a true information that will always be part of

any solution set. Facts are used to specify an instance of the problem that will be applied

to a given encoding model. Rule (II.3) is made up of the head ({c, d}) and the body

(e.g.:{a, not b}). This rule states that atoms c and d are exclusively true –that is, they
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will be both derived but as part of different solutions sets– if and only if a is true and b is

not true (which is actually the case since a is the only fact provided). Note that the

connective not in this case expresses default negation (contrary to classical negation),

which means that the literal not b is assumed to hold unless b is derived. Rule (II.3) will

therefore produce a new information into the system: either {c} or {d}. Rule (II.4)

simply says that if c holds, then e is derived. A derived information will hold as long as it

doesn’t conflict with any constraint of the system. Equation (II.5) is a constraint or

integrity constraint that is used to reduce the set of solution. This constraint states that

atoms a and d could not hold at the same time. Consequently, since a is a given fact to

the input problem instance, any stable set that contains a must not contain d anymore.

Therefore, the only stable solution for the above program is : {a, c, e}.

II.3 The Programming Methodology

The most common way to model logic programs for an ASP solver is to divide the

program in three parts (generate, define, and test) following the generate-and-test

paradigm [22]. To quickly explain this type of organization, let’s consider the simple

program of Figure II.1, representing an ASP-based encoding instance to solve the

Hamiltonian path problem; which is to find a closed path that passes exactly once

through each vertex of a directed graph. Line 1–3 of the program define the graph

Figure II.1: A directed graph (left), its corresponding ASP encoding and the modeling of
the Hamiltonian path problem (right).

structure using atoms node() and edge(). For example: node(0), node(2), and edge(0,2)

define two nodes of the graph and the edge between them. Line 5 is the generate part. It
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aims at producing the different potential answer sets of the logic program from the initial

facts. The rule of Line 5 asserts that any edge of the graph could potentially belong to a

Hamiltonian cycle. Line 7–8 represent the define part, which basically consists of

“Prolog-style” rules defining auxiliary predicates to be used in constraint rules. The rules

stipulate that a Hamiltonian cycle starts at node 0 (Line 7) and any node that is

(recursively) reachable from node 0 should be included in the path (Line 8). The last

lines (10–12) represent the test part, where ”undesirable” answer sets are eliminated. To

avoid passing through a given node more than once, the in- and out-degree of nodes in a

Hamiltonian path are constrained to 1 (Line 10–11). In Line 12, another constraint rule is

used to eliminate any configuration with isolated nodes. Our proposed model will

integrate these three different parts, but not necessarily in the given order.

Through an optimization statement ([34]), a fourth part could be added to our model to

generate “optimal” solutions regarding predefined synthesis objectives. Such a statement

is used to select among all the stable sets the one that is optimal. It has the form of

statement (II.6) where opt is either maximize or minimize, Vi represent literals with

their associated weights wi and priorities pi. Statement (II.6) means that the optimal

answer set is the one with the maximal (or minimal) sum of weights (if all the pi are

equal). If different priorities are specified (pi 6= pj), then the answer set with the maximal

(or minimal) sum of weights relative to the highest priority will be selected (with

p0 > . . . > pn ∈ N+).

#opt { w0@p0 : V0; w1@p1 : V1; . . . ; wn@pn : Vn } (II.6)

As an example, if for every edge (X,Y) of the graph in Figure II.1, a cost C is given

[cost(X, Y,C)], then statement (II.7) could be used to select the Hamiltonian path with

the minimum cost. Note that the priority on weight C has been omitted since there is

only one objective.

#minimize { C, cost : cost(X, Y,C), path(X, Y ) } (II.7)
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III Architecture Synthesis for Reconfigurable Systems-on-Chip

III.1 Introduction

Enabling self-coordination of nodes in a distributed camera network is imperative to

guarantee system effectiveness. In fact, streaming all the data to a central location for

analysis, as is the case in current CCTV-Based surveillance systems, is no longer an

optimal solution given the real-time constraints and the complexity of processing

information coming from multiple sources. In network of smart embedded cameras,

system effectiveness is guaranteed by equipping each node with sufficient processing and

reasoning power to dynamically analyze events in its field of view (FoV) and to

simultaneously communicate with other peers in the network in order to realize a

comprehensive coverage. This approach improves the system scalability and allows

real-time tracking of events of interest among cameras, without relying on a central

server. Nevertheless, designing such autonomous and collaborative vision nodes is very

challenging due to the many and sometimes conflicting design objectives that must be

addressed simultaneously: low latency, low power, low cost, high-performance, high

quality, high throughput, etc. Additionally, operating multiple cameras instead of one

requires more processing power and communication bandwidth, which are limited

resources in practical distributed networks. Therefore, addressing effectiveness in smart

camera networks amounts to tackle the issue of optimizing resource utilization when

designing the camera architectures; a task that cannot be done manually, but which

requires the use of an automatic synthesis methodology.

A distributed camera network is heterogeneous per nature; meaning that it is made up of

nodes with various processing (CPUs, memories, buses) and communication (wireless and

wired) capabilities. In this chapter, we focus on the synthesis of camera architectures to

be used in such dynamic network environments considering the resource limitations on the

computing infrastructures. This challenge is described as a combinatorial optimization

problem with the objective of finding an optimal architecture for each camera node such

as to minimize the resource utilization. Several attempts to provide a solution to such

problems have been proposed in the literature. Mapping heuristics such as simulated

annealing [35] or dynamic programming [36] have been used for the design of optimal
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systems-on-chip (SoC) –a combination of hardware and software systems on a single chip.

The use of Integer Linear Programing (ILP) for architecture synthesis of Multi-processor

System-on-chip (MPSoC) has also been investigated [37, 38]. However, these works either

were limited to produce sub-optimal solutions because of the pre-constrained design space

or simply led to intractable problem instances for large systems.

This chapter presents a novel off-line encoding methodology based on an analytical

approach for system-on-chip synthesis of smart cameras. Considering the resource

limitations on embedded systems, the proposed approach improves upon existing

methodologies by leveraging the network structure to optimize the architecture of the

computing infrastructures. The synthesis uses Answer Set Programming (see Chapter II)

to capture the network environment at start-up in terms of available tasks, resources, and

the camera topology. A systematic mapping between the set of tasks and the available

resources is then performed with the goal of producing optimal SoCs with regard to

minimum system latency, power consumption, and resource utilization. An illustration of

such a mapping function is shown in Figure III.1. Here, the SoC for a camera is generated

Figure III.1: A system-on-chip generation through mapping of low-level tasks with hard-
ware resources.

through an automatic mapping between elements of the set of tasks (up left) and

elements of the set of resources (down left) considering predefined synthesis objectives. A

mapping relation defines how a specific task will be implemented, either as a software

operation inside the processor (T1, T2, and T3) or as a hardware implementation
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synthesized in low-level logic (T4 and T5). Given that the number of mapping

configurations –also known as the design space– can be very huge, this synthesis approach

necessitates the use of an exact methodology that should be able to cope with large

problem instances in an acceptable amount of time.

Results from experiments show that the proposed method has a linear execution time and

is able to synthesize all the architectures in a network of 10 cameras –implementing up to

10 tasks each– in less than 40s. Moreover, performing the synthesis simultaneously for all

nodes of a network makes it possible to optimize the global utilization of communication

resources. This optimization is achieved by first computing the set of communicating

cameras in the network, called the Camera Communication Graph (CCG). This graph

indicates all pairs of cameras that could potentially exchange information at runtime.

Then, the CCG is used to devise the minimum amount of communication tasks/modules

to be instantiated on each camera node during architecture synthesis. Our experiments

show that the use of CCG could help save up to 40% of power and reduce the amount of

communication resources in a network by almost 30% without significant performance

degradation.

The rest of this chapter is structured as follows: In section III.2, the motivations behind

our synthesis approach are presented. Section III.3 clearly formulates the problem that is

addressed in this chapter. Related work with regard to synthesis of application-specific

architectures are discussed in Section III.4. In Section III.5, the proposed ASP-based

encoding model for the automated design of a system-on-chip is presented where

emphasis is put on optimizing communication resources. Experimental results are

provided in Section III.6, followed by concluding remarks in Section III.7.

III.2 Motivation

The expectations on the target systems-on-chip are: 1) to be fast and flexible enough to

support all dynamics in a distributed network environment and 2) to minimize resource

utilization in order to fit on the available embedded infrastructures and operate for longer

periods of time. This section highlights the challenges to tackle in order to design such

computing systems and provides the motivations behind our proposed design

methodology.
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III.2.1 Obstacles to Communication in a Distributed Network

Obstacles can get in the way of effective communication in an heterogeneous camera

network where data exchange usually takes place on a peer-to-peer basis. In such a

network, communication among nodes is influenced by two factors: the nature of cameras

and the cameras’ pose.

The nature of a camera is defined here regarding its communication capabilities, which

could be wired, wireless, or even a combination of both (wireless/wired). In distributed

systems, this heterogeneity increases the complexity of peer-to-peer communications given

that two cameras, even geographically close, would not be able to communicate unless

they have similar capabilities (here we exclude the possibility of using any off-the-shelf

network adapters/bridges devices).

The camera pose –a combination of both cameras’ position and orientation– is an

important factor in optimizing communication in distributed networks that has already

been subject of intensive research [39]. In fact, surrounding physical obstacles, such as

walls, buildings, or trees could seriously mitigate communication or tracking handover

between cameras in a network and impact the system performance.

As a proposed solution to these issues, we aim to answer the question of how we can

leverage the knowledge gained from the network topology in order to design efficient

camera nodes that will improve the overall utilization of communication resources.

III.2.2 Resource Limitations in Smart Camera Networks

Resource limitation is a typical problem in multi-camera networks [40]. Smart camera

networks are basically heterogeneous embedded devices, highly constrained in terms of

processing capabilities, available energy, and bandwidth resources. Camera sensors in

such systems produce a huge amount of data that has to be manipulated on site.

Processing such data in real-time requires complex computer vision operations, which are

usually designed for workstations where energy constraints are minimal or non-existent.

In contrary, distributed embedded cameras are generally battery-powered with a limited

lifetime. Moreover, because of energy efficiency and size considerations, embedded

cameras are designed with limited hardware capabilities (CPUs, memories, caches, and

buses). Therefore, to operate for longer periods of time, smart power management

mechanisms and cost-effective utilization of resources are required.
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III.2.3 A Reconfigurable Computing System for Distributed Networks

A smart embedded camera combines video sensing, image processing, and communication

within a single chip. The computations on such a complex system can efficiently be

handled using a combination of hardware and software. In such a decomposition, while

the hardware handles the most computationally demanding tasks, the software takes care

of the control parts. By using Field Programmable Gate Arrays (FPGA) as the main

processing component, complex computations can be directly implemented in hardware,

while the control part are carried out by an embedded processor. The advantages of a

FPGA-Based system could be summarized as high performance, high throughput, low

cost, and low power. In terms of performance, FPGAs provide the necessary processing

power to implement the complex, real-time image processing functions required

throughout a distributed network. Moreover, FPGAs offer a low development time and

more flexibility (instead of dedicated processing like ASICs) through the combination of

hardware and software on a single chip and the possibility of restructuring the hardware

at runtime.

III.2.4 An exact Methodology for the System-on-Chip Synthesis

Designing application-specific systems-on-chip for embedded smart cameras is a very

complex undertaking that cannot be handle manually because of the various, sometimes

conflicting design constraints and objectives that must be simultaneously addressed:

system latency, system size, power consumption, system throughput, etc. For example,

decreasing the latency of a battery-powered system, will usually increase its power

consumption and therefore reduce the operation time. Each of the aforementioned

parameters represents a dimension in the design space that has an impact on the overall

system performance. The design space of such systems is therefore huge, requiring means

to automatically optimize design parameters so as to facilitate wide and disciplined

explorations. The complexity resulting from modeling the corresponding system

necessitates the use of exact methodologies and optimization heuristics to cope with

excessively long runtime, especially for large problem instances.
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Figure III.2: An Heterogeneous network of four smart cameras. (a) - The physical network
inter-connection. (b) - Camera overlapping field-of-views. (c) - Computer vision tasks
implemented on each node.

III.3 Problem Formulation

This section presents a concise formulation of the addressed problem. We start by

defining some terminologies that will be used throughout the chapter.

III.3.1 Definitions

For a practical formulation, let’s consider the network scenario depicted in Figure III.2, in

which a set of 4 smart cameras is placed on a 2D space. This network consists of various

camera types: wired (node 2), wireless (node 3) and wireless/wired (node 1 and 4). Each

of these nodes implements a specific computer vision operation (see Figure III.2(c)), that

will be referred in this Dissertation as a high-level task, as it could further be decomposed

in a series of low-level operations (convolution, thresholding, or image filtering). Concepts

borrowed from graph theory will be leveraged to capture the global information about the

network environment, such as the topology and the camera orientation, as well as the

local information about individual nodes, such as the available resources on a camera and

the set of low-level tasks to be implemented.

Definition III.3.1 (Task Graph). A Task Graph of a given camera node, denoted

GT = (VT , ET ), where VT is the set of tasks and ET the communication among these

tasks, is a graph representing the set of computation and communication tasks to be

executed inside the camera and their interdependence.

An edge e = (i, j) ∈ ET represents the internal communication between the nodes vi and
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vj ∈ VT , which can express a data dependency between two computations. Originally the

task graph of each camera will only consist of computation tasks. The communication

tasks will be added only after generation of the Communication graph.

Definition III.3.2 (Architecture Graph). The Architecture Graph of a camera is a graph

that captures the available resources on the camera.

It is denoted GA = (VA, EA), where VA represents the available resources (CPU for

software tasks and hardware slots for hardware tasks) and EA is the set of communication

links among the nodes.

Definition III.3.3 (Camera Interconnection Graph). We define the Camera

Interconnection Graph (CIG) of a network as the graph that captures the physical

interconnections among all the different cameras in the network.

The CIG is denoted GCIG = (VCIG, ECIG), where VCIG represents the set of cameras and

ECIG the interconnection (wired or wireless) between camera pairs. A link eij ∈ ECIG

between vi, vj ∈ VCIG indicates that both cameras are within the same transmission range

(i.e either they are connected to the same network switch or they are within the same

wireless range).

Definition III.3.4 (Camera Orientation Graph). The Camera Orientation Graph

(COG) of a network is the graph that captures the overlapping field of views among the

different camera nodes.

It is denoted GCOG = (VCOG, ECOG), where VCOG represents the set of nodes in the

network. An exiting link eij ∈ ECOG between two nodes vi, vj ∈ VCOG means that both

cameras share an overlapping FoV.

Definition III.3.5 (Camera Communication Graph (CCG)). The Camera

Communication Graph (CCG) of a network is defined as the graph capturing all

communicating pairs of cameras in the network.

Two cameras are said to be communicating if they share an overlapping FoV and are not

bounded by any communication constraints as explained in Section III.2.1. The CCG is

denoted GCCG = (VCCG, ECCG), where VCCG represents the set of cameras. A link

eij ∈ ECCG between two nodes vi, vj ∈ VCCG symbolizes an inter-camera communication,

meaning that all conditions are actually fulfilled for vi and vj to communicate. This

assumption will be materialized during synthesis by adding new communication tasks to
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the task graphs of both nodes. As a consequence to this, each camera node will only

instantiate the minimum amount of communication tasks that is necessary to

communicate.

Definition III.3.6 (Adjacency Matrix). Given a graph G = (V,E) with n nodes,

the Adjacency Matrix of G, denoted MG ∈ Nn×n, is a matrix that indicates which nodes

of the graph G are adjacent to which other nodes.

The Adjacency Matrix is an abstract way of representing any graph and is computed

using the following formula:

MG[i, j] =

{
1 if e = (vi, vj) ∈ E, with vi and vj ∈ V
0 otherwise.

(III.1)

III.3.2 Problem Statement

We consider a distributed network NET = (T,C,R) of n camera nodes, where for each

node i, the available resources VAi
(architecture graph) and the set VTi

of low-level tasks

implemented on i at startup (task graph) are known. We define:

1. T = VT1 ∪ VT2 ∪ . . . ∪ VTn as the set of all computation tasks in NET ,

2. C = VC1 ∪ VC2 ∪ . . . ∪ VCn as the set of communication tasks in NET ; with VCi

representing all communication tasks on camera node i that have been generated

using the CCG, and

3. R = VA1 ∪ VA2 ∪ . . . ∪ VAn as the set of all resources available in NET .

The goal of the architecture synthesis is to define an automatic mapping and scheduling

between the set of tasks (T ∪ C) and the available resources (R), such as to generate an

optimized system-on-chip for each node in the network. Optimization aims at maximizing

speed and throughput, while minimizing chip area and power consumption per camera

node. This is similar to finding a surjective function f : T ∪ C → R that makes a

one-to-one association between elements from sets T ∪ C and R, such that design

objectives (resources utilization, power consumption, latency, and throughput) are

optimized. This is a non-deterministic combinatorial optimization problem that can

result in a huge design space (set of solution candidates) even for problems with small

size. In other words, even with small amount of tasks and fewer resources available per
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camera, the set of possible mapping can become very huge and quickly intractable. The

formulated problem can be seen as an extension of the multi-processor system-on-chip

(MPSoC) optimization problem to a simultaneous optimization of interconnected

MPSoCs in a heterogeneous network topology. Mapping and scheduling problems in

MPSoCs have already been proven to be NP-Complete [41], which makes the complexity

of the addressed problem to be at least NP-Complete.

III.4 Related Work

To model combinatorial optimization problems and finding optimal solutions, many

research have investigated the use of Integer Linear Programming (ILP). In [42] and [43],

a node placement problem to achieve effective coverage in distributed sensor networks has

been reduced to an ILP problem instance, which is solved using a public-domain solver.

In [37], Murali et al. leveraged ILP for designing a power-efficient application-specific

crossbar architectures for MPSoCs, while [38] used an ILP model to automate the

architecture synthesis for parallel programs on FPGA multi-processor systems. However,

the main drawback of ILP is that it is not scalable to large problem instances. While

exact, ILP-based high-level synthesis approaches suffer from the limitations imposed by

the size of the problem. For large systems, the problem instance becomes easily

intractable and leads to indefinite synthesis time.

Most of the existing work on architecture synthesis for multi-processor systems focus

more on processor allocation and on-chip communication. To date, very few work has

provided a means for the systematic mapping of an application in a hardware/software

system [44]. A Branch and Bound approach for solving the task mapping problem in a

multi-processor systems has been proposed in [45]. Mapping algorithms such as dynamic

programming [36], simulated annealing [35], evolutionary algorithms [39], and

application-specific heuristics [46] have been used for general purpose system-on-chip

design problems. While these approaches take steps in the right direction by eliminating

tedious manual explorations, they are limited for reconfigurable system-on-chip designs

because they do not consider cross-effects between the subspaces as they only target

specific dimensions, thus producing sub-optimal solutions.

Regarding the optimization of communication resource in distributed networks, a vast

majority of research has considered the camera selection approach. In this methodology,
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the resource optimization problem is tackled through dynamic selection of camera subsets

that will efficiently handle all monitoring tasks at runtime. The idea here is to minimize

the amount of active cameras in the network by optimally assigning tasks to a minimum

set of nodes according to a certain quality of service without degrading the overall system

performance. In [47], three camera selection approaches are presented (centralized,

distributed, and proprioceptive) wherein the task of finding the optimal camera subset is

either solved on a dedicated node or distributed over a set of collaboratives cameras. [48]

presents a resource-aware task assignment approach in a visual sensor network using a

marked-based object handover mechanism. In [49], Shen and Hornsey propose a camera

selection scheme based on evaluation of local and global quality of view (QoV) metrics.

The local metric evaluates the root mean square error of the ellipse fitting the target

object and determines how good a camera can track the object; while in the global QoV,

the camera subset with the best visual hull volume of the target object is assigned the

tracking task. Generally, the major drawback in the camera selection approach is the

additional cost (time and hardware resource) spent to dynamically compute the set of

active cameras. When the network is overloaded, this cost could negatively impact on the

performance of the system. Additionally, these approaches are limited in the fact that

they rely on homogeneous networks where all cameras are of same nature.

III.5 Proposed Approach

In this chapter, we propose a vertical design flow for implementing optimal

system-on-chips that consists in four phases, sketched in Figure III.3. The presented flow

successively covers (i) the specification of the network environment, (ii) the global

optimization, (iii) the application mapping, and (iv) the architecture determination, the

result of which is an abstract description of the architectures for each camera of the

network with the optimal amount of inter-camera communication. The input to the

design flow is a formal description of the network which captures all computation tasks

and infrastructures available in the distributed environment at startup, as well as the

network topology. To increase design productivity, computation and communication tasks

are available as Intellectual Property (IP) cores, whose information regarding their costs

and constraints is provided. The description of low-level infrastructures indicates how

much resources (processors, memories, buses, logic elements) are available in the network.
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Figure III.3: An analytical architecture synthesis flow applied on the network of Fig-
ure III.2.

Starting from the system specification, as can be seen on Figure III.3, an instance of a

logic problem is formulated using Answer Set Programming (ASP), then subsequently

refined and solved using existing solvers. The generated solution, obtained after the

architecture determination step, represents an abstract description of systems-on-chip

that indicates, for each camera, the number of allocated memories and hardware

resources, the task mapping and their schedule on processors. This final architecture

could be further passed to existing CAD tools to generate the configuration bitstream,

but this last part is not covered in this Dissertation.

Before presenting in detail the proposed ASP encoding model, we next explain its

structure.
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III.5.1 The Structure of the Proposed ASP Model

In ASP, it is custom to provide a uniform problem definition. Following this methodology,

our proposed model will be structured in three different parts, to allow a greater flexibility

and reusability: First, the problem description consisting of facts representing the set of

beliefs that are held true at system startup, such as the network environment (see

Figure III.4), the resources available on the different camera nodes, or the composition of

the processing tasks implemented on the nodes (see Figure III.5). Second, a summary of

meta-information for all computational functions available in the system, such as the

costs (area, power, speed) of Intellectual Properties used to implement the high-level

tasks on camera nodes (see Figure III.7). Third, the solver model itself –following the

generate-and-test paradigm (see Chapter II)– which provides all the necessary rules to

devise the answer sets. Each of these parts will be developed in the following sections.

III.5.2 System Specification

The system specification is captured by means of task graphs, architecture graphs,

interconnection graph and orientation graph. Each node of the heterogeneous network

has one task graph and one architecture graph, but the interconnection graph and the

orientation graph are shared by all cameras. The task graph represents computations to

be done in a single camera at startup. This set of tasks is defined by the initial setup of

the camera. Modification on the camera behavior at runtime is triggered by changes in

the environment, which might introduce new tasks in the system and require the task

graph to be updated. This dynamic configuration is not addressed in this chapter, but

will be covered in detail in Chapter IV.

Global Specification

The global specification captures the topology of the heterogeneous network. ASP facts

are used to identify all cameras in the network and describe their interconnection and

orientation, yielding an ASP instance of a logic program that will be used during global

optimization to generate a minimum set of communication tasks. Figure III.4 shows an

ASP-based modeling sample of the network environment presented in Figure III.2. On

the logic program, atom cam(M ) defines a camera node M ; wired(M, ) and wrless(M, )

indicates all the wired and wireless connections of M in the network, while camFov(M, )
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Figure III.4: Part of the ASP model describing the Network environment in Figure III.2.

lists all nodes sharing an overlapping field-of-view with camera M .

Local Specification

In the local specification, all low-level tasks implemented on a camera node are described

as well as the type of available resources. Examples of such tasks are: thresholding, edge

detection, background subtraction, color conversion, or image compression. The

description of tasks is captured using a task graph, while an architecture graph is used to

capture the resources (processors, memories, logic elements, buses). An ASP instance

illustrating both graphs is shown in Figure III.5. In this example, atoms node(M,Nid, T )

and edge(M,Eid, T, Ti, Throughput) represent a task T implemented on a camera M and its

dependency Ti in the processing chain (with Nid and Eid being a unique identifier for the

node and the edge respectively). T is the data throughput on the edge. Atom

waitFor(M,N1, N2) specifies the synchronization constraints among tasks with node ID

Ni of a camera, while place(M,REStype, RESsize) and dom(M, IPtype, IPinst) respectively

capture for each camera, the total amount of a given resources and the list of IP available.

In order to compute an optimal schedule and minimize overall execution time on a

camera, two special nodes (Vs and Ve) with no delay are introduced on its task graph:

node(M,Vs, start) and node(M,Ve, end). Vs is the task start and is incident to all nodes

without predecessors in the task graph and all nodes without successors are incident to

Ve, the task end. Each computation path on a task graph starts with Vs and ends with Ve.

At startup, there is no communication task included on the task graphs. These will be

generated after the global optimization step and added later to task graphs during
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Figure III.5: Part of the ASP model describing the computation tasks and available re-
sources on camera node 4 in Figure III.2. The task graph describes the high-level processing
implemented by the camera which consists of an image encoding.

synthesis.

III.5.3 Global Optimization

As shown in Section III.2, an design methodology that does not consider the network

environment in a distributed setup is less optimal because of potential obstacles to

communication. Using the network description of the previous step, the objective in

global optimization is to derive the minimum set of communication tasks for all nodes in

the network that will maintain the expected communication traffic. This is done by

computing the camera communication graph (CCG), which captures all communicating

pairs in the network and indicates the means through which they will be communicating

at runtime, whether it be wired or wireless.

To devise the CCG, both the Interconnection Graph (CIG) and the Orientation Graph

(COG) are merged, as illustrated in Figure III.6. A node Ci, on the Figure indicates a

wired node type, Wi a wireless type, and WCi a wireless/wired node. The merging

process is expressed by equation (III.2) and corresponds to an element-wise matrix
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Figure III.6: Generation of the camera communication graph.

multiplication of the adjacency matrices of CIG and COG.

MGCCG
[i, j] = MGCIG

[i, j]×MGCOG
[i, j] (III.2)

where MGCCG
(resp. MGCIG

and MGCOG
) represents the adjacency matrix of the graph

GCCG (resp. GCIG and GCOG).

Put it simply, two nodes are connected in the CCG iff they are connected in both the

CIG and the COG. The ASP-rules to encode equation (III.2) are given by:

camConn(M,N)← wired(M,N). (III.3)

camConn(M,N)← wrless(M,N). (III.4)

camComm(M,N)← camConn(M,N), camFov(M,N). (III.5)

Rules (III.3) and (III.4) identify as connected, two cameras M and N linked either by

wired or by wireless. This identification helps derive the set of communicating nodes in

the network (rule (III.5)), which forms the CCG.

Once the CCG has been generated, we next compute the optimal set of communication

tasks to be implemented on each camera node considering its nature. If a node M of the
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CCG is a wired type, then a (low-level) task implementing a wire protocol will be

generated:

camWired(M )← wired(M,N), #count{M : wrless(M, )} = 0,

#count{M : wrless( ,M)} = 0. (III.6)

1{node(M, ID, com wired)}1← camWired(M ), ID = M ∗NTmax + 1,

#count{M : camComm(M, )} ≥ 1. (III.7)

Rule (III.6) uses the aggregate count to identify a wired camera as a one having no

connection in the network but wired (i.e number of wireless neighbors = 0), while Rule

(III.7) generates exactly one new communication task iff the wired camera node is at least

connected to one other node in the CCG. The variable ID represents a unique identifier

to the new local task obtained using the camera number and the input constant NTmax,

which is the maximal number of tasks per camera. Likewise, if node M is a wireless

camera, then a task implementing a wireless communication protocol will be generated:

camWrless(M )← wrless(M,N), #count{M : wired(M, )} = 0,

#count{M : wired( ,M)} = 0. (III.8)

1{node(M, ID, com wireless)}1← camWrless(M ), ID = M ∗NTmax + 2,

#count{M : camComm(M, )} ≥ 1. (III.9)

Regarding a wireless/wired camera type, normally two low-level tasks implementing a

wireless and a wire protocol respectively should be created. But to avoid wasting resource,

if all adjacent nodes to M in the CCG are the same type, then only one task is necessary:

camWrlessWired(M )← cam(M ), #count{M : wrless(M, )} ≥ 1,

#count{M : wired(M, )} ≥ 1. (III.10)

neighbor(M ,NG)← cam(M ), R = #count{M : camComm( ,M)},

L = #count{M : camComm(M, )}, NG = L+R. (III.11)
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neighborWrlessWired(M ,NG)← camWrlessWired(M ), neighbor(M ,NG). (III.12)

1 {node(M, ID, com wired)} 1← neighborWrlessWired(M ,NG),

NG = #count{M : wired(M, )},

ID = M ∗NTmax + 1. (III.13)

Rule (III.10) identifies camera M as a wireless/wired node if it has at least one wireless

and one wired connection, while (III.11) counts the number of adjacent nodes to M in

order to devise its neighborhood NG. If NG is equal to the number of wired nodes

connected to camera M , meaning that every node in the neighborhood is a wired type,

then a wired communication task is generated for camera M (Rule (III.13)). Similarly, if

all adjacent nodes to M are wireless, then only one task implementing a wireless protocol

will be generated:

1{node(M, ID, com wireless)}1← neighborWrlessWired(M ,NG),

NG = #count{M : wrless(M, )},

ID = M ∗NTmax + 2. (III.14)

Now, if a wireless/wired node is connected to both a wired and a wireless node in the

CCG, then it must implement both types of protocol. This implies that two tasks (one

for wired and one for wireless communication) would be generated.

1 {node(M, ID1, com wired)} 1← neighborWrlessWired(M ,NG),

NG 6= #count{M : wired(M, )},

ID1 = M ∗NTmax + 1. (III.15)

1{node(M, ID2, com wireless)}1← neighborWrlessWired(M ,NG),

NG 6= #count{M : wired(M, )},

ID2 = M ∗NTmax + 2. (III.16)

Rules (III.15) and (III.16) simply check if the number of wired nodes connected to a

wireless/wired camera is different than its neighborhood and then generates two different

tasks implementing a wire and a wireless communication protocol.

III.5.4 Application Mapping

Upon generating the communication tasks, the mapping of all low-level tasks in the

network with available resources can now be implemented, with the goal of minimizing
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the cost (resource usage, power consumption, and latency) of the generated

system-on-chips. In [44], an ASP-based encoding model was proposed for rapid

prototyping of image processing application. However, this model was implemented for

single objective optimization problems and considered only the synthesis of a single

architecture at a time. The mapping methodology proposed in this chapter is intended for

multi-objective optimization problems and performs the synthesis simultaneously for all

nodes of a network considering inter-camera relationships. Our approach yields a better

optimization of communication resources since the global view of the network is leveraged.

To allow a high flexibility and reusability, the mapping process leverages a Task

description model and a Solver model encoded independently from the model that

describes the network environment. The Task description model, as illustrated in

Figure III.7, provides information about the available implementations of

computational/communication modules for the local tasks and edges of the camera nodes.

Figure III.7: Example of a Task description model.

Here we follow a platform-based approach in which computational and communication
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modules are made available as Intellectual Property (IP) in a library. For each local task

on any task graph of the network, one or more IPs must exist that implement a particular

algorithm either as software function or as dedicated hardware module with associated

speed, cost, and power consumption provided. In the Description model of Figure III.7,

atoms component(IPname , IPtype) and implement(IPname , IPtask , IPthroughout) define different

instances of an IP and specify whether they are implemented as software functions or as

hardware macros. The different kind of resources in the system are indicated by

resource(REStype), while atom uses(IPname ,REStype ,Quantity) explicits the utilization of a

resource instance by an IP in terms of hardware logic elements and power consumption.

Finally, to implement the architecture synthesis a solver model is used. The model

specifies all necessary ASP rules to successively perform allocation of hardware resources,

mapping of local tasks with available resources, scheduling of individual operations on

each camera of the network, and generation of the final optimal architectures with regard

to latency, power, and area minimization.

Mapping Local Tasks to Processing Units

the mapping of low-level tasks assigns each node of a task graph to exactly one processing

unit, which can be the processor or a dedicated hardware. This process is simultaneously

done for all cameras of the network. For each instantiated component C on a camera M

and each local task V , an atom map() is defined:

1 {map(M,V,C,K) : dom(M,C,K)} 1← node(M,V,O). (III.17)

where atom node(M,V,O) captures the task O and the parameter K indicates a

particular instance of the IP C that realizes O. Rule (III.17) means that for each task V

on the task graph of camera M , the sum of mapped components on M must equal 1,

insuring that each local task is mapped to exactly one computational unit.

Capturing Inter-Camera communication

To capture the communication between two cameras, the communication tasks generated

during global optimization are added to their respective task graphs. During this adding

process, new edges are created to emulate input and output connection flows as shown in

Figure III.8. For an input flow, i.e data coming from another camera, the communication
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Figure III.8: Modeling inter-camera communication during synthesis.

task is inserted between the task start and the first local task –node with the lowest

identifier– in the processing chain of the receiving camera:

minNode(M,V )← cam(M ), V = #min{O : node(M,O,X), X 6= start}. (III.18)

1 {edge(M,E, Vs, VC , 1)} 1← camComm(N,M), VC = M ∗NTmax + 1, E = VC ,

node(M,Vs, start), node(M,VC , com wired). (III.19)

1 {edge(M,E, VC , VO, 1)} 1← camComm(N,M), VC = M ∗NTmax + 1,

minNode(M,VO), node(M,VC , com wired). (III.20)

Rule (III.19) captures the connection between Vs, which is the node start, and the

communication task VC on camera M . Then Rule (III.20) will connect VC to the first

processing task on M , whose ID is given by atom min node(Camid ,Nodeid).

To capture an output flow, the communication task VC on the sending camera is inserted

between the last local task –node with the highest identifier– and the node end

(Rules (III.21)–(III.23)). This follows the same principle as previously described.

maxNode(N, V )← cam(N ), V = #max{O : node(N,O,X), X 6= end}. (III.21)
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1 {edge(N,E, VO, VC , 1)} 1← camComm(N,M), VC = N ∗NTmax + 1,

maxNode(N, VO), node(N, VC , com wired). (III.22)

1 {edge(N,E, VC , Ve, 1)} 1← camComm(N,M), VC = N ∗NTmax + 1, E = VC ,

node(N, Vs, end), node(N, VC , com wired). (III.23)

Mapping Edges to Local Communication Components

For an edge E of a task graph, which describes data dependency between two local tasks

Vi (source) and Vo (sink) in a camera M , the following constraints need to be met:

0 {send(M,E,C1, K1, C2, K2)} 1← edge(M,E, I,O,D), dom(M,C1, K1),

dom(M,C2, K2). (III.24)

← edge(M,E, VI , VO, D), dom(M,C,K),

send(M,E,C,K,C1, K1),

not map(M,VI , C,K). (III.25)

← edge(M,E, VI , VO, D), dom(M,C,K),

send(M,E,C2, K2, C,K),

not map(M,VO, C,K). (III.26)

Rule (III.24) captures the data transfer between two tasks (connected by E) mapped on

components C1 and C2. Constraint (III.25) insures that, if a source task VI is mapped to

a component C there must exist a component C1 to which C sends data over edge E.

Similarly, if a sink task VO is mapped to a component C, there must exist a component

C2 which sends data to C over edge E (Constraint (III.26)).

Modeling Timing Requirements

Modeling the temporal behavior can be done by defining time values as discrete and finite

set of possible time slots. In the proposed ASP model, each local task V is assigned

exactly to one time slot T , as described by Rule (III.27):

1 {map(M,V, T ) : time(T )} 1← node(M,V,O). (III.27)

where M is a camera of the network and time(Value) an atom representing the time slots

available in the time domain, whose maximum value is given as a constant in our model.
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For each task graph in the network environment, the task start (Vs) previously defined, is

assigned the time slot 0 to insure that it will be the first to be scheduled:

← node(M,Vs, start), #count{Vs : map(M,Vs, TX), TX > 0} ≥ 1. (III.28)

The task end (Ve), which is always the last time to be scheduled, is assigned the total

runtime/latency of the camera –only known after the mapping of the whole task graph

(see Constraint (III.45)).

Modeling Local Scheduling

Finding a schedule for a task graph is subject to defining the right data dependencies

among its nodes. Two nodes Vx and Vy are said to be data dependent if they are directly

(Rule (III.29)) or indirectly (Rule (III.30)) connected on the task graph.

dep(M,Vx, Vy)← node(M,Vx, O1), node(M,Vy, O2), edge(M,E, Vx, Vy, D). (III.29)

dep(M,Vx, Vz)← node(M,Vx, O1), node(M,Vy, O2), node(M,Vz, O3),

edge(M,E, Vx, Vy, D), dep(M,Vy, Vz). (III.30)

If a task Vy is data dependent from a task Vx on camera M , then Vy may not start before

its predecessor Vx has completed his execution. The following rule captures this

constraint:

← map(M,Vx, Tx), dep(M,Vx, Vy), #count{Vy : map(M,Vy, Ty), Ty < Tx} ≥ 1. (III.31)

Capturing System Speed

The speed of a camera system is determined by the speed of its system bus. Each task

that is part of a processing chain on the camera will start producing data at a certain

time T depending on its throughput Tp.

1 {workTp(M,V, Tp) : tp dom(Tp)} 1← node(M,V,O), O 6= start, O 6= end. (III.32)

taskAtTime(M,V, T )← map(M,V, time),workTp(M,V, Tp),

edge(M,E, I, V,D), time(T ), T < (Tp ∗D). (III.33)

taskAtTime(M,Vs, 0)← node(M,Vs, start). (III.34)
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Similar to time assignment, each local task of a task graph, other than start and end, is

assigned to exactly one throughput slot Tp (Rule (III.32)). Using the throughput,

Rule (III.33) estimates for each task, the time at which it would start producing data;

with the start node being scheduled at time 0 (Rule (III.34)).

To evaluate the system bus load on camera M , we first compute the workload W that

each task V puts on the bus at a time slot T :

workDiv(M,V,K, T,W )← taskAtTime(M,V, T ),map(M,V, proc,K),

workTp(M,V, Tp),W = Tp/tp. (III.35)

where tp represents the internal bus capacity given as input parameter. Then, we derive

the overall workload WT on the bus at time T :

work(M,div, T,WT )← cam(M ), time(T ),

WT = #sum{W1 : workDiv(M,V,K, T,W1)}. (III.36)

Finally, for each time slot T the sum of active bus transfers must always be smaller than

the bus capacity tp. This is guaranteed by the following constraint:

← time(T ), tp(bus, Tp),work(M,div, T,WT ),WT ∗ Tp > tp. (III.37)

Because traffic caused by a component is inversely proportional to its speed, the load of

the bus can be used to define its speed.

III.5.5 Architecture Determination

The rules previously defined will be used as constraints while searching for a solution to

the initial logic problem. Since many possible solutions may exist, we are interested only

in optimal ones, which are those with minimum runtime, resource usage, and power

consumption.

To compute the total resource usage on a camera M , we first look for the size S and

power consumption P of every Intellectual Property I available on M :

size(M, I,R, S)← uses(I, R, S), dom(M, I,K), R 6= power. (III.38)

size(M, I, power, P )← uses(I, power, P ), dom(M, I,K). (III.39)
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Then, we narrow our computation to IPs implementing tasks that are part of the

processing chain on M , which are basically tasks that have been mapped on hardware

components (Rule III.40) or used for data transactions (Rule III.41):

use(M,C,R, S)← size(M,C,R, S), dom(M,C,K),map(M,V,C,K). (III.40)

use(M,C,R, S)← size(M,C,R, S), dom(M,C,K),

#count{E : send(M,E,C,K,C1, K1), dom(M,C1, K1)} ≥ 1.

(III.41)

We finally generate the size of resources used by camera M (Rule III.42), as well as its

power consumption (Rule III.43):

utilization(M,R,U)← resource(R), place(M,R,O),

U = #sum{S : use(M,C,R, S)}. (III.42)

utilization(M, power, U)← cam(M ), U = #sum{S : use(M,C, power, S)}. (III.43)

Having estimated the resource utilization and power consumption for all kinds of

mapping configuration, we can now perform a local optimization. It consists of selecting,

for each camera node, the architecture/mapping configuration that would minimize

runtime, area, and power.

#minimize{

T @ 3,map : map(M,Ve, T ), node(M,Ve, end);

U @ 2, utilization : utilization(M,R,U), R 6= power;

P @ 1, utilization : utilization(M, power, P )}. (III.44)

Subject to constraints:

← taskAtTime(M,X, T ), node(M,Ve, end),

#count{Ve : map(M,Ve, Te), Te ≤ T} ≥ 1. (III.45)

← place(M,R,U1), #count{R : utilization(M,R,U2), U2 > U1} ≥ 1. (III.46)

The first objective in the first line of Rule (III.44) is the runtime. Ve is the task end

defined earlier. It should be the last task to be scheduled on camera M

(Constraint (III.45)) and therefore defines the overall system runtime of M . Each atom
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map(M,Ve, T ) is weighted by its time slot number T . Because only one atom is true, the

sum results in the time slot number of the end task and hence the total runtime of

camera M . The second objective, minimizing the resource utilization on each camera

node, is defined with the second equation. U is the total utilization of resource type R

(different than power) by all instantiated components on camera M . This amount is kept

minimal. The third equation minimizes the power consumption. The total amount of

power used by all instantiated components on camera M is given by variable P and

should be kept minimal. The priority order specified in Statement (III.44) assumes that

the system runtime is the most important objective during the synthesis, followed by the

resource utilization, and finally the power consumption. This order, however, can be

changed according to the designer. Finally, all optimizations must be done subject to

resource constraint, which is defined by Rule (III.46). The constraint states that the total

amount U2 of resource type R used by instantiated components on camera M should not

exceed the total available resource U1 on the FPGA of M .

III.6 Experimental Results

In this section, we presents the result of experiments conducted to demonstrate the

feasibility of the proposed ASP-based encoding. Experiments are conducted in three

phases. After presenting the evaluation environment, we will first demonstrate the

feasibility of the proposed synthesis approach using the network depicted in

Figure III.2 (Section III.6.2). Then, we will prove the effectiveness of our optimization

methodology by showing –with a set of synthetic network scenarios– how it can effectively

reduce the communication resources and power consumption in a distributed

network (Section III.6.3). Finally, we will evaluate the robustness of the proposed search

approach by synthesizing architectures for various network configurations (Section III.6.4).

III.6.1 Evaluation Platform

The computing infrastructure that has been used to design the smart cameras is our

RazorCam platform [50]. The RazorCam is a smart embedded camera offering a flexible

and extensible hardware/software environment to prototype and to verify video

applications. It is capable of processing and analyzing image data through a Xilinx

FPGA-board featuring an embedded processor (Microblaze or ARM). Additionally, the

36



RazorCam offers a host of real world interfaces including a Gigabit Ethernet transceiver

on the main board and a Hi-Speed USB port, that could be used for wired and wireless

transmission. Originally, the RazorCam is a wired/wireless camera, but it could be

configured to be used either as a pure wired system –only accepting wired connections– or

as a pure wireless camera. For our experiments, two different communication protocols

have been considered: Serial RapidIO Gen 2 for wired communication and USB 2.0 for

wireless communication. These choices however did not exclude other communication

alternatives.

Table III.1 gives a brief summary on some implementations of available Intellectual

Properties (IPs) and their costs, which are also described in the ASP model of

Figure III.7. These IPs are available in the library in several implementations. All cost

Throughput Resources Power

Task - Abbreviation MBlaze HPU Slice BRAM DSP (mW)

Gauss - GF 16 1 280 1 0 37

Sobel- SF 16 1 296 1 0 37

Gradient - GR 8 2 100 0 0 30

Harris Corner - HC 16 1 740 0 0 187

Bayer2RGB - BRG 16 1 119 2 0 31

Bayer2Gray - BG 16 1 1250 3 0 183

Extract Histo - EH 16 1 153 0 0 25

Mean Shift - MS 16 1 1050 0 0 150

JPEG Encoder - JE 16 5 11460 24 29 1758

Threshold - IT 16

JPEG Head - AJH 16

Draw Box - DB 16

USB2.0 - USB 1 2424 0 0 98

Serial RapidIO - SR 1 6244 11 0 637

Axi SDI - AXS 1865 7 0 190

Table III.1: Meta-information on the available intellectual properties

parameters regarding the timing (throughput of MicroBlaze and Hardware Processing
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Unit) and the density (Slices LUTs, BRAMs, and DSPs) of the IPs modules were either

retrieved from vendor data sheets or obtained after synthesis and implementation on the

RazorCam using Xilinx synthesis tools (ISE and PlanAhead). It is worth noting that any

embedded camera system, other than the RazorCam, could be used for these

experiments, providing that the IP modules are synthesized for the target platform. To

estimate static and dynamic power consumption, the Xilinx Power Analyzer (XPA) has

been used. The power consumption provided in Table III.1 are estimated values –not

measurements taken during real-time execution– and could therefore be slightly different

at runtime. Nevertheless, these estimations provided a good reference point for the

architecture synthesis and we intend in the next steps of the research to update our model

using more realistic measurements. The workstation used for the ASP-based synthesis is

a desktop computer featuring an Intel Core i5 2.67GHz processor with 3.8GB of memory.

III.6.2 Phase I - Method Feasibility

To evaluate the feasibility of the proposed synthesis methodology, we applied it on the

network depicted in Figure III.2. We performed the architecture synthesis for the four

cameras of the network, whose processing chains are indicated in Table III.2. The

Nodes Operations Steps Goals

#1 Obj. Detection BG→ GF → SF → GR→ IT min. latency

#2 Obj. Detection BG→ GF → SF → GR→ IT min. area

#3 Obj. Tracking BRG→ EH →MS → DB min. latency

#4 Video Compress. BRG→ JE → AJH min. latency

Table III.2: Processing chain on camera nodes for the distributed network of Figure III.2

computations implemented by each camera represent high-level computer vision

operations that have been randomly assigned. The first and second camera nodes

implement a canny edge detection to extract object edges in images for recognition. The

third camera implements an object tracking algorithm based on the r-bin Hue histogram

matching, while the fourth camera performs a video compression after the Motion JPEG

standard. In all the defined processing chains, no communication tasks have been

specified. These latter will be identified and added to the each camera after the global

optimization step.
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Figure III.9: Generated systems-on-chip for the 4-Node network of Figure III.2.

On the testing workstation, the ASP solver (Clingo [51]) takes approximately 6 seconds to

synthesize the architectures of the whole network. Figure III.9 shows the generated

systems-on-chip upon completion of the synthesis. The generated architectures indicate

the mapping of low-level tasks onto the computing infrastructures following the

optimization goals. We observe that, even though camera 1 and 2 implement the same

operations, their architectures are different. An explanation to that is the difference in

the synthesis objectives. While the goal for camera 1 was to maximize the processing

performance, the objective in camera 2 was to minimize the density of the final

architecture. On camera 1, computations are implemented in hardware whenever

possible, but on camera 2, some tasks are scheduled on the Microblaze processor to

minimize the area utilization.

Another observation is the optimization of communication resource on camera 4. Even

though the node is originally a wireless/wired type, only a wireless task (USB2.0) –as

communication protocol– has been added on the generated architecture. This is due to

the global optimization step. Table III.3 summarizes the results of the synthesis and

provides information about the utilization of resources and the estimated runtime (or

latency) per camera node. The estimated runtime of a camera is understood as the time
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Nodes Slice BRAM DSP Power(mW) Time slots

#1 12459 23 0 1212 21

#2 9639 22 0 1047 42

#3 5611 9 0 494 19

#4 15868 33 29 2077 22

Table III.3: Resources utilization and estimated runtime

it takes to the first pixel –produced by the camera sensor– to move through all the stages

of the processing chain and be available at the output unit (the main processor or the

communication component in the case of data transmission). Table III.3 shows for

example that it takes 21 time units to camera 1 to output its first results –assuming there

is no delay in bus transactions. We can also observe that this is faster than camera 2,

which occupies however less area and consumes less power. This latency difference follows

the design objectives as clearly indicated on Table III.2. The power consumption of the

generated SoCs is also provided in Table III.3. Here we have only considered the

processing tasks that have been mapped on a hardware logic and did not include the

consumption of shared units, such as the memory controllers or the microblaze processor.

III.6.3 Phase II - Method Effectiveness

In this experimental phase, we focused on evaluating the performance of the global

optimization approach to minimize communication resources in a distributed network.

Global optimization has been applied on a set of synthetic networks and the generated

results were compared with the performance obtained for the same network configurations

without optimization. We evaluated four groups of network with different size: 4,5,6, and

8 nodes. Each group consisted of two case scenarios representing a simply connected

network –as in public areas like airports– and a strongly connected network –as in highly

secure places such as nuclear plants. A strongly connected network is a mesh topology in

which all cameras are the same type (wireless/wired or WC). The choice for these two

types of topology was motivated by the desire to emulate network systems encountered in

almost every realistic environment. Because of the lack of space, a network (before

optimization) was represented by its camera interconnection graph (in straight red links)

and its orientation graph (in dashed black links), both combined on a single graph.
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Figure III.10: 4-Node distributed network scenarios. (a) Original network topologies
captured using the camera interconnection graph (red lines) and the orientation graphs
(dashed lines). (b) The networks after global optimization, with green nodes representing
cameras on which have been successfully saved.

Figure III.10 shows the results of the optimization applied on the 4-Node network

scenarios. Green nodes on the CCG of Figure III.10b represent cameras where

communication resources have been successfully minimized. A straight edge between two

nodes of the CCG represents a wired connection, while a dashed edge indicates a wireless

connection. In the network configuration of Figure III.10a-(1) – which is our initial case

example–, it could be observed that node WC 4 communicates only with wireless

cameras. This node could therefore be synthesized as a pure wireless camera even though

it is originally a wireless/wired type. This design choice will not reduce the

communication performance of the camera since its wired port will not be used at

runtime. Such design information are captured through the CCG, as shown on

Figure III.10b-(1) concerning camera node 4. In the case of a strongly connected network,

such as in Figure III.10a-(2)), all nodes can inter-communicate either by wired or by

wireless. In such configurations, the priority is always given to the wired connection, as it

is more reliable, can achieve higher throughput, and provides better bandwidth. As a

consequence, each camera of the network will be synthesized as a pure wired node (type

C) after global optimization (see Figure III.10b-(2)).

While Figure III.11, III.12, and III.13 shows the results of our optimization applied

respectively on 5-Node, 6-Node, and 8-Node network scenarios, Table III.4 summarizes

the output of the architecture synthesis relative to the slices utilization and the synthesis

time. Also the gain in terms of resources and power saving resulting from using our global

optimization approach is provided.
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Figure III.11: 5-Node distributed network scenarios.

Figure III.12: 6-Node distributed network scenarios.

Figure III.13: 8-Node distributed network scenarios.
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Without CCG With CCG Gain (%)

Netw Appl. Time(s) Slice Time(s) Slice Slice Power

4-Node (1) 05.72 26004 05.75 19760 24.01 28.88

(2) 12.04 34672 12.25 24976 27.96 13.33

5-Node (1) 08.51 34672 08.81 22184 36.01 43.33

(2) 13.870 43340 13.940 31220 27.96 13.33

6-Node (1) 11.320 43340 11.440 30852 28.81 34.66

(2) 16.640 52008 16.760 37464 27.96 13.33

8-Node (1) 11.480 55828 11.600 50980 08.68 03.96

(2) 22.230 69344 22.380 49952 27.96 13.33

Table III.4: Results of architecture synthesis using global optimization vs. synthesis
without optimization.

The slice utilization parameter shows the amount of slices used by all instantiated

communication resources in a particular network. In the FPGA fabric, slices are the basic

building block components containing Look Up Tables (LUTs), Registers, and other logic

elements. In order to be accurate in the interpretation of the results, we decided to focus

only on the cost of communication resources. The size and costs of individual IPs have

been listed in Table III.1. The synthesis time is the time it takes to the ASP solver to

generate instances of SoCs for all cameras in a network scenario. The gain indicates the

amount of slices and power saved for communication components using our optimization

approach, compared to the synthesis without global optimization (also called the blind

approach).

From Table III.4, several observations can be drawn. First, with approximately the same

synthesis time as the blind design approach, the proposed global optimization could help

save up to 30% of the overall communication resources and up to 40% of the power

consumption in a distributed network. Additionally, we realized that for strongly

connected networks, the gain always remains constant independently of the size of the

network and the initial costs of communication elements (27.96% and 13.33% in our case,

respectively for slices and power). This is because in mesh networks, the optimization

takes place on every node. Therefore the gain for such networks could be easily projected.

Finally, given that wired communications are more expensive than wireless

communications in terms of power and hardware resources, the more wired resources are
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Figure III.14: Synthesis time for the ASP-based encoding.

saved, the higher the gain will be. The 5-Node network scenario of Figure III.11b gives us

an illustration, where 2 wired components are saved in the simply connected case against

5 wireless components in the mesh network. But the resulting gain, shown in Table III.4,

does not reflect this proportion.

III.6.4 Phase III - Synthesis Robustness

In this experimental phase, the main goal was to evaluate the robustness of the proposed

ASP-based encoding when the size of the input logic problem increases. We analyzed the

synthesis time of our encoding model when the size of the network and the number of

local tasks per camera node vary simultaneously from 0 to 10. Due to their complexity,

only meshed topologies (strongly connected networks) have been considered and the

results of this experiment are presented in Figure III.14. The horizontal axis (Networks)

of Figure III.14 represents the number of nodes per network; the depth axis (Tasks)

represents the number of local tasks per node and the vertical axis (Synthesis T ime)

gives the resulting ASP synthesis time in second. The shape of Figure III.14 confirms our

expectation that the synthesis time is linear when the size of an ASP model increases. As

explained in Section III.5.1, an ASP model captures the description of the network, the

set of computation tasks, the available computing infrastructures, and the solver rules to

perform the architecture synthesis. The amount of variables, constants, and propositional
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objects used to encode a model gives its size. Therefore, by increasing the number of local

tasks per node and the number of nodes per network, the size of the resulting ASP

problem is automatically increased. As the graph of Figure III.14 shows, it takes less than

40s (37.43s exactly) to the ASP solver to synthesize SoCs for a network of 10 nodes, with

10 tasks per node.

Additionally, we observe on Figure III.14 that the synthesis time remains constant when

the number of tasks per node in a network increases. This observation could be very

useful during runtime restructuring, especially when new tasks are dynamically

introduced or removed in/from the network. When a new object enters a distributed

network, it needs to be assigned to a camera. Therefore, new local tasks would be created

on the receiving node. This latter should be able to predict the time it will take to

generate its new architecture, in order to anticipate any performance degradation due to

runtime reconfiguration. With a constant or linear synthesis time, the duration for

runtime hardware restructuring could be easily predicted.

A side-by-side comparison with existing synthesis methodologies, such as Integer Linear

Programming (ILP) or Constraints Programming (CP), would have provided more insight

on the quality of the proposed ASP-based encoding. However, the presented work is new

and can be seen as an extension of the MPSoC synthesis problem to simultaneous

resource and runtime optimization of interconnected MPSoCs in a heterogeneous

network. It has been shown in [52] that ILP, which is the main competitor to our

ASP-based approach, is not even tractable for small size MPSoCs, thus making it less

likely to tackle the complex problem presented in this chapter.

III.7 Conclusion

In this chapter, we provided a compact encoding model based on ASP for a

multi-objective systems-on-chip synthesis for smart cameras in a distributed network.

Using the proposed ASP-based method, we overcame the issue of size explosion and

exponential synthesis time encountered with other synthesis approaches such as Integer

Linear programming or Constraint programming. The new compact encoding generates

in linear time optimal system-on-chip architectures representing the mapping of low-level

tasks onto available camera infrastructures. The feasibility of our synthesis approach was

demonstrated on several network scenarios. Experimental results showed that it is
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possible to synthesize architectures for a network of 10 cameras –with 10 tasks per node–

in less than 40s. We have also demonstrated that by leveraging network information, such

as the network topology and the camera overlapping FoVs, we were able to reduce the

costs of communication resource in a distributed network; thus reducing the power

consumption.

Given that hardware flexibility and dynamic reconfiguration of the computing

architecture are the main reasons of using of FPGAs as target platforms, the next chapter

will present the generated SoC in detail and show how the HW/SW decomposition

properties of FPGA-based systems are leveraged to provide the required flexibility to an

embedded smart camera.
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IV A Reconfigurable System-on-Chip for Embedded Computer Vision

Designing smart cameras for distributed embedded processing in a dynamic network is

very challenging. In fact, embedded computer vision places enormous computational

demands on smart cameras. It leverages time-consuming and computationally intensive

models constructed with the aid of geometry or physics in order to produce symbolic

information from raw image data. However, besides having to meet very tight execution

deadlines, smart cameras operate in general with restricted capabilities and must

therefore be designed to use few hardware resources and to consume very low power and

energy. Additionally, the dynamic nature of the network, considering camera failure

probability, requires the computational structure on the camera nodes to be readjustable

at runtime to keep with system performance.

In chapter III, we presented a synthesis methodology for generating generic

systems-on-chip (SoC) for computer vision operations on platforms with restricted

resources. This chapter will present the generated SoC in detail and explain how the

internal structure of the camera system is composed to maximize processing performance

and support runtime orchestration and auto-collaboration with other smart cameras in a

network.

IV.1 System Overview

Figure IV.1 presents a block diagram of the proposed system-on-chip (SoC) architecture

implemented inside a FPGA, which is the main computing element within the smart

cameras. From a practical point of view, the proposed architecture aims at optimizing the

performance of video processing and communication in embedded camera. The resulting

hardware/software partitioning implements low-level computationally demanding tasks

such as segmentation and corner detection as dedicated hardware component while

control-dominated tasks such as self-coordination and handover decision are executed in

software. As explained in chapter III, the mapping decision between hardware and

software is guided by design objectives and as consequence, this architecture could be

slightly different from one camera to another.

From the diagram of Figure IV.1, raw image data received from a digital camera sensor
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Figure IV.1: The FPGA-based system-on-chip with the embedded on-line optimization
engine.

are first processed in hardware through a pipelined chain of IP cores and stored into an

off-chip DDR3 Memory for analysis. Elements of this chain consist of low-level image

processing functions, such as color conversion (Bayer to RGB) or convolution (sobel edge

detection), that are good candidate for hardware acceleration because of their

computational structure. Next, the processed frames are analyzed by the computer vision

module (CVM) inside the soft core processor to extract new knowledge that will be

passed to the embedded logic optimization engine for evaluation. Extracted information

represent either object features (appearance, motion, etc.) or events (object at

entrance/exit zone). Upon evaluation of new information, outputs of the optimization

module (e.g. target transfer, new object assignment) are transformed into commands and

executed locally on the camera. In case of inter-camera data exchange, a hardware object

request broker (ORB) component [53] is used as middleware for seamless and real-time

intercommunication among camera nodes in the network. The processor runs an

embedded Linux operating system that is booted from SD card at system start-up.

Besides holding processed image frames, the external memory also contains the Linux
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root file-system, the ASP rules for modeling self-coordination, and a list of detected

target features.

IV.2 The Hardware Platform

Selecting the appropriate processing platform for a smart camera is an important issue.

In chapter III, we provided the motivations for the use of FPGAs as the target platform

of our embedded smart cameras. These can be summarized as high-performance, high

throughput, low cost, and low power. In terms of performance, FPGAs are becoming

increasingly attractive for image processing tasks because they can perfectly exploit the

inherently parallel nature of many vision problems [54]. Moreover, through the partial

reconfiguration property, FPGA-based systems offer the possibility of restructuring (part

of) the hardware at runtime. Among available FPGA families, we use Spartan6 and

Zynq-70x FPGA platforms from Xilinx for our experiments due to their low price and

high volume of logic gates, but other technologies could be used as well without

significant modification.

IV.3 Image Processing Pipeline

This unit is composed of several low-level image processing elements which can execute in

parallel with each other and perform specific task on incoming video data. The generic

flow usually consists of a Bayer-to-RGB color conversion followed by an image

segmentation where background and foreground of frames are separated. Before being

saved into the external memory and used for software analysis, several filters (sobel,

threshold) are applied on the foreground image to enhance specific regions such as edges

or corners. A reconfigurable logic area is also provided for runtime modification of the

image processing operations. When reserved, this region is simply used as an additional

step to the pipelined chain.

IV.4 CIDA Interface and Hardware ORB Middleware

The Component Interconnect and Data Access (CIDA [55]) is a portable interface module

designed for data exchange among software and hardware components in a SoC. It is

made of a streaming interface and a memory-mapped interface, which can be used for
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data transfer between memory/peripheral and hardware module without processor

intervention. DMA capabilities in the CIDA allows for fast data transfer between

memory, processor, peripheral, and hardware accelerators.

The middleware technology has been used in the past to address the issues of

collaboration and remote data access. Usually, a client node requests an object via an

interface and in response, a server replies and services the requested object. In this work,

we rely on the well known Common Object Request Broker (CORBA) middleware and

use the hardware ORB component proposed in [53]. As a CORBA-based middleware IP

core, the hardware ORB allows clients in a real-time manner to invoke operations on

distributed objects without concern about communication protocols. In fact, for

high-bandwidth and high data-rate communication, a significant amount of protocol

processing is implemented in hardware to exchange contents of node memory through the

GIOP protocol (TCP/IP), directly in native gate level without usage of embedded

processor. A predefined block of memory is used as a CORBA Servant Object such as

processed images or network configuration data. A request from a remote node acting as

CORBA client will trigger the hardware ORB to fetch this requested data from memory

and transfer it through the network. We modified the hardware ORB and added the

CIDA interface to handle all transactions local to a camera node, while the CORBA

mechanism takes care of object sharing in the network.

IV.5 Software Architecture

This section gives an overview of the overall software architecture. The software structure

inside the processor is adapted from [53]. In addition to the already existing processes

(the computer vision module (CVM), the communication client (CC), and the

communication server (CS)), the embedded logic optimizer module (ELO) is added for

runtime evaluation of extracted knowledge.

IV.5.1 Computer Vision Module

The computer vision module (CVM) is the component in charge of launching the upper

intelligence layer, analyzing processed frames stored in the external memory, and

executing the commands derived after logic optimization. It leverages the OpenCV

library from Intel, cross-compiled for the embedded processor, that encapsulates several
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computer vision algorithms for fast and complex image processing such as the optical flow

for motion tracking or the cascade classification for object identification and classification.

The CVM consists of two threads as shown in Figure IV.1: the ServerPeer Thread (SPT)

and ClientPeer Thread (CPT).

Periodically, the CPT receives network information regarding the tracking activities in

the direct neighborhood (such as the list of neighbors and their respective targets) from

the communication client process and updates locally the list of active neighbors to match

the dynamism in the network.

The SPT is responsible of updating the list of targets locally assigned to the camera,

analyzing processed frames inside main memory, and extracting interesting features and

events. These features are then encoded as ASP data (facts, constraints, etc.) and

evaluated by the logic optimizer. If any action –such as a target transfer– is to be taken

as the result of optimization, the SPT will notify the communication server process by

sending a user signal.

IV.5.2 Communication Server and Client Processes

The communication server (CS) and communication client (CC) processes are in charge of

sharing information between a camera and its direct neighborhood. They have an

interconnection with the CVM through shared memory. The CC module is used to

request data to a remote camera, while the CS is used to transmit information to a

particular node. Upon the request of a client process in another smart camera node, the

hardware ORB fetches the requested data (CORBA Servant Object) from memory and

directly serializes and transmits it through the protocol stack towards the client node.

Periodically, each camera node will distribute its tracking status to all nodes in its direct

neighborhood. This task is insured by the CS process.

IV.5.3 Embedded Logic Optimization Engine

The embedded logic optimization module (ELO) is the heart of the entire camera system

as it is the one that decides appropriate actions to be taken based on information

extracted from processed frames. Figure IV.2 depicts the 4-step cycle describing the

intercommunication between the SPT and the ELO from analyzing an image frame to

performing the appropriate action based on activities in the frame.
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Figure IV.2: Processing cycle from analyzing an image frame to performing the appro-
priate action based on activities in the frame.

After frame analysis, events extracted –such as a target at exit zone– or received from the

neighborhood –such as a node failure– are encoded as ASP facts/constraints and passed

to the logic solver as a self-coordination problem instance. For this research, the set of

interesting events is limited to those that trigger either a target handover (object at

entrance/exit zone of a camera FoV) or a target redistribution (node failure). Next, the

encoded ASP facts are applied on the rules modeling the self-coordination (see Chapter V)

for determining appropriate behavior of the camera, such as updating the list of assigned

objects in case of node failure. Results from logic optimization are then sent back to the

SPT, interpreted and transformed into commands that will be executed on the camera.

For runtime evaluation of ASP-based self-coordination problem instances, the ELO

leverages Clingo from the POTASSCO toolset [56], an award winner and incremental

answer set solver for extended normal and disjunctive logic programs. Clingo combines

the high-level modeling capacities of ASP with state-of-the-art techniques from the area

of Boolean constraint solving and mostly relies on conflict-driven nogood learning, a

technique that proved very successful for satisfiability checking (SAT). Clingo has the

capacity of either evaluating a rule only once (at the beginning of an incremental

computation) or accumulating the results of evaluations over a whole incremental
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processing. These properties help to adequately emulate stochastic operations that occur

randomly over the time, as it is the case in distributed tracking.

IV.5.4 Embedded Linux Operating System

The embedded Linux operating system is exploited in the proposed architecture to run on

the embedded processor. It aims at increasing system programmability by allowing

developers to easily migrate their existing applications into the proposed camera platform.

For instance, Intel’s computer vision library OpenCV [57] and the Python library are

ported to provide the ability of high level programming in the image processing domain.

IV.6 Conclusion

This chapter presented a reconfigurable architecture for embedded vision processing.

Besides the performance and flexibility abilities of FPGAs, programmability remains one

of the key factors to make the platform usable. Hence, the goal of this chapter was the

internal software programmability aspect of the proposed architecture and the ability to

make the platform usable by a large research community. To tackle the performance issue

of embedded computer vision, we proposed a hardware/software decomposition approach

that allows computational intensive blocks of the system to be accelerated in hardware,

while the control parts remain in software. Integrating the embedded Linux, the open

source framework OpenCV, and the Python Library to the proposed platform was ideal

to increase the acceptance of the platform in the image processing research community.

Chapter V will evaluate the performance of the proposed SoC by investigating the

implementation of a distributed object tracking system.
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V Runtime Self-Coordination of Embedded Smart Cameras for Distributed

Object Tracking

V.1 Introduction

Smart camera networks have emerged as an alternative to traditional CCTV for

efficiently implementing multiple object tracking systems in large areas [9]. In such

networks, the distributed nodes collaborate to approach a comprehensive coverage of the

area under monitoring; which not only improves the responsiveness of the system but also

increases its flexibility. The prerequisite for a better coverage in a smart camera network

is a viable approach for tracking across cameras. The goal in this case is not necessary to

follow as many targets as possible, but the most relevant ones. ”Keeping and eye” on

important targets, such as a man abandoning a bag in an airport, could be very

challenging in scene with increasing number of moving objects. To address this problem

efficiently, we need: 1) a rigorous formalism that captures all facets of the tracking

problem, 2) a computational tractable and accurate strategy to devise a solution from the

previous formulation and finally, 3) a flexible camera infrastructure that could be

modified on the fly to adapt to runtime changes in the monitoring scenes.

In Chapter III and IV, we synthesized and implemented a reconfigurable system-on-chip

that meets the computational requirements stated in 3). In this chapter, the focus is on

investigating a compact and robust formalism that will leverage the designed architecture

to enable runtime orchestration of smart embedded cameras in a distributed network

setup. The auto-coordination of cameras will aim at tracking moving objects in a

distributed network environment so as to optimize the camera-to-target assignment and

the camera handover.

In the literature, proposed solutions for object tracking in a smart camera network range

from the implementation of complex computer vision operations for PC-based

infrastructures [58], the design of dedicated hardware systems [16], the use of

Pan-Tilt-Zoom(PTZ) cameras [59] and software agents for self-coordination in smart

network systems [18, 19, 60, 61, 15]. However, because of the complexity of the

implemented operations, the random nature of the network environment, and the severe

limitations of the computing infrastructures –in terms of processing power, energy
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lifetime, and memories– many of the proposed solutions are not efficient for real-time

implementation on distributed embedded systems. Consequently, when the size of the

network and the amount of moving targets increase, the system performance (processing

speed, target distribution time, amount of target lost, camera handover time, etc.)

decreases exponentially.

In this work, we present a new approach for enabling self-coordination of smart cameras

during object-tracking in a distributed network. Our methodology differs from existing

work in that we introduce for the first time the use of an analytically exact approach,

derived from boolean satisfiability (SAT), for camera-target assignment and camera

handover decision. We encode the camera-target assignment, the camera handover

process, and the target redistribution after node failure as a logic problem that is

dynamically solved through a systematic search over a space of potential solutions. We

leverage Answer Set Programming (see Chapter II) to formally capture the target

assignment problem in a distributed network as a mapping problem of a set of tasks

(targets) onto a set of resources (cameras). ASP is guaranteed to always produce a

solution for a given optimization problem; that is, to always terminate. While system

performance in current camera assignment methodologies suffers from an increasing

number of cameras and objects at runtime, ASP-based methods have proven to achieve

satisfactory performances for the synthesis of problems with hundreds of nodes [24] and

represent therefore a viable alternative for addressing the complexity of auto-organizing

efficient target handover among camera nodes of a dynamic network. Experiments on a

set of network scenarios demonstrates the feasibility and robustness of the proposed

method.

The rest of the chapter is organized as follows: Section V.2 introduces in detail the

addressed problem in this work. Related research with regard to distributed object

tracking in camera network are discussed in Section V.3. In Section V.4, we present our

approach for object tracking and camera handover using Answer Set programming where

emphasis is put on minimizing the target-to-camera distance and the runtime load

distribution in the network. Experimental results are provided in Section V.5, followed by

concluding remarks in Section V.6.
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V.2 Problem Definition

This chapter addresses the problem of assigning moving targets to static cameras in a

distributed network with the goal of maximizing the network coverage, while minimizing

the overall tracking cost and handover time. Our formulation is borrowed from high-level

synthesis where a task graph is used to represent all objects/tasks, and an

architecture graph to capture all camera nodes in the network along with their

capabilities. Because of changes in the set of targets to monitor due to motion, the

functions, set and variables used to capture our problem must explicitly be time

dependent.

Formally, we capture an application using an object graph gto = (V t
o , E

t
o) where V t

o

represents all the objects present in the environment at time t and Et
o represents the

dependencies among them. An edge e = (i, j) ∈ Et
o represents the distance between two

objects i, j ∈ V t
o at time t. The camera topology is captured using a camera graph

gc
t = (Vc

t, Ec
t), where Vc

t is the set of camera nodes in the network and Et
c is the set of

communication links among the nodes. We consider a node with all its resources as a

whole, which means that the granularity of the communication will not be broken down

to resource communication across the nodes. The goal in high-level synthesis is to find an

assignment (mapping) of the nodes in the task graph to those in the architecture graph that

best match with the lowest cost factor. Formally a mapping βt : V t
o → Vc

t is a function that

makes a many-to-one association between elements of the domain (set V t
o ) and element in

the range (set Vc
t) so as to optimize predefined objectives. In our case, examples of such

objectives will be to minimize the camera-target distance at system start-up and

maximize the overall load balancing at runtime, that is, the object distribution across

cameras at any particular time. This is similar to pruning a large data set of candidate

solutions and searching for a particular (pareto) optimal. Finding such a mapping

function is a non-deterministic combinatorial optimization problem that could result in an

exponential searching time, especially in case of large networks; which is very critical for

real-time embedded applications where time constraints are of utmost importance.

V.3 Related Work

In the literature, numerous works have focused on implementing practical solutions for

object tracking in a multi-camera network. In [62], a distributed system has been
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presented for tracking people moving in an indoor environment. The system leverages a

blob segmentation approach and the Kalman Filter to respectively extract object features

from images and track those features as they move over the different camera field of views

(FoV). Isler et al. [21] proposed a tracking solution to address the Focus of Attention

problem (FOA) in a distributed network. The solution consisted of assigning 2n camera

sensors for tracking n objects, with the goal of minimizing the expected error associated

with a position estimate obtained by fusing the information coming from any pair (i,j) of

sensors following a target k. Hartmann et al. [63] presented a camera system

implementing a Gaussian Mixture Model for estimating and tracking human positions in

an indoor environment. In [64], a tracking system for distributed camera networks was

presented that leveraged the Monte-Carlo approach. VeliPasalar et al. [65] designed a

distributed camera system for multi-object tracking using a peer-to-peer PC-based

infrastructure. This implementation addressed the fault tolerance issue by using

inter-camera communication to allow each camera to detect and keep track of its targets

as they move across other camera FoVs, instead of transferring over the control. All these

approaches, however, were neither scalable because of the pre-constraints on the amount

of cameras and targets in the network, nor suitable for embedded applications given the

resource requirements of implemented operations. Indeed, many of these aforementioned

solutions leverage complex, power- and resource-hungry computer vision processing.

Another common approach of implementing decentralized object tracking in multi-camera

networks that has received a lot of attention over the past decades is the use of agents

[18, 19, 66, 60, 15]. Agents are code segments that can migrate in the network and trigger

a computation on a given node using local resources. They are mostly used for the fusion

of data collected from different cameras and for coordination of computation. On a

distributed platform, cameras, stationary and moving objects can indeed be considered as

autonomous agents that co-operate to infer the most plausible scene understanding.

Starzyk et al. [18] proposed a negotiation-based handoff approach for camera coordination

in a distributed network. In their solution, a camera leverages the knowledge of its

surrounding cameras –in term of tracking activity– to negotiate and generate conditional

offers during handoff sessions. A similar auction-based handover approach is proposed

in [19] wherein self-interested autonomous agents exchange responsibility for tracking

targets in a market mechanism. While feasible in software, agents are not the optimal

approach to implement real-time distributed tracking systems on limited computing
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infrastructures since they generally need additional resources (memory) and their code is

usually interpreted, and therefore slower than pre-compiled and optimized software or

hardware.

There also exist several work that have focused on implementing image processing

solutions for tracking on embedded devices while considering the limited nature of the

computing infrastructures. Rowe et al. [67] designed a low-cost embedded vision system

that, due to the very limited memory and computing resources, only implemented

low-level image processing functions such as threshold and filtering. In [16], Quaritsch

proposed a smart embedded camera platform for autonomous tracking and object

handover in a distributed network. Their architecture features several DSPs as computing

element and an ARM-based network processor running a standard Linux operating

system for the network communication.

V.4 The Tracking Approach

The main objective of the distributed tracking system presented in this chapter is to

always insure the best (if not a complete) coverage of a monitoring area over time as

targets move in and out of the FoVs of visual sensors nodes. The tracking is subject to

constraints that each camera is static and has a limited tracking capacity (Cmax), which is

the maximum amount of targets that it can simultaneously track. The proposed approach

consists in three steps, sketched in Figure V.1: 1) camera-target assignment at system

initialization, 2) runtime features update, and 3) self-coordinated target handover.

The input to the tracking system is a description of the network environment at start-up:

cameras and objects, camera-target distance, and network coverage. Shared by all

cameras, this description represents the network state when the system kicks off. First,

objects are assigned to cameras in a purely distributed manner so as to minimize the

camera-target distance. Results coherency is guaranteed by the fact that all cameras

share the same vision of the network at initialization. We leverage Answer Set

Programming (ASP) to encode the assignment problem as a search problem and to

compute the optimal configuration by pruning the set of all possible assignment scenarios.

Once objects are assigned to a given camera, their features are locally extracted –using

well-known computer vision operations– and will be used during camera handoff. Upon

leaving the camera FoV, features of moving targets are transmitted to the node where the
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Figure V.1: Processing flow of the distributed tracking system.

objects are moving. This handover step is encoded as an ASP-based search process whose

goal is to find the handoff configuration that realizes both the minimum camera-target

distance and distribution.

The ASP model proposed in this work consists of three parts: the network

specification (V.4.1), the description of a problem instance or tracking scenario (V.4.2),

and the solver model (V.4.3). This separation offers a high flexibility and reusability of

the proposed model as it allows, for example, different tracking scenarios to be tested on

the same solver or a given problem instance to be modified without having to update the

network description. Although terms object and target could be used interchangeably, the

proposed model description will refer to target as an object already assigned to a given

camera.

V.4.1 The Network Specification

The network specification describes: i) the distributed environment with all cameras and

objects available at system initialization, ii) the camera pose, and iii) the network
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coverage.

A camera in the network is captured with an atom cam(C ), where C refers to a unique

camera identification number (CIN). An object is modeled as obj t(O,Aapp,Mdir), where

Aapp ∈ N+ is the object appearance inside the tracking camera, t the time-stamp, and

Mdir ∈ {none, north, south, east, west} the direction of motion relative to the tracking

camera. O ∈ N is a randomly assigned object identification number (OIN) that uniquely

identifies the object in the system. Values Mdir and Aapp default to none and 0

respectively at t = 0, describing a motionless and unknown-appearance object. Note that

atom obj() does not explicitly (need to) contain any reference to the tracking camera

since the model is distributively executed on all the nodes.

The camera pose –that is the position and orientation of cameras in the network– is

captured using atoms cPos t(Ci, Cj, Llocate, Ddist) and cFov(Ci, Cj), with

Llocate ∈ {north, south, east, west} being the position of camera j relative to i and Ddist

the inter-camera distance at time t. Even though camera position is static, these atoms

are time-constrained given that the network topology could change at runtime due to

node failure. Distance to a failed node will be marked as equal to 0. For example, atoms

cPos0(1, 2, south, 10) and cFov(1, 3) refer to the fact that at initialization, camera 2 is

located at 10 units south of camera 1, which shares an overlapping field-of-view with node

3.

Finally, for each object O in the network that can be viewed by a camera C at start-up,

atom cov t(C,O,Ddist) is defined to capture the coverage of C at time t. Ddist is the

camera-target distance, which is estimated at system start-up and no longer required at

runtime. For instance, atom cov 0(1, 2, 3) will hold iff camera 1 is covering object 2 at

initialization –with camera-target distance equal to 3 units.

The network specification represents the global view of the distributed environment,

shared by all camera nodes. Decentralizing the processing requires all nodes to start with

the same network configuration in order to avoid inconsistencies in the initial

camera-target assignment.

V.4.2 Specification of a Problem Instance

The second part of our tracking model consists in the description of a handover problem

instance on every camera of the network. Problem specification on a given node is
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achieved by providing up-to-date information regarding the targets to follow. Knowing

objects motion and direction within a camera region allows to determine the appropriate

time (when) and place (where) to transmit their features in case of handoff. The work

described in this chapter focuses mainly on runtime object handover and target

redistribution after node failure, and makes a certain number of assumptions about nodes

in the network:

• a camera can leverage existing computer vision operations to track targets assigned

to it within its FoV;

• the object features computed by a camera are robust enough to uniquely identify a

moving target;

• a camera is able to detect when an object is entering/leaving its FoV and determine

its direction.

These are reasonable assumptions motivated by recent advances in human behavior

analysis [68, 69] and pedestrian detection, recognition and tracking in video

surveillance [70]. Moreover, previous researches have made similar

assumptions [18, 19, 17].

Intra-camera tracking is insured by having each camera node constantly updating the list

and parameters of assigned objects. Although more features could be used at runtime to

increase the tracking robustness, only appearance and direction of objects will be

considered in this research. An object O leaving the FoV of a camera C at time t is

modeled with the atom lFov t(C,O), while eFov t(C,Aapp, Sside) captures an unknown

object with appearance Aapp first entering the FoV of C from side Sside at t. Here, the

reference to the tracking camera is explicitly indicated insides both atoms, but it could be

omitted as well without significant impact on the modeling. Node failure is modeled with

atom fail t(C) where C indicates the CIN of the failed node. To guarantee a synchronous

target reassignment process, this work assumes that the failure is simultaneously detected

by all cameras in the direct neighborhood of C.

Figure V.2 gives an example of a tracking problem instance. Lines 1, 4 & 8 of the Figure

represent commented lines. At Line 2, the tracking capacity of camera 1 is set to 10. Line

5 and 6 capture the fact that, at time t = 1, object 4 with appearance 5 is moving to the

south (within camera 1 region), while an unknown object with appearance 7 is entering
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Figure V.2: Example of an ASP-based tracking problem instance captured on camera
node 1 at time t = 1, t = 2, and t = 5.

the camera FoV from the north (object at entrance zone). At time 2, object 4 is detected

at the exit zone of camera 1 (Line 9), with the exit direction implicitly devised from the

object direction. This event will trigger a handover process with the goal of transferring

object properties to the appropriate camera in the moving direction. At time 5, node 3 is

detected as broken (Line 12) and at this point camera 1 will start a target recovering

process. In general, an event detected/recorded at time t will be processed/evaluated at

the next time-stamp t+ 1.

V.4.3 The Solver Model

The solver model defines all necessary rules to find on a camera the solution to a given

tracking problem instance considering a particular network scenario. This model is shared

by all nodes in the network in order to guarantee a uniform self-coordination. Encoding

of the proposed model first deals with camera-to-target assignment at system start-up

wherein all identified objects in the network at initialization are decentrally-distributed to

cameras. Next, rules for self-coordinated object handover are defined for allowing moving

targets to be effectively exchanged among camera nodes without any human intervention.

Finally, the target redistribution process after node failure is presented where objective is

to minimize the amount of lost targets in the network. Each of these steps is implemented

according to the generate-define-and-test pattern (as defined in Chapter II) where all

possible camera-target assignments or handoff scenarios are first generated, followed by a

systematic elimination of non-satisfactory configurations regarding predefined user
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constraints, until the optimal configuration is found.

a) Camera-to-Target Assignment at Initialization

The assignment process at initialization (t = 0) maps each object to exactly one camera

node of the network. Figure V.3 illustrates this mapping operation. Basically, from a

Figure V.3: The camera-target mapping at system start-up. (a) The distributed network.
(b) The corresponding object and camera graphs. (c) n Mapping diagrams representing
possible many-to-one association scenarios. In the first scenario (c-1), camera 1 is assigned
objects 1 and 2, while objects 3 and 4 are assigned to camera 2, and object 5 to camera
3. (d) The corresponding network organization with objects assigned to cameras. (e). The
optimal solution is selected regarding user objectives.

network of distributed cameras (step a), two graphs are generated (step b): the camera

interconnection graph (as defined in Chapter III) and the object graph, capturing the set

of objects in the network at start-up. A systematic association (step c) between these

graphs is then performed producing several possible mapping configurations (step d) that

would be successively refined until optimal solution (e).

For each camera C and each object O in the initial network configuration, an atom

ass0(C,O) is defined representing the mapping of O with C at time t = 0. This
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association is subject to the coverage constraint, that is, a camera can only be assigned

an object within its FoV:

{ass0(C,O) : cam(C ), cov 0(C,O,D)} 1← obj 0(O, 0, none). (V.1)

Rule V.1 derives (at most) a unique assignment from each camera-object coverage defined

in the initial network specification. This is the generate step where all mapping scenarios

between cameras and objects in the network are produced, with the only condition that a

camera is associated to an object if this latter is within the coverage area. A target that

is not covered at start-up will not be assigned to any node at this step and will be

handled as new object when entering a camera coverage area.

To insure that a target is mapped to exactly one camera node of the network at a time,

the number of assignments for any object must always be equal to 1. In other words, two

different cameras (Ci and Cj) must not be assigned the same object (O) at the same time

t:

← cam(Ci), cam(Cj ), Ci 6= Cj, ass t(Ci, O), ass t(Cj, O). (V.2)

To guarantee a balanced distribution at start-up, it should not be possible such a scenario

where a camera (Ci) remains idle while a neighbor node (Cj) is tracking more than one

object (Constraint V.3). This condition is only valid at the initialization phase and will

not be anymore a requirement at runtime.

← cam(Ci), Ni = #count{Oi : ass0(Ci, Oi)},

Nj = #count{Oj : ass0(Cj, Oj), Cj 6= Ci}, Ni = 0, Nj > 1. (V.3)

Constraint V.3 leverages aggregate count to prohibit that the amount Ni of objects

assigned to a given camera Ci is equal to 0 while another node Cj is assigned more than

one object.

Next, it must always be insured that the amount of targets (N) assigned to a node (C) at

any time t – also refer as the runtime tracking activity (RTA)– does not exceed its

tracking capacity, since nodes are embedded platforms with limited resources. This is

encoded in the following rules:

tracN t(C,N)← cam(C ), N = #count{O : ass t(C,O)}. (V.4)

← mObj (C,Cmax), tracN t(C,N), N > Cmax. (V.5)
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where RTA N and tracking capacity Cmax of a camera node C at time t are respectively

captured with atoms tracN t(C,N) (Rule V.4) and mObj (C,Cmax) (Constraint V.5).

Finally, the optimal solution at this level would be the configuration that minimizes the

overall camera-to-target distance:

#minimize{ D, cov : cov 0(C,O,D), ass0(C,O)}. (V.6)

In rule V.6, the total camera-target distance, for each possible assignment configuration,

is computed and the scenario realizing the lowest value is chosen as the initial mapping

configuration.

b) Self-coordinated Object Handover

To insure an efficient tracking over a distributed network after camera-target

initialization, any object exiting or entering a camera region must be successfully handed

over. In this work, a consistent labeling is implemented by preserving the identification of

targets while they move across the different camera regions.

Target leaving the FoV of a Camera Upon exiting the monitoring area of a camera

Cs, a moving target should be handed over to the closest node into whose field of view the

object is moving. Consequently, an appropriate receiver candidate Cr should be any

active neighbor with an overlapping view:

cPfov t(Cs, Cr, P,D)← cam(Cs), cam(Cr), cPos t(Cs, Cr, P,D), D 6= 0.

cFov(Cs, Cr). (V.7)

The handover is then made possible when a receiver is identified:

0{send t(Cs, Cr, O)}1← obj t−1(O,A,M), ass t−1(Cs, O), lFov t−1(Cs, O), cam(Cr),

#count{Cr : cPfov t−1(Cs, Cr, P,Dsr), P = M} ≥ 1. (V.8)

Rule V.8 simply states that: an object O (with appearance A) assigned to a camera Cs

(the sender) and which is leaving the coverage area at time t− 1 will be handed over to a

neighbor Cr (the receiver) located in the direction where O is moving; assuming Cr has

an overlapping view with Cs. The aggregate count in this rule is used to count the

number of nodes located at a position P = M relative to Cs.
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For an effective handoff, it is ideally expected to find a camera with an overlapping view

in the direction where a target is moving. In reality, however, this will not always happen.

In such a case, the exiting object (O) will be handed over to any non-overlapping

neighbor (Cr) located in the direction (M) of motion:

0{send t(Cs, Cr, O)}1← obj t−1(O,A,M), ass t−1(Cs, O), lFov t−1(Cs, O), cam(Cr),

#count{Cr : cPos t−1(Cs, Cr, Pr, Dsr), Pr = M} ≥ 1,

#count{Ci : cPfov t−1(Cs, Ci, Pi, Dsi), Pi = M} = 0. (V.9)

with atom cPos(), instead of cPfov, now used as the selection criteria for the set of

receiver candidates.

Now, if there is no camera (Ci) in the direction (M) where the target (O) is moving, this

latter will be broadcast to any node (Cr) in the neighborhood, even if located in an

opposite direction:

0 {send t(Cs, Cr, O)} 1← obj t−1(O,A,M), ass t−1(Cs, O), lFov t−1(Cs, O),

cam(Cr), #count{Cr : cPos t−1(Cs, Cr, Pr, Dsr)} ≥ 1,

#count{Ci : cPos t−1(Cs, Ci, Pi, Dsi), Pi = M} = 0. (V.10)

In this case, the handoff direction is not important anymore. The objective now is to

minimize the risk of losing a target even at the cost of increasing the amount of network

communication messages.

With Rules V.8-V.10 (and the lower bound of header aggregates being equal to 0), it is

possible to generate configurations where a leaving target is not handed over. Such

scenarios must be avoided by guaranteeing that the total amount of transfer (when a

target is leaving) is different than zero (Constraint V.12).

tSendN t(Cs, Cr, O,N)← lFov t−1(Cs, O), cam(Cr),

N = #count{O : send t(Cs, Cr, O)}. (V.11)

← lFov t−1(Cs, O), #sum{N : tSendN t−1(Cs, , O,N)} = 0. (V.12)

Whenever atom send() is derived on a node, appropriate actions are taken on the

embedded processor to actually transfer object properties to the target camera.

66



Target Entering the FoV of a Camera At runtime, every camera manages two lists

of objects: the list of local targets under tracking (or active targets) and the list of

received objects. Whenever a new object enters a camera FoV, its appearance (An) is

search within the list of active targets. If there is a match with an object (O) already

being tracked, then no further action is required –meaning that the assignment will still

hold at the next time-stamp:

ass t(C,O)← eFov t−1(C,An, S), obj t−1(O,A,M), A = An, ass t−1(C,O). (V.13)

This scenario might be the result of targets exiting and immediately re-entering a camera

region before completion of the handover process.

Otherwise, if the object is not under tracking but is found in the list of received features,

then it is a target coming from a neighbor node. The object features –only the OIN (Or)

in our case– are therefore updated to match received properties for consistent

labeling (Rule V.14) and a new tracking assignment is created on the current

camera (Rule V.15):

1 {obj t(Or, Ar, none)} 1← eFov t−1(C,An, S), saved t−1(Or, Ar), Ar = An,

not obj t−1(Or, Ar, ). (V.14)

1 {ass t(C,Or)} 1← eFov t−1(C,An, S), saved t−1(Or, Ar), Ar = An,

not ass t−1(C,Or). (V.15)

with atom saved() being used to capture object features (OIN and appearance) received

from neighbors that are locally saved into memory.

Finally, if no received features match the new object, it will be given a new

OIN (Rule V.16) and assigned to the monitoring camera (Rule V.17):

1 {obj t(On, An, none)} 1← eFov t−1(C,An, S), On = C × 100 + An,

not saved t−1( , An), not obj t−1( , An, ). (V.16)

1 {ass t(C,On)} 1← eFov t−1(C,An, S), On = C × 100 + An, not saved t−1( , An),

#count{O : ass t−1(C,O), obj t−1(O,A, ), A = An} = 0. (V.17)

From these rules, note that the unique OIN (On) is generated by using each current CIN

(C) as the base address added to the object appearance.
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c) - Target Redistribution After Node Failure

Recovering from runtime camera failure in a distributed network is usually a very

complex undertaking. In the proposed work, the main objective is not to fully repair the

network after a node failure –since node healing is not addressed– but to elaborate a

cost-effective, distributed and self-organized target recovering from the damaged node to

its neighbors with the goal of minimizing the amount of lost targets. This problem is

identical to the initial camera-target assignment problem with the only difference that

objects to consider are now the targets to be recovered and the participating cameras are

the nodes belonging to the direct neighborhood of the broken entity. Figure V.4 depicts

this reassignment process applied on a 4-node network scenario.

Figure V.4: The target recovering process after node failure. (a) The distributed Network
with the corresponding camera interconnection graph. (b) Failure on node 4 detected at
time t + k. (c) Beginning of target reassignment process within the recovering zone. (d)
Network state after reassignment with updated camera graph.

On the proposed scenario of Figure V.4, after detecting the failed node 4 at time t+ k,
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the reassignment process starts immediately within the recovering zone (RZ). This region

is made up of targets (3 and 4) previously assigned to node 4 plus camera 2 and camera 3

that were part of the failed node direct neighborhood. However, it might happen that

some nodes within RZ are already overwhelmed at the time of failure and could not take

part in the redistribution. Such nodes, once identified (using atom full()), will be

exempted from participating in the redistribution.

full t(C)← fail t(Cf ), cam(C ), C 6= Cf , tracN t(C,N),

mObj (C,Cmax), N = Cmax. (V.18)

In Rule V.18, a node C is considered overwhelmed when its runtime tracking activity has

reached its maximum tracking capacity.

Now, objects and cameras inside RZ will be mapped following a process similar to our

initial camera-target assignment but now with the unique goal of balancing the

distribution. Consequently, for each camera C (not overwhelmed) and each target O in

RZ, at most one assignment is generated:

0 {send t(Cf , C,O)} 1← not full t−1(C), fail t−1(Cf ), ass t−1(Cf , O),

cPos t−1(Cf , C, P,D), D 6= 0. (V.19)

Rule V.19 states that if a node C (not overwhelmed) detects a failed neighbor Cf at time

t− 1 to which a target O was assigned, then this latter is reassigned to C after failure. By

using atom send() instead of ass(), target O is not directly mapped with camera C at

time t, but the reassignment operation is encoded as the object leaving camera Cf to

node C. This is similar to node Cf releasing/distributing all its targets right before the

failure. Since, there is no guarantee at the time of failure that the recovered object O is

already within camera C monitoring region, it cannot be immediately considered as a

tracking target. Upon entering or identification within node C FoV, the tracking

assignment of O will become effective (see Rules V.13-V.17).

With Rule V.19 (and the lower bound of the header aggregate being equal to 0), it is

possible to produce configurations where no target are redistributed. Such scenarios will

be avoided by guaranteeing that, after a node failure, the total amount of redistribution is
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different than zero (Constraint V.21).

tSendfN t(Cf , C,N)← fail t−1(Cf ), cPos t−1(Cf , C, P,D), D 6= 0, not full t−1(C),

N = #count{O : send t(Cf , C,O)}. (V.20)

← fail t−1(Cf ), #count{O : ass t−1(Cf , O)} ≥ 1,

#sum{N : tSendfN t−1(Cf , , N)} = 0. (V.21)

To avoid a duplicate tracking, it should be insured that the same target O is not

redistributed to more than one camera:

← fail t−1(Cf ), ass t−1(Cf , O), send t(Cf , Ci, O), send t(Cf , Cj, O), Cf 6= Ci 6= Cj.

(V.22)

Finally, the distance to the failed node is set to zero to symbolize the failure:

cPos t(Cf , Ci, P, 0)← fail t−1(Cf ), cPos t−1(Cf , Ci, P,D), D 6= 0. (V.23)

cPos t(Ci, Cf , P, 0)← fail t−1(Cf ), cPos t−1(Ci, Cf , P,D), D 6= 0. (V.24)

The final step in the solver modeling is to find the best configuration, which is devised by

narrowing the set of candidate solutions according to predefined search objectives.

Minimizing the Load Balance among Cameras The objective in runtime

distribution is to insure a good network coverage and also a fair load balancing among

nodes of the network. The optimal configuration is seen as the scenario that would

minimize not only the load balance among cameras at runtime but also the inter-camera

distance during target transfer. Whenever targets are distributed, it should be guaranteed

that a node is not overloaded while its neighbors are idle.

Our modeling will start by computing the future tracking activity (FTA) of each camera

C at time t, which is the current tracking activity (Nc) of the node, to which has been

removed the amount of released targets (Nr) at time t:

fTract(C,N)← cam(C ), tracN t−1(C,Nc), Nr = #count{O : send t(C,Cr, O)},

N = Nc −Nr. (V.25)

Now, the tracking activity among cameras in the same neighborhood should be balanced

(during transfer) so as to minimize load disparity. This amounts to compute, at time t,
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the absolute difference between the tracking activity of two neighbor nodes (Rule V.26).

This computation is made possible by the fact that each node is aware of its

neighborhood tracking activity.

balancet(C,Ci, Nb)← cam(C ), cam(Ci), fTract(C,N), tracN t−1(Ci, Ni),

Nf = #count{O : send t(C,Ci, O)}, Nb = |N − (Ni +Nf )|. (V.26)

In Rule V.26, observe that to compute the balance with a node Ci, all future transfers

(Nf ) to this node are also considered.

Then, the best configuration at time t would be the scenario that minimizes not only the

sum of load difference among cameras but also the handover distance among cameras

exchanging targets:

#minimize {

N@2, balance : balancet(Ci, Cj, N);

D@1, cPos : cPos t(Ci, Cj, L,D), send t(Ci, Cj, O), D 6= 0}. (V.27)

Having load balancing as the highest priority (p = 2) will force the target distribution to

be even-handedly applied to all nodes during handover.

V.4.4 Runtime Feature Update

In this step, outputs of the logic optimization are interpreted. In the proposed model, two

atoms are of particular interest: ass() and send(). Whenever atom ass t(C,O) is

produced, it refers to a new assignment instruction. Consequently, object O will be added

to the list of tracking targets on the current camera C (on which rules are executed). For

atom send t(Cs, Cr, O), if the receiver Cr is the current camera, then object O is a

recovered target (see Rule V.19). Its properties will be locally saved as having been

received from a neighbor until the object is detected within the coverage area of node Cr

and effectively assigned. If Cs is the current camera, then this is a normal target exiting

scenario. Object properties in this case will be fetched from the memory and transmitted

to the indicated node Cr. Once objects have been assigned to cameras in the network,

each node is responsible for tracking and updating its target features as they locally move

within the coverage area.
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V.5 Experimental Results

In this section, results of running experimentations are presented. The camera prototype

used for our embedded systems is the RazorCam [50] (Figure V.5 left), a smart embedded

camera for video processing. The RazorCam is a flexible and extensible

Figure V.5: The experimental platform. The RazorCam system is presented on the
left (photo taken by author). The hardware/software internal structure of the camera is
presented on the right.

Hardware/software environment for the prototyping of video applications. It is capable of

processing image data through a Xilinx Zynq 7020 FPGA-board featuring an ARM dual

processor, which runs an embedded Linux operating system. The processor frequency is

667 MHz and the FPGA board features an off-chip 512 MB DDR3 SDRAM as storage

unit, with a Gigabit Ethernet Transceiver for communication. The color conversion, the

segmentation, and some filtering operations are implemented as hardware units for

performance improvement and communicate with the general processor and the main

memory through a high-speed Xilinx AXI bus.

Upon request of a new frame from the processor (SPT component in Figure V.5(right)),

Bayer input pixels from the digital camera are converted (in hardware) into an RGB

representation that is passed to a Histogram extractor module. This module will create a

confidence map based on color histogram of objects in the RGB image and saved the map

in the external memory using the SDI controller component. The confidence map is then
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read in software by the SPT module which will use (a modified) mean shift algorithm

implemented with OpenCV to estimate object motion inside the frame. Some

characteristics of the proposed SoC are summarized in Table V.1.

Software

ARM CPU frequency 667 MHz

ASP Solver 39 lines

Size of cross-compile Clingo4 3.0 Mb

Size of the embedded logic optimizer 3.1 Kb

Executable size (SPT) 43.1 Kb

Frame memory usage 225 Kb

Size of the extracted features 1.6 Kb/Target

Table V.1: Characteristics of the feature extraction algorithm.

The image resolution of our embedded camera is 320× 240; resulting in a memory usage

of 225 Kb. The size of the cross-compile executable SPT is about 43.1 Kb. Extracted

features are: a 3-channel color Histogram, objects direction, and bounding boxes around

targets, with a total size of 1.6 Kb per object. In average, the SPT can process about 3

frames per second. This slow performance is mostly due to the adapted mean shift step

being executed in software on the embedded Linux. The cross-compiled Clingo tool for

evaluating events at runtime has a size of only 3.0Mb and the ASP solver model

presented in Section V.4.3 is only about 39 lines/rules, which shows the compactness of

the proposed model.

Table V.2 gives the overall resource usage by the proposed architecture. Not all resources

have been listed but only the most relevant ones. The maximum frequency of the system

obtained after logic synthesis is 106.32 MHz.

Several aspects of the proposed architecture could be evaluated, from the runtime

computational performance, the power consumption, the design efficiency (in term of

resource), to the hardware/software task swapping or runtime reconfiguration properties.

However, we limited our evaluation to experiments that will demonstrate the effectiveness

of the proposed declarative modeling approach (using the optimization engine) to allow

runtime self-coordination of embedded smart cameras in a distributed network setup.

Therefore, experiments have been conducted in two phases aiming at testing the novel
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Components Slices LUTs RAMs

Overall system 9490 (9%) 20058 (37%) 31 (22%)

Image input 109 (0%) 289 (0%) 0 (0%)

Bayer2RGB 541 (0%) 93 (0%) 0 (0%)

SDI Ctrl 1646 (1%) 1789 (3%) 1 (0%)

LCD Ctrl 156 (0%) 361 (0%) 24 (17%)

ExtractHSV 67 (0%) 152 (0%) 0 (0%)

HardwORB 4829 (4%) 14047 (26%) 1 (0%)

Table V.2: FPGA (Zynq7020clg484) resource usage by the proposed system-on-chip.

aspects of the proposed coordination approach:

• Phase I - System Reactivity: in this phase we aim at demonstrating the

feasibility of the proposed modeling approach on a network where events occur

randomly over time.

• Phase II - System Robustness: decentralized object distribution is a crucial

step in distributed tracking system. This phase will evaluate the robustness of the

proposed coordination approach on a network setup as the amount of target/camera

increases.

V.5.1 Phase I - System Reactivity

To evaluate the feasibility of the proposed modeling approach, we tested a distributed

tracking scenario on the 4-node network setup of Figure V.6, with the results provided in

Table V.3. The objective in this experimental phase was mainly to observe the system

reactivity (camera self-coordination) when random events occurred in the network

environment. The executed scenario will include events like node failure or target

entering/exiting a camera region. To eliminate the effect of image processing (e.g. object

detection and tracking), we directly provided the different cameras with appropriate

events, listed in column 3 of Table V.3; thus bypassing the image processing step. The

evaluation time can be observed in column 5 of Table V.3. This is the processing time of

the optimization engine to evaluate accumulated events on the participating cameras

(Column 2 of Table V.3). Since events are decentrally evaluated, the time provided in
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Figure V.6: Experimental network setup. a) The network layout. b) The inter-camera
distance graph. c) The camera orientation graph (from the camera perspective). d) The
camera-target coverage graph at start-up.

Table V.3 is the reaction time of the slowest node. This time does not include the

communication delays between cameras. In this phase, the tracking capacity for all nodes

in the network has been set to 4. For more consistency, the provided evaluation time has

been averaged over 10 successive runs –number of executions per event.

Figure V.7 shows the corresponding network setup after event evaluation:

• At initialization (T = 0), targets are decentrally assigned to the four cameras in less

than 3 seconds (b).

• At time T = 2, object 4 exits camera 1 in the direction East and is automatically

transfered to node 4 at time T = 3 (c). This evaluation takes approximately 690 ms.

• At T = 4, an entering object (with feature 5) is detected by camera 4 from West,

while target 5 is leaving camera 2 FoV. After evaluation of event, node 4 realizes

that the entering object is target 4 previously sent by camera 1 and the tracking

assignment is done at T = 5 (d). Meanwhile, leaving object 5 is transfered by

camera 2 to node 3.

• At T = 6, an unknown object (with appearance 11) enters the room and is detected

by camera 2 and assigned a new ID 211 at T = 7 (e).

• At T = 8, an entering object is identified at node 3 as target 5 previously sent by

camera 2 (f).

• At T = 10, camera 2’s failure is notified to all its neighbors (1, 3, 4) in the network.

This will immediately trigger the recovering process that will take about 1 second to
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T Cam Events Clingo outputs Eval. time(s)

0 1,2 initialization ass0(1, 4),ass0(2, 1), 2.91

3,4 ass0(2, 5), ass0(3, 2),

ass0(4, 3)

2 1 lFov 2(1, 4) send3(1, 4, 4) 0.69

4 2 lFov 4(2, 5), send5(2, 3, 5), 1.14

4 eFov 4(4, 5, west) ass5(4, 4)

6 2 eFov 6(2, 11, north) ass7(2, 211) 0.56

8 3 eFov 8(3, 8, north) ass9(3, 5) 1.16

10 1,3 fail10(2) send11(2, 1, 211), 1.13

4 send11(2, 1, 1)

12 1 eFov 12(1, 11, north) ass13(1, 211) 1.14

14 1 eFov 14(1, 2, north) ass15(1, 1) 1.30

15 1,3,4 ass15(1, 211),ass15(1, 1),

ass15(3, 2), ass15(3, 5),

ass15(4, 3), ass15(4, 4)

Table V.3: A distributed tracking scenario with node failure.

complete (g). After target redistribution, targets 1 and 211 are both reassigned to

camera 1, event though node 3 and 4 participated in the recovering process. The

reason being that at the time of failure, nodes 3 and 4 are already tracking two

objects each while camera 1 is idle. The load balance objective will force the

redistributed targets to be assigned to the camera with the less overload. On camera

1, features of the indicated targets will be saved until they are locally detected.

• At T = 12 and At T = 14, targets 211 and 1 respectively enter camera 1 monitoring

area and are immediately tracked (h-i).

V.5.2 Phase II - System Robustness

Decentralized object distribution is a crucial step in distributed tracking system. In this

phase of our experiments, we evaluate the robustness of the proposed approach regarding

the object distribution and runtime handover. The goal here is to measure how quick all
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Figure V.7: Network setup after events have been evaluated.

camera nodes will decentrally agree on object assignments and distribution as these move

randomly across the network. During experiments, we will observe the camera-target

assignment and the handoff time when the size of a network (amount of cameras and

objects) increases.

Camera-Target Assignment. Figure V.8 shows the results of our experiments

regarding the camera-target assignment process on networks with 2 to 8 cameras and

targets, emulated using QEMU. The network topology is a mesh (nodes strongly

connected) and target positions have been randomly assigned at initialization. The

provided evaluation time has been averaged over 2 runs for result consistency. In all these

scenarios, we always assume the worst coverage case where each node can cover all
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Figure V.8: Evaluation of the camera-target distribution process at initialization.

objects in the environment, with the tracking capacity on each camera being unlimited.

These assumptions aim at maximizing the number of possible configurations (exploration

space) and thus, the search time.

As could be observed on Figure V.8, it takes approximately 3.13 seconds for a set of 8

cameras to decentrally agree on a distribution of 8 targets. In other words, the proposed

methodology is able to search over a design space of more than 40000 possible

configurations in less than 3.5 seconds. In comparison, the same setup takes 40 ms with

smart cameras running on a Desktop computer featuring an Intel Core i5 2.67GHz

processor with 3.8Gb of memory.

However, it is difficult to estimate (and project) the behavior of the evaluation time

function from the image of Figure V.8, since it does not depict a clear shape. To address

this, we reevaluated the same network scenarios and increase the number of runs per

scenario from 2 to 5. Figure V.9 shows the results of evaluations.

It could be observed from Figure V.9 that when the number of execution per scenario

increases, the shape of the image slowly becomes uniform and exhibits a linear shape,
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Figure V.9: Study of the evaluation time during camera-target distribution.

that is, the evaluation time increases linearly with the network size and not exponentially

as it would have been the case with another search heuristic methodology such as ILP.

Camera Handoff. We evaluated the effectiveness of the handoff time on network

scenarios with 2, 4, and 6 cameras respectively, as shown in Figure V.10. The camera

orientation and mesh topology of the proposed networks have been chosen in order to

maximize the search time during handoff. In all scenarios, targets (with their motion)

have been randomly assigned to nodes.

Figure V.11 shows the execution time of the handoff process, average over 5 runs. The

horizontal axis of the figure indicates the amount of targets that are simultaneously

handed over at a particular time. It takes less than 5 seconds to a set of 6 distributed

camera nodes to successively complete the handoff process of 30 moving targets. On the

Desktop station, the same scenarios has been solved after 60ms. With unlimited tracking

capacity on each camera node, the search space is maximized and thus, the generated
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Figure V.10: Network topologies for evaluating camera handoff.

Figure V.11: Evaluation time during camera handoff.

handoff time. In reality, this space will be smaller given the resource constraints on

embedded cameras. Additionally, it is worth noting that the handoff process is linear, just

like with the camera-target assignment. When using a search methodology, it is always

important to guarantee that the exploration time is not exponential. With the linearity of

the proposed handoff process –if confirmed on a bigger network scale, improving the

tracking efficiency of distributed smart camera nodes will amount to improve the image

processing aspect on each node by pushing more computation in hardware for

acceleration (such as the mean shift computation in the proposed SoC architecture).
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V.6 Conclusion

In this chapter, we presented a compact and robust declarative model for

self-coordination of object handover in a distributed network of embedded smart cameras.

The model leverages Answer Set Programming, a logic programming paradigm, to encode

the decentralized tracking of moving targets in a network as a search problem that is

solved dynamically by an embedded answer set solver engine. In the proposed approach,

a camera in the network will rely on the knowledge of tracking activities in its direct

surrounding to decentrally hand over targets as they move across its FoV. In case of node

failure, cameras in the immediate neighborhood of the failed node will automatically start

a target recovering process and manage object transfer without any human intervention.

Experiments have proven the feasibility and the robustness of our solution on different

network scenarios with up to 6 cameras nodes and 30 targets. The tracking system has

been design for embedded platforms and leverages an FPGA fabric to accelerate the

image processing performance. Unfortunately, the inaccuracy of video processing, leading

to many false positives in extracting events, and the slow image processing performance

due to software implementation of the mean-shift algorithm, made it almost impossible to

evaluate the effectiveness of the proposed approach on a real-life network setup.
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VI Summary and Future Work

This dissertation provided significant contributions to the self-coordination of distributed

smart embedded cameras in a network setup. We proposed a clear and compact

formalism using answer set programming, a declarative programming paradigm, for

dynamically and decentrally capturing and solving auto-coordination problem on each

camera node of the network. Given resource and power limitations on embedded camera

platforms and the processing requirements of embedded computer vision, we addressed

the hardware and software aspect of the camera architecture in tandem by using a

multi-objective system-on-chip synthesis methodology. Besides being resource and power

efficient, the resulting camera system is optimized to implement computational intensive

processing in hardware, while high level reasoning tasks are kept in software.

After briefly introducing the answer set programming concept in Chapter II, the proposed

declarative-based modeling approach for the synthesis of system-on-reconfigurable-chip is

presented in Chapter III. Implementing architecture for reconfigurable embedded

platforms is very challenging given all design parameters and constraints that must be

simultaneously addressed (system performance, resource constraints, power limitation).

The synthesis has been encoded as a mapping problem between a set of tasks and a set of

resources, with the goal of generating the optimal mapping configuration regarding user

objectives. Using answer set programming, the proposed methodology overcame the issue

of size explosion and exponential synthesis time encountered with conventional synthesis

approaches such as Integer Linear programming or Constraint programming. Moreover,

the proposed approach is network centric, that is, smart camera architectures are

generated so as to minimize the cost of communication resource in the network, without

performance degradation. The feasibility of the proposed synthesis method has been

demonstrated on several network scenarios, in which it has been showed that it is possible

to synthesize architectures for a 10-node network –with 10 tasks per node– in less than

40s.

In chapter IV, we presented the generated system-on-chip in detail. The proposed

architecture has been designed to tackle the performance issue of embedded computer

vision through a hardware/software decomposition approach. Such a decomposition
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allows computational intensive blocks of a processing system to be accelerated in

hardware, while the control parts remain in software. Considering the resource and power

constraints on embedded systems, we implemented the proposed system on an

FPGA-based platform to leverage runtime hardware restructuring and task swapping

properties of such technologies. Additionally, the Linux operating system with OpenCV

and Python libraries have been integrated into the camera system in order to increase

system programmability and to allow developers to easily migrate their existing

applications into the proposed camera platform.

Finally, chapter V presented the proposed declarative-based model for capturing runtime

self-coordination in a distributed network setup. In contrary to existing approaches, our

methodology, borrowed from high-level synthesis, encoded a tracking problem as a design

space exploration that systematically evaluates all possible coordination scenarios and

select the optimal choice regarding load balancing among nodes of the network. The

approach is distributed, meaning that, each camera is equipped with sufficient reasoning

capabilities to autonomously extract and evaluate meaningful information in its

monitoring area and devise the appropriate reaction in case of target leaving or entering

the field-of-view. The feasibility and robustness of the decentralized coordination method

have been demonstrated on various network scenarios, where it has been shown that it

was possible to self-coordinate up to 30 moving targets in less than 5 seconds in a 6-node

network. Also, the linearity of the proposed approach as a search methodology has been

demonstrated.

Several promising research avenues are suggested by the work presented in this

dissertation, and a few of them are detailed here. First, to match with reality regarding

existing surveillance systems, such as in banks, nuclear plants, or airports, the

performance of the proposed coordination approach would be studied on larger networks

of up to fifty or hundred nodes. Then, addressing video processing issues encountered

during experiments would be considered to boost the camera performance. Finally, we

will also consider improving the coordination model to allow a priority-based target

tracking. In such a case, targets will be tracked among cameras based on priority level

assigned to tracking events, with the possibility given to each node to release formerly

assigned targets (with a less priority) if capacity concern.
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