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Abstract

The reconfigurable computing community has yet to be successful in allowing programmers to

access FPGAs through traditional software development flows. Existing barriers that prevent

programmers from using FPGAs include: 1) knowledge of hardware programming models, 2) the

need to work within the vendor specific CAD tools, 3) and the requirement to pass each design

through synthesis, place and route.

This thesis presents a series of published papers that explore different aspects of a new

approach being developed to remove the three barriers and enable programmers to compile

accelerators on next generation reconfigurable manycore architectures. The approach is entitled

Just In Time Assembly (JITA) of hardware accelerators. The approach has been defined to allow

hardware accelerators to be built and run through software compilation and run time

interpretation outside of CAD tools and without requiring each new accelerator to be synthesized.

The approach advocates the use of libraries of pre-synthesized components that can be referenced

through symbolic links in a similar fashion to dynamically linked software libraries. Synthesis

still must occur but is moved out of the application programmers software flow and into the initial

coding process that occurs when programming patterns that define a Domain Specific Language

(DSL) are first coded. Programmers see no difference between creating software or hardware

functionality when using the DSL. A new run time interpreter is introduced to assemble the

individual pre synthesized hardware accelerators that comprise the accelerator functionality

within a configurable tile array of partially reconfigurable slots at run time. Qualitative results are

presented that demonstrate how software programmers can create hardware accelerators without

deviating from their traditional software practices. Quantitative results are presented that

compares utilization, performance, and productivity of the approach to what would be achieved

by full custom accelerators created through traditional CAD flows using hardware programming

models and passing through synthesis.
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Chapter 1

Introduction

We are facing a new era where power and energy efficiency have become first-class design

constraints within data center architectures. The Computing Research Association (CRA)

working group report, entitled “Revitalizing Computer Architecture Research”, deemed this as a

grand challenge problem in their “System 2020 Vision”. They put forth the challenge of creating

a new featherweight supercomputer architecture that can achieve 0.001 nJ/op [1]. This is four

orders of magnitude improvement over today’s systems. Reconfigurable manycores are one

approach that our semiconductor industry is pursuing towards meeting this challenge [2, 3, 4].

Reconfigurable manycores are a new hybrid architecture that include a Field Programmable

Gate Array (FPGA) as a coprocessor along with a traditional general purpose manycore chip. The

FPGA offers the advantage that it that can be reconfigured on an application-by-application basis

within the data center. The hope is the FPGA will be able to exploit, in an energy-efficient

manner, the irregular types of parallelism that exists throughout emerging big data analytics and

machine learning algorithms [5, 6, 7, 8, 9, 10]. Microsoft validated the energy and performance

benefits of integrating FPGAs into data centers. They created an experimental server system

called Catapult that allowed their document ranking algorithms to be offloaded into sets of

FPGAs connected to standard Intel manycore processors. Using FPGAs allowed them to double

the performance of their Bing search engine, but at only a 30% increase in energy [3].

There are two problems that will prevent widespread deployment of reconfigurable

manycores throughout data centers from being successful. First designing and placing circuits

within FPGAs requires hardware design skills. Second designs must be synthesized within

Computer Aided Design (CAD) hardware design flows. This is represented in the top right of

Figure 1.1. These problems are non-starters for successful deployment throughout our software

1
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Figure 1.1: Intel Reconfigurable Manycore and QPI Interconnect.

based technology sectors. The United States Bureau of Labor Statistics reports that over 1.3M

software programmers and only 85,000 hardware designers are employed within the United

States [11]. This is the issue; we simply do not educate and employ sufficient numbers of

hardware designers to support the coming broad deployment of these reconfigurable manycores.

1.1 Hardware Design Skills

Lack of programmer accessibility is continually called out as the biggest fundamental difficulty in

taking reconfigurable computing mainstream [12]. This issue was a catalyst for the latest

generation of High Level Synthesis [13]. HLS approaches start with a limited set of the C

language statements and add additional constructs or pragmas to expose parallelism and guide

synthesis [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. HLS and the use of imperative languages is no

Panacea [24]. Generating efficient parallel circuits from sequential languages remains

challenging, and does not remove the burden for programmers to study the chips underlying

hardware structures. Although it is fairly easy to generate an inefficient circuit from HLS,

significant effort is required to make the requisite low level platform specific optimizations to

synthesize efficient circuits. Recently FPGA vendors have been working on bringing FPGAs

under modern software heterogeneous programming frameworks [25, 26, 27]. These higher level

2



1 void(int *mem) {

2 mem[512]=0;

3 for(int i=0; i<512; i++) {

4 mem[512] += mem[i];

5 }

6 }

(a) Unoptimized: Exec. Time = 27,236 clock cycles.

1 //Width of MPort = 16 * sizeof(int)

2 #define ChunkSize (sizeof(MPort)/sizeof(int))

3 #define LoopCount (512/ ChunkSize)

4 //Maximize data width from memory

5 void(MPort *mem) {

6 //Use a local buffer and burst access

7 MPort buff[LoopCount];

8 memcpy(buff , mem, LoopCount);

9 //Use a local variable for accumulation

10 int sum=0;

11 for(int i=0; i<LoopCount; i++) {

12 //Use additional directives

13 //e.g. pipeline and unroll for parallel exec.

14 #pragma PIPELINE

15 for(int j=0; j<ChunkSize; j++) {

16 #pragma UNROLL

17 sum+=(int)(buff[i]>>j*sizeof(int)*8);

18 }

19 }

20 mem[512]=sum;

21 }

(b) Optimized: Exec. Time = 302 clock cycles.

Figure 1.2: Comparing optimized HLS and unoptimized HLS from [28].

frameworks still use HLS underneath to then create the hardware accelerators.

Generating circuits from declarative languages has also been

popular [29, 30, 31, 32, 33, 34, 35, 36, 37]. Advocates argue that declarative languages provide a

better starting model of concurrency for generating parallel gates compared to HLS. Despite these

articulated advantages and continued interest by researchers, declarative languages have not

achieved a level competitiveness with HLS within industry.

Researchers within reconfigurable computing are acknowledging the acceptance of Domain

Specific Langauges (DSLs) within the software community. DSLs in general provide a restricted

set of programming patterns relevant to a particular domain. DSLs such as MATLAB, SQL,

Snort, Perl, and Hadoop are commonplace within our software industry. The reconfigurable

3



computing community is increasingly investigating DSLs as front end alternatives to HLS for

programming FPGAs [38, 39, 40]. DSLs are used as another layer of abstraction between the

programmer and the underlying HLS tools.

The bodies of the software programming patterns still need to transformed with pragmas

based on platform specific knowledge as shown in Figure 1.2. HLS tools are entirely appropriate

to transform the bodies of the patterns into synthesizeable code. However starting from a DSL

allows this lower level coding to be performed once by an experienced hardware designer and

then reused by all application programmers. George et. al. [40, 41] showed the benefit of this

approach using programming patterns from OptiML, a DSL for machine learning [42]. Figure 4.2

shows the key OptiML programming patterns that were combined and synthesized.

1.2 Use of Vendor Specific CAD Tools and Synthesis

The second issue that will block the widespread deployment of reconfigurable manycore system

throughout our data centers and software based technology sectors is the use of CAD tools and

synthesis. CAD tools are provided by FPGA vendors and are not interoperable. Essentially Xilinx

CAD tools do not support Altera’s FPGA architectures and vice versa. This represents a challenge

for creating portable and reusable designs. CAD tools used for designing and programming

today’s FPGAs have a direct heritage to earlier VLSI hardware design tools. In general, CAD

tools reinforce the notion that optimizing peak performance is an immutable first class design

constraint when creating hardware circuits. Some research has been reported on how to soften the

requirement of optimizing performance to achieve better designer productivity within earlier

versions of vendor proprietary CAD tool flows [43, 44]. However newer versions of the Vendor

tools remove this type of circumvention. What still remains true is that CAD tools integrate the

steps of synthesis, place, and route within the design flow for creating hardware circuits.

Besides the use of CAD tools, designers also need to tolerate the increasingly

time-consuming hardware synthesis process. The hardware synthesis process can breakdown to

4



#PEs
Utilization Hardware Synthesis Time (Min)

LUTs BRAM Synthesis Place & Route Total Time

1 25,009 ( 8.0%) 36.0 (3.5%) 25.5 10.0 35.5
2 28,919 ( 9.5%) 45.5 (4.4%) 33.0 11.0 44.0
4 35,449 (11.7%) 65.5 (6.4%) 50.8 13.6 64.4
8 49,328 (16.3%) 105.5 (10.2%) 79.6 16.5 96.1

16 76,926 (25.3%) 185.5 (18.0%) 159.2 22.4 181.6
32 132,274 (43.6%) 345.5 (33.54%) 379.1 64.5 443.6
64 240,778 (79.3%) 665.5 (64.61%) 1257.8 110.5 1368.3

Table 1.1: Utilization and synthesis time of MPSoC with various PEs.

several steps: synthesis, placing, routing, and generating bitstreams. Table 1.1 shows the

utilization and hardware synthesis time of six typical MPSoC system with different numbers of

processing elements (PEs). The hardware synthesis time increases sharply following the growth

of number of PEs. If any modification happens in the design, the designer have to suffer hourly

re-synthesis process, which consequently complicates debugging and verification, reduces turns

per day, and prevents FPGA from widespread deployment.

1.3 Objective

It is important to remove the use of CAD tools and hardware synthesis from programmers design

path. This can be addressed by exploiting:

• High level programming model abstraction: to allow programmers to design accelerator

without the knowledge of hardware.

• Run time interpreter: to avoid the hardware synthesis, and to interpret the intermediate

representation to the executable assemblies.

• Overlay design: to abstract the FPGA resource to run the executable assemblies during the

runtime.

The objective of this dissertation is to demonstrate the feasibility of just in time assembly

5



(JITA) approach for software programmers to design accelerator without the using of CAD tools

and hardware synthesis.

1.4 Thesis Contributions

Throughout exploration of this work, I have made the following set of contributions and have

published my findings in the conferences referenced for each contribution.

• Run Time Interpreter We created a C implementation of the interpreter. The interpreter

dynamically places and routes the programming patterns within different configurations of

the overlay (In Chapter 2 [45]).

• Partial Reconfigurable Tile Overlay We created a new overlay that uses partial

reconfiguration tiles within a word width 2D switch or 1D crossbar interconnection. We

provided a scripting tool to automatically create different configurations of the overlay for a

DSL and FPGA (In Chapter 3 [46], 4 [47]).

• Platform Independent Interpreter Language We created a set of platform independent

interpreter calls that enable portability over different overlays. This represents a separation

of policy from a mechanism that allows a single set of interpreter calls to be implemented

by all platform specific interpreters managing different overlays (In Chapter 5 [48]).

• Automated Overlay Generator We provided an open-source overlay architecture generation

tool based on TCL scripts on FPGAs, to unify different overlay topology with various

programming models for rapid system generation (In Chapter 6 [49]).

During the course of my studies, I also investigated and published additional work in

support of my contributions. The work includes memory hierarchy [50], energy efficiency [51],

and automate generation tools [52] in the MPSoC system.
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1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents a prototype

implemented by using the proposed design flow to address productivity issues of accelerator

design in FPGA. Next, Chapter 3 focuses on the main design methodology of JITA for

programmers to design accelerator in FPGA. The following Chapter 4, 5, 6 provides a detailed

discussion of the proposed approach in this thesis to explore the trade-off among the productivity,

utilization, and performance. Finally, Chapter 7 concludes the thesis and offers some potential

future work that can follow this thesis.
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Chapter 2

A Run Time Interpretation Approach For Creating Custom Accelerators

Sen Ma, Zeyad Aklah, and David Andrews

Abstract— The world of software development has the notion of just-in-time compilation,

run time binary translation, and language interpretation. These dynamic run time techniques

support increased code portability and designer productivity. There are no such equivalences to

increase the productivity or portability of creating new hardware components within Field

Programmable Gate Arrays (FPGAs). Instead, creating a new hardware component requires

hardware design skills and the overhead of running through synthesis, place and route. If a

change is made to even a single line of code, the synthesis, place and route steps must be

repeated. In this paper we present a new approach that allows hardware accelerators to be built

and run using compilation and run time interpretation. Our results show the approach can enable

software programmers without any hardware skills to create hardware accelerators at productivity

levels consistent with software development and compilation. The same accelerator can be

compiled 100× faster than synthesis. Even though the approach is focused on productivity, our

observed performance results are promising. Our initial application test cases show the same

accelerator written by a software programmer and synthesized through Vivado HLS or written

using our DSL and compiled within our approach achieves equivalent performance.

2.1 Introduction

Enabling software developers to apply their skills over Field Programmable Gate Arrays (FPGAs)

continues to be an unreached research objective in the reconfigurable computing community. In

the past our inability to reach this goal did not greatly impact the adoption of FPGAs within

companies that employed hardware and system design engineers. Further the extended time to
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market required to program and tune an FPGA to gain peak performance was an acceptable

system development cost.

Enabling software developers to apply their skills to FPGAs is now becoming critical as we

are witnessing a new and exciting inflection point in their use. FPGAs are now being viewed as

viable commercial off the shelf components (COTS) visible to software developers. As an

example, Microsoft recently revealed Catapult, a prototype server with FPGAs targeted for use in

large data centers to accelerate their Bing search engine. Intel also announced a new compute

node that will integrate an FPGA with a Xeon processor. These types of announcements have the

potential to accelerate the exposure of FPGAs to software programmers.

This trend is now forcing the research community to address a looming problem for the

success of FPGAs within these software domains; there simply are not sufficient numbers of

designers with the requisite hardware and architecture design skills needed to handle the work.

The United States Bureau of Labor Statistics 2012 report showed approximately 83,000 computer

hardware engineers compared to 1.3M software engineers/programmers were employed in the

United States [1]. How can the research community address this imbalance?

Our approach allows programmers to compose together a set of highly tuned

pre-synthesized bitstreams, or primitives, from within a software development environment. The

approach does not replace the need for experienced hardware designers and existing HLS

languages and tools. The approach is complementary and allows the large number of

programmers to compose bitstreams into new circuits without having to resynthesize. This is

achieved by creating a new abstraction layer over the bitstreams that programmers use within

their standard software development environments, just as if the bitstreams were more traditional

dynamically linkable run time binary executables.

Our results validate that our objective is reachable; different accelerators can be created

through compilation and composition, and interpreted at run time. Our initial results show that the

same accelerator functionality that takes 14∼18 minutes to synthesize in Vivado can be created
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by compiling and linking against an equivalent set of pre-existing bitstreams in seconds. This

represents over a 100× decrease in development time.

The rest of this paper is organized as follows. The next section provides an overview of our

approach. We first show how primitive operations can be combined and compiled. We then

introduce a set of platform independent instructions output by our compiler. We also show how

the interpreter translates and uses these instructions to configure the primitives within a 3×3

template array of partially reconfigurable slots. Section 5.5 presents our results. Section 6.5

concludes with a discussion on the additional research needed to transition the approach into

commercial use.

2.2 Approach

Programmers increase their productivity by applying the fundamental software engineering tenets

of abstraction, portability and reuse. They do not rewrite each new application from scratch. They

take advantage of existing code bases in the form of compilable or dynamically linkable libraries.

These libraries represent mechanisms that are invoked within the application code through a set of

abstract policies in the form of Application Programmer Interfaces (APIs), system calls, or

function prototypes. Can the same approach be applied to help programmers eliminate the need to

synthesize an accelerator?

Modern FPGAs support partial reconfiguration. This allows pre-synthesized bitstreams to

be downloaded from memory into the FPGA fabric at run time. We take the view that bitstreams

should be treated as just another form of pre-compiled executables. The policies of these

bitstreams can easily be made available to a programmer through normal software abstractions;

APIs or function prototypes.
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Figure 2.1: Design Flow of Matrix Multiplication Accelerator.
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2.2.1 Example

Figure 2.1 shows the approach through a simple example. The code in the top of Figure 2.1

implements a simple matrix multiply that a programmer needs to turn into a hardware accelerator.

Manipulating the functors can occur within a standard software development environment. We

have adopted the Delite [2] framework. Delite is an existing framework developed for creating

and compiling Domain Specific Languages (DSLs). The functionality of a functor is created

within Delite when the DSL is defined. As part of the DSL design, each functor can be specified

in C using an HLS tool, and turned into an optimized bitstream by an experienced hardware

designer. It is important to note that this only occurs once during the definition of the DSL.

Programmers only use the DSL after it is created. The prototypes are linked later against binaries

or bitstreams within the normal compilation process.

2.2.2 Run Time Interpreter

Figure 2.1 shows a run time interpreter as part of our approach. We use the interpreter to bring

portability and reuse over different organizations of reconfigurable slots. Consider the data flow

graph output in Figure 6.6 produced for the inner product example. At this point we could

generate code that maps each functor into a physical location for a reconfigurable slot. As an

example we could map the VMUL functor into the co-ordinates that represent physical slot (0,0),

and REDUCE into the co-ordinates that represent physical slot (0,1). What would happen if we

changed the locations, geometries or numbers of reconfigurable slots? Using the interpreter

allows the data flow graph information generated by the back end of our compiler to remain

portable, similar to portable Java Byte Code. Since we target the creation of accelerators, we call

this language the Virtual Accelerator Machine (VAM) language. Just as a Java Virtual Machine

(JVM) provides the run time mechanisms needed to implement the policies defined by the Java

Byte Code, our VAM run time interpreter provides the run time executables specific to a

particular organization of partially reconfigurable slots. As a more concrete example, we created
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Benchmarks
Lines of Code

(HLS)
Functor Composed Expression

Inner Product 35
dataC=REDUCE(
VMUL(dataA, dataB, Size), Size);

M1×V1 60 MatrixC=MM(MatrixA, VectorB, rowA, colA, 1);

M1×M2×M3 65
MatrixD=MM(
MM(MatrixA, MatrixB, rowA, colA, colB),
MatrixC, rowA, colB, colC);

Correlation 90

diff1=SVSUB(dataA, AVG(dataA, Size), Size);
diff2=SVSUB(dataB, AVG(dataB, Size), Size);
VAR1=REDUCE(VSQR(diff1, Size), SIZE);
VAR2=REDUCE(VSQR(diff2, Size), SIZE);
Cov=IPR(diff1, diff2, Size);

Table 2.1: Code Complexity

the 3×3 tile array shown in Figure 5.3 as part of our prototype system.

2.3 Experimental Results and Analysis

All evaluations were conducted using Vivado 2014.2 with corresponding Vivado HLS tools. All

designs were implemented and run on a Xilinx Kintex-7 FPGA. Our test system is shown in

Figure 6.6 and consisted of a MicroBlaze, AXI Interconnect, BRAM buffers, DMA, and local

BRAM that held our system boot kernel and interpreter executables [3]. Reported times for

synthesis and compile are averages of multiple trials. We broke our evaluation into three phases: a

feasibility analysis, quantifying productivity, and quantifying performance. The objective of the

feasibility analysis was to verify the practicality of the approach.

The seven functors shown in Table 4.2 offered sufficient flexibility to form a variety of test

accelerators characteristic of the scientific computing and signal processing domains. The first

two functors VMUL and REDUCE are familiar programming patterns. The SVSUB, VSQR,

and AVG functors were created to form filtering patterns from signal processing. The IPR functor

computes the inner product between two vectors. The MM was created to support
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multidimensional matrix operations from scientific computing as well as signal processing. Each

functor was hand coded in C and synthesized using Vivado HLS and Vivado to create partially

reconfigurable bitstreams. The functor prototypes and their bitstreams were placed in a library.

Table 4.2 shows how the functors were composed to implement the four benchmarks. The

first benchmark showed how the two simple functors, REDUCE and VMUL, can be composed to

create an inner product. The third benchmark showed how a three dimensional matrix multiply

can be formed by composing two MM functors. The fourth benchmark showed how a series of

five functors could be composed to form a correlation function. In all cases the functors were

composed within our DSL, and all VAM interpreter calls automatically generated. The produced

run time results were compared to software versions running on a workstation. All benchmarks

ran successfully.

2.3.1 Productivity Analysis

Table 4.2 lists the number of C source lines written to code a single accelerator version of each

benchmark. The lines of C source includes code required to interface and control the accelerator.

Intuitively eliminating the need to write low level interface code will increase productivity. The

thirty five lines of C code required for the inner product is replaced by composing the two

REDUCE and VMUL functors. Ninety lines of C code for the correlation was replaced by five

functors. We did not attempt to measure the time it took to code each benchmark accelerator. We

simply use the number of source lines as a quantifying metric.

Table 3.3 quantifies productivity by comparing synthesis versus compilation times for each

benchmark. Each benchmark was compiled in under 5s. The actual time to compile just the

functors was probably under a second. The reported times include additional compilation and

linking that occurs within our automated system build toolchain. Our results show that

compilation occurred between 170× to 214× faster than synthesis. Just this difference alone in a

development flow has significant implications on programmer productivity. Under synthesis, a
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software designer would need to wait an average of 15 minutes before the bitstreams could be

generated and then tested in a running system. This equates to being able to make only four

changes per hour. In comparison, a programmer using our approach can make and observe

approximately 180 changes per hour. How such a level of productivity would result in rapid fix

bugs is intuitive. Importantly the approach allows the programmer to quickly and easily

experiment with different accelerators running within the real system.

Similar to software implementations of run time interpreters, our VAM interpreter

introduced overhead. We measured an overhead of between 64µs (for the inner product) to 650µs

(for the correlation) for the interpreter to select tiles, and route functors. The overheard scaled

fairly linearly based on the number of tiles that were used. Although we thought it fair to call this

overhead out, it should be viewed similar to the startup overhead that would be incurred once

during the creation of a thread in a multithreaded operating system. After the functors have been

placed and routed, this overhead is no longer seen. To be complete, there is also overhead

associated with transferring bitstreams into the tiles. This overhead would also be present for
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Benchmarks
SFA Compilation

Overhead (s)

HLS
Synthesis & PAR

Overhead (s)

Productivity
Improvement

Inner Product ≤5 865 173×
M1×V1 ≤5 889 178×

M1×M2×M3 ≤5 1034 207×
Correlation ≤5 1068 214×

Table 2.2: productivity

transferring the bitstreams of the synthesized custom accelerator. In both cases the overhead is

approximately equal and provides no differentiation between this approach and a traditional

synthesis approach.

2.3.2 Performance Analysis

Lastly we wanted to observe if an accelerator created by composing bitstreams would suffer some

measure of degraded performance compared to synthesizing a combined single bitstream version.

Clearly the performance any synthesized accelerator or primitive is dependent on many different

factors, including how the code is structured, the time taken to optimize the code, the designers

hardware design skills. The fundamental question we sought to answer was at this stage of

development would performance be degraded sufficiently to negate the approach. Figure 3.6

shows our results. We were intrigued to observe that our approach achieved speedups that were as

good or better than the speedups of the synthesized accelerator. While the results are promising

we do not draw any conclusions on performance based on just these prototype benchmarks. For

this study we conclude that the results simply do not negate the validity of the approach. Clearly,

more DSLs and more applications need to be evaluated before any real claim on performance

trends can be made.
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2.4 Related work

The work reported in this paper benefits from and contributes to the large body of research in

programming languages and models, virtualization of hw/sw resources, operating systems, and

partial reconfiguration. The use of Domain Specific Languages to generate accelerators is

discussed in [4, 5, 6].

Using a DSL allows additional higher level domain specific optimizations to be made, such

as fusing and transforming individual programming patterns into a more efficient representation.

This optimized representation can then be run through synthesis. Our approach exploits some of

the benefits of using tuned programming patterns, but differs by pre-synthesizing the patterns into

functors that can be linked. We also retarget the back end to generate platform independent

interpreter calls and not a synthesis tool. Research in this area roughly follows along three lines:

improve and optimize the algorithms, minimize the work fed into the synthesis tool, or eliminate

synthesis from the design flow by moving it into the run time system. We share commonalities

with the second and third approaches. Work by Nelson [7] represents an interesting approach to

minimize the work fed into the synthesis tool. Athanas combined this idea with partial

reconfiguration to rapidly assemble software defined radios [8]. Lysecky and Vahid [9] explored

moving synthesis from design time to run time. In their Warp Processing work, they targeted

synthesizing the body of a loop while it was running. Similarly, Davor et al. [10] proposed a

synthesis-free JIT approach to dynamically accelerate hot segments in a program using off line

synthesized VDR units.

Our approach shares the same philosophy of creating the equivalent of macro IP

components. However our approach eliminates the need to do additional routing within the

physical control layer of the FPGA within the synthesis tool.
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2.5 Conclusion

In this work, we presented a new approach that allows programmers to use standard software

development tools and enjoy software levels of productivity when creating new hardware

accelerators. The main contribution of this work is the elimination of synthesis from the path of a

programmers design flow. This will greatly facilitate the use of FPGAs within our software

dominated information technology sector. We validated this new approach by prototyping an end

to end system running on a test system configured as a 3×3 array of tiles. The end to end system

included a prototype compiler that allowed functors to be composed, type checked, and generate

machine independent interpreter calls. We implemented a run time interpreter that implemented

these calls on our 3×3 tile array. Our results validated the feasibility of the approach. We showed

how equivalent accelerator functionality could be represented by composition, compilation and

run time interpretation of functors thereby eliminating the need to pass through synthesis.
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Chapter 3

Just In Time Assembly of Accelerators

Sen Ma, Zeyad Aklah, and David Andrews

Abstract— Despite the significant advancements that have been made in High Level

Synthesis, the reconfigurable computing community has failed at getting programmers to use

Field Programmable Gate Arrays (FPGAs). Existing barriers that prevent programmers from

using FPGAs include the need to work within vendor specific CAD tools, knowledge of hardware

programming models, and the requirement to pass each design through synthesis, place and route.

In this paper we present a new approach that takes these barriers out of the design flows for

programmers. Synthesis is eliminated from the application programmers path by becoming part

of the initial coding process when creating the programming patterns that define a Domain

Specific Language. Programmers see no difference between creating software or hardware

functionality when using the DSL. A run time interpreter is introduced that assembles hardware

accelerators within a configurable tile array of partially reconfigurable slots at run time. Initial

results show the approach allows hardware accelerators to be compiled 100× faster compared to

the time required to synthesize the same functionality. Initial performance results further show a

compilation/interpretation approach can achieve approximately equivalent performance for

matrix operations and filtering compared to synthesizing a custom accelerator.

3.1 Introduction

Just In Time (JIT) compilation and run time interpretation has been effective at delivering

portability within the software world. In this work we investigate if the same JIT run time

interpretation philosophy can be used to enable programmers, not hardware designers, to

assemble hardware accelerators at run time on todays FPGAs.
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This is no small challenge. Creating such a capability requires rethinking what is

synthesized, when synthesis should occur, and how certain steps within the place and route

sequence can be moved into the run time system.

Synthesis cannot be totally eliminated, but can be moved out of a programmer’s compilation

path. Domain Specific Languages (DSLs) provide a path forward [1, 2, 3]. Our assertion is that

synthesis can be taken out of the application developers path if it is made part of the standard

coding process when the Domain Specific Language (DSL) is created. This is before an

application programmer attempts to combine and compile individual programming patterns into

an application.

Individual programming pattern bitstreams can be made available as executable library

routines. These library routines can be symbolically referred to during compilation as yet another

form of a dynamically linked run time executable. Thus the bitstreams are treated no differently

during compilation as traditional libraries of binary executables. The place and route steps that

traditionally occur when bitstreams are combined together before synthesis can be moved into the

run time system.

Java compilers produce platform independent Java bytecodes that are translated into native

machine code during run time by the Java Virtual Machine (JVM). The symbolic links to the

individual bitstreams can be output from a compiler as pointers to the hardware module

equivalents of the native methods. They are just spatial instead of temporal representations.

The hardware native methods (bitstreams) then need to be substituted in place of the

symbolic links at run time. We define a new run time interpreter to perform the equivalent

function of the JVM. Instead of substituting byte codes with native machine code, the run time

interpreter will substitute the symbolic links with the relocatable hardware modules.

The interpreter needs spaces within the FPGA to place the hardware modules and a

programmable interconnect that can route data between the modules. FPGAs already provide the

structure to support this through partial reconfiguration [4]. We create a network overlay with
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Figure 3.1: Design Flow.

programmable interconnects. Partial reconfiguration regions are provided into which the

interpreter can place the modules and route them together at run time.

Figure 3.1 shows our end to end design flow. The left side shows what occurs by a system

programmer when creating a Domain Specific Language (DSL) for the application programmers.

During the normal coding process that occurs when programming patterns are created, we add the

additional step of synthesizing each individual pattern into a bitstream. This is discussed in

section 3.3. The bottom left of Figure 3.1 shows the introduction of a new type of overlay

network. This overlay is created once when the programming patterns are coded and synthesized.

The new overlay is discussed in section 3.2. The programming patterns, bitstreams, and overlay

are placed into libraries shown in the middle of Figure 3.1 and can be accessed by all application

programmers.

The application programmers use the flow on the right in Figure 3.1 to create their

applications. They work with standard software DSL primitives just as if they are coding their
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application for a traditional software implementation. However when the programmer composes

DSL primitives that have bitstream representations, the compiler inserts symbolic links to the

bitstreams and builds a data flow graph representation of how the programming patterns are

composed to represent the accelerator.

The compiler outputs a series of interpreter instructions that are used by an interpreter to

assemble the bitstreams within the overlay and set the data connections. This is discuss in

section 4.3.

3.1.1 Contributions

The main contributions of this work are:

• PR Tile Overlay A new overlay that uses partial reconfiguration tiles within a 2D Array and

flexible word width switch boxes. The overlay represents the framework within which the

run time system assembles accelerators. We provide a scripting tool to automatically create

different configurations of the overlay for a DSL and FPGA.

• Platform Independent Interpreter Language A set of platform independent interpreter calls

used by an interpreter to assemble accelerators on different configurations of the PR tile

overlay at run time.

• Run Time Interpreter We created a C implementation of the interpreter. The interpreter

dynamically places and routes the programming patterns within different configurations of

the overlay. The interpreter calls are compiled and linked as sys calls within a pthreads

compliant multithreaded programming model middleware library.

• Case Studies and Evaluation Case studies showing a complete end to end capability. Case

studies show how accelerators are formed from the programming patterns of a DSL,

compiled, JIT assembled and run within different overlays. We show the portability of the

approach by running the same compiled accelerator in different overlays, including single
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and multiprocessor systems on chip architectures on Virtex7 and Kintex7 FPGAs. Run time

performance and area overhead comparison studies are provided that compare the approach

to traditional synthesis flows.

3.2 Intermediate Fabric

Commercial off-the-shelf FPGAs have served and will continue to serve as the defacto

component for reconfigurable computing research. This is not because they are ideal, in fact they

are far from it. Course Grained Reconfigurable Arrays (CGRAs) have been proposed as

alternatives to FPGA fabrics for reconfigurable computing [5]. CGRAs replace Lookup tables

(LUTs) and Flop Flops with programmable Arithmetic Logic Units (ALUs) and word width

interconnects as compilation targets. CGRA structures promise to close the semantic gap between

high level languages and hardware and change design flows from synthesis to compilation [6].

Even though interest in CGRAs remains high no devices are available.

Intermediate Fabrics, or overlays have been proposed that allow CGRA type structures [7]

as well as more higher level computational components such as vector processors [8] to be

embedded within FPGAs. The potential advantage of such overlays is that circuits and hardware

acceleration can be achieved through compilation instead of synthesis on existing FPGAs.

Common approaches for enabling CGRAs on an FPGA are to replace LUTs and Flip Flops with

small programmable computational units such as ALUs as the compilation target. The ALUs are

embedded within a network of switch boxes and channels.

The interconnect structures are defined to support wider word widths instead of bit level

interconnections. The general approach introduces some overhead inefficiencies associated with

need to provide additional resources to form the overlay, routing delays between the

computational units, and limitations on the granularity of parallelism that can be exploited. New

approaches to addressing overhead and latency issues continue to be investigated [9].
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We defined a hybrid type of overlay to support JITing bitstreams.

Our overlay includes a nearest neighbor programmable word width interconnect similar to

traditional CGRA type overlays. Different from traditional CGRA overlays, we expose the

lookup tables and flip flops of the FPGA as partially reconfigurable tiles instead of abstracting

them into programmable computational units. This combination of pre-formed interconnects and

partial reconfiguration regions allows the bitstreams for the programming patterns to be

downloaded at run time into the intermediate fabric. Figure 5.3 shows the structure of the hybrid

overlay. The basic structure is a 2D array of partial reconfiguration tiles and programmable

switches that are connected as a nearest neighbor interconnect network.

3.2.1 PR Tiles

The specific 3×3 array configuration shown in Figure 5.3 was constructed of partial

reconfiguration tiles sized at 9,600 LUTS, 360KB BRAM, and 80 DSPs. This particular

configuration was sized to hold the largest bitstream generated from our test DSL. The exact size

of the tiles is variable and can be set when the DSL is first created.

The number of the tiles is derived based on the size of the tiles and the number of resources

available on a target FPGA logic family.

3.2.2 Programmable Switch

Figure 4.4 provides an exploded view of a switch. Figure 4.4 shows the types of routing patterns

that can be programmed into switch. The routing patterns were defined to enable each switch to

direct inputs and outputs through the tile, as well as serving as a pass through for routes between

distant tiles.

Routes can be set statically or dynamically. Dynamic settings can be used for allowing the

switch to support different time varying routing needs such as when multiple accelerators are
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resident within the overlay. Each switch may serve as a pass through for one accelerator, and then

source and synch data for a tile that is part of a different accelerator.

3.2.3 Local Memory

The boundary cells in the overlay include connections to blocks of local memories (BRAMs).

These BRAMS can be used as addressable local memories or as FIFO data buffers for streaming

data.

Block data transfers use DMA (not shown) between the BRAMs and Global DRAM

memory. The BRAMs are placed within the global address map of the system, allowing any

processor or bus master device to transfer data into and out of a local memory. The BRAMS have

buffer full/empty handshaking signals that are connected through the switches to enable

processing to be dynamically triggered.
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3.3 The Programmers Perspective

Domain Specific Languages (DSLs) are common within software development flows and offer a

reduced set of programming patterns tailored for a particular application domain.

An advantage of a DSL approach is that domain s pecific optimizations can be applied to the

programming patterns before they are translated into lower level intermediate representations.

The programming patterns themselves hide complexity and allow the compiler and run time

system to better decompose and map the computations across different configurations of

architectures and computational resources. For these reasons, DSLs are gaining interest within the

general purpose computing domain as a approach to increase performance and productivity for

heterogeneous multiprocessors [2].

Our approach deviates from the current approaches that combine programming patterns

prior to synthesis. When the programming patterns that define a DSL are first created, there is no

reason why they cannot be synthesized before they are combined. The individual bitstream

versions of the programming patterns can be placed within a corresponding library of linkable

executables. The compiler can then refer to executables using symbolic links just like

dynamically linked software routines.

This view presents a subtle but important difference from today’s current approaches.

Consider the differences in flows, design skills and development time needed to create the two

separate hardware accelerators acc1 and acc2 using the following three generic functions

f(x),g(y),h(z). acc1 := f(g(h(z))); acc2 := g(g(h(z)));

Creating the first accelerator (acc1) under current hardware design flows would require a

programmer to work within a CAD tool to first combine and then synthesize the composed

functionality within an HLS tool (such as Vivado). Coding each function would require the

programmer to know HLS tool specific coding styles as well as board requirements. This effort

typically includes inserting platform specific control, command/control and data interfaces, all
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requiring knowledge of low level signaling protocols. Creating the second accelerator (acc2)

would require a repeat of these steps. Under the proposed approach shown in Figure 3.1 the

bitstreams for each function are created once by a hardware designer as part of the coding process

for each individual function. Software prototypes can be provided for the programmers to

represent the function calls. Application programmers can now compose and compile the

function prototypes to create an accelerator as if they were working within a traditional software

DSL framework. Assembling the individual bitstreams for f(x),g(y),h(z) into a complete

accelerator is moved from design time to run time.

3.4 Interpreter

In this section we show how the interpreter executes the calls of the running example of

Figure 4.1 on the two overlay configurations shown in Figure 5.4.

Function Placement and Loading: We chose to manage the free PR tiles in a simple queue

(the VAM TABLE). For each VAM GET TILE (steps 1, 4) the interpreter pops a free tile from

the queue. The tiles returned for two consecutive VAM GET TILE calls may not be adjacent

within the overlay array. This is shown in Figure 5.4. On the left the interpreter selected two

adjacent tiles while on the right, the top right and bottom left tiles were selected. Function

bitstreams are then loaded into free tiles using VAM LOAD TILE (steps 3, 6).

The run time interpreter manages input and output buffers for the accelerator in a similar

fashion to tiles. For each input variable the VAM GET BRAM (steps 2, 5) returns a list of

available local BRAMs to be selected as an input buffer.

Function Routing: After the interpreter transfers the bitstreams into the tiles, and BRAMs

are selected, data paths are formed from the VAM ROUTE (step 9) calls. For our prototype

systems we implement a simplified version of the standard maze-routing algorithm [10]. The

right side of Figure 5.4 shows the route formed from the top right tile (VMUL) to the bottom left
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tile (REDU). This route first traverses down to the bottom right tile, and then left to the bottom

left tile.

Data Transfer: After the accelerator has been configured, the interpreter transfers input

data from DRAM into the local input buffer BRAMS using VAM DMA (steps 7, 8). The outputs

of the accelerator are transferred from the output BRAM buffer back into DRAM using

VAM DMA (step 12).

Control Operations: The VAM START (step 10) initiates the execution of the array. The
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VAM DONE (step 11) returns status from the accelerator.

3.5 Experimentation and Analysis

Figure 4.1 shows the three base platform systems created to evaluate our approach. The first

system contains a 2×2 array built on a Kintex7. The second contained a 3×3 overlay on a

Virtex7. The third system was built on a Virtex7 and contained two 2×2 overlays. In all cases the

overlays were interfaced to a MicroBlaze processor as tightly coupled accelerators.

All systems were built and synthesized using Vivado 14.2 tools.
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The interpreter was written in C and cross compiled with the operating system. As all

systems used a MicroBlaze we were able to compile the interpreter once and reuse it on all

systems. Interpreter calls invoked through sys calls. Sequential portions of the test programs were

cross compiled and run as a thread, or in the case of mulitprocessor system, as concurrent threads

on the two MicroBlazes.

3.5.1 Creating the Accelerators

The first column in Table 4.2 list the functions we selected as our benchmarks. These functions

are representative of computations that a programmer might wish to accelerate from high

performance computing and signal processing codes. The second column lists the lines of code

that were run through our Vivado HLS tool to create custom accelerator versions of each function

for comparisons.

We defined the programming patterns shown in Table 3.2 as our test DSL. Prototypes

(function definitions) were created for each programming pattern, and the body of each

programming pattern was coded in C as part of the DSL creation process. The C bodies were

passed through Vivado HLS to generate bitstreams. We added an additional flag to the standard

compilation flow to allow the C versions of the DSL to be compiled for test and evaluation, or

cross compiled to run on the MicroBlaze processors for comparison. Switching the compiler flag

was all that was needed to generate interpreter calls with symbolic links to the bitstreams.

The right hand column of Table 4.2 shows how we composed the programming patterns to

implement the test functions. Inner product was computed using the REDUCE and VMUL

programming patterns. Matrix × Vector used the matrix multiply pattern with the number of

columns set to 1. Matrix ×Matrix ×Matrix was computed by composing two matrix multiply

patterns. Correlation was computed using the five programming patterns SVSUB, AVG,

REDUCE, VSQR, and IPR.

The composed expressions were compiled and our VAM call generator backend to produce
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Benchmarks
Lines of Code

(HLS)
Composed Expression

Inner Product 35
dataC=REDUCE(
VMUL(dataA, dataB, Size), Size);

M1×V1 60 MatrixC=MM(MatrixA, VectorB, rowA, colA, 1);

M1×M2×M3 65
MatrixD=MM(
MM(MatrixA, MatrixB, rowA, colA, colB),
MatrixC, rowA, colB, colC);

Correlation 90

diff1=SVSUB(dataA, AVG(dataA, Size), Size);
diff2=SVSUB(dataB, AVG(dataB, Size), Size);
VAR1=REDUCE(VSQR(diff1, Size), SIZE);
VAR2=REDUCE(VSQR(diff2, Size), SIZE);
Cov=IPR(diff1, diff2, Size);

Table 3.1: Code Complexity

the interpreter instructions. The run time interpreter executed the interpreter calls on each system.

Qualitatively this verifies the portability of the interpreter calls over different versions of our

overlay.

3.5.2 Discussion: Programmer Accessibility

Compiling is a fundamental step in getting application developers to use FPGAs; CAD tools and

synthesize need to be removed from their development paths. Table 3.3 shows accelerators could

be compiled and run time assembled in our overlay in less than five seconds. The reported times

to compile is independent of the target overlay (2×2, 3×3) or platform (Virtex7, Kintex7).

Synthesis times reported in Table 3.3 are averages. The variance in synthesis, P&R times for our

test system on the Virtex7 and Kintex7 were not sufficiently different to report.

The actual time to compile just the programming patterns was more realistically under a

second. The reported times include the time to compile and link the application program,

middleware and operating system within our automated system build toolchain. Still the results

show that compilation occurred between 170× to 214× faster than synthesis.
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Patterns Semantics Description

REDUCE S = REDUCE(dataA, SizeA); sum = ∑
n
i=0 ai

VMUL dataC = VMUL(dataA, dataB, Size); ~vc = ~va ·~vb

MM MatrixC=MM(MatrixA,MatrixB,rowA,colA,colB); Mc = MaMb

AVG S = AVG(dataA, SizeA); avg = (∑n
i=0 ai)/n

SVSUB dataB = SVSUB(dataA, S, SizeA); ~vc = ~va−S

VSQR dataB = VSQR(dataA, SizeA); ~vc = ~va ·~va

IPR dataC = IPR(dataA, dataB, Size); ipr = ∑
n
i=0 ai×bi

Table 3.2: Prototype Programming Patterns

Table 3.4 shows the area cost of achieving this productivity in terms of LUTs, flop flops, and

DSP blocks just for the accelerators excluding the overlay. The correlation benchmark showed the

greatest increase in resources. The number of LUTS and flip flops increased 2.7× compared to

synthesizing a custom version. The size of the individual programming patterns were fairly small,

averaging 550 LUTS. But creating the equivalent functionality required using four of the

programming patterns twice. The inner product (IPR) used two patterns, VMUL and REDUCE.

Each individual pattern was smaller than the custom synthesized version, but combined resulted in

a 1.9× increase in resources. This basic pattern is also present for the Matrix ×Matrix ×Matrix,

which used the same programming pattern twice and resulted in 1.9× increase in resources. The

Matrix × Vector benchmark showed approximately the same resource utilization (1.06×).

Two factors contribute to the size of the patterns. The first is the choice of programming

pattern functionaltiy. These patterns were created to be general and not derived to support any one

particular application. A more careful definition of pattern functionality based on application

needs could eliminate using certain patterns twice. Second, no effort was put forth to optimize

any of the programming patterns to reduce their footprint. The size of the programming patterns

would be reduced by a skillful and careful designer. How much the sizes could be realistically

reduced is unknown at this time and needs further study.

Additional resource overhead is incurred by the overlay architecture itself. Each switch

required 740 LUTs. The 2×2 and 3×3 overlays required 2960, and 6660 LUTs respectively. This
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Benchmarks Compile time
HLS Synthesis

& PAR (s Improvement

Inner Product ≤5 865 173×
M1×V1 ≤5 889 178×

M1×M2×M3 ≤5 1034 207×
Correlation ≤5 1068 214×

Table 3.3: productivity

is a characteristic of using an overlay. A redesign and optimization of the overlay can reduce it’s

resource requirements.

3.5.3 Discussion: Performance Analysis

It was anticipated that run time assembling accelerators would suffer some measure of degraded

performance compared to a single custom synthesized version. We further anticipated that our

initial prototypes would suffer additional performance degradations compared to later optimized

revisions. Clearly the performance of any accelerator is dependent on many different factors,

including how the code is structured, the time taken to optimize the code, and the designers

hardware design skills. We made every attempt to apply the same types of coding style to the

creation of both custom accelerators and programming patterns to eliminate any bias in

comparing performance. To set a base case for comparison we also ran a software version of each

benchmark on the MicroBlaze. We used the execution time of the software to compute speedups

for the synthesized version and the accelerator running using our functor based approach.

Figure 3.6 shows results generated on the Virtex7 on the 3×3 overlay. The results on the 2×2

array on both the Virtex7 and Kintex7 for the inner product, Matrix ×Matrix ×Matrix, and

Matrix × Vector showed no significant differences. The Correlation benchmark required 9

programming patterns and hence 9 PR slots, so was only run on the Virtex7 3×3 overlay.

We were intrigued to observe the speedups in Figure 3.6 which showed the approach was as

good or better than an equivalent synthesized custom accelerator. While the results are promising
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we are reluctant to draw any conclusions on performance based on these relatively few and simple

benchmarks.

From a conservative perspective what we conclude is that the results simply do not negate

the validity of the approach. Clearly, more DSLs and more applications need to be evaluated

before any meaningful performance trends can be reported. What can be inferred is that the

approach does allow a programmer to rapidly create and evaluate the execution times of

accelerators. At a minimum the approach represents a powerful capability for rapidly prototyping

and evaluating the performance of accelerators.

The interpreter was implemented in software as part of the operating system running on a

MicroBlaze. This overhead would be seen at startup when the accelerator is assembled and does

not enter into the execution time of the accelerator. In our preliminary work did run test

applications to verify the ability to run time assemble different accelerators within the body of

two threads running on the multiprocessor system using two MicroBlazes and two 2×2 arrays.

Specifically in one thread we run time assembled the inner product benchmark and in the other a

matrix multiply. The performance relationship between run time assembling and a custom

accelerator is identical to the results shown in Figure 3.6 and is therefore not reported separately.

3.6 Conclusion

A new approach was presented to enable programmers to use standard software development

flows to create hardware accelerators and bypass CAD tools and synthesis. The approach

introduced a new PR tile overlay and set of interpreter calls that brings portability into the

process. This will greatly facilitate the use of FPGAs within our software dominated information

technology sector. Results were presented showing a complete end to end capability; from

working within a DSL to assembling the accelerator at run time. Results also show the costs in

terms of additional resource overheads for the accelerator functionality as well as the overlay.
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Figure 3.6: Speedup of Benchmarks.

Benchmark Approach Patterns BRAM DSP FF LUTs

Inner Product
JIT

VMUL 0 4 232 320
REDUCE 0 0 167 318

Total 0 4 399 638
HLS 0 4 232 320

M1×V1
JIT

mm 24 5 848 2,254
Total 24 5 848 2,254

HLS 10 5 813 2,118

M1×M2 ×M3
JIT

mm×2 24 5 848 2,254
Total 48 10 1,696 4,508

HLS 32 5 848 2,298

Correlation
JIT

AVG×2 0 2 984 2,214
IPR 0 5 588 1,024

SVSUB×2 0 2 427 658
VSQR×2 0 5 588 1,024

REDUCE×2 0 0 167 318
Total 0 28 5,508 10,476

HLS 32 5 2,009 3,865

Table 3.4: Resource utilization on Virtex7
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Chapter 4

Run Time Interpretation for Creating Custom Accelerators

Sen Ma, Zeyad Aklah, and David Andrews

Abstract— Despite the significant advancements that have been made in High Level

Synthesis, the reconfigurable computing community has not yet managed to achieve a

wide-spread use of Field Programmable Gate Arrays (FPGAs) by programmers. Existing barriers

that prevent programmers from using FPGAs include the need to work within vendor specific

CAD tools, knowledge of hardware programming models, and the requirement to pass each

design through a very time-consuming synthesis, place and route process. In this paper we

present a new approach that takes these barriers out of the design flows for programmers. We

move synthesis out of the programmers path and instead rely on composing pre-synthesized

building blocks using a domain-specific language that supports programming patterns tailored to

FPGA accelerators. Our results show that the achieved performance of run time assembling

accelerators is equivalent to synthesizing a custom block of hardware using automated HLS tools.

4.1 Introduction

We are facing a new era where power and energy efficiency are first class design constraints

within power hungry data centers and warehouse scale computers. The CRA working group

report entitled “Revitalizing Computer Architecture Research for Next Generation Systems”

called this out as a grand challenge problem for their “System 2020 Vision”. They put forth the

challenge of creating a new featherweight supercomputer architecture that can achieve 0.001

nJ/op [1]. This is four orders of magnitude improvement over today’s systems.

Field Programmable Gate Arrays (FPGAs) are being viewed as an exciting new component

to serve along with fixed ISA Von Neumann processors to meet the energy and performance
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requirements of next generation data center and warehouse scale computers. For example,

Microsoft recently revealed Catapult, a server augmented with FPGAs to accelerate their Bing

search engine [2]. By utilizing FPGAs, Microsoft was able to double performance at only a 30%

increase in energy compared to a rack of standard processors. Interest in FPGA technology is not

limited to Microsoft. Intel announced plans to integrate an FPGA with a large Xeon multi-core

processor [3]. They also acquired Altera (one of the two major providers of FPGAs) for $16.7

Billion. Micron Corporation recently bought Convey and then bought Pico Computing. Convey

and Pico Computing provided FPGA solutions for HPC and embedded applications. The

computation fabrics available for data center architects and programmers are changing, and the

age old quest of building a computer that can allow it’s hardware to be tailored to perform a

specific task is becoming part of this mainstream narrative.

Though FPGAs have been around for over three decades, very few FPGAs populate data

centers, and even less are on acceleration boards in our PCs, and none are in our laptops and

tablets. Enabling FPGAs to be part of the solution for building energy efficient next generation

systems will require successfully resolving two long standing research challenges that have so far

prevented reconfigurable computing from becoming mainstream.

The first challenge is that the use of FPGAs still remains within the exclusive domain of

hardware engineers, not software programmers. The second is the lack of a virtualization

ecosystem to enable design portability and reuse. This paper presents an overview of our

proposed approach to bring the JIT philosophy used to deliver portability within the software

world, to enable programmers to create portable hardware accelerators. Our initial results verify

that programmers can write standard software programming patterns that can be compiled and not

synthesized, and produce interpreter commands that can be executed by a run time interpreter to

assemble a hardware accelerator within any vendor specific FPGA.
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4.1.1 Overview of Approach

Figure 4.1 motivates our approach through a simple example. At the top left of Figure 4.1 shows

how a programmer would express functionality to be turned into a hardware accelerator. Domain

Specific Languages (DSLs) are being used to hide complexity and promote portability within

general purpose heterogeneous multiprocessor systems [4]. DSLs are also being investigated to

replace High Level Synthesis languages for synthesizing circuits within FPGAs [5]. Our

approach also advocates for the use of DSLs to provide programmers with platform neutral

programming patterns that can be composed to express target accelerator functionality. This is

shown on the top left in Figure 4.1. We provide programming patterns such as Map and Reduce

which can be composed and then passed through a standard compilation process. From the

programmers perspective they use the programming patterns as if they will be compiled and run

on any traditional heterogeneous multiprocessor system.

Where our approach differs from earlier work to synthesize circuits from a DSL is when

synthesis occurs. Synthesis for creating custom circuits within an FPGA cannot be totally

eliminated. However it can be moved out of the application developers path if made part of the

standard coding process of creating a Domain Specific Language (DSL). The pre-synthesized

hardware representations of the programming patterns can be referenced from within a compiler

as symbolic links. This is shown in the data flow graph representation of the application shown in

the middle of Figure 4.1. The functions contained within the programming patterns such as e×e

in Map and a + b in Reduce are not the actual code, but symbolic links to pre-synthesized

bitstreams. In traditional approaches the complete application would need to be resynthesized if a

single expression such as e×e is changed to log(e). The use of symbolic links allows the source

program to be quickly recompiled, not resynthesized.

Our approach also differs in what the compiler outputs. Traditional DSL synthesis

approaches output a platform specific hardware representation. To provide portability we re-target

the compiler to output a series of platform independent interpreter instructions as shown on the
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User Application
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<a+b>

V2

MAP
<e×e>

PR1

V1
VAM_GET_TILE(&VT,&PR1);
VAM_GET_BRAM(&VT,PR1,BRAM,1,L1);
VAM_LOAD_TILE(&BS_T,PR1,MAP);
VAM_GET_TILE(&VT,&PR2);
VAM_GET_BRAM(&VT,PR2,BRAM,1,L2);
VAM_LOAD_TILE(&BS_T,PR2,REDU);
VAM_DMA(&vdma,V1,BRAM,L1);
VAM_ROUTE(&VT,PR1,PR2,2);
VAM_START(PR1,PR2,2,L1,L2);
VAM_DONE(&VT,PR1,PR2,2);
VAM_DMA(&vdma,BRAM,V2,L2);

Figure 4.1: Design Portability with JIT.

right in Figure 4.1. The interpreter instructions are platform independent and can direct the run

time systems implemented on any platform as to how to assemble and connect the individual

hardware components into an accelerator. This allows the run time system to schedule hardware

circuits no differently than fat binary executables. The use of an interpreter brings portability and

reuse across heterogeneous systems by separating policy from mechanism. The interpreter

commands are completely platform independent.

Figure 4.1 shows the interpreter running on three different FPGAs. In our systems we

implement the interpreter as part of our hthreads operating system that runs on various embedded
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Map ZipWith Reduce Foreach

Pattern Example
Map

ZipWith
Reduce
Foreach

In.map { e => e + 1 }
 InA.zipWith( InB) { (eA , eB) => eA + eB }

 In.reduce { (e1 , e2) => e1 + e2 }
  InA.foreach { e => if (e > 0) inB(e) = true}

Figure 4.2: DSL Programming Patterns [7].

processors such as the MicroBlaze. Hthreads was developed as part of our wider investigation on

resolving heterogeneity issues for FPGA based Chip Heterogeneous Multiprocessor systems. A

detailed description of how hthreads removes heterogeneity issues is beyond the scope of this

paper. Details on this earlier work can be found in [6].

We have defined the interpreter to be general across different platform configurations. The

interpreter can be implemented on a processor or in hardware as a finite state machine.

Regardless of implementation method the function of the interpreter is to assemble and control

the accelerator within the FPGA at run time. The one requirement our approach places on the

FPGA is the ability to support the placement of bitstreams within the reconfigurable fabric at run

time. FPGAs have long provided this capability through partial reconfiguration. Figure 4.1 shows

a 2-D array overlay structure that provides this capability. We embedded partial reconfiguration

regions within a programmable interconnect to form a scalable overlay. As shown in Figure 4.1

the exact numbers and sizes of partial reconfiguration regions as well as the interconnect

geometry can be optimized for different FPGA chips and DSL requirements. The same set of

interpreter commands output by the compiler are executed by all run time interpreters, which use

the command to build the accelerator based on each systems specific overlay architecture.
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Type Name Semantics Description

PR Region
Operations

VAM GET TILE
bool VAM GET TILE (
vam table t *VAM TABLE,
int *nPR);

Requesting a free
Tile.

VAM GET BRAM

bool VAM GET BRAM (
vam table t *VAM TABLE,
int nPR, u32 BRAMList,
int nIN, int InSize,
int nOUT, int OutSize);

Requesting free
BRAMs.

VAM LOAD TILE

bool VAM LOAD TILE (
XHwIcap icap,
vam Bitstream table t
*BITSTREAM TABLE,

int nPR, int nFunctor);

Load Bitstream into
Tile.

Datapath
Operations

VAM DMA

bool VAM DMA (
XAxiCdma *InstancePtr,
u32 SrcAddr, u32 DstAddr,
int Byte Length);

Starting DMA from
the SrcAddr to
DstAddr based on
the Byte Length.

VAM ROUTE
bool VAM ROUTE (
vam table t *VAM TABLE,
int PR[], int nPR);

Routing the nearest
neighbor 2-D switch
based on the data

and control path.

Control
Operations

VAM START
bool VAM START (
int PR[], int nPR,
int len);

Launching the
accelerator in
PR region

VAM DONE
bool VAM DONE (
int PR[], int nPR,
int len);

Stalling until
the accelerator
in PR region
is done.

Table 4.1: VAM Calls
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4.2 Overlay

Overlays, or intermediate fabrics, are pre-formed programmable components built on top of an

FPGAs lookup tables and flip-flops. Overlays can take many forms including programmable

networks, ALUs, and processors [8, 9, 10, 11, 12]. Overlays of complete heterogeneous

multiprocessor systems have also been created [13]. The potential advantage of any overlay is

that circuits and hardware acceleration can be achieved through compilation instead of synthesis

on existing FPGAs [8, 9, 10].

We created the new type of overlay shown in Figure 5.3 as the framework within which the

run time system assembles the accelerator. This new overlay adopts a nearest neighbor

programmable word width interconnect that is similar in intent to traditional network on chip

overlays. However instead of including programmable processors within the network, we expose

the lower level lookup tables and flip flops as partially reconfigurable tiles. This combination of

pre-formed interconnects and partial reconfiguration regions allows the run time system to place

the individual bitstreams for the programming patterns into the individual tiles, and set the

network to configure the data paths from the compilers data flow graph.

The overlay is configured as a 2D array of partial reconfiguration tiles and programmable

switches that are connected as a nearest neighbor interconnect network. Network interconnects

contain a FIFO to support higher clock rates and data streaming between switches. The size and

number of each partial reconfiguration tile is variable and can be set based on the sizes of the

bitstreams that comprise the DSL as well as the resource limitations of each specific FPGA.

4.2.1 PR Tiles

The 2-D array shown in Figure 5.3 contains partial reconfiguration tiles sized at 9,600 LUTS,

360KB BRAM, and 80 DSPs. This particular configuration was sized to hold the largest bitstream

generated from one of our DSL test suites. Setting the size of the tiles occurs when the DSL is
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first created. The number of the tiles is derived based on the size of the tile and target FPGA logic

family. We have automated the creation of the overlay; switches, buffers, interconnects BRAMs,

and tiles for Xilinx FPGAs. Our automation tool produces a TCL script that can be input into

Xilinx’s Vivado tools. The current floorplanning tool requires that that logic for each

programming pattern be placed in each tile to generate bitstreams. Although not efficient,

creating the overlay only occurs once per board and is not in the path of the application

programmer. Thus this inefficiency does not negate the approaches ability to allow programmers

to JIT accelerators at run time.

4.2.2 Programmable Switch

Figure 4.4 provides an exploded view of a switch. Figure 4.4 shows the types of routing patterns

that can be programmed into the switch. Routing patterns were defined to enable each switch to

direct any input into, as well as output from the tile. Switches support pass through connections

for routing between distant tiles. Figure 4.4(a) shows how two inputs can be configured to pass

data to two different outputs. Figure 4.4(b) shows the switches broadcast capability, which allows

a single input to fan out data on multiple output routes. Figure 4.4(c) shows the switch supporting

a unary streaming model, with one input being fed into the tile, and results fed back out.

Figure 4.4(d) shows a typical two input, one output pass through the tile. Routes can be set

statically or dynamically. Dynamic settings can be used for allowing the switch to support

different time varying routing needs such as when multiple accelerators are resident within the

overlay. Each switch may serve as a pass through for one accelerator, and then source and synch

data for a tile that is part of a different accelerator. The switch logic and interconnects are

currently implemented (on Xilinx FPGAs) using standard 32 bit AXI streaming interconnects.
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Figure 4.4: Switch Routing.

4.2.3 Local Memory

The boundary cells in the overlay include connections to blocks of local memories (BRAMs).

These BRAMS can be used as addressable local memories or as FIFO data buffers for streaming

data. The size and number of BRAMs are variable and can be configured when the overlay is

created. Block data transfers use DMA (not shown) between the BRAMs and Global DRAM

memory. The BRAMs are placed within the global address map of the system, allowing any

processor or bus master device to transfer data into and out of a local memory. The BRAMS have

buffer full/empty handshaking signals that are connected through the switches to enable

processing to be dynamically triggered.

4.3 Interpreter

Table 4.1 lists the set of platform independent interpreter calls produced by the backend of our

compiler. This approach allows the same accelerator to be JIT assembled on different

configurations of overlays. This is shown in Figure 4.1 where the same interpreter calls are

executed on three different configurations of our overlay embedded within different FPGAs. The

simple example in Figure 4.1 shows the relationship between the data flow graph information
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extracted from our compilers intermediate representation (LMS in our Delite compiler

framework) and the interpreter calls. In this simple example the Delite compiler first generates

two Intermediate Representations (IR) for the DSL programming patterns: map (Map) followed

by reduce (REDU). Then, it generates two interpreter call as follows:

• VAM GET TILE (&VT, &PR1)

• VAM GET TILE (&VT, &PR2)

The VAM GET TILE assigns bitstreams to tiles within the local overlay. PR1 and PR2 are

pointers to the bitstreams for map and reduce that reside in memory respectively. These calls

place no impositions on how an interpreter manages or allocates its machine specific resources.

Management of tiles is performed by each interpreter. The call simply directs the interpreter to

find and transfer the bitstreams into the available resources (a partial reconfiguration tile in our

overlay). This allows the interpreters running on the three systems shown in Figure 4.1 to manage

and allocate resources differently. The interpreters on each of these three systems transfer the

bitstreams into their selected tiles using:

• VAM LOAD TILE (&BS T, PR1, MAP)

• VAM LOAD TILE (&BS T, PR2, REDU)

The locations of the tiles that were loaded with the bitstreams are returned to the interpreter

through the &PR1 and &PR2 variables. These variables are then used to form the data paths

between the bitstreams using the following interpreter command:

• VAM ROUTE (&VT, PR1, PR2, 2)

The interpreter uses the PR1 and PR2 variables to set the interconnects between the tiles

that hold the bitstreams. This interpreter call does not bind specific mappings of the data flow

graph to a any predetermined configuration of connection and switch boxes, or channels. The

specific configuration of the intermediate fabric is only known to the interpreter running on each

platform. This separation of policy and mechanism allows the interpreter to assemble, place and
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Figure 4.5: VAM Call Flow With Different Cases.

route the accelerator at run time. The same separation of policy and mechanism bring portability

over different intermediate fabrics.

4.4 Interpreter Functionality

In this section we continue with our running example shown in Figure 4.1 to illustrate how the

interpreter executes the calls on the two overlay configurations shown in Figure 5.4.

Function Placement and Loading: We chose to manage the free PR tiles in a simple queue

(the VAM TABLE). For each VAM GET TILE (steps 1, 3) the interpreter pops a free tile from

the queue. The tiles returned for two consecutive VAM GET TILE calls may not be adjacent

within the overlay array. This is shown in Figure 5.4. On the left the interpreter selected two

adjacent tiles while on the right, the top right and bottom left tiles were selected. Function

bitstreams are then loaded into free tiles using VAM LOAD TILE (steps 3, 6). The run time
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interpreter performs this operation by DMA’ing the bitstream resident in DRAM into the ICAP

port of our (Xilinx) FPGA. The run time interpreter manages input and output buffers for the

accelerator in a similar fashion to tiles. For each input variable the VAM GET BRAM (steps 2, 5)

returns a list of available local BRAMs to be selected as an input buffer. The BRAM buffers do

not have to be adjacent to the tile that is holding the bitstreams. This is shown on the right in

Figure 5.4 where the input BRAM connected to the top left tile along with the BRAM connected

to the top right tile were returned as available. The switch boxes will be set to pass through mode

as part of the VAM GET BRAM call to allow data transfers between remote BRAMS and tiles.

Function Routing: After the interpreter transfers the bitstreams into the tiles, and BRAMs

are selected, data paths are formed from the VAM ROUTE (step 8) calls. For our prototype

systems we implement a simplified version of the standard maze-routing algorithm [14]. The

right side of Figure 5.4 shows the route formed from the top right tile (MAP) to the bottom left

tile (REDU). This route first traverses down to the top left tile, and then down to the bottom left

tile. Once the maze routing algorithm is run, the switch boxes are set between the tiles. Note that

the top right tile on the left side of Figure 5.4 is set in a pass through mode, routing the east input

to the south output. The top left tile can still be used for hosting different bitstreams while the

switch configures the pass through mode for this example. The simple routing algorithm as well

as the routing capabilities of the switches allow multiple accelerators to be hosted within this 3×3

tile array overlay.

Data Transfer: After the accelerator has been configured, the interpreter transfers input

data from DRAM into the local input buffer BRAMS using VAM DMA (steps 7). The outputs of

the accelerator are transferred from the output BRAM buffer back into DRAM using VAM DMA

(step 11).

Control Operations: The VAM START (step 9) initiates the execution of the array. The

VAM DONE (step 10) returns status from the accelerator. These two steps are not presented on

the left part of Figure 5.4.
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Patterns Expression BRAM DSP48E FF LUTs

Map Map(e×e) 0 3 410 793
Map Map(sqrt f (e)) 0 0 643 1,487
Map Map(log(e)) 0 61 2,240 1,894
Map Map(if(e>0) +1 else −1) 0 0 169 208

Reduce Reduce((a,b)=a+b) 0 2 638 761
Reduce Reduce((a,b)=if(a<b) a+b else a−b) 0 0 211 309
Filter Filter(e>x) 0 0 170 209
Filter Filter(e<x) 0 0 170 209
Filter Filter(e==x) 0 0 170 209

Table 4.2: Pre-Synthesized Parallel Pattern Samples

4.5 Experimental Results and Analysis

Figure 4.1 shows three unique systems created to evaluate our approach. The first system

contained a 2×2 array built on a Kintex 7. The second contained a 3×3 overlay on a Virtex 7.

The third system was built on a Virtex 7 and contained two 2×2 overlays. In all cases the overlays

were interfaced to a MicroBlaze processor as tightly coupled accelerators. Figure 4.1 only shows

MicroBlazes and overlays for clarity sake. Each system additionally included BRAMs to host the

operating system and interpreter, busses, I/O and support devices, DMA and ICAP devices, and

global DRAM. The overlays were created through our automated script and produced TCL scripts

that were input into the CAD tools for synthesis. All systems were built and synthesized using

Vivado 14.2 tools.

System software included our pthreads compliant middleware and operating system

hthreads that enabled multithreading on the MicroBlazes. The interpreter was written in C and

cross compiled with the operating system. As all systems used a MicroBlaze we were able to

compile the interpreter once and reuse it on all systems. Interpreter calls are invoked through

executing sys calls. Sequential portions of the test programs were cross compiled and run as a

thread, or in the case of mulitprocessor system, as concurrent threads on the two MicroBlazes.
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4.5.1 Creating the Accelerators

The first column in Table 4.2 list part of the programming patterns adopted from OptiML (an

existing DSL within Delite) [7]. These are familiar programming patterns from machine learning

and high performance computing applications. The second column lists the expressions that can

be executed for each programming pattern. The sqrt f (e) and log(e) operate on single precision

floating point operators. All remaining functions operate on integers. Prototypes (function

definitions) were created for each programming pattern, and the expressions within each

programming pattern were coded in C as part of the DSL creation process. The C bodies were

passed through Vivado HLS to generate bitstreams. We added an additional flag to the standard

Delite compilation flow to allow the C versions of the DSL to be compiled for test and evaluation,

or cross compiled to run on the MicroBlaze processors for comparison. Switching the compiler

flag was all that was needed to generate interpreter calls with symbolic links to the bitstreams.

The remaining three columns show the resources used to implement each expression.

We used the patterns and expressions listed in Table 4.2 to create the four benchmark

accelerators listed in Table 4.3. These benchmarks are illustrative representations of how a

programmer would compose the Map, Reduce, and Filter patterns into an accelerator. The

composed expressions were compiled using the Delite compiler front end. Our VAM call

generator backend produced interpreter instructions. It is important to note that these expressions

could be changed, and new expressions created by compiling and without synthesis.

The run time interpreters running on each system shown in Figure 4.1 executed the

interpreter calls, including transferring the bitstreams for each expression and setting the

interconnects between the tiles and sequencing the accelerator. In summary each benchmark was

compiled once and the output run on the multiple platforms. This verified the portability of the

interpreter calls over different versions of our overlay. Importantly each benchmark was created

by compiling the composed pattern expressions without having to synthesize. This is a

fundamental step in getting application developers to use FPGAs; CAD tools and synthesize need
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Composed
Patterns

Approach
Total
(µs)

Overhead
(µs)

DMA
(µs)

Acc
(µs)

Speed
up

V2 = V1.Map(e×e)
.Reduce((a,b)=a+b)

Software 1,611 - - - 1×
HW

(Full Module)
309 - 63 246 5.2×

HW (JIT) 348 39 63 246 4.6×

V2 = V1.Filter(e>x)
.Map(e+const.)

Software 2,021 - - - 1×
HW

(Full Module)
186 - 104 82 10.9×

HW(JIT) 225 39 104 82 9×

V2 = V1.Filter(e>x)
.Map(log(e))

Software 1.4s - - - 1×
HW

(Full Module)
882 - 104 778 1,579×

HW(JIT) 921 39 104 778 1,512×
V2 = V1.Filter(e>x).

Map(log(e))
.Reduce((a,b)
= if a>b, a−b else, a+b)

Software 1.4s - - - 1×
HW

(Full Module)
1,046 - 63 983 1,331×

HW(JIT) 840 39 63 738 1,659×

Table 4.3: Performance

to be removed from their development paths.

4.5.2 Discussion: Performance Analysis

It was anticipated that run time assembling accelerators would suffer some measure of degraded

performance compared to a single custom synthesized version. We further anticipated that our

initial prototypes would suffer additional performance degradations compared to later optimized

revisions. Clearly the performance of any accelerator is dependent on many different factors,

including how the code is structured, the time taken to optimize the code, and the designers

hardware design skills. We made every attempt to apply the same types of coding style to the

creation of both custom accelerators and programming patterns to eliminate any bias in

comparing performance. To set a base case for comparison we also ran a software version of each

benchmark on the MicroBlaze. We used the execution time of the software to compute relative
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and fair speedups for the synthesized version and the assembled at run time using our JIT

approach. The run time results shown in Table 4.3 were generated on a Virtex 7 on the 3×3

overlay. Thus we focus our discussion on the execution times reported in Table 4.3.

We were intrigued to observe the speedups were approximately equivalent to a synthesized

custom accelerator. The slight difference in speedup is attributed to the overhead of setting up the

tile array. This overhead would be incurred once, when the accelerator is first assembled. This

overhead would not be seen when the accelerator is invoked a second time. While the results are

promising we are reluctant to draw any conclusions on performance based on these relatively few

and simple benchmarks. From a conservative perspective what we conclude is that the results

simply do not negate the validity of the approach. Clearly, more DSLs and more applications

need to be evaluated before any meaningful performance trends can be reported. What can be

inferred is that the approach does allow a programmer to rapidly create and evaluate the execution

times of accelerators. At a minimum the approach represents a powerful capability for rapidly

prototyping and evaluating the performance of accelerators.

The interpreter was implemented in software as part of the operating system running on a

MicroBlaze. In our preliminary work we did run test applications to verify the ability to run time

assemble different accelerators. The performance relationship between run time assembling and a

custom accelerator is identical to the results shown in Table 4.3.

4.6 Conclusion

A new approach was presented to enable programmers to use standard software development

flows to create hardware accelerators and bypass CAD tools and synthesis. The approach

introduced a new PR tile overlay and set of interpreter calls that brings portability into the

process. This will greatly facilitate the use of FPGAs within our software dominated information

technology sector. Results were presented showing a complete end to end capability; from

working within a DSL to assembling the accelerator at run time. Results also show the costs in
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terms of additional resource overheads for the accelerator functionality as well as the overlay.

Future Work

Building the prototype raised just as many questions as it answered. Determining the geometry

and interconnect of PR tiles needs a more quantitative treatment. Compiler optimizations were

turned off when creating the bitstreams for each programming pattern. Further investigations are

needed to determine what types of optimizations should be applied to each programming pattern

before they are synthesized. Our next major goal is continue our investigation on a large at-scale

data center computer with FPGAs running tuned DSLs. Such at scale systems are beginning to

become available for research. Running real applications and data loads on at scale systems will

allow us to better evaluate performance and area costs for refining the approach. This will also

allow us to transition the approach into the hands of the programmers for further study.
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Chapter 5

Breeze Computing: A Just In Time Approach for Virtualizing FPGAs in the Cloud

Sen Ma, David Andrews, Shanyuan Gao, and Jaime Cummins

In this paper, we introduce a new design flow and architecture that lets programmers replace

synthesis with compilation to create custom accelerators within data center and warehouse scale

computers that include reconfigurable manycore architectures. Within our new approach, we

virtualize FPGAs into pre-defined partially reconfigurable tiles. We then define a run time

interpreter that assembles bitstream versions of programming patterns into the tiles. The

bitstreams as well as software executables are maintained within libraries accessed by the

application programmers. In our approach, synthesis occurs hand in hand with the initial coding

of the software programming patterns when a Domain Specific Language is first created for the

application programmers. Initial results show the approach allows hardware accelerators to be

compiled 100× faster compared to the time required to synthesize the same functionality. Initial

performance results further show a compilation/interpretation approach can achieve

approximately equivalent performance for matrix operations and filtering compared to

synthesizing a custom accelerator.

5.1 Introduction

Interest has been growing in using FPGAs within internet based cloud computing and data center

systems. This interest has been piqued with two recent announcements. First Microsoft

announced Catapult which integrated FPGAs into a data center to accelerate their Bing search

engine. Analysis verified the energy efficiency of mapping key portions of their document ranking

algorithm into the FPGAs. Performance was doubled at only a 30% increase in energy [1].

Secondly Intel announced the acquisition of Altera. This was followed by Intel’s announcement
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to integrate FPGAs with large Xeon multi-core processors [2]. Making commercially available

reconfigurable manycore architectures is part of Intel’s strategy to increase their market share for

large data analytics applications running in data centers and warehouse scale computers.

Successfully transitioning FPGAs into commercial data centers will require integrating

FPGAs under the software centric virtualization ecosystems populating commercial data

centers [3]. Among the many issues that challenge such a successful integration is how to enable

data center programmers to create accelerators within FPGAs [4]. This goal has yet to be fully

met, but historical research targeting single Systems on Chip architectures from the embedded

systems domain provides important directions.

Prior research in programming languages has led to the commercial availability of High

Level Synthesis (HLS) synthesis tools. These tools allow gates to be efficiently synthesized from

subsets of C code. HLS is not a Panacea for programmers in the data center. HLS still requires

knowledge of hardware design, the use of vendor specific CAD tools, and time consuming

synthesis, place and route.

George et. al. [5] showed how detailed knowledge of hardware design could be moved out

of the application designers path when using Domain Specific Languages (DSLs). George argued

that HLS generation and hardware centric modifications should happen once when the

functionality of a programming pattern was implemented. Programmers could then create

accelerator functionality by combining and then synthesizing the pre-coded, optimized

programming patterns. Similarly, Xilinx recently released their SDSoC software framework that

incorporates HLS under a broader eclipse framework for their Zynq family of devices. The

SDSoC tool automates the generation of the accelerators including Hw/Sw interfaces and

synchronization support from a single threaded source code. These approaches are important

steps to remove the need for programmers to understand hardware design. However they still

require circuits to be synthesized within hardware centric CAD tools.

Research has also investigated how libraries of pre-synthesized accelerators can be
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leveraged to bypass synthesis. Libraries of accelerators created under partial reconfiguration rules

allow different accelerators to be swapped in and out at run time. Library approaches by

themselves do not offer a path for programmers to modify or create new accelerators without

having to pass through synthesis.

Yet another interesting approach is to create intermediate architectures, or overlays.

Overlays raise the level of abstraction of what is programmed within the FPGA from low level

LUTS and FF’s to components than can be targeted by a compiler. Overlay components range

from Arithmetic Logic Units, Vector Accelerators [6] and even Multiprocessor Systems on

Programmable Chips (MPSoPCs). Overlays tradeoff the ability to customize the lower level

circuits for each application for the ability to compile to a stable set of op codes or ISA.

Each of these efforts address key aspects of the problem, but by themselves each fall short

of providing a complete end to end solution. Creating such a complete end to end solution is the

driving goal of our research. In fact the stretch goal of our research is to completely abstract away

any differences for data center programmers when creating new functionality to be implemented

as circuits in a hardware accelerator or software executables.

To meet our driving goal we have created a new design flow that fits within the existing

virtualization ecosystems in use in data centers. Our approach incorporates and builds upon key

aspects of the research efforts discussed above. Similar to George et. al. [5] we advocate the use

of Domain Specific Languages (DSLs) to allow data center programmers to create high level

descriptions of accelerator functionality using pre-coded programming patterns. Our approach

takes the additional step of then removing the need to synthesize each new accelerator design by

providing a library of pre-synthesized programming patterns. This allows data center

programmers to create new functionality by compiling links to the bitstream versions of the

programming patterns within a compiler. We retarget the output of the compiler to generate a data

flow graph that captures the control and data flow dependences into and out of the accelerator, as

well as between the programming patterns within the accelerator.

67



Backplane 0

PCIe Switch

PCIe Switch

PCIe Switch

PCIe

Interpreter

pThreads

Application
XEON

Backplane 1 Backplane 2 Backplane N

T1 T2 T3 T4

Idle Tile

Tile Occupied

Tile Obtained

24 Tiles

8 TilesT1

T2

T3

T4

6 Tiles
Multiple FPGAs

8 Tiles Multiple 
BackPlanes

PCIe Switch

AP
EP

AP
EP

AP
EP

AP
EP

AP
EP

AP
EP

AP
EP

Figure 5.1: Multiple Tasks Mapping on Cloud System Through Run Time Interpreter.

Figure 5.1 shows our approach to modifying the run time system and the creation of a new

overlay architecture. We provide a programmable overlay that replaces programmable ALUs, or

soft core processors with tiles of free gates that can be customized under partial reconfiguration

rules. This extends the concept presented in [4] that targeted single chip SoC systems. A

restriction of this architecture was the requirement that a single accelerator fit within a single

FPGA. We introduce a new abstraction layer and interconnect network that allows single

accelerators to span over multiple FPGAs. All FPGAs are managed as a common virtual sea of

reconfigurable gates more appropriate for data centers and reconfigurable cloud systems that will

contain multiple FPGAs shared between multiple threads, tasks, and programs. Figure 5.1 shows

how our approach enables multiple threads running on a Xeon to spawn different accelerators,

each of which uses tiles that can span across multiple FPGAs.

68



5.1.1 Contributions

The main contributions of this work are:

• Dynamically Reconfigurable Virtual Overlay A new virtual overlay using partial

reconfiguration (PR) tiles that abstracts accelerators over multiple FPGA resources. The

overlay represents a framework within which the run time interpreter assembles

accelerators.

• Automated Overlay Generator We provide a scripting tool that automatically creates

different overlay configurations based on parameterized inputs.

• Run Time Interpreter We created a reentrant interpreter that runs on a Xeon to manage all

FPGA resources, including allocating or releasing PR tiles, transferring data within or

between virtual FPGAs, and configuring the PR tiles. The run time interpreter is written in

C and is portable over different host processor families.

• Platform Independent Interpreter Language A prototype set of platform independent

interpreter calls that enable portability of code over different configurations of overlays.

This represents a separation of policy from mechanism that allows a single set of interpreter

calls to be implemented by all platform specific interpreters managing different overlays.

• Standard Accelerator Interface Template We establish a set of standard hardware interfaces

for hardware designers to use when creating new bitstreams to integrate into the standard

communications interface of our overlay.

The work reported in this paper has been implemented and evaluated on a reconfigurable

cloud computer that contains two Xeon-2650 manycores, each with 8 cores connected to 23 user

accessible Xilinx Kintex7 FPGAs. The run time system is based on pthreads and Linux.
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Figure 5.2: Design Flow.

5.2 User Front End

Figure 6.6 shows a high level description of our compilation flow and architecture. This flow has

been developed to support three types of users.

SW Tenets The bottom right shows how data center programmers, or Tenets, use our flow to

compile new accelerators. SW Tenets form accelerator functionality using the programming

patterns archived in the library (Module B top left). Programmers do not work with the bitstreams

but instead are provided software function prototypes of the programming patterns to include in

their code. This allows data center programmers to remain within familiar compiler frameworks

for creating new functionality. The software function prototypes are compiled and linked just as if
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they were prototypes to dynamically linked software libraries. Programmers have access to both

software executables as well as bitstream versions of the programming patterns. This allows

programmers to first create and verify the target functionality for the accelerator in software.

After the functionality has been verified a flag within the compiler is set that directs the compiler

to switch the link from the software executable to the hardware bitstream.

We provide a simple example to show the flexibility of the approach. Consider how the two

separate hardware accelerators acc1 := H(G(x)); and acc2 := G(H(x)); can be created. Under

current approaches the HLS representation of H(x) and G(x) for acc 1 would need to be

combined first and then synthesized. Even though acc 2 uses the same G(x) and H(x) programing

patterns the fact that they are combined in a different order requires resynthesis. Our approach

eliminates the need to synthesize either accelerator. Instead data center programmers can

compose the function prototypes for G(X) and H(X) in any organization without having to pass

through synthesis. From the data center programmers perspective there is no different between

compiling and linking to software or hardware executables.

We achieve this transparency between generating software and hardware through a standard

modification to the backend of the open source Delite compiler framework [7] used in this

project. In place of generating a specific processor ISA, for hardware accelerators we generate

interpreter calls with links to the bitstreams. The interpreter calls are presented in section 5.4.

Delite has an Intermediate Representation (Lightweight Modular Staging or LMS) that forms a

data flow graph description of how the function prototypes were composed. The modular

structure of the Delite frameworks allowed us to add in our new backend code generator along

with the currently existing suite that comes with the framework. Thus generating our interpreter

calls was a straight forward engineering exercise and will not be discussed further.

Hw Designers The bottom left of Figure 6.6 shows the path used by hardware designers.

Synthesis still must occur, however we move this path out of the data center programmer’s design

flow. Hardware designers create and enter new bitstream versions of programming patterns into
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the library that will then be shared and reused by the data center programmers. We provide a

standard interface template for use by all hardware designers. This interface along with several

utility scripts can be used to allow the hardware designer to create PR bitstreams that are

compatible with the standard communication interface of our overlays. We have developed a

script for Xilinx based FPGAs that automates the creation of bitstreams for systems such as our

overlay with multiple PR regions. This allows the hardware designer to specify the programming

pattern for a standard PR tile once, and the script then places and synthesizes the programming

pattern within all PR tiles. After the programming pattern is synthesized it can be checked into

the shared library for use by all data center programmers.

Hw/Sw Tenets The bottom center shows how designers with both software and hardware

experience can create new hw/sw co-designed applications. This path would be used for

traditional users to accelerate their design with custom accelerators not included in the library.

5.3 Virtualization Architecture

Part A (top right) in Figure 6.6 shows the creation of a vendor neutral overlay called the

accelerator processing element pool (APEP). We provide an automated script that can be used to

generate an APEP. The script requires the designer to set few inputs needed to specify the target

APEP geometry. Our current scripts output all files needed to synthesize the APEP using the

Vivado CAD tools. It is important to note that the generation of the APEP occurs once during the

initial design of the overlay. Once designed, the APEP is placed in the shared library to be used

by data center programmers as well as hardware designers implementing the bitstream versions of

programming patterns. Part A also shows the (static) APEP overlay being replicated within

multiple FPGAs to compose a larger virtual accelerator pool (VAP).

The interconnect structure of the APEP is flexible and can be tailored to support the

bandwidth and processing requirements of the programming patterns for a particular DSL. Each
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Figure 5.3: Architecture of accelerator processing element pool (APEP).

APEP can be transparently replicated across multiple FPGAs. The run time interpreter discussed

in section 5.4 manages all APEPs as a virtual accelerator pool. Figure 5.3 is an example of a

simple APEP architecture created for this paper. This APEP is populated with a 1×4 array of

partial reconfiguration tiles, with each tile containing 15,600 LUTS, 60 RAMB18, and 60 DSPs.

This particular configuration was sized to hold the largest bitstream generated for the

programming patterns used to form the benchmarks presented in this paper. When replicated

across the 23 FPGAs in our experimental system, the system represents a virtual accelerator pool

with 92 PR tiles available to assemble the programming patterns from the software threads

running on the Xeon.
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1 VNEW nPR1
2 VLPR nPR1, VADD

5 VTIEIO nPR1, A, B, nPR2

7 VSTART nPR1,LenA,LenB,Len*

9 VDONE nPR1

D = (A + B) × C

3 VNEW nPR2
4 VLPR nPR2, VMUL

6 VTIEIO nPR2, nPR1, C, D

8 VSTART nPR2,Len,LenC,LenD*

10 VDONE nPR2
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Figure 5.4: VAM Call Flow With Different Cases.

5.3.1 Local Memory

As shown in Figure 5.3 tiles include connections to blocks of local memories (BRAMs). These

BRAMS can be used as addressable local memories or as FIFO data buffers for streaming data

between tiles, and between tiles and DRAM. The size and number of BRAMs are variable and are

configurable when the overlay is created. Block data transfers either use DMA between the

BRAMs and Global DRAM memory or directly use a streaming protocol. The BRAMs are

placed within the global address map of the system, allowing any processor or bus master device

to transfer data into and out of a local memory. The BRAMS have buffer full/empty handshaking

signals that are connected through the switches to enable flow control between producers and

consumers.
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5.4 Run Time Interpreter

When modifying the backend of the compiler to generate descriptions of the control and dataflow

requirements of the accelerator, processor specific instructions could have been output from the

compiler. However generating ISA specific code would have required re-targeting the compiler to

generate code for every platform and variance of tile-communication overlay. This also would

have required knowledge of specific routing algorithms used for each platform. Our approach was

to target the compiler to output architecture neutral interpreter calls that could then be

implemented by interpreters running on each platform, each knowing their own specific platform

and tile-communication overlay. This approach follows the JIT approach used in software to

bring portability into the mixed architectures found within data centers.

To support this approach, we created a set of platform neutral interpreter calls that

represented the standard operations that the run time system would need to perform for

assembling and executing accelerators within our overlay. We baselined these calls and wrote the

functionality of the interpreter in C. The C source of the interpreter can be easily modified to run

on any processor and control different configurations of the APEP overlay. Figure 5.4 shows a

subset of the baselined interpreter calls that are generated from the back-end of our compiler.

Baselining the calls allows the data flow graph representation of an accelerator to be interpreted

within different platform specific configurations of tiles and overlays. We have successfully run a

single set of interpreter calls on stand alone MPSoPC systems as well as our prototype

reconfigurable cloud. Figure 5.4 shows a simple example of how interpreter calls can be

implemented in two different scenarios by the run time interpreter. The next sections discuss the

semantics of the calls.

Function Placement and Loading: The interpreter uses the VNEW (Step 1, 3) calls shown

in Figure 5.4 to obtain free PR tiles within an APEP. The interpreter returns nPR1 and nPR2

which are pointers to the free tiles obtained for the vector add (VADD) and vector multiply
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(VMUL) programming patterns respectively. The allocated tiles need not be adjacent, or even

within the same FPGA. This is a decision that is up to the interpreter that manages all tiles

regardless of chip location as a pool of available resources. Scenario 1 shows the interpreter

returning two adjacent tiles, and scenario 2 shows the return of non-adjacent tiles. Regardless of

location the bitstreams for the programming patterns are then loaded into free tiles using VLPR

(steps 2, 4). The run time interpreter DMA’s the bitstreams from DRAM into the ICAP port of our

(Xilinx) FPGA to program the tiles as part of this call.

Function Routing: For each input variable, the VTIEIO (steps 5, 6) directs the interpreter

to configure data paths between tiles, or between tiles and buffers. The use of the platform

independent VTIEIO call allows each interpreter to implement different routing algorithms tuned

for each APEP. For this simple APEP a simplified version of the standard maze-routing

algorithm [8] was implemented.

Data Transfer: After the interpreter has built the accelerator, input data from DRAM is

moved into the local input buffer BRAMS using VTIEIO (step 5, 6). The outputs of the

accelerator are transferred from the output BRAM buffer back into DRAM using an additional

call VAM DMA (not shown in Figure 5.4) .

Control Operations: The VSTART (step 7, 8) directs the interpreter to initiate the

execution of the array. VDONE (step 9, 10) returns status from the accelerator. VDEL (step 11,

12) directs the interpreter to release resources. Those steps are not presented on the left part of

Figure 5.4.

5.5 Experimental Results and Analysis

All experiments reported in this section were performed on a reconfigurable cloud computer

developed by Micron. Figure 5.5 shows a simplified block diagram of Micron’s reconfigurable

cloud computer. The host system is a dual Intel Xeon-2650 processor with 192GBs of DDR4
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Figure 5.5: Block Diagram of Micron’s Architecture [9].

memory. The system runs Ubuntu 14.04 with Linux kernel 3.12.0. On the backplane, a central

PCI Express switch is used to connect the FPGA boards. Each backplane is an independent PCI

Express device connected to the host. The system is contained in a 4U server with 6 backplanes.

Each backplane connects six Xilinx Kintex 7 FPGAs.

All reported results are actual run time results. Low level execution times were gathered

from a free running counter built into our overlay. End to end, or wall clock times that include

overhead of protocol stack running on the Xeon were measured with the gettimeofday() Linux

utility.

Software and hardware executables were generated using the design flow shown in

Figure 6.6. Hardware versions of our selected programming patterns were generated using Vivado

HLS. After generation, all executables were uploaded to the Micron reconfigurable cloud and

executed. In addition to our interpreter, our software protocol stack running on the Xeon included

pthreads, Linux and the Pico-Framework from Micron. The Pico-Framework provided PCIe

protocols for data transfer between the Xeon, DRAM, and FPGAs.

Our base experimental system contained the APEP shown in Figure 5.3. This APEP was

replicated within all 23 FPGAs. Each APEP was configured with a 1×4 array of PR tiles. Thus,

our base experimental system contained a total of 92 tiles. Each tile contained 15,600 LUTS, 60
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RAMB18, and 60 DSPs.

Our approach is based on the premise that the run time system can assemble presynthesized

programming patterns within our PR overlay. To evaluate the feasibility of the approach, we

identified the following three common types of programming patterns that would be useful within

a shared library for a large cross section of data center programmers. These programming patterns

do not represent any one specific application, but key computations that might need acceleration

across many application domains. Each programming pattern was written in C and passed

through Vivado HLS to generate bitstreams. Resource utilizations for the programming patterns

are reported in Table 5.1.

• ~V = ∑ [(~A+~B)×~C−~D] The ~V was created using programming patterns for vector

multiplication (VMUL), addition (VADD), subtraction (VSUB) and reduce (REDU).

Figure 5.6(a) shows how the interpreter mapped these patterns into a four PR tiles. For our

test cases, we used vectors of length 5.2 million (20MBytes).

• Correlation (CORR). This test shown in Figure 5.6(c) was created using the AVG, SVSUB

and DMUL programming patterns. Figure 5.6(c) shows the interpreter mapped these

patterns into 8 PR tiles. This tested the interpreters ability to map a single accelerator into

tiles on different FPGAs. The CORR accelerator operated on vectors of single precision

floating point values.

• DES Encryption and Decryption (DES). This test shown in Figure 5.6(b) represents an

accelerator that fits into a single tile. The DES core encodes 24 Bytes of plaintext with a

fixed encryption key. The 64 bit plaintext is sent to the accelerator through dual 32 bit input

ports.
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App.
PR Tile Utilizations (%) LOC Synthesis Breeze

LUTs FFs BRAMs DSPs HLS IC Time (min) (s)
~V 0.22 0.22 0 5 35 13 20 6 5
CORR 3.80 2.03 53 8 90 11 30 6 5
DES 9.49 3.74 30 0 150 11 40 6 5

Table 5.1: Utilization of Resource for Applications

5.5.1 Discussion: Programmer Accessibility to FPGAs

First and foremost the experiments showed that our approach allowed accelerators to be compiled

and assembled at run time by the interpreter. The three different tests showed how programming

patterns could be written by a data center programmer without any knowledge of the underlining

FPGA. The interpreter operated transparently to map the programming patterns into a single tile

for DES, multiple tiles on the same FPGA for ~V and across multiple FPGAs for CORR. In effect,

the use of our design flow, interpreter and overlay virtualized FPGA resources under a standard

compilation flow.

Our flow also showed that synthesis can be removed from the data center programmers

design flow. For illustrative purposes, we include the compile time versus the time that would be

required to synthesize an equivalent accelerator on the right of the Table 5.1. The reported

synthesis times for each benchmark is for the accelerator only. Although difficult to quantify, the

difference in design times between composing programming patterns in software and specifying

functionality using HLS would be significant.

5.5.2 Discussion: Scalability

One approach to increase performance within data centers is to parallelize software applications

into concurrent threads. We wanted to evaluate the ability of the interpreter and PR overlay to

support multiple threads, each of which may create an accelerator. Figure 5.7 shows the

performance achieved by creating multiple threads that each contain accelerators.
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Figure 5.6: Mapping three benchmarks on APEP.

The CORR required 8 PR tiles per threads. With 92 tiles available, up to 11 concurrent

threads with accelerators could be run. The ~V and DES were tested with up to 16 concurrent

threads. The resources did not limit the number of concurrent threads to 16. However, 16 threads

were sufficient to evaluate the scalability of the interpreter and overlay.

The speedup of DES shows a nice linear relationship. Although the speedups for ~V and

CORR are close to linear, they do start to degrade as the number of threads increases over 4. This

degradation relates to the ability of the distributed PR tiles to saturate the bandwidth limitations of

the PCIe. This effect has been previously reported in [9].
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5.5.3 Discussion: Virtualization for Multiple Threads

Our final evaluation shows how the interpreter can manage all FPGAs as a virtual accelerator pool

that can be shared by concurrent applications. Figure 5.8 shows a timeline of how the interpreter

mapped and scheduled accelerators for our three applications. In this evaluation, each application

was modeled as a number of threads. The ~V application was modeled as 8 threads which required

32 tiles. The CORR application was modeled as 4 threads requiring 32 tiles, and DES was

modeled as 60 threads requiring 60 tiles. All three applications were started simultaneously. As

shown in Figure 5.8, the interpreter assembled and ran the ~V and CORR accelerators but

postponed running the DES accelerator. This delay resulted from the limitation of 92 tiles, as 124

tiles total would have been required. The interpreter manages its list of free tiles within a critical

region protected by a mutex. The interpreter suspended when it could not allocate all the tiles

required by the DES application. When the ~V finished, it signaled the interpreter, which then

allowed the interpreter to reclaim and reassign the freed tiles to the DES application. This
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experiment validated the interpreter to be reentrant and manage all resources as a virtual

accelerator pool between concurrent applications. However, the scheduling algorithm was

simplistic and is an area study for future research.

5.6 Conclusion

In this paper, we presented a new design flow, run time interpreter, and overlay that enables data

center programmers to create accelerators using standard software development flows. Our

approach eliminates the need for data center programmers to understand hardware design, use

CAD tools, and pass designs through synthesis. Our experimental analysis confirms how the use

of an interpreter and PR tile overlay can abstract multiple FPGAs into a virtual accelerator pool.

This allows multiple threads to create accelerators that run concurrently within and across

multiple physical FPGAs.
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Chapter 6

Archborn: A Custom Multiprocessor Architecture Generation Framework for Platform FP-
GAs

Sen Ma, Hongyuan Ding, Miaoqing Huang, and David Andrews

Abstract— Modern platform FPGAs are sufficiently dense to allow the assembly of a

complete chip heterogeneous multiprocessor systems on chip (CHMPs) within a single die. Based

on CHMP, every research group that sets out to explore how an application can be accelerated on

an FPGA platform must firstly integrate processors, buses, memories, and IP components into a

base architecture prior to beginning their application specific analysis. Lacking computer

architecture background, many application developers will spend significant amounts of valuable

research time to create and debug the base CHMP system. In this paper, we present Archborn, an

open source tool that automates the generation of modifiable CHMP architectures. Archborn can

be used by application developers to create a base CHMP system that can be synthesized in

seconds. The systems created by Archborn can also be modified by those who wish to create fully

customized CHMPs systems. We demonstrate the ease of use and the flexibility of Archborn by

automatically generating two unique systems: a NUMA architecture that is modified with an

Hthreads hw/sw co-designed microkernel for multithreading, and a NUMA architecture to

support the OpenCL programming model. We present analysis on resource utilizations and

scalability by creating systems with up to 64 processing elements (PEs).

6.1 Introduction

Field Programmable Gate Arrays (FPGAs) are continuing to grow in their use within academic

laboratories. Application developers and computational science researchers routinely deploy

FPGA to enable new applications in real time and distributed systems. While FPGAs provide

significant advantages, individual research groups are spending unnecessary time and effort to
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build infrastructure in their local laboratories. It is not uncommon for students to spend six

months to gain mastery of the tools before they even begin investigating their research questions.

Additional months of effort can then be expended on learning advanced computer architecture

topics, followed by hand building, integrating, and testing a base system. All of these efforts

represent burdens of time and effort that could be eliminated through automation and sharing. In

the absence of these benefits it is not uncommon for students to become frustrated with the

breadth of knowledge they must learn before they can push their research. In some cases this has

caused students to switch topics to more software based research to shorten their time to

graduation. This situation unfortunately is not an isolated incident and is occurring across many

research groups.

In the larger picture localized development does not support good science. Common sets of

benchmarks, development tools and platform infrastructures are the basis for enabling fair and

unbiased comparisons. Anecdotally, conference program committees are routinely being asked to

evaluate the relative merits of a new FPGA based design or application without the benefit of

good solid comparisons against prior art. Achieving such comparisons would require at least a

doubling of engineering and development effort to rebuild the prior artifact.

It is our belief that creating base architectures, configuring multiple tool chains, and

repetitive engineering design efforts can and should be automated. Automating this type of effort

will enable students and researchers to address scientific questions quicker, and with an enhanced

ability to increase experimentation across a broader range of configurations.

This paper presents Archborn, an open source tool for custom multiprocessor architecture

generation based on Xilinx TCL routines in Vivado. Firstly, Archborn contains a library of

hight-level APIs that can be used to create custom FPGA based Chip Heterogeneous

Multiprocessor systems (CHMPs). Secondly, Archborn includes standard templates for

automatically creating Symmetric Multiprocessor (SMP), Non-Uniform Memory Access

(NUMA) and Partial Reconfigurable Accelerator (PRA) architectures. Users can then combine
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the use of the APIs and standard template interfaces, to automate the creation of new emerging

CHMP architectures. To present the capabilities of Archborn, we show how the APIs and

standard templates can be used to include additional support for the multithreading [1] and

OpenCL [2] programming models. Specific contributions of this paper include:

• Archborn APIs. Sequences of low-level TCL commands with the same functionality are

wrapped into a single routine to generate PEs, buses and memory components respectively.

Archborn APIs are defined as open-source vendor neutral representations that can be

implemented through vendor specific low-level TCL routines. Users can change the

detailed definition of each API to fit in different FPGAs from various vendors through the

TCL interface.

• Archborn Templates. To simplify the CHMP generation flows, Archborn bundles various

APIs together to compose multiprocessor architecture templates such as SMP, NUMA,

RING and PRA. A specific architecture is automatically built through a few basic

configuration parameters, e.g., the type of Archborn template, amount of slave groups, the

number of PEs on each groups and the size of shared memory. Users can modify the

existing templates or compose new Archborn templates to meet their specific requirements.

• Design Flow for Rapid Prototyping. Based on the built in Archborn templates, a user can

create and connect custom platform specific IP components to multi-level buses by using

the returned bus list object. Therefore, designers are able to rapidly prototype custom

hardware platforms with support for different programming models on FPGAs.

The remainder of this paper proceeds as follows. The next section provides an overview of

background and related work. In Section 6.3, we first show how Vivado TCL primitive operations

can be encapsulated into high-level Archborn APIs and Archborn template interfaces. Then, we

introduce an example flow to generate a ring architecture. Section 6.4 presents how to use

Archborn templates to rapidly prototype hardware platforms supporting different programming

models. Evaluation results are then given on two specific systems: Hthreads and HOpenCL.
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1 BEGIN microblaze

2 PARAMETER INSTANCE = microblaze_1 # Processor Name

3 PARAMETER HW_VER = 8.50.c # IP Version

4 PARAMETER C_DEBUG_ENABLED = 1 # Debug Enable

5 PARAMETER C_USE_ICACHE = 1 # Enable I$

6 END

(a) MHS Descriptions for a Processor Instance.

1 create_bd_cell \ # TCL Command

2 -type ip \

3 -vlnv xilinx.com:ip:microblaze :9.5 \ # IP Version

4 microblaze_1 # Processor Name

5

6 set_property \ # TCL Command

7 -dict [list CONFIG.C_USE_ICACHE {1}]\# Enable I$

8 [get_bd_cells microblaze_1]

(b) TCL Commands to Create and Configure a Processor In-
stance.

Figure 6.1: MHS Descriptions and TCL Commands.

Finally, conclusions with a discussion on the additional research are addressed.

6.2 Background and Related Work

Automating the creation of a CHMPs system makes it convenient for researchers to explore

various problems related to high-performance computing (HPC) [3], fault tolerant and

self-healing systems [4], exploring the performance versus cost tradeoffs for custom accelerators

within embedded systems [5] [6], and engaging in prototyping and design space

exploration [7, 8].

Xilinx Platform Studio (XPS) helps hardware designers build, connect and configure

systems with embedded processors. The MHS file serves as an input to the Platform Generator

tool. Later, according to MHS file synthesis tools can generate the hardware description language

(HDL) definition of the system. In an MHS file, IP definitions start with BEGIN and terminate

with END. The key word PARAMETER is used to configure parameters of the processor. Designers
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can change the configurations of the processor by modifying the values of parameters. The GUI

does not support the generation of CHMP with more than two processors. To create a system with

more than two processors, designers have to manually duplicate the configuration descriptions in

MHS files.

MHS files are utilized by several research projects to create their automated system

assembly methods targeting Xilinx devices. Hthreads-Cloud [1] outlined a cloud-based tool flow

to automatically create complete CHMPs systems for platform FPGAs. In [9], the authors

designed a flow for developing application-specific platforms by automatically generating

CHMPs systems for different applications.

Vivado, the latest Xilinx tool suite, provides extensive functionalities for all programmable

platform FPGAs. Designing a CHMPs system in Vivado differs from that in XPS in at least three

ways. Firstly, it discontinues the support of MHS files for configurations. Secondly, TCL

commands are used to create and configure all components in a CHMP design. Last but not the

least, it provides the interface to import a set of TCL commands as a script file to automate the

design. Compared with MHS files, Figure 6.1(b) presents the TCL commands to create and

configure a processor instance. The command create bd cell is used to create the processor

and set property command is used to configure the component.

Although using the TCL shell interface in Vivado is convenient, using low-level TCL

routines to create a component and configure its properties into a CHMP system can be a tedious

and error-prone task. Besides, the whole design flow requires a detailed low-level knowledge of

architectural configurations and interconnects. To offload this burden from designers, a common

TCL extension library for Vivado is needed. TincrCAD [10] provided a TCL extension library to

assist users in the creation of custom CAD tools.
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Categories API Names Semantics & Descriptions

PEs pe gen
pe gen {key pe type pm size ic size dc size stream}
Creating objects of processing elements.

AXI
Buses

bus gen
bus gen {key n master port n slave port}
Generating AXI bus interconnections.

bus connect
bus connect {master m port slave s port}
Connecting two AXI ports from master to slave.

bus module gen
bus module gen {key ip type type addr range}
Creating AXI compatible IP type modules.

Stream
Interface

stream gen
stream gen {key n master port n slave port}
Generating stream bus interconnections.

stream module gen
stream module gen {key ip type}
Creating stream compatible IP modules.

stream connect
stream connect {master m port slave s port}
Connecting two stream ports from master to slave.

PR pr module gen
pr module gen {key ip type f dcp addr range}
Creating IP modules for partial reconfiguration.

Memories mem gen
mem gen {key mem type addr range}
Creating memory module based on mem type.

Templates template gen
template gen {Arch type nGroup nPE mem size}
Creating template, e.g. SMP, NUMA, RING, PRA.

Table 6.1: Archborn APIs and Templates.

6.3 Archborn Framework

The Vivado TCL shell provides a basic set of routines to create and configure IP components.

TCL scripts shown in Figure 6.1(b) provide an alternative way to release the constrain of MHS

formats. However, using low-level TCL routines will involve many details for system designers

and may cause distraction. Designers may shift the attention from the pure architecture design to

tedious details such as bus configurations, interconnections and even memory space allocation.

Designers will benefit from bundling TCL routines into a script file for redundant design in the

future. However, such TCL scripts lack the flexibility and portability. Further, due to the

limitation of Vivado TCL shell, it cannot create a custom architecture using different
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1 proc pe_gen {key pe_type pm_size ic_size dc_size stream}\
2 {
3 if {$pe_type == mb} {
4 set pe_name mb_$key
5 create_bd_cell\
6 -type ip -vlnv xilinx.com:ip:microblaze:9.5\
7 $pe_name
8 set_property -dict [list CONFIG.C_FSL_LINKS $stream]\
9 [get_bd_cells $pe_name]

10 if {$ic_size == 0} {
11 set_property -dict [list CONFIG.C_USE_ICACHE {0}]\
12 [get_bd_cells $pe_name]
13 } else {
14 set_property -dict [list CONFIG.C_USE_ICACHE {1}]\
15 [get_bd_cells $pe_name]
16 set_property\
17 -dict [list CONFIG.C_CACHE_BYTE_SIZE $ic_size]\
18 [get_bd_cells $pe_name]
19 }
20 if {$dc_size == 0} {
21 set_property -dict [list CONFIG.C_USE_DCACHE {0} ]\
22 [get_bd_cells $pe_name]
23 } else {
24 set_property -dict [list CONFIG.C_USE_DCACHE {1}]\
25 [get_bd_cells $pe_name]
26 set_property\
27 -dict [list CONFIG.C_DCACHE_BYTE_SIZE $dc_size]\
28 [get_bd_cells $pe_name]
29 }
30 } else { ... } # Code trimmed due to limited space
31 return $pe_name
32 }

Figure 6.2: Implementation of a Representative Archborn API.

programming models, such as Hthreads and HOpenCL. To assist system designers in creating

CHMP, Archborn extracts an abstraction layer above the Vivado TCL interfaces. By targeting

various programming models, it helps system designers improve design productivity and reduce

complexities to generate CHMP on modern platform FPGAs.

6.3.1 Archborn APIs

Each Archborn API is a group of TCL commands that are categorized into the same functionality.

As an example shown in Figure 6.1(b), TCL commands create bd cell and set property are

paired to instantiate one processor and configure it with custom parameters. By using Archborn

APIs, designers will be released from setting up component configurations through many mouse

clicks and from detailed TCL commands with trivial primitive parameters.
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Figure 6.3: Architecture Demonstration of Different Archborn Templates.

Table 6.1 lists essential Archborn APIs categorized by functionalities and wrapped into

single cohesive routines. As shown in Figure 6.2, take pe gen as an example, it is defined as a

TCL procedure by using TCL keyword proc. Six parameters are required for this API. The API

routine will first create an object name concatenating the type of object and the value of parameter

key as a suffix. type stands for the type of the processor (e.g., MicroBlaze or ARM). pm size,

ic size and dc size indicate the sizes of private memory, instruction cache and data cache,

respectively. The last parameter, stream, is the number of streaming interfaces when the processor

is configured as a MicroBlaze.

Archborn APIs also support the generation of partial reconfiguration (PR) modules.

Previously, in order to generate a PR module in a CHMP, designers have to manually define PR

regions and associate its region to a specific component, which is called a PR constrain. By using

Archborn PR APIs that are shown in Table 6.1, designers can call pr module gen to generate a

PR module whose PR constrains will be automatically appended to the Xilinx Design Constraint

(XDC) file.

6.3.2 Archborn Templates

After defining Archborn APIs, we further design several Archborn templates to build common

hardware architectures. Figure 6.3 shows three of them. Within a symmetric multiprocessing
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(SMP) architecture shown in Figure 6.3(a), multiple Group Bus can be connected to Host Bus

and several Slave PE are attached to each Group Bus. A non-uniform memory access (NUMA)

architecture is shown in Figure 6.3(b). Different from SMP architecture where groups contains

only PEs, in NUMA architecture a group contains an extra group memory. The last architecture

demonstrated in Figure 6.3(c) is a partial reconfigurable accelerator architecture (PRA). Each

hardware accelerator is defined as a partial reconfigurable region and connected to its

corresponding PE through streaming interfaces. Next we use the Ring architecture shown in

Figure 6.4 to demonstrate how to construct an Archborn template.

Creation of Host Processor and Bus

Although the HOST PE is not necessary for every CHMP design, all architecture templates in this

work have a Host PE for a better understanding. For each pe gen (steps 1, 5), Archborn API

will create a PE object following parameters indicated in Table 6.1. The name of the PE object

will be returned. For instance, in the step 1, a Host PE will be created. It is configured as a

MicroBlaze with 4KB private memory and without caches (data and instruction ones) or

streaming ports. The object name of Host PE will store in the variable Host. By using $host, the

name of Host PE can be accessed, which is presented in step 3. An interconnection bus for Host

PE is created by using bus gen API (step 2) and the name is saved in the variable host bus. In

step 3, the bus connect will connect Host PE with Host Bus.

Creation of Slave Processors and Buses

After the Host PE and bus are created, Slave buses and PEs can be created in steps 4 and 5,

respectively. Since in this example, there are four groups, each containing a Slave PE and a bus,

a TCL loop is used to generate all groups. Within each loop, a list of PE objects and a list of bus

objects will be returned. The variable bus list contains all names of bus objects and the variable

pe list includes all Slave PE objects. Since Host PE has already been connected to the Host
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sPE sP
E

sP
EsPE

set host [pe_gen host mb 4 0 0 0]

set host_bus [bus_gen host_bus 1 2]

bus_connect $host 0 $host_bus 0

set bus_list {}
lappend bus_list $host_bus
for {set i 0} {$i<$nGroup} {incr i} {
 lappend bus_list [bus_gen g_$i 2 2]
}

set pe_list {}
for {set i 0} {$i<$nGroup} {incr i} {
  for {set j 0} {$j<$nPE} {incr j} {
    lappend pe_list \
      [pe_gen $j mb 4 0 0 0]
    bus_connect [lindex $pe_list $j] 0 
      [lindex $bus_list $i] [expr $j]
  }
}

1

2 3

4
5

5

6

1

2

3

4

5

6 for {set i 0} {$i<$nTotal} {incr i} {
  bus_connect [lindex $bus_list $i] 0 \
    [lindex $bus_list [expr $i+1]] 1
}

Host PE Host Bus

Group 
Bus

Bus
Connection

Slave PE

Host

Host Bus

Group

proc interface_gen {type nGroup nPE mem_size} \
{
   set nTotal [expr $nGroup+1]
   if {$type == RING} {

   } else { ... } # Code trimmed
   return $bus_list
}

Group
Bus

Figure 6.4: A Template of the Ring Architecture Generation Flow.

Bus, it is not included in the list of PEs. Within the nested loop in step 5, the inner loop produces

PEs in each group and the outer loop connects each PE with its corresponding Group Bus.

Architecture Connection

All group buses and host bus will be connected appropriately in step 6 to create a ring structure.

In this example, the ring structure is connected following the anticlockwise direction. In order to

implement a bi-direction topology, another TCL loop can be used by swapping parameters of

bus connect.
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Figure 6.5: Hardware Platforms of Two Programming Models.

6.4 Hardware Platforms with Programming Models

6.4.1 Targeted Programming Models

On platform FPGAs with a CHMP, various parallel programming models are presented to manage

hardware resources. On the one hand, thread level parallelism (TLP) and data level parallelism

(DLP) can be extracted; on the other hand, programming models unify the gap between hardware

and software design. Parallel programming models provide interfaces for both software programs
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and hardware accelerators. In this section, Hthreads [1] and HOpenCL [2] are used as examples

to demonstrate the abilities of Archborn to generate specific hardware platforms with different

programming models.

Hthreads

Hthreads is a pthreads compliant hardware microkernel to provide a unified set of operating

system services for application programs running on scalable numbers of parallel heterogeneous

processor resources. Figure 6.5(a) shows the overview of the hardware platform for an Hthreads

system. On host bus, Hthreads cores consist of supporting modules of thread manager, thread

scheduler, and synchronization manager, and conditional variables.

The Virtual Hardware Thread Interface (VHWTI) is an abstraction layer for threads residing

in custom hardware accelerators and slave processors respectively, to seamlessly interface into the

Hthreads system. This allows portable HDL or general purpose processors to interface

simplistically with Hthreads via several read/write registers. The VHWTI operates in

coordination with a small kernel (4KB) called the Hardware Abstraction Layer (HAL). The HAL

transforms Hthreads system calls into simple load/store operations that access the Hthreads cores.

Using general purpose processors as replacement components for custom hardware circuits offers

the flexibility and the increased design productivity but at the expense of performance.

HOpenCL

OpenCL is a framework to design parallel applications on various computation resources (e.g.,

CPUs and GPUs). The current OpenCL specification is heavily influenced by GPU programming.

In [2], the author presented a hybrid hardware platform combining with OpenCL-flavor

programming model called HOpenCL. In this work we further simplify the design flow by using

the Archborn generation framework. Figure 6.5(b) demonstrates the hardware platform generated

by Archborn for the OpenCL programming model. Similar to the Hthreads hardware platform,
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Figure 6.6: Design Flow of Archborn Framework.

computation resources are divided into multiple groups. Inside each group, multiple software

OpenCL kernels run on PEs, and hardware ones execute as dedicated hardware accelerators.

Private, group and global memories form the three-level memory hierarchy in order to meet the

OpenCL specification. Group scheduler dispatches group partitions of one OpenCL kernel to

each hardware group of computation resource. Within each hardware computation resource, item

scheduler decomposes the corresponding task group into items and arranges them to software or

hardware kernels for execution. Barriers provide the synchronization insides each group.

6.4.2 Design Flow with Archborn

As shown in Figure 6.6, design flows to generate multiprocessor architectures with

Archborn are demonstrated in details. A custom multiprocessor architecture can be generated by

using Archborn APIs. Archborn templates provide a more convenient method and interface to

build template architectures (e.g., RING, NUMA, and SMP). A targeted multiprocessor

architecture can be built with either Archborn APIs or Archborn templates. The Archborn

generation flow is based on bus hierarchies to expand the system. TCL codes shown in Figure 6.7

demonstrate the generation TCL scripts of Hthreads and HOpenCL platforms by using Archborn

templates as the interface. template gen will return a bus list object where the host bus and
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1 set bus_list [template_gen NUMA 6 4 4KB]

2 bus_connect [lindex $bus_list 0] 3 \

3 [bus_module_gen t_manager thread_manager 4KB] 0

4 bus_connect [lindex $bus_list 0] 4 \

5 [bus_module_gen t_sche thread_scheduler 4KB] 0

6 bus_connect [lindex $bus_list 0] 5 \

7 [bus_module_gen sync_manager sync_manager 4KB] 0

8 bus_connect [lindex $bus_list 0] 6 \

9 [bus_module_gen con_var con_variable 4KB] 0

10 for {set i 0} {$i < 6} {incr i} {

11 bus_connect [lindex $bus_list [expr $i + 1]] 4 \

12 [bus_module_gen vhwti vhwti 4KB] 0

13 }

(a) TCL Scripts to Generate Hthreads Platform.

1 set bus_list [template_gen NUMA 6 4 64KB]

2 bus_connect [lindex $bus_list 0] 3 \

3 [bus_module_gen g_sche group_scheduler 4KB] 0

4 for {set i 0} {$i < 6} {incr i} {

5 bus_connect [lindex $bus_list [expr $i + 1]] 5 \

6 [bus_module_gen i_sche item_scheduler 4KB] 0

7 bus_connect [lindex $bus_list [expr $i + 1]] 6 \

8 [bus_module_gen barrier barrier 4KB] 0

9 for {set j 0} {$j < 4} {incr j} {

10 bus_connect [lindex $bus_list \

11 [expr $i + 1]] [expr $j + 7] \

12 [pr_module_gen acc$i$j mm mm$i$j.dcp 4KB]

13 }

14 }

(b) TCL Scripts to Generate HOpenCL Platform.

Figure 6.7: Hardware Platforms with Programming Models Generated by Archborn Templates.
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# of PEs
Hthreads HOpenCL

LUTs BRAM LUTs BRAM

1 25,009 ( 8.0%) 36.0 (3.5%) - -
2 28,919 ( 9.5%) 45.5 (4.4%) - -
4 35,449 (11.7%) 65.5 (6.4%) 24,045 (7.92%) 71 (6.89%)
8 49,328 (16.3%) 105.5 (10.2%) 43,718 (14.4%) 136 (13.2%)

16 76,926 (25.3%) 185.5 (18.0%) 70,435 (23.2%) 230 (22.33%)
32 132,274 (43.6%) 345.5 (33.54%) 129,819 (42.76%) 374 (36.31%)
64 240,778 (79.3%) 665.5 (64.61%) 238,052 (78.41%) 723 (70.19%)

Table 6.2: Resource Utilization of Hthreads and HOpenCL Platforms With Various PEs

multi-level group buses are recoded. Custom IPs and other vendor-provided IPs are added to

corresponding buses by iterating the bus list.

Both Hthreads and HOpenCL hardware platforms are inherited from the NUMA

architecture. TCL scripts shown as examples in Figure 6.7(a) and Figure 6.7(b) generate six

groups in each of which both Hthreads and HOpenCL platform contain four processing elements.

The first element of the returned bus list refers to the host bus. The remaining ones are group

buses. IP modules can be connected to host and group buses respectively. For HOpenCL platform

shown in Figure 6.7(b), four hardware kernels as PR modules are added to each group bus. In this

example, we use the matrix multiplication modules as hardware accelerators.

6.4.3 Experimental Results

Our intent for Archborn is not to reveal the best architecture for any application but to provide a

rapid automated generation tool. In this section, we verified the correctness of Archborn by using

Hthreads and HOpenCL frameworks. We also presented the creation of CHMP systems with

different programming models. Based on Archborn template, a large base CHMP system is built

rapidly. Researcher can extend or modify the base CHMP system for specific needs.

Table 6.2 shows the resource utilization of both Hthreads and HOpenCL frameworks built
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with Archborn templates. In this experiment, we use Xilinx tool chain Vivado with VC707 board.

We evaluate various numbers of PEs ranging from 1 to 64. The AXI interconnections can

accommodate up to 16 slaves or 16 masters modules. In order to hold as many as PEs, we can

either add multi-level group buses or connect more PEs to each group bus. Since HOpenCL will

utilize group memories for fast data access within one group, there is no need to have only one or

two PEs within one group.

We use the 2-dimensional integer matrix multiplication as the benchmark to evaluate the

scalability of the multiprocessor architectures with supports of Hthreads and HOpenCL,

respectively. The inputs of our benchmark are two 512×512 matrices. The output result is also a

512×512 matrix. We divide the output matrix into multiple groups that can be arranged to every

processing element for computation. Depending on whether the actual hardware architecture has

group memories (e.g., if one group contains multiple PEs, these PEs can share one group

memory), partial input data can be fetched into group memories by DMAs for fast access.

Figure 6.8 demonstrates the scalability of generated Hthreads and HOpenCL platforms. The total

number of PEs for each platform is from 4 to 24 with 4-stride. Both Hthreads and HOpenCL

platforms demonstrate the steady and similar scalability as the number of PEs increases.

6.5 Conclusion

Modern platform FPGAs are capable of accommodating a complete CHMP system including

general-purpose processors, vendor-provided IPs and custom hardware accelerators. For system

architecture researchers, it is necessary to provide a multiprocessor generation tool for rapid

validation and system generation. Besides, a unified interface to embed modern programming

models is essential to explore both DLP and TLP in CHMP.

In this work, we present Archborn, an open source multiprocessor architecture generation

tool based on TCL scripts on platform FPGAs, to unify different hardware multiprocessor

architectures with various programming models for rapid system generation. According to bus
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hierarchies within CHMP, we extract and wrap common operations for multiprocessor system

generations as Archborn APIs. The Archborn templates simplify the generation flow to build

common CHMP architectures. We take Hthreads and HOpenCL as targeted programming models

to present and verify the correctness of Archborn. The resource utilization and scalability of

CHMP with up to 64 PEs are evaluated. A matrix multiplication benchmark is parallelized and

executed on platform extended from the built CHMP by using two programming models. As an

open source tool, Archborn will be released on public repository.

Although Archborn can significantly improve the productivity to generate a CHMP, there

are two limitations. Firstly, users need to be familiar with vendor-specific TCL libraries.

Secondly, current Archborn APIs follow function programming manners to manage IP resources.

In the future work, Archborn will introduce the object-oriented programming (OOP) method to

allow users to build specific architecture and write application source code using the same OOP

language, such as C++ or Java.
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Chapter 7

Conclusion

7.0.1 Summary

This thesis presented a new approach to enable programmers to use standard software

development flows to create hardware accelerators. An important contribution of this work is the

elimination of synthesis from the path of a programmers design flow. The approach introduced a

new PR tile overlay and a set of interpreter calls that brings portability into the process. This will

greatly facilitate the use of FPGAs within our software dominated information technology sector.

We showed how equivalent accelerator functionality could be represented by composition,

compilation and run time interpretation of functors. Results were presented showing a complete

end to end capability and also show the costs in terms of additional resource overhead for the

accelerator functionality as well as the overlay.

7.1 Future Work

Building the prototype raised just as many questions as it answered. First, the number and size of

tiles used in the prototype were chosen somewhat arbitrarily, based on a small sample of functors

running on a small tile array. The tile size was set to be sufficiently large enough to hold any of

our prototype functors. The numbers of tiles were set based on estimating the number of functors

needed to be composed our benchmark suite. Setting the geometry and interconnect of tiles needs

a more quantitative treatment and should be automated. The Xilinx Vivado 15.2 PR flow was used

to create the bitstreams for each primitive. This also needs to be automated within the front end

DSL environment. Further, the bitstreams created for the prototype in Vivado are not relocatable.

This required creating bitstreams for every primitive for each PR regions. New flows that enable

relocatable bitstreams need to be included within the front end DSL environment. This will
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significantly reduce the hardware designers job of creating the primitives as well as provide a

more portable solution. Our analysis does not include discussion of the different size of PR

region. Additional investigations are needed to determine an efficient solution to turn a fully

custom accelerator into a “macro” primitive and can be mapped across multiple tiles as if it were

a unified custom component.

We anticipated that eliminating synthesis would come with some reduction in peak

performance compared to a fully customized and synthesized accelerator. While we anticipated

this reduction in performance, our small suite of benchmarks did not validate this cost. We

conservatively interpret our results as simply not yet negating the feasibility of the approach. The

approaches effect of performance needs significantly more study using multiple DSLs on

different FPGA chips. Clearly, speedups and achievable performance will vary on an application

to application basis. Finally, we performed a rapid prototype of the run time interpreter. This

initial interpreter needs to be optimized to understand how the overhead of interpreting hardware

accelerators compares with interpreting software.
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