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ABSTRACT 

In order for an asynchronous design paradigm such as Multi-Threshold NULL 

Convention Logic (MTNCL) to be adopted by industry, it is important for circuit designers to be 

aware of its advantages and drawbacks especially with respect to power usage. The power 

tradeoff between MTNCL and synchronous designs depends on many different factors including 

design type, circuit size, process node, and pipeline granularity. Each of these design dimensions 

influences the active power and the leakage power comparisons. This dissertation analyzes the 

effects of different design dimensions on power consumption and the associated rational for 

these effects. Results show that while MTNCL typically uses more active power and less leakage 

power than an equivalent synchronous design, the magnitude of this difference can vary greatly 

and trends can be observed across each of these different design dimensions. Using the results 

and analysis found in this work, circuit designers will be able to choose between MTNCL and 

synchronous architectures for a given target application based on anticipated power consumption 

differences. 
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1  Introduction 

Chip designers face an ever growing challenge of designing integrated circuits that meet 

complex timing closure requirements across a wide range of operating conditions. This challenge 

is further compounded by fierce competition in the integrated circuit industry where being late to 

market for a design can have significant costs. In addition to the added complexity of timing 

closure, the proliferation of mobile devices and embedded technologies has made balancing 

performance and power consumption more important than ever before. Due to these challenges, 

quasi-delay insensitive (QDI) asynchronous design paradigms have received renewed attention 

for their clockless, correct-by-construction architecture which mitigates the need for timing 

closure analysis. 

However, there are several major barriers to widespread adoption of asynchronous design 

methodologies in industry including but not limited to a lack of commercial electronic design 

automation (EDA) tools supporting asynchronous logic design, a lack of engineers trained in 

asynchronous design methodologies, and a poor understanding of what advantages can be 

obtained from asynchronous circuits for a specific application. It is unlikely that the first two of 

these problems will be solved without a concrete understanding of what advantages 

asynchronous design styles offer in each commercial application. Additionally, from an industry 

standpoint, any benefit obtained by pursuing an asynchronous design methodology must be large 

enough to offset any non-recurring engineering (NRE) costs associated with switching to a 

different design flow. This problem is compounded by the fact that there are many different 

asynchronous design styles with different characteristics and design challenges. 

One asynchronous design paradigm that shows promise in low power scenarios is Multi-

Threshold NULL Convention Logic (MTNCL). MTNCL is the application of Multi-Threshold 
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CMOS power gating to NULL Convention Logic (NCL) [1-2]. MTNCL uses a fine-grain power 

gating approach to “sleep” logic gates between data operations by turning off high threshold 

voltage (Vt) transistors in the power-ground path in order to reduce leakage current. Because of 

NCL’s dual-rail architecture, it can be more easily modified for power gating than synchronous 

designs [3]. In a synchronous design, overhead is added in designing control circuitry to 

determine when it is safe to sleep certain parts of the circuit. This operation is also timing 

sensitive and requires careful design by the engineer. MTNCL on the other hand has power 

gating built directly into the architecture and therefore does not require additional control logic to 

determine when to sleep the design. The completion detection signals already present in NCL 

can be used to sleep each pipeline stage of the circuit when no computation is being performed. 

This action of sleeping bypasses the NULL propagation of NCL and turns off high-Vt transistors 

within each gate, which reduces the leakage power dissipated when data is not being processed. 

When considering the adoption of asynchronous paradigms the designer must take into 

account both the advantages and disadvantages of the protocol. In some situations MTNCL may 

have a power benefit, but this is not necessarily the case in every circumstance. Many things 

could have an effect on the tradeoff between MTNCL and synchronous circuits including 

process technology node, performance target, operating conditions, architecture type, design 

flow, and circuit size. 

It was previously believed that MTNCL designs were better than synchronous in terms of 

active and leakage power; however, there has been conflicting evidence supporting this [4-7]. 

For example, the data in Table 1 appears to indicate a dependency on process between two Finite 

Impulse Response (FIR) filters with respect to power consumption. For this data, two 16-tap FIR 

filters were compared across 3 different processes. The percent difference metric in Equation 1 
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shows how much more or less power the MTNCL design uses compared to the synchronous 

design with a negative number indicating that the synchronous design uses less power. It is 

calculated by dividing the difference between the MTNCL and synchronous power consumption 

by the average of the two and multiplying by 100. When the power for both circuits is greater 

than zero, this formula has a range of ±200% and does not bias against either circuit type. 

 𝑷𝒆𝒓𝒄𝒆𝒏𝒕 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 =  𝟐𝟎𝟎 ×
(𝑷𝒔𝒚𝒏𝒄−𝑷𝑴𝑻𝑵𝑪𝑳)

𝑷𝒔𝒚𝒏𝒄+𝑷𝑴𝑻𝑵𝑪𝑳
  (1) 

For this FIR filter, the dynamic power consumption of the MTNCL design quickly 

surpasses that of the synchronous design as the technology node scales down, while the leakage 

power for MTNCL is much better. In the table below, the power of three different process nodes 

were compared: GLOBALFOUNDRIES (GF) 32nm and 45nm processes, which are partially 

depleted SOI processes, and GF 130nm which is a bulk CMOS process. Simulation data in later 

sections will use the TSMC 90nm process as well. 

Table 1: Effects of process node on MTNCL and synchronous power comparison 

 Active Percent Difference Leakage Percent Difference 

32nm -99.5% 167% 

45nm -23.4% 139% 

130nm 7.11% 47.6% 

 However, this process effect may be design-dependent as this data is only for one design. 

Pinpointing the reason for the difference across process technology nodes is challenging as there 

are many different variables between two given process nodes, not only in the process itself, but 

in the design flow as well. This dissertation will seek to objectively analyze under what 

circumstances MTNCL shows benefits over synchronous in terms of power and the driving 

factors between this power tradeoff. 
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2  Background 

2.1  MTNCL Overview 

MTNCL is an asynchronous logic design paradigm based on a combination of NULL 

Convention Logic (NCL) and Multi-Threshold CMOS (MTCMOS) power gating. Like NCL, 

MTNCL uses dual-rail encoding to achieve quasi-delay insensitivity [3]. Table 2 shows the 

encoding scheme used for the NULL spacer and data values.  

Table 2: Dual-rail signal 

 Rail 1 Rail 0 

NULL 0 0 

DATA0 0 1 

DATA1 1 0 

Invalid 1 1 

 

MTNCL also uses 27 fundamental sleepable threshold gates in place of typical Boolean 

logic gates. These gates arise from every possible combination of 4 input variables and will 

output a logic 1 value when the number of logic 1 input values meets or exceeds the threshold 

requirements of the gate. The generic symbol for an MTNCL threshold gate is shown in Figure 

1.  

Output

Input 1
Input 2

Input b

a

Sleep  

Figure 1: MTNCL threshold gate 

Threshold gates are named according to the number of inputs and the threshold of the 

gate. For example, a TH23m gate is a 3 input gate with a threshold of 2. In order for this gate’s 

output to be asserted, at least 2 of the inputs must be asserted. Some gates place a weight on one 

or more of the inputs. This is denoted by a ‘w’ in the gate name. For example, the TH23w2m 

gate is a 3-input gate with a threshold of 2 and the first input has a weight of 2. Unlike NCL 

gates these gates do not contain any hysteresis; therefore, even with the addition of sleep 
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transistors MTNCL gates tend to have a smaller area overhead than NCL gates as can be seen in 

Table 3. 

Table 3: Transistor count of MTNCL and NCL fundamental gates 

Gate Name Boolean Function NCL Transistor 

Count 

MTNCL Transistor 

Count 

TH12 A + B 6 8 

TH22 AB 12 8 

TH13 A + B + C 8 10 

TH23 AB + AC + BC 18 14 

TH33 ABC 16 10 

TH23w2 A + BC 14 10 

TH33w2 AB+ AC 14 10 

TH14 A + B + C + D 10 12 

TH24 AB + AC + AD + BC + BD + CD 26 20 

TH34 ABC + ABD + ACD + BCD 24 22 

TH44 ABCD 20 12 

TH24w2 A + BC + BD + CD 20 16 

TH34w2 AB + AC + AD + BCD 22 18 

TH44w2 ABC+ ABD + ACD 23 16 

TH34w3 A + BCD 18 12 

TH44w3 AB + AC + AD 16 12 

TH24w22 A + B + CD 16 12 

TH34w22 AB + AC + AD + BC + BD 22 16 

TH44w22 AB + ACD + BCD 22 16 

TH54w22 ABC+ ABD 18 12 

TH34w32 A + BC + BD 17 12 

TH54w32 AB + ACD 20 16 

TH44w322 AB + AC + AD + BC 20 16 

TH54w322 AB +AC + BCD 21 16 

THxor0 AB + CD 20 12 

THand0 AB + BC + AD 19 14 

TH24comp AC + BC + AD + BD 18 12 

Figure 2 shows the typical structure of an MTNCL threshold gate. Every MTNCL gate is 

comprised of an NMOS network to set the value of the output to a logic 1 value, a PMOS 

network to hold the output at zero, and a sleepable inverter. The complement of the Boolean 

functions in Table 3 are implemented by the set and hold0 portions of each MTNCL gate. The 

two circled transistors in Figure 2 are high-threshold transistors as well as all transistors in the 
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hold0 network. There is also one high-Vt transistor in every path to ground within the set 

network. These transistors ensure that there is always an off high-Vt transistor in the path 

between the power and ground rails in order to reduce leakage power. 

hold0
(High-Vt)

set
(Mixed-Vt)

VDD

Z

sleep

 
Figure 2: Basic structure of MTNCL gate 

2.2  MTNCL Architecture 

In an MTNCL circuit, logic alternates between DATA and NULL wavefronts. 

Completion detection blocks are used at each register stage to ensure DATA wavefronts are 

always separated by a NULL spacer. At the beginning of a data cycle, the corresponding stage’s 

ki signal is set to request for data. This signal will propagate towards the front of the pipeline 

through the feedback chain of completion detection registers until a register that contains DATA 

is reached. The combinational logic following the register containing DATA will then be unslept 

and the DATA wavefront will be allowed to propagate through the combinational logic until the 

next register stage. Once all signals at that register have transitioned to DATA, the completion 

detection logic will cause the ko signal to transition to request for null which will in turn wake up 

the next pipeline stage. Once this ko signal propagates through the previous stage’s completion 

detection logic, the register and stage that generate it will be slept producing the NULL 
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wavefront behind the DATA wavefront. When the pipeline is full, adjacent stages will always 

alternate between DATA and NULL. 

sleep

 Comp
ko ki

sleep

Regm

sleep

 Comp
ko ki

sleep

Regm

sleep

ko

si

MTNCL Logic

sleep

 Comp
ko ki

sleep

Regm

sleep

so

ki

MTNCL Logic DATAOUTDATAIN

 
Figure 3: MTNCL framework 

If performance is a concern, one can improve the performance of this architecture at the 

cost of additional MTNCL registers. Since the sleep signal bypasses the NULL wavefront 

propagation that exists in NCL, combinational blocks that are being put to sleep will typically be 

waiting on data instead of doing any processing due to the quick action of the sleep mechanism. 

This can be improved however by adding an additional register stage and completion logic block 

at each stage in the pipeline so that there are two registers back to back with no combinational 

logic in between. Since each stage alternates between DATA and NULL, this will cause all 

DATA wavefronts to be in pipeline stages that contain combinational logic at the same time. The 

next cycle, all combinational logic blocks will be slept very quickly while the DATA resides 

between the two adjacent registers. This drastically improves the performance of the MTNCL 

pipeline at the cost of additional power and area. 

2.3  Timing Assumption of MTNCL 

In recent years, issues with the MTNCL architecture have arisen that need to be 

addressed. A portion of the robustness in NCL designs, which comes from its QDI properties, is 

lost due to the fact that the architecture changes required to reduce the leakage power of MTNCL 
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also adds some delay sensitivities. These timing issues cannot be ignored, especially for smaller 

process nodes where process variation and routing delays are a larger concern. 

The introduction of early-completion to MTNCL was thought to solve MTNCL’s delay 

sensitivity problem [3]. However, early completion solves one delay sensitivity issue and 

introduces another. This timing issue in MTNCL is similar to a hold-time violation in 

synchronous logic. Figure 4 shows a single stage in an MTNCL pipeline, and the results of a 

simulation highlighting the problem are shown in Figure 5. Note that Figure 5 shows only a 

single rail of the MTNCL register. 

 Comp
Ko Ki

sleep

Regm

sleep

 Comp
Ko Ki

sleep

Regm

sleep

Ko

SleepIn SleepOut

Ki

OUTIN MID

 
Figure 4: Single stage of MTNCL pipeline 
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Figure 5: Simulation of delay-sensitivity of MTNCL pipeline in Figure 4 

Looking at Figures 4 and 5, when MID is NULL and Ki is logic 1, SleepOut will also be 

logic 1 (rfd). This means that the second register in the pipeline stage is asleep and OUT is 

NULL. Shortly after a DATA wavefront arrives at MID, the completion detection signal 

SleepOut will transition from logic 1 to logic 0. The transition of SleepOut to logic 0 along with 

a NULL wave at IN will cause the first completion detection block to output a rfd and Ko will 

transition to logic 1. The transition of SleepOut to logic 0 also wakes up the second register in 

the pipeline and DATA should be latched from MID to OUT. At this moment, there a race 

condition in which the second register in Figure 4 must wake up and latch the DATA wavefront 

before the first register is slept. In Figure 5, OUT begins the transition from NULL to DATA, but 

due to a high capacitive load, the data is lost before it can be latched by the register. 

This race condition can be split into two paths A and B where Path A involves waking 

the second register and Path B results in putting the first register to sleep. Both paths are initiated 

by the transition of SleepOut to logic 0. The delay of Path A, TA, is described in the equation 

below where TwireA is the wire delay from the output of the second completion logic block in 
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Figure 4 to the sleep input of the second register and Tlatch depends on both the gate delay 

through a th12m gate and the load on the output of that gate. 

 𝑇𝐴 =  𝑇𝑤𝑖𝑟𝑒𝐴 + 𝑇𝑙𝑎𝑡𝑐ℎ (2) 

The delay of Path B, TB, is described in the equation below where TwireB is the wire delay 

between the output of the second completion detection register and the Ki of the first completion 

detection register, TTH22 is the gate delay through an NCL TH22 gate, TwireC is the wire delay 

between the output of the first completion detection component and the sleep input of the first 

register, Tsleep is the transistor delay through the sleep transistors of the first register, and TwireD is 

the wire delay from the output of the first register to the input of the second register.  

 𝑇𝐵 =  𝑇𝑤𝑖𝑟𝑒𝐵 + 𝑇𝑡ℎ22 + 𝑇𝑤𝑖𝑟𝑒𝐶 + 𝑇𝑠𝑙𝑒𝑒𝑝 +  𝑇𝑤𝑖𝑟𝑒𝐷 (3) 

It should be noted that this equation makes the assumption that IN transitions to NULL 

before SleepOut transitions to logic 0 as is typically the case during normal operation. It also 

assumes that there is no combinational logic between the first and second registers. However, 

even if either or both of these assumptions are false, this would not necessarily mitigate the race 

condition. This means that the race condition exists not only in FIFO registers as previously 

thought, but in every pipeline stage of MTNCL. In order for MTNCL to function properly, TA 

must always be less than TB. If MID transitions from DATA to NULL before the data is fully 

latched at OUT, the data will be lost and the pipeline will not be able to recover. 

It is clear from the comparison of the equations for the delay of Path A and B that Path A 

would typically be the shorter path. This is especially the case for larger process nodes where the 

gate delay is usually significantly larger than wire delays. However, if the rise time at the output 

of a register is large enough due to wiring capacitance or insufficient drive strength, Path A 

could easily be the longer path. This is the case for the simulation shown in Figure 5 where OUT 
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transitions to DATA more slowly than MID is slept to NULL. This problem is exacerbated by 

the fact that MTNCL is not supported by commercial tools and therefore is difficult to analyze 

for timing. 

2.4  Solution to the MTNCL Timing Sensitivity Problem 

Without the timing support from commercial synthesis tools, solving the timing problem 

in MTNCL can be difficult, but ensuring that none of the aforementioned race conditions will 

cause an issue for a given design is important to avoid loss of data or complete lockup of the 

pipeline. There are several solutions that could be used alone or in combination to ensure that the 

data is latched before it is lost. 

First, the designer can ensure the delay TA from Equation 2 is as short as possible. Since 

TA is made up of the propagation delay from the output of the completion detection block to the 

register and the delay required to latch the data, one or both of these delays could be shortened to 

reduce the overall value of TA. The propagation delay can be decreased by ensuring there are no 

additional buffers in the path between the combinational logic and the sleep input of the register 

and by reducing the length of the routing wire during place and route. The delay required for the 

delay insensitive (DI) register to latch the data can be reduced either by ensuring the drive 

strength of the register is large enough to quickly drive any load at the output, or a small buffer 

could be built into the gate at the library level to ensure the load capacitance at the output of the 

latch is always relatively constant. This would increase the area and power overhead of MTNCL, 

but would ensure the TA delay is a relatively fixed quantity dependent only on TwireA from 

Equation 2. 

Second, the designer must ensure that TB, shown in Equation 3, is larger than TA. When 

TA is minimized, this requirement will usually be met automatically as there are more gate delays 
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factored into TB. However, if the reduction of TA is not enough, the designer may decide to insert 

additional buffers to increase the delay in this second path. In the future, it may be helpful to 

modify the design flow of MTNCL to include timing analysis of these core paths either through 

commercial tools if possible or through the creation of additional custom tools. 
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3  MTNCL vs. Synchronous Power Tradeoff 

The main focus of this work is to determine the power advantages and disadvantages of 

MTNCL designs as compared to equivalent synchronous designs and the driving factors behind 

them. While MTNCL typically uses more dynamic power than an equivalent synchronous 

design, this is not always the case and depends on several different factors. Additionally, the 

magnitude of this difference in dynamic power varies across designs. Like the dynamic power, 

the leakage power usage between the two design architectures also depends on many different 

factors. The first section of this chapter will detail the MTNCL synthesis method developed for 

this work as well as an overview of the cell library design and how it may affect the power 

comparison. Next, the designs compared in this work will be discussed. Then, the final 4 sections 

will give comparisons according to the active and leakage power across the different design 

dimensions: design type, circuit size, process node, and pipeline granularity. The data from these 

comparisons was analyzed to determine what possible factors influence the power tradeoff and 

why each of these factors contributes to any trends emerging from the data. 

3.1  Design Flow 

3.1.1  Synthesis of MTNCL Combinational Logic 

One of the major barriers to widespread use of asynchronous logic is the lack of 

commercial design tools. Not only are commercial synthesis tools incapable of synthesizing most 

asynchronous architectures, but VHDL and Verilog are built around the idea of synchronous 

circuits making it difficult to describe asynchronous circuits in a meaningful way at a behavioral 

level. These two things together require asynchronous architectures such as NCL and MTNCL to 

be designed at the structural level. The time required to design an asynchronous circuit at the 
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structural HDL level is much greater than when the circuit can be designed at the behavioral 

HDL level and synthesized. 

Some work has been done in the past to create asynchronous synthesis tools [8-10]. 

However, these synthesis tools do not support or provide only limited support for MTNCL. In 

order to quickly design MTNCL circuits for use in this work, a method of synthesis was 

developed using a combination of Python scripts and commercial synthesis tools, such as 

Cadence Genus Synthesis Solution. 

For this method, the circuit designer must design the registration stages at the structural 

HDL level, while the MTNCL combinational logic can be described at the behavioral level. Any 

sections of behavioral code must not infer any latches or registration. Using this method, the 

designer can leverage the power of the commercial synthesis tool to optimize the combinational 

logic and take into account any timing, power, and load capacitance information present in the 

Liberty files. 

After the HDL file has been written by the designer, any combinational logic blocks 

undergo a preliminary synthesis separately using Genus. During this stage, an intermediate 

equation-based Verilog netlist is generated using assign statements. A custom Python script then 

converts the single-rail Verilog netlist into a dual-rail VHDL behavioral netlist using Boolean 

algebra. After the dual-rail VHDL file has been generated, it is passed to Genus Synthesis tool 

along with the desired MTNCL timing libraries. The combinational logic can then be synthesized 

and mapped to the correct physical gates. This step does not route the sleep signals; however, 

this is trivial for a combinational logic block and is done with an additional Python script after 

synthesis has completed. After the combinational logic blocks have been created, they can be 

inserted back into the top-level HDL containing the MTNCL registers described at the structural 
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level. The user must then ensure that any register outputs and completion detection signals are 

properly buffered. There are additional Python scripts to aid in this process. 

3.1.2  Cell Libraries 

In order to properly understand the power information in the following sections, it is 

important to take into account the MTNCL and synchronous cell libraries for each process node. 

An important aspect of designing these libraries is choosing the appropriate threshold voltages 

for the MTNCL and synchronous libraries. These choices have major impacts on the power 

comparison between the synchronous and MTNCL designs especially with respect to leakage 

power. 

The choice of transistor threshold voltage would typically come down to design 

constraints of speed and power, which may be specific to a certain target application. For the 

purpose of this work, the lowest threshold voltage available in each process was used for the 

synchronous libraries, which were provided by the vendors, as well as the low-Vt transistor for 

the MTNCL design. The high-Vt transistors used in the MTNCL library were chosen to 

approximately match the threshold voltage of the GF 130nm process standard cell library to 

provide the most accurate comparison between process nodes. The approximate threshold 

voltages for each of these transistor types are shown in Table 4. These values were obtained by a 

DC operating point simulation in Cadence ADE. 

Table 4: Threshold voltages used in MTNCL and synchronous cell libraries  
PFET Threshold (V) NFET Threshold (V) Average (V) 

Process Low-Vt High-Vt Low-Vt High-Vt Low-Vt High-Vt 

45nm -0.345 -0.460 0.281 0.314 0.313 0.387 

90nm -0.245 -0.420 0.248 0.408 0.247 0.414 

130nm -0.297 -0.426 0.386 0.363 0.341 0.395 
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3.2  Designs Compared 

A series of designs were created in order to determine the power tradeoff between 

MTNCL and synchronous designs: Finite State Machines (FSMs), Arithmetic Logic Units 

(ALUs), and Finite Impulse Response (FIR) filters. These designs were chosen because together 

they represent some of the typical differences in architecture that are thought to affect the power 

tradeoff between MTNCL and synchronous designs. The FSM is a control based architecture 

with feedback within the design structure; whereas, the ALU and FIR are both data processing 

architectures. The FIR was chosen due to the ease with which it can be pipelined and to explore 

the effects of input pattern between different data processing circuits, while the ALU was chosen 

for its different input data dependency characteristics and ease of scalability.  Some or all of 

these designs were scaled in size, synthesized across different process nodes, and modified 

according to pipeline granularity. Each of these dimensions, separately or jointly, could have an 

effect on the power tradeoff between MTNCL and synchronous designs. 

In order to compare MTNCL and synchronous power in a meaningful way, the power 

difference is calculated for each set of circuits according to Equation 4.  

 𝑃𝑜𝑤𝑒𝑟 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑃𝑀𝑇𝑁𝐶𝐿 − 𝑃𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠  (4) 

A negative power difference for the dynamic power would indicate the synchronous design uses 

more power than the MTNCL design; whereas, a positive power difference would indicate the 

MTNCL design uses more power. For the dynamic power comparison, this power difference is 

calculated using the power-delay product to better compare the energy use between designs of 

slightly different speeds. The synchronous designs were synthesized and simulated at the average 

speed of their equivalent MTNCL design in order to provide the most accurate power 

comparisons possible. For the leakage power comparisons in the following sections, the sign for 
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Equation 4 is reversed since the MTNCL architecture typically uses less leakage power. This is 

done so that the leakage power comparison charts are non-negative and easier to read. 

3.2.1  Arithmetic Logic Unit (ALU) 

A simple unpipelined 8-function ALU was designed in VHDL according to the 

operations in Table 5. The ALU was designed generically with respect to the width of the 

operands in order to allow a simple way of scaling the size of the circuit. Registers were placed 

at the inputs and outputs in order to perform timing analysis and clock tree synthesis (CTS) in 

the case of the synchronous design. 

Table 5: Operations implemented in ALU 

Control Input Operation Description 

000 A + B Addition 

001 A – B Subtraction 

010 A – 1 Minus 1 

011 A + 1 Plus 1 

100 A && B Logical AND 

101 A || B Logical OR 

110 ~ A Negation 

111 A ⊕ B Logical XOR 

Using the synthesis method described in Section 3.1, the MTNCL and synchronous 

designs were synthesized across all 3 different process nodes and 5 different circuit sizes shown 

in Table 6. The naming convention Ax is used to denote the different ALU designs, where x is 

the bit width for the ALU. The gate count for each design after synthesis is shown for rough size 

estimation in Table 7. Note that comparing size this way does not take into account actual layout 

size or the size of transistors within the gates. In addition to synthesis, CTS was performed on 

each of the synchronous designs so that the clock tree power could be simulated as well. In order 

to perform CTS, the designs were preliminarily placed and routed. 
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Table 6: Different circuit sizes synthesized for ALU 

Design Designation Operand Width 

A4 4 

A8 8 

A16 16 

A32 32 

A64 64 

Table 7: Number of logic gates in each synthesized ALU design 

 45nm 90nm 130nm  
MTNCL Synchronous MTNCL Synchronous MTNCL Synchronous 

A4 171 57 173 73 174 55 

A8 340 96 340 151 343 98 

A16 699 177 693 280 702 177 

A32 1530 448 1505 566 1530 483 

A64 2771 1013 2780 1168 2786 1084 

For each test case, the circuit was simulated using a random stream of input patterns in 

order to find the average power consumption. The leakage power of the circuit was also 

calculated to estimate the power draw when the circuit is idle. The results of these simulations 

are shown in Table 8 and Figures 6-8. The power-delay product (PDP), often referred to as 

energy per operation, is calculated by multiplying the average power by the cycle time. In the 

case of the MTNCL design, the average DATA/NULL cycle time is used; whereas, the PDP 

calculation for the synchronous design simply uses the clock period. 
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Table 8: Power delay product of ALU designs 

Process Design MTNCL (fJ) Synchronous (fJ) Speed (GHz) 

45nm 

A4 393.36 184.89 2.107 

A8 840.51 343.20 1.854 

A16 1686.34 763.04 1.623 

A32 3657.34 1478.52 1.46 

A64 6507.26 3534.13 1.315 

90nm 

A4 588.60 374.63 0.838574 

A8 1158.83 668.53 0.764312 

A16 2476.71 1353.42 0.591693 

A32 5216.29 2767.04 0.530617 

A64 9670.95 5759.64 0.43726 

130nm 

A4 1184.37 1056.38 0.3854 

A8 2346.53 2090.09 0.3596 

A16 4845.95 4240.47 0.3286 

A32 10239.93 8757.85 0.275 

A64 18641.64 21144.83 0.2601 

 
Figure 6: Average power delay product for ALU in GF 45nm process 
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Figure 7: Average power delay product for ALU in TSMC 90nm process 

 
Figure 8: Average power delay product for ALU in GF 130nm process 
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speed. This higher power usage is primarily due to the higher activity factor and larger number 

of gates in the MTNCL design. The only case that synchronous ALU uses more power is also the 

only case where the synchronous design uses more logic gates. However, MTNCL does have 

better leakage characteristics due to its multi-threshold power gating. The benefits of MTNCL in 

terms of leakage power can be seen in Table 9 and Figures 9-11. 

Table 9: Leakage power of MTNCL and synchronous ALU designs 

Process Design MTNCL Leakage Power (µW) Synchronous Leakage Power (µW) 

45nm 

A4 4.63 17.38 

A8 9.33 31.32 

A16 20.33 66.12 

A32 46.58 142.00 

A64 75.92 313.02 

90nm 

A4 0.73 6.23 

A8 2.96 11.50 

A16 4.86 22.07 

A32 11.24 40.62 

A64 19.93 83.45 

130nm 

A4 112.23 884.02 

A8 227.55 1503.15 

A16 458.17 4343.07 

A32 1012.55 9524.54 

A64 1812.45 19598.70 
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Figure 9: Leakage power of ALU in GF 45nm process 

 
Figure 10: Leakage power of ALU in TSMC 90nm process 

0

50

100

150

200

250

300

350

A4 A8 A16 A32 A64

Le
ak

ag
e 

P
o

w
er

 (
µ

W
)

Leakage Power of 45nm ALU

MTNCL Synchronous

0

10

20

30

40

50

60

70

80

90

A4 A8 A16 A32 A64

Le
ak

ag
e 

P
o

w
er

 (
µ

W
)

Leakage Power of 90nm ALU

MTNCL Synchronous



23 

 

 
Figure 11: Leakage power of ALU in GF 130nm process 
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is the number of input bits and y is the number of state bits. A breakdown of the FSM designs is 

shown in Table 10. The number of gates in each design after synthesis for each process node is 

shown in Table 11. 

Table 10: Breakdown of FSM designs 

Design Designation Number of Input Bits Number of State Bits 

B22 2 2 

B24 2 4 

B26 2 6 

B42 4 2 

B44 4 4 

B46 4 6 

B62 6 2 

B64 6 4 

B66 6 6 

Table 11: Number of logic gates in each synthesized FSM design 

 45nm 90nm 130nm 
 MTNCL Synchronous MTNCL Synchronous MTNCL Synchronous 

B22 50 13 53 18 53 12 

B24 155 84 157 116 156 94 

B26 703 415 705 586 707 445 

B42 101 47 104 53 109 44 

B44 547 281 556 408 514 322 

B46 2533 1377 2541 2049 2528 1435 

B62 305 164 313 239 317 184 

B64 1669 976 1674 1362 1805 1042 

B66 7813 5304 7850 7820 8054 5052 

It appears that as the size of the design increases, the number of gates in the synchronous 

design approaches the number of gates in the MTNCL design. Additionally, the 90nm library 

tends to use more gates in the synchronous design especially for the larger FSMs. 

After these designs were synthesized and implemented in all 3 processes, they were 

simulated for dynamic and leakage power using randomized input patterns similar to the ALU. 

The PDP and leakage power data for each of these designs is shown in Table 12 and Table 13 

respectively. 
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Table 12: Power delay product of FSM designs 

Process Design MTNCL (fJ) Synchronous (fJ) Speed (GHz) 

45nm 

B22 110.52 14.89 2.653 

B24 285.60 56.48 2.119 

B26 1090.18 226.03 1.383 

B42 219.00 37.41 2.292 

B44 900.24 153.94 1.519 

B46 3096.92 588.59 0.899 

B62 552.52 96.14 1.988 

B64 2309.71 427.24 0.896 

B66 10035.45 2923.87 0.425 

90nm 

B22 188.33 22.99 0.879 

B24 410.55 84.39 0.728 

B26 1365.15 293.15 0.490 

B42 297.98 66.11 0.797 

B44 1102.93 219.92 0.547 

B46 3912.96 750.26 0.329 

B62 727.91 142.74 0.646 

B64 2815.34 561.80 0.338 

B66 14034.47 3368.12 0.148 

130nm 

B22 358.01 62.72 0.449 

B24 803.32 286.21 0.387 

B26 2373.45 924.99 0.299 

B42 629.12 185.72 0.417 

B44 1862.54 763.66 0.319 

B46 6824.68 1852.96 0.201 

B62 1305.27 461.19 0.354 

B64 5204.20 1289.50 0.209 

B66 20774.25 4169.28 0.103 

Figure 12 shows the average power delay product for the MTNCL and synchronous 

FSMs in GF 45nm SOI process. Similar to the ALU, the MTNCL FSM design uses significantly 

more energy per DATA/NULL cycle than the synchronous design during one clock period. The 

graphs of the data for the other two process nodes can be found in Section 3.5 as they follow a 

similar trend to the power data of the ALU in the previous section. 
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Figure 12: Average power delay product for FSM with 2 input bits in GF 45nm process 
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 Table 13 shows the simulation results for the MTNCL and synchronous leakage of the 

FSM design. The MTNCL FSM also uses less leakage power in every case just as the ALU did. 

Table 13: Leakage power of MTNCL and synchronous FSM designs 

Process Design MTNCL Leakage Power (µW) Synchronous Leakage Power (µW) 

45nm 

B22 3.22 5.85 

B24 6.62 18.79 

B26 24.05 68.87 

B42 4.58 12.88 

B44 17.29 50.32 

B46 77.29 195.80 

B62 9.11 30.27 

B64 52.91 134.90 

B66 244.33 831.00 

90nm 

B22 0.19 4.85 

B24 0.97 10.11 

B26 3.62 27.86 

B42 0.29 18.64 

B44 2.56 20.99 

B46 12.08 73.35 

B62 0.83 16.26 

B64 8.12 54.66 

B66 36.38 266.38 

130nm 

B22 0.049 2.035 

B24 0.119 2.791 

B26 0.535 6.203 

B42 0.076 2.136 

B44 0.327 6.016 

B46 1.841 13.736 

B62 0.160 3.404 

B64 1.036 10.897 

B66 5.914 42.873 

3.2.3  Finite Impulse Response (FIR) Filter 

The FIR filter was designed generically with respect to the number of taps so it could be 

easily scaled in size. It utilized 7-bit coefficients and an 11-bit input. The basic structure of the 

FIR filter is shown in Figure 14. 
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Figure 14: General structure of generic FIR filter 

The power of the synchronous FIR filter, like all synchronous circuits, is data dependent 

with a large dependence on the value of the coefficients. These coefficient bits are typically pre-

programmed constant values. Since these bits do not change during operation (or change very 

rarely), the synchronous circuit is able to take advantage of similarities between successive input 

patterns. This in turn reduces the switching activity in the circuit. Therefore, the synchronous 

FIR filter PDP is heavily dependent upon the coefficient values. This is in contrast to the 

MTNCL FIR filter which has approximately the same switching activity regardless of the input 

pattern due to its dual-rail architecture. In order to show the data dependency of the FIR, three 

different test cases were created. Case 1 has 50% of the coefficient bits set to logic 1 and 50% to 

logic zero (i.e., alternating zeros and ones), while the input to the FIR filter is random. Case 2 

has all coefficient bits set to logic 1 and uses the same random stream of inputs as Case 1. Case 3 

uses the same coefficient bits as Case 1 and alternates the input data to the FIR between -1 
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(“1111111” in 2’s complement) and 0 (“0000000” in 2’s complement). The power simulation 

results after synthesis are shown for each process node in Tables 14-16 below. The number of 

gates for the unpipelined FIR filter is shown in Table 17. 

Table 14: Power data for unpipelined FIR filter in GF 45nm process 

 MTNCL PDP 

(pJ/op) 

Sync PDP 

(pJ/op) 

Speed 

(MHz) 

MTNCL Leakage 

(µW) 

Synchronous 

Leakage (µW) 

Case 1 21.63 12.05 646.42 

417.75 971.91 Case 2 23.66 13.17 642.63 

Case 3 21.50 14.50 729.98 

Table 15: Power data for unpipelined FIR filter in TSMC 90nm process 

 MTNCL PDP 

(pJ/op) 

Sync PDP 

(pJ/op) 

Speed 

(MHz) 

MTNCL Leakage 

(µW) 

Synchronous 

Leakage (µW) 

Case 1 57.58 31.39 164.58 

69.04 506.74 Case 2 61.49 35.35 165.29 

Case 3 53.02 35.64 185.65 

Table 16: Power data for unpipelined FIR filter in GF 130nm process 

 MTNCL PDP 

(pJ/op) 

Sync PDP 

(pJ/op) 

Speed 

(MHz) 

MTNCL Leakage 

(µW) 

Synchronous 

Leakage (µW) 

Case 1 70.51 151.38 163.70 

5.50 69.4 Case 2 77.26 165.40 163.78 

Case 3 70.75 154.63 181.47 

Table 17: Number of gates in MTNCL and synchronous unpipelined FIR filter 

 MTNCL Synchronous 

45nm 9491 2908 

90nm 9884 7637 

130nm 9528 4182 

The MTNCL PDP is higher than that of the synchronous FIR for the 45nm and 90nm 

processes, but is lower for the 130nm process. This is most likely a combination of the logic 

depth and the threshold voltages of the synchronous library. This discrepancy will be discussed 

in greater detail in following sections. While the leakage power is lower for the MTNCL design 

in every process node, the 45nm leakage power values differ by a smaller magnitude than the 
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other two process nodes. This is most likely due to the lower number of gates in the synchronous 

design, and the choice of transistors’ threshold voltages. 

3.3  Analysis of Design Type on Power Tradeoff 

One major factor that can impact the tradeoff between MTNCL and synchronous designs 

is the type of design being compared. For example, control circuitry like the FSM has a very 

different architecture and gate composition than data processing circuits like the ALU. The 

effects of these different architectures will be compared in this section. 

3.3.1  Dynamic Power and Activity Factor 

Dynamic power in digital circuits can be decomposed into two main categories: 

switching power, which is dissipated during the charging and discharging of capacitive loads 

within the circuit, and short-circuit power, which is due to the current draw when both the PMOS 

and NMOS networks are momentarily on during switching. Short-circuit power is generally 

small when compared to the switching power in a circuit, so it is typically ignored when doing 

power estimations. The switching power in synchronous designs is often estimated according to 

Equation 5, 

 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 =  𝛼𝐶𝑉𝐷𝐷
2𝑓 (5) 

where α is the activity factor, C is the capacitive load, VDD is the supply voltage, and 𝑓 is the 

frequency of the clock. When comparing MTNCL and synchronous designs within the same 

process node, VDD is constant. Additionally, the synchronous designs were synthesized and 

simulated at the average frequency of the equivalent MTNCL circuit for each comparison in this 

work; therefore, according to Equation 5, any power differences within the same process node 

arise from either the activity factor or the load capacitance of signals in the circuit. The activity 

factor takes into account the fact most signals in a circuit do not transition with every transition 
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of the clock. For the case of the MTNCL design, the average frequency of the input completion 

detection signal ki can be used in lieu of a clock frequency as this completion detection signal 

drives the transition of all other signals in the circuit. This power estimation is typically done 

node-by-node using a file containing the switching activity information such as a Switching 

Activity Interchange Format (SAIF) file or Vector Change Dump (VCD) file. For capacitance 

and timing information, a Synopsys Liberty file is typically used. The combination of Liberty 

and SAIF files can be used during the synthesis stage of the design flow to get early power 

information. 

In order to estimate the differences in activity for the MTNCL and synchronous 

architectures, a SAIF file was generated containing the switching activity information for each 

node in the circuit. Using these values, the total number of node transitions and average activity 

factor for each given circuit can be calculated. Any differences in switching activity between 

designs could be a possible driver of any dynamic power differences between them. 

Because of the dual-rail architecture MTNCL is based on, the switching activity is 

typically around 50%. This is due to the fact that during a given cycle, each dual-rail pair will 

transition from NULL to DATA and back to NULL, and since DATA is encoded using a one-hot 

scheme, one and only one rail of any dual-rail signal will transition in a given cycle. There is 

some deviation from this 50% estimate, however, because intermediate signals within an 

MTNCL combinational logic block do not necessarily maintain their dual-rail structure. By 

comparison, signals other than the clock within a synchronous design typically have an activity 

factor of significantly less than 50% due to the signal only transitioning at a maximum of once 

per clock cycle sometime after the rising edge of the clock. Note that in this analysis any 

switching do to glitches is ignored. Additionally, signals within a synchronous design will not 
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necessarily change every cycle if similarities in the input pattern do not require a transition on a 

particular node. 

While the average activity factor for MTNCL does not vary greatly by design or input 

pattern, the average activity factor of synchronous designs can vary to a much greater degree. 

The dependence of the activity factor for synchronous designs on input pattern is best shown by 

the FIR filter test cases outlined in Section 3.2.3. The total average number of switches per cycle 

and average switching activity factor for both the MTNCL and synchronous designs across all 

three test cases are shown in Table 18 and Table 19 respectively. 

Table 18: Average number of transitions per cycle for unpipelined FIR filter 

 MTNCL Synchronous 

Case 1 4,925 960 

Case 2 5,661 1,148 

Case 3 4,925 1,467 

Table 19: Average activity factor for unpipelined FIR filter  
MTNCL Synchronous 

Case 1 44.6% 12.3% 

Case 2 51.3% 14.7% 

Case 3 44.6% 18.8% 

For reference, the MTNCL unpipelined FIR filter had a total of 11,043 signals while the 

synchronous design had only 7,818 signals. One possible reason for the difference in activity 

factor for the MTNCL design across the 3 cases is an optimization to the MTNCL FIR 

architecture, which takes advantage of constant coefficient bits. Without this optimization the 

activity factor would not depend on the coefficient bits to such a degree for the MTNCL design. 

As for the synchronous design, the number of transitions per cycle increases as more coefficient 

bits are set to logic 1 like in Case 2, or as the Hamming distance between successive input bits 

increases like in Case 3. This effect on power is logical because the coefficient bits are ANDed 

with input bits during the partial product generation stage of the FIR filter. Any coefficient bits 
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set to logic 0 will cause those partial product outputs to remain permanently at zero during 

operation. 

 From the large difference in number of transitions per cycle between the MTNCL and 

synchronous designs, it is easy to see why the MTNCL design uses so much more dynamic 

power than the synchronous design. However, activity factor is only part of the power equation. 

Capacitive load also plays a large part in the difference between MTNCL and synchronous 

power usage. These activity factors in this section are averaged across the entire design, but 

some nodes in the circuit with very different capacitive loads may have activity factors that 

deviate significantly from the mean. For example the clock in synchronous designs has a high 

load capacitance and an activity factor of 1. Nodes like this limit the accuracy of such a 

generalized analysis. 

3.3.2  Fanout and Capacitive Load 

The fanout and capacitive load of the two different architectures combine with the 

activity factor to make up the dynamic power difference according to Equation 5. The fanout of 

the two circuits are quite different especially with respect to their synchronization signals, clock 

for the synchronous designs and sleep for the MTNCL design. Both clock and the sleep signals 

can have a high fanout and must be timed properly for the circuit to function, albeit the sleep 

signal to a lesser degree. The fanout of the sleep signal in MTNCL logic increases with both the 

size of the combinational logic block of the pipeline stage as well as the number of registers in 

the pipeline stage. On the other hand, the clock signal fanout depends on the total number of 

registers in the design, as it is a global synchronization signal. In addition to the fanout of the 

clock, delay units or extra buffers are often added to certain paths to ensure setup and hold time, 

rise/fall time, and slew rate targets are met. Even taking into consideration the timing issues 
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discussed in Section 2.3 the MTNCL sleep signals will not require as many delay units because 

the MTNCL architecture is still inherently more robust. 

Capacitive load depends not only on the fanout, but also on the size of the transistors that 

are being driven (input capacitance) and the wire routing capacitance. Since this work focuses 

mainly on pre-physical design and wire lengths are highly dependent on the place and route 

process, wire capacitances will be ignored except for the purpose of clock tree synthesis (CTS) 

for the synchronous design. The input capacitance of logic gates in the design depends on the 

process node and how the standard logic library itself was designed. Typically the gates with the 

lowest drive strength in the library are approximately minimum sized for the process node, with 

only small, sparse increases in transistor width to balance the rise-fall times of the gate. 

Depending on the fanout and speed of the design, either architecture may require larger gates or 

buffers within the design in order to maintain appropriate rise/fall times and delay targets. 

For MTNCL, which operates in an event driven manner, slow rise/fall times may affect 

the performance of the design, but will not cause the circuit to stop functioning as long as they 

are not in the critical paths described in Section 2.3. Synchronous designs, on the other hand, are 

very susceptible to the additional delays caused by under-buffering and could malfunction 

without proper buffering. For this reason, MTNCL is often able to support smaller gate sizes 

than synchronous designs, which reduces the capacitive load on each net and therefore the power 

consumption. 

3.3.3  Combinational Logic Gate Composition 

The gate composition of the circuit can also have a large effect on the power tradeoff 

between MTNCL and synchronous designs. This difference arises mainly out of the way logic 

cells are created for each architecture type. For example, MTNCL circuits use threshold gates to 
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implement logic functions, while synchronous libraries typically have a wide range of different 

cell types. Not only do synchronous libraries implement the basic standard logic cells such as 

AND, OR, NAND, etc., but they also typically implement more complicated Boolean functions 

such as full adders, multiplexers, and combination gates. These additional gates in synchronous 

libraries allow for optimizations to be performed at the transistor level for more complex 

Boolean functions. While it is possible to create more complex gates for MTNCL as well, they 

are not typically developed as part of the cell library. 

This difference in gate libraries can also be seen between the FSM and ALU designs. 

Since the FSM does not contain any addition or multiplexing, the synchronous design cannot 

take advantage of these optimized gates. Conversely, the ALU contains many opportunities for 

these specialized synchronous gates to be implemented. For comparison, an optimized fully-

static Boolean full adder requires only 28 transistors; whereas, an MTNCL full adder uses 2 

TH24compm gates, 1 TH12m gate, and 1 TH22m gate for a total of 40 transistors. The Boolean 

MUX gate in the 45nm process uses 14 transistors (without transmission gates), but to create this 

same gate using only threshold gates requires 2 THxorm gates for a total of 24 transistors. These 

increases in transistor number are due also in part to the dual-rail architecture of MTNCL since 

both rail1 and rail0 outputs must be implemented. 

The average activity factor can also be used to compare across design type to see how 

differences in design structure affect the amount of switching in the circuit. For each design, a 

SAIF file was generated containing the number of transitions of each net for a given simulation. 

This data was then averaged across the total number of cycles and each design size to get the 

average number of transitions per cycle. The results of this calculation are shown in Table 20 and 

Table 21. 
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Table 20: Average activity data for synchronous designs 

Design Toggle Count Number of Signals Activity Factor 

FIRu 238,301 7,818 15.2% 

ALU 176,830 448 19.9% 

FSM 41,173 237 11.8% 

Table 21: Average activity data for MTNCL designs 

Design Toggle Count Number of Signals Activity Factor 

FIRu 5,170,089 11,043 46.8% 

ALU 517,700 1,150 46.5% 

FSM 188,243 1,560 27.1% 

One interesting thing to notice when comparing the activity factor across designs is the 

vastly lower average activity factor for the MTNCL FSM than other MTNCL circuits. This 

shows just how different the FSM structure is from the other designs. Since the other designs are 

made up mostly of adders and registers, the dual-rail nature of MTNCL is largely maintained 

throughout the combinational logic block. However, the FSM does not use adders and this 

changes the way internal signals are combined throughout the design. In fact, as the design gets 

larger the MTNCL activity factor decreases as more nodes in the circuit remain constant every 

cycle. 

3.3.4  Leakage Power 

The type of design can also have an impact on the leakage power tradeoff between 

MTNCL and synchronous designs, but only if the design type drastically affects the total 

transistor width of the circuit. The gates available in the cell library could affect the total 

transistor width of the design, which proportionally affects the leakage power. High fanout nets 

will also require transistors with larger widths in order to drive higher capacitive loads on these 

signal nets. 

However, looking at the MTNCL and synchronous ALUs and FSMs, the leakage power 

depends more on the total number of MTNCL gates and varies very little between designs of the 



37 

 

same size. For example the leakage power difference of the 16-bit ALU is 45.8µW, and the 

difference for the B26 FSM is 44.8µW. The MTNCL ALU design has 699 gates and the 

MTNCL FSM has 703 gates. Interestingly, there is a much larger difference in the number of 

synchronous gates, 177 for the ALU and 415 for the FSM. This is because many of the ALU 

gates are complex gates like full adders or multiplexers, which typically have a higher transistor 

count. 

3.4  Power Analysis of Scaling Circuit Size 

Out of all the possible factors the power difference between MTNCL and synchronous 

designs can depend on, circuit size has one of the largest effects. The dynamic power difference 

increases in favor of synchronous as the size of the circuit increases for nearly every circuit 

compared. This is most likely due to the larger number of nodes and higher switching activity of 

MTNCL outpacing the additional power needed for the clock buffer tree. However, the leakage 

power difference scales in favor of MTNCL as the circuit size increases for all of the compared 

circuits. These two metrics will be discussed in greater depth in the following sections. 

3.4.1  Dynamic Power 

One theory for the dynamic power tradeoff between MTNCL and synchronous designs is 

that the power consumption would tip in favor of MTNCL as the size of the circuit increases due 

to increased buffering requirements of the clock tree. In order to test this, all 3 designs were 

scaled with respect to circuit size in order to determine the effects of increased circuit size on the 

power tradeoff between MTNCL and synchronous designs. 

The first circuit scaled according to circuit size was the ALU. Looking at Figure 15, the 

difference in power roughly doubles as the number of input bits for the ALU doubles for every 

case except the 130nm 64-bit ALU. With the exception of this one case, it does not appear that 
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this increasing difference in power slows down across the cases tested. The reason for this 

discrepancy in A64 is explained in more detail in Section 3.5, but most likely has to do with the 

average speed of the MTNCL design being too fast for the synchronous design clock speed. For 

the ALU, the number of combinational logic gates and registers scale at approximately the same 

rate. In other words, doubling the size of the ALU also approximately doubles the number of 

registers and combinational logic gates for both designs. This means that the capacitive load of 

the clock and sleep signals scale at approximately the same rate. 

 
Figure 15: Effects of circuit size on ALU PDP difference 

The pipelined FIR filter was also scaled with respect to tap size to see the effects of 

scaling a pipelined design. Since this design is highly pipelined, it has a much higher number of 

registers in relation to the number of combinational logic blocks; however, as the number of taps 

in the FIR filter increases, Figure 16 shows that the power difference continues to increase with 

an increase in circuit size but at a slightly slower rate than the ALU. 
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Figure 16: Effects of circuit size on pipelined FIR PDP difference in 45nm process 
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the clock signal in the synchronous design. From these two effects, any difference in the way the 

combinational logic and registers scale with the circuit’s size is bound to have an effect on the 

power tradeoff between MTNCL and synchronous designs. 

 
Figure 17: Effects of increasing number of input bits of FSM on PDP difference 
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Figure 18: Effects of increasing number of state bits of FSM on PDP difference 

 

Figure 19: PDP difference vs number of gates in design 
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From the preceding data, it appears that the MTNCL design continues to use more 

dynamic power than an equivalent synchronous design even as the size of the circuit increases. 

Since the power consumed by the clock tree increases with respect to circuit size in synchronous 

designs, it must be the case that the MTNCL buffer trees for the combinational logic or other 

factors make up for the increased power of the clock tree. This leads to a relatively linear 

increase in the PDP difference between the two designs as the number of gates in the designs 

increase as shown in Figure 19. 

Even though the power requirements of the clock tree do not appear to outpace the power 

consumption of the ALU for the designs compared, it is possible that there would be an effect at 

the chip level for extremely large designs. In this type of design, the local completion detection 

signals would have a significantly smaller buffer tree than the one required for the clock. 

Additionally, the clock would be routed across the entire circuit creating long traces and adding 

to the routing capacitance. More work needs to be done at the full chip level to see the power 

tradeoff after place and route. 

3.4.2  Leakage Power 

Leakage power consumption depends primarily on threshold voltages and transistor 

widths in the design. MTNCL gates almost universally use less leakage power than synchronous 

gates due to the high threshold transistors built into their logic. Therefore, it stands to reason that 

as the number of gates in the circuit increases, the benefit of the MTNCL design in terms of 

leakage power will also increase as long as the MTNCL gates are not significantly larger in size. 

In fact, this trend is seen clearly for every design compared. The following figures show the 

leakage power difference, with a positive number indicating the synchronous design using more 

power. 
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Figure 20: Effect of increasing number of state bits of FSM on leakage power difference 

 
Figure 21: Effect of increasing number of input bits of FSM on leakage power difference 
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Like the PDP difference in the previous section, the leakage power difference appears to 

be roughly proportional to the number of gates in the design except in favor of MTNCL. This is 

as expected due to the higher threshold transistors in each gate of the MTNCL gate library. 

3.5  Analyzing Power Tradeoff across Process Nodes 

3.5.1  Dynamic Power 

Process node also has a substantial impact on the power tradeoff between MTNCL and 

synchronous designs. However the absolute difference in the PDP for the two architectures does 

not show a clear trend across all the designs. For some circuit types, the power difference 

increases as the process size decreases, while for others the power difference decreases. This 

could explain in part why some research into MTNCL in the past found that MTNCL was better 

in terms of dynamic power than an equivalent synchronous circuit since much of the previous 

research is at larger process nodes like the GF 130nm process. 

 
Figure 22: PDP difference for FSM designs with varying state bits 
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Figure 23: PDP difference for FSM designs with varying input bits 
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could widen the gap between MTNCL’s average-case performance and synchronous’ worst-case 

performance making timing targets for the synchronous design more difficult to meet during 

synthesis. 

 
Figure 24: PDP difference for unpipelined FIR design 
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Figure 25: PDP difference for ALU designs  
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Figure 26: Leakage power difference for ALU designs 

As shown in Figure 26, the leakage power difference more than doubled between each 
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Figure 27: Leakage power difference for FSM designs (1) 

 
Figure 28: Leakage power difference for FSM designs (2) 
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Figure 29: Leakage power difference for FSM designs (3) 

 While the MTNCL FSMs uses less leakage power than their synchronous counterparts 

across all design sizes, the 45nm leakage power difference was smaller than that of the 90nm for 

the 2 smallest designs of the 9 tested. This deviation from the trend seen in the rest of the circuits 

is most likely due to differences in the standard cell library and synthesized netlist. Since the 

leakage power difference is so small for these smaller designs, any differences in the netlist 

could impact the leakage power. In fact, the 90nm synchronous FSM netlist uses 18 gates; 

whereas, the 45nm synchronous FSM netlist uses only 13 gates. Therefore, it does not appear 

that the 2 cases in Figure 27 and Figure 28 which deviate from the trend disprove the theory that 

MTNCL circuits are generally better at smaller process nodes in terms of leakage. Rarely would 

a circuit be implemented with so few logic gates. 

 Finally, the leakage power of the unpipelined FIR filter is shown across process nodes in 

Figure 30. 
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Figure 30: Leakage power difference for unpipelined FIR 
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3.6.1  Dynamic Power 

To compare the dynamic power difference between the two FIR designs with respect to 

pipelining, both designs were simulated using the same 3 test cases described in Section 3.2.3. 

The results of these simulations are shown in Figure 31 below. 

 
Figure 31: PDP difference for unpipelined and pipelined FIR filter in 45nm process 
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Figure 32: PDP for unpipelined and pipelined FIR filter in 45nm process 
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Figure 33: Leakage power difference for unpipelined and pipelined FIR in 45nm process 
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4  Conclusion 

In conclusion, MTNCL circuits are best suited for application scenarios where periods of 

high-speed computation are required followed by long periods of inactivity. This is because 

MTNCL circuits typically use more dynamic power when compared with equivalent 

synchronous circuits, especially as the process feature size decreases. In order to achieve these 

same low leakage benefits in synchronous circuits, additional circuitry must be added to 

determine when it is safe to sleep the circuit through multi-threshold CMOS power gating which 

adds additional paths for leakage current and consumes more dynamic power during operation. 

However, the method of sleeping MTNCL circuits is built directly into the architecture itself. 

The sparsity of data waves required to make MTNCL beneficial over equivalent 

synchronous designs depends on the difference between the dynamic power of both designs as 

well as the difference between the MTNCL and synchronous leakage power consumption. Both 

of these power figures depend on process node, input data patterns, design type, circuit size, and 

pipeline granularity to varying degrees. Larger differences in dynamic power consumption 

between the equivalent MTNCL and synchronous designs will require either longer periods of 

inactivity or a larger difference in leakage power between the two designs in order to make 

MTNCL beneficial in terms of power. 

In general, the difference in dynamic power consumption between MTNCL and 

synchronous increases when design size increases and decreases with an increase in pipeline 

stages. The effects of scaling process node are dependent on the design type. The MTNCL 

dynamic power consumption was higher than the equivalent synchronous design for nearly all 

test cases. The leakage power difference on the other hand increases in favor of MTNCL with 

increasing design size, decreasing process node, and an increase in pipeline stages. The MTNCL 
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leakage power was lower than the equivalent synchronous design for nearly all test cases. Figure 

34 and Figure 35 show the general trend of the effect on PDP difference and leakage power 

difference for each of these design dimensions explored. For the leakage power only the design 

size and process node are shown since differences in design and pipeline stages affect leakage 

primarily through design size. Moving up along the y-axis on each graph indicates a widening 

gap between the MTNCL and synchronous power values in favor of the synchronous 

architecture for the PDP difference and in favor of MTNCL for the leakage power difference. 

 
Figure 34: General trend of PDP difference for each dimension explored 
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Figure 35: General trend of leakage difference with respect to design size and process node 

In the future, it may be beneficial to use SAIF files to estimate power usage of 

asynchronous circuits earlier in the design flow without the need for time consuming transistor-

level simulations. This power analysis method only requires the synthesized netlist, Liberty file, 

and testbench; however, first the accuracy of these results must be evaluated for asynchronous 

designs. If this is a viable method, it could drastically reduce the iteration time required when 

designing an MTNCL circuit for low power applications. Additionally, it would be interesting to 

see if MTNCL switching activity can be reduced by decreasing the number of internal nodes that 

must switch during a DATA/NULL cycle through synthesis optimizations as the higher 

switching activity of MTNCL is one of the driving factors for its higher dynamic power 

consumption.  
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