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ABSTRACT 

 

Poly-N-substituted glycines (peptoids) are a very versatile family of synthetic molecules that can 

be customized for any number of applications. In this study, we chose to use peptoids as a 

foundation for sandwich ELISA microarray analysis with a long term goal of creating an early 

detection device for complex diseases such as cancer. The peptoids were designed to self-

assemble into microspheres to be used in coatings on the surface of the microarray substrates to 

increase the surface area available for antibody attachment. This increased antibody density 

would lead to an increase in the microarray analysis sensitivity and dynamic range. Studies were 

completed to determine the sequence characteristics and application process conditions necessary 

to form robust, uniform surface microsphere coatings. Polarity characteristics throughout the 

peptoid sequences were studied to determine how the choice and placement of charged 

functional groups effects self-assembly. The affect of secondary structure on the formation of 

microspheres was also studied, as we believe aromatic stacking mechanisms between the 

molecule’s helical faces help with microsphere stabilization. Through this research, it was found 

that peptoids with a combination of chiral and aromatic side-chains accounting for at least two-

thirds of the residues contain the helical and hydrophobic characteristics necessary to form self-

assembled microspheres. An additional study was completed to investigate the effects of 

application process conditions on the uniformity of the coatings. We have shown that peptoid 

based microspheres have the ability to form uniform surface coatings under normal processing 

conditions, and are an exciting new avenue for early disease detection.  
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1. Introduction 

 

Pursuit of an efficient, non-invasive, and economical tool for the early detection of complex 

diseases, such as cancer, has been a main focus in the health care industry for many years. There 

is an array of effective methods used clinically to detect these diseases at various stages to 

increase survival rates, but they also have many risks and side effects associated with them. 

Cancer, in particular, can be detected through self-checks, magnetic resonance imaging (MRI) 

and mammograms, just to name a few.1 In order to be effective in detection, each of these scans 

requires the disease be at a visible or advanced stage. Cancer has been a challenge to detect 

biologically, or through a serum sample, in the early stages as you must be able to scan for a 

number of biomarkers (i.e. proteins) simultaneously to achieve a high level of sensitivity and 

specificity.2 These early-stage biomarkers present another challenge as they are found in minute 

concentrations in serum samples. It is believed that these low abundance proteins would likely be 

the best marker for the early stages of cancer if they could be readily detected.2-6 

 

Sandwich enzyme-linked immunosorbent assay (ELISA) microarray technology has potential for 

use in cancer detection as it can simultaneously detect multiple proteins (up to 50) and uses a 

very small sample volume (15 µL after dilution).2, 7, 8 Although the theoretical level of sensitivity 

of sandwich ELISA microarrays has not yet been achieved, we believe through optimization of 

coating, printing, and detection methods, these levels can be reached.2, 9-12 One aspect of the 

detection process that can be altered to increase sensitivity is the density of immobilized 

antibodies. A three-dimensional surface coating would allow for a higher antibody attachment 

capacity due to increased surface area.13  



 

2 

 

We have found that poly-N-substituted glycines (peptoids) designed with a combination of chiral 

aromatic side-chains accounting for at least two-thirds of the residues contain the helical and 

hydrophobic characteristics necessary to form self-assembled microspheres. These microspheres 

can be used to form uniform slide coatings when dried on a solid substrate surface from an 

aqueous solution, and have the potential to increase microarray detection efficiency by 

increasing the overall antibody attachment density. The peptoids have been designed and 

synthesized with a robust helical structure in mind and then analyzed and purified before creating 

a solution with which to coat clean glass slides. We recommend using peptoid based slide 

coatings as the platform from which to build a reliable test for disease detection. These peptoid 

coated slides can be used in conjunction with the technology of sandwich ELISA microarray 

analysis to strengthen the detection signal and in turn increase the efficiency of our current 

disease detection methods. We believe peptoid-based slide coatings will increase the efficiency 

of disease detection, in turn decreasing the time and money spent towards yearly screenings and 

disease treatment. 
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2. Background 

 

2.1 ELISA Microarray 

 

 The use of peptoid-based slide coatings with sandwich enzyme-linked immunosorbent assay 

(ELISA) microarrays is a promising start to detecting small concentrations of protein biomarkers 

in biological solutions.2, 8, 14, 15 Sandwich ELISA consists of a number of material interactions, as 

illustrated in Figure 1. A capture antibody is printed onto a glass slide followed by incubation 

with a biological sample where, if present, the diseased antigen will attach to the capture 

antibody. A detection antibody that is specific to the disease antigen is then added to the slides, 

and if a perfect ‘sandwich’ attachment is made, the detection antibody will fluoresce when 

scanned with detection software.2 

 

This form of ELISA allows for not only the detection of the targeted antigen in solution, but 

quantification of the concentration of the antigen in solution.16 Sandwich ELISA is believed to be 

Figure 1. Schematic diagram of sandwich (ELISA) microarray analysis 
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the most sensitive method available for routinely measuring levels of multiple proteins.2 While 

96-well plate ELISA is currently the gold standard for protein detection, it is inefficient and time 

consuming when trying to measure levels of multiple proteins and utilizing small sample 

volumes.2, 13, 17 Although sandwich ELISA microarray has very high sensitivity levels when 

compared to other scanning methods, its theoretically predicted levels have yet to be reached.2,9-12 
  

 

2.1.1 Available Coatings 

 

Antibody slide investigations were performed by Angenendt, et al. to determine the performance 

of a number of commercially available slides based on detection limits, slide variation, and 

signal to spotted concentration ratios. Overall they found that slides that bound antibodies 

through covalent interactions performed better with respect to signal intensity than those with 

non-covalently binding surfaces.
8
 We hope to incorporate these findings into our future 

microsphere coatings so they can directly bind with the antibodies and increase signal intensities.  

 

Seurynck-Servoss, et al. performed a review of 24, commercially available, slide coatings to 

evaluate ELISA microarray performance based on spot size and morphology, slide noise, spot 

background, lower limit of detection, and reproducibility.7 The review concluded that 2-D 

surface chemistries, such as lysine- or amine-coated, performed better than the 3-D porous 

surface coatings, such as hydrogels. Currently available 3-D surface coatings utilize a process 

where the antibodies diffuse through the porous materials to increase the total number of 

antibodies attached to the slides. There are many issues with this process when trying to block 
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the surfaces from nonspecific protein binding due to the slow diffusion rates of the blocking 

solution.7  

 

Our goal is to increase assay sensitivity by creating a non-porous 3-D coating that eliminates the 

diffusion issues previously observed while simultaneously creating an environment with high 

binding capacity, retention of antibody structure, low background noise, and the reproducibility 

needed for antibody immobilization.2, 7, 13, 18 
These coating alterations should result in lower 

background noise than most 3-D surface coatings and surpass the sensitivity and dynamic range 

of the currently available 2-D coatings, hopefully reaching the level of sensitivity theoretically 

determined for sandwich ELISA microarrays.  

 

2.2 Nano/Microstructures 

 

The addition of 3-D microstructures to the surface of ELISA microarray slides will greatly 

increase the surface area available for attachment of capture antibodies. The designed peptoid 

sequences will assemble into microspheres that have a diameter (0.8-5 µm) ~100 times greater 

than that of the IgG antibodies (< 50 nm) used during ELISA microarray analysis.19, 20 These 

microstructures will be built using the bottom up method which includes beginning with a base 

design and building a final structure from that design. This method will hopefully allow us to 

start by designing the peptoid from scratch to create a specific size and shape of microsphere.21  

 

Micro/nanostructures are widely studied for how, when and why they spontaneously self-

assemble under certain conditions. It has been found that these structures tend to self-assemble 
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due to a number of interactions including electrostatic, hydrogen bonding, hydrophobic, and 

aromatic stacking.21 Peptides with short sequences, consisting of aromatics, seem to 

spontaneously form microstructures when an organic solution is diluted to make an aqueous one, 

or by alternating heating and cooling of an aqueous solution.21 Other types of microstructures 

have been shown to form when a colloid containing the sample is deposited on a substrate and 

the solvent begins to evaporate.22 The capillary forces exerted during evaporation pull the 

structures together to form supramolecular assemblies.21-23 We believe the peptoid microspheres 

we are studying self-assemble due to hydrophobic and aromatic stacking mechanisms that will 

help to produce tightly packed, uniform coatings. 

 

2.2.1 Structure Assembly and Utilization 

 

Many different types of materials have been shown to self-assemble on the nanoscale. Nanotubes 

have been shown by Ghadiri to be customized using peptides and assembled through the same 

aromatic stacking mechanism that we used with peptoids.24 These nanotubes were envisioned to 

be functionalized for use in electronic applications through charge transfer along the outside of 

the tubes.24 The self-assembly of metallic-based surface patterns can give ample information 

about the substrate on which it has formed and the self-assembled sample itself.25 This 

phenomenon was demonstrated by Plass during his investigation of lead vapor deposition on 

copper.25  

 

Although the structural patterns discussed thus far have numerous applications, our goal is to 

create self-assembled nano/microspheres to increase the attachment surface area for our 
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microarray slides. Jarai-Szabo, Astilean, and Neda described a very simple technique for 

nanosphere self-assembly through drying of a colloidal poly-styrene suspension onto a substrate 

in which drying capillary forces pulled the spheres together to yield dense nanosphere arrays.22 

They were also able to develop a model that predicts the organizational patterns of the 

nanospheres.22 Gazit described peptide-based nanospheres designed with short aromatic side-

chains self-assembled spontaneously when their organic solvent solution was diluted to an 

aqueous one, much like the formation of nanotubes.21 We utilized this method for our peptoid-

based microsphere formation, as we assumed they would react similarly in solution because their 

structural design is closely related to that of peptides.  

 

The self-assembly and utilization techniques for nano/microstructures mentioned thus far are just 

a fraction of the possibilities available for applications. Schatz discussed the “playground” 

available to researchers through the utilization of such self-assembled structures.23 We believe 

through the combination of these self-assembled structures, peptoid customization, and 

microarray analysis techniques we will be able to create a reliable early disease detection 

platform. 

 

2.3 Peptoids 

 

Peptoids are biomimetic polymers based on oligo-N-substituted glycine backbones, where the 

side-chains are appended to the amide groups rather than the α-carbons, as in peptides.26 The 

change in side-chain location eliminates the need for backbone protection steps during synthesis 

and greatly simplifies the synthesis protocol.26 The most commonly used process to assemble 



 

 

 

Figure 2. Schematic diagram depicting solid-phase synthesis of a peptoid by submonomer addition method 
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peptoids is through submonomer additions,26 as shown in Figure 2. Peptoids can be rapidly 

synthesized using automated, solid-phase equipment where a multitude of functional groups can 

be attached as side-chains through the addition of any free amine.26, 27 The possibilities for side 

chain combinations are practically limitless, as these sequences create synthetic molecules and 

are not limited to the naturally occurring amino acids, as with peptides.27 Although peptoids lack 

the ability to form the backbone hydrogen bonds that peptides use to induce a stable helical fold, 

it has been shown that peptoids with chiral, aromatic side-chains can form robust secondary 

helical structures.28-33 
It is believed the stabilization of the molecule is achieved through aromatic 

steric interactions along with electrostatic repulsion between the π clouds of the side-chains and 

the backbone carbonyls.28, 29 These stable helices can be formed with peptoids as short as five 

residues in length and strongly resemble the structure of polyproline type 1 helices with a 

periodicity of three residues per turn and a pitch of ~6 Å.34 The ability of peptoids to form stable 

secondary structures leads us to believe they will be the ideal platform on which to build our 

detection process. 

 

2.3.1 Secondary Structure 

 

Extensive work has been completed in the area of peptoid secondary structure formation. Mohle 

and Hofmann studied the effects of single side-chain N-substitution on secondary structure 

formation and found that even minimal N-substitution induced helical structure.35 Through the 

use of molecular modeling, Armand, et al. predicted that fully N-substituted glycines with chiral 

functional group centers could successfully form stable helical secondary structures, and later 

confirmed these predictions by nuclear magnetic resonance (NMR).34, 36  Kirshenbaum, et al. 



 

10 

 

later observed peptoid oligomers with circular dichroism (CD) spectra closely resembling that of 

peptide α-helices. They were also able to achieve stable formation of these peptide α-helices-like 

structures for peptoids as short as five residues in length.33  

 

Broad-based studies began to emerge within this expanding new field of research. Wu, et al. 

investigated the effects of sequence specifications and chain length on the formation of 

secondary structure for peptoids with chiral aromatic side-chains. Through their sequence 

specifications study they found that at least half of the side-chains in the peptoid sequence must 

be α-chiral, aromatic in order to form a stable helical structure.30 These findings have allowed 

many researchers to functionalize their peptoid designs while remaining confident of the final 

secondary structure of the molecules. Through their chain length studies, Wu, et al. confirmed 

Mohle and Hofmann’s initial findings that peptoids with as few as five chiral residues can form 

stable helical structures as long as they are made up of α-chiral, aromatic side-chains.29,35 They 

also found that although in short peptoids the chain length has a large effect on the CD spectra, 

the chain length no longer has an effect on the secondary structure after about 12 residues.29 The 

peptoids described in this paper are all made up of 12 residues, allowing us to assume all 

secondary structure is fully formed and stable. 

 

Wu, et al. also studied the formation of helices utilizing peptoids with α-chiral aliphatic side-

chains. Although aliphatic compounds are non-aromatic and therefore do not have the ability for 

π-π interactions shown to help stabilize peptoid helices, these peptoids were shown to 

successfully form stabile helices.31 Through this aliphatic peptoid study Wu, et al. were able to 

successfully present the first crystallized structure of any peptoid.31 These peptoids both formed 
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structures and depicted CD spectra resembling polyproline type 1-like helices.31 This is different 

from α-chiral aromatic side-chain containing peptoids, as they form polyproline type I-like 

helices, but adopt CD spectra similar to peptide α-helices.31, 32 

 

Although the majority of the research with peptoids discussed above has referred to peptoids 

forming stable, robust secondary helical structure, all results have been based on the CD spectra 

and NMR studies resembling that of peptide helices. These peptide helices have been crystallized 

and analyzed to view the actual conformation of the individual structures. Stringer, Crapster, 

Guzei and Blackwell were the first to report completing this same analysis using peptoids with α-

chiral, aromatics side-chains. Their findings confirmed the NMR results by Armand, et al. that 

the peptoid forms a stable right-handed helix with an average of three monomers per turn and a 

pitch of ~6 Å.34  

 

2.3.2 Functional Applications 

 

Peptoids are an ideal candidate for use in a number of applications as their choices for side-chain 

functionality is almost limitless,27 submonomer solid-phase synthesis allows for quick and 

inexpensive manufacturing,26 and stable helical secondary structure leads to possibilities for 

tertiary structure functionality.28-33 Peptoids have been proposed for use in biomimicry of 

peptides and proteins found in nature.37 Biomimetic peptoids were designed and found to be 

promising for both lung surfactant protein B and C by the Barron group, both of which could be 

used to replace the natural lung surfactant of patients with respiratory distress syndrome.38-43  
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Peptoids have also been designed to mimic the characteristics of antimicrobial peptides leading 

to antibiotic agents that are biostable and protease-resistant.44,45 Peptoids are also being utilized 

for their ability to recognize differences in neighboring molecules. Wu, et al. showed peptoids 

have potential as chiral separators through use of their amide and aromatics side-chains that 

allow for hydrogen bonding between the peptoids and the enantiomers in solution.46 Huang, et al. 

also took advantage of the protease-resistant characteristics of peptoids to create a lipid-peptoid 

structure for DNA transfer within the body.47 These lipid-peptoid structures are hoped to replace 

the currently used viruses for transport of DNA into cells and greatly reduce the risks factors for 

patients of gene therapy.47  

 

It is obvious that peptoids have many possible applications, and we believe our self-assembled 

microsphere coatings will add to this growing list. Not only do peptoids possess the specific 

characteristic of robust secondary helical structure necessary for the assembly of our coatings,28-33 

but they are highly customizable for future applications.26, 27 Peptoids will help to form the ideal 

coating for our disease detection device. 

 

2.4 Microsphere Motivation 

 

In this research we utilized the unique characteristics of ELISA microarray analysis, peptoids, 

and microstructure formation to create a stable foundation on which to build a reliable tool for 

early disease detection. We chose to use peptoids as our basis for assembling uniform 

nanospheres due to their low cost and the fact that they can be highly customizable. Peptoids 

have just recently become an interest of study for their ability to self-assemble into organized 
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tertiary structures. Seo, Barron, and Zuckermann reported that peptoids had the potential for 

numerous applications in the field of nanoscience through their investigation of the structure 

inducing chiral centers introduced to peptoid side-chains.28 Since this observation of assembly 

potential, many self-assembled peptoid structures have been created including superhelicies,48 

crystalline sheets,49 ribbons,50 and monolayers that can further form into stable nanosheets.51 The 

use of peptoids as the basis for our self-assembled microspheres allows us to utilize their unique 

characteristics in order to create a robust, stable disease detection device that can be customized 

to fit numerous applications. 

 

Helical, hydrophobic peptoids have been shown to create microspheres when dissolved in an 

organic/water mixture and then dried on a substrate (Dr. Modi Wetzler, Personal Communication 

2008). These helical peptoid microspheres have been verified in our lab as displayed in Figure 

8B & C.
  

 

We hypothesize that peptoid microspheres form due to a combination of hydrophobic and 

aromatic stacking interactions when introduced to an aqueous/organic solution. Due to their 

hydrophobic nature, the individual peptoids group together when water is introduced to the 

organic environment. Aromatic stacking interactions occur between the Nspe groups on two of 

the helical faces of each peptoid, as depicted in Figure 10A.48,52 These interactions are an attempt 

to conceal the hydrophobic faces of the helical molecules from the water. Since there are two 

complete faces of hydrophobic residues on each molecule, this stacking can create organization 

in multiple directions simultaneously.  
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Further organization of the peptoids can be achieved through incorporation of polar functional 

groups (NLys, NGlu, Ala [t-Bu]) on the last helical face of each molecule. Although many of the 

polar faces will be buried inside the spheres as the individual peptoids have a length of ~72Å and 

the microspheres have a diameter near 1µm, leading to the conclusion that many peptoids are 

coming together to form these spheres, some the polar faces will form a hydrophilic barrier 

around the outside of the sphere. The peptoids form a spherical structure since it is the lowest 

energy structure in nature that can conceal the hydrophobic faces and allow only polar faces to 

interact with the aqueous solvent.  
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3. Materials and Methods 

 

3.1 Materials 

 

4-methoxybenzylamine (Nmba), (S)-methylbenzylamine (Nspe), and benzylamine (Nba) were 

purchased from Acros Organics (Pittsburgh, PA). Tert-Butyl N-(4-aminobutyl)carbamate (NLys) 

was purchased from CNH Technologies INC. (Woburn, MA). 2-carboxyethylamine (NGlu) was 

purchased from EMD Chemicals (Gibbstown, NJ) and H-Ala-OtBu·HCL (Ala(t-Bu)) was 

purchased from BACHEM (Torrance, CA), which underwent a free-base reaction to remove HCl 

before peptoid synthesis. Acetic anhydride was purchased from Alfa Aesar (Ward Hill, MA). 

Sequencial grade N,N-Diisopropylethylamine (DIEA) for use during N-terminus acetylation was 

purchased from Pierce (Rockford, IL). MBHA rink amide resin was purchased from 

NovaBiochem (Gibbstown, NJ). Test grade silicon wafers were purchased from University 

Wafer (South Boston, MA) and ultra clean glass microarray slides were purchased from Thermo 

Scientific (Pittsburgh, PA). All other reagents used during synthesis, purification and sample 

preparation were purchased from VWR (Radnor, PA) and used without any further purification. 

 

3.2 Methods 

 

3.2.1 Peptoid Synthesis and Purification 

 

Peptoids were synthesized via the submonomer addition method26 on rink amide resin using an 

433A Applied Biosystems Peptide Synthesizer (Carlsbad, CA) that had been refurbished from an 
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ABI 431A synthesizer. Synthesis was controlled with manually altered peptide chemistry and 

programming.
 
The N-termini of peptoids 1 and 2 were acetylated with a 50 fold molar excess of 

acetic anhydride as the last step of synthesis. Once synthesized, all peptoids were cleaved from 

the resin by bathing in a solution of 95% triflouroacetic acid (TFA), 2.5% triisopropyl silane, and 

2.5% water for a period of 2 - 10 minutes (previous studies in our lab and others have shown that 

extended cleavage times can lead to the removal of the aromatic side chains). The acid was 

removed via a Heidolph Laborota 4001 rotating evaporator (Elk Grove Village, IL) and the 

samples were diluted to a concentration of ~3 mg/ml in a 50:50 solution of acetonitrile:water. 

Peptoids were purified using a Waters Delta 600 preparative high performance liquid 

chromatography (HPLC;Milford, MA) with a Duragel G C18 150 x 20.1 mm column (Peeke 

Scientific, Novato, CA) and gradients of ~1% acetonitrile increase per minute over a range 

which included the peptoid elution percentages listed in Table 1. These gradients were created 

through the combination of solvents A and B (solvent A: water, 5% acetonitrile, 0.01% TFA; 

solvent B: acetonitrile, 5% water, 0.01% TFA). Peptoids were confirmed to be >97% pure via 

reversed-phased analytical HPLC (Waters Alliance, Milford, MA) using a Duragel G C18 150 x 

2.1 mm column (Peeke Scientific, Novato, CA) and a linear gradient of 5 to 95% solvent B 

(acetonitrile, 0.1% TFA) in solvent A (water, 0.1% TFA) over 30 min. The purified molecular 

weights were confirmed to match theoretical values using matrix-assisted laser 

desorption/ionization (MALDI) mass spectrometry (Table 1).  
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3.2.2 Sample Preparation 

 

Purified peptoid solutions were dried to a powder using a Labconco lyophilizer (Kansas City, 

MO). The dried peptoids were dissolved in a solution of 4:1 ethanol:water with a peptoid 

concentration of 3 mg/ml for use during initial surface morphology studies. The peptoids were 

also dissolved in a solution of pure methanol at a concentration of 1 mg/ml for use in secondary 

structure analysis. Dried peptoids were also dissolved in 4:1 methanol:water and propanol:water 

solvent solutions at a concentration of 3 mg/ml for use in the extended application process study. 

 

3.2.3 Circular Dichroism 

 

CD spectrometry analysis was performed on a Jasco J-715 instrument (Easton, MD) at room 

temperature with a scanning speed of 10 nm/min and a path length of 0.1 mm. The peptoid 

samples were analyzed in a pure methanol solution at ~0.5 µM concentration. Each resulting 

spectra is the cumulative average of twenty scanning accumulations over a wavelength range of 

190-250 nm. 

 

3.2.4 Surface Morphology Analysis 

 

Peptoids were administered to silicon wafer chips (~ 1 cm x 1 cm) and allowed to dry according 

to the appropriate experimental specifications. Scanning electron microscope (SEM) images 

were taken of all peptoid microsphere coatings discussed in this paper. Although ELISA 

microarray analysis is performed using large glass slides, SEM must have a conductive surface 
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in order to display a satisfactory image of the surface morphology. Silicon wafer chips were used 

during this study to achieve high resolution images of the peptoid microsphere coatings. Once 

coated and dried, the chips were visually analyzed using a Phillips XL-30 environmental 

scanning electron microscope (FEI, Hillsboro, OR) to determine the surface morphology and 

ability to uniformly form a self-assembled peptoid microsphere surface coating. Selected images 

were analyzed using ImageJ software to obtain microsphere size and distribution data. 
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4. Peptoid Microsphere Rationale 

 

4.1 Methods 

 

Peptoid solutions were administered manually by pipette to 1cm x 1cm silicon wafer chips using 

a full coverage coating technique, which consisted of fully coating the top of the chip with a 

sample volume between 20 and 50 µL, and open air drying technique which consisted of the 

coated wafers being placed in an open Petri dish and then left to dry on the bench top without 

any added airflow. 

 

4.2 Peptoid Sequence Rational 

 

Peptoids 1 - 3 (P1 - P3) were designed with 2/3 chiral aromatic functional groups that have been 

shown to induce secondary helical structure28-33 and to allow for the necessary hydrophobic 

characteristics leading to partial water solubility (Figure 4). Due to the patterning of the 

individual functional group types (structures displayed in Figure 3) these peptoids have two 

distinct chiral aromatic faces with the third face functionalized with polar and/or hydrophobic 

side-chains. Peptoid 4 (P4), on the other hand, was designed with achiral aromatic side-chains 

(Figure 4) in hopes of creating a partially water soluble, non-helical peptoid for structural 

comparisons. 

 

P1 and P2 were designed to investigate the effect of polarity on the formation of self-assembled 

microspheres. P1 was designed as depicted in Table 1 with the amine containing (positively  



 

20 

 

Sequence (NC)*
Molecular 

Weight (Da)

% HPLC 

Elution

P1 (Nspe-Nspe-NLys)2-(Nspe-Nspe-NGlu)2 1863 74

P2 (Nspe-Nspe-Ala[t-Bu])2-(Nspe-Nspe-NLys)2 1864 77

P3 (Nspe-NLys-Nspe-Nspe-Nmba-Nspe)2 1917 78

P4 (Nba-NLys-Nba-Nba-Nmba-Nba)2 1806 72

  

Figure 3.Structures of side-chains used for synthesis of 

peptoids 1-4 and their referenced designations. 

Table 1. Peptoid designations, sequences, molecular weights, and HPLC elution percents of 

acetonitrile. *red – possible negative charged side chains; green – possible positive charged side 

chains; purple – chiral aromatic side chains; blue – achiral side chains 
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Figure 4. Chemical structure sketches for peptoids 1-4 depicting functional group 

sequence and protonation states 

P1 

P2 

P3 

P4 
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charged) functional groups oriented near the C-terminus and carboxyl containing functional 

groups oriented near the N-terminus. P2 on the other hand was designed with its positively and 

negatively charged functional groups oriented near the N and C-termini respectively, also 

depicted in Table 1. The charged side-chains for both P1 and P2 are located on the third face of 

the helix. The charge distribution differences between P1 and P2 led to conclusions depicting the 

effects that charged functional groups can have on the formation of peptoid microstructures. 

 

The charge states of P1 and P2 were determined based on acid dissociation (pKa) values for each 

representative amino acid of the chosen functional groups (Table 2), and the measured pH of the 

coating solutions (pH ranges from 3 to 4). All peptoids formed acidic solutions because of 

preceding cleavage protocols, causing them to become TFA-salts. These assumed and measured 

values were then used in conjunction with the Henderson-Hasselbach equation: 

 

            
    

    
  

 

 to determine the ratio of protonated to non-protonated forms of each individual side chain.53 

This process was chosen based on the same convention used for peptides and proteins, and 

allowed us to roughly determine the charged state of each peptoid. 

 

This rough estimation of functional group pKa values could be further refined by investigating 

the effects on ionization characteristics due to the organic solvent and proximity of neighboring 

polar groups. Hestekin, et al. has shown that organic solvents can increase the pKa of a polar  
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Table 2. Peptoid designations coupled with amino acid equivalents and pKa values used in 

conjunction with the Henderson-Hasselbalch equation. 

 

molecule an average of two points on the pH scale.54 They also found that an increase in 

percentage of organic solvent in an aqueous solution leads to a larger change in pKa.54 Due to 

these peptoids having a secondary helical structure, one complete face of the helix will contain 

the potentially charged functional groups that could be influenced by proximity effects. The 

Debye length for each charged ion would need to be investigated to determine how these 

neighboring charges will interact.55 The Zuckermann group has shown that peptoids containing 

multiple ionic functional groups can have identical groups with different pKa values.48, 49 This is 

caused by the first charged group making it more difficult to ionize the second group of the same 

(potential) charge type due to their close proximity.48, 49 Dong, et al. have shown in two separate 

studies that proximity effects can also greatly affect the pKa and in turn the charge 

characteristics of the -COOH groups of the peptoids. They concluded that acidic groups such as -

COOH attached to a backbone are much weaker than their monomer forms in solution.56, 57 

 

Both organic solvent and proximity effects could have a large impact on the charging 

characteristics of P1 and P2. The organic solvent would most likely only affect the deprotonation 

of any hydroxyl groups in the sequences. Raising the pKa of the NGlu and Ala[t-Bu] functional  

Side-chain Designation Amino Acid Equivalent pKa 

NLys Lysine 10 

NGlu Glutamic Acid 4.4 

Ala[t-Bu] C-terminus 3.1 

N-terminus N-terminus 8 
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groups would make them less likely to be charged in the coating solutions. The proximity 

effects, on the other hand, would have an impact on all of the polar functional groups for both 

peptoids. The Debye length would need to be studied for each individual group to determine the 

possibility of positive and negative charging throughout the molecule. Although an organic 

solvent present would raise the pKa of the hydroxyl groups, having an oppositely charged group 

within its Debye length could lower the pKa, making it more easily deprotonated. Cross-

interactions between the pKa differences caused by both solvent and proximity effects would 

need to be investigated to conclude the exact charging characteristics of these two peptoids in 

solution. 

 

P3 and P4 were designed to investigate the effect of secondary helical structure on the formation 

of self-assembled microspheres. P3 was designed with the necessary chiral aromatic functional 

groups to form a robust secondary helical structure, along with two positively charged functional 

groups to simulate the surface chemistry of the currently used poly-L-lysine coated slides and 

two PEG-like functional groups to reduce non-specific protein binding on the substrate surface,58 

as depicted in Table 1. P4, on the other hand, was designed with achiral aromatic functional 

groups to remove the ability to form a secondary helical structure. This extreme difference in 

secondary structure allowed us to observe how the helical content of the peptoid molecule assists 

in the assembly and stabilization of the peptoid microspheres. 

 

The charging characteristics for P3 and P4 were determined using the same parameters discussed 

above regarding P1 and P2. Organic solvent effects should not have a large impact on the 

ionization of P3 and P4 since both P3 and P4 contain only strongly protonated functional groups. 
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On the other hand, the proximity of these charged groups to one another could create strain 

throughout the molecule and make it difficult to have all of the groups protonated at once. Again, 

the Debye length of the ions would need to be investigated to undoubtedly determine the charge 

characteristics of each individual functional group. 

 

4.3 Results and Discussion 

 

P1 was originally designed with the sequence displayed in Table 1, but without acetylation of the 

N-terminus (referred to as P1O). P1O has a molecular weight and percent HPLC elution  43 Da 

and 2% less than the data displayed in Table 1 for P1, respectively. SEM images for P1O 

depicted only globular formations on the surface and no formation of organized microspheres 

(Figure 5A). This led us to believe that P1O did not possess the hydrophobic characteristics 

necessary to self-assemble, and the N-terminus was acetylated to increase the hydrophobicity.  

 

The acetylation was completed by returning the remaining resin to the automated synthesizer and 

washing it in a solution of acetic acid. The acetylation increased the molecular weight and 

elution percentages to those listed in Table 1. This observed increase in HPLC elution percentage 

indicates an increase in the hydrophobicity, or decrease in water solubility, of the peptoid. P1 

was then re-imaged using SEM, and was found to microspheres, but only sparsely (Figure 5B). 

Although some spherical globules are observed in the P1 coating, no uniform formation of the 

expected, tightly formed microspheres were observed. 
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Figure 5. SEM images of peptoid 1 pre (A, scale bar = 10 µm) and post (B, scale bar = 20 

µm) acetylation at a concentration of 3 mg/ml in a 4:1 ethanol:water solution and applied to 

the silicon substrate through full coverage coating and open-air drying techniques 

A B 

A B 

Figure 6. Initial broad view SEM image of peptoid 2 (A, scale bar = 10 µm) and a zoomed-

in image (B, scale bar = 5 µm) at a concentration of 3 mg/ml and a 4:1 ethanol:water solvent 

mixture applied through the pipette spot coating and open-air drying techniques 
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P3 was designed with a single charge-type present in the sequence to reduce the potential for 

protein unfolding on the surface of the future detection slide. P3 also included PEG-like 

functional groups to reduce non-specific protein binding on the surface. Initial SEM images of 

P3 were analyzed after coating a silicon wafer with a 3 mg/ml sample in a solution of 4:1 

ethanol:water using the pipette spot coating and open-air drying techniques (Figure 6). Tightly 

packed, self-assembled peptoid microspheres were observed on the surface of the substrate. 

Although microspheres were observed, the level of uniformity of the coating itself was found to 

be very low. Layering and cracking issues were observed throughout the substrate and are 

indicated by black arrows in Figure 6. 

 

The formation and uniformity problems discovered through the initial analysis of the P1 and P3 

coatings led us to design two separate studies to determine causes of and solutions for these 

observed issues. A study of the effect of polarity and secondary structure was designed to 

determine the effects different characteristics of the peptoid sequence have on its ability to self-

assemble into tightly packed microspheres. An application process study was designed to address 

the fact that P3 successfully formed microspheres, but was not able to create a uniform surface 

coating. This application process study analyzed an array of processing techniques that consisted 

of three different solvent solutions, coating techniques and drying techniques.  
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5. Peptoid Sequence Polarity and Secondary Structure Study 

 

5.1 Results and Discussion 

 

This study was designed to investigate our hypothesis that a peptoid with a stable secondary 

helical structure and partial water-solubility will self-assemble into microspheres when 

introduced to an organic/water solution. As discussed in Chapter 4, although P1 was designed to 

have a secondary helical structure and hydrophobic aromatic functional groups, it was not able to 

successfully form microspheres. This observation led to the inclusion of this sequence polarity 

study, as we believe the location of the polar functional groups throughout the molecule affects 

the ability of the peptoid to self-assemble into microspheres.  

 

5.1.1 Seconday Helical Structure 

  

Peptoids have been shown to form stable, robust, polyproline type 1-like helices when they 

contain at least half chiral aromatic functional groups as a part of their sequence.29, 30 When 

properly designed, the chiral aromatic functional groups align to form one of the helical “faces” 

and help to stabilize the structure.28-30 Although peptoids do not possess the ability to stabilize 

their structure through hydrogen bonding due to their lack of free amines in the backbone, they 

are believed to form these stable helices through steric hindrances of their aromatic functional 

groups and electronic repulsions throughout the molecule.28-30   
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Figure 7. Circular dichroism spectrum of P1 - 4 depicting polyproline type 1-like helical secondary 

structures for P1 - 3 and a random coiling orientation for P4 
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A pure, HPLC grade, methanol solvent was used for all peptoid CD structure analyses. Methanol 

was chosen as the preferred solvent due to its polar protic characteristics. These types of solvents 

have been shown to help “induce” helix formation in peptoids that contain the 2/3 chiral 

aromatic functional groups necessary to form the polyproline type 1-like helices.30-32, 59 Protic 

solvents are believed to create hydrogen bonds with the functional groups of the peptoid, and 

therefore increase stability of the peptoid helices in solution.59 
 

 

Secondary helical structure is depicted by the CD spectra for P1, P2, and P3 with a large peak at 

190 nm followed by two dips of increasing intensity near 200 and 220 nm.30, 33, 37 While P2 also 

depicts this helical structure, its helix shows to be slightly of both P1 and P3, as its main peak at 

190nm has a lower intensity. P4, on the other hand, does not depict any type of helical structure 

according to its CD spectra. The data shows P4 adopts a random coil orientation due to a lack of 

chiral aromatics in the functional groups present in its sequence that are necessary for helix 

formation.30-32 

 

5.1.2 Self-assembled microsphere formation 

 

Both P2 and P3 consistently assembled into uniform microsphere surface coatings, while P1 and 

P4 were never able to assemble into tightly formed microspheres (Figure 8). The structural 

differences between the peptoids that did and did not form microspheres include functional 

group placement, affecting the water solubility, and chirality, affecting the secondary structure.  
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B 

C D 

A 

Figure 8. SEM images of self-assembled microspheres consisting of P1 (A, scale bar = 5 µm), P2 

(B, scale bar = 5 µm), P3 (C, scale bar = 2 µm), and P4 (D, scale bar = 20 µm) at 3 mg/ml 

concentrations and 4:1 ethanol:water solvent solutions 
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Average Diameter Standard Deviation 

Peptoid 2 (P2) 0.337 µm 0.186 µm 

Peptoid 3 (P3) 3.24 µm 1.62 µm 

 

P1 did not self-assemble into a microsphere surface coating (Figure 8A). Through comparison of 

the elution data displayed in Table 1 it was obvious that P1 was more hydrophilic than P2, and 

we hypothesize this characteristic was due to the carboxyl containing functional groups being 

located too closely to the positively charged C-terminus. This orientation of polar groups could 

lead to the molecules being repelled from their counterparts in solution reducing their ability to 

self-assemble. P2 was designed to study the effect of carboxyl group placement. Specifically, the 

polar charged functional group locations were switched relative to P1 to remedy the peptoid from 

repelling itself in solution. As displayed in Table 1, these changes in polar functional group 

distribution did increase the hydrophobicity of the molecule by increasing its elution point by 

3%. P2 showed consistent self-assembly into microspheres when introduced at a concentration of 

3 mg/ml to a 4:1 ethanol:water solvent solution, and coated onto a silicon wafer chip using the 

full coverage coating and open air drying techniques, as shown in Figure 8B.  

 

P3 was shown to have a helical secondary structure and possess the hydrophobic characteristics 

necessary to self-assemble into microspheres. These microspheres are shown in Figure 8C, and 

were consistently formed by P3 when it was processed using the same solvent, coating, and 

Table 3. Peptoid size and distribution data collected through ImageJ 

analysis of SEM images of uniform P2 and P3 surface coatings 
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drying conditions as P2. The microspheres formed by P3were much larger in diameter then those 

of P2, as determined by ImageJ analysis and depicted in Table 3.  

 

We hypothesize that P2 was able to form much tighter microspheres that P3 due to organization 

of the individual peptoids, as depicted in Figure 10C. P3 contains not only a single polarity 

(NLys), but two extra aromatic groups (Nmba) located on its polar face, both characteristics that 

could cause P3 to form larger spheres. The single polarity would repel other peptoids of the same 

sequence that are otherwise being assembled and stabilized due to their hydrophobicity and 

aromatic stacking mechanisms (Figure 10A). The additional aromatic groups cause P3 to be 

more bulky than P2 and could possibly lead to a larger structure size. We are unsure of whether 

the microspheres formed by P2 and P3 contain the same number of peptoids, and further testing 

would need to be completed to draw conclusions regarding the interactions leading to these 

distinct size differences. 

 

 P4 was designed to have the exact sequence of P3 with the chirality excluded from its functional 

groups. Due to this lack of chirality, CD analysis showed random coiling rather than helix 

formation (Figure 7). Even though P4 was only partially water soluble, a characteristic necessary 

to form microspheres, without secondary helical structure it did not depict any surface 

microspheres when introduced to the organic:water solution (Figure 8D). These observations 

confirmed that both partial water solubility and secondary helical structure characteristics are 

necessary for peptoids to self-assemble into tightly packed, uniform microspheres. 
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A B 

Figure 9. SEM images of microsphere coatings formed using P2 (column A) and P3 (column B) 
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5.2 Conclusions 

 

Peptoids that are partially water-soluble, and have secondary helical structure, possess the 

characteristics necessary to self-assemble when introduced to an organic/water solution and form 

microsphere surface coatings when dried on solid substrates. Through sequence polarity and 

secondary structure observations, it was found that peptoids self-assemble through the interplay 

between electrostatic and hydrophobic interactions. Groupings are formed by the peptoids due to 

partial water solubility characteristics. If these groupings are made up of peptoids that possess a 

secondary helical structure, created through the use of bulky chiral, aromatic functional groups, 

the groupings will self-assemble into stable microspheres through aromatic stacking of the Nspe 

functional groups on their helical faces (Figure 10A). 

 

The location and orientation of polar functional groups throughout the structure of a peptoid has 

a large effect on the ability of the peptoid to self-assemble into microspheres. This conclusion 

was obvious through the analysis of P1 and P2. P1 was not able to successfully assemble into 

microspheres even though it possessed the necessary chiral, aromatic functional groups that 

would give the molecule secondary helical and partial water solubility characteristics. Although 

P1 did adopt a robust secondary helical structure, it was found to be too hydrophilic to form 

uniform microspheres. We believe this is due to its hydroxyl containing functional groups being 

located near the C-terminus, which is positively charged in the coating solution. We hypothesize 

that this polarity organization cause neighboring peptoids of the same structure to repel one 

another (Figure 10B) and lead to the loosely formed spherical globules we witnessed and are  

displayed in Figure 8A. 



 

 

 

Figure 10. Schematic representation of aromatic stacking mechanisms that induced by hydrophobic interactions 

within the molecules (A) and charge interactions of P1 (B) where alternation of charged functional groups causes 

repelling of peptoids in solution and P2 (C) where organization of charged functional groups allows for alignment 

and grouping of peptoids in solution. 

3
6
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P2 also contained hydroxyl containing functional groups, but they were located on the opposite 

end of the molecule. This organization of like charges allowed the peptoids in solution to line-up 

or stack against one another without repelling forces causing disorganization (Figure 10C).  

 

Secondary helical structure also plays an important role in microsphere formation by creating a 

structure that is conductive to aromatic stacking that aids with stabilization. This characteristic 

was determined through the comparison of P3 and P4 that only differ by chirality of their 

functional groups. The chiral, aromatic side-chains included in P3 allow it to adopt a polyproline 

type 1-like secondary helical structure, while the lack of chiral side chains in P4 leads to a 

random coil structure. We found the helical peptoid to consistently form self-assembled 

microspheres (Figure 9B) while the non-helical (random coil) peptoid did not show any evidence 

of uniform microsphere formation (Figure 8D). Although P4 possessed the hydrophobic 

characteristics necessary to group together in solution, it did not have any stable aromatic faces 

to induce the stacking mechanisms to aid in self-assembly.21, 48, 49 
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6. Peptoid Application Process Study 

 

Peptoids 2 and 3 were chosen to complete an in depth application process study, as they had 

already been shown to self-assemble into microspheres in organic/water solutions due to their 

partial water solubility and secondary helical structures. Their partial water solubility caused the 

peptoids to group together in the aqueous/organic solutions due to their hydrophobicity. When 

the peptoids were in close proximity in solution and had secondary helical structure, we believe 

the aromatic faces of the helices aligned and induced aromatic stacking mechanisms that have 

been shown to help stabilize the spherical structures formed by the grouped peptoids.21, 48, 4921 

Although in the previous study both peptoids 2 and 3 consistently formed microspheres, the 

surface coatings created by each peptoid were not consistently uniform.  

 

6.1 Results and Discussion  

 

6.1.1 Experimental Application Methods 

 

The coating methods consisted of the following:  (1) administering a small sample volume (~5 

µL) to the center of a silicon wafer chip using a pipette, (2) fully coating the top of the silicon 

chip with a sample volume between 20 and 50 µL using a pipette, and (3) fully submerging the 

silicon chip in a holding container with 500 µL of sample and immediately removing it in a 

vertical orientation. These coating methods will be referred to from now on as pipette spot, full 

coverage, and dip, respectively. The drying methods consist of (1) an open air environment 

where the wafers were placed in an open Petri dish and then left to dry without any added 
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airflow, (2) a humidity chamber that was held at a constant 60% humidity, and (3) a vacuum 

chamber. These drying methods will be referred to as open air, humidity chamber, and vacuum 

chamber, respectively. 

 

6.1.2 Application Process Experimental Array 

 

Uniform surface coatings are necessary for reliable detection coatings. ELISA microarray 

substrates with spotty or non-uniform coatings could lead to unreliable data for disease detection. 

Although some of the preliminary peptoid microsphere coatings were uniform (Figure 9), the 

application process characteristics need to be studied for their individual effects on microsphere 

formation. This will allow for the creation of a process protocol that will lead to consistenly 

uniform surface coatings.  

 

The application process experimental parameters were chosen to create a matrix in which we 

could analyze each step of the application process from the sample solvent type, to the way in 

which the sample was administered onto the substrate, and finally the fashion in which the 

coating was allowed to dry and form its final state. The three solvents, coating, and drying 

techniques were chosen to investigate the effect of sample volume and solvent evaporation rate 

on microsphere formation. Two peptoids were analyzed to help achieve a broader analysis of 

self-assembled peptoid microsphere coatings as a whole rather than the characteristics of one 

molecular design. Although a combined average is displayed below for the effect each parameter 

has on the microsphere formation, individual results were analyzed to determine if any coupling 

effects were arising between parameters. We determined that the combination of parameters 
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chosen for any particular experiment did not greatly affect the average scores for the individual 

parameters and we believe the data displayed in Table 4 is a complete representation of the 

application process effects on peptoid microsphere formation. 

 

Multiple SEM images were collected of surface coatings for each parameter of the experimental 

array. These SEM images were then qualitatively analyzed for microsphere coating uniformity 

and then given a quantitative rating based on a scoring system of 0.1 (no microspheres), 0.5 

(spotty microspheres), and 1.0 (uniform microspheres). The data from P2 and P3 were combined 

and the average score of each experimental parameter was calculated and displayed in Table 4 

where a consistent formation score is indicated by the dotted line at 0.4. The average score was 

found by utilizing all scores from the individual SEM images where a specific parameter was 

used.  

 

The effect of sample solvent choice was determined through analysis of three 4:1 alcohol:water 

solutions, as depicted in Table 3. The solvents were all chosen because of their protic 

characteristics, as these types of solvents have been shown to help stabilize secondary helical 

structure through hydrogen-bonding between the solvent and the functional groups.59 
Table 4 

shows that for both P2 and P3, all three alcohol-based solvent solutions consistently allowed for 

uniform formation of microspheres. We hypothesize that as long as the solvent chosen is protic 

and the peptoid is soluble in the solution, microspheres should readily form and sufficiently 

adhere to the surface of the coated substrate. 
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Three coating techniques were utilized to investigate how much sample volume would be 

necessary to evenly and uniformly coat ELISA microarray detection slides. Small, medium, and 

large sample volumes were analyzed through pipette spot, full coverage, and dip coatings, 

respectively (Table 4 and Figure 11A-C). The volume of peptoid sample solution allowed to 

evaporate from the slide during the drying process was found to have great effect on the 

uniformity of the microsphere surface coatings. This is evident through the analysis of the image 

for the dip method surface coating displayed in Figure 11C. Although a large volume was used 

to dip the substrate and completely cover the surface, the substrate was quickly removed and 

allowed to dry separate from the large sample reservoir. Analysis of the surface showed very 

spotty to no microsphere formation. This indicates that the peptoid microspheres do not adhere to 

the substrate until the solvent begins to evaporate from the surface. This conclusion was further 

confirmed by an extended dip method experiment where a small silicon wafer chip submerged in 

a peptoid sample solution (P2 at a concentration of 3 mg/ml and a solvent solution of 4:1 

ethanol:water) for five minutes. The silicon chip was then removed from the sample solution in a 

vertical orientation, and allowed to dry in an open-air environment. As with the original dip 

method experiments, there was no uniform formation of microspheres observed on the substrate 

for the extended submersion time (data not shown but comparable to Figure 11C).  
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Table 4. Experimental parameters array used for analysis of peptoid microsphere 

application process 

Table 5. Analysis of effect of sample application process on peptoid microsphere formation 

based on experimental parameter array (solvent, coating and drying methods) and visual 

scoring (0.1 = no uniform formation, 0.5 = spotty formation, 1.0 = uniform formation 
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Three drying techniques, as described in section 6.1.1, were utilized to analyze how the solvent 

evaporation rate would affect the peptoid microsphere formation. Slow, average, and quick 

solvent evaporation rates were evaluated through the use of humidity, open-air, and vacuum 

chambers, respectively (Table 4). A humidity chamber was tested to create a stable environment 

for the peptoid coating to form. Humidity samples that were allowed to dry for a long period of 

time were observed to dry starting around the outer edges and finishing in the middle. This led to 

different microsphere formations throughout the sample and changing densities over the area of 

the substrate. According to Table 5, the humidity chamber still allowed for consistent formation 

of microspheres (Figure 11D). On the other end of the spectrum, samples were dried under 

vacuum to speed up the drying process to potentially remove inconsistencies observed 

throughout the sample coatings. The vacuum chamber drying method led to no or spotty 

microsphere coatings, as indicated in Table 4 and shown in Figures 11D-F. The microspheres 

imaged after vacuum drying were miniscule compared to those coatings formed in the other two 

drying environments, as if the peptoids were not given sufficient time to adhere to the substrate 

and were removed from the surface along with the solvent. A constant, “natural” drying process 

allows for the most uniform coating of self-assembled microspheres based on the data displayed 

in Table 5 and shown in Figure 11E. These application process results are exciting as they show 

ELISA coating processes already used in practice can be applied to peptoid microsphere coatings 

without adaptation to equipment to cater to special application environments. 
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A 

B 

C 

D 

E 

F 

Figure 11. SEM images of self-assembled microsphere coatings administered using pipette spot 

(A, scale bar = 20 µm), full coverage (B, scale bar = 20 µm), and dip (C, scale bar = 50 µm) 

coating techniques, and humidity (D, scale bar = 10 µm), open-air (E, scale bar = 100 µm), and 

vacuum (F, scale bar = 10 µm) drying techniques 
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6.2 Conclusions 

 

We have shown that both P2 and P3 consistently form microspheres due to their partial water 

solubility and secondary helical structure (Figure 9). All three solvents (methanol, ethanol, and 

isopropanol) allowed for the formation of microspheres, with the outcome only being affected by 

the coating and drying techniques used in conjunction with the individual solvents. It has been 

shown that the use of protic solvents are helix inducing, allowing for increased stability of the 

secondary structures.59 We hypothesize that as long as the chosen solvent possesses protic 

characteristics, the specific solvent chosen will not greatly affect the self-assembly of the peptoid 

microspheres.  

 

The substrate coating method has a large effect on the uniformity of the self-assembled 

microsphere coating. The pipette spot and full coverage coating techniques consistently allow a 

sufficiently large volume of peptoid sample to evaporate from the slide and therefore adhere to 

form a uniform robust coating (Figure 11A & B). A dip coating technique does not allow for 

efficient formation as the microspheres do not adhere to the slide until the solvent begins to 

evaporate from the surface of the substrate. The dip technique only allows for a small volume of 

sample solution to evaporate from the surface, causing a very sparse microsphere coating (Figure 

11C). 

 

The drying method utilized for the peptoid application process also greatly affects the uniformity 

of microsphere formation. We have shown through use of both an open air drying environment 

and a humidity chamber that a slow or “natural” drying environment yields the most uniform 
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surface coatings (Figure 11D &E). A very quick solvent evaporation rate does not allow the 

peptoid microspheres to adhere on the surface causing a sparse array of partially formed 

microspheres (Figure 11F). 

 

We believe these peptoid-based microsphere coatings will help us reach theoretical levels of 

ELISA microarray detection as they have the structure necessary to achieve the critical 

properties of specific binding sites, high surface area, retention of antibody structure, long shelf-

life, and low non-specific protein bindings.7, 18 
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7. Additional Work Completed 

 

7.1 AFM Coating Analysis 

 

Preliminary images of the coating topography were acquired using atomic force microscopy 

(AFM). These images were collected to help determine whether or not the spherical objects 

observed using SEM were full spheres or hemisphere-like formations on the surface and to 

determine the uniformity of the coatings. Coatings created by P1 and P3 were measured and 

compared for structural characteristics. We chose to compare these two coatings as P1 was 

shown to not successfully form uniform microspheres and seemed less 3-dimensional in nature, 

while P3 consistently formed coatings that contained spherical uniform structures. 

Figure 12. AFM images of P1 (A) and P3 (B) coatings depicting a topographical image (top) and 

a vertical distance measurement (bottom) of the microspheres followed by three dimensional 

topography images (C) of both P1(top) and P3 (bottom). 

A B C 
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Through analysis of the preliminary AFM images, we can initially conclude that the non-uniform 

microspheres of P1 are much flatter in a 3-dimensional sense than those formed by P3, having a 

height to diameter ratios of ~0.015 and 0.08 respectively (Figure 12). These initial findings could 

lead to the conclusion that the microspheres we have been observing are actually more 

hemispherical in shape possibly caused by polar interactions between the microsphere and 

silicon surfaces. Further analysis using AFM, or possibly low angle x-ray diffraction would need 

to be completed before a final conclusion could be made. 

 

7.2 Glass Substrate Coating 

 

Although we have been able to find ample proof of peptoid microsphere self-assembly on silicon 

wafer chips, ELISA microarray analysis is completed on glass substrates. In order for the peptoid 

microspheres to be able to have an increasing effect on the antibody attachment density, they 

must be able to efficiently and reliably form on glass substrate surfaces. To be able to adequately 

A B 

Figure 13. SEM images of glass (A, scale bar = 5 µm) and silicon (B, scale bar = 20 µm) 

substrates coated side-by-side with a 3 mg/ml peptoid 3 sample in a 4:1 ethanol:water solvent 

solution. Samples were applied using full coverage coating and open-air drying techniques. 
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compare the peptoid microsphere formation ability on these glass substrate with that of a silicon 

wafer, we coated a sample substrate of each material side-by-side from the same peptoid sample 

solution reservoir (P2 at 3 mg/ml concentration, 4:1 ethanol:water solvent solution). The 

substrates were coated using the full coverage coating and open-air drying techniques as 

described  in section 6.1.1. SEM images of both sample coatings were analyzed and are 

displayed in Figure 11. Although the images show some slight differences in microsphere 

uniformity and density, there is ample formation of microspheres on the glass substrate. Through 

further analysis of the glass and silicon wafer coating images, it is observed that the self-

assembled microspheres created are in the same size range (1 – 3 µm, Figure 13). These 

observations lead us to believe that the application process conditions investigated thus far will 

transfer from the silicon wafer substrates to use on the ELISA microarray glass substrates needed 

for disease detection. 

 

7.3 Robust Microsphere Coating 

 

Once the peptoid microspheres were found to successfully form on both the silicon wafer and 

glass substrates, the question arose of whether or not the peptoids would be able to withstand the 

extensive wash steps during ELISA microarray analysis. Sandwich ELISA microarray analysis 

consists of four steps including capture antibody attachment, antigen bathing, detection antibody 

attachment, and fluorescence magnification.16 Each of these processing steps contains numerous 

intermediate washing steps that pose a danger to the peptoid microspheres that have been coated 

on the slide as the detection foundation. In order to determine the level of robustness that these 

peptoid microspheres would exhibit during microarray processing, they were exposed to the 
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entire array of consecutive microarray washing steps. We re-imaged a peptoid coated silicon 

chip, which had already shown to have microspheres attached, after completing the washing 

protocol described below.  

 

7.3.1 Microarray Washing Protocol 

 

The sandwich ELISA microarray washing protocol, used to test robustness of the coating 

samples, consists of a combination of incubation and washing cycles using PBS-T and deionized 

water. The samples are first dipped in a solution of PBS-T and then rinsed with deionized water 

and spun dry. The samples are then exposed to 6 cycles of PBS-T incubation and chip aspirations 

with an incubation time between 2 and 10 minutes for each cycle. The samples are then rinsed 

one final time with deionized water and centrifuged till dry. 

 

7.3.2 Results 

 

We found that after the extensive washing process with water and phosphate buffered saline with 

10% tween (PBS-T), the majority of the peptoid microspheres were still present on the surface of 

the slide (Figure 14B). ImageJ analysis of the pre-wash microsphere coating showed that the 

peptoid structures covered 19.6% of the total slide area, and analysis of the same coating post-

wash showed only a slight decrease to 18% of total slide area coverage. Magnified images that 

depict the individual microspheres left on the surface after the washing process was completed 

showed that the spheres seemed to have changed in individual appearance. The spheres seemed 

to lose some of their total volume without much of a change in diameter (Figure 14D). We  
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A B 

E F 

C D 

Figure 14. SEM images of coatings on silicon wafer substrates (3 mg/ml peptoid 3 in 4:1 

ethanol:water solvent solution) before (A & C) and after (B & D) ELISA microarray washing 

protocols and also before (E) and after (F) casein blocking and washing protocols, where the 

top images are full coating views with a scale bar of 100 µm and the bottom images are 

zoomed-in with a scale bar of either 5 or 10 µm. 
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believe this change in appearance was due to an effect the PBS-T had on the spheres when it 

came into contact with them on the surface.  

 

We then completed the same washing protocols on another microsphere coated slide after first 

incubating the chip with a 1 mg/mL solution of casein (milk protein) in PBS for one hour. In 

ELISA microarray, casein is used to block the slides and prevent non-specific protein attachment 

to the slide Comparison of Figures 14E and 14F show that the individual spheres were protected 

from the PBS-T interactions by the casein solution. Although the casein solution remedied the 

problems caused by the PBS-T, it formed a layer over the individual spheres causing clumping 

within the surface coating.  

 

7.3.3 Conclusions 

 

Peptoid microspheres have been shown to be robust when coated on a silicon or glass substrate 

and subjected to multiple microarray washing protocols. We believe stabilization between the 

microspheres and the silicon/glass slides is a result of the polar characteristics of both substrate 

surfaces. If we are correct in our hypothesis that the polar faces of the peptoids are oriented on 

the outside of the spheres, polar interactions between the spheres and the slide surfaces are 

allowing a robust coating to be formed. This microsphere/substrate interaction hypothesis can be 

supported by the AFM analysis (Figure 12B & C) that depicts a hemispherical peptoid structure 

when coated on the substrate.  
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Optimization of the current coating and protection protocols is still necessary, but no further 

substrate attachment mechanisms will be needed. Integration of the preliminary coating design 

into a robust microarray detection platform that can be used to increase the antibody attachment 

density for early disease detection should be completed easily and efficiently. 
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8. Continuing Work Recommendations 

 

The work completed towards the project goals has created a solid foundation that can support 

continuing work leading to a fully functional peptoid ELISA microarray slide coating. 

Continuing work is needed to optimize and analyze this coating in order to utilize the knowledge 

gained thus far and further build towards an industrially applicable ELISA microarray coating. 

The recommended future work includes (1) continuing investigation of the correlations between 

peptoid sequence characteristics and microsphere self-assembly, (2) optimization of the peptoid 

slide coating on a fully processed glass ELISA microarray slide, (3) confirmation of the 

increased antibody attachment density on the 3-dimensional slide coating, and (4) customization 

of the peptoid sequence to induce directed orientation of the attached antibodies. 

 

8.1 Peptoid Sequence Characteristics 

 

The sequence characteristics studied thus far, have opened the door to any number of functional 

group combinations that could potentially self-assemble and form robust microsphere coatings.  

The exact recipe of functional group characteristics that consistently lead to these self-assembled 

structures still needs to be determined. Some aspects that we did not consider during these 

studies were the functionalities of the side-chains and how they will ultimately interact with the 

attached antibodies. We did try to keep these interactions in mind when designing our peptoids, 

but testing of the assumed interactions will need to be completed before the slides can be used 

commercially.  

 

C 

D 
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Investigation of the design of peptoids that form a specific size microsphere by altering the chain 

length or individual side-chain chemistries would be recommended. We observed that the 

addition of bulky or charged functional groups could greatly affect the diameter of the formed 

spheres.  

 

Studies determining the ionization characteristics of the peptoids in solution would also need to 

be completed in order to fully understand the interactions occurring between neighboring 

peptoids. These studies could be completed using electrophoresis techniques to determine the 

isoelectric point of the peptoids in solution and the individual side-chain charge characteristics 

under different solvent, structure, and sequence conditions.60 Another technique that could be 

used to determine the actual ionization of the peptoids is nanofilitration using membrane 

rejection. This technique uses a charged membrane that allows neutral molecules to pass through 

and rejects charged molecules.54 A study using these membranes across a pH gradient system 

would allow for the calculation of the isoelectric point. This information would allow more 

concrete conclusions to be drawn regarding the interactions between the individual peptoids due 

to charge characteristics and distribution. 

 

Sequences containing chiral aliphatic side chains could be designed to test the effects of aromatic 

versus non-aromatic structures. Sequences including protease resistant functionality could also 

be tested for their formation, as protease resistant structures could lead to a number of new 

applications. There are many opportunities for peptoid sequence modifications that could greatly 

affect the size, uniformity, and efficiency of these self-assembled microspheres. 
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A study to investigate the timeframe in which these peptoid microspheres self-assemble would 

also be recommended. Preliminary findings suggest that the microspheres are forming while in 

solution and very quickly such that intermediate structures are difficult to decipher (Unpublished 

results from Dr. Ronald Zuckermann, Berkley University, 2008). Confirmation of these findings 

would need to be completed so that formation environments could be studied with the solution 

conditions, or surface conditions if the spheres were found to form during the drying process.  

 

In order to fully understand how these structures are forming, x-ray diffraction (XRD) should be 

utilized to determine the internal organization of the assemblies as a whole. Zuckermann’s group 

utilized XRD to determine structure thickness and organization characteristics for peptoids self-

assemblies.49, 51 XRD could be used to determine whether or not the peptoids are forming these 

microspheres in either an amorphous or crystalline manner.61 A crystalline formation would 

allow for a greater understanding of the structural organization, and how and why the peptoids 

are self-assembling into microspheres. Performing XRD with different sequence modifications 

could help to track the specific effects caused by each individual characteristic, and allow for 

more definite conclusions to be drawn regarding molecule interactions. 

 

8.2 Coating Optimization for ELISA Microarray Processing 

 

The majority of the uniform coating work done thus far has been on silicon wafer chips so that 

they could be readily analyzed using an SEM, as it requires the sample to be conductive. The 

necessary coating characteristics discovered using the silicon wafers need to be tested on glass 

slides that will be necessary for the ELISA microarray detection process. Preliminary data using 
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these glass slides was obtained and confirmed peptoid microsphere formation (Figure 13), but 

extensive testing under microarray processing conditions including those discussed in section 

7.3.1 will need to be completed.  

 

Some processing conditions were analyzed during the washing experiments conducted as an 

extended section of our studies (Figure 14), but a number of steps were omitted to reduce 

material waste. There are multiple steps during ELISA processing that include extended 

incubation times in a sample solution. Testing will need to be completed to determine how robust 

these microsphere coatings will be at this extended soaking times and on the glass substrates. 

The limits of coating robustness will also need to be tested for the peptoid microspheres on glass 

substrates. This could be achieved through incubation of the coatings in strong acid and then 

strong base solutions, as well as introducing them to different thermal levels to determine the 

environments in which the microspheres remain robust.  

 

Completing the microarray washing steps with the inclusion of salts with increasing 

concentration could be another way to test the microspheres robustness limits. As the salt 

concentration increases, and the solvent becomes more polar, that microspheres should be more 

easily removed from the slide. At some transition point, the polar attraction of the microsphere to 

the solvent will overcome the original polar interactions with the slide.  

 

The peptoid coatings will also need to be analyzed for their reaction to the attachment of 

antibodies. We hypothesize that the peptoids will act as merely a solid platform to the antibodies 

and not transform or interact with other molecules on the surface of the slide. We believe this to 



 

58 
 

be true due to the casein protection layer that will be applied to the microspheres before the 

antibodies are introduced to the slides.  

 

The application process study shed light on some potential problems that could arise when 

attempting to coat an entire microarray processing slide. We observed that the larger the surface 

that needed to be coated, the more difficult it became to achieve uniform coverage over the entire 

area. We recommend performing a wax blocking protocol that includes adding waxed squares to 

the microarray slides for isolation of the individual arrays before administering the coating onto 

the slides. This wax blocking would reduce the coating area from the entire glass slide to several 

individual areas of ~0.5cm x 0.5cm.This would require smaller local volumes and allow for more 

uniform microsphere coverage over each array area.  

 

An optimized, automated coating system will also need to be created so that the peptoid 

microsphere coatings can be applicable in an industrial environment. The coating application 

processes discussed thus far are all manually administered. An automated process would reduce 

human error that can affect the coating uniformity, and allow for a reliably reproducible uniform 

surface coating. Spin and sputter coatings are both possible automation techniques for our 

microsphere coatings. For spin coating, the spin speed and sample volume can be controlled so 

that an even layer of peptoid microspheres can be administered to all sections of the substrate. 

Sputter coating can also be controlled to give a reliable and repeatable coating through specified 

sample volumes and sputter patterns. Both of these automation techniques need to be tested for 

coating uniformity and reproducibility to determine the best avenue for the automation of our 

peptoid microsphere application process. 
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8.3 Confirm Increased Attachment Density 

 

The main hypothesis that led to the creation of our microsphere coatings was that if we could 

create a non-porous, three dimensional, microarray surface, we could increase the attachment 

density of the antibodies, and ultimately increase the signal intensity without creating an 

overpowering level of background noise. This hypothesis will need to be evaluated through 

calculations determining the ratio of surface area between our 3-D coating and a normal 2-D 

coating, coupled with microarray evaluations depicting ratios of signal intensities between the 

two styles of coatings. A comparison of these ratios would allow a conclusion to be drawn about 

whether the 3-D peptoid microsphere coating is allowing a larger number of antibodies to attach 

to the slide than a currently used 2-D coating. Further microarray analysis would need to be 

completed to determine the level of background associated with the microsphere coating, and if 

it could ultimately outperform the slide coatings commercially available. 

 

8.4 Coating Customization  

 

Through customize of the peptoid coating could be used to induce directed orientation of the 

attached antibodies, as shown in Figure 15. The current random orientation, witnessed in most 

ELISA microarray applications, has many problems with antibodies being wasted. This occurs 

by the active sites specified for the disease antigens attaching directly to the glass slide and 

becoming deactivated.13 Directed orientation will further increase the range of detection limits 

and in turn allow us to create a precise detection tool for multiple diseases. Directed orientation 

of antibodies on the slide could be achieved through the addition of specific binding sites present  
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on both the slide coating and the capture antibody. Our peptoid microsphere slide coatings are a 

great candidate for these site additions as the possibilities for functional groups are practically 

limitless. Most any slide characteristics could be achieved through minor tweaking of our 

initially tested peptoid sequences. The added slide characteristic of directed orientation would 

allow a larger number of antibodies to be available for bonding with the antigens found in the 

sample serum. This would lead to a further decrease in the overall cost of disease detection. 

 

  

 

 

 

 

  

Figure 15. Schematic representation of random and directed orientations of 

antibodies
27
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9. Conclusion 

 

Through investigation of the charge distribution and secondary structure of designed peptoids, it 

was concluded that peptoids with secondary helical structure and partial water solubility have the 

characteristics necessary to self-assemble into tightly packed microspheres when introduced to 

organic/water solutions. The distribution and specific location of charged functional groups 

throughout the peptoid sequence has a large effect on the  ability of the peptoids to self-

assemble. Observations between P1 and P2 concluded that even with the proper secondary 

structure and hydrophobic characteristics, a peptoid with polar functional groups dispersed 

throughout its sequence created repelling forces between neighboring peptoids and could not 

successfully form uniform microspheres (Figure 8A). On the other hand, a peptoid with polar 

functional groups oriented on opposite ends of the structure greatly increased the bulk 

organization of the peptoids and allowed for more tightly packed microspheres (Figure 8B).  

 

The secondary structure was also found to play a large part in the ability of the peptoid to 

successfully self-assemble. Through investigation of P3 (helical) and P4 (non-helical) it was 

found that a peptoid with partial water solubility but no secondary helical structure was only able 

to form globules (Figure 8D), and is less likely to achieve the tightly packed microspheres than 

those peptoids that also possessed helical secondary structures (Figure 8C).  

 

The peptoids analyzed in these studies were shown to self-assemble in an organic/water solution 

through charged functional group interactions and aromatic stacking mechanisms. These 

peptoids were shown to have a slight helical spectrum when analyzed in an organic/water solvent  
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solution and a strong helical spectrum when analyzed in a pure organic solvent. The 

organic/water solution was causing the hydrophobic interactions between the peptoids and the 

solution to mask the secondary structure of the individual peptoids. 

 

Through investigation of the application process, it was found that the coating and drying 

techniques used had a much larger effect on uniformity than the choice of solvent. It was 

apparent that as long as the solvent had protic characteristics, the specific solvent chosen would 

not help or hinder self-assembly into microspheres. We believe this is due to polar protic 

solvents being able to form hydrogen bonds with the peptoids in solution and aid in stabilization 

of the helical structures formed by the peptoids.59 The individual coating and drying techniques 

utilized for each peptoid microsphere surface coating had a great effect on the uniformity and 

microsphere density observed. It was found that the more complete the coating of the surface 

area and the larger the volume of solvent evaporated from the coated substrate yielded the most 

uniform formation of microspheres, both in sphere density (Figure 11B) and size (Table 3). A 

“natural” drying technique coupled with this full coverage coating process was found to allow 

for the consistent formation of uniform peptoid microsphere surface coatings.  

 

These uniform coatings were found to be highly robust when exposed to normal ELISA 

microarray washing protocol conditions. Coatings were imaged using SEM before and after the 

washing protocol (described in section 7.3.1) to observe changes in attachment density and 

overall sphere characteristics. It was observed that microsphere attachment density was slightly 

lower after washing, but not greatly altered. Local microsphere volume characteristics, however, 

changed dramatically after the washing was complete. We believe this is due to the surfactant in 
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the PBS-T included during one of the washing steps. This surfactant effect was found to be 

insignificant when the peptoid coated slides were utilized for the entire ELISA microarray 

process, which includes an initial slide protection step to reduce such interactions. Since the 

peptoid coatings tested are highly robust for microarray use, they can be easily integrated into 

currently used microarray processes without additional protection measures or sequence 

modifications necessary. 

 

Peptoids have great potential for use in disease detection as they are highly tunable,26, 27 form 

robust secondary structures,28-33 and have the ability to self-assemble.48-51 Peptoid sequences can 

be designed to include numerous side-chains, as peptoids are synthetic molecules and their 

sequences do not need to be found in nature.26, 27 
This ability to specify all aspects of the peptoid 

sequence can lead to customization of these designed surface coatings to functionalize them for 

any specialization or application. 

 

We have shown that peptoid microspheres form due to a combination of hydrophobic and 

aromatic stacking interactions when introduced to an aqueous/organic solution. The increased 

surface area created by microspheres, acting as the base coating for antibody microarray, will 

lead to a large increase the density of antigen binding, and in turn increase the strength of the 

microarray detection signal.27, 62 We believe these peptoid based slide coatings will create the 

solid foundation needed to build a reliable test for the early detection of diseases leading to  

overall increased survival rates.
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