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Abstract

The three-dimensional Chern-Simons gauge theory is a topological quantum �eld theory,

whose correlation functions give metric-independent invariants of knots and three-manifolds.

In this thesis, we consider a version of this theory, in which the gauge group is taken to be a

Lie supergroup. We show that the analytically-continued version of the supergroup Chern-

Simons theory can be obtained by topological twisting from the low energy e�ective theory of

the intersection of D3- and NS5-branes in the type IIB string theory. By S-duality, we deduce

a dual magnetic description; and a slightly di�erent duality, in the case of orthosymplectic

gauge group, leads to a strong-weak coupling duality between certain supergroup Chern-

Simons theories on R3. Some cases of these statements are known in the literature. We

analyze how these dualities act on line and surface operators.

We also consider the purely three-dimensional version of the psl(1|1) and the U(1|1)

supergroup Chern-Simons, coupled to a background complex �at gauge �eld. These theories

compute the Reidemeister-Milnor-Turaev torsion in three dimensions. We use the 3d mirror

symmetry to derive the Meng-Taubes theorem, which relates the torsion and the Seiberg-

Witten invariants, for a three-manifold with arbitrary �rst Betti number. We also present

the Hamiltonian quantization of our theories, �nd the modular transformations of states,

and various properties of loop operators. Our results for the U(1|1) theory are in general

consistent with the results, found for the GL(1|1) WZW model. We expect our �ndings to

be useful for the construction of Chern-Simons invariants of knots and three-manifolds for

more general Lie supergroups.
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Chapter 1

Introduction

1.1 Topological Quantum Field Theory

A quantum �eld theory is called topological, if its observables do not depend on the distances.

For example, the partition function of such a theory in curved space does not depend on

the metric and produces a topological invariant1. Such theories are almost trivial in the

sense that they do not contain any propagating particles. Nevertheless, they have impor-

tant applications both in physics and in mathematics. In the real world, these theories

describe low-energy limits of gapped systems, and therefore are relevant for the classi�cation

of quantum phases of matter. In mathematics, the topological quantum �eld theory (TQFT)

methods have by now become a standard part of topology.

Presumably the �rst example of a TQFT was considered by A. Schwarz [3] in the late

seventies. It is a free, non-interacting theory with the action

I =

∫
d3x εµνρAµ∂νAρ , (1.1)

where Aµ is a gauge �eld in three dimensions and εµνρ is the antisymmetric tensor. (To be

1We will not try to make our terminology very precise. What we call �topological invariant� can depend
on the choice of a smooth structure, as well as on some other choices.

1



precise, [3] also considers slightly more general theories.) The action (1.1) is independent

of the space-time metric, and is invariant under general coordinate transformations. The

theory can be de�ned on an arbitrary three-manifold W . Since the functional integral with

this action is Gaussian, the partition function is simply the inverse of the square root of the

determinant of the kinetic operator. To de�ne this determinant, one �rst needs to �x the

usual gauge invariance Aµ → Aµ + ∂µα. The gauge-�xing condition necessarily depends on

the metric of the manifold, but, as one would expect on physical grounds, this dependence

drops out of the partition function. As found in [3], the topological invariant that one gets

in this way is what is known as the Ray-Singer torsion, or, equivalently, the combinatorial

Reidemeister torsion. A close analog of this theory will be the subject of chapter 3 of this

thesis.

Here we would like to brie�y discuss some other classical examples of topological theories,

which will be important for the present thesis. The three-dimensional Chern-Simons theory

is a gauge theory with the action

I =
k

2π

∫
d3x εµνρ

(
Aaµ∂νA

a
ρ +

1

3
fabcA

a
µA

b
νA

c
ρ

)
, (1.2)

where Aaµ is a gauge �eld for some gauge group G, fabc are the structure constants, and k

is a coupling constant, which in general has to satisfy some quantization condition, for the

path-integral to be gauge-invariant. If the gauge group is U(1), the action clearly reduces

to (1.1). Again, the action is metric-independent, and therefore one expects the theory to

be topological, provided that it can be regularized in an invariant way. The interesting

observables in this theory are Wilson lines for external particles charged under the gauge

group G. For example, one can consider a closed Wilson loop, located along some knot

in R3 or in the three-sphere S3. It has been shown in the foundational paper [4] that the

expectation value of such a Wilson loop is the knot invariant, which is known as the Jones

polynomial. (This statement applies to the case of gauge group SU(2) and Wilson operators

2



Figure 1.1: The right-handed trefoil knot.

in the two-dimensional representation. For other groups and representations, the polynomials

have di�erent names.) It is a Laurent polynomial in the variable q1/2 = exp(πi/k), and it

can be computed for any given knot by a simple algorithm. It is a topological invariant, in

the sense that two knots with di�erent Jones polynomials cannot be continuously deformed

into one another without cutting the line. (The opposite, unfortunately, is not true: two

knots with the same Jones polynomial need not be identical.) To give an example, for the

trefoil knot, shown on �g. 1.1, the polynomial is Ptrefoil = q1/2(−q4 + q2 + q+1), while for the

unknot it is Punknot = q1/2 + q−1/2. These two are di�erent, and the trefoil, indeed, cannot

be deformed into the unknot.

The polynomials above have integer coe�cients, and the same is true for all Chern-Simons

knot polynomials. This, de�nitely, is a very unusual structure for Wilson loop expectation

values in a quantum �eld theory. Mathematically, the integrality of the coe�cients can be

explained by the existence of another knot invariant, the Khovanov homology [5]. To a given

knot K it associates a vector space HK , which is bigraded, that is, it has a decomposition

into a sum of eigenspaces of two operators F and N. The Jones polynomial can then be

obtained as a trace,

PK(q) = TrHK
(−1)F qN . (1.3)

The coe�cients of the polynomial are dimensions of subspaces inside HK , and therefore are

integers. Note that the Khovanov homology in general contains more information than the

3



Jones polynomial, since in taking the trace in (1.3), the eigenvalues of F are relevant only

modulo two.

To �nd a physical interpretation for the Khovanov homology, one needs to construct

a four-dimensional TQFT, in which one can de�ne surface operators. (A surface operator

is an operator, which is supported on a two-dimensional subspace, like a Wilson line is

supported on a one-dimensional subspace.) Suppose that this TQFT is considered on a

four-manifold Rt ×W , where Rt is understood as the time direction, and suppose we add

a surface operator, supported on Rt × K, that is, stretched along the time direction and

along the knot K ⊂ W . The Hilbert space of such a topological theory is a vector space,

which is naturally a topological invariant of W and K, and, assuming the existence of two

conserved charges F and N, has a chance to coincide with the Khovanov homology. Suppose

that such a theory is put on S1 × W . The partition function on this manifold is a trace

over the Hilbert space, and, with an insertion of operators (−1)F qN, would coincide with

(1.3). (The trace in the partition function should normally contain the operator exp(iTH),

but the Hamiltonian H of a topological theory is zero.) Therefore, the topological theory in

question, upon compacti�cation on a circle, should reduce to the Chern-Simons theory. The

TQFT with these properties has indeed been constructed2 in [6].

Besides Chern-Simons theory, another extremely important example of a TQFT is the

Donaldson theory in four dimensions. It can be obtained from the N = 2 supersymmetric

Yang-Mills theory by putting it on a curved four-manifold V in a suitable way [7]. Although

the Yang-Mills theory has an explicit dependence on the space-time metric, it contains a

subsector, singled out by the condition of invariance under a particular fermionic charge Q,

in which the correlation functions are metric-independent and de�ne a topological theory.

The path-integral in such a theory can be reduced to an integral over the subspace of Q-

invariant �eld con�gurations. In the case of the Donaldson theory, these are instantons,

that is, gauge �elds with self-dual �eld strength. Modulo gauge transformations, this space

2For other physical approaches to the Khovanov homology, see [8] and references in [6].
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is �nite-dimensional. The mathematicians formulate the Donaldson theory in terms of the

intersection theory on this �nite-dimensional space.

The N = 2 super Yang-Mills theory has a moduli space of vacua, where the gauge

group is partially spontaneously broken by an expectation value of an adjoint-valued Higgs

�eld. The theory is asymptotically-free, and therefore at long distances �ows to strong

coupling, if the expectation value of the Higgs �eld is not large compared to the Yang-Mills

dynamical scale. Usually, it is hard to produce any analytical results for a strongly coupled

theory, nevertheless, the exact action for the low-energy e�ective description of the N = 2

super Yang-Mills theory has been found [9], [10]. This allowed to construct an alternative

description of the Donaldson invariants [11]. Indeed, the observables of the topological theory

do not depend on the metric, and in particular do not change, if we rescale the metric by a

large factor, so that the large-distance e�ective description of the theory becomes valid. The

formulation of this alternative description of the Donaldson theory, known as the Seiberg-

Witten invariants, was a major success of topological quantum �eld theory.

1.2 Overview Of The Thesis

The main subject of the present thesis is the Chern-Simons theory in three dimensions, but

with the unusual feature that the gauge group is taken to be a Lie supergroup, rather than

an ordinary Lie group.

Chapter 2 of this thesis is based on the paper [1], written in collaboration with Ed-

ward Witten. We de�ne and study the analytically-continued version of the supergroup

Chern-Simons theory. In the context of ordinary Chern-Simons, the analytical continuation

was developed in [12], [13], [6]. It allows to continue the theory to non-integer, and in gen-

eral even complex values of the level k. This is achieved by de�ning the path-integral with

unusual middle-dimensional integration cycle in the space of complexi�ed �elds. To ensure

convergence of the integral, the integration cycle is constructed as a Lefschetz thimble for the

5



Morse function, which is taken to be the real part of the action of the theory. The coordinate

parameterizing the Morse �ow becomes a new direction in the space, so that the topological

theory for the analytically-continued Chern-Simons is essentially four-dimensional. It turns

out to be equivalent [6] to the N = 4 super Yang-Mills theory in a half-space, with the

Kapustin-Witten twist [14]. In this thesis, we generalize these results to the case of the

supergroup Chern-Simons theory. The topological theory in question is obtained by twisting

the theory of the D3-NS5 brane intersection. After explaining this construction, we apply

various string theory dualities to obtain alternative descriptions of the theory. In particu-

lar, we show that the supergroup Chern-Simons invariants can be computed by solving the

Kapustin-Witten partial di�erential equations in the four-dimensional space with a particu-

lar three-dimensional defect. We study line and surface operators and their transformations

under the S-duality.

An interesting application of our construction arises for the case when the gauge group is

taken to be the orthosymplectic supergroup. We point out that the transformation S−1TS of

the SL(2,Z) S-duality group relates the analytically-continued Chern-Simons theories with

gauge groups OSp(2m+ 1|2n) and OSp(2n+ 1|2m). The variable in the knot polynomials is

changed as q → −q under the duality. Since the weak coupling limit corresponds to q ∼ 1,

the duality that we �nd relates the weak and the strong coupling regimes. We �nd the

transformations of line and surface operators under this duality, and in particular obtain a

natural correspondence between non-spinorial representations of the two Lie supergroups.

Our results provide a conceptual physical explanation to some known mathematical relations

between quantum orthosymplectic supergroups [16], corresponding knot invariants [15] and

supergroup conformal �eld theories [17].

Chapter 3 of this thesis is based on the paper [2]. We consider Chern-Simons theories

based on Lie superalgebras psl(1|1) and u(1|1). We show that they can be coupled to back-

ground �at complex gauge �elds. With this coupling, these theories compute the invariant

of three-manifolds, which is known as the Reidemeister-Milnor-Turaev torsion. We point out
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that the U(1|1) theory at level k can be obtained by an RG �ow from the twisted version of

the N = 4 QED with one �avor of charge k. The background �at gauge �eld comes from

a background twisted vector multiplet, whose scalar component de�nes the FI parameter

of the theory in the �at space. The supersymmetric partition function of the QED can

be localized on the solutions of the three-dimensional Seiberg-Witten equations. This gives

a physical explanation to the theorem of Meng and Taubes [20], which relates the Milnor

torsion and the Seiberg-Witten invariants in three dimensions. Our story is in a sense a

toy version of the relation between the Donaldson and the Seiberg-Witten invariants in four

dimensions, except that here the Seiberg-Witten equations arise in the UV, and not in the

IR. For manifolds with small �rst Betti number, we discuss the matching of the wall-crossing

phenomena in the UV and in the IR theories.

We also construct the Hamiltonian quantization of the psl(1|1) and the U(1|1) Chern-

Simons theories. In particular, the skein relations for the multivariable Alexander poly-

nomial are derived. We illustrate some subtleties that are expected to be important in

the quantization of more general supergroup Chern-Simons theories. Our �ndings are in

general agreement with the results, obtained from conformal �eld theory, however, in this

thesis we do not attempt to derive a relation of the supergroup Chern-Simons theories and

the WZW models. Finally, we present some brane constructions, realizing the supergroup

Chern-Simons theories for general unitary and orthosymplectic gauge groups, and look at

possible dualities for those theories.

7



Chapter 2

Branes And Supergroups

2.1 Introduction

In this Chapter, we consider the analytically-continued version of the Chern-Simons theory

with a supergroup. We take an approach, which has been developed in [6] for the case of

the ordinary Chern-Simons theory. Let us �rst give a brief overview of that paper.

2.1.1 Overview Of Previous Work

In the paper [6], the Chern-Simons theory was engineered by a brane construction in type

IIB string theory. Consider a stack of n D3-branes, ending on an NS5-brane. The theory

on the worldvolume of the D3-branes is the N = 4 super Yang-Mills with gauge group

U(n). One can construct a cohomological TQFT out of it, by making the Kapustin-Witten

topological twist [14]. The boundary conditions along the end of the D3-branes on the NS5-

branes preserve the topological supercharge Q. The topological theory can then be put on

an arbitrary four-manifold M with a three-dimensional boundary W with these boundary

conditions. The action turns out to be

I =

∫
M

{Q, V }+
iK
4π

∫
W

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
. (2.1)
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Here K is a certain complex-valued function of gYM and θYM that will be described later.1

Also, A is a complexi�ed version of the gauge �eld, roughly Aµ = Aµ + iφµ, where Aµ is

the ordinary gauge �eld and φµ denotes some of the scalar �elds of N = 4 super Yang-Mills

theory (which scalar �elds enter this formula depends on the choice of Q). The details of the

functional V are inessential. Forgetting the scalar �eld φ for a moment, what is written as

the Chern-Simons term in (2.1) is really the topological term of the Yang-Mills gauge �eld

in the bulk. Writing it as a Chern-Simons term is correct only as long as one considers small

variations of the gauge �eld. The fact that it is really the bulk topological term means that

K need not be an integer for the path-integral to be gauge-invariant.

If we restrict to Q-invariant observables, localized on the three-dimensional boundary

W , the theory with the action (2.1) will actually reproduce the Chern-Simons theory. One

important subtlety is that the gauge �eld is complexi�ed. In fact, as explained in much detail

in [12], the four-dimensional topological theory in question is in general equivalent to the

Chern-Simons theory with an unusual integration cycle in the path-integral. The middle-

dimensional integration cycle in the space of complexi�ed gauge �elds can be found by solving

the Kapustin-Witten equations along the bulk coordinate, normal to the boundary. Those

equations in fact de�ne a gradient �ow, with the Morse function being the real part of the

action of the theory. The integration cycle then is a Lefschetz thimble. This guarantees that

the real part of the action is bounded from below, and the path-integral is convergent. In

this thesis, we will mostly try to stay away from the subtleties, related to the choice of the

integration contour.

The realization of the (analytically-continued) Chern-Simons theory by a simple brane

construction in [6] allowed to apply various string theory dualities, and thus to obtain alter-

native descriptions of the theory. For example, applying the S-duality, one �nds the theory

of D3-branes ending on a D5-brane. The corresponding boundary condition in the N = 4

super Yang-Mills is known to be the Nahm pole [21]. For this reason, the S-dual, �magnetic�

1This function is denoted Ψ in [6, 14]. In the present chapter, we call it K because of the analogy with
the usual Chern-Simons level k.
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Figure 2.1: An NS5-brane with m D3-branes ending on it from the left and n from the right
� sketched here for m = 3, n = 2. The D3-branes but not the NS5-brane extend in the x3

direction, which is plotted horizontally, and the NS5-brane but not the D3-branes extend in the
x4,5,6 directions, which are represented symbolically by the vertical direction in this �gure.

description of the Chern-Simons theory is inherently four-dimensional. The path-integral

of that theory can be localized on the solutions of the Kapustin-Witten equations with the

Nahm pole boundary condition. The space of these solutions is in general discrete. As

checked explicitly in [74], counting the solutions reproduces correctly the knot polynomials,

with signed counts of the solutions as coe�cients. This can be considered as a vast general-

ization of the theorem of Meng and Taubes [20], which relates the U(1|1) knot polynomials

with the three-dimensional Seiberg-Witten invariants. (This special case will be the subject

of Chapter 3 of this thesis.)

By applying further a T-duality, one obtains a D4-D5 con�guration, and thus a �ve-

dimensional topological �eld theory in a half-space. It has been conjectured in [6] that

the space of supersymmetric ground states in this theory gives a physical realization of the

Khovanov homology.

2.1.2 The Two-Sided Problem And Supergroups

In this Chapter, we extend the construction of [6] to the case of Chern-Simons theory with

a supergroup. We mainly focus on the U(m|n) and the OSp(m|2n) supergroups, for which

there exist explicit brane constructions, but our arguments work for other supergroups as

well.

We consider the brane con�guration of �g. 2.1, with m and n D3-branes on the two
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sides of the NS5-brane. In �eld theory, this corresponds to U(n) and U(m) maximally-

supersymmetric Yang-Mills theories in two half-spaces, joined along a three-dimensional

defect. We prove that the action of the theory is given by the same formula (2.1), with

an important di�erence that the gauge �eld A is now superalgebra-valued. Namely, it is

a sum of a u(n) ⊕ u(m)-valued bosonic gauge �eld, which is obtained by restriction of the

bulk gauge �elds on the defect W , and a Grassmann one-form �eld, valued in the bifunda-

mental representation of U(m)×U(n). Therefore, in this two-sided brane con�guration, the

topological �eld theory living on the defect is the U(m|n) supergroup Chern-Simons theory.

This supergroup theory has some peculiarities, which one does not �nd in the ordinary,

bosonic Chern-Simons. We give a brief review of Lie superalgebras and their representations,

and then discuss line and surface operators that can be used to de�ne knot invariants in the

theory, and some of their properties.

After that we consider some applications. First, as in [6], we apply S-duality and get a

description of the theory in terms of the N = 4 Yang-Mills with a D5-type three-dimensional

defect. We call this theory �magnetic�, while the theory before S-duality is called �electric�.

The path-integral here can be computed by counting solutions of the Kapustin-Witten equa-

tions. This, in principle, gives a way to compute supergroup knot polynomials, though many

details remain unclear. We also identify the duals of line and surface operators, found in the

electric theory.

Our most interesting application arises for the gauge supergroup OSp(2m+ 1|2n). This

theory can be realized by essentially the same brane construction, but with an addition of

an orientifold three-plane. We �nd that the element S−1TS of the SL(2,Z) S-duality group

transforms this theory into supergroup Chern-Simons with gauge group OSp(2n + 1|2m).

In the special case of m = 0, this is a duality of supergroup OSp(1|2n) Chern-Simons and

ordinary, bosonic O(2n+ 1) Chern-Simons theory. The variable q in the knot polynomials is

mapped under the duality to −q. Note that the weak coupling limit is q → 1, so, our duality

exchanges the weak and the strong coupling regimes. Again, we describe the mapping of line
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and surface operators under the duality. In particular, this mapping involves an interesting

correspondence between representations of the two supergroups. For the case m = 0, this

mapping was known in the literature [71].

2.2 Electric Theory

2.2.1 Gauge Theory With An NS-Type Defect

As explained in the introduction, our starting point will be four-dimensional N = 4 super

Yang-Mills theory with a three-dimensional half-BPS defect. This theory can be de�ned in

purely gauge-theoretic terms, but it will be useful to consider a brane construction, which

gives a realization of the theory for unitary and orthosymplectic gauge groups. We consider

a familiar Type IIB setting [36] of D3-branes interacting with an NS5-brane. As sketched in

�g. 2.1 of the introduction, where we consider the horizontal direction to be parametrized

by2 y = x3, we assume that there are m D3-branes and thus U(m) gauge symmetry for y < 0

and n D3-branes and thus U(n) gauge symmetry for y > 0. We take the NS5-brane to be at

x3 = x7 = x8 = x9 = 0 and hence to be parametrized by x0, x1, x2 and x4, x5, x6, while the

semi-in�nite D3-branes are parametrized by x0, x1, x2, x3. With an orientifold projection,

which we will introduce in section 2.5, the gauge groups become orthogonal and symplectic.

Purely from the point of view of four-dimensional �eld theory, there are other possibilities.

The theory in the bulk is N = 4 super Yang-Mills, and it is coupled to some three-

dimensional bifundamental hypermultiplets, which live on the defect at y = 0 and come

from the strings that join the two groups of D3-branes. The bosonic �elds of the theory are

the gauge �elds Ai, the scalars ~X that describe motion of the D3-branes along the NS5-brane

(that is, in the x4, x5, x6 directions), and scalars ~Y that describe the motion of the D3-branes

normal to the NS5-brane (that is, in the x7, x8, x9 directions).

The relevant gauge theory action, including the e�ects of the defect at y = 0, has been

2Throughout the chapter, notations y and x3 are used interchangeably for the same coordinate.
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constructed in the paper [23]. In this section we recall some facts about this theory, mostly

without derivation. More detailed explanations can be found in the original paper [23] or in

the more technical Appendix B below, which is, however, not necessary for understanding

the main ideas of the present chapter.

The half-BPS defect preserves N = 4 superconformal supersymmetry in the three-

dimensional sense; the corresponding superconformal group is OSp(4|4). It is important

that there exists a one-parameter family of inequivalent embeddings of this supergroup into

the superconformal group PSU(2, 2|4) of the bulk four-dimensional theory. For our purposes,

it will su�ce to describe the di�erent embeddings just from the point of view of global su-

persymmetry (rather than the full superconformal symmetry). The embeddings di�er by

which global supersymmetries are preserved by the defect. The four-dimensional bulk the-

ory is invariant under the product U0 = SO(1, 3) × SO(6)R of the Lorentz group SO(1, 3)

and the R-symmetry group SO(6)R (or more precisely, a double cover of this associated

with spin); this is a subgroup of PSU(2, 2|4). The three-dimensional half-BPS defect breaks

U0 down to a subgroup U = SO(1, 2) × SO(3)X × SO(3)Y ; this is a subgroup of OSp(4|4).

Here in ten-dimensional terms, the two factors SO(3)X and SO(3)Y of the unbroken R-

symmetry subgroup act by rotations in the 456 and 789 subspaces, respectively. (SO(6)R is

broken to SO(3)X × SO(3)Y because the NS5-brane spans the 456 directions.) Under U0,

the global supersymmetries transform in a real representation (2,1,4)⊕ (1,2,4). Under U

this becomes V8 ⊗ V2, where V8 is a real eight-dimensional representation (2,2,2) and V2 is

a two-dimensional real vector space with trivial action of U. An embedding of OSp(4|4) in

PSU(2, 2|4) can be �xed by specifying which linear combination of the two copies of V8 is

left unbroken by the defect; these unbroken supersymmetries are of the form V8 ⊗ ε0, where

ε0 is a �xed vector in V2. Up to an irrelevant scaling, the choice of ε0 is parametrized by

an angle that we will call ϑ. This angle in turn is determined by the string theory coupling

parameter τ = i/gst + θ/2π, which in �eld theory terms is τ = 4πi
g2
YM

+ θYM

2π
. The relation

can be found in the brane description, as follows. Let ε1 and ε2 be the two ten-dimensional
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spinors that parametrize supersymmetry transformations in the underlying Type IIB theory.

They transform in the 16 of the ten-dimensional Lorentz group Spin(1, 9), so

Γ012...9εi = εi, i = 1, 2, (2.2)

where Γ012...9 is the product of the SO(1, 9) gamma-matrices ΓI , I=0,. . . , 9. The supersym-

metry that is preserved by the D3-branes is de�ned by the condition

ε2 = Γ0123ε1 , (2.3)

while the NS5-brane preserves supersymmetries that satisfy

ε1 = −Γ012456(sinϑ ε1 − cosϑ ε2) , (2.4)

where the angle ϑ is related to the coupling parameter τ by

ϑ = arg(τ). (2.5)

(When cosϑ = 0, (2.4) must be supplemented by an additional condition on ε2.) Altogether

the above conditions imply

(B2 sinϑ+B1 cosϑ)ε1 = ε1 , (2.6)

where B1 = Γ3456 and B2 = Γ3789 are operators that commute with the group U and thus act

naturally in the two-dimensional space V2. The solutions of this condition are of the form

ε1 = ε⊗ ε0, where ε is any vector in V8, and ε0 is a �xed, ϑ-dependent vector in V2. These

are the generators of the unbroken supersymmetries.

It will be useful to introduce a new real parameter K and to rewrite (2.5) as

τ = K cosϑ eiϑ. (2.7)
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The motivation for the notation is that K generalizes the level k of purely three-dimensional

Chern-Simons theory. For physical values of the coupling τ , one has Im τ > 0; this places a

constraint on the variables K and ϑ. In the twisted topological �eld theory, K will turn out

to be what was called the canonical parameter Ψ in [14].

In general, let us write G` and Gr for the gauge groups to the left or right of the defect.

From a purely �eld theory point of view, G` and Gr are completely arbitrary and moreover

arbitrary hypermultiplets may be present at x3 = 0 as long as Re τ = θYM/2π vanishes.3

However, as soon as θYM 6= 0, G` and Gr and the hypermultiplet representation are severely

constrained; to maintain supersymmetry, the product G` × Gr must be a maximal bosonic

subgroup of a supergroup whose odd part de�nes the hypermultiplet representation and

whose Lie algebra admits an invariant quadratic form with suitable properties. These rather

mysterious conditions [23] have been given a more natural explanation in a closely related

three-dimensional problem [24]; as explained in the introduction, our initial task is to gener-

alize that explanation to four dimensions. We denote the Lie algebras of G` and Gr as g` and

gr, and denote the Killing forms on these Lie algebras as κ` and κr; precise normalizations

will be speci�ed later. We will loosely write −tr(. . . ) for κ` or κr. We also need a form

κ = −κ` + κr on the direct sum of the two Lie algebras. This will be denoted by −Tr(. . . ).

The gauge indices for g` ⊕ gr will be denoted by Latin letters m,n, p.

As already remarked, from a �eld theory point of view, as long as θYM = 0, the defect

at y = 0 might support a system of N hypermultiplets transforming in an arbitrary real

symplectic representation of G` ×Gr. A real symplectic representation of G` ×Gr is a 4N -

dimensional real representation of G`×Gr, equipped with an action of SU(2) that commutes

with G` × Gr. (In the context of the supersymmetric gauge theory, this SU(2) will become

part of the R-symmetry group, as speci�ed below.) This representation can be conveniently

described as follows. Let R be a complex 2N -dimensional symplectic representation of

G`×Gr, with an invariant two-form ωIJ . We take the sum of two copies of this representation,

3The gauge couplings τ`,r and the angles ϑ`,r can also be di�erent at y < 0 and y > 0, as long as the
canonical parameter K in eqn. (2.7) is the same [23]. For our purposes, this generalization is not important.
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with an SU(2) group acting on the two-dimensional multiplicity space, and impose aG`×Gr×

SU(2)-invariant reality condition. This gives the desired 4N -dimensional real representation.

We denote indices valued inR as I, J,K, we write T ImJ for them
th generator of G`×Gr acting

in this representation, and we set τmIJ = T SmIωSJ , which is symmetric in I, J (and is related

to the moment map for the action of G` ×Gr on the hypermultiplets). As remarked above,

for θYM 6= 0, the representation R is highly constrained. It turns out that a supersymmetric

action for our system with θYM 6= 0 can be constructed if and only if

τm(IJτK)Snκ
mn = 0. (2.8)

This condition is equivalent [23] to the fermionic Jacobi indentity for a superalgebra sg,

which has bosonic part g`⊕ gr, with fermionic generators transforming in the representation

R and with κ⊕ ω being an invariant and nondegenerate graded-symmetric bilinear form on

sg; we will sometimes write this form as −Str(. . . ). Concretely, if we denote the fermionic

generators of sg as fI , then the commutation relations of the superalgebra are

[Tm, Tn] = f smnTs ,

[Tm, fI ] = TKmIfK , (2.9)

{fI , fJ} = τmIJκ
mnTn.

A short though admittedly mysterious calculation shows that the Jacobi identity for this

algebra is precisely (2.8). As already remarked, the closest to an intuitive explanation of this

result has been provided in [24], in a related three-dimensional problem. We will write SG

for the supergroup with superalgebra sg.

In more detail, the R-valued hypermultiplet that lives on the defect consists of scalar

�elds QIȦ and fermions λIAα that transform in the representation R of the gauge group, and

transform respectively as (1,1,2) and (2,2,1) under U = SO(2, 1) × SO(3)X × SO(3)Y .

(Here A,B = 1, 2 are indices for the double cover SU(2)X of SO(3)X , and Ȧ, Ḃ are similarly
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related to SO(3)Y .) They are subject to a reality condition, which e.g. for the scalars reads(
QI
Ȧ

)†
= εȦḂωIJQ

J
Ḃ
. To describe the coupling of the bulk �elds to the defect theory, it is

convenient to rewrite the bulk super Yang-Mills �elds in three-dimensional language. The

scalars Xa and Y ȧ, a, ȧ = 1, . . . , 3, transform in the vector representations of SO(3)X and

SO(3)Y , respectively, and of course the gauge �eld Ai is SO(3)X × SO(3)Y singlet. The

super Yang-Mills gaugino �eld Ψ transforms in the representation (2,1,4)⊕ (1,2,4) of U0.

Under the subgroup U, it splits into two spinors ΨAḂ
1α and ΨAḂ

2α , which transform in the

representation (2,2,2), like the supersymmetry generator εAḂα . More precisely, we de�ne

Ψ = −Ψ2 ⊗B1ε0 + Ψ1 ⊗B2ε0. (2.10)

With this de�nition, it is straightforward to decompose the supersymmetry transformations

of the four-dimensional super Yang-Mills to �nd the transformations that correspond to ε⊗ε0.

In particular, the bosons transform as

δAi =
1√
2
εαAḂσ

α
iβ

(
ΨAḂβ

1 sinϑ+ ΨAḂβ
2 cosϑ

)
,

δXa = − i√
2
εAα
Ḃ

ΨBḂ
1α σ

a
AB ,

δY ȧ =
i√
2
εȦαA ΨAḂ

2α σ
ȧ
ȦḂ
. (2.11)

Here i, j, k and α, β are respectively vector and spinor indices of the three-dimensional

Lorentz group SO(2, 1), and σi are the Pauli matrices. See Appendix A for some details

on our conventions.

The action of the theory has the following form:

Ielectric = ISYM −
θYM

2π
CS(A) +KIhyp. (2.12)

The terms on the right are as follows. ISYM is the usual action of the N = 4 super Yang-

Mills in the bulk. The term proportional to θYM re�ects the bulk �topological� term of
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four-dimensional Yang-Mills theory

IθYM
= −θYM

8π2

∫
x3<0

trF ∧ F − θYM

8π2

∫
x3>0

trF ∧ F, (2.13)

which we have split into two contributions at y < 0 and y > 0 because in the present context

the gauge �eld (and even the gauge group) jumps discontinuously at y = 0. Because of this

discontinuity, even if we restrict ourselves to variations that are trivial at in�nity, IθYM
has a

nontrivial variation supported on the locus W de�ned by y = 0. This variation is the same

as that of (θYM/2π)CS(A), where CS(A) is the Chern-Simons interaction of G` ×Gr:

CS(A) =
1

4π

∫
W

Tr

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (2.14)

(Recall that the symbol Tr includes the contributions of both G` and Gr, but with opposite

signs.) We lose some information when we replace IθYM
by (θYM/2π)CS(A), since IθYM

is

gauge-invariant as a real number, but CS(A) is only gauge-invariant modulo an integer.

However, the replacement of IθYM
by (θYM/2π)CS(A) is a convenient shorthand. Finally,

Ihyp is the part of the action that involves the hypermultiplets. More details concerning the

action are given in the Appendix B.

We also need some facts about the boundary conditions and supersymmetry transforma-

tions in this theory. The bulk scalars Yȧ obey a Dirichlet type boundary condition. In terms

of Y m
ȦḂ

= σȧ
ȦḂ
Y ȧm, this boundary condition is

Y m
ȦḂ

= − 1

2 cosϑ
τmIJQ

I
Ȧ
QJ
Ḃ
. (2.15)

In the brane picture, this boundary condition re�ects the fact that the �elds Y ȧ describe

displacement of the D3-branes from the NS5-brane in the 789 directions, and so vanish

at y = 0 if the hypermultiplets vanish. Notice that, depending on whether m labels a

generator of G` or Gr, the �eld Y m
ȦḂ

is de�ned for y ≤ 0 or for y ≥ 0; but the boundary
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condition (2.15) is valid in both cases. A similar remark applies for other formulas below.

Boundary conditions for other �elds can be obtained from (2.15) by N = 4 supersymmetry

transformations, or by ensuring the vanishing of boundary contributions in the variation of

the action. For the gauge �elds, the relevant part of the action is

1

2g2
YM

∫
d4x trF 2

µν −
θYM

8π2

∫
trF ∧ F +KIhyp. (2.16)

Taking the variation and reexpressing the coupling constant using (2.7), one gets on the

boundary

sinϑFm
k3 −

1

2
cosϑ εkijF

m
ij =

2π

cosϑ
Jmk , (2.17)

where Jmk = δIhyp/δA
m
k is the hypermultiplet current, and gauge indices are raised and

lowered by the form κ. There is a similar boundary condition for the Xa scalar which we

shall not write explicitly here. By making supersymmetry transformations (2.11) of the

equation (2.15), one can also �nd the boundary condition for the bulk fermions,

√
2Ψm

2αAḂ
=

i

cosϑ
τmIJλ

I
αAQ

J
Ḃ
. (2.18)

It was shown in [23] that this four-dimensional problem with a half-BPS defect is closely

related to a purely three-dimensional Chern-Simons theory with three-dimensional N = 4

supersymmetry. A three-dimensional Chern-Simons theory with N = 3 supersymmetry

exists with arbitrary gauge group and hypermultiplet representation, but with N = 4 su-

persymmetry, one needs precisely the constraints stated above: the gauge group G is the

bosonic part of a supergroup SG, and the hypermultiplet representation corresponds to the

odd part of the Lie algebra of SG. To compare the action of the four-dimensional model

with the defect to the action of the purely three-dimensional model, we �rst decompose the

hypermultiplet action in (2.12) as

Ihyp = IQ(A) + I ′hyp, (2.19)
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where IQ(A) is the part of the hypermultiplet action that contains couplings to no bulk

�elds except A, and I ′hyp contains the couplings of hypermultipets to the bulk scalars and

fermions. (For details, see Appendix B.) In these terms, the action of the purely three-

dimensional theory is

−K (CS(A) + IQ(A)) (2.20)

while the contribution to the four-dimensional action at y = 0 is

−θYM

2π
CS(A)−K

(
IQ(A) + I ′hyp

)
. (2.21)

Thus, there are several di�erences: the defect part (2.21) of the four-dimensional action

contains the extra couplings in I ′hyp, and it has a di�erent coe�cient of the Chern-Simons term

than that which appears in the purely three-dimensional action (2.20); also, in (2.20), A is a

purely three-dimensional gauge �eld while in (2.21), it is the restriction of a four-dimensional

gauge �eld to y = 0. There also are di�erences in the supersymmetry transformations. The

supersymmetry transformations in the purely three-dimensional Chern-Simons theory are

schematically

δA ∼ ελQ , (2.22)

In the four-dimensional theory with the defect, the transformation for the gauge �eld in

(2.11) is schematically

δA ∼ ε(Ψ1 + Ψ2). (2.23)

Clearly, the two formulas (2.22) and (2.23) do not coincide. With the help of the boundary

condition (2.18), we see that the Ψ2 term in (2.23), when restricted to y = 0, has the same

form as the purely three-dimensional transformation law (2.22). The term involving Ψ1

cannot be interpreted in that way; rather, before comparing the four-dimensional theory

with a defect to a purely three-dimensional theory, one must rede�ne the connection A in

a way that will eliminate the Ψ1 term. In section 2.2.2, generalizing the ideas in [6] and in
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[24], we will explain how to reconcile the di�erent formulas.

2.2.2 Topological Twisting

After making a Wick rotation to Euclidean signature on R4, we want to select a scalar

supercharge Q, obeying Q2 = 0, in such a way that if we restrict to the cohomology of Q, we

get a topological �eld theory. As part of the mechanism to achieve topological invariance,

we require Q to be invariant under a twisted action of the rotations of R4, that is, under

rotations combined with suitable R-symmetries. In Euclidean signature, the rotation and

R-symmetry groups are the two factors of UE
0 = SO(4) × SO(6)R, and the symmetries

preserved by the defect are UE = SO(3) × SO(3)X × SO(3)Y . The twisting relevant to our

problem is the same procedure used in studying the geometric Langlands correspondence

via gauge theory [14]. We pick a subgroup SO(4)R ⊂ SO(6)R, and de�ne SO′(4) ⊂ U ′0 to be

a diagonal subgroup of SO(4) × SO(4)R, such that from the ten-dimensional point of view,

SO′(4) acts by simultaneous rotations in the 0123 and 4567 directions. The space of ten-

dimensional supersymmetries transforms as (2,1,4)⊕(1,2,4) under UE
0 = SO(4)×SO(6)R ∼=

SU(2)× SU(2)× SO(6)R. Each summand has a one-dimensional SO′(4)-invariant subspace;

this follows from the fact that the representations 4 and 4 of SO(6)R both decompose as

(2,1) ⊕ (1,2) under SO′(4). The two invariant vectors coming from (2,1,4) and (1,2,4)

give two supersymmetry parameters ε` and εr with de�nite SO(4) chiralities. Although there

is no natural way to normalize ε`, there is a natural way
4 to de�ne εr in terms of ε` and one

can take Q to be any linear combination bε` + aεr. We only care about Q up to scaling, so

the relevant parameter is t = a/b.

In the bulk theory, we can make any choice of t, but in the presence of the half-BPS

defect, we must choose a supercharge that is preserved by the defect. As in section 2.2.1, the

space of supersymmetries decomposes under UE as V8⊗V2, where V8 transforms as (2,2,2),

and UE acts trivially on V2. (In Euclidean signature, the vector spaces V8 and V2 are not

4One sets εr =
∑3
µ=0 Γ4+µ,µε`/4, as in eqn. (3.8) of [14].
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real.) The defect preserves supersymmetry generators of the form ε ⊗ ε0 with any ε ∈ V8

and with a �xed ε0 ∈ V2. Invariance under SO′(4) restricts to a 1-dimensional subspace of

V8, as explained in the next paragraph. So up to scaling, only one linear combination of ε`

and εr is preserved by the defect, and t is uniquely determined.

To �nd the scalar supersymmetry generator in three-dimensional notation, we note that

at y = 0, SO′(4) can be naturally restricted to SO′(3), which is a diagonal subgroup of

SO(3)× SO(3)X ⊂ SO(4)× SO(4)R. An SO′(3)-invariant vector in V8 must have the form

εαAȦtop = εαAvȦ, (2.24)

where α,A, Ȧ = 1, 2 label bases of the three factors of V8 ∼ 2 ⊗ 2 ⊗ 2; εαA is the anti-

symmetric symbol; and vȦ, which takes values in the 2 of SO(3)Y , is not constrained by

SO′(3) invariance. However, vȦ is determined up to scaling by SO′(4) invariance. In fact, for

any particular vȦ, the supersymmetry parameter de�ned in eqn. (2.24) is invariant under a

twisted rotation group that pairs the 0123 directions with 456v, where vȧ ∼ vσȧv is some

direction in the subspace 789 (here σȧ are the Pauli matrices). For SO′(4) invariance, we

want to choose vȦ such that v is the direction x7. A simple way to do that is to look at the

U(1)F symmetry subgroup of SO(3)Y that rotates the 89 plane and commutes with SO′(4);

thus, U(1)F rotates the last two components of ~Y = (Y1, Y2, Y3). We normalize the generator

F of U(1)F so that the �eld σ = Y2−iY3√
2

has charge 2. Then using a standard representation

of the σȧ, one has

Y Ȧ
Ḃ
≡ Y ȧσȦ

ȧḂ
= i

 Y1

√
2σ

√
2σ −Y1

 , (2.25)

and in this basis, the generator F is

 1 0

0 −1

 . (2.26)
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SO′(4) invariance implies that the supersymmetry parameter ε has charge −1 under F (see

eqn. (3.11) in [14]), so we can take

vȦ = 21/4 e−iϑ/2

 0

1

 . (2.27)

The normalization factor here is to match the conventions of [14]. For future reference, we

also de�ne

uȦ = 23/4 eiϑ/2

 1

0

 . (2.28)

We also will need the relation between the parameter t and the angle ϑ. For that, we

use equation (2.26) from [6] for the topological parameter ε` + tεr. Comparing it to our

eqn. (2.6), we �nd that

t = ei(π−ϑ). (2.29)

In the twisted theory, the �elds ~X and Y1 join into a one-form φ =
∑3

µ=0 φµ dx
µ, with

components φi = Xi+1, i = 0, 1, 2, and φ3 = Y1. Q-invariance (or more precisely the condition

{Q, ζ} = 0 for any fermionic �eld ζ) gives a system of equations for Aµ and φµ. These

equations, which have been extensively discussed in [6], take the form V+ = V− = V0 = 0,

with

V+ = (F − φ ∧ φ+ t dAφ)+ ,

V− =
(
F − φ ∧ φ− t−1dAφ

)−
,

V0 = Dµφ
µ. (2.30)

Here if Λ is a two-form, we denote its selfdual and anti-selfdual projections as Λ+ and Λ−,

respectively.
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2.2.3 Fields And Transformations

If a four-dimensional gauge theory with a defect is related to a purely three-dimensional

theory on the defect, then what are the �elds in the e�ective three-dimensional theory? The

hypermultiplets supported at y = 0 give one obvious source of three-dimensional �elds. So

let us �rst discuss these �elds from the standpoint of the twisted theory.

The hypermultiplet contains scalar �elds QIȦ that transform as a doublet under SU(2)Y .

In the twisted theory, SU(2)Y is reduced to U(1)F , and accordingly we decompose the QIȦ in

multiplets CI and C
I
with charges ±1 under U(1)F . (These are upper and lower components

in the basis used in (2.26).) The fermionic part of the hypermultiplet λAIα has a more

interesting decomposition in the twisted theory. Under SO′(3), both the spinor index α and

the SO(3)X index A carry spin 1/2, so λAIα is a sum of pieces of spin 1 and spin 0. In other

words, the fermionic part of the hypermultiplet decomposes into a vector A f
I
i
and a scalar

BI .

The supercharge Q generates the following transformations of these �elds:

δA f = −DbC ,

δC = 0 ,

δC = B ,

δB =
1

2
[{C,C}, C]. (2.31)

Here for any �eld Φ, we de�ne δΦ = [Q,Φ}, where [ , } is a commutator or anticommutator

for Φ bosonic or fermionic; also, Db is the coveriant derivative with a connection Ab that we

de�ne momentarily.

The vector Af will become the fermionic part of the sg-valued gauge �eld, which we will

call A. But where will we �nd Ab, the bosonic part of A? There is no candidate among

the �elds that are supported on the defect. Rather, Ab will be the restriction to the defect
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worldvolume of a linear combination of bulk �elds:

Ab = A+ i(sinϑ)φ. (2.32)

This formula de�nes both a g`-valued part of Ab � obtained by restricting A+ i(sinϑ)φ from

y ≤ 0 to y = 0 � and a gr-valued part � obtained by restricting A+ i(sinϑ)φ from y ≥ 0 to

y = 0. (Here g` and gr are the Lie algebras of G` and Gr.) The shift from A to Ab removes

the unwanted term with Ψ1 in the topological supersymmetry variation (2.23), so that �

after restricting to y = 0 and using the boundary condition (2.18) � one gets

δAb = {C,A f}. (2.33)

Obviously, since A f is only de�ned at y = 0, δAb can only be put in this form at y = 0.

The interpretation of the formulas (2.31) and (2.33) was explained in [24] (where they

arose in a purely three-dimensional context): one can interpret C as the ghost �eld for a

partial gauge-�xing of the supergroup SG down to its maximal bosonic subgroup G, and

the supercharge Q as the BRST operator for this partial gauge-�xing. Since C has U(1)F

charge of 1, we should interpret U(1)F as the ghost number. Once we interpret C as a

ghost �eld, the transformation laws for Ab and A f simply combine to say that acting on

A = Ab + A f , Q generates the BRST transformation δA = −dAC with gauge parameter

C. The gauge parameter C has opposite statistics from an ordinary gauge generator (it is a

bosonic �eld but takes values in the odd part of the super Lie algebra sg); this is standard

in BRST gauge-�xing of a gauge theory. In such BRST gauge-�xing, one often introduces

BRST-trivial multiplets (C,B), where δC = B and δB is whatever it must be to close the

algebra. In the most classical case, C is an antighost �eld, with U(1)F charge −1, and B is

called a Lautrup-Nakanishi auxiliary �eld. The multiplet (C,B) in (2.31) has precisely this

form.

If one �nds a gauge transformation in which the gauge parameter has reversed statistics
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to be confusing, one may wish to introduce a formal Grassman parameter η and write δ′ = ηδ,

so that for any �eld Φ, δ′Φ = [ηQ,Φ]; ηQ is bosonic, so there is an ordinary commutator

here. Then

δ′A = −D(ηC), (2.34)

showing that the symmetry generated by ηQ transforms the supergroup connection A by a

gauge transformation with the in�nitesimal gauge parameter ηC, which has normal statistics.

2.2.4 The Action

After twisting, one can de�ne the N = 4 super Yang-Mills theory on an arbitrary5 four-

manifold M , with the defect supported on a three-dimensional oriented submanifold W .

Generically, in this generality, one preserves only the unique supercharge Q.

What is the form of the Q-invariant action of this twisted theory? Any gauge-invariant

expression {Q, ·} is Q-invariant, of course � and also largely irrelevant as long as we calculate

only Q-invariant observables, which are the natural observables in the twisted theory. But

in addition, any gauge-invariant function of the complex connection A is Q-invariant, since

Q acts on A as the generator of a gauge transformation. A is de�ned only on the oriented

three-manifold W , and as we are expecting to make a topological �eld theory, the natural

gauge-invariant function of A is the Chern-Simons function.

Given this and previous results (concerning the case that there is no defect [14], an

analogous purely three-dimensional problem [24], and the case that the �elds are nonzero

only on one side of W [6]), it is natural to suspect that the action of the twisted theory on

M may have the form

I = iKCS(A) + {Q, . . . } =
iK
4π

∫
W

Str

(
AdA+

2

3
A3

)
+ {Q, . . . } , (2.35)

5If M is not orientable, one must interpret φ not as an ordinary 1-form but as a 1-form twisted by the
orientation bundle of M .
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where if there is a formula of this type, then the coe�cient of CS(A) must be precisely iK,

in view of what is already known about the one-sided case.

This is indeed so. Leaving some technical details for Appendix B, we simply make a few

remarks here. In the absence of a defect, and assuming that M has no boundary, it was

shown in [14] that the action of the twisted super Yang-Mills theory is Q-exact modulo a

topological term:

ISYM +
iθYM

8π2

∫
M

tr (F ∧ F ) =
iK
4π

∫
M

tr (F ∧ F ) + {Q, . . . } . (2.36)

(On the left, ISYM is the part of the twisted super Yang-Mills action that is proportional to

1/g2
YM; the part proportional to θYM is written out explicitly.) In [6], the case that M has

a boundary W (and the D3-branes supported on M end on an NS5-brane wrapping T ∗W )

was analyzed. It was shown that (2.36) remains valid, except that the topological term∫
M

trF ∧ F must be replaced with a Chern-Simons function on W = ∂M , not of the real

gauge �eld A but of its complexi�cation Ab. From the point of view of the present thesis,

this case means that M intersects the NS5-brane worldvolume in a defect W , and there are

gauge �elds only on one side of W . Part of the derivation of eqn. (2.35) is simply to use the

identity (2.36) on both M` and Mr, thinking of the integral of trF ∧ F over M` or Mr as a

Chern-Simons coupling on the boundary.

To get the full desired result, we must include also the hypermultiplets Q that are sup-

ported on W . The full action of the theory was described in formulas (2.12) and (2.19). In

Euclidean signature it reads

Ielectric = ISYM +
iθYM

2π
CS(A) +K(IQ(A) + I ′hyp). (2.37)

The identity (2.36) has a generalization that includes the boundary terms:

Ielectric = iK (CSGr(Ab)− CSG`
(Ab)) +KIQ(Ab) + {Q, . . . }. (2.38)
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Since the �rst three terms are de�ned purely on the three-manifold W , we can now invoke

the result of [24]: this part of the action is iKCS(A) + {Q, . . . }, where now CSSG(A) is the

Chern-Simons function for the full supergroup gauge �eld A = Ab + A f , and the Q-exact

terms describe partial gauge-�xing from SG to G. This con�rms the validity of eqn. (2.35).

We conclude by clarifying the meaning of the supergroup Chern-Simons function CS(A).

With A = Ab +A f , we have

CS(A) = CS(Ab) +
1

4π

∫
W

StrA fdAbA f . (2.39)

The term involving A f is the integral over W of a function with manifest gauge symmetry

under G` × Gr (and even its complexi�cation). It is not a�ected by the usual subtleties of

the Chern-Simons function involving gauge transformations that are not homotopic to the

identity. The reason for this is that the supergroup SG is contractible to its maximal bosonic

subgroup G; the topology is entirely contained in G. Similarly, with Ab = A+ i(sinϑ)φ, we

can expand the complex Chern-Simons function,

CS(Ab) = CS(A)+
1

4π

∫
W

Tr
(
i(sinϑ)φ ∧ F − (sin2 ϑ)φ ∧ dAφ− i(sin3 ϑ)φ ∧ φ ∧ φ

)
, (2.40)

and the topological subtleties a�ect only the �rst term CS(A) . Here, as in eqns. (2.14)

and (2.13), to resolve the topological subtleties and put the action in a form that is well-

de�ned for generic K, we should replace CS(A) with the corresponding volume integral

(1/4π)
∫
M

trF ∧ F . There is no need for such a substitution in any of the other terms,

since they are all integrals over W of gauge-invariant functions. All this re�ects the fact

that a complex Lie group is contractible to a maximal compact subgroup, so the topological

subtlety in CS(Ab) is entirely contained in CS(A).

It is convenient to simply write the action as iKCS(A) + {Q, . . . }, as we have done in

eqn. (2.35), rather than always explicitly replacing the term CS(A) in this action with a

bulk integral.
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2.2.5 Analytic Continuation

To get the formula (2.33) alongW , we have had to replace A by A+i(sinϑ)φ, with the result

that the bosonic part ofA is complex-valued. This is related to an essential subtlety [12, 13] in

the relation of the four-dimensional theory with a defect to a Chern-Simons theory supported

purely on the defect. In general, four-dimensional N = 4 super Yang-Mills theory on a four-

manifold M , with a half-BPS defect of the type analyzed here on a three-manifold W ⊂M ,

is not equivalent to standard Chern-Simons theory on W with gauge supergroup SG, but

to an analytic continuation of this theory. The basic idea of this analytic continuation is

that localization on the space of solutions of the equations (2.30) de�nes an integration cycle

in the complexi�ed path integral of the Chern-Simons theory. This localization is justi�ed

using the fact that the Q-exact terms in (2.38) can be scaled up without a�ecting Q-invariant

observables, so the path integral can be evaluated just on the locus where those terms vanish.

The condition for these terms to vanish is the localization equations (2.30), which de�ne the

integration cycle. (Thus, the integration cycle is characterized by the fact that Ab is the

restriction to y = 0 of �elds A, φ which obey the localization equations and have prescribed

behavior for y → ±∞.)

For generic W andM , the integration cycle derived from N = 4 super Yang-Mills theory

di�ers from the standard one of three-dimensional Chern-Simons theory. For the important

case that W = R3, there is essentially only one possible integration cycle and therefore the

two constructions are equivalent. Thus, after including Wilson loop operators (as we do in

section 2.3), the four-dimensional construction can be used to study the usual knot invariants

associated to three-dimensional Chern-Simons theory.

Unfortunately, it turns out that for supergroups all the observables which can be de�ned

using only closed Wilson loops in R3 reduce to observables of an ordinary bosonic Chern-

Simons theory. This is explained in section 2.3 of the present thesis, and in section 6 of [1]. To

�nd novel observables, one needs to do something more complicated. All of the options seem
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to introduce some complications in the relation to four dimensions. For example, one can

replace R3 by S3 and de�ne observables that appear to be genuinely new by considering the

path integral with insertion of a Wilson loop in a typical representation (see section 2.3.2.2).

But the compactness of S3 means that one encounters infrared questions in comparing to

four dimensions. Because of such complications, our results for supergroup Chern-Simons

theory are less complete then in the case of a bosonic Lie group.

A feature of the localization that is special to supergroups is that Ab is the boundary

value of a four-dimensional �eld (which in the localization procedure is constrained by the

equations (2.30)), but A f is purely three-dimensional. The reason that this happens is

essentially that the topology of the supergroup SG is contained entirely in its maximal

bosonic subgroup G. Being fermionic, A f is by nature in�nitesimal; the Berezin integral for

fermions is an algebraic operation (a Gaussian integral in the case of Chern-Simons theory

of a supergroup) with no room for choosing di�erent integration cycles. By contrast, in the

integration over the bosonic �elds, it is possible to pick di�erent integration cycles and the

relation to four-dimensional N = 4 super Yang-Mills theory does give a very particular one.

One important qualitative di�erence between purely three-dimensional Chern-Simons

theory and what one gets by extension to four dimensions is as follows. In the three-

dimensional theory, the �level� k must be an integer, but in the analytically continued version

given by the relation to four-dimensional N = 4 super Yang-Mills, k is generalized to a

complex parameter K. Part of the mechanism for this is that although the Chern-Simons

function CS(A) is only gauge-invariant modulo 1, in the four-dimensional context it can be

replaced by a volume integral
∫
M

TrF ∧ F , which is entirely gauge-invariant, so there is no

need to quantize the parameter.

2.2.6 Relation Among Parameters

At �rst sight, eqn. (2.35) seems to tell us that the relation between the parameter K in four

dimensions and the usual parameter k of Chern-Simons theory, which appears in the purely
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three-dimensional action

i
k

4π

∫
W

Str

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (2.41)

would be K = k. However, for the purely one-sided case, the relation, according to [6], is

really6

K = k + h sign (k). (2.42)

An improved explanation of this is as follows.

The purely three-dimensional Chern-Simons theory for a compact gauge group G involves

a path integral over the space of real connections A. This is an oscillatory integral and in

particular, at one-loop level, in expanding around a classical solution, one has to perform an

oscillatory Gaussian integral.7 After diagonalizing the matrix that governs the �uctuations,

the oscillatory Gaussian integral is a product of one-dimensional integrals

∫ ∞
−∞

dx√
π

exp(iλx2) =
exp(i(π/4)signλ)

|λ|
, (2.43)

where the phase comes from rotating the contour by x = exp(i(π/4)signλ)x′ to get a real

convergent Gaussian integral for x′. In Chern-Simons gauge theory, the product of these

phase factors over all modes of the gauge �eld and the ghosts gives (after suitable regulariza-

tion) a factor exp(iπη/4), where η is the Atiyah-Patodi-Singer η-invariant. This factor has

the e�ect of shifting the e�ective value of k in many observables to k + h sign k, where h is

the dual Coxeter number of G (this formula is often written as k → k + h, with k assumed

6 A careful reader will ask what precisely we mean by k in the following formula. In de�ning k precisely,
we will assume that it is positive; if it is negative, one makes the same de�nitions after reversing orientations.
One precise de�nition is that k is the level of a two-dimensional current algebra theory that is related to
the given Chern-Simons theory in three dimensions. (The level is de�ned as the coe�cient of a c-number
term appearing in the product of two currents.) Another precise de�nition is that, for integer k, the space of
physical states of the Chern-Simons theory on a Riemann surface Σ is H0(M,Lk), whereM is the moduli
space of holomorphic G-bundles over Σ and L generates the Picard group of M. (For simplicity, in this
statement, we assume G to be simply-connected.)

7The following is explained more fully on pp. 358-9 of [4], where however a nonstandard normalization is
used for η. See also [87].
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to be positive).

One can think of the shift k → k+h sign k as arising in a Wick rotation in �eld space from

the standard integration cycle of Chern-Simons theory (real A) to an integration cycle on

which the integral is convergent rather than oscillatory. But this is precisely the integration

cycle that is used in the four-dimensional description (see [12, 13]). Accordingly, in the four-

dimensional description, there is no one-loop shift in the e�ective value of K and instead the

shift must be absorbed in the relation between parameters in the four- and three-dimensional

descriptions by K = k + h sign k.

Up to a point, the same logic applies in our two-sided problem. The four-dimensional

path integral has no oscillatory phases and hence no one-loop shift in the e�ective value of

the Chern-Simons coupling. So any such shift that would arise in a purely three-dimensional

description must be absorbed in the relationship between K and a three-dimensional param-

eter k. We are therefore tempted to guess that the relationship between K and the parameter

k of a purely three-dimensional Chern-Simons theory of the supergroup SG is

K = k + hsg sign k, (2.44)

where hsg is the dual Coxeter number of the supergroup. The trouble with this formula is

that it assumes that the e�ective Chern-Simons level for a supergroup has the same one-loop

renormalization as for a bosonic group. The validity of this claim is unclear for reasons

explored in Appendix E of [1]. (In brief, the fact that the invariant quadratic form on

the bosonic part of the Lie superalgebra sg is typically not positive-de�nite means it is

not clear what should be meant by sign k, and also means that a simple imitation of the

standard one-loop computation of bosonic Chern-Simons theory does not give the obvious

shift k → k + hsg sign k.) We actually do not know the proper treatment of purely three-

dimensional Chern-Simons theory of a supergroup. In this chapter, we concentrate on the

four-dimensional description, in which the bosonic part of the path integral is convergent,
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not oscillatory, and accordingly there is no one-loop shift in the e�ective value of K. Thus

we should just think of K as the e�ective parameter of the Chern-Simons theory.

Let us go back to the purely bosonic or one-sided case. For G simple and simply-laced,

Chern-Simons theory is usually parametrized in terms of

q = exp(2πi/(k + h sign k)) = exp(2πi/K). (2.45)

If G is not simply-laced, it is convenient to take q = exp(2πi/ngK), where ng is the ratio of

length squared of long and short roots of g. Including the factor of 1/ng in the exponent

ensures that q is the instanton-counting parameter in a magnetic dual description. Similarly,

for a supergroup SG, we naturally parametrize the theory in terms of

q = exp(2πi/nsgK), (2.46)

where nsg is the ratio of length squared of the longest and shortest roots of a maximal bosonic

subgroup of SG, computed using an invariant bilinear form on sg (for the supergroups we

study in this thesis, nsg can be 1, 2, or 4). To write this formula in terms of a purely three-

dimensional parameter k, we would have to commit ourselves to a precise de�nition of such

a parameter. Each of the de�nitions given for bosonic groups in footnote 6 may generalize

to supergroups, but in neither case is the proper generalization immediately clear.

2.3 Observables In The Electric Theory

The most important observables in ordinary Chern-Simons gauge theory are Wilson line

operators, labeled by representations of the gauge group. To understand their analogs in

supergroup Chern-Simons theory, we need to know something about representations of su-

pergroups. The theory of Lie supergroups has some distinctive features, compared to the

ordinary Lie group case, and these special features have implications for Chern-Simons the-
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ory and its line observables. Accordingly, we devote section 2.3.1 to a brief review of Lie

supergroups and superalgebras. Then in section 2.3.2, we discuss the peculiarities of line ob-

servables in three-dimensional supergroup Chern-Simons theory. In sections 2.3.3 and 2.3.4,

we return to the four-dimensional construction, and explain, in fairly close parallel with [6],

how line operators of supergroup Chern-Simons theory are realized as line or surface opera-

tors in N = 4 super Yang-Mills theory. Finally, in section 2.3.5 we summarize some unclear

points.

In the four-dimensional construction, in addition to the line and surface operators con-

sidered here, it is possible to construct Q-invariant local operators. They are described in

Appendix D.

2.3.1 A Brief Review Of Lie Superalgebras

We begin with the basics of Lie superalgebras, Lie supergroups, and their representations.

For a much more complete exposition see e.g. [37, 38, 39].

A Lie superalgebra decomposes into its bosonic and fermionic parts, sg = g0 +g1. We will

assume that g0 is a reductive Lie algebra (the sum of a semi-simple Lie algebra and an abelian

one). Moreover, to de�ne the supergroup gauge theory action, we need the superalgebra sg

to possess a non-degenerate invariant bilinear form. (This also determines a superinvariant

volume form on the SG supergroup manifold.) Finite-dimensional Lie superalgebras with

these properties are direct sums of some basic examples. These include the unitary and

the orthosymplectic superalgebras, as well as a one-parameter family of deformations of

osp(4|2), and two exceptional superalgebras, as speci�ed in Table 2.1. For the unitary Lie

superalgebras, one can also restrict to the supertraceless matrices su(m|n), and for m = n

further factor by the one-dimensional center down to psu(n|n). In what follows, by a Lie

superalgebra we mean a superalgebra from this list.8

8We avoid here using the term �simple superalgebra,� since, e.g., u(1|1) is not simple (it is solvable), but
is perfectly suitable for supergroup Chern-Simons theory. Let us mention that Lie superalgebras with the
properties we have required which in addition are simple are called basic classical superalgebras.
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Though we use real notation in denoting superalgebras, for instance in writing u(m|n) and

not gl(m|n), we never really are interested in choosing a real form on the full superalgebra.

One reason for this is that we will actually be studying analytically-continued versions of

supergroup Chern-Simons theories. If one considers all possible integration cycles, then

the real form is irrelevant. More fundamentally, as we have already explained in section

2.2.5, to de�ne a path integral for supergroup Chern-Simons theory, one needs to pick a

real integration cycle for the bosonic �elds, but one does not need anything like this for the

fermions. Correspondingly, we might need a real structure on g0 (and this will generally be

the compact form) but not on the full supergroup or the superalgebra. So for our purposes, a

three-dimensional Chern-Simons theory is naturally associated to a so-called cs-supergroup,

which is a complex Lie supergroup together with a choice of real form for its bosonic subgroup.

If we choose the compact form of a maximal bosonic subgroup of a supergroup SG,

then one can calculate the volume of SG with respect to its superinvariant measure. This

volume has the following signi�cance in Chern-Simons theory. The starting point in Chern-

Simons perturbation theory on a compact three-manifold is to expand around the trivial �at

connection; in doing so one has to divide by the volume of the gauge group. But this volume

is actually9 0 for any Lie supergroup whose maximal bosonic subgroup is compact, with the

exception of B(0, n) = OSp(1|2n). This fact is certainly one reason that one cannot expect

to develop supergroup Chern-Simons theory by naively imitating the bosonic theory.

Another di�erence between ordinary groups and supergroups is that in the supergroup

case, we have to distinguish between irreducible representations and indecomposable ones.

A representation R of sg is called irreducible if it does not contain a non-trivial sg-invariant

9 A quick proof is as follows. Let SG be a Lie supergroup whose maximal bosonic subgroup is compact
(this assumption ensures that there are no infrared subtleties in de�ning and computing the volume of SG).
Suppose that there is a fermionic generator C of sg with the property that {C, C} = 0. Such a C exists for
every Lie supergroup except OSp(1|2n). We view C as generating a supergroup F of dimension 0|1, which
we consider to act on SG on (say) the left. This gives a �bration SG→ SG/F with �bers F. The volume of
SG can be computed by �rst integrating over the �bers of the �bration. But the volume of the �bers is 0, so
(given the existence of C) the volume of SG is 0. The volume of the �bers is 0 because, since {C, C} = 0, there
are local coordinates in which the �bers are parametrized by an odd variable ψ and C = ∂/∂ψ. C-invariance
of the volume then implies that the measure for integration over ψ is invariant under adding a constant to
ψ; the volume of the �ber is therefore

∫
dψ · 1 = 0.
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superalgebra bosonic part fermionic part type

u(m|n) u(m)⊕ u(n) (m,n)⊕ (m,n) I
B(m,n) ' osp(2m+ 1|2n) so(2m+ 1)⊕ sp(2n) (2m+ 1, 2n) II
C(n+ 1) ' osp(2|2n) u(1)⊕ sp(2n) (1, 2n)⊕ (1, 2n) I
D(m,n) ' osp(2m|2n),m > 1 so(2m)⊕ sp(2n) (2m, 2n) II
D(2, 1;α), α ∈ C \ {0,−1} su(2)⊕ su(2)⊕ su(2) (2, 2, 2) II
G(3) su(2)⊕ g2 (2, 7) II
F (4) su(2)⊕ so(7) (2, 8) II

Table 2.1: Lie superalgebras suitable for the supergroup Chern-Simons theory. (We do not list
explicitly the subquotients of the unitary superalgebra, which are mentioned in the text.)

Figure 2.2: Dynkin diagram for the su(m|n) superalgebra. The subscripts are expressions for the
roots in terms of the orthogonal basis δ•, ε•. The superscripts represent the Dynkin labels of a
weight. The middle root denoted by a cross is fermionic.

subspace R0, and it is called indecomposable if it cannot be decomposed as R0⊕R1 where R0

and R1 are non-trivial sg-invariant subspaces. In a reducible representation, the representa-

tion matrices are block triangular

∗ ∗
0 ∗

, while in a decomposable representation, they are

block diagonal. For ordinary reductive Lie algebras, these notions coincide (if the matrices

are block triangular, there is a basis in which they are block diagonal), but for Lie superal-

gebras as de�ned above, they do not coincide, with the sole exception of B(0, n). It is not a

coincidence that B(0, n) is an exception to both statements; a standard way to prove that a

reducible representation of a compact Lie group is also decomposable involves averaging over

the group, and this averaging only makes sense because the volume is nonzero. For B(0, n),

taken with the compact form of its maximal bosonic subgroup, the same proof works, since

the volume is not zero. A physicist's explanation of the �bosonic� behavior of B(0, n) might

be that, as we argue later, the Chern-Simons theory with this gauge supergroup is dual to

an ordinary bosonic Chern-Simons theory with the gauge group SO(2n + 1). This forces

B(0, n) to behave somewhat like an ordinary bosonic group.
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Figure 2.3: Dynkin diagram for the osp(2m + 1|2n) superalgebra, m ≥ 1. The subscripts are
expressions for the roots in terms of the orthogonal basis δ•, ε•. The superscripts represent the
Dynkin labels of a weight. The arrows point in the direction of a shorter root. The middle root
denoted by a cross is fermionic. Roots of the sp(2n) and so(2m+ 1) subalgebras are on the left and
on the right of the fermionic root. The site shown in grey and labeled an is the long simple root of
the sp(2n) subalgebra, which does not belong to the set of simple roots of the superalgebra.

The structure theory for a simple Lie superalgebra sg can be described similarly to the

case of an ordinary Lie algebra. One starts by picking a Cartan subalgebra t, which for our

superalgebras is just a Cartan subalgebra of the bosonic part. Then one decomposes sg into

root subspaces. These subspaces lie either in g0 or in g1, and the roots are correspondingly

called bosonic or fermionic. Then one makes a choice of positive roots, or, equivalently,

of a Borel subalgebra b ⊃ t. Unlike in the bosonic case, di�erent Borel subalgebras can be

non-isomorphic. However, there is a distinguished Borel subalgebra � the one which contains

precisely one simple fermionic root. This is the choice that we shall make. For each choice of

Borel subalgebra, one can construct a Dynkin diagram. The distinguished Dynkin diagrams

for the unitary and the odd orthosymplectic superalgebras are shown in �g. 2.2 and �g. 2.3.

The fermionic Z2-grading of a Lie superalgebra can be lifted (in a way that is canonical

up to conjugacy) to a Z-grading, which can be de�ned as follows. The subalgebra of degree

zero is generated by the Cartan subalgebra together with the bosonic simple roots of the

superalgebra. The fermionic simple root of the distinguished Dynkin diagram is assigned

degree one. The grading for the other elements of the superalgebra is then determined by

the commutation relations. This Z-grading is de�ned by a generator of g0.

For example, for the unitary superalgebra this element can be taken to be the central gen-

erator of u(n). The degree zero subalgebra in this case is just the bosonic subalgebra, while

the fermions decompose as g1 ' g−1⊕g1. Another example would be the odd orthosymplec-
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tic superalgebra osp(2m+ 1|2n), for which the situation is slightly di�erent. There exists a

simple root of the bosonic subalgebra, which is not a simple root of the superalgebra, but

rather is a multiple of a fermionic simple root, and therefore will not have degree zero. It

is shown in grey in �g.2.3. The degree zero subalgebra consists of a semisimple Lie algebra

sl(n)⊕ o(2m + 1) with the Dynkin diagram obtained from �g.2.3 by deleting the fermionic

node, plus a central u(1). This central element is the generator of the Z-grading. The bosonic

subalgebra decomposes into degrees ±2 and 0, while the fermions again live in degrees ±1.

More generally, for any superalgebra, the distinguished Z-grading takes values from −1

to 1 or from −2 to 2, and the superalgebras are classi�ed accordingly as type I or type II. In

a type I superalgebra, the bosonic subalgebra lies completely in degree 0. The representation

of g0 on the fermionic subalgebra g1 is reducible, and g1 decomposes into subspaces of degree

−1 and 1. The unitary superalgebra is an example of a type I superalgebra. For the type

II superalgebras, the action of g0 on g1 is irreducible. Under the Z-grading, the bosonic

subalgebra decomposes as g0 ' g−2⊕ g0⊕ g2, and the fermions decompose as g1 ' g−1⊕ g1.

The osp(2m+1|2n) superalgebra is an example of the type II case. The type of a superalgebra

is important for representation theory, and we indicate it in Table 2.1.

We need to introduce some further notation. Let ∆+
0
and ∆+

1
be the sets of positive

bosonic and fermionic roots, respectively, and let ∆
+

1 be the set of positive fermionic roots

with zero length. The length is de�ned using the invariant quadratic form on sg, which we

normalize in a standard way so that the length squared of the longest root is 2. A root of

zero length is called isotropic; isotropic roots are always fermionic. It is convenient to expand

the roots and the weights in terms of a vector basis δ• and ε•, orthogonal with respect to

the invariant scalar product, with 〈δi, δi〉 = −〈εj, εj〉 > 0. For example, the positive roots

for the unitary superalgebra su(m|n) are

∆+
0

=
{
δi − δi+p, εj − εj+p

}
, i = 1 . . . n, j = 1 . . .m, p > 0,

∆+
1

= ∆
+

1 =
{
δi − εj

}
. (2.47)
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su(m|n), n,m ≥ 0 osp(m|2n), m ≥ 0, n ≥ 1 so(n)

h n−m n−m/2 + 1 n− 2
(s)dim (n−m)2 − 1 (2n−m)(2n−m+ 1)/2 n(n− 1)/2

Table 2.2: (Super)dimensions and dual Coxeter numbers.

The quadratic Casimir operator is de�ned using the invariant form on sg (normalized in

the standard way). In this thesis, by the dual Coxeter number h we mean one-half of the

quadratic Casimir in the adjoint representation.10 For future reference, in Table 2.2 we

collect the superdimension (the di�erence between the dimension of g0 and that of g1) and

the dual Coxeter number for the unitary and orthosymplectic superalgebras.

For a given Borel subalgebra, one de�nes the bosonic and fermionic Weyl vectors as

ρ0 =
1

2

∑
α∈∆+

0

α , ρ1 =
1

2

∑
α∈∆+

1

α , (2.48)

and the superalgebra Weyl vector as ρ = ρ0 − ρ1. The Weyl group of a superalgebra, by

de�nition, is generated by re�ections with respect to the even (that is, bosonic) roots.

2.3.1.1 Representations

The �nite-dimensional irreducible representations are labeled by their highest weights. The

weights can be parametrized in terms of Dynkin labels. For a weight Λ, the Dynkin label

associated to a simple root αi is de�ned as ai =
2〈Λ, αi〉
〈αi, αi〉

, if the length of the root αi is

non-zero, and ai = 〈Λ, αi〉, if the length of the root is zero.

For a type I superalgebra, the Dynkin diagram coincides with the diagram for the semisim-

ple part of the bosonic subalgebra g0, if one deletes the fermionic root. The �nite-dimensional

superalgebra representations are labeled by the same data as the representations of the

bosonic subalgebra. For example, for the dominant weights of su(m|n) all the Dynkin la-

bels, except aferm, must be non-negative integers. The fermionic label can be an arbitrary

10This de�nition is di�erent from the de�nition of [43].
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complex number, if we consider representations of the superalgebra, or an arbitrary integer,

if we want the representation to be integrable to a representation of the compact form of the

bosonic subgroup.

For a type II superalgebra, if one deletes the fermionic node of the Dynkin diagram (and

the links connecting to it), one gets a diagram for the semisimple part of the degree-zero

subalgebra g0 ⊂ g0. The long simple root of the bosonic subalgebra g0 is �hidden� behind the

fermionic simple root, and is no longer a simple root of the superalgebra. This is illustrated

in �g. 2.3 for the B(m,n) case. For us it will be convenient to parametrize the dominant

weights in terms of the Dynkin labels of the bosonic subalgebra, so, for type II, instead of

aferm we will use the Dynkin label with respect to the long simple root of g0. For example,

for B(m,n) this label is11 an, as shown on the �gure, and the weights will be parametrized

by (a1, . . . , an, ã1, . . . , ãm). Clearly, in this case for the superalgebra representation to be

�nite-dimensional, it is necessary for these Dynkin labels to be non-negative integers. It

turns out that there is an additional supplementary condition. For example, for B(m,n)

this condition says that if an < m, then only the �rst an of the labels (ã1, . . . , ãm) can be

non-zero. For the other type II superalgebras the supplementary conditions can be found

e.g. in Table 2 of [37]. The �nite-dimensional irreducible representations are in one-to-one

correspondence with integral dominant weights that satisfy these extra conditions.

For a generic highest weight, the irreducible superalgebra representation can be con-

structed rather explicitly. For a type I superalgebra, one takes an arbitrary representation

R0
Λ of the bosonic part g0, with highest weight Λ. A representation of the superalgebra can

be induced from R0
Λ by setting the raising fermionic generators g1 to act trivially on R0

Λ,

and the lowering fermionic generators g−1 to act freely. The resulting representation in the

vector space

HΛ = ∧•g−1 × R0
Λ (2.49)

is called the Kac module. For a generic highest weight, this gives the desired �nite-dimensional

11Our notation here is slightly unconventional: notation an is usually used for what we call aferm.
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irreducible representation. For a type II superalgebra, the representation can be similarly in-

duced from a representation of the degree-zero subalgebra g0 ⊂ g0, but the answer is slightly

more complicated than (2.49), since the fermionic creation or annihilation operators do not

anticommute among themselves.

The Kac module, which one gets in this way, is irreducible only for a su�ciently generic

highest weight. In this case, the highest weight Λ and the representation are called typical.

Typical representations share many properties of representations of bosonic Lie algebras,

e.g., a reducible representation with a typical highest weight is always decomposable, and

there exist simple analogs of the classical Weyl character formula for their characters and

supercharacters.

However, if Λ satis�es the equation

〈Λ + ρ, α〉 = 0 , (2.50)

for some isotropic root α ∈ ∆
+

1 , then the Kac module acquires a null vector. The irreducible

representation then is a quotient of the Kac module by a maximal submodule. Such weights

and representations are called atypical. Let ∆(Λ) be the subset of ∆
+

1 for which (2.50) is

satis�ed. The number of roots in ∆(Λ) is called the degree of atypicality of the weight and

of the corresponding representation.

The maximal possible degree of atypicality of a dominant weight is called the defect

of the superalgebra. For u(m|n), for a dominant Λ all the roots in ∆(Λ) are mutually

orthogonal, and therefore the maximal number of such isotropic roots is min(m,n). In

the corresponding IIB brane con�guration, this is the number of D3-branes which can be

recombined and removed from the NS5-brane. (This symmetry breaking process is analyzed

in section 6 of [1].)

A Kac-Wakimoto conjecture [43, 44] states that the superdimension of a �nite-dimensional

irreducible representation is non-zero if and only if it has maximal atypicality. (For ordinary
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Lie algebras and for B(0, n), the maximal atypicality is zero, and all representations should

be considered as both typical and maximally atypical.)

2.3.1.2 The Casimir Operators And The Atypical Blocks

The Casimir operators, by de�nition, are invariant polynomials in the generators of sg; in a

fancier language, they generate the center Z of the universal enveloping algebra U(sg). We

introduce some facts about them, which will be useful for the discussion of Wilson lines.

There is a well-known formula for the value of the quadratic Casimir in a representation

with highest weight Λ,

c2(Λ) = 〈Λ + ρ,Λ + ρ〉 − 〈ρ, ρ〉 , (2.51)

which continues to hold in the superalgebra case. A remote analog of this formula for the

higher Casimirs is known as the Harish-Chandra isomorphism (see e.g. [45]), which we now

brie�y review.

By the Poincaré-Birkho�-Witt theorem, a Casimir element c ∈ Z can be brought to the

normal-ordered form, where in the Chevalley basis, schematically, c =
∑

(E−)k1Hk2(E+)k1 .

When acting on the highest weight vector of some representation, the only non-zero con-

tribution comes from the purely Cartan part. This gives a homomorphism ξ̂ : Z → S(t),

where S(t) are the symmetric polynomials in elements of t, and the value of the Casimir in

a representation RΛ with highest weight Λ is evaluated as c(Λ) = (ξ̂(c))[Λ]. Here the square

brackets mean the evaluation of a polynomial from S(t) on an element of t∗. By making

appropriate shifts of the Lie algebra generators in the polynomial ξ̂(c), one can de�ne a

di�erent polynomial ξ(c), such that the formula becomes

c(Λ) = (ξ(c))[Λ + ρ] . (2.52)

This is a minor technical rede�nition, which will be convenient.

For ordinary Lie algebras, the Harish-Chandra theorem states that the image of the
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homomorphism ξ consists of the Weyl-invariant polynomials SW (t) ⊂ S(t), and ξ is actually

an isomorphism of commutative algebras Z ' SW (t). To summarize, the Casimirs can be

represented by Weyl-invariant Cartan polynomials, and their values in a representation RΛ

are obtained by evaluating these polynomials on Λ + ρ.

In the superalgebra case, the Harish-Chandra isomorphism [46] identi�es Z with a subal-

gebra S0
W (t) ⊂ SW (t), consisting of Weyl-invariant polynomials p with the following invari-

ance property,

p[Λ + ρ+ xα] = p[Λ + ρ] (2.53)

for any x ∈ C and α ∈ ∆(Λ).

For a highest weight representation RΛ, the corresponding set of eigenvalues of the

Casimir operators (equivalently, a homomorphism from Z into the complex numbers) is

called the central character, denoted χΛ. The Harish-Chandra isomorphism allows one to

describe the sets of weights which share the same central character. If the weight is typi-

cal, then the other weights with the same central character can be obtained by the shifted

Weyl action Λ→ w(Λ + ρ)− ρ. The orbit of this transformation can contain no more than

one dominant weight; therefore, two di�erent typical �nite-dimensional representations have

di�erent central characters. This is no longer the case for the atypical weights. Given an

atypical dominant weight Λ, we can shift it by a linear combination of elements of ∆(Λ)

to obtain new dominant weights with the same central character. More generally, we can

apply a sequence of shifts and Weyl transformations without changing the central charac-

ter. All the representations that are obtained in this way will have the same degree of

atypicality, and they will share the same eigenvalues of the Casimir operators. The set of

atypical �nite-dimensional representations which have a common central character is called

an atypical block. In this chapter, we are interested mostly in the irreducible representations,

and, somewhat imprecisely,12 by an atypical block we will usually mean a set of irreducible

12This phrasing is imprecise because it does not take account the di�erence between reducibility of a
representation and decomposability.
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Figure 2.4: Examples of dominant weights for u(3|4). a. A typical weight. b. A weight of
atypicality two, which is part of a block of atypical weights. The block is labeled by x̃1, x̃2, and
ỹ1, which correspond to a dominant weight of u(1|2). The weights that make up this block are
parametrized by z1 and z2, which can be thought of as labels of a maximally atypical weight of
u(2|2).

representations (or, equivalently, dominant weights) with the same central character.

As an example, let us describe the atypical blocks for the u(m|n) superalgebra. It is

convenient to parametrize a weight Λ as

Λ + ρ =
n∑
i=1

xiδi −
m∑
j=1

yjεm+1−j. (2.54)

For Λ to be dominant, the two sequences {xi} and {yj} must be strictly increasing, and

satisfy an appropriate integrality condition. A dominant weight can be represented graph-

ically, as shown in �g. (2.4a). This is essentially the weight diagram of [47]. The picture

shows an obvious analogy between a dominant weight of u(m|n) and a vacuum of a brane

system; we will develop this analogy in section 2.4.4.4. This description also con�rms that

dominant weights of u(m|n) correspond to dominant weights of the purely bosonic subalge-

bra u(m)× u(n). In this correspondence, of the two central generators of u(m)× u(n), one

linear combination corresponds to the fermionic root aferm of su(m|n) and the other to the

center of u(m|n).

For atypicality r, the set ∆(Λ) consists of r isotropic roots δil − εjl , l = 1 . . . r, which are

mutually orthogonal, that is, each basis vector δ• or ε• can appear no more than once.13 The

13Suppose that in
{
δ1 − ε1, δ1 − ε2

}
the vector δ1 appears more than once. Then, by taking a di�erence,
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Figure 2.5: A diagram contributing to the expectation value of a link. A component L1 of the link
is shown. The propagators running from T a3 and T ar connect to the other components of the link.

atypicality condition (2.50) then says that r of the x-labels are �aligned� with (equal to) the

y-labels. Let these labels be xil = ym+1−jl ≡ zl, l = 1 . . . r, and the others be x̃1, . . . , x̃n−r,

ỹ1, . . . , ỹm−r. Then the atypical blocks of atypicality r are labeled by the numbers x̃• and ỹ•,

which can be thought of as labels for a dominant weight of u(m− r|n− r), and the weights

inside the same atypical block are parametrized by a sequence z•, which can be thought of

as a dominant maximally atypical weight of u(r|r). An example is shown in �g. (2.4b). An

atypical block is described by the following statement: the category of �nite-dimensional

representations (not necessarily irreducible) from the same atypical block of atypicality r is

equivalent to the category of maximally atypical representations of u(r|r) from the atypical

block, which contains the trivial representation [47]. A similar statement holds for the

orthosymplectic superalgebras; the role of u(r|r) is played by osp(2r|2r), osp(2r + 1|2r) or

osp(2r + 2|2r).

2.3.2 Line Observables In Three Dimensions

We begin the discussion of line operators by considering purely three-dimensional Chern-

Simons theory of a supergroup. As it is explained in Appendix E of [1], there are some puzzles

about this theory, but they do not really a�ect the following remarks. In any event, these

we would get that 〈Λ + ρ, ε1 − ε2〉 = 0, which contradicts the assumption that Λ is dominant.
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remarks are applicable to the analytically-continued theory as de�ned in four dimensions, to

which we return in section 2.3.3.

Consider a supergroup Chern-Simons theory on R3 with a link L which consists of p closed

Wilson loops L1, . . . , Lp, labeled by representations RΛ1 , . . . , RΛp of the supergroup. Let us

look at the perturbative expansion of this observable. On R3, the trivial �at connection is

the only one, up to gauge transformation, and perturbation theory is an expansion about

it. The trivial �at connection is invariant under constant gauge transformations, but as the

generators of constant gauge transformations on R3 are not normalizable, we do not need to

divide by the volume of the group of constant gauge transformations. This is just as well,

as this volume is typically zero in the case of a supergroup.

A portion of a diagram that contributes to the expectation value is shown in �g. 2.5.

We focus on a single component of the link, say L1, and sketch only the gluon lines that

are attached to this component. Let r be the number of such lines. Then in evaluating this

diagram, we have to evaluate a trace

StrRΛ1
(T a1 . . . T ar) da1...ar , (2.55)

where T ai are bosonic or fermionic generators of the superalgebra, and everything ex-

cept the group factor for the component L1 is hidden inside the invariant tensor da1...ar

(whose construction depends on the rest of the diagram). By gauge invariance, the operator

T a1 . . . T ar da1...ar is a Casimir operator cL1,p ∈ Z, acting in the representation RΛ1 . The

Casimir can be replaced simply by a number, and what then remains of the group factor is

the supertrace of the identity. So this contribution to the expectation value can be written

as cL1,p(Λ1) sdimRΛ1 . From this we learn two things. First of all, up to a constant factor,

the expectation value for the link L will not change if we replace any of the representations

RΛi
by a representation with the same values of the Casimirs. That is, for an irreducible

atypical representation, the expectation value depends only on the atypical block, and not
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on the speci�c representative. Second, if the supertrace over any of the representations RΛi

vanishes, the expectation value of the link in R3 vanishes. Recall from the previous section

that the superdimension can be non-zero only for a representation of maximal atypicality.

We conclude that in R3 for a non-trivial link observable, the components of the link should

be labeled by maximally atypical blocks or else the expectation value will be zero. For exam-

ple, for the unitary supergroup U(m|n), maximally atypical blocks correspond to irreducible

representations of the ordinary Lie group U(|n−m|).

In section 6 of [1], it is argued that for knots on R3 (and more generally on any space with

enough non-compact directions) one can give expectation values to the superghost �elds C,

without changing the expectation value of a product of loop operators. For instance, in this

way, the U(m|n) theory can be Higgsed down to U(|n−m|). Therefore, on R3 the supergroup

theory does not give any new Wilson loop observables, beyond those that are familiar from

U(|n−m|). The symmetry breaking procedure shows that the expectation value of a Wilson

loop labeled by a maximally atypical representation of U(m|n) is equal to the expectation

value of the corresponding U(|n−m|) Wilson loop.

Yet it is known from the point of view of quantum supergroups [30, 31] that knot invari-

ants can be associated to arbitrary highest weights of U(m|n), not necessarily maximally

atypical. It is believed that generically these invariants are new, that is, they cannot be

trivially reduced to invariants constructed using bosonic Lie groups. To make such a con-

struction from the gauge theory point of view, one needs to remove the supertrace which in

the case of a representation that is not maximally atypical multiplies the expectation value

by sdimRΛ = 0. One strategy is to consider a Wilson operator supported not on a compact

knot but on a non-compact 1-manifold that is asymptotic at in�nity to a straight line in

R3 (but which may be knotted in the interior). The invariant of such a non-compact knot

would be an operator acting on the representation RΛ, rather than a number. This approach

may give invariants associated to arbitrary supergroup representations. This strategy seems

plausible to us because it appears to make sense at least in perturbation theory, but we will
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not investigate it here.

The Higgsing argument suggests another approach that turns out to work well for typical

representations. (For representations that are neither typical not maximally atypical, the

only strategy we see is the one mentioned in the last paragraph.) In this approach, we look

at the loop observables on a manifold with less then three non-compact directions. We will

focus on the case of S3. Again perturbation theory is an expansion around the trivial �at

connection. But now, unlike the R3 case, the generators of constant gauge transformations are

normalizable and we do have to divide by the volume of the gauge group. As was mentioned in

our superalgebra review, this volume is zero for any supergroup except OSp(1|2n). Therefore,

for almost all supergroups the partition function Z(S3) on S3 is divergent,

Z(S3) =∞. (2.56)

If we try to include a Wilson loop in a non-maximally atypical representation, we get an

indeterminacy 0 · ∞.

There is a natural way to resolve this indeterminacy in the case of typical representations,

but it involves an additional tool. In three-dimensional Chern-Simons theory with a compact

simple gauge group G, Wilson line operators and line operators de�ned by a monodromy

singularity are equivalent [4, 48, 49]. The proof involves using the Borel-Weil-Bott (BWB)

theorem to �de-quantize� an irreducible representation of G, interpreting it as arising by

quantizing some auxiliary space (the �ag manifold of G), in what we will call BWB quantum

mechanics. To resolve the indeterminacy that was just noted, we need the analog of this for

supergroups.

2.3.2.1 BWB Quantum Mechanics

We �rst recall this story in the case of an ordinary bosonic group. Let G be a compact

reductive Lie group, T ⊂ G a maximal torus, and λ ∈ t∗ an integral weight. Assume in
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addition, that λ is regular, that is 〈λ, α〉 6= 0 for any root α, or equivalently the coadjoint

orbit of λ is G/T . (If this is not so, there is a similar story to what we will explain with G/T

replaced by G/L, where L is a subgroup of G that contains T . L is called a Levi subgroup

of G. Its Lie algebra is obtained by adjoining to t the roots α that obey 〈λ, α〉 = 0.) One

can consider a quantum mechanics in phase space G/T with the Kirillov-Kostant symplectic

form corresponding to λ. The functional integral for this theory can be written as

∫
Dh exp

(
−i
∫
λ
(
h−1∂sh

)
ds

)
, (2.57)

where we integrate over maps of a line (or a circle) to G/T . The action here is de�ned using

an arbitrary lift of the map h(s) valued in G/T into a map valued in G. The functional

integral is independent of this lift, as long as the weight is integral.

Let Vλ be a one-dimensional T -module, where T acts with weight λ. The prequantization

line bundle over the phase space is de�ned as Lλ ' G ×T Vλ; thus, it is a line bundle

associated to the principal T -bundle G→ G/T . To de�ne an actual quantization, one needs

to make a choice of polarization. For that we need a complex structure. To that end, pick a

Borel subgroup B ⊃ T in the complexi�ed gauge group GC. The complex Kähler manifold

M' GC/B is isomorphic, as a real manifold, to our phase space, and this gives it a complex

structure. The prequantum line bundle is likewise endowed with a holomorphic structure,

Lλ ' GC ×B Vλ.

An accurate description of geometric quantization also involves the metaplectic correc-

tion. Instead of being just sections of the prequantum line bundle, the wave-functions are

usually taken to be half-forms valued in this line bundle. For example, this is the source of

the 1/2 shift in the Bohr-Sommerfeld quantization condition. The metaplectic correction is

important for showing the independence of the Hilbert space on the choice of polarization. In

a holomorphic polarization, the bundle of half-densities is a square root of the canonical line

bundle K. For the �ag manifolds that we consider, K is simply L−2ρ, where ρ is the Weyl
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vector for the chosen Borel subgroup. So our wave-functions will live, roughly speaking, in

Lλ ⊗K1/2 ' Lλ−ρ.

The precise characterization of the Hilbert space is given by the Borel-Weil-Bott theorem.

Let w ∈ W be the element of the Weyl group that conjugates λ into a weight that is dominant

with respect to the chosen B. Since λ was assumed to be regular, the weight

Λ = w(λ)− ρ , (2.58)

is also dominant. The BWB theorem states that the cohomology H•(M,Lλ−ρ) is non-

vanishing precisely in one degree `(w), which is the length of the element w in terms of the

simple re�ections. The group GC acts naturally on the cohomology, and H`(w)(M,Lλ−ρ) '

RΛ. This can be taken naturally as the Hilbert space H of our system. Clearly, RΛ depends

only on λ, and not on the choice of the Borel subgroup, that is, the polarization. If B is

taken such that λ is dominant, then this is the usual Kähler quantization, since H0(M,Lλ−ρ)

is the space of holomorphic sections.

The fact that the resulting Hilbert space H`(w)(M,Lλ−ρ) is independent of the choice of

complex structure (or equivalently the choice of B) has a direct explanation. On a Kähler

manifold, the bundle Ω0,•(M)⊗K1/2 is isomorphic to the Dirac bundle S ' S+⊕S−, where

S+ and S− are spinors of positive or negative chirality. The Dirac operator is /D = ∂ + ∂
∗
,

and the cohomology of ∂ acting in Ω0,•(M)⊗K1/2 is isomorphic to the space of zero-modes

of the Dirac operator, by a standard Hodge argument. Therefore, the Hilbert space that we

de�ned is simply the kernel of the Dirac operator acting on S ⊗ Vλ.

For the application to Wilson operators, we need to decide if the particle running in the

loop is bosonic or fermionic. If the Hilbert space lies in the `-th cohomology group, it is

natural to de�ne the operator (−1)F that distinguishes bosons from fermions as (−1)F =

(−1)`. In the Dirac operator terminology, the particle is a boson or a fermion depending

on whether the zero-modes lie in S+ or in S−. In particular, the amplitude of propagation

50



of the particle along a loop (with zero Hamiltonian) is naturally de�ned as the index of the

Dirac operator ind /D = ±dimRΛ, to account for the −1 factor for a fermion loop. Note that

an elementary Weyl re�ection of λ along a simple root reverses the orientation of M, and

therefore exchanges S+ with S− and exchanges bosons and fermions.

In what follows, we will always work in the Borel subalgebra in which λ is dominant, and

therefore Λ = λ− ρ.

Now we return to the supergroup case. We would like to write the same functional

integral (2.57), with matrices replaced by supermatrices. A technical detail is as follows.

In the bosonic case, the integral goes over G/T , where G is the real compact form of the

group. In the supergroup case, we choose the compact real form of the bosonic subgroup

G0, since this is the only choice that will lead to �nite-dimensional representations of SG.

The compact form of G0 may not extend to a real form of SG (for OSp(n|2m) it does not),

so one has to develop the theory without assuming a real form of SG. Similarly to what we

have said in the beginning of section 2.3.1 for the Chern-Simons case, to make sense of the

BWB path integral, a real form is needed only in the bosonic directions. The path integral

of the supergroup BWB model goes over a sub-supermanifold in SGC/TC whose reduced

manifold is the bosonic phase space G0/T . For instance, in our analysis shortly of a type I

supergroup, h0 ∈ G0/T , and θ and θ̃ are independent variables valued in g1 and g−1, with

no reality condition.

We claim that a simple supergroup version of the BWB model produces an irreducible

representation of SG as the Hilbert space. To exclude zero-modes, we assume that λ is

regular, so that 〈λ, α〉 6= 0 for any α ∈ ∆+, bosonic or fermionic. It means in particular that

the weight Λ = λ−ρ is typical. In this case, a direct analog of the BWB theorem exists [50],

and the same logic as for the bosonic group leads to the conclusion that the Hilbert space

of the system is indeed the irreducible representation RΛ.

For a type I superalgebra, this statement can be heuristically explained as follows. Take a

parametrization of the supergroup element as h = eθh0eθ̃, with h0 an element of the bosonic
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subgroup, and θ̃ and θ belonging to g−1 and g1, respectively. The action of the theory is

−
∫
λ(h−1dh) =

∫
Str(λ◦h−1dh) , (2.59)

where λ◦ = κmnλmTn is the dual of λ, de�ned using the superinvariant bilinear form.14 Using

the fact that {g−1, g−1} = 0, and the fact that the invariant bilinear form is even, one can

rewrite this as

∫
Str
(
λ◦h−1dh

)
=

∫
Str
(
λ◦h−1

0 dh0

)
+

∫
Str
(
h0[θ̃, λ◦]h−1

0 dθ
)
, (2.60)

If λ is regular, the commutation with it in [θ̃, λ◦] simply multiplies the di�erent components

of the fermion θ̃ by non-zero numbers. Then we can set θ′ = h0[θ̃, λ◦]h−1
0 , with θ′ a new

fermionic variable. The resulting theory is a BWB quantum mechanics for the bosonic �eld

h0, together with the free fermions θ′ and θ. The Hilbert space is a tensor product (2.49),

as expected for a typical representation of a type I superalgebra.15

What if λ is atypical, so that there exist isotropic fermionic roots α for which 〈λ, α〉 = 0?

The usual BWB action (2.57) is degenerate, as it is independent of some modes of θ and θ̃.

This is analogous to the problem that one has in the bosonic case if λ is non-regular, and

one can proceed in a similar way. We replace SG/T with SG/L, where L is a subgroup

of G whose Lie algebra includes the roots with 〈λ, α〉 = 0. (L is a superanalog of a Levi

subgroup of a simple bosonic Lie group.) Then we quantize SG/L instead of SG/T . This

seems to give a well-de�ned quantum mechanics, but we will not try to analyze it. The BWB

theory for atypical representations is more complicated than a naive generalization from the

14The circle denotes the dual with respect to the bosonic part of the superinvariant bilinear form κ =
κr − κ`. The dual with respect to the positive de�nite form κr + κ` will be denoted by a star.

15There is a small caveat in this discussion. By our logic, the theory (2.60) givesH ' ∧•g−1×R0
λ−ρ0

, which
is the superalgebra representation with the highest weight λ−ρ0, whereas the supergroup BWB predicts the
highest weight to be λ− ρ. Presumably, the discrepancy can be cured if one takes into account the Jacobian
of the transformation from the superinvariant measure in the full set of variables to the free measure in the
(θ′, θ) variables. In other words, that Jacobian gives the di�erence between the one-loop shift for SG and
for its maximal bosonic subgroup G.
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bosonic case [47]. One expects the Hilbert space of the SG/Lmodel to be a �nite-dimensional

representation with highest weight Λ. However, rather than the irreducible representation, it

might be the Kac module, or some quotient of it, or some more complicated indecomposable

representation.

2.3.2.2 Monodromy Operators In The Three Dimensional Theory

By coupling the gauge �eld of Chern-Simons theory to the currents of BWB quantum me-

chanics, supported on a knot K, we can write a path integral representation of a Wilson

operator supported on K:

StrRΛ
P exp

(
−
∮
K

A

)
=

∫
Dh exp

(
−i
∮
K

λ(h−1dAh)

)
. (2.61)

Here K is an arbitrary knot � that is, a closed oriented 1-manifold in W . As we have

explained, this replacement is justi�ed at least for typical representations. In the atypical

case, we expect this replacement to be valid if RΛ is chosen correctly within its block.

To establish the relation between Wilson lines and monodromy operators, we remove

the BWB degrees of freedom by a gauge transformation. This is possible because G acts

transitively on G/T ; thus, we can pick a gauge transformation along K that maps h to a

constant element of G/T . For a regular weight λ, the choice of this constant element breaks

the G gauge symmetry along K down to T . What remains of the functional integral (2.61)

is an insertion of an abelian Wilson line

exp

(
−i
∮
K

λ(A)

)
. (2.62)

With this insertion, the classical equations derived from the Chern-Simons functional integral

require the gauge �eld strength to have a delta-function singularity along the knot,

F =
2πλ◦

K
δK . (2.63)
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For example, if r, θ are polar coordinates in the normal plane to the knot, then this equation

can be obeyed with

A =
λ◦

K
dθ. (2.64)

We note that dθ is singular at r = 0, that is, along K. In quantum theory, the classical

equations do not always hold. However, to develop a sensible quantum theory, it is necessary

to work in a space of �elds in which it is possible to obey the classical equations. One

accomplishes this in the present case by quantizing the theory in a space of �elds characterized

by

A =
λ◦

K
dθ + . . . (2.65)

where the ellipses refer to terms less singular than dθ at r = 0. This gives the de�nition of

a monodromy operator.

Note that in (2.61), to rewrite a Wilson line for a dominant weight Λ, we used a weight

λ = Λ+ρ. The motivation for this shift was given in our review of the coadjoint orbit quantum

mechanics, but this point requires more explanation. In the ordinary three-dimensional

formulation of Chern-Simons theory, it is known that such shifts of the weights should

not be included in the de�nition of the monodromy operators, but rather they appear in

the �nal answers as quantum corrections [48]. This is analogous to the shift in the level

k → k + h sign(k). However, in the analytically-continued theory, we have to put the shift

of k by hand into the classical action, and one expects that the same should be done with

the shifts of the weights.16 For example, let us look at the expectation value for the unknot,

labeled with the spin j representation, in the SU(2) Chern-Simons theory on R3. This

expectation value is

Zj(R
3) =

sin (2π (j + 1/2)/K)

sin (π/K)
. (2.66)

This formula is derived from the relation with conformal �eld theory, so j here is a non-

16Both of these shifts arise from the phase of an oscillatory Gaussian integral, as was explained in the case
of k in section 2.2.6. In the 4d analytically-continued version of the theory, the Gaussian integrals are real
and will not generate shifts.
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negative half-integer. In the analytically-continued theory, we want to replace the Wilson

line of the spin j representation with a monodromy operator, and assume that the answer

is given by the same simple formula (2.66). The prescribed monodromy around the knot is

de�ned by

F = 2πi
j′ σ3

K
δK , (2.67)

where σ3 ∈ su(2) is the Pauli matrix. We need to choose between taking j′ = j or j′ = j+1/2.

Note that the Weyl transformation of the �eld in (2.67) brings j′ to −j′. It should leave the

expectation value invariant, up to sign.17 The symmetry of the formula (2.66) is consistent

with this, if we take j′ = j + 1/2.

So we will assume that the monodromy operator in the analytically-continued theory,

which corresponds to a representation with weight Λ, should be de�ned using the shifted

weight λ = Λ + ρ. However, let us comment on some possible issues related to these shifts.

For a type I superalgebra, the Weyl vector ρ has integral Dynkin labels, so, if Λ is an integral

weight, then λ is also an integral weight of the superalgebra. But for the u(m|n) case, it

might not be an integral weight of the supergroup. This can be illustrated even in the purely

bosonic case. For U(2), the quantum correction Λ→ Λ+ρ shifts the SU(2) spin by one-half,

and does not change the eigenvalue of the central generator u(1) ⊂ u(2). The resulting weight

is a well-de�ned weight of SU(2)× U(1), but not of U(2) ' (SU(2)× U(1))/Z2. For a type

II superalgebra, the problem can be worse. If Λ is an integral weight of the superalgebra,

λ might not be an integral weight of the superalgebra itself, because the Weyl vector ρ can

have non-integer Dynkin labels.18

We will not try to resolve these puzzles, but will just note that in one approach to the line

observables of the analytically-continued theory, one replaces a Chern-Simons monodromy

17For a knot in R3 or S3, there is essentially only one integration cycle, so the Weyl re�ection maps the
integration cycle to an equivalent one. But it may reverse the orientation of the integration cycle, and that
is the reason for the sign. A related explanation of the sign was given in section 2.3.2.1.

18For any simple root α of the superalgebra, it is true that 2〈ρ, α〉 = 〈α, α〉. From this one infers that
the Dynkin label of the Weyl vector is either one or zero. However, for a type II superalgebra there exists a
simple root of the bosonic subalgebra, which is not a simple root of the superalgebra, and for that root the
Dynkin label of ρ need not be integral.
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operator by a surface operator in four dimensions. In that case, the fact that λ◦ in eqn.

(2.65) is de�ned using a non-integral weight presents no problem with gauge-invariance for

much the same reason that the non-integrality of K presents no problem: the �big� gauge

transformations that lead to integrality of the parameters in purely three-dimensional Chern-

Simons theory do not have analogs19 in the four-dimensional setting.

Finally, we can return to the question of making sense of a path integral for a knot

K ⊂ S3 labeled by a typical representation. As remarked following eqn. (2.56), a direct

attempt to do this in the language of Wilson operators leads to a 0 · ∞ degeneracy. This

degeneracy is naturally resolved by replacing the Wilson operator by a monodromy operator

with weight λ. In perturbation theory in the presence of a monodromy operator supported

on a knot K, the functional integral is evaluated by expanding near classical �at connections

on the complement of K whose monodromy around K has a prescribed conjugacy class.

The group H of unbroken gauge symmetries of any such �at connection, for λ typical, is a

purely bosonic subgroup of SG, because the fermionic gauge symmetries have been explicitly

broken by the reduction of the gauge symmetry along K from SG to a bosonic subgroup

(this subgroup is T if λ is regular as well as typical).20 To compute the functional integral

expanded around a classical �at connection, one has to divide by the volume of H, but this

presents no problem: as H is purely bosonic, its volume is not zero. So in the monodromy

operator approach, there is no problem to de�ne a path integral on S3 with insertion of a

knot labeled by a typical representation.

Now let us consider loop operators in R3 rather than S3. We have claimed that a path

integral on R3 with a Wilson operator labeled by a representation of non-maximal atypicality

19In going from three to four dimensions, the support of a monodromy operator is promoted from a knot
K to a two-manifold C with boundary K. If C is compact, a homotopically non-trivial map from K to
the maximal torus T ⊂ G does not extend over C. If C = K × R+, such a gauge transformation can be
extended over C, but the extension does not approach 1 at in�nity. In a noncompact setting, one only
requires invariance under gauge transformations that are 1 at in�nity.

20For any K, there is an abelian �at connection on the complement of K with the prescribed monodromy
around K, unique up to gauge transformation. Its automorphism group is T if λ is regular as well as typical
(and otherwise is a Levi subgroup L that lies between T and G). In general, there may be nonabelian �at
connections with the required monodromies; their automorphism groups are smaller.
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is 0. This must remain true if the Wilson operator is replaced by a corresponding monodromy

operator. Let us see how this happens. The di�erence between R3 and S3 is that in de�ning

the path integral on R3, we only divide by gauge transformations that are trivial at in�nity.

If on S3 a �at connection has an automorphism subgroup H, then on R3 it will give rise to

a family of irreducible connections, with moduli space SG/H. The volume of this moduli

space will appear as a factor (in the numerator!) in evaluating the path integral. If H is

purely bosonic, then the quotient SG/H has fermionic directions, and its volume generally

vanishes.21 Therefore, the expectation value of a closed monodromy operator in R3, for λ

typical, vanishes (except for B(0, n)), in agreement with the corresponding statement for the

Wilson loop. To analyze the case that the weight λ is not typical, we need to extend the

BWB quantum mechanics for atypical weights, and presumably we will then need to compute

the invariant volume of a homogeneous space SG/H, where now H will be a subsupergroup.

It is plausible that for λ of su�cient atypicality, this volume can be non-zero,22 so that the

monodromy operator can have a non-trivial expectation value. But we have not performed

this computation.

2.3.3 Line Observables In Four Dimensions

Our next goal is to interpret the line operators that we have discussed in the full four-

dimensional construction. First we consider Wilson lines, and explore their symmetries in

the physical 4d super Yang-Mills theory associated to the D3-NS5 system.

2.3.3.1 Wilson Operators

For generic values of t, N = 4 super Yang-Mills theory in bulk does not admit Q-invariant

Wilson operators. (They exist precisely if t2 = −1, a fact that is important in the geometric

21As always, the exception is a supergroup from the series B(0, n).
22In view of an argument explained in footnote 9, a necessary condition is that any fermionic generator C

of SG that obeys {C, C} = 0 must be conjugate to a generator of H. This ensures that the group F generated
by C does not act freely on SG/H, so that the argument of footnote 9 cannot be used to show that the
volume of SG/H is 0. For U(m|n), it follows from this criterion that SG/H has zero volume except possibly
if λ is maximally atypical.
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Langlands correspondence [14].) However, on the defect W there always exist supersymmet-

ric Wilson operators

WR(K) = StrRP exp

(
−
∮
K

A
)
, (2.68)

labeled by an arbitrary representation R of the supergroup SG. Here A is the supergroup

gauge �eld and Q-invariance is clear since Q acts on A by gauge transformations.

These are the most obvious Q-invariant line operators, but they have a drawback that

makes them harder to study: as operators in the physical N = 4 super Yang-Mills theory,

they have less symmetry than one might expect. We will analyze the symmetry of these

operators in di�erent situations.

The procedure by which we constructed a topological �eld theory involved twisting four

of the six scalars of N = 4 super Yang-Mills theory, leaving two untwisted scalars and

hence an unbroken R-symmetry group U(1)F = SO(2) ⊂ SO(6)R. In the special case that

M = R×W with a product metric, there is no need for twisting in the R direction to maintain

supersymmetry, so three scalars remain untwisted and U(1)F is enhanced to SU(2)Y . The

supercharge Q that we chose in constructing a topological �eld theory was one component of

an SU(2)Y doublet. For M = R×W , the twisted action is invariant under SU(2)Y as well as

Q, so it inevitably preserves two supercharges � both components of the doublet containing

Q. Likewise, the Wilson loop operators (2.68) are invariant under SU(2)Y as well as Q, so

on M = R×W , they really preserve two supersymmetries.

Now let us specialize further to the case that W = R3 is �at, with M = R ×W = R4.

In this case, no topological twisting is necessary, but the half-BPS defect supported on W

breaks the R-symmetry group to SO(3)X×SO(3)Y . In addition, there is an unbroken rotation

group SO(3), and, as explained in section 2.2.1, the unbroken supersymmetries transform as

(2,2,2) under SO(3)× SO(3)X × SO(3)Y . Let us consider a Wilson operator WR(K) where

K is a straight line R ⊂ W , say the line x1 = x2 = 0, parametrized by x0. K is invariant

under a subgroup SO(2) ⊂ SO(3) of rotations of x1 and x2. To identify the global symmetry

of WR(K) involves a crucial subtlety. First let us consider the one-sided case studied in [6],
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in other words the case of an ordinary gauge group G rather than a supergroup SG. In this

case, the supergroup connection reduces to Ab = A+ i(sinϑ)φ, and the Wilson operator for

a straight Wilson line depends on one component φ0 of a triplet (φ0, φ1, φ2) of SO(3)X . This

�eld is invariant under a subgroup SO(2)X ⊂ SO(3)X , and hence a straight Wilson line in the

case of an ordinary gauge group has global (bosonic) symmetry SO(2)×SO(2)X×SO(3)Y . In

the supergroup case, we must remember that the supergroup connection also has a fermionic

part A f which began life as part of a �eld that transforms as (2,2) under SO(3)× SO(3)X .

As a result, the component of A f in the x0 direction is not separately invariant under SO(2)

and SO(2)X but only under a diagonal combination SO′(2) ⊂ SO(2) × SO(2)X . Hence the

bosonic global symmetry of a straight Wilson line in the supergroup case is SO′(2)×SO(3)Y ,

reduced from the corresponding symmetry in the case of an ordinary Lie group.

The supersymmetry of a straight Wilson lineWR(K) is likewise reduced in the supergroup

case from what it is in the case of an ordinary Lie group. A supersymmetry has no chance

to preserve the straight Wilson line if its commutator with the complexi�ed bosonic gauge

�eld Ab has a contribution proportional to Ψ1. Indeed, the boundary conditions do not tell

us anything about the behaviour of Ψ1 at x3 = 0, so there would be no way to cancel such a

term. Inspection of the supersymmetry transformations (2.11) reveals that, apart from the

SO′(3)-invariant supersymmetries with generators

εαAȦ = εαAwȦ (2.69)

(familiar from eqn. (2.24)), with arbitrary two-component spinor wȦ, the only supersymme-

tries that do not produce variations of Ab proportional to Ψ1 are those with generators

εαAȦ = σαA0 w̃Ȧ , (2.70)

where again w̃Ȧ is an arbitrary spinor. Since w̃Ȧ transforms as a spinor of SU(2)Y , an SU(2)Y -

invariant Wilson operator is invariant under this transformation for all w̃Ȧ if and only if it
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is invariant for some particular nonzero w̃Ȧ. A choice that is convenient because it enables

us to write simple formulas in the language of the twisted theory is to set w̃Ȧ = vȦ (where

vȦ was de�ned in (2.28)). Writing δ̃ for the transformation generated by the corresponding

supersymmetry, one computes that

δ̃A0 = −i[C,B} , (2.71)

where we de�ne

B = {C,C}+B. (2.72)

Since (2.71) is non-zero, our Wilson lines do not preserve supersymmetries (2.70) for a

generic representation. Therefore, they preserve only the two supersymmetries (2.69). They

are 1/4-BPS objects from the standpoint of the defect theory (or 1/8 BPS relative to the

underlying N = 4 super Yang-Mills theory). This is an important di�erence from the case

of a purely bosonic gauge group, in which Wilson lines preserve four supersymmetries (a

fact that greatly simpli�es the analysis of the dual 't Hooft operators [6, 51]). In fact, if the

representation R that labels the Wilson line WR(K) is such that the fermionic generators

act trivially, then (2.71) vanishes, and WR(K) becomes 1/2-BPS (in the defect theory), as

in the bosonic or one-sided case. More generally, for (2.71) to vanish it is enough that the

anticommutators of the fermionic generators vanish in the representation R. Of course, in

the case of a supergroup such as U(m|n), this is a very restrictive condition.

One can also construct other Q-invariant Wilson operators in the electric theory, by

adding a polynomial of the Higgs �eld B to the connection in the Wilson line. The resulting

operators preserve 1/4 or 1/8 of the three-dimensional supersymmetry. In the Q-cohomology,

such operators are equivalent to the ordinary Wilson lines (2.68), and for this reason we will

not say more about them.

Why do we care about the reduced supersymmetry of the supergroup Wilson loop op-

erators? One of our goals will be to understand what happens to line operators under
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nonperturbative dualities. For this purpose, the fact that the supergroup Wilson operators

are only 1/4 and not 1/2 BPS is rather inconvenient. Possible constructions of a dual op-

erator that preserve 4 supercharges are much more restrictive than possible constructions

that preserve only 2 supercharges. We will obtain a reasonable duality picture for certain

1/2 BPS Wilson-'t Hooft line operators that will be introduced in section 2.3.3.2. These

Wilson-'t Hooft operators are labeled by weights of SG and the way they are constructed

suggests that from the point of view of the twisted topological �eld theory � the super-

group Chern-Simons theory � they are equivalent to Wilson operators. But because of their

enhanced supersymmetry, it is much easier to �nd their duals.

About the Wilson operators, we make the following remarks. We were not able to �nd a

construction of 't Hooft-like disorder operators � characterized by a singularity of some kind �

with precisely the right global symmetries so that they might be dual to the Wilson operators

constructed above. It may be that one has to supplement an 't Hooft-like construction by

adding some quantum mechanical variables that live along the line operators (analogous to

the BWB variables that we discussed in section 2.3.2.1). With only 2 supersymmetries to

be preserved, there are many possibilities and we do not know a good approach. Also, the

fact that the two-dimensional space of supersymmetries preserved by a Wilson operator is

not real suggests that it is di�cult to realize such an object in string theory. A string theory

realization would probably have helped in understanding the action of duality.

2.3.3.2 Wilson-'t Hooft Operators

For all these reasons, we now move on to consider Wilson-'t Hooft operators.

N = 4 super Yang-Mills theory supports BPS Wilson-'t Hooft line operators in the bulk

[52]. Though they preserve 8 supersymmetries, generically these do not include the speci�c

supersymmetry Q. The condition for a Wilson-'t Hooft operator in bulk to be Q-invariant is

that its electric and magnetic charges must be proportional with a ratio K [14]. Since both

charges have to be integral, Q-invariant Wilson-'t Hooft operators exist in the bulk only for
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Figure 2.6: The hyperplane x0 = 0 showing our notation for the coordinates. y = x3 runs
horizontally; the x0 = 0 section of the knot K is shown as a dot in the center.

rational values of the canonical parameter K. In the present chapter, we generally assume

K to be generic.

However, we are interested in operators that are supported not in the bulk but along the

defect at x3 = 0. The gauge theories with gauge groups G` and Gr live in half-spaces, and

the magnetic �ux for each gauge group can escape through the boundary of the half-space

and so is not quantized. So a Wilson-'t Hooft operator that lives only at y = 0 is no longer

constrained to have an integral magnetic charge. Such operators can exist for any (integer)

electric charge and arbitrary K. To de�ne them precisely, we work in the weak coupling

regime, where gYM is small, and therefore, according to (2.7), K is large. The weight of the

representation is taken to scale with K, so that the monodromy of the gauge �eld, which is

proportional to λ/K, is �xed.

Consider a line operator located at y = 0 along the x0 axis. (See �g. 2.6 for the notation.)

We want to �nd a model solution of the BPS equations (2.30) that will de�ne the singular

asymptotics of the �elds near the operator. For de�niteness, consider the Yang-Mills theory

on the right of the three-dimensional defect. We make a conformally-invariant abelian ansatz

which preserves the SO(2)× SO(2)X × SO(3)Y symmetry:

A = ca
dx0

r′
+ mr(1− cosϕ)dθ ,

φ = cφ
dx0

r′
. (2.73)
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Here mr is the magnetic charge (which as noted above will not be quantized). The ray ϕ = 0

points in the y > 0 direction, and the signs were chosen such that there is no Dirac string

along this ray. The localization equations (2.30) are satis�ed if

ca = imr tanϑ , cφ = − mr

cosϑ
, (2.74)

where ϑ is the angle related to the twisting parameter t, as introduced in section 2.2. The

hypermultiplet �elds are taken to vanish. The factor of i in the Coulomb singularity of the

gauge �eld A is an artifact of the Euclidean continuation; in Lorentz signature, the solution

would be real. Eqn. (2.73) �xes the behaviour of the bulk �elds near a line operator. For a

generic magnetic charge, the �elds of the hypermultiplet do not commute with the singularity

in (2.73), and thus are required to vanish along the operator.

Let us check that our model solution satis�es also the boundary conditions at y = 0. The

boundary conditions can be derived from (2.17) and an analogous expression for the scalar

Xa. This is done in Appendix B. However, in the topological theory one can understand

the relevant features by a more simple argument. The boundary condition should require

vanishing of the boundary part of the variation of the action of the theory. Suppose that we

consider a con�guration in which all the fermions vanish, and the bosonic �elds satisfy the

localization equations. The variation of the non-Q-exact Chern-Simons term (equivalently,

the topological term) gives the gauge �eld strength Fb. The Q-exact terms in the action

come in two di�erent sorts. There is a bulk contribution, whose bosonic part is proportional

to the sum of squares of the localization equations (2.30). The variation of these terms

vanishes when the equations are satis�ed. There are also Q-exact terms supported on the

defect; they furnish gauge �xing of the fermionic gauge symmetry of the supergroup Chern-

Simons. Their variation is proportional to the hypermultiplet �elds. Therefore, we conclude

that if the �elds satisfy the localization equations, and the three-dimensional hypermultiplet

63



vanishes, the boundary condition reduces to

ı∗ (Fb) = 0 , (2.75)

where ı : W ↪→ M is the natural embedding of the three-manifold into the bulk manifold.

This boundary condition is indeed satis�ed by the model solution (2.73), (2.74), because in

the complexi�ed gauge �eld Ab = A+ i(sinϑ)φ, the Coulomb parts of A and φ cancel. (The

magnetic part is annihilated by ı∗.) In fact, at y = 0, the complexi�ed �eld Ab reduces to

the �eld of a Chern-Simons monodromy operator (2.63), if we identify m = λ◦/K, where now

m includes both the part in g` and in gr.

In Chern-Simons theory, in the presence of a monodromy defect, the bulk action is

supplemented with an abelian Wilson line (2.62) along the defect; in our derivation in section

(2.3.2.2), this is what remained after gauge-�xing the BWB action. The Chern-Simons action

with an insertion of an abelian Wilson line is characterized by the fact that its variation

near the background singular �eld (2.63) does not have a delta function term supported

on the knot (a delta function term that would come from the variation of Chern-Simons

in the presence of the monodromy singularity is canceled by the variation of the abelian

Wilson operator). In four dimensions, in the presence of a singularity along a knot K, the

topological action (2.35) should be integrated over the four-manifold with a neighborhood of

K cut out, and taking into account the singularity along K of the Wilson-'t Hooft operator,

this produces a term in the variation with delta-function support along K:

δ

(
iK
4π

∫
M\K

tr (F ∧ F)

)
= i

∮
K

Str (λ◦δA) . (2.76)

To cancel this variation, just like in three dimensions, one inserts an abelian Wilson line

(2.62).

But now we learn something fundamental. Although the Wilson-'t Hooft operators that

we have constructed do not have a quantized magnetic charge, they have a quantized electric
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charge. The abelian Wilson line is only gauge-invariant if λ is an integral weight of G`×Gr.

For a type I superalgebra such as u(m|n), an integral weight of G` × Gr corresponds to an

integral weight of the supergroup U(m|n) and therefore, these Wilson operators are classi�ed

by integral weights of the supergroup. The Weyl group of U(m|n) is the same as that of its

bosonic subgroup U(m)× U(n), so an equivalent statement is that Wilson operators of the

supergroup (for irreducible typical representations, or some particular atypical representa-

tions) are in correspondence with this class of Wilson-'t Hooft operators. The advantage of

the Wilson-'t Hooft operators is that they have more symmetry: in addition to Q-invariance,

they are half-BPS operators with the full SO(2) × SO(2)X × SO(3)Y symmetry, just like a

Wilson line in the one-sided problem.

For a type II superalgebra, such as osp(2m+1|2n), there is a slight complication. For such

algebras, some �small� dominant weights do not correspond to representations. (These are

the weights that do not satisfy the �supplementary condition,� as de�ned in section 2.3.1.1.

See also section 2.5.6.2 for details in the case of OSp(2m + 1|2n).) Our construction gives

a half-BPS line operator for every dominant weight whether or not this weight corresponds

to a representation. It is hard to study explicitly why some Wilson-'t Hooft operators with

small weights do not correspond to representations, because the semiclassical description of

a Wilson-'t Hooft operator is valid for large weights.23

2.3.3.3 Twisted Line Operators

In section 2.5, we will discuss a non-perturbative duality for Chern-Simons theory with

orthosymplectic supergroup OSp(r|2n). It will turn out that line operators labeled by dom-

inant weights of the supergroup are not a closed set of operators under that duality. To get

a duality-invariant picture, one needs to include what we will call twisted line operators.

The clearest explanation seems to be also the most naive one. We consider 4d super

23Given this, one may wonder if the half-BPS property is lost when the weights are too small. We doubt
that this is the right interpretation because the construction of half-BPS line operators on the magnetic side,
discussed in section 2.4.4, appears to be valid for all weights.
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Yang-Mills theory on W ×Ry, where Ry is parametrized by y. For y < 0, the gauge group is

SO(r); for y > 0, it is Sp(2n). Along W × {y = 0} is a bifundamental hypermultiplet.

Now we pick a knot K ⊂ W , and de�ne a line operator supported on K by saying

that the hypermultiplet fermions change sign under monodromy around K. Locally, this

makes perfect sense. Globally, to make sense of it, we have to say essentially that the

hypermultiplets are not just bifundamentals, but are twisted by a Z2 bundle de�ned on

W × {y = 0} that has monodromy around K. If such a �at bundle does not exist, we say

that the path integral with insertion of the given line operator is 0. If there are inequivalent

choices for this �at bundle, we sum over the choices.

This procedure actually de�nes not just a single new line operator, but a whole class of

them, which we will call twisted line operators. The reason is that the monodromy around

K forces the hypermultiplets to vanish along K, and therefore there is no problem to include

arbitrary SO(r)×Sp(2n) Wilson operators alongK. This class of operators will be important

in section 2.5.

Can we do something similar for U(m|n)? In this case, we can pick an arbitrary nonzero

complex number eic, embedded as an element of the center of U(n) (or of its complexi�cation

if c is not real), and twist the hypermultiplet �elds by eic under monodromy around K. Then

we proceed as just explained, and get a family of line operators that depend on the parameter

c. Again, from a global point of view, this means the hypermultiplets are bifundamentals

twisted by a �at line bundle with monodromy eic around K, and we de�ne the path integral

by summing over the possible �at bundles that obey this condition. And again, we can

generalize this de�nition by including Wilson operators of U(m)× U(n).

2.3.4 Surface Operators

In the relation of 3d Chern-Simons theory to 4d gauge theory, there are two possible strategies

for �nding a 4d construction related to a line operator in the Chern-Simons theory.

In one picture, the 3d line operator is promoted to a 4d line operator that lives on the
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defect that supports the Chern-Simons gauge �elds. In the second picture, a line operator

in 3d is considered to have its support in codimension 2, and it is promoted to a surface

operator in 4d, whose support is in codimension 2.

So if Chern-Simons theory on a three-manifold W is related to 4d super Yang-Mills on

W × Ry, where Ry is a copy of R parametrized by y with a defect at y = 0, then in the

�rst approach, a 3d line operator supported on K ⊂ W is promoted in 4d to a line operator

supported on K × {y = 0}. In the second approach, a 3d line operator supported on K is

promoted to a 4d surface operator supported on a two-manifold C such that C∩{y = 0} = K.

For example, C might be simply K × Ry.

Both of these viewpoints were explored in [6] for the one-sided problem, although the

�rst one based on 4d line operators was developed in more detail. In the two-sided case,

we have followed the �rst viewpoint so far but now we turn to the second one and consider

surface operators.

We focus on the simplest half-BPS surface operators, which were described in the bulk

in [53]. Our problem is to understand what happens when one of these operators intersects

a �vebrane. In the present section, we answer this question on the electric side (that is, for

an NS5-brane). In section 2.4, we answer the question on the magnetic side (that is, for a

D5-brane).

One advantage to the formulation via surface operators in four dimensions rather than

line operators is that the behavior under S-duality is simple to understand. That is because,

in the 4d bulk, one already knows the behavior under S-duality of the surface operators we

will be studying. Given a surface operator intersecting an NS5-brane, the S-dual of this

con�guration will have to consist of the S-dual surface operator intersecting a D5-brane.

So all we have to do is to determine what happens when a surface operator intersects an

NS5-brane or a D5-brane. S-duality will then take care of itself.
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2.3.4.1 Surface Operators In The Bulk

The simplest half-BPS surface operators in N = 4 super Yang-Mills theory are labeled by a

set of four parameters (α, β, γ, η). The �rst three de�ne the singular behavior of the �elds

near the support of the operator, which will be a two-manifold C. If r and θ are polar

coordinates in the normal plane to C, we require the �elds near C to behave like

A = α dθ + . . . ,

φ = β
dr

r
− γ dθ + . . . , (2.77)

where the ellipses represent less singular terms. The parameters α, β and γ take values in

a Cartan subalgebra t ⊂ g. More precisely, one can make big gauge transformations on the

complement of C that shift α by an arbitrary cocharacter; therefore, α should be considered

as an element of the maximal torus24 T ' t/Γcochar.

The meaning of the fourth parameter η is the following. Assume that the triple (α, β, γ)

is regular, that is, it commutes only with t. In this case the singular behavior (2.77) reduces

the gauge group along the surface operator to its maximal torus T , and it makes sense to

speak of the �rst Chern class of the resulting T -bundle on C. One can de�ne the t∗-valued

theta-angle η coupled to this Chern class, and introduce a factor

exp

(
i

∫
C

η(F )

)
(2.78)

in the functional integral. By integrality of the �rst Chern class, this expression is invariant

under a shift of the theta-angle by an element of the character lattice Γchar ⊂ t∗, so η really

takes values in the maximal torus of the Langlands-dual group, η ∈ T∨ ' t∗/Γchar. Dividing

by the action of the Weyl group W , which is a remnant of the non-abelian gauge symmetry,

we get that the parameters (α, β, γ, η) take values in (T, t, t, T∨)/W .

24In this section we discuss only the bulk N = 4 Yang-Mills theory, and all our notation refers to its
bosonic gauge group, and not to a supergroup.
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The singular asymptotics of the �elds (2.77) satisfy the localization equations (2.30) for

any value of t, if supplemented with appropriate sources,

F − φ ∧ φ = 2πα δC ,

dAφ = −2πγ δC

dA ? φ = 2πβ dx0 ∧ dy ∧ δC (2.79)

where δC = d(dθ)/2π is the δ-function 2-form that is Poincaré dual to the surface C, and x0

and y are coordinates along the surface.

The prescribed singularities (2.77) de�ne the space of �elds over which one integrates to

de�ne N = 4 super Yang-Mills theory in the presence of the surface operator. Let us also

de�ne more precisely what functional we are integrating over this space. The action of the

bulk topological theory consists of the topological term and some Q-exact terms (2.36). In

the presence of the surface operator, the topological term is de�ned as

iK
4π

∫ ′
M

tr(F ∧ F ) , (2.80)

where the symbol
∫ ′
M

denotes an integral over M \C, not including a delta function contri-

bution along C. Alternatively, we can write this as an integral over the whole four-manifold,

and explicitly subtract the contribution which comes from the delta-function singularity of

the curvature:

iK
4π

∫ ′
M

tr(F ∧ F ) =
iK
4π

∫
M

tr(F ∧ F )− iK
∫
C

tr(αF )− iπK tr(α2)C ∩ C. (2.81)

The c-number contribution proportional to the self-intersection number C ∩C appears here

from the square of the delta-function.
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In the absence of the surface operator, the Q-exact part of the action has the form

− 1

g2
YM

∫
tr

(
2t−1

t+ t−1
V+∧ V+ − 2t

t+ t−1
V−∧ V− + V0 ∧ ?V0

)
, (2.82)

where V+, V− and V0 are the left hand sides of the supersymmetric localization equations, as

de�ned in (2.30). In the presence of the surface operator, the localization equations acquire

delta-function sources, as in (2.79). The action (2.82) is modi�ed accordingly, e.g., the �rst

term becomes

− 1

g2
YM

∫
tr

(
2t−1

t+ t−1

(
V+ − 2π(α− tγ)δ+

C

)
∧
(
V+ − 2π(α− tγ)δ+

C

))
. (2.83)

Because it contains the square of a delta function, this expression is at risk of being di-

vergent. To make the action �nite, one works in a class of �elds in which the localization

equations (2.79) are satis�ed, modulo smooth terms. In other words, the left hand side of

the localization equations must contain the same delta functions as the right hand side.

In the de�nition of the surface operator, it was assumed that the singularity de�ned by

(α, β, γ) is regular, that is, the gauge group along the operator is broken down to the maximal

torus. This is the case for which the theta-angles η can be de�ned classically. But it can be

argued that the surface operator is actually well-de�ned quantum mechanically as long as

the full collection of couplings (α, β, γ, η) is regular. One approach to showing this involves

a di�erent construction of these surface operators with additional degrees of freedom along

the surface as described in section 3 of [54]. In this chapter, we will try to avoid these issues.

2.3.4.2 Surface Operators In The Electric Theory

Let us specialize to a four-manifoldM = W×Ry, with an NS5-type defect alongW×{y = 0}.

To incorporate a loop operator along the knot K in the Chern-Simons theory, we insert

surface operators in the left and right Yang-Mills theories along a two-surface C = C` ∪ Cr

that intersects the y = 0 hyperplane along K. We could simply take C to be an in�nite
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cylinder K × Ry, or we could take an arbitrary �nite 2-surface. The orientations are taken

to be such that ∂Cr = −∂C` = K. The parameters of the surface operators on the right

and on the left will be denoted by letters with a subscript r or `. Sometimes we will use

notation without subscript to denote the combined set of parameters on the right and on

the left (e.g., α = (αr, α`)).

We would like to understand the meaning of the parameters of a surface operator in the

Chern-Simons theory. It is clear that a surface operator with β = γ = η = 0 and non-zero

α is equivalent to a monodromy operator in Chern-Simons, with weight λ◦ = Kα. Such

a surface operator can be obtained e.g. as a Dirac string, which is produced by moving a

Wilson-'t Hooft line operator in the four-dimensional theory into the bulk.

The parameter β has no direct interpretation in Chern-Simons, and de�nes just a de-

formation of the integration contour, without changing the path integral. As noted in [6],

sometimes it might not be possible to turn on β. For example, let the bosonic gauge group

be abelian, and let the three-manifold W be compact (e.g., W ' S3). If we have a link with

components labeled by β1, . . . , βp, then, integrating the third equation in (2.79) over W , we

get that
∑
βili = 0, where li is the length of the i-th component of the link. We see that if

there is only one component, then β has to be zero.

The case of a surface operator with non-zero γ is a little subtle. It is not clear to

us whether such an operator in the physical theory25 can intersect (or end on) the three-

dimensional defect in a Q-invariant way, and if it can, then to what line operator in Chern-

Simons theory it would correspond. In topological theory, when one takes the parameter t to

be real, such an operator makes perfect sense and has a natural Morse theory interpretation

[6, 12]. In that case, the bosonic part of the action, modulo Q-exact terms, is de�ned in

presence of a surface operator by an integral of the local density tr(Fb ∧ Fb) over the four-

25By the �physical theory� we mean the theory that in �at space describes the D3-NS5 intersection. In
this theory, t is given by (2.29) and lies on the unit circle, and K is real. By the �topological theory,� we
mean the theory which arises naturally from the Morse theory construction [12, 13], with t being real, and
K in general complex. In this chapter, we focus on the physical theory.
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manifold M \ C. Up to some �eld-independent constants, we have, analogously to (2.81),

iK
4π

∫ ′
Mr

tr(Fb ∧ Fb) =
iK
4π

∫
Mr

tr(Fb ∧ Fb)− iK
∫
Cr

tr((αr − wγr)Fb). (2.84)

(Here we focus on the integral on the right hand side of the defect.) The combination αr−wγr

under the trace came from the monodromy of the complexi�ed gauge �eldAb = A+wφ, where

w is some complex number with non-zero imaginary part. (In physical theory, w = i sinϑ.)

Such an operator clearly corresponds to a Chern-Simons monodromy operator of weight

λ◦ = K(α − wγ), which generically is complex. Now, the problem with such an operator in

the physical theory is that the right hand side of (2.84) contains an integral of iKwtr(γF )

over C, which cannot have any interpretation in the bulk physical theory, since w is not

real. (Comparing e.g. to (2.78), we could say that this insertion corresponds to η = wKγ,

which is not an element of the real Lie algebra.) What one should really do in the physical

theory is to write the action as a four-dimensional integral of the density tr(F ∧ F ), with

gauge �eld non-complexi�ed, plus the three-dimensional integral of a three-form which can

be found on the right hand side of equation (2.40). In the presence of a surface operator,

one should omit C from the four-dimensional integral of tr(F ∧ F ), and the knot K from

the boundary integral of the just-mentioned three-form. In the bulk, this gives an ordinary

surface operator of the sort reviewed in section 2.3.4.1. However, it is not completely clear

whether with this de�nition the intersection of the operator with the defect at y = 0 can

be made Q-invariant, and to what Chern-Simons weight it would correspond. In the S-dual

description of the theory in section 2.4, we will �nd natural half-BPS surface operators with

non-zero γ∨, and the Chern-Simons weight will not depend on this parameter. So we would

expect that in the physical theory, Q-invariant surface operators with γ 6= 0, intersecting the

boundary, do exist, and that γ plays much the same role as β � that is, it only deforms the

integration contour. But this point is not completely clear.

Finally, turning on the parameter η of the surface operator corresponds to adding an
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abelian Wilson insertion along the line K, where the surface operator crosses the y = 0

hyperplane. Naively, this happens because of the �identity� exp(iη
∫
C∩Mr

F ) = exp(iη
∮
K
A)

where A is an abelian gauge �eld with curvature F . We cannot take this formula literally,

since
∮
K
A is only gauge-invariant mod 2πZ. But the �identity� is correct for computing

classical equations of motion, and thus shifting η`,r has the same e�ect on the equations of

motion as shifting the electric charges that live on K = C ∩W . Note that in presence of

the three-dimensional defect the parameter η is lifted from the maximal torus T∨, and takes

values in the dual Cartan subalgebra t∗.

Let us brie�y summarize. A surface operator with parameters (α, β, 0, η), supported on

a surface C = C` ∪ Cr, corresponds in the analytically-continued three-dimensional Chern-

Simons theory to a monodromy operator with weight λ◦ = Kα − η∗. (Recall that a circle

denotes the dual with respect to the superinvariant bilinear form κ = κr − κ`, and a star

represents the dual with respect to the positive de�nite form κr + κ`.) Let λ` and λr be

the parts of the weight, lying in the Cartan of the left and right bosonic gauge groups,

respectively. Then, more explicitly,

λ` = −Kα∗` + η` ,

λr = Kα∗r − ηr. (2.85)

We have set γ to zero, since its role is not completely clear. For a given weight λ, we have

a freedom to change α and η, while preserving λ`,r. So a given line operator in the Chern-

Simons theory can be represented by a family of surface operators in the four-dimensional

theory.

Now let us specialize for a moment to the operators of type (α, 0, 0, 0). The action

of the Weyl group on α, together with the large gauge transformations which shift α by

an element of the coroot lattice26 Γ∗w of the bosonic subalgebra, generate the action of

26For simplicity, here we restrict to a simply-connected gauge group, where the cocharacter lattice is the
coroot lattice.
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the a�ne Weyl group Ŵ1 = W n Γ∗w at level 1. Equivalently, on the quantum-corrected

weights λ these transformations act as the a�ne Weyl group ŴK = W n KΓ∗w at level27

K. Though the description by surface operators makes sense for arbitrary λ, let us look

speci�cally at the integral weights λ ∈ Γw. For generic K, the subgroup of ŴK which maps

the weight lattice to itself consists only of the ordinary Weyl transformations. Therefore,

the space of integral weights modulo the action of ŴK in this case is the space Γw/W

of dominant weights of the superalgebra, and the Chern-Simons observables corresponding

to these weights are generically all inequivalent. Of course, this is a statement about the

analytically-continued theory, which is the only theory that makes sense for generic K. If

however K is a rational number p/q, then there are in�nitely many elements of the a�ne

Weyl group, which preserve the integral weight lattice Γw. (For example, such are all the

transformations from Ŵp ⊂ ŴK.) Modulo these transformations, there is only a �nite set of

inequivalent integral weights.

For an ordinary bosonic Chern-Simons theory and integer leve,l this can be compared to

the well-known three-dimensional result according to which the inequivalent Chern-Simons

line operators are labeled by the integrable weights Λ ∈ Γw/Ŵk. The connection between

the two descriptions is that the weight Λ is integrable at level k if and only if the correspond-

ing quantum corrected weight λ = Λ + ρ belongs to the interior of the fundamental Weyl

chamber Γw/ŴK, while the operators with λ belonging to the boundary of the fundamental

Weyl chamber decouple in the Chern-Simons. This explains how the four-dimensional de-

scription by codimension-two operators with quantum-corrected level K and weight λ can be

equivalent (for integer K and if the four-dimensional theory is specialized to an appropriate

class of observables) to the analogous three-dimensional description by operators de�ned

with ordinary k and Λ. For the case of a supergroup, where the purely three-dimensional

description is not completely clear, this discussion supports the view that, similarly to the

27By the a�ne Weyl group at some level p we mean the group which acts on the Cartan subalgebra by
ordinary Weyl transformations together with shifts by p times a coroot. Our terminology is slightly imprecise,
since as an abstract group, the a�ne Weyl group does not depend on the level.
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bosonic case, at integer level there is a distinguished theory with only a �nite set of inequiv-

alent line operators. One detail to mention is that in the four-dimensional construction, we

did not show that the operators with λ lying on the boundary of the a�ne Weyl chamber

decouple from the theory. We do not know for sure if this is true for supergroups in the

context of a hypothetical theory with only the distinguished set of line operators. Another

caveat is that we worked with the half-BPS surface operators, and therefore our conclusion

might not hold for the atypical supergroup representations.

2.3.5 Various Problems

We conclude by emphasizing a few unclear points.

In the four-dimensional construction, we have separately de�ned Wilson line operators

and Wilson-'t Hooft line operators in the 3d defect W ⊂M . They are parametrized by the

same data � at least in the case of typical weights. The Wilson line operators generically

have less symmetry. Is it conceivable that they �ow in the infrared to Wilson-'t Hooft line

operators with enhanced symmetry?

For an atypical weight, there are many possible Wilson operators but only one half-BPS

Wilson-'t Hooft operator. This in itself is no contradiction. But in the S-dual description of

section 2.4 (see in particular section 2.4.4.5), we will �nd several half-BPS line operators for

a given atypical weight. The counterparts of this on the electric side seem to be missing.

One more technical puzzle arises for type II superalgebras. The half-BPS Wilson-'t Hooft

operators seem to be well-de�ned for an arbitrary integral weight λ, at least if it is typical,

even though in some cases there is no corresponding representation. (For a weight to corre-

spond to a �nite-dimensional representation, the weight should satisfy an extra constraint,

as was recalled in section 2.3.1.1.) There is no contradiction, but it is perhaps a surprise to

apparently �nd half-BPS Wilson-'t Hooft line operators that do not correspond to represen-

tations.

Additional line operators can presumably be constructed by coupling the bulk �elds to
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some quantum mechanical degrees of freedom that live only along the line operator. This

may help in constructing additional half-BPS line operators. Perhaps it is important to

understand better the BWB quantum mechanics for atypical weights.

2.4 Magnetic Theory

2.4.1 Preliminaries

In this section we explore the S-dual description of our theory. Throughout this section the

reader may assume that the theory considered corresponds to the supergroup SG = U(m|n).

This means in particular that the maximal bosonic subgroup SG0 = U(m)×U(n) is simply-

laced. Some minor modi�cations that arise for other supergroups will be discussed in section

2.5.

We would like to recall how the supersymmetries and various parameters transform under

S-duality. It is convenient to look again on the Type IIB picture. Under the element

M =

 a b

c d

 (2.86)

of the S-duality group SL(2,Z), the coupling constant of the theory transforms as

τ → aτ + b

cτ + d
. (2.87)

The supersymmetries of the Type IIB theory transform according to

ε1 + iε2 → eiα/2(ε1 + iε2) , (2.88)

where α = − arg(cτ + d). In particular, for the supersymmetries that are preserved by the
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D3-brane we can use the relation (2.3) to rewrite this as

ε1 → exp

(
−1

2
αΓ0123

)
ε1 , (2.89)

in Lorentz signature. In [14] this relation was derived from the �eld theory point of view.

Under the duality transformationM, the charges of the �vebranes transform as

(p q)→ (p q)M−1 , (2.90)

where (p, q) = (1, 0) for the NS5-brane and (p, q) = (0,±1) for the D5- or D5-brane. For

future reference we describe the supersymmetries that are preserved by a defect consisting

of a general (p, q)-�vebrane. The supersymmetries preserved by such a brane, stretched in

the 012456 directions, are given by the same formula as in (2.4), where now

ϑ = arg(pτ + q). (2.91)

Equation (2.4) can be rewritten in a more convenient form

ε1 + iε2 = ieiϑ Γ012456(ε1 − iε2). (2.92)

Under the S-duality, ϑ is shifted by angle α = − arg(cτ + d), so one can see that equation

(2.92) indeed transforms covariantly, if the supersymmetries are mapped as in equation

(2.88). The twisting parameter t = −e−iϑ is multiplied by e−iα, that is,

t→ t
cτ + d

|cτ + d|
. (2.93)

The canonical parameter K of the bulk theory was de�ned in equation (2.36). In terms
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of the gauge coupling and the parameter t,

K =
θYM

2π
+

4πi

g2
YM

t− t−1

t+ t−1
. (2.94)

For the special case that t corresponds to the supersymmetry preserved by the D3-NS5

system, this reduces to eqn. (2.7). Under S-duality, the canonical parameter transforms [14]

in the same way as the gauge coupling,

K → aK + b

cK + d
. (2.95)

Let us specialize to the case of interest. The basic S-duality transformation that ex-

changes electric and magnetic �elds is usually described (for simply-laced groups) as τ →

−1/τ , but this does not specify it uniquely, since it does not determine the sign of the matrix

M of eqn. (2.86). We �x the sign by taking

M =

 0 1

−1 0

 . (2.96)

This means, according to eqn. (2.90) that an NS5-brane, with (p, q) = (1, 0), transforms to a

D5-brane, with (p, q) = (0,−1), so that according to eqn. (2.91), ϑ∨ = π and t∨ = 1. Then

from the de�nition (2.94) of the canonical parameter, it follows that K∨ =
θ∨YM

2π
.

Unlike in the electric theory, the twisted action is very simple on the dual magnetic side.

As in the purely bosonic case [6], the action is Q-exact except for a multiple of the instanton

number (see Appendix C for a detailed explanation). In Euclidean signature, we have

Imagnetic =
iθ∨YM

8π2

∫
tr (F ∧ F ) + {Q, . . . }. (2.97)

If we set

q = exp(−iθ∨YM) , (2.98)

78



then the dependence of the theory on q is easily described: a solution of the localization

equations of instanton number n makes a contribution ±qn to the path integral. (The sign

is given by the sign of the fermion determinant.) This simple result arises in the usual way

because of cancellation between bosonic and fermionic �uctuations around a solution of the

localization equations. If therefore the instanton number is integer-valued and is bounded

above and below in all solutions of the localization equations,28 then the path integral is a

Laurent polynomial in q with integer coe�cients, namely

Z =
∑
n

anq
n, (2.99)

where an is the number of solutions (weighted by sign) of instanton number n.

It is straightforward to express q in terms of the parameters of the electric theory. As

explained above, in the magnetic theory K∨ = θ∨YM/2π; also, according to (2.95), K∨ =

−1/K. So

θ∨YM = −2π/K , (2.100)

and hence

q = exp

(
2πi

K

)
. (2.101)

For an ordinary (simple, compact, and simply-laced) bosonic group, this is the standard vari-

able in which the quantum knot invariants are conveniently expressed, and for a supergroup

it is the closest analog. These matters were described in section 2.2.6.

We now proceed to describing the localization equations and the boundary conditions in

the magnetic theory, leaving many technical details for Appendix C. Some relevant aspects

of the gauge theory have been studied in [21]. The details depend on the di�erence of the

numbers of D3-branes on the two sides of the D5-brane. We describe di�erent cases in the

28One expects the instanton number to be bounded in any solution, though this has not been proved.
However, the claim that the instanton number is integer-valued is oversimpli�ed; for example, if the gauge
group is simply-connected or M is contractible, the instanton number takes values in Z + c where c is a
constant determined by the boundary conditions. In such a situation, the partition function is qc times a
Laurent polynomial in q.
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subsequent sections.

2.4.2 Gauge Groups Of Equal Rank

In the case of an equal number of D3-branes on the two sides, the e�ective theory is a

U(n) super Yang-Mills theory in the whole four-dimensional space, with an additional three-

dimensional matter hypermultiplet localized on the defect, at x3 = 0. This hypermultiplet

comes from the strings that join the D5-brane and the D3-branes, and therefore it transforms

in the fundamental of the U(n) gauge group. Under the global bosonic symmetries U =

SO(1, 2) × SO(3)X × SO(3)Y , the scalars ZA of the hypermultiplet transform as a doublet

(1,2,1), and the fermions ζαȦ transform as (2,1,2). The bulk �elds have discontinuities at

x3 = 0 as a result of their interaction with the defect. For example, the equations of motion

of the gauge �eld, in Euclidean signature, can be deduced from the action

− 1

2(g∨YM)2

∫
d4x trF 2

µν +
1

(g∨YM)2
I∨hyp. (2.102)

(In the magnetic description, the topological term
∫

trF ∧F is integrated over all of R4 and

so does not a�ect the equations of motion.) The equations of motion that come from the

variation of this action have a delta-term supported on the defect,

D3F
m
3i −

1

2
δ(x3)Jmi = 0 , (2.103)

where J im = δI∨hyp/δA
m
i is the current.29 The delta-term in this equation means that the

gauge �eld has a cusp at x3 = 0, so that F3i has a discontinuity:

Fm
3i |
± =

1

2
Jmi . (2.104)

29Indices m,n continue to denote gauge indices, although now the gauge group is just one copy
of U(n) throughout R4. Gauge indices are raised and lowered with the positive-de�nite Killing form
δmn = −tr(TmTn).
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Here and in what follows we use the notation ϕ|± = ϕ(x3 + 0)−ϕ(x3− 0) for the jump of a

�eld across the defect. By supersymmetry, this discontinuity equation can be extended to a

full three-dimensional current supermultiplet. The most important for us will be the lowest

component of the current multiplet, which governs the discontinuity of the bulk scalar �elds

Xa:

Xam
∣∣+
− =

1

2
µam , (2.105)

where the hyperkahler moment map for the defect hypermultiplets is

µam = ZAσ
aA
B TmZ

B. (2.106)

(The other bulk scalar �elds Y ȧ are continuous at x3 = 0.)

Now we turn to the twisted theory. Recall, that for twisting we use an SO(4) subgroup of

the R-symmetry, which on the defect naturally reduces to SO(3)X . Thus, the hypermultiplet

scalars ZA become spinors Zα under the twisted Lorentz group. They are invariant under

SU(2)Y , and therefore have ghost number zero. The hypermultiplet fermions ζαȦ remain

spinors. Since they also transform as a doublet of SU(2)Y , we can expand them in the basis

given by the vectors u and v of eqns. (2.28) and (2.27) (where now we take ϑ∨ = π):

ζȦ = iuȦζu + ivȦζv ,

ζ
Ȧ

= iuȦζu + ivȦζv. (2.107)

The u- and v-components of ζ and ζ have ghost number plus or minus one, respectively.

As usual, the path integral can be localized on the solutions of the BPS equations {Q, ξ} =

0, where ξ is any fermionic �eld. The resulting equations for the bulk fermions were partly
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described in eqn. (2.30). At t∨ = 1, they have a particularly simple form,

F − φ ∧ φ+ ?dAφ =
1

2
? (δW ∧ µ) ,

Dµφ
µ = 0. (2.108)

Here δW = δ(x3)dx3 is Poincaré dual to the three-manifold W on which the defect is sup-

ported. The delta function term on the right hand side of the �rst equation in (2.108) is

related to the discontinuity (2.105) of the 1-form �eld φ. There is no such term in the second

equation, because the only �eld whose x3 derivative appears in this equation is φ3; this �eld

originates as a component of Y ȧ, and is continuous at x3 = 0. The condition that {Q, ξ} = 0

for all ξ also leads to conditions on the ghost �eld σ:

Dµσ = [φµ, σ] = [σ, σ] = 0. (2.109)

These equations say that the in�nitesimal gauge transformation generated by σ is a symmetry

of the solution. In this chapter we generally do not consider reducible solutions, so we

generally can set σ to 0.

We also should consider the condition {Q, ξ} = 0 where ξ is one of the defect fermions. For

the u-component of the fermions that are de�ned in eqn. (2.107), {Q, ξ} equals the variation

of the defect �elds under the gauge transformation generated by σ, so the condition for it

to vanish, when combined with (2.109) says that the full con�guration including the �elds

on the defect is σ-invariant. More important for us will be the condition {Q, ξ} = 0 for the

v-components:

/DZ + φ3Z = 0 , /DZ − Zφ3 = 0. (2.110)

Eqns. (2.108) and (2.110) together give the condition for a supersymmetric con�guration.
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2.4.3 Gauge Groups Of Unequal Rank

Now consider the case that the number of D3 branes jumps from n to n + r, r > 0, upon

crossing the D5-brane. The gauge groups on the left and on the right are U(n) and U(n+r),

and will be denoted by G` and Gr, respectively. The behavior along the defect has been

described in [21]. In contrast to the case r = 0, there are no hypermultiplets supported along

the defect at y = 0. What does happen is di�erent according to whether r = 1 or r > 1. We

�rst describe the behavior for r > 1.

The main feature of this problem is that some of the bulk �elds have a singular behavior

(known as a Nahm pole singularity) near y = 0. Assuming that r is positive, the singular

behavior arises as one approaches y = 0 from above. To describe the singularity, we �rst

pick a subgroup H = U(n)×U(r) ⊂ U(n+ r), and we set H ′ = U(n)×U(1), where U(1) is

the center of the second factor in H. The singularity will break Gr = U(n + r) to H ′. The

�elds with a singular behavior are the scalar �elds that we have called Xa in the untwisted

theory or as φi in the twisted theory. The behavior of φ as y approaches 0 from above is

φi =
ti
y

+ . . . , (2.111)

where the ellipsis represent less singular terms, and the matrices ti represent an irreducible

embedding of su(2) into the Lie algebra u(r) of the second factor of H = U(n)×U(r). Thus

the matrices ti are (n+ r)× (n+ r) matrices that vanish except for a single r × r block, as

shown here for n = 2, r = 3: 

0 0 0 0 0

0 0 0 0 0

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗

0 0 ∗ ∗ ∗


. (2.112)

These matrices are traceless, so their nonzero blocks are actually valued in su(r) ⊂ u(r).
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The Nahm pole singularity breaks the gauge symmetry for y > 0 from U(n + r) to

H ′ = U(n) × U(1), and there is to begin with a G` = U(n) gauge symmetry for y < 0.

There is therefore a U(n) gauge symmetry on both sides of the defect, and the condition

obeyed by the U(n) gauge �elds is just that they are continuous at y = 0, making a U(n)

gauge symmetry throughout the whole spacetime. On the other hand, the �elds supported

at y > 0 that do not commute with the Nahm pole singularity acquire very large masses

near y = 0, and they vanish for y → 0. (This statement applies to �elds in the adjoint

representation of su(r) and also to �elds in the bifundamental of U(n) × U(r).) To �nish

describing the gauge theory of the defect, we must explain the behavior at y = 0 of the �elds

in the second factor of H ′ = U(n) × U(1). These �elds make up a single vector multiplet,

which obeys what we might call Dirichlet boundary conditions (the gauge �elds Ai and

scalars Y ȧ in this multiplet obey Dirichlet boundary conditions, while the scalars Xa obey

Neumann boundary conditions; these conditions are extended to the fermions in a fashion

determined by supersymmetry).

For r = 1, this description requires some modi�cation, because su(1) = 0 and accordingly

the matrices ti vanish. Still, the defect breaks the Gr = U(n+ 1) gauge symmetry for y > 0

to a subgroup H ′ = U(n)× U(1) ⊂ U(n+ 1). Just as at r > 1, the u(n)-valued gauge �elds

on the two sides of the defect �t smoothly into continuous u(n)-valued �elds throughout the

whole spacetime. For y > 0, the gauge �elds valued in the orthocomplement of u(n) obey

the same Dirichlet boundary conditions described at the end of the last paragraph.

So far, we have described this construction as if the matrices ti in eqn. (2.111) are just

constant matrices. This makes sense if W = R3, but in general, we must recall that in the

twisted theory on M = W × R, φ =
∑

i φidx
i transforms as a 1-form along W . The proper

interpretation of the Nahm pole singularity in this general setting is as follows (see section

3.4 of [6]; the considerations there carry over to the present case without essential change).

The u(r) bundle along W must be derived from a spin bundle SW via a homomorphism

% : su(2)→ u(k) de�ned by the ti. The restriction to W ×{y = 0} of the u(r)-valued part of
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the gauge �eld is the Levi-Civita connection ω of SW , embedded in su(r) via %. We describe

this by saying that when restricted to y = 0, the u(r)-valued part of the gauge �eld A is

Au(r) = %(ω).

2.4.3.1 The Framing Anomaly

It is now possible to make an interesting check of the relationship between Chern-Simons

theory of U(n|n + r) and the defect theory just described. Here we will be rather brief,

assuming that the reader is familiar with the description of the one-sided case in section

3.5.3 of [6]. Recall that in general the partition function of Chern-Simons theory on a three-

manifold W is not quite a topological invariant of W ; W must be endowed with a framing

(or more precisely a two-framing [55]) to de�ne this partition function. A framing is a

trivialization of the tangent bundle of W . Under a unit change of framing, the partition

function acquires a factor [4]

exp(2πic sign(k))/24) , (2.113)

where c is the central charge of the relevant current algebra at level k. For a compact simple

gauge group G this is c = k dimG/(k + h sign(k)), where h is the dual Coxeter number of

G. We will assume that the same formula for c applies, at least modulo an integer, for a

simple supergroup SG, which in our case will be SU(n|n+ r):

c =
k sdimSG

k + hsgsign(k)
mod Z. (2.114)

This is a non-trivial assumption, since some of the standard arguments do not apply for

supergroups, as it is described in Appendix E of [1]. (Replacing SU(n|n+ r) by U(n|n+ r),

which is isomorphic locally to SU(n|n+ r)×U(1), shifts c by 1, which will not be important

as we will only study c mod Z. So the following discussion will be phrased for the simple
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supergroup SU(n|n+ r), rather than U(n|n+ r).) It is useful to factor (2.113) as follows:

exp (2πi sign(k) sdimSG/24) · q−hsg sdimSG/24. (2.115)

Perturbation theory is an expansion in powers of 1/K, with an `-loop diagram making a

contribution of order K1−`. Accordingly, the exponent 2πi sign(k) sdimSG/24 in the �rst

factor in (2.115), being invariant under scaling of k, is a 1-loop e�ect. Since it is not

analytic in K, we cannot hope to reproduce it from four dimensions. If this factor � or a

similar one that arises if c is shifted by an integer � appears in a purely three-dimensional

construction, then it must appear in a comparison between the relevant measures in three

and four dimensions, as discussed in section 2.2.6 above and in section 3.5.3 of [6]. However,

the second factor in (2.115), which is a simple power of q, comes from diagrams with ≥ 2

loops and can be reproduced from four dimensions.

As in [6], this factor arises from a subtlety in the de�nition of instanton number in the

presence of the Nahm pole. The condition that along W ×{y = 0}, Au(r) = %(ω) means that

the instanton number, de�ned in the obvious way from the integral
∫
M`

TrF∧F+
∫
Mr

TrF∧F ,

is not a topological invariant. If one varies the metric of W , the second term picks up a

variation from the change in ω. To compensate for this, one must add to the instanton

number a multiple of the Chern-Simons invariant of ω, but this is only gauge-invariant (as

a real number) once we pick a framing on W . From the viewpoint of the dual magnetic

description, that is why Chern-Simons theory on W requires a framing of W . To adapt the

analysis of [6] to the present problem, we simply proceed as follows. In the U(n|n+ r) case,

the Nahm pole is embedded in a u(r) subalgebra, and therefore the framing-dependence

that is introduced when we de�ne the instanton number for this problem is independent

of n and is the same as it is for the one-sided problem with n = 0 and gauge group U(r).

Hence, to obtain in the magnetic description the expected factor q−hsgsdimG/24 in the framing
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dependence, we need the identity

hsu(n|n+r) sdimSU(n|n+ r) = hsu(r) dimSU(r). (2.116)

This is true because sdimSU(n|n+ r) is independent of n and likewise hsu(n|n+r) is indepen-

dent of n. See Table 2.2.

2.4.4 Line And Surface Operators In The Magnetic Theory

Our next goal is to identify the S-duals of the line and surface operators that we have

found on the electric side. We use the fact that we know how S-duality acts on the bulk

surface operators. For an �electric� surface operator, the magnetic dual [53] has parame-

ters (α∨, β∨, γ∨, η∨) = (η, |τ |β∗, |τ |γ∗,−α), where τ is the gauge coupling constant. This

determines the singularity of the �elds along the operator in the bulk, away from the three-

dimensional defect. We still have to �nd the model solution which describes the behavior of

the �elds near the end of the surface operator at y = 0. This will be the main subject of the

present section.

In bulk, for a surface operator with parameters (α, β, γ, η), the parameters α and η

are both periodic. In the presence of a defect, this is no longer the case. In the electric

description, η is not a periodic variable on a D3-brane that ends on (or intersects) an NS5-

brane. Shifting η by an integral character would add a unit of charge along the defect.

Dually to this, for the D3-D5 system, in the case of a surface operator with parameters

(α∨, β∨, γ∨, η∨), α∨ is not a periodic variable. In the model solutions that we construct

below, if α∨ is shifted by an integral cocharacter (of G∨), then the solution is unchanged in

the bulk up to a gauge transformation, but is modi�ed along the defect.

It follows from this that once we construct model solutions for surface operators with

parameters (α∨, β∨, γ∨), we can trivially construct magnetic line operators. We return to

this in section 2.4.5.
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2.4.4.1 Reduction Of The Equations

We focus �rst on the case of gauge groups of equal rank, as described in section 2.4.2. The

discussion can be transferred to the unequal rank case in a straightforward way, and we shall

comment on this later.

To give a de�nition of a surface operator whose support intersects the three-dimensional

defect, we have to �nd a model solution of the localization equations (2.108) and (2.110)

for the �elds near the surface C and near the hyperplane y = 0. The classical solution

does not depend on the two-dimensional theta-angles η∨, so we label it by three parameters

(α∨, β∨, γ∨). We consider a surface operator stretched along C = Rx0 × Ry in R4,and look

for a time-independent, scale-invariant solution. We aim to construct a model solution that

is 1/2-BPS, that is, it preserves the four supersymmetries (2.69) and (2.70). It should also

be invariant under the SO(3)Y subgroup of the R-symmetry groups. The symmetries allow

us to considerably reduce the localization equations. An analogous problem in the one-sided

theory was considered in section 3.6 of [6], where the reader can �nd many details which we

do not repeat here.

First of all, for an irreducible solution the �eld σ is zero, and therefore, by SO(3)Y

symmetry, φ3 should also vanish. The Q-invariance together with SO(3)Y symmetry makes

the solution invariant under the �rst pair of supersymmetries (2.69). Using the explicit

formulas for the transformations (2.229), one can also impose invariance under the second

pair of supersymmetries (2.70). For t∨ = 1, which is the case in the magnetic theory, this

�xes A0 to be zero. The reduced localization equations can be written in a concise form,

after introducing some convenient notation. Following [6], we de�ne three operators

D1 = 2Dz ,

D2 = D3 − iφ0 ,

D3 = 2φz , (2.117)
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where z = x1 + ix2 is a complex coordinate, φz = (φ1 − iφ2)/2 is the z-component of φ, and

Dz and D3 are covariant derivatives. We also denote the components of the bosonic spinor

�eld Zα as Z ≡ Z1 and Z̃ ≡ (Z2)†. For simplicity, we assume the gauge group G∨ to be

U(n). Then the components of the moment map (2.106) can be written as

µ0 = i(Z̃† ⊗ Z̃ − Z ⊗ Z†) , µz = −iZ ⊗ Z̃. (2.118)

With this notation, the reduced localization equations are

[D1,D2] = 0 , [D3,D1] = 0 , [D2,D3]− µzδ(y) = 0 ,

D1Z = D1Z̃ = 0 , (2.119)

together with ∑
i

[Di,D†i ] + iµ0δ(y) = 0. (2.120)

The space of �elds in which we look for the solution is the space of continuous connections on

R4 \ C, and Higgs �elds with an arbitrary discontinuity across the hyperplane y = 0. (The

�elds should also be vanishing at in�nity.) The correct discontinuity (2.105) is enforced

by the delta-terms in the localization equations. To put the real and imaginary parts A3

and φ0 of the connection in D2 on equal footing, let us also allow A3 to have an arbitrary

discontinuity across y = 0, and to compensate for this, we divide the space of solutions by

the gauge transformations, which are allowed to have a cusp across the defect hyperplane.

The analysis of these equations in the one-sided case in [6] was based on the fact that the

equations (2.119) are actually invariant under complex-valued gauge transformations, not

just real-valued ones. One can try to solve the equations in a two-step procedure in which

one �rst solves eqn. (2.119) and then tries to �nd a complex-valued gauge transformation to

a set of �elds that obeys (2.120) as well.

Though we could follow that strategy here as well, we will instead follow a more direct
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approach. We are motivated by the fact that the basic surface operator in the absence of any

defect or boundary is described by a trivial abelian solution. In the one-sided problem, one

requires a Nahm pole along the boundary and therefore the full solution is always irreducible.

However, in the two-sided case with equal ranks, there is no Nahm pole. Is it too much to

hope that we can �nd something interesting by taking simple abelian solutions for y < 0 and

y > 0, somehow glued together along y = 0?

2.4.4.2 Some �Abelian� Solutions

We look for a model solution for a surface operator with parameters (α∨, 0, 0), and initially

we assume α∨ regular. Since we take β∨ = γ∨ = 0, we look for a model solution invariant

under the SO(2) group of rotations in the 12-plane, and under the SO(2)X subgroup of

the R-symmetry. Accordingly, the �eld φz should vanish. Indeed, the SO(2)X acts on φz

by multiplication by a phase. In a fully non-abelian solution, this phase could possibly be

undone by a gauge transformation, but in a solution that is abelian away from y = 0 � as we

will assume here � that is not possible and φz must vanish. Therefore, from the discontinuity

equation for φz it follows that either Z or Z̃ should vanish. So for de�niteness, assume that

Z̃ = 0 and Z 6= 0.

For now we focus on irreducible solutions, for which the gauge group along K is broken

completely. We postpone the discussion of reducible solutions.

A simple abelian solution of the localization equations would be A = α∨ cosϕdθ, φ =

α∨dx0/r′. For y → ∞, φ vanishes, and A approaches the simple surface operator solution

α∨dθ for y → +∞ (θ = 0) or −α∨dθ for y → −∞ (θ = π). However, we want a solution in

which A will approach independent limits α∨` dθ and α∨r dθ for y → −∞ and y → +∞. Also

we want to allow for the possibility that a gauge transformation by a constant matrix g has
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to be made to match the solutions for y < 0 and y > 0. So we try

y > 0 : A = α∨r cosϕ dθ , φ = α∨r
dx0

r′
,

y < 0 : A = −gα∨` g−1 cosϕ dθ , φ = −gα∨` g−1 dx0

r′
. (2.121)

We also have to impose the discontinuity equation φ0

∣∣± = i
2
(Z̃†⊗ Z̃−Z⊗Z†). Note �rst

of all that taking the trace of this gives i(tr(α∨r ) + tr(α∨` )) = r′(|Z|2 − |Z̃|2)/2. Therefore,

the choice of whether Z or Z̃ is non-zero is determined by the sign of the combination of

parameters on the left hand side of this equation. We assume this combination to be positive,

and take

Z =
v√
z
, (2.122)

where v is some constant vector. We have taken Z to be holomorphic to satisfy D1Z = 0

(this is one of the localization equations, eqn. (2.119)). Note that A does not appear in this

equation, since it vanishes at y = 0, so the formula for Z does not depend on α∨` or α∨r . Also,

(2.122) means that Z has a monodromy −1 around the knot, which in this description is

located at z = 0. So we have to assume that this monodromy of Z is part of the de�nition

of the surface operator in this magnetic description.

The discontinuity equation now becomes

iα∨r + igα∨` g
−1 =

1

2
v⊗ v†. (2.123)

This is a set of n2 equations for a unitary matrix g and a vector v, which are together n2 +n

variables. The equations are invariant under the diagonal unitary gauge transformations,

which remove n parameters. Therefore, generically one expects to have a �nite number of

solutions.

The equations can be conveniently formulated as follows. For a given hermitian matrix

N = iα∨r , �nd a vector v, such that the hermitian matrix N ′ = N − 1
2
v ⊗ v† has the same
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eigenvalues as M = −iα∨` . Using the identity det(X + v ⊗ v†) = (1 + v†X−1v) det(X), the

characteristic polynomial for N ′ can be written as

det

(
1 · λ−N +

1

2
v⊗ v†

)
= det(1 · λ−N)

(
1 +

1

2

n∑
i=1

|u†iv|2

λ− λi

)
, (2.124)

where ui are the eigenvectors of N with eigenvalues λi. First let us assume that u†iv 6= 0 for

all i. Then the eigenvalues of N ′ are solutions of the equation

1 +
1

2

n∑
i=1

|u†iv|2

λ− λi
= 0. (2.125)

Note that all the eigenvalues of N are distinct � this is the regularity condition for the

weight, which says that 〈λ, α0〉 ≡ 〈Λ + ρ, α0〉 6= 0 for all the superalgebra bosonic roots α0.

By sketching a plot of the function in the left hand side of (2.125), it is easy to observe that the

equation has n solutions λ = λ′i, i = 1, . . . , n. These solutions interlace the eigenvalues λi, in

the sense that if the λi and λ
′
i are arranged in increasing order then λ′1 < λ1 < λ′2 < · · · < λn.

Had we assumed Z̃ rather than Z to be non-zero, we would have obtained the opposed

interlacing condition λ1 < λ′1 < λ2 < · · · < λ′n. Moreover, by tuning the n coe�cients |u†iv|2

of the equation, one can in a unique way put these solutions to arbitrary points inside the

intervals (−∞, λ1), (λ1, λ2), . . . , (λn−1, λn), to which they belong. To do this, we simply view

eqn. (2.125) as a system of linear equations for the constants |u†iv|2. The interlacing condition

ensures that there is no problem with the positivity of those constants. An important special

case is that |u†iv|2 → 0 precisely when λ′j (for j = i or i ± 1) approaches λi. The facts we

have just stated are used in some applications of random matrix theory; for example, see p.

16 of [56].

We conclude that the equation (2.123) has a solution, which moreover is unique (modulo

diagonal gauge transformations), if and only if the eigenvalues of iα∨r and−iα∨` are interlaced.

Since the eigenvalues of iα∨r and iα
∨
` should be the weights of a dual Wilson-'t Hooft operator

on the electric side, we have a reasonable candidate for the dual of such operators when
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certain inequalities are satis�ed. If some of the eigenvalues of iα∨r coincide with eigenvalues

of −iα∨` , then the corresponding components of Z = v/
√
z vanish. (We return to this point

in section 2.4.4.5.)

If the eigenvalues are not interlaced, the abelian ansatz fails. As a motivation to under-

stand what to do in this case, we will describe a possibly more familiar problem that leads

to the same equations and conditions that we have just encountered. We look at the system

of N D3-branes intersecting a D5-brane from a di�erent point of view. Instead of studying

a surface operator, we look for a supersymmetric vacuum state in which the �elds ~X have

one asymptotic limit ~X` for y → −∞ and another limit ~Xr for y → +∞. Such a vacuum

exists for any choice of ~X`, ~Xr, and is unique up to a gauge transformation. Macroscopically,

this vacuum is often just understood by saying that a D3-brane can end on a D5-brane so

the value of ~X can jump from ~X` to ~Xr in crossing the D5-brane. Thus, one represents the

vacuum by the simple picture of �g. 2.1 of section 2.1.2, but now with the �vebrane in the

picture understood as a D5-brane.

Although this picture is correct macroscopically, from a more microscopic point of view,

the vacuum of the D3-D5 system is found by solving Nahm's equations for the D3 system,

with the D3-D5 intersection contributing a hypermultiplet that appears as an impurity. This

has been analyzed in detail in [21]. Let us just consider the case that the branes are separated

at y → ±∞ only in the X4 direction, where X4 corresponds to φ0 in our notation here. A

natural ansatz would then be to assume that X5 = X6 = 0 everywhere. That leads to simple

equations. Nahm's equations with X5 = X6 = 0 just reduce to dX4/dy = 0 (for y 6= 0),

so X4 is one constant matrix for y > 0 and a second constant matrix for y < 0. After

diagonalizing X4 for y > 0, we can write X4 = α∨r for y > 0, X4 = −gα∨` g−1 for y < 0, with

α∨` , α
∨
r ∈ t, g ∈ U(n). Finally, in the construction of the vacuum, the jump condition at the

location of the hypermultiplet is precisely (2.105).

So in constructing the vacuum assuming that X5 = X6 = 0 identically, the solution exists

if and only if the eigenvalues of X4 are interlaced, so that the branes are placed as shown
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Figure 2.7: D3-branes ending on the two sides of a D5-brane. If the branes are not interlaced, they
can form a fuzzy funnel.

in �g. 2.7(a). What if they are not interlaced? A unique vacuum solution still exists, but

the assumption that X5 and X6 are identically 0 is no longer valid. For example, if two

of the eigenvalues of X4 for y → −∞ or for y → +∞ are very close � in other words if

two of the λi or two of the λ′i are very close � then the neighboring branes form a fuzzy

funnel, as in �g. 2.7(b,c). The fuzzy funnel is described [57] by a nonabelian solution of

Nahm's equations, with X4, X5 6= 0. If X4, X5 → 0 for y → ±∞, then in the appropriate

solution of Nahm's equations, X4± iX5 is nilpotent, but not zero [21]. This suggests that we

should try a new ansatz with φz nilpotent but not zero in order to �nd the missing solutions

when the weights are not interlaced. For now, we present this as heuristic motivation for a

more general ansatz, but later we will explain a precise map between the problem of �nding

half-BPS surface operators and Nahm's equations for a D3-D5 vacuum.

2.4.4.3 General Solution For U(2)

We consider the �rst non-trivial example of this problem, which is for gauge group U(2),

corresponding to U(2|2) on the electric side. We focus on the con�guration shown in �g.

2.7(b). The positions of the branes in that �gure should be interpreted as the eigenvalues

of the matrices which appear in the 1/r′ singularity of the �eld φ0. If the weights are

α∨r = i diag(m1r,m2r) and α∨` = −i diag(m1`,m2`), then m1r,` and m2r,` label the positions

of the horizontal lines in �g. 2.7. We assume that, by a Weyl conjugation, α∨ was brought

to the form with m1r > m2r and m1` > m2`.
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We introduce a convenient variable ς de�ned as sinh ς = cotϕ (or tanh ς = cosϕ). It

runs from −∞ to 0 on the left of the defect, and from 0 to +∞ on the right. For the �elds

on the left of the defect, we use the same abelian ansatz (2.121). For the �elds on the right,

we want to �nd a conformally- and SO(2)X-invariant solution with φz belonging to the non-

trivial nilpotent conjugacy class. A family of such solutions, which actually contains all the

solutions with these symmetries, was found in [6], and has the following form,

A =
i

2

 m1r +m2r + ∂ςVr 0

0 m1r +m2r − ∂ςVr

 cosϕ dθ ,

φ0 =
i

2r′

 m1r +m2r + ∂ςVr 0

0 m1r +m2r − ∂ςVr

 ,

φz =
1

2z

 0 1

0 0

 exp(−Vr) , (2.126)

where the function Vr(ς) is found from the localization equations to be

Vr = log

(
sinh(arς + br)

ar

)
. (2.127)

The ansatz is SO(2)X-invariant up to a diagonal gauge transformation. In (2.126), ar and

br are some unknown constants. We choose ar to be positive. Then br should also be

positive, so that no singularity appears30 in the interval ς ∈ (0,∞). The requirement that

the behavior of the gauge �eld at ς →∞ should agree with the surface operator A = α∨r dθ

�xes a = m1r −m2r. (Had we chosen the opposite Weyl chamber for α∨, we would have to

make a Weyl transformation on the ansatz (2.126), making φz lower-triangular.) Note that,

due to the cosϕ factor, the gauge �eld at y = 0 vanishes; this agrees with our requirement

that Zα ∼ 1/
√
z should have monodromy −1. The next step is to impose the discontinuity

30The singularity that the solution has at arς + br = 0 is the Nahm pole. In the one-sided problem, one
chooses br = 0 to have this pole precisely at ς = 0.
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equations at ς = 0, and to hope that they will have a solution for some positive real br. The

z-component of the discontinuity equations tells us that the hypermultiplet �elds should

have the form

Z =
1√
z

 s

0

 , Z̃ =
1√
z

(0 iw). (2.128)

Unlike the interlaced case, here there is no freedom to include a general non-abelian gauge

transformation in gluing the left and the right side. Such a gauge transformation would

not be consistent with the symmetry, since generically it would not commute with the U(1)

subgroup of the gauge group which is used to undo the SO(2)X rotations. The only possible

non-abelian gluing gauge transformation is the Weyl conjugation. The equations will tell us

that in this case it is not needed. The φ0 and φz discontinuity conditions give

ar
sinh br

= sw ,

m1r +m2r − 2m1` + ar coth br = −|s|2 ,

m1r +m2r − 2m2` − ar coth br = |w|2. (2.129)

Subtracting the last two equations, we see that a solution with positive b cannot exist unless

m1` −m2` > 0. This is consistent with our choice of the Weyl chamber, so no gluing gauge

transformation is needed. Eliminating s and w from (2.129), we obtain

m1` −m2`

m1r −m2r

= coth br +

√(
m1r +m2r −m1` −m2`

m1r −m2r

)2

+
1

sinh2 br
. (2.130)

The function on the right is monotonically decreasing. It is easy to see that the equation

has a solution br > 0 if and only if the eigenvalues are arranged as in �g. 2.7b.

The last case to consider for the U(2) group is that of �g. 2.7c. Here �elds on both
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sides of the defect should have a non-zero nilpotent φz. The �elds on the right are given by

the same ansatz (2.126). The �elds on the left are given by the same ansatz, but with Vr

replaced by

V` = log

(
sinh(−a`ς + b`)

a`

)
. (2.131)

Again, we assume a` to be positive, and then b` should also be positive to avoid the singularity

on the interval ς ∈ (−∞, 0). We �x a` from the asymptotics at ς → −∞ to be a` = m1`−m2`,

though in this case the gauge �eld A asymptotically is proportional to diag(m2`,m1`). We

could make a Weyl gauge transformation to bring it to the other Weyl chamber.

In gluing left and right, we cannot make any non-diagonal gauge transformations, as

follows again from the SO(2)X symmetry. There are two separate cases to consider. First

assume that φz has a non-trivial jump at y = 0. This forces the hypermultiplet �elds Z and

Z̃ to have the form (2.128). The discontinuity equations give

ar
sinh br

± a`
sinh b`

= sw ,

ar coth br + a` coth b` = −|w|
2 + |s|2

2
,

(2.132)

m1r +m2r −m1` −m2` =
|w|2 − |s|2

2
.

(The sign in the �rst equation can be exchanged by an abelian gluing gauge transformation.)

The second equation clearly has no positive solutions for br,`.

Therefore, the �eld φz has to be continuous at y = 0. In this case, either Z or Z̃ should

be zero. Assume that it is Z̃, and

Z =
1√
z

 s

w

 . (2.133)
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Since the �eld φ0 is diagonal, the matrix Z ⊗ Z† should be also diagonal, so either s or w is

zero. We have to choose s = 0 to avoid the same sign problem which caused trouble in the

second equation in (2.132). The discontinuity equations become

ar
sinh br

− a`
sinh b`

= 0 ,

ar coth br + a` coth b` = |w|2/2 ,

m1r +m2r −m1` −m2` = −|w|2/2. (2.134)

The last equation here implies that m1r +m2r < m1` +m2`. In the opposite case, we would

have to take Z and not Z̃ to be zero. Eliminating |w| and b`, we get

m1` +m2` −m1r −m2r

m1r −m2r

= coth br +

√(
m1` −m2`

m1r −m2r

)2

+
1

sinh2 br
. (2.135)

This equation has a solution precisely when the eigenvalues are arranged as in �g. 2.7c.

2.4.4.4 General Surface Operators

We have described the abelian solutions for the U(n|n) case, and some more general solutions

for U(2|2) for surface operators of type (α∨, 0, 0). In this section we look at the general sin-

gularities of type (α∨, β∨, γ∨), aiming to make a precise statement about the correspondence

between surface operators and supersymmetric vacua of the theory.

Let us go from the coordinates (t, x1, x2, y) to (t, ς, θ, r′), in which the rotational and

scaling symmetries act in the most simple way. The �at metric in these coordinates is

conformally equivalent to cosh2 ς(dt2 + dr′2)/r′2 + dς2 + dθ2, which is AdS2 × Rς × S1
θ , up

to a warping factor cosh2 ς. In conformal �eld theory, �nding a model solution for a surface

operator is equivalent to �nding a vacuum con�guration in this space, with the asymptotics
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of the scalar �elds at ς → ±∞ de�ned by the charges of the surface operator. To make

this intuition precise, let us rewrite our localization equations (2.119), (2.120) in terms of

these coordinates. We make a general scale-invariant and rotationally-invariant ansatz for

the �elds,

φ0 =
1

r′
M(ς) , φz =

1

z
N(ς) , A = M1(ς) cosϕ dθ. (2.136)

(We could have absorbed cosϕ = tanh ς into M1, but it is more convenient to write it this

way.) The equations reduce to

[∂ς−iM,N ] = 0 , [∂ς−iM1, N ] = 0 , [∂ς−iM, ∂ς−iM1]+
2i

sinh 2ς
(M−M1) = 0 , (2.137)

together with

sinh2 ς∂ςM1 + ∂ςM

cosh2 ς
+ 2i[N,N †] +

sinh ς

cosh3 ς
(M1 −M) = 0. (2.138)

The �rst set of equations almost implies that M1 = M . In fact, there is a class of reducible

solutions for which this equality is not true. They will be described in the next section,

but for now we take M1 = M as an ansatz. Then the equations reduce simply to Nahm's

equations [∂ς − iM,N ] = 0 and ∂ςM + 2i[N,N †] = 0 for the scalar �elds M , Re(N) and

Im(N). At ς → ±∞, these �elds should approach limiting values given by the parameters

of the surface operator α∨, β∨ and γ∨. At ς = 0, assuming the regularity of M(ς), the

conformally invariant solution for Z and Z̃ is given by 1/
√
z times some constant vectors,

which should be found from the discontinuity equations.

In this way, the problem of �nding the model solution for a surface operator is indeed

reduced to the problem of �nding the supersymmetric vacuum of the D3-D5 system for given

asymptotic values of the scalar �elds. To actually �nd the solutions, one needs to �nd the

solutions of the Nahm's equations on a half-line, with asymptotics of the �elds given by

the regular triple (α∨, β∨, γ∨), and then glue them at y = 0, according to the discontinuity
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equations. The relevant solutions of the Nahm's equations can be found e.g. in [51]. The

problem reduces to solving a set of algebraic equations for the integration constants of the

solutions and the components of the hypermultiplet �eld Zα. Solving these equations seems

like a tedious problem even for the U(2) case, and we will not attempt to do it here. The

relation to the supersymmetric vacua guarantees that for any values of the parameters a

model solution exists, unique up to gauge invariance.

The reduction that we have just described works for the unequal rank case as well. The

gluing conditions of section 2.4.3 for the conformally-invariant solution (2.136) at y = 0

reduce to the gluing conditions for the scalar �elds M and N . In particular, a 1/y Nahm

pole boundary condition translates into a 1/ς Nahm pole for the vacuum scalar �elds.

2.4.4.5 Reducible Solutions

So far we have concentrated on irreducible solutions, but there are reducible solutions as

well.

Returning to eqn. (2.137), instead of setting M1 = M , we write M1 = M + S. We �nd

that the equations are obeyed if M and N obey the same conditions as before, while

[S,N ] = [S,M ] = ∂ςS +
2

sinh 2ς
S = 0. (2.139)

The last equation means that

S = coth ζS0 =
1

cosϕ
S0 (2.140)

with a constant matrix S0.

The interpretation is very simple. First we describe the equal rank case. In U(n), we pick

a subgroup U(n−m)×U(m). In U(n−m), we pick matricesM,N and defect �elds Z, Z̃ that

satisfy Nahm's equations and the jump conditions at y = 0, giving an irreducible solution

(in U(n−m)) as described in section 2.4.4.4. In U(m), we embed a trivial abelian solution
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with A = α∨dθ, φz = (β∨ + iγ∨)/(2z), φ0 = 0. (This trivial solution is obtained by taking

S = α∨, and taking the u(m)-valued part of N to be the constant matrix (β∨ + iγ∨)/2.)

This describes a solution that can exist if m eigenvalues of ~ζ∨` = (α∨` , β
∨
` , γ

∨
` ) coincide with

m eigenvalues of ~ζ∨r = (α∨r , β
∨
r , γ

∨
r ). For left and right eigenvalues to coincide is the condition

for an atypical weight, so these solutions govern atypical weights.

For the same atypical weight, however, we could have simply used the irreducible U(n)-

valued solution with S = 0 constructed in section 2.4.4.4. After all, this solution exists

for any weights. More generally, consider an atypical weight of U(n|n) with s eigenvalues

of ~ζ∨` equal to corresponding eigenvalues of ~ζ∨r . For any m ≤ s, we can obtain a surface

operator solution with this weight, based on a subgroup U(n − m) × U(m) ⊂ U(n). We

simply take a trivial abelian solution in U(m) based on m of the s common weights, and

combine this with an irreducible solution in U(n−m) for all the other weights. For each m,

there are
(
s
m

)
such solutions, since we had to pick m of the s common weights. Considering

all values of m from 0 to s, this gives 2s surface operator solutions for a weight of U(n|n)

of atypicality s. Qualitatively, this is in agreement with what one �nds on the electric side,

where a �nite-dimensional representation with a given highest weight is unique only if the

weight is typical. In the case that the weights α∨` and α∨r are integral and β∨` , γ
∨
` and β∨r , γ

∨
r

all vanish, so that the model solutions that we have constructed are related to line operators

(see section 2.4.5), this leads to 2s line operators associated to a weight of atypicality s; we

suspect that they are dual to 2s distinguished representations with the given highest weight.

The story is similar for unequal ranks. The gauge group is U(n) for y < 0 and U(n+ r)

for y > 0. We pick subgroups U(n−m)×U(m) ⊂ U(n) and U(n+r−m)×U(m) ⊂ U(n+r).

We combine a trivial abelian U(m)-valued solution on the whole y line with an irreducible

solution based on U(n − m) for y < 0 and U(n + r − m) for y > 0. Just as in the last

paragraph, we get 2s solutions for a weight of U(n|n+ r) of atypicality s.

Another type of reducible solution was found in section 2.4.4.2. If one of the eigenvalues

of α∨r is equal to an eigenvalue of −α∨` , then the corresponding matrix elements of Z and Z̃
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vanish and a U(1) subgroup of the gauge group is unbroken. The basic phenomenon occurs

actually for the gauge group U(1), corresponding to the supergroup U(1|1). There is a surface

operator described by a trivial abelian solution with A = α∨ cosϕ dθ and φ = α∨ dx0/r′

everywhere and Z = Z̃ = 0. (This solution has α∨r = α = −α∨` because cosϕ = 1 on the

positive y axis and −1 on the negative y axis.) Clearly since Z and Z̃ vanish, the U(1) gauge

symmetry is unbroken. This is a reducible solution that can occur for a typical weight, since

α∨r = −α∨` is not a condition for atypicality. Such a surface operator does not seem to be

well-de�ned. Since the gauge symmetry remains unbroken along the knot K, the gauge �eld

near K is free to �uctuate. In particular, it follows that the variation of the topological

term in the presence of this model singularity is not zero, but is proportional to
∫
K
αδA, and

therefore, the action is not Q-invariant. We do not know how to interpret the singularity

that seems to arise when an eigenvalue of α∨` approaches one of −α∨r , or how to describe

a half-BPS surface operator in this case. A possibly similar problem arises in the bulk in

N = 4 super Yang-Mills theory with any nonabelian gauge group if one tries to de�ne a

surface operator with parameters (0, 0, 0, η∨). Classically, it is hard to see how to do this,

since the de�nition of η∨ requires a reduction of the gauge symmetry to the maximal torus

along the support of the surface operator, and this is lacking classically if α∨ = β∨ = γ∨ = 0.

Yet the surface operator in question certainly exists; it is S-dual to a surface operator with

parameters (α, 0, 0, 0) that can be constructed semiclassically. One approach to de�ning it

involves adding additional variables along the surface (see section 3 of [54]).

2.4.5 Line Operators And Their Dualities

We have constructed surface operators, but there is an easy way to construct line operators

from them. We simply observe that if we set β∨ = γ∨ = 0, and also take α∨ to be integral,

then the bulk solution A = α∨ dθ de�ning a surface operator in the absence of any D5-

brane can be gauged away. So for those parameters, the surface operators that we have

constructed are trivial far away from the D5-brane defect. That means that those surface
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operators reduce macroscopically to line operators supported on the defect.

Saying that α∨ is �integral� means that it is a cocharacter of the maximal torus of the

dual group G∨, or in other words a character of the maximal torus of G. Up to the action of

the Weyl group, this character corresponds to a dominant weight of G. In other words, we

have found line operators of the magnetic description by G∨ gauge theory that are classi�ed

by dominant weights (or representations) of the electric group G.

In all these statements, G is either G` or Gr, the gauge group to the left or right of the

D5-brane defect. Taking account of the behavior on both sides, these line operators are really

classi�ed by dominant weights of G` × Gr. (In our main example of U(m|n), G is U(m) or

U(n) and the distinction between G and its dual group G∨ is not important. However, this

part of the analysis is more general and carries over also to the orthosymplectic case that we

discuss in section 2.5.)

Wilson-'t Hooft operators of the �electric� description involving an NS5-brane are also

classi�ed by dominant weights of G` × Gr (or equivalently by dominant weights of the su-

pergroup SG), as we learned in section 2.3.3.2. Thus an obvious duality conjecture presents

itself: the line operator associated to a given weight of G`×Gr in one description is dual to

the line operator associated to the same weight in the other description.

This statement is a natural analog of the usual duality between Wilson and 't Hooft

operators, adapted to the present situation. But a detail remains to be clari�ed. In the

standard mapping between Wilson operators of G and 't Hooft operators of G∨, there is a

minus sign that to some extent is a matter of convention. That is because electric-magnetic

duality could be composed with charge conjugation for either G or G∨. Charge conjugation

acts by reversing the sign of a weight, up to a Weyl transformation.

In the supergroup case, let (λ`, λr) be a weight of G`×Gr, and let (α∨` , α
∨
r ) be a magnetic

weight of G∨` ×G∨r . If we specify that we want a duality transformation that maps λ` to +α∨` ,

then it becomes a well-de�ned question whether λr maps to +α∨r or to −α∨r . The correct
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answer is the one with a minus sign:

(λ`, λr)↔ (α∨` ,−α∨r ). (2.141)

To see this, we observe that there is a symmetry of the problem that exchanges the left and

right of the defect and exchanges λ` with λr but α
∨
` with −α∨r . For a defect at x3 = 0 and

a line operator supported on the line L : x1 = x2 = x3 = 0, we can take this symmetry to

be x2 → −x2, x3 → −x3, with x0, x1 �xed. This has been chosen to exchange the left and

right sides of the defect, while mapping the line L to itself and preserving the orientation of

spacetime, so as to leave K �xed. It does not a�ect electric charge, but it reverses the sign

of α∨ because it reverses the orientation of the x1x2 plane.

As was already remarked in section 2.3.5, in the case of an atypical weight, our pictures

on the magnetic and electric sides do not quite match. On the magnetic side, for a given

atypical weight, we have found multiple possible 1/2 BPS surface and line operators, as

explained in section 2.4.4.5. On the electric side, for any weight, even atypical, we found

only a single 1/2 BPS surface or Wilson-'t Hooft line operator.

2.4.6 A Magnetic Formula For Knot And Link Invariants

The Q-invariant line and surface operators that we have constructed can be used to get

magnetic formulas for knot and link invariants. In the case of line operators, we have little

to add to what was stated in eqn. (2.99). Here we will elaborate on the construction of

knot and link invariants using surface operators. After some general observations, we will

comment on what happens for atypical weights.

We start on the electric side with a knot invariant de�ned by including a surface operator

with parameters (α, β, γ, η) supported on a two-surface C that intersects the hyperplane

y = 0 along a knot K. One can take simply C = K ×Ry (where Ry is parametrized by y) or

one can choose C to be compact. The dual magnetic description involves a surface operator
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wrapped on C with parameters (α∨, β∨, γ∨, η∨) = (η, |τ |β∗, |τ |γ∗,−α).

The parameters of the surface operator in the magnetic case de�ne the singularities of the

�elds near C, but also they determine some insertions that must be made in the functional

integral along C. The action of the theory in the presence of the surface operator is

iK∨

4π

∫
M

tr(F ∧ F )− i
∫
C

tr ((K∨α∨ − η∨∗)F ) , (2.142)

modulo Q-exact terms. We have used eqns. (2.81) and (2.78) for the terms proportional

to α∨ and η∨∗. The integral in the four-dimensional topological term is taken over M , but

alternatively, we could take it over M \ C, and that would absorb the term proportional to

α∨. Note that the objects which appear in this formula are topological invariants, because

the bundle is naturally trivialized both at in�nity and in the vicinity of K, where the �elds

Zα become large. (For now we consider the generic irreducible case, when the gauge group is

completely broken along K; we do not consider the problem mentioned at the end of section

2.4.4.5.) Using the relation (2.85) between weights and parameters of the surface operator,

the action can be alternatively written as

iK∨

4π

∫
M

tr(F ∧ F ) + iK∨
∫
Cr

tr(λrF )− iK∨
∫
C`

tr(λ`F ). (2.143)

The insertion of the two-dimensional observable in this formula is essentially the S-dual of

the analogous insertion in the electric theory. This statement can be justi�ed explicitly if

the gauge group is abelian. In that case, the two-observable
∫
F is the second descendant

of the Q-closed �eld σ. Under S-duality, both the gauge-invariant polynomials of σ and

their descendants are mapped to each other. (See Appendix D for details on the descent

procedure in the presence of the three-dimensional defect.)

The functional integral in the magnetic theory can be localized on the space of solutions

to the localization equations (2.108), (2.110). The knot polynomial can be obtained by

counting the solutions of the localization equations in the presence of a singularity of type
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type (α∨, β∨, γ∨), weighted by the combination (2.143) of topological numbers of the solution,

as well as the sign of the fermion determinant. (These statements hold for both the equal-

rank and unequal rank cases, though one uses di�erent equations and model solutions in the

two cases.) For a given weight, there are di�erent possible choices of surface operator. We

can vary α∨ and η∨, as long as their appropriate combination is equal to the weight. We

can also turn on arbitrary γ∨ and β∨, as long as it is not forbidden for topological reasons.

All this simply re�ects the fact that the problem of counting solutions of elliptic equations

is formally invariant under continuous deformations of parameters. Note that, in particular,

the operators with γ∨ 6= 0 are well-de�ned and 1/2-BPS, and changing γ∨ does not change

the weight in (2.143), with which the solutions of the localization equations are counted.

This supports the view, proposed in section 2.3.4.2, that in the physical theory γ plays much

the same role, as β: it deforms the contour of integration in the functional integral, without

changing the Chern-Simons observables.31

It is conceivable that the counting of the solutions of the localization equations is only

generically independent of the parameters (α∨, β∨, γ∨), and that wall-crossing phenomena

can occur. (A prototype of what might happen has been seen for the three-dimensional

Seiberg-Witten equations [20].) We will not attempt to analyze this possibility here, and

will simply assume that for any regular triple (α∨, β∨, γ∨), the counting of solutions is the

same. Let S0 be the space of these solutions. It is convenient to introduce variables tr = q−λ
∗
r

and t` = qλ
∗
` , valued in the complexi�cation of the maximal tori of the left and the right

bosonic gauge groups of the electric theory. The knot polynomial is then given by

∑
s∈S0

(−1)fqN∨ tc1`` tc1rr . (2.144)

31All this is true for the physical theory, where both K and the weights are real. We expect the situation to
be di�erent in the topological theory, where on the electric side the surface operators with γ 6= 0 are de�ned
according to eq. (2.84). In that case, γ is related to the imaginary part of the weight. In particular, the
insertion of iKw

∫
tr(γF) in (2.84) will lead on the magnetic side to a similar insertion, which will complexify

the weight in eq. (2.143).
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Here (−1)f is the sign of the fermion determinant, evaluated in the background of the classical

solution s, N∨ = 1
8π2

∫
M\K tr(F ∧ F ) is the instanton number, and c1`,r = 1

2π

∫
Cr,`

F are the

t∨-valued relative �rst Chern classes for the abelian bundles on Cr and C`. One can consider

(2.144) as a polynomial in q, after expressing t`,r in terms of q for a particular weight λ, but

one can also treat t`,r as independent formal variables.

What happens if the weight λ is atypical? By varying α∨ and η∨, while preserving λ,

we can still make the model solution irreducible. So we can use the solutions from S0 to

obtain the knot polynomial, and simply substitute our λ in eqn.(2.144). We expect that this

polynomial will correspond to the Kac module of highest weight λ. This expectation follows

from the fact that a typical representation can be continuously deformed into an atypical

one by varying the fermionic Dynkin label aferm. Since this label need not be integral, this

variation makes sense, and the limit of this typical representation, when the weight becomes

atypical, is the Kac module. In the magnetic theory, to take the limit of a knot invariant,

we simply substitute the atypical weight into the universal polynomial (2.144), evaluated on

S0. So this type of polynomial indeed corresponds to the Kac module.

For an atypical weight, rather than an irreducible model solution, we can also use surface

operators de�ned by reducible solutions. For any weight of atypicality at least p, we can

consider a surface operator whose irreducible part is associated to a surface operator of

U(m−p|n−p). This surface operator breaks the bosonic group U(m)×U(n) to an subgroup

H that generically is U(1)p (it can be a nonabelian group containing U(1)p if the reducible

part of the solution is non-regular). Let TH ∼= U(1)p be the maximal torus of H. The group

H acts on the space of solutions of the localization equations. In such a situation, by standard

localization arguments,32 the invariants can be computed by just counting the TH-invariant

32Generically, one expects that the solutions consist of a �nite set of points, and if so, these points are all
invariant under the continuous group TH . However, suppose that some of the solutions make up a manifold
U that has a non-trivial action of TH . Then by standard arguments of cohomological �eld theory [58], the
contribution of the manifold U to the counting of solutions is (−1)fχ(U ;V ), where (−1)f is the sign of the
fermion determinant, V → U is a certain �obstruction bundle� (a real vector bundle of rank equal to the
dimension of U), and χ(U ;V ) is the Euler characteristic of V → U . Let U ′ be the �xed point set of the
action of TH on U and let V ′ → U ′ be the TH -invariant subbundle of V |U ′ . A standard topological argument
shows that (−1)fχ(U ;V ) = (−1)f

′
χ(U ′;V ′) (if U ′ is not connected, one must write a sum over components
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solutions. The TH-invariant subgroup of U(m)×U(n) is TH ×U(m− p)×U(n− p). There

are no interesting solutions valued in the abelian group TH , so in fact, the U(m|n) invariants

with a surface operator of this type can be computed by counting solutions for U(m−p|n−p).

Some simple group theory shows that the signs of the two fermion determinants are the same

and hence the U(m|n) invariants for a weight of atypicality ≥ p coincide with U(m−p|n−p)

invariants. In particular, U(m|n) invariants of maximal atypicality coincide with invariants

of the bosonic group U(|n−m|). (This reasoning also makes it clear that the knot and link

invariants constructed using a reducible model solution do not depend on the weights in the

abelian part of the solution.)

For a weight of atypicality r, we can take any p ≤ r in this construction. We have

argued that for p = 0, we expect to get invariants associated to the Kac module, while p = r

presumably corresponds to the irreducible atypical representation. The intermediate values

of p plausibly correspond to the reducible indecomposables, which are obtained by taking

non-minimal subquotients of the Kac module.

In section 6 of [1], an alternative approach to comparing U(m|n) with U(m − p|n − p)

is given. The key idea there is gauge symmetry breaking. This approach is very natural on

the electric side.

In the rather formal discussion that we have given here, we have not taken into account

some of the insight from section 2.3.2.2. From that analysis, we know that for the knot

invariants to be nonzero, we can consider a typical weight for a knot in S3 or a maximally

atypical weight for a knot in R3. For other weights, a slightly di�erent approach is needed.

We have not understood the analogs of these statements on the magnetic side.

2.4.7 A Possible Application

Here we will brie�y indicate a possible application of this work, for gauge group U(1|1). This

direction will be explored in more detail in Chapter 3 of this thesis.

on the right hand side). In our problem, this means that we can consider only the U(m− p|n− p) solutions
and count them just as we would for U(m− p|n− p), ignoring the embedding in U(m|n).
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Using the fact that the supergroup U(1|1) is solvable, the invariant for a knot K ⊂ S3

labeled by a typical representation of U(1|1) can be explicitly computed by repeated Gaussian

integrals. It turns out to equal the Alexander polynomial [59, 60, 61]. The usual variable

q on which the Alexander polynomial depends is a certain function of the Chern-Simons

coupling and the typical weight.

The Alexander polynomial of K can also be computed [20] by counting solutions of a

3d version of the Seiberg-Witten equations with a prescribed singularity along K. Such

solutions can be labeled by an integer-valued invariant Θ (a certain relative �rst Chern

class), and if bn is the number of solutions with Θ = n (weighted as usual with the sign of a

certain fermion determinant), then the Alexander polynomial is Z(q) =
∑

n bnq
n. The proof

that Z(q) equals the Alexander polynomial is made by showing that the two functions obey

the same �skein relations.�

The question arises of whether one could �nd a more direct explanation of this result,

or perhaps a more direct link between U(1|1) Chern-Simons theory and the Seiberg-Witten

equations. From the point of view of the present chapter, U(1|1) Chern-Simons theory can

be represented in terms of N = 4 super Yang-Mills theory with gauge group U(1)` × U(1)r

on S3 × R, interacting with a bifundamental hypermultiplet that is supported on S3 × {0}.

However, we can just as well replace R here by S1. If we do that, we get U(1|1) Chern-

Simons theory with a di�erent integration cycle. However, as long as one considers only

Wilson operators on R3 or S3, all integration cycles are equivalent and so N = 4 super

Yang-Mills theory on S3 × S1 with a bifundamental hypermultiplet on S3 × {0} should give

another way to study the Alexander polynomial.33

S-duality converts this to a �magnetic� problem on S3×S1, now with U(1) gauge �elds in

bulk and a twisted hypermultiplet supported on S3×S1. If one takes the radius of S1 to be

small compared to that of S3, the four-dimensional localization equations can be expected

33Once we replace S3×R with S3×S1, the left and right of the defect are connected. So we now have a single
U(1) vector multiplet on S3 × S1, with the �elds allowed to have di�erent limits as S3 × {0} is approached
from the left or right. The two limits give two di�erent sets of 3d �elds to which the �bifundamental�
hypermultiplet is coupled.
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to reduce to three-dimensional e�ective equations. These will be equations in which U(1)

gauge �elds are coupled to a hypermultiplet, and one can argue that the relevant equations

are the Seiberg-Witten equations.

Thus one can hope that, as in [20], it will be possible to compute the Alexander poly-

nomial by counting solutions of the Seiberg-Witten equations. Unfortunately, in working on

S3 × S1, one encounters a number of technical di�culties. In Chapter 3, we instead con-

sider the three-dimensional theory, which is obtained by compactifying on an interval with

particular boundary conditions, instead of S1.

2.5 Orthosymplectic Chern-Simons Theory

In this section, we return to the D3-NS5 system of �g. 2.1, but now we add an O3-plane

parallel to the D3-branes. A D3-O3 system can have orthogonal or symplectic gauge sym-

metry, depending on which type of O3-plane is chosen. The gauge symmetry jumps from

orthogonal to symplectic in crossing an NS5-brane. Accordingly, the construction of section

2.2, with an O3-plane added, is related to Chern-Simons theory of an orthosymplectic gauge

group OSp(r|2n), where the integers r and n depend on the numbers of D3-branes on the

two sides of the NS5-brane. As in section 2.4, an S-duality transformation that converts

the D3-O3-NS5 system to a D3-O3-D5 system gives a magnetic dual of three-dimensional

OSp(r|2n) Chern-Simons theory. This is a close analog of what we have already seen for

unitary groups.

However, something novel happens if r = 2m+ 1 is odd. In this case, a slightly di�erent

procedure yields a duality between two �electric� descriptions. In three-dimensional terms,

we will learn that Chern-Simons theory of OSp(2m + 1|2n), with coupling parameter q, is

equivalent to Chern-Simons theory of OSp(2n + 1|2m), with coupling parameter −q. (The

Chern-Simons theories that appear in this statement are de�ned via the brane constructions

which as usual allow analytic continuation away from integer levels.) Since weak coupling
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Figure 2.8: Action of the S-duality group on the orientifold planes.

in Chern-Simons theory is q → 1, while q → −1 is a strongly-coupled limit, this duality

exchanges strong and weak coupling.

2.5.1 Review Of Orientifold Planes

We start with a brief review of the orientifold 3-planes of Type IIB superstring theory [25, 26]

(see also section 7 of [29]).

There are four kinds of O3-plane, distinguished by Z2-valued discrete �uxes of the NS

and RR two-form �elds of Type IIB supergravity. An O3-plane in which both �uxes vanish

is denoted O3−; in the presence of m parallel D3-branes (and their images) it gives O(2m)

gauge symmetry (for some purposes, we consider only the connected component SO(2m)).

Adding discrete RR �ux gives an Õ3
−
-plane, which with the addition ofm parallel D3-branes

gives O(2m+ 1) gauge symmetry. An orientifold 3-plane with only NS �ux is denoted O3+

and gives Sp(2m) gauge symmetry. Finally, the orientifold Õ3
+
with both kinds of �ux gives

again Sp(2m) gauge symmetry, but (as we recall shortly) with a shift in the value of the

theta-angle θYM, a fact that we abbreviate by saying that the gauge group is Sp′(2m). The

transformation properties of the orientifold 3-planes under the SL(2,Z) S-duality group are

summarized in �g. 2.8.

When an O3-plane crosses an NS5-brane, its NS �ux jumps; when it crosses a D5-brane,

its RR �ux jumps. More generally, when an O3-plane crosses a (p, q)-�vebrane its (NS,RR)
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�uxes jump by (p, q) mod 2.

Regardless of the type of O3-plane, a D3-O3 system has the same supersymmetry as a

system of D3-branes only. In particular, this supersymmetry is parametrized by the angle

ϑ, which is related to the string coupling in the usual way, as in eqn. (2.91). To �nd the

classical e�ective action for the gauge theory that describes a D3-O3 system at low energies,

we simply take the e�ective action of a D3-brane system, restrict the �elds to be invariant

under the orientifold projection, and divide by 2. The restriction reduces a U(n) gauge

symmetry to O(n) or Sp(n), depending on the type of O3-plane. We divide by 2 because

the orientifolding operation is a sort of discrete gauge symmetry in string theory. (As we

explain shortly, there is a subtlety in dividing θYM by 2.) The same procedure of restricting

to the invariant subspace and dividing by 2 enables us to deduce the e�ective action of a

D3-O3-NS5 or D3-O3-D5 system from those of a D3-NS5 or D3-D5 system.

For the U(n) gauge �elds along a system of n parallel D3-branes, we write the gauge

theory action as

1

2g2
YM

∫
d4x trF 2

µν −
θYM

8π2

∫
trF ∧ F , (2.145)

where tr is the trace in the fundamental representation of U(n), and the Yang-Mills param-

eters gYM and θYM are related to the τ parameter of the underlying Type IIB superstring

theory by the standard formula

τ =
θYM

2π
+

2πi

g2
YM

. (2.146)

The action (2.145) is de�ned so that θYM couples precisely to the instanton number

N =
1

8π2

∫
trF ∧ F, (2.147)

normalized to be an integer on a four-manifold without boundary. This ensures that the

theory is invariant under τ → τ + 1, which corresponds to θYM → θYM + 2π.

If we include an O3 plane that reduces the gauge symmetry from U(n) to O(n), then

we write the action in the same way, with tr now representing a trace in the fundamental
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representation of O(n). But since we have to divide the action by 2, we express the gauge

theory parameters in terms of τ not by (2.146) but by

τ

2
=
θYM

2π
+

2πi

g2
YM

. (2.148)

We write

τ

2
= τYM, (2.149)

where τYM is expressed in terms of gYM and θYM in the usual way. An important detail now

is that the quantity N, which is Z-valued in U(n) gauge theory, takes values in34 2Z in O(n)

gauge theory for n ≥ 4. Because of this, the O(n) gauge theory is invariant under τ → τ +1,

even though θYM couples to N/2.

Next consider the orientifold plane to be O3+, reducing the gauge symmetry from U(n)

to Sp(n) (here n must be even). The action is still de�ned as in eqn. (2.145), now with tr

representing the trace in the fundamental representation of Sp(n). Furthermore, the coupling

parameter τ of Type IIB superstring theory is still related to the gauge theory parameters

as in (2.148). Now, however, the quantity N is integer-valued (a minimal Sp(n) instanton

is an SU(2) instanton of instanton number 1 embedded in Sp(2) ∼= SU(2)), so the operation

τ → τ + 1 of the underlying string theory is not a symmetry of the gauge theory. Instead,

this operation maps an O3+ orientifold plane to a Õ3
+
-plane, in which the gauge group is

still Sp(n) but the relation between string theory and gauge theory parameters is shifted

from (2.148) to

τ + 1

2
=
θYM

2π
+

2πi

g2
YM

. (2.150)

The term Sp′(n) gauge theory is an abbreviation for Sp(n) gauge theory with coupling

34For n ≥ 4, an O(n) instanton of minimal instanton number can be embedded in an SO(4) subgroup.
An SO(4) instanton of minimal instanton number (on R4; we do not consider here e�ects associated to the
second Stie�el-Whitney class) is simply an SU(2) instanton of instanton number 1, embedded in one of the
two factors of Spin(4) ∼= SU(2) × SU(2). Upon embedding O(n) in U(n), the O(n) instanton constructed
this way is a U(n) instanton of instanton number 2, explaining why the instanton number normalized as in
(2.147) is an even integer in O(n). In the case of O(3), there is not room for the construction just described,
and the minimal instanton has N = 4.
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Figure 2.9: The brane con�gurations that realize the electric and magnetic theory for the four-
dimensional construction of the OSp(2m|2n) Chern-Simons theory.

parameters related in this way to the underlying string theory parameters.

2.5.2 The Even Orthosymplectic Theory

Now we begin our study of the D3-O3 system interacting with a �vebrane. On the left of

�g. 2.9, we sketch an O3−-plane that converts to an O3+-plane in crossing an NS5-brane.

The gauge group is therefore SO(2m) on the left and Sp(2n) on the right, where m and n

are the relevant numbers of D3-branes. In the topologically twisted version of the theory,

along the defect, one sees a Chern-Simons theory of the supergroup OSp(2m|2n). After the

orientifold projection, the action can be written just as in eqn. (2.35):

I =
iKosp

4π

∫
W

Str

(
AdA+

2

3
A3

)
+ {Q, . . . } , (2.151)

Now Str denotes the supertrace in the fundamental representation of the orthosymplectic

group. This follows by simply projecting the e�ective action described in section 2.2 onto

the part that is invariant under the orientifold projection. The expression for Kosp in terms

of string theory parameters τ, ϑ is the same as in equation (2.7) except for a factor of 2

associated to the orientifolding:

τ

2
= τYM = Kosp cosϑ eiϑ. (2.152)
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Note that the bosonic part of the Chern-Simons action in (2.151) can be also expressed as

iKosp

4π

∫
W

Tr

(
AbdAb +

2

3
Ab

3

)
= iKosp

(
CS(Asp)− 2CS(Aso)

)
, (2.153)

where the Chern-Simons functionals CS(Asp) and CS(Aso) are normalized to take values in

R/2πZ for simply connected gauge groups and m > 1.

Now we apply the usual S-duality transformation τ → τ∨ = −1/τ . As indicated in the

�gure, this leaves the O3−-plane invariant but converts the O3+-plane to an Õ3
−
-plane; now

the gauge group is SO(2m) on the left and SO(2n + 1) on the right. What we get this way

is a magnetic dual of Chern-Simons theory of OSp(2m|2n).

The appropriate e�ective action to describe this situation is found by simply projecting

the e�ective action described in section 2.4.3 onto the part invariant under the orientifold

projection. There is no analog of the casem = n that was important in section 2.4.3, since 2m

never coincides with 2n+1. The condition analogous to |n−m| ≥ 2 is |2m−(2n+1)| ≥ 3. If

this is the case, the appropriate description involves a Nahm pole associated to an irreducible

embedding su(2) → so(|2m − (2n + 1)|). The Nahm pole appears on the left or the right

of the defect depending on the sign of 2m − (2n + 1). What commutes with the Nahm

pole is an SO(w) gauge theory theory that �lls all space; here w is the smaller of 2m and

2n + 1. If |2m − (2n + 1)| = 1, then as in section 2.4.3, there is no Nahm pole and the

vector multiplets that transform in the fundamental representation of SO(w) obey Dirichlet

boundary conditions along the defect.

The action can still be expressed as in (2.97)

Imagnetic =
iθ∨YM

8π2

∫
tr (F ∧ F ) + {Q, . . . }, (2.154)

where now tr is the trace in the fundamental representation of the orthogonal group, and
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τ∨YM = θ∨YM/2π + 4πi/(g∨YM)2 is related to the underlying string theory parameters by

τ∨YM =
1

2
τ∨ = − 1

2τ
. (2.155)

We recall from section 2.5.1 that the instanton number N∨ = (1/8π2)
∫

trF ∧ F takes even

integer values in the case of an orthogonal gauge group. Hence the natural instanton-counting

parameter is

q = exp(−2iθ∨YM), (2.156)

in the sense that a �eld of N∨ = 2r contributes ±qr to the path integral (as usual the sign

depends on the sign of the fermion determinant).

The variable q can be expressed in terms of the canonical parameter Kosp of the electric

description. In (2.100), we have obtained Re (τ∨) = −1/K, where K is the canonical param-

eter for the theory with no orientifolds. In the orientifolded theory, the canonical parameter

Kosp that appears in the action (2.151) is one-half of that. Hence, using equation (2.155), we

�nd that

θ∨YM

2π
= Re τ∨YM =

1

2
Re τ∨ = − 1

2K
= − 1

4Kosp

, (2.157)

and therefore the de�nition (2.156) gives

q = exp

(
πi

Kosp

)
. (2.158)

By contrast, Chern-Simons theory or two-dimensional current algebra for a purely bosonic

group G with Lie algebra g is naturally parametrized by

qg = exp

(
2πi

ngKg

)
, (2.159)

where ng is the ratio of length squared of long and short roots of g. (This is also the

natural instanton-counting parameter in the magnetic dual description of this theory [6].)
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Figure 2.10: The �gure in the upper left corner shows the brane con�guration, which gives the
four-dimensional construction for the OSp(2m + 1|2n) Chern-Simons theory. The other �gures
are obtained by acting with various elements of the SL(2,Z) S-duality group. In particular, the
transformation S−1TS maps the con�guration in the upper left to the one in the lower left.

The parameter q de�ned in eqn. (2.158) is an analog of this, with ng replaced by the ratio of

length squared of the longest and shortest bosonic roots; for osp(2m|2n), this ratio is equal

to 2.

2.5.3 The Odd Orthosymplectic Theory

2.5.3.1 Preliminaries

Now we will repeat the analysis of the D3-O3-NS5 system, with just one important change:

we give the O3-planes a discrete RR �ux. As depicted in the upper left of �g. 2.10, we take

the O3-plane to be of type Õ3
−
to the left of the NS5-brane and (therefore) of type Õ3

+
to

the right. The gauge groups realized on the D3-O3 system on the two sides of the defect are

SO(2m + 1) and Sp′(2n), so this con�guration describes an analytically-continued version

of OSp(2m+ 1|2n) Chern-Simons theory. Up to a point, the four-dimensional gauge theory

description of this system can be found just as in section 2.5.2: we restrict the �elds of the

familiar U(2m + 1|2n) system to be invariant under the orientifold projection, and divide

the action by 2.

However, there are some crucial subtleties that do not have a close analog in the previous

117



case:

(1) The gauge theory theta-angle jumps by π in crossing the defect, because the gauge

theory on the right is of type Sp′(2m). By itself, this would spoil the supersymmetry of the

defect system, since when one veri�es supersymmetry at the classical level, one assumes that

τYM is continuous in crossing the defect.35

(2) This suggests that a quantum anomaly may be relevant, and in fact there is one: in

three dimensions, the bifundamental hypermultiplet of SO(2m+1)×Sp(2n) that is supported

on the three-dimensional defect su�ers from a global anomaly.

These two problems, in fact, compensate each other. Indeed, the anomalous fermionic

path-integral can be made well-de�ned by adding a half-integer Chern-Simons term, that is,

by considering the combination

Pf( /D) exp

(
i

2
CS(A)

)
. (2.160)

Here Pf( /D) is the Pfa�an of the fermionic kinetic operator, which changes sign under large

Sp(2n) gauge transformations. The half-integral Chern-Simons term, sitting at the defect,

has the same local variation, as a bulk theta-term with theta-angle equal to π. Thus, adding

the half-integral Chern-Simons term simultaneously restores the invariance under the gauge

symmetry and under the supersymmetry.

The combination (2.160) is what is typically used in physical literature. However, the

overall sign of this expression is not well-de�ned. It is better to use the APS index theorem

to replace this combination by the eta-invariant, which is gauge-invariant and well-de�ned.

So, we write instead

|Pf( /D)| exp(iπη′/2) (2.161)

where

exp(iπη′/2) = exp(iπη̂/2− imCS(Asp)− 2inCS(Aso)) , (2.162)

35Supersymmetry actually allows certain discontinuities [23], but not a jump in θYM at �xed ϑ.
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and η̂ is one-half of the eta-invariant of the kinetic operator of the 3d fermions. Under local

variations of the gauge �eld, the expression (2.161) changes in the same way as (2.160).

2.5.3.2 The Dual Theory

We can �nd now a magnetic dual of OSp(2m+ 1|2n) Chern-Simons theory by applying the

S-duality transformation τ → −1/τ . Its action on the brane con�guration is shown in the

upper part of �g. 2.10. The new string coupling is τ∨ = −1/τ . The gauge groups are now

Sp(2m) in M` and Sp′(2n) in Mr. We continue to use the notation τ∨YM = 1
2
τ∨ for the

gauge coupling. The minimal instanton number for the symplectic group is 1, so the natural

instanton-counting parameter analogous to (2.156) is q = exp(−iθ∨YM). Using (2.157), this

can be presented as

q = exp

(
πi

2Kosp

)
. (2.163)

This agrees with the general de�nition (2.159), since the ratio of length squared of the longest

and shortest bosonic roots for the odd orthosymplectic algebras is ng = 4.

In the �magnetic� description, one of the orientifold planes is again of type Õ3
+
, which

means that the θYM jumps by π upon crossing the defect. As in the electric description,

this jump appears to violate supersymmetry. The resolution is similar to what it was in the

electric description. First we consider the case that m = n. For this case, the gauge group is

simply Sp(2n) �lling all of spacetime. There is a fundamental hypermultiplet supported on

the defect. Its Pfa�an has the sign anomaly, similarly to the one mentioned in the previous

section. The anomaly is canceled roughly speaking via a half-integral Chern-Simons term

supported on the defect, or more accurately via an η-invariant. The combined path integral

involving the fermion Pfa�an, the η-invariant, and the jump in θYM (as well as other factors)

is gauge-invariant and supersymmetric. The factors involved in the anomaly cancellation are

the familiar ones from eqn. (2.161):

|Pf( /D)| exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.164)
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(Here we have written explicitly the term, corresponding to the jump of the theta-angle.)

According to the APS index theorem, the product of the last two factors equals ±1 (possibly

multiplied by a factor that only depends on
∫
Mr
R2). This factor of ±1 must be incorporated

in the sum over instanton solutions. We denote it as

signy≥0 = exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.165)

What happens if n 6= m? In this case, there are no hypermultiplets supported on the

defect. Instead, there is a jump in the gauge group in crossing the defect. Along the defect

there is a Nahm pole, associated to an irreducible embedding of su(2) in sp(|2n− 2m|). As

usual, the pole is on the side on which the gauge group is larger. The gauge group that is

unbroken throughout all space is Sp(2s), where s is the smaller of n and m.

At �rst sight, it is not clear how to generalize (2.164) to n 6= m. If there are no fermions

supported on the defect, how can we possibly use an anomaly in a fermion determinant as

part of a mechanism to compensate for a jump in θYM by π? To understand what must

happen, recall that we can deform from n = m to n 6= m by Higgsing � by moving some

of the D3-branes (on one side or the other of the defect) away from the rest of the system.

When we do this, the bifundamental hypermultiplet which is responsible for some of the

interesting factors in (2.164) does not simply vanish in a pu� of smoke. It mixes with some

of the bulk degrees of freedom and gains a large mass. When this happens, whatever bulk

degrees of freedom remain will carry whatever anomaly existed before the Higgsing process.

So the resolution of the puzzle must involve a subtlety in the fermion path integral for

n 6= m. Going back to (2.164), naively /D is the Dirac operator just of the defect fermions and

η′ is one-half their η-invariant. There are also bulk fermions, but they have no anomaly and

vanishing η-invariant, so it does not seem interesting to include them in (2.164). However,

precisely because they have no anomaly and vanishing η-invariant, we could include them

in (2.164) (and their coupling to the defect fermions) without changing anything. This is a
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better starting point to study the Higgsing process, since Higgsing disturbs the decoupling.

Upon Higgsing, the �rst two factors in eqn. (2.164) keep their form, but some modes

become massive and � in the limit that |2n− 2m| D3-branes are removed on one side or the

other � the defect fermions disappear and we are left with an expression of the same form

as (2.164), but now the Pfa�an and the η-invariant are those of the bulk fermions in the

presence of the Nahm pole. The Dirac operator of the bulk fermions in the presence of the

Nahm pole can be properly de�ned, with some subtlety, as an elliptic di�erential operator

[70]. This gives a framework in which one could investigate its Pfa�an and η-invariant. For

the theory that we are discussing here to make sense, there must be an anomaly in the sign of

the Pfa�an of this operator, and it must also have a nontrivial η-invariant that compensates

in the familiar way for the jump in θYM. These points have not yet been investigated, but

there do not seem to be any general principles that exclude the required behavior.

2.5.4 The Framing Anomalies

In section 2.4.3.1 we have veri�ed that our constructions predict the correct value for the

global framing anomaly for the Chern-Simons theory of the unitary supergroup. Here we

repeat the same analysis for the orthosymplectic gauge group.

In the non-simply-laced case, the analog of the formula (2.115) for the framing factor is

exp (2πi sign(k) sdimSG/24) · q−nghsg sdim SG/24. (2.166)

The di�erence with the simply-laced case is the factor of ng in the exponent, which com-

pensates for the analogous factor in the de�nition (2.159) of the q variable. As usual in

this chapter, we will ignore the one-loop contribution to the anomaly, and focus only on

the power of q. To compare the anomalies for di�erent groups, it is convenient to express

them in terms of the theta-angle of the magnetic theory. What we need to know is that for

a theory with a bosonic gauge group the variable q is de�ned as q = exp(−2iθ∨YM), if the
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gauge group in the magnetic description is orthogonal, and as q = exp(−iθ∨YM), if this group

is symplectic. We have explained the reason behind this de�nition, when we discussed the

magnetic theories for the orthosymplectic supergroups.

Consider �rst the even orthosymplectic algebra osp(2m|2n). As we recalled in section

2.4.3.1, the framing anomaly in the magnetic description comes from the peculiarities of the

de�nition of the instanton number in the presence of the Nahm pole. We set r = n−m. For

r > 0, the Nahm pole in the magnetic theory is embedded into an so(2r + 1) subalgebra of

so(2n+ 1). This means that the framing anomaly depends only on r and not on m; setting

m = 0, we reduce to the magnetic dual of Sp(2r) Chern-Simons theory and we should get

the same framing anomaly. The anomaly factor for the orthosymplectic case is expected to

be

q
−nosp(2m|2n)hospsdimOSp/24
osp = exp (−4iθ∨YMhospsdim OSp/24) . (2.167)

For the symplectic gauge group this factor is

q
−nsphspdimSp/24
sp = exp (−4iθ∨YMhspdim Sp/24) . (2.168)

The two expressions agree, since

hosp(2m|2n) sdim OSp(2m|2n) = hsp(2r) dim Sp(2r) = 2r(r + 1/2)(r + 1). (2.169)

This identity is the analog of (2.116); see Table 2.2 for the numerical values.

If r < 0, the Nahm pole lives in the so(−2r−1) subalgebra on the other side of the defect.

This is the same Nahm pole that would arise in the magnetic dual of SO(−2r) Chern-Simons

theory, so the framing anomaly should agree with that theory. For the bosonic theory with

the even orthogonal gauge group we have

q−hsodim SO
so = exp (−2iθ∨YMhsodim SO/24) . (2.170)
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This agrees with (2.167), since

hosp(2m|2n) sdim OSp(2m|2n) = −1

2
hso(−2r)dim SO(−2r) = 2r(r + 1/2)(r + 1). (2.171)

The minus sign appears here, because the Nahm pole for the orthosymplectic theory with

r < 0 is on the left side of the defect.

Alternatively, we could think of the so(−2r − 1) Nahm pole as corresponding to the

Sp(−2r − 2) electric theory. This would give the same result.

Let us repeat the same story for the odd orthosymplectic superalgebra osp(2m + 1|2n).

Again, we set r = n −m. The Nahm pole is embedded in the sp(2|r|) subalgebra. In the

purely bosonic case, the same embedding would arise for the SO(2|n−m|+1) electric theory.

Therefore, we would expect that the global framing anomaly for the superalgebra case is the

same as for this purely bosonic Lie algebra, at least above one loop. The framing factor for

the odd orthosymplectic case should be

q
−nosp(2m+1|2n)hospsdimOSp/24
osp = exp (−4iθ∨YMhospsdim OSp/24) . (2.172)

In the SO(2|r|+ 1) the answer is

q−nsohsodim SO
so = exp (−2iθ∨YMhsodim SO/24) . (2.173)

The two expressions (2.172) and (2.173) agree, since from Table 2.2 we have

hosp(2m+1|2n) sdim OSp(2m+ 1|2n) =
1

2
hso(2|r|+1)dim SO(2|r|+ 1) = 2r(r2 − 1/4). (2.174)

The sign in the right hand side changes, depending on the sign of r, in accord with the fact

that the Nahm pole is on the right or on the left of the defect. Note also, that up to this

change of sign the formula is symmetric under the exchange of m and n. This reason for
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this symmetry will become clear in section 2.5.5.

2.5.5 Another Duality

So far in this chapter, we have just exploited the duality S : τ → −1/τ , exchanging NS5-

branes with D5-branes. The full S-duality group SL(2,Z) of Type IIB superstring theory

contains much more. In particular, it has a non-trivial subgroup that maps an NS5-brane to

itself. This subgroup is generated by the element

S−1TS =

 1 0

−1 1

 . (2.175)

That this element maps an NS5-brane to itself follows from the action of duality on �vebrane

charges given in eqn. (2.90). (Concretely, S converts an NS5-brane to a D5-brane, T leaves

�xed the D5-brane, and S−1 maps back to an NS5-brane.) This transformation will map a

D3-NS5 system, possibly with an O3-plane, to a system of the same type. In the approach

to Chern-Simons theories followed in the present chapter, this transformation will map an

�electric� description to another �electric� description, and thus it will give a duality of

Chern-Simons theories (analytically continued away from integer levels).

Let us �rst see what this duality does to a D3-NS5 system, associated to the supergroup

U(m|n). The operation S−1TS maps D3-branes and NS5-branes to themselves, so it maps

the Chern-Simons theory of U(m|n) to itself, while transforming the canonical parameter

according to (2.95), which in this case gives

1

K
→ 1

K
− 1 =

1

K′
. (2.176)

This transformation leaves �xed the variable q = exp(2πi/K) in terms of which the knot

invariants are usually expressed. (In fact, the symmetry (2.176) can be viewed as the reason

that the knot invariants can be expressed in terms of q rather than being more general

124



functions of K.) This duality acts trivially on line operators of U(m|n). To argue this, we

just observe that T can be understood classically � as a 2π shift in θYM � and does not a�ect

the model solution that is used to de�ne a line operator.

The action of STS−1 on a surface operator can be determined by looking at the behavior

far away from the defect. We have

α
η

 S−→

 η

−α

 T−→

 η

η − α

 S−1

−−→

α− η
η

 . (2.177)

Using the relation (2.85), the action on the weight λ can be conveniently written

λ′

K′
=
λ

K
. (2.178)

Since knot invariants computed using surface operators by the procedure explained in section

2.4.6 only depend on the ratio λ/K, this shows that they are invariant under S−1TS. Using

the relation (2.176) between K′ and K, eqn. (2.178) is equivalent to

λ′ = λ+K′λ. (2.179)

Let us check whether these formulas are consistent with the idea that if λ is integral,

the same knot and link invariants can be computed using either line operators or surface

operators. S−1TS acts trivially on the weight of a line operator, but acts on the weight of

a surface operator as in (2.179). However, knot invariants computed from surface operators

are unchanged in shifting λ by K times an integral cocharacter. Since the groups U(n) and

U(m) are selfdual, if λ is an integral character, it is also an integral cocharacter.

Now let us apply this duality to the con�guration of �g. 2.9, which corresponds to an

even orthosymplectic group OSp(2m|2n). The transformation S−1TS maps the O3-planes

that appear in this con�guration to themselves, so again it maps Chern-Simons theory of
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OSp(2m|2n) to itself. The canonical parameter Kosp of the orthosymplectic theory was

de�ned as one-half of the object K de�ned in section 2.4, so the transformation rule (2.176)

can be written

1

Kosp

→ 1

Kosp

− 2 =
1

K′osp
, (2.180)

Therefore, the natural Chern-Simons parameter q = exp(πi/Kosp), de�ned in eqn. (2.158),

is invariant, just as for the unitary case. The Chern-Simons theory again is simply mapped

to itself. It takes a little more e�ort to understand the duality action on line and surface

operators. For this reason, the discussion of the operator mapping will be presented in a

separate section 2.5.6. There we will �nd that, unlike for the unitary superalgebra, the

duality acts on the set of line operators by a non-trivial involution.

For the odd orthosymplectic group OSp(2m + 1|2n), matters are more interesting. The

action of S−1TS on the brane con�guration associated to OSp(2m + 1|2n) is described in

�g. 2.10. Chasing clockwise around the �gure from upper left to lower left, we see that

the duality maps a brane con�guration associated to OSp(2m + 1|2n) to one associated to

OSp(2n + 1|2m). Since the gauge group changes, this is de�nitely a non-trivial duality of

(analytically-continued) Chern-Simons theories. For example, setting n = 0, we get a duality

between Chern-Simons theory of the ordinary bosonic group O(2m + 1) and Chern-Simons

theory of the supergroup OSp(1|2m). How does this duality act on the natural variable

q that parametrizes the knot invariants? For the odd orthosymplectic group, the natural

variable in terms of which the knot invariants are expressed is q = exp(πi/2Kosp), introduced

in eqn. (2.163). The transformation (2.180) acts on this variable by36

q → −q. (2.181)

36There is a subtlety here. The Killing form for a superalgebra can be de�ned with either sign. Since the
duality maps theories with, say, Sp group at y > 0 to Sp group at y < 0, it exchanges the two choices. If
we want to de�ne the sign of the Killing form to be always positive, say, for the sp subalgebra, we should
rather say that q maps to −q−1. What is written in the text assumes that the sign of the Killing form in
M` or Mr is unchanged in the duality.
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The minus sign means that the duality we have found exchanges weak and strong coupling.

Indeed, in three-dimensional Chern-Simons theory, the weak coupling limit is q → 1, and

q → −1 is a point of strong coupling.

It is inevitable that the duality must map weak coupling to strong coupling, since the

classical representation theories of OSp(2m+ 1|2n) and OSp(2n+ 1|2m) are not equivalent.

A duality mapping weak coupling to weak coupling would imply an equivalence between the

two classical limits, but this does not hold.

Some instances of the duality predicted by the brane construction have been discovered

previously. For n = 0 and m = 1, the relation between knot invariants has been discussed in

[17]; for n = 0 and any m, this subject has been discussed in [15] in a di�erent language. For

related discussion from the standpoint of quantum groups see [16], and see [71] for associated

representation theory. We will say more on some of these results in section 2.5.6.

Now let us look at the same duality in the magnetic dual language. Our two electric

theories are sketched in the upper and lower left of �g. 2.10, and the corresponding magnetic

duals, obtained by acting with S, are shown in the upper and lower right of the same �gure.

One involves an Sp(2m)×Sp′(2n) gauge theory, and the other involves an Sp′(2m)×Sp(2n)

gauge theory. There is no change in the gauge groups, the localization equations, or in the

hypermultiplet fermions if n = m or in the Nahm pole singularity if n 6= m. The only

di�erence is that in one case θYM di�ers on the right by π from the underlying Type IIB

theta-angle, and in the other case, it di�ers on the left by π from the underlying Type IIB

theta-angle. In the upper right of �g. 2.10, a solution of the localization equations with

instanton number N∨ is weighted by the product of qN∨ with the sign factor of eqn. (2.165).

There is an additional sign that we will call (−1)f ; this is the sign of the determinant of the

operator obtained by linearizing around a solution of the localization equations. This factor

is not a�ected by the duality. The combination is

(−1)fqN∨signy≥0 = (−1)fqN∨ exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.182)
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On the lower left of the �gure, the sign factor signy≥0 is replaced with

signy≤0 = exp(iπη′/2) exp

(
+
i

8π

∫
M`

trsp F ∧ F
)
. (2.183)

We also have to replace q with −q. So (2.182) is replaced with

(−1)f (−q)N∨ exp(iπη′/2) exp

(
+
i

8π

∫
M`

trsp F ∧ F
)
. (2.184)

The two expressions (2.182) and (2.184) are equal, since

N∨ = N∨` + N∨r , (2.185)

with

N∨` =
1

8π2

∫
M`

trsp F ∧ F, N∨r =
1

8π2

∫
Mr

trsp F ∧ F. (2.186)

The above formulas can be written more elegantly by using the Atiyah-Patodi-Singer

(APS) index theorem [69] for the Dirac operator on a manifold with boundary. This will

also be useful later. We let ν` (or νr) be the index of the Dirac operator onM` (orMr), acting

on spinors with values in the fundamental representation of Sp(2n) (or Sp(2m)). This index

is de�ned by counting zero-modes of spinor �elds that are required to be square-integrable

at in�nite ends of M` or Mr, and to obey APS global boundary conditions along the �nite

boundary W . The APS index theorem gives

(−1)ν` = exp(iπη′/2) exp

(
+
i

8π

∫
M`

trsp F ∧ F
)

(−1)νr = exp(iπη′/2) exp

(
− i

8π

∫
Mr

trsp F ∧ F
)
. (2.187)

Thus the factors weighting a given solution in the dual constructions of �g. 2.10 are respec-

tively

(−1)f (−q)N∨(−1)ν` (2.188)
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and

(−1)fqN∨(−1)νr . (2.189)

The most convenient way to compare these two formulas is as follows. Let ν be the index of

the Dirac operator on the whole four-manifold M = M` ∪Mr. Additivity of the index under

gluing gives

ν = ν` + νr. (2.190)

But we also have

ν = N∨. (2.191)

To obtain this formula, one can �rst deform the gauge �eld into an Sp(2s) subgroup, where

s = min(n,m), so as not to have to consider the jump from n to m (which is not present

in standard formulations of index problems). Then (2.191) is a consequence of the ordinary

Atiyah-Singer index theorem, or of the APS theorem on the noncompact four-manifoldM =

W × R (with the contributions of the ends at in�nity canceling). It follows from these

statements that

(−1)N∨(−1)νr = (−1)ν` , (2.192)

showing that the two descriptions do give the same result.

We now proceed to describe the action of the duality on line and surface operators of the

orthosymplectic theory.

2.5.6 Duality Transformation Of Orthosymplectic Line And Surface

Operators

2.5.6.1 Magnetic Duals Of Twisted Line Operators

Before we can describe the action of the duality on line operators, we need some preparation.

In section 2.3.3.3, we have introduced the twisted line operators in the electric description.

129



One needs to include them in the story to get a consistent picture for the S−1TS duality of

line operators in the orthosymplectic theory. For this reason, here we make a digression to

describe their magnetic duals.

This question arises already for U(m|n), so we start there. Consider a knot K in a three-

manifold W . W is embedded in a four-manifold M , for example W × R. The de�nition of

twisted line operators on the electric side depended on the existence of a �at line bundle

with some twist c around the knot K. For a generic twist, such a bundle can only exist if

the cycle K is trivial in H1(M). In addition to the twist, the line operator also supports a

Wilson operator of the bosonic subgroup with some weight Λ. In the magnetic theory, we

propose the following de�nition for the dual of a twisted operator. Let λ = Λ + ρ0 be the

quantum-corrected weight. Note that here we use the bosonic Weyl vector for the quantum

correction, since Λ was the highest weight of a representation of the bosonic subgroup. For a

twisted operator of quantum-corrected weight λ, we de�ne the dual magnetic operator, using

the irreducible model solution of section 2.4.4, corresponding to the weight λ, but also make

the following modi�cation. For de�niteness, let n ≥ m. Then the U(m)-part of the gauge

�eld is continuous across the three-dimensional defect. Pick a surface Σ bounded by K, or,

more precisely, a class37 in the relative homology H2(M,K). The U(m) bundle is trivialized

along the knot K, so it makes sense to evaluate its �rst Chern class on the class Σ, and to

include a factor

exp

(
ic

∫
Σ

trF/2π

)
(2.193)

in the functional integral. Here c is an angular variable, which we conjecture to equal the

twist of the line operator on the electric side.38 This proposal can be justi�ed by noting

that the insertion (2.193) is essentially an abelian surface operator of type (0, 0, 0, η∨), with

η∨ valued in the center of the Lie algebra of the magnetic gauge group. After doing the

37Since K is trivial in the homology, Σ exists, but it might not be unique. If it is not unique, we should
probably sum over possible choices. For simple manifolds like R4 and R×S3 that we mostly consider in this
chapter, this question does not arise.

38Note that one cannot de�ne such twisted operators in the one-sided, purely bosonic theory, because
there the gauge bundle is trivialized completely along y = 0, and not only along the knot.
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S-duality transformation, this becomes an operator of type (α, 0, 0, 0) in the electric theory.

The singularity αdθ in the abelian gauge �eld can be removed by making a gauge trans-

formation around this surface operator. Such a gauge transformation closes only up to the

element exp(ic) of the center, and therefore introduces a twist by exp(ic) to the boundary

hypermultiplets.

Now let us turn to the orthosymplectic Chern-Simons theory. For the OSp(2m|2n) case

the magnetic gauge group is SO(2m)× SO(2n + 1), and its subgroup which is not broken by

the three-dimensional defect is SO(N), where N = 2m or N = 2n + 1, depending on m,n.

As is clear from the electric description of section 2.3.3.3, for the twisted operator to have

a non-zero matrix element, the knot K should be trivial in H1(M ; Z2), that is, we should

have K = ∂Σ + 2K ′, where Σ is a two-cycle in H2(M,K), and K ′ is an integral cycle. In the

magnetic description we de�ne a twisted operator of quantum-corrected weight λ = Λ + ρ0

by the same irreducible model solution that we would use for an untwisted operator, but

we also make an insertion in the functional integral. Namely, when we sum over di�erent

bundles, we add an extra minus sign if the SO(N)-bundle, restricted to Σ, cannot be lifted

to a Spin(N)-bundle. In other words, we add a factor

(−1)
∫
Σ w2 , (2.194)

where w2 is the second Stiefel-Whitney class.39

There is no analog of this for an odd orthosymplectic group OSp(2m + 1|2n). For ex-

ample, for m = n, the magnetic dual is simply an Sp(2n) gauge theory with a funda-

mental hypermultiplet along the defect. The existence of this hypermultiplet means that

the gauge bundle restricted to Σ must be an Sp(2n) bundle, not a bundle with structure

group PSp(2n) = Sp(2n)/Z2. For m 6= n, the model solution has a Nahm pole valued in

Sp(|2m − 2n|), and this is incompatible with a twist de�ned using the center of Sp(2n).

39What we have described about the S-duality of twisted line operators is rather similar to the result of
[72]: choosing a topological type of bundle on one side of the duality translates on the other side to choosing
a fugacity in the sum over bundles.
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Figure 2.11: Dynkin diagram for the osp(2m|2n) superalgebra, m ≥ 2. The subscripts are expres-
sions for the roots in terms of the orthogonal basis δ•, ε•. The superscripts represent the Dynkin
labels of a weight. The middle root denoted by a cross is fermionic. Roots of the sp(2n) and so(2m)
subalgebras are on the left and on the right of the fermionic root. The site shown in grey and labeled
an is the long simple root of the sp(2n) subalgebra, which does not belong to the set of simple roots
of the superalgebra.

The magnetic duals of twisted and untwisted operators are nonetheless di�erent, but that is

because the model solutions used to de�ne them are di�erent, as explained in section 2.5.6.6.

2.5.6.2 More On The Orthosymplectic Lie Superalgebras

We also need to review some facts about the orthosymplectic Lie superalgebras. We start

with the even orthosymplectic superalgebra D(m,n) ' osp(2m|2n). Here we assume that

m > 1, since m = 1 corresponds to the type I superalgebra C(n) ' osp(2|2n) (the analysis

of its line and surface operators is analogous to the u(m|n) case, which we have discussed

in section 2.5.5). We also assume that n > 1; the case n = 1 can be treated with minor

modi�cations.

The Dynkin diagram for D(m,n) is shown on �g. 2.11. The positive bosonic and fermionic

roots of osp(2m|2n) are

∆+
0

=
{
δi ± δi+p, 2δi, εj ± εj+p

}
,

∆+
1

=
{
δi ± εj} , i = 1 . . . n, j = 1 . . .m, p > 0 , (2.195)

where the mutually orthogonal basis vectors are normalized as

〈δi, δi〉 =
1

2
, 〈εi, εi〉 = −1

2
, (2.196)
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to ensure that the longest root has length squared 2. The bosonic and fermionic Weyl vectors

are

ρ0 =
n∑
i=1

(n+ 1− i) δi +
m∑
j=1

(m− j) εj , ρ1 = m
n∑
i=1

δi , (2.197)

and the superalgebra Weyl vector is ρ = ρ0 − ρ1.

A weight with Dynkin labels40 a•, ã• is decomposed in terms of the basis vectors as

Λ = a1δ1 + · · ·+ an(δ1 + · · ·+ δn) + ã1ε1 + · · ·+ ãm−2(ε1 + · · ·+ εm−2)

+
1

2
ãm−1(ε1 + · · ·+ εm−1 + εm) +

1

2
ãm(ε1 + · · ·+ εm−1 − εm) . (2.198)

It is a dominant weight of a �nite-dimensional representation, if the Dynkin labels are non-

negative integers, and also satisfy the following supplementary condition: if an ≤ m−2, then

no more than the �rst an of the labels ã• can be non-zero; if an = m−1, then ãm−1 = ãm−2; if

an ≥ m, there is no constraint. We will call a weight (and the corresponding representation)

spinorial if the number ãm−1 + ãm is odd. Clearly, a spinorial dominant weight must have

an ≥ m. Also, such a weight is always typical.

Now let us turn to the odd orthosymplectic superalgebra B(m,n) ' osp(2m+1|2n). The

distinguished Dynkin diagram and the simple roots for osp(2m + 1|2n) and for its bosonic

subalgebra so(2m+1)×sp(2n) can be found in �g. 2.3 of section 2.3.1. The positive bosonic

and fermionic roots of this superalgebra are

∆+
0

=
{
δi − δi+p, δi + δi+p, 2δi, εj − εj+p, εj + εj+p, εj

}
,

∆+
1

=
{
δi − εj, δi + εj, δi

}
, i = 1 . . . n, j = 1 . . .m, p > 0 , (2.199)

where the mutually orthogonal basis vectors are normalized as in (2.196). The bosonic and

40The Dynkin label of a weight Λ for a simple bosonic root α is de�ned as usual as a = 2〈Λ, α〉/〈α, α〉.
However, the Dynkin labels used in (2.198) are for the simple roots of so(2m)×sp(2n), not for the superalgebra
osp(2m|2n). In practice, this means that an is the weight for the long root 2δn of sp(2n), and we do not use
the label aferm associated to the fermionic root of the superalgebra.
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Figure 2.12: Example of a hook partition for osp(9|6). The labels µi, i = 1, . . . n and µ̃j , j = 1, . . .m
were de�ned in (2.202). Here µ3 = 3, and, clearly, no more than the �rst three µ̃'s can be non-zero.

fermionic Weyl vectors are

ρ0 =
n∑
i=1

(n+ 1− i) δi +
m∑
j=1

(
m+

1

2
− j
)
εj , ρ1 =

(
m+

1

2

) n∑
i=1

δi , (2.200)

and as usual the superalgebra Weyl vector is ρ = ρ0 − ρ1.

If we parametrize a weight as

Λ =
n∑
i=1

µiδi +
m∑
i=1

µ̃iεi , (2.201)

then, in terms of its Dynkin labels, one has

µi =
n∑
j=i

aj , µ̃i =
m−1∑
j=i

ãj +
1

2
ãm. (2.202)

A weight Λ is a highest weight of a �nite-dimensional representation of osp(2m + 1|2n), if

its Dynkin labels are non-negative integers, and no more than the �rst an of the so(2m+ 1)

labels (ã1, . . . , ãm) are non-zero. The last condition is trivial if an ≥ m. We will call an

irreducible representation �large� if an ≥ m, and �small� in the opposite case. An irreducible
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representation is spinorial if the Dynkin label ãm is odd, and non-spinorial in the opposite

case. Clearly, any spinorial representation is �large.� It is also easy to see that all the �small�

representations are atypical, and all the spinorial representations are typical.

Non-spin highest weights can be conveniently encoded in terms of hook partitions [40,

41, 42]. These are simply Young diagrams which are constrained to �t inside a hook with

sides of width n and m, as shown in �g. 2.12 for n = 3 and m = 4. The �gure shows how

the labels µ• and µ̃• parametrizing the weight are read from the diagram. This presentation

implements automatically the constraint that only the �rst an of the so(2m + 1) Dynkin

labels can be non-zero. In this notation, the �small� representations are those for which the

Young diagram does not �ll the upper left n×m rectangle.

Finally, let us note that for typical representations of any superalgebra there exist simple

analogs of the Weyl formula to compute characters and supercharacters. For the character

of a representation with highest weight Λ, the formula reads

ch (RΛ) = L−1
∑
w∈W

(−1)`(w) exp (w(Λ + ρ)) . (2.203)

Here the sum goes over the elements of the Weyl group W , which, by de�nition, is gener-

ated by re�ections along the bosonic roots. The number `(w) is the length of the reduced

expression for the Weyl group element w. The Weyl denominator L is

L =

∏
α∈∆+

0

(eα/2 − e−α/2)∏
α∈∆+

1

(eα/2 + e−α/2)
. (2.204)

2.5.6.3 OSp(2m|2n): The Mapping Of Line Operators

To understand the action of the S−1TS duality on the line operators of the D(m,n) Chern-

Simons theory, we need to understand the action of the T -transformation on their magnetic

duals. Since T is just a shift of the theta-angle, it does not change the model solution

that is used to de�ne the operator. Therefore one might conclude, as we did for the unitary
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superalgebra, that line operators are invariant under this transformation. As we now explain,

this is indeed true for a subclass of line operators, but not for all of them.

In section 2.5.1 we have de�ned the instanton number N∨ for the orthogonal group.

The action contained a term iθsN
∨/2, where θs is the string theory theta-angle. The 2π-

periodicity of θs relied on the fact that N∨ takes values in 2Z. While this assertion is true

on R4 or R×S3, it is not always true on more general manifolds. We now want to show that

it is not true even on simple manifolds like R4 in the presence of some line operators, and

therefore such line operators transform non-trivially under the T -transformation.

Before explaining the details, let us state clearly the result. Consider a Wilson-'t Hooft

operator (untwisted or twisted) in the electric theory, located along a knot K. We claim that

in the presence of its S-dual, the instanton number N∨ of the magnetic theory takes values

in 2Z, if the quantum-corrected weight λ of the operator is non-spin, and it takes values41

in Z, if this weight is spin. Therefore, T acts trivially on the non-spinorial line operators,

but not on the spinorial ones. We will show that for spinorial weights the transformation T

exchanges twisted and untwisted operators of a given quantum-corrected weight λ. In terms

of the electric theory, we say that the knot invariants that are obtained from an untwisted

spinorial operator in the theory with level Kosp are equal to the invariants obtained from a

twisted spinorial operator in the theory with level K′osp, where K′osp is given by (2.180). The

mapping of non-spinorial line operators (whether untwisted or twisted) between the Chern-

Simons theories with levels Kosp and K′osp is trivial: the weight is unchanged and twisted or

untwisted operators map to themselves.

Now let us prove our assertions about the instanton number. Assume for simplicity that

the four-manifold M is 2-connected (that is, π1(M) = π2(M) = 0). Our goal is to evaluate

the instanton number N∨ for an SO(2m)×SO(2n+1) bundle on the knot complementM \K

with a �xed trivialization along K, which is de�ned by a model solution of weight λ. For now

41As we have already explained in footnote 28, a more precise statement is that the instanton number
takes values in 2Z + c or Z + c for some constant c. Here we are interested only in the di�erence of instanton
numbers for di�erent bundles, so we will ignore the constant shift.
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let us assume that m ≤ n, so that the SO(2m) subgroup of the gauge group is left unbroken

by the three-dimensional defect at y = 0. Let Σ′ be a two-sphere in M that encircles some

point of the knot (this means that the linking number of Σ′ with K is 1; for instance, Σ′

can be the sphere x0 = 0, r′ =const in the language of �g. 2.6 of section 3.3.1), and Σ be

a surface, bounded by the knot. Σ represents the non-trivial cycle in the relative homology

H2(M,K).

We will focus on SO(2m) bundles V on the knot complement, and ignore what happens

in the SO(2(n−m)+1)-part of the gauge group, which is broken everywhere at y = 0 by the

boundary condition of the 3d defect. The reason we can do so is that all interesting things

will come from di�erent extensions of the SO(2m) bundle from the knot neighborhoodK×Σ′

to the cycle Σ, while for the SO(2(n−m) + 1) subgroup this extension is uniquely �xed by

the boundary condition. This is also the reason that there is no non-trivial analog of this

story for the one-sided problem [6].

So far we have not been precise about the global form of the structure group of our bundle

V → M . In the most general case, the structure group is the projective orthogonal group

PSO(2m) (the quotient of SO(2m) by its center {±1}), and this structure group might or

might not lift to SO(2m) or Spin(2m). If it does lift to SO(2m) or Spin(2m), we say that

V has a vector or a spin structure, respectively. To study obstructions to the existence of a

vector or a spin structure (and more generally, obstructions related to π1(G) for G-bundles),

it is enough to look at the restriction of the bundle to the two-skeleton of the manifold.

Let Σ0 be a two-manifold with G-bundle V → Σ0; we assume that G is a connected group,

and that Σ0 is closed or that V is trivialized on its boundary. Such a V → Σ0 is classi�ed

topologically by a characteristic class x valued in H2(Σ0, π1(G)). Concretely, x is captured

by an element of π1(G) that is used as a gluing function to construct the bundle V → Σ0.

Thus, x associates to Σ0 an element x̂ of the center of the universal cover Ĝ of G. A bundle

VR associated to V in a representation R exists if and only if x̂ acts trivially on R.

In our application, Σ0 is either Σ or Σ′, and G = PSO(2m). We note that the surface Σ
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can be deformed to lie entirely in the region y > 0, where the gauge group is SO(2n + 1).

Since SO(2m) and not PSO(2m) is a subgroup of SO(2n+1), the restriction of V to Σ always

has vector structure.

Let λ be a non-spinorial weight of the gauge group of the electric theory. This means

that λ belongs to the character lattice of SO(2m)× Sp(2n), and therefore the parameter of

the S-dual magnetic operator belongs to the cocharacter lattice of the dual group, which

is SO(2m) × SO(2n + 1). Therefore, the model solution for the line operator de�nes on

Σ′ a bundle with vector structure. Together with the facts that we explained a few lines

above, this means that V has vector structure, i.e. it is an SO(2m) bundle. For its instanton

number we can use the formula

N∨ =

∫
M

w2 ∧ w2 mod 2 , (2.205)

where w2 is the second Stiefel-Whitney class, or more precisely an arbitrary lift of it to the

integral cohomology. (For a derivation of this formula, see e.g. [73].) On our manifold we

can rewrite42 this as

N∨ = 2

(∫
Σ

w2

) (∫
Σ′
w2

)
mod 2 , (2.206)

which means that whatever w2 is, the instanton number is even. Therefore, a shift of the

theta-angle by 2π in presence of a non-spinorial line operator is still a symmetry, and such

operators are mapped trivially under the T -transformation.

Now let the weight λ be spinorial. Then it belongs to the character lattice of Spin(2m)×

Sp(2n) (and not to its sublattice corresponding to SO(2m) × Sp(2n)), and therefore the

parameter of the dual magnetic operator belongs to the cocharacter lattice of PSO(2m) ×

SO(2n+ 1) (and not to the cocharacter lattice of SO(2m)×SO(2n+ 1)). The bundle that is

de�ned on Σ′ by such a model solution is a PSO(2m) bundle with no vector structure. What

42For a quick explanation, think of w2 in this geometry as a sum a+b, where a is possibly non-trivial on Σ
but trivial on Σ′, and b is trivial on Σ but possibly non-trivial on Σ′. Then w2

2 = 2ab = 0 mod 2, accounting
for the factor of 2 in eqn. (2.206).
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we then expect to get is roughly speaking that the factor
∫

Σ′
w2 in (2.206) now becomes 1/2,

which would give us N∨ =
∫

Σ
w2 mod 2 for the instanton number. Let us prove this in a

more rigorous way.

For that we adapt arguments used in [73], where more detail can be found. The topology

of two PSO-bundles that coincide on the two-skeleton can di�er only by the embedding of

some number of bulk instantons. Therefore the instanton numbers of such bundles can only

di�er by an even integer. To �nd N∨ mod 2, it is enough to study any convenient bundle

with a given behavior on Σ and Σ′. Consider �rst the case of the group PSO(6) = SU(4)/Z4.

Its fundamental group is Z4. Let x be the Z4-valued characteristic class which de�nes the

topology of the restriction of the bundle to the two-skeleton (i.e., to Σ and Σ′). Let L be

a line bundle with �rst Chern class c1 = x mod 4. Let O be the trivial line bundle, and

consider the bundle

V4 = L1/4 ⊗ (L−1 ⊕O ⊕O ⊕O) . (2.207)

It does not exist as an SU(4) bundle, unless x = 0, but its associated adjoint bundle 3L ⊕

3L−1⊕9O does exist; this bundle has structure group PSO(6). The associated bundle in the

vector representation of SO(6) is the antisymmetric part of V4⊗V4; it exists precisely when

x = 0 mod 2, since it contains L1/2. Though V4 might not exist, we can use the standard

formulas to compute its Chern number

∫
M

c2(V4) = −3

4

∫
Σ

c1(L)

∫
Σ′
c1(L) =

1

4

∫
Σ

x

∫
Σ′
x mod 1 . (2.208)

This Chern number is the instanton number normalized to be Z-valued for an SU(4) bundle,

so it is N∨/2. Note that, since the bundle on Σ′ has no vector structure, we have
∫

Σ′
x = ±1.

On the contrary, on Σ there is vector structure, and we can write
∫

Σ
x = 2

∫
Σ
w2 mod 4. We

�nally get

N∨ =

∫
Σ

w2 mod 2 . (2.209)

Comparing to the de�nition of the magnetic duals of the twisted operators in section 2.5.6.1,
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we conclude that the T -transformation, besides shifting the theta-angle by 2π, ialso inter-

changes the twisted and untwisted spinorial line operators. One can easily extend these

arguments to the even orthogonal groups other than SO(6). The relevant facts are explained

in [73] in a similar context, and will not be repeated here.

In our discussion, we have assumed that the ranks of the two gauge groups satisfy m ≤ n.

One can extend the arguments to the case n > m with some technical modi�cations. Rather

than explaining this, we will now give an alternative argument, which uses the language of

surface operators, and does not depend on the rank di�erence n−m.

2.5.6.4 OSp(2m|2n): The Mapping Of Surface Operators

Our discussion will be analogous to what we have said about the case of the unitary super-

algebra in section 2.5.5. The S−1TS duality transformation acts on the half-BPS surface

operators in the following way,

α
η

 S−→

 η

−α

 T−→

 η

η∗so − α

 S−1

−−→

α− η∗so
η

 . (2.210)

Here the T -transformation acts in the magnetic description of the theory. Therefore, its

de�nition involves taking the dual of η with respect to the canonically-normalized Killing

form of the orthogonal Lie group, which is the gauge group in the magnetic description. To

emphasize this fact, we have denoted this dual by η∗so.

Recall that the action in the electric theory was de�ned using the canonically-normalized

Killing form of the superalgebra, whose bosonic part, according to (2.153), is κosp = κsp−2κso,

where κso and κsp are the canonically-normalized Killing forms for the corresponding bosonic

Lie algebras. Let us consider the positive-de�nite form κsp + 2κso, and denote the dual with

respect to this form by a star. (In fact, this notation has already been de�ned in footnote
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14.) The equation (2.210) in this notation is equivalent to

α
η

 S−1TS−−−−→

α− 2η∗

η

 . (2.211)

For the so(2m) part of the parameters, the factor of two in this formula simply follows from

the analogous factor in front of κso in κosp. For the sp(2n) part of the parameters, one needs to

compare the canonically-normalized Killing forms of sp(2n) and so(2n+ 1) on t∗sp ' tso. The

S-duality maps the root lattice in t∗sp to the coroot lattice in tso. Comparing these lattices,

one �nds that in t∗sp ' tso the S-duality identi�es δi with εi, in the notations of section

2.5.6.2. The canonically-normalized forms for sp(2n) and so(2n + 1) give respectively43

〈δi, δj〉sp = δij/2 and 〈εi, εj〉so = δij, and their ratio gives the factor of two in (2.211).

The equation (2.85), which de�nes the relation between the weight and the parameters

of a surface operator in the electric theory, continues to hold for the orthosymplectic Chern-

Simons theory, if one replaces the level K in that equation by Kosp. Using this, and also the

transformation laws (2.180) and (2.211), we conclude that the S−1TS duality transforms the

weights according to

λ′

K′osp
=

λ

Kosp

. (2.212)

Again, the procedure of section 2.4.6 for computing knot invariants using surface operators

is obviously invariant under this transformation.

Let us compare the surface operator and the line operator approaches in the case that

the weight λ is integral. The equation (2.212) can alternatively be written as

λ′ = λ+ 2K′ospλ . (2.213)

First let us look at the part λr of the weight, which corresponds to the symplectic Lie

43Note that the canonical normalization of the Killing form for so(2n+1) is di�erent from the superalgebra
normalization (2.196).
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subalgebra. In the action (2.153), the level Kosp multiplies the Chern-Simons term for the

sp(2n) subalgebra, which is de�ned using the canonically-normalized sp(2n) Killing form.

Therefore the knot invariants computed using the surface operators are unchanged when the

weight λr is shifted by Kosp times an integral coroot of the sp(2n) subalgebra. If λr is an

integral weight, then 2λr is an integral coroot, and therefore the di�erence between λ′r and

λr in (2.213) is inessential for computing the knot invariants.

For the part λ` of the weight, which corresponds to the orthogonal subalgebra, the situa-

tion is more complicated. The canonically-normalized Chern-Simons term for the orthogonal

subalgebra in the action (2.153) is multiplied by 2Kosp. For this reason, the knot invariants

computed using the surface operators are invariant under the shift of λ` by 2Kosp times an

integral coroot of the so(2m) subalgebra. Therefore, the shift of λ` in the equation (2.213)

is trivial from the point of view of the knot observables if and only if the integral weight λ`

is actually a coroot. What if it is not? Since the so(2m) Lie algebra is simply-laced, any

integral weight is also an element of the dual root lattice Γ∗r. Therefore the group element

exp(2πλ`) actually belongs to the center of the orthogonal group. Let us make a singular

gauge transformation in the electric theory around the surface operator on the left side of

the three-dimensional defect, using the group element exp(θλ`), where θ is the azimuthal

angle in the plane normal to the surface operator. This transformation maps a surface op-

erator corresponding to the weight λ′` back to a surface operator with weight λ`. Since our

gauge transformation is closed only up to the central element exp(2πλ`), it also introduces a

twist of the boundary hypermultiplets by this group element. In the fundamental represen-

tation of SO(2m), to which the hypermultiplets belong, the element exp(2πλ`) acts trivially

if the weight λ is non-spinorial, and it acts by −1 if λ is spinorial. We have reproduced

the result that was derived in the previous section in the language of line operators: S−1TS

acts trivially on Chern-Simons line observables labeled by non-spinorial representations, but

exchanges the twisted and the untwisted operators for a spinorial weight.
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2.5.6.5 OSp(2m|2n): Comparing The Representations

We would like to look closer at the mapping of spinorial line operators. Consider a line

operator, labeled by a supergroup representation of spinorial highest weight Λ = λ − ρ,

and an S−1TS-dual twisted operator, which is labeled by a representation of the bosonic

subgroup with highest weight Λ′ = λ− ρ0. Note that the Weyl vectors ρ and ρ0, which can

be found from (2.197), are non-spinorial integral weights, and therefore the property of being

spinorial/non-spinorial is the same for the weights and for the quantum-corrected weights of

OSp(2m|2n).

We would like to see more explicitly how the duality mapping acts in terms of represen-

tations. We have λ = Λ + ρ = Λ′ + ρ0, or equivalently, Λ′ = Λ − ρ1. Using the formulas

(2.197) and (2.198), this can be translated into a mapping of Dynkin labels,

ã′j = ãj, j = 1, . . . ,m ,

a′i = ai, i = 1, . . . , n− 1 ,

a′n = an −m. (2.214)

As was noted in section 2.5.6.2, for a spinorial superalgebra representation one has44 an ≥

m. Therefore, the mapping of Dynkin labels written above is a one-to-one correspondence

between the irreducible spinorial representations of the D(m,n) superalgebra and its bosonic

subalgebra.

We can make an additional test of the duality by comparing the local framing anomalies

of the line operators. Recall that the knot polynomials in Chern-Simons theory are invariants

of framed knots. If the framing of a knot is shifted by one unit via a 2π twist, the knot

44As we have mentioned in a similar context in section 2.3.5, we do not really know why the supplementary
condition should be imposed in the present discussion, since it is not a general condition on 1/2-BPS line
operators. Nonetheless, imposing this condition works nicely, as we have just seen. This shows once again
that our understanding of line operators in the theory is incomplete. We will �nd something similar for odd
OSp supergroups.
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polynomial is multiplied by a factor

exp(2πi∆O) , (2.215)

where ∆O is the dimension of the conformal primary O that corresponds in the WZWmodel45

to the given Wilson line. For a Wilson line in representation R, this framing factor is

exp

(
iπ

c2(R)

k + h sign(k)

)
= qc2(R) , (2.216)

where c2(R) = 〈λ, λ〉 − 〈ρ, ρ〉 is the value of the quadratic Casimir in the representation R.

The variable q was de�ned for the D(m,n) superalgebra in (2.158). In the bosonic, one-sided

case these formulas have been derived in [6] from the magnetic description of the theory. It

would be desirable to give such a derivation for the two-sided case, but we will not attempt

to do it here.

To compare the framing factors for our dual operators, we need to derive a formula for

the framing anomaly of a twisted operator. The energy-momentum tensor of the conformal

�eld theory is given by the Sugawara construction

T (z) =
κ̂nm :Jm(z)Jn(z) :

2(k + h)
, (2.217)

where κ̂ = κ⊕ ω is the superinvariant bilinear form46 on the superalgebra, and Jm(z) is the

holomorphic current with the usual OPE

Jm(z)Jn(w) ∼ k κ̂mn

(z − w)2
+
fmnp Jp(w)

z − w
. (2.218)

45As it is explained in Appendix E of [1], there actually is not a straightforward relation between 3d
Chern-Simons theory and 2d current algebra in the case of a supergroup. Nonetheless, some results work
nicely and the one we are stating here seems to be one.

46Here we slightly depart from our usual notation, and use indices m,n, . . . both for bosonic and fermionic
generators of the superalgebra. Also, note that the inverse tensor is de�ned by κ̂mnκ̂pn = δmp , hence the
unusual order of indices in the Sugawara formula.
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One can easily verify that for a simple superalgebra the formula (2.217) gives the energy-

momentum tensor with a correct OPE.

Normally, the current Jm(z) is expanded in integer modes. The eigenvalue of the Virasoro

generator L0, acting on a primary �eld, is determined by the action of the zero-modes of

the current, which give the quadratic Casimir, as stated in eqn. (2.216). However, for a

primary �eld corresponding to a twisted operator in Chern-Simons, one naturally expects

the fermionic components of the current Jm(z) to be antiperiodic. In that case, the bosonic

part of the current gives the usual contribution to the conformal dimension, which for a

weight Λ is proportional to the bosonic quadratic Casimir 〈Λ + 2ρ0,Λ〉. The fermionic

part of the current in the twisted sector has no zero-modes, and its contribution to the L0

eigenvalue is just a normal-ordering constant, independent of the weight Λ. One can evaluate

this constant from (2.217), (2.218), and get for the dimension of the operator

∆tw
O =

〈Λ + 2ρ0,Λ〉 − k dim(g1)/8

2(k + h)
. (2.219)

Using the identity 〈ρ0, ρ0〉 = 〈ρ, ρ〉 + h dim(g1)/8, which actually is valid for any of our

superalgebras, one obtains an expression for the framing factor

exp

(
iπ
〈λ, λ〉 − 〈ρ, ρ〉
k + h sign(k)

)
exp (−iπdim(g1)sign(k)/8) . (2.220)

Here we have restored the dependence on the sign of the level k, and used our de�nition of

λ for the twisted operators. The second factor in this formula does not map correctly under

the duality, but that is what one could have expected, since this factor is non-analytic in

K = k + h sign(k) (compare to the discussion of the global framing anomalies in sections

2.4.3.1 and 2.5.4). The �rst factor is analytic in K, and it is clear from comparison to eq.

(2.216) that it does map correctly under the duality.
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2.5.6.6 Duality For The Odd Orthosymplectic Superalgebra

Let us turn to the case of the odd orthosymplectic superalgebra. As was already noted

in section 2.3.2.2, the de�nition of line operators in this theory has some peculiarities. As

follows from the equation (2.200), for B(m,n) the bosonic Weyl vector ρ0 is an integral

spinorial weight, while the superalgebra Weyl vector ρ is not an integral weight: it has a

half-integral Dynkin label with respect to the short coroot of the sp(2n) subalgebra. This

means that the quantum-corrected weight λ = Λ + ρ for an untwisted operator is not an

integral weight, and therefore a Wilson-'t Hooft operator, as de�ned in section (2.3.3.2),

is not gauge-invariant classically. The resolution of this puzzle should come from another

peculiarity of the B(m,n) Chern-Simons theory. The de�nition of the path-integral of this

theory includes an η-invariant (2.161), which comes from the one-loop determinant (or rather

the Pfa�an) of the hypermultiplet fermions. In the presence of a monodromy operator, one

should carefully de�ne this fermionic determinant, and we expect an anomaly that will cancel

the problem that exists at the classical level. We will not attempt to explain the details of

this in the present chapter.

Unlike the case OSp(2m|2n), a magnetic line operator of OSp(2m + 1|2n) is completely

determined47 by its weight λ, as explained at the end of section 2.5.6.1. However, the

quantum-corrected weights for twisted and untwisted operators belong to di�erent lattices,

due to the di�erent properties of ρ and ρ0, mentioned above. So the magnetic duals of twisted

and untwisted electric line operators are simply described by di�erent model solutions. Since

the T -transformation preserves the model solution, the S−1TS duality should preserve the

quantum-corrected weight.

We need to introduce some further notation. In the orientifold construction, we took the

Killing form to be positive on the sp part of B(m,n). In the dual theory, it will be positive

on the so part, and for this reason we denote the superalgebra of the dual theory by B′(n,m).

47Here we ignore the issues related to the atypical representations. We will say a little more on this later
in this section.

146



The basis vectors in the dual t∗′ of the Cartan subalgebra of B′(n,m) will be denoted by δ′j,

j = 1, . . . ,m, and ε′i, i = 1, . . . , n, and their scalar products are de�ned to have opposite sign

relative to (2.196). The Dynkin labels for the representations of B′(n,m) will be denoted

as a′j, j = 1, . . . ,m, and ã′i, i = 1, . . . , n. To make precise sense of the statement that the

S−1TS duality preserves the quantum-corrected weight, it is necessary to specify how one

identi�es t∗ and t∗′. We use the mapping which identi�es ε′i with δi and δ
′
j with εj. This linear

map preserves the scalar product. In principle, one could derive this identi�cation from the

S-duality transformations of surface operators, but we will simply take it as a conjecture

and show that it passes some non-trivial tests.

We can make one such test before we go into the details of the operator mapping. Ac-

cording to the equations (2.216), (2.220) and the de�nition (2.163) of the variable q, the

framing anomaly factor in the B(m,n) theory for an operator of quantum-corrected weight

λ is equal to q2c2 , where c2 = 〈λ, λ〉 − 〈ρ, ρ〉. (This formula is true for both twisted and

untwisted operators, modulo non-analytic terms.) From this we can see that our map does

preserve the framing anomaly.48 Indeed, it preserves λ and the scalar product, and although

the Weyl vectors ρ and ρ′ for the two dual superalgebras B(m,n) and B′(n,m) are di�erent,

their lengths happen to coincide, as one can verify from the explicit formula (2.200).

In the rest of this section we will examine the mapping

λ = λ′ (2.221)

in more detail. We will see that it gives a correspondence between the untwisted non-

spinorial operators of the two theories, maps the twisted non-spinorial operators to the

untwisted spinorial operators, and �nally indenti�es the twisted spinorial operators of one

theory with the twisted spinorial operators of the other one. To put it shortly, it exchanges

the spin and the twist. It is important to note that one might need to re�ne the mapping

48To be precise, there is actually a little mismatch for the spinorial operators. In that case the quadratic
Casimir c2 can be non-integral, and therefore there is a di�erence by a root of unity due to the fact that q
is mapped to −q. Hopefully, this discrepancy can be cured in a more accurate treatment.
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(2.221) for atypical weights. We will indeed encounter an ambiguity in interpreting (2.221)

for the �small� atypical weights.

First let us focus on the non-spinorial untwisted line operators, for which the duality

should give a correspondence between the non-spinorial representations of the two superal-

gebras. The map (2.221) of the dominant weights is already known in the literature for the

special case of m = 0. In fact, a remarkable correspondence between �nite-dimensional rep-

resentations of osp(1|2n) and non-spinorial �nite-dimensional representations of so(2n + 1)

was established in [71]. It preserves the full set of Casimirs, including the quadratic one.

For n = 1, the map is so elementary that one can describe it by hand. This will make our

later discussion more concrete. The spin s representation of so(3), for non-negative integer

s, is mapped to the trivial representation of osp(1|2) for s = 0, and otherwise to the repre-

sentation of osp(1|2) that is a direct sum of bosonic states of spin s/2 (under sp(2) ∼= su(2))

and fermionic states of spin (s− 1)/2. Note that if we ignore the statistics of the states, the

given so(3) and osp(1|2) representations both have dimension 2s+ 1. This is a special case

of a correspondence between characters found in [71].

An equivalent explanation is that a representation of so(3) whose highest weight is s is

mapped, if s is an integer, to a representation of osp(1|2) whose highest weight is s times the

smallest strictly positive weight of this algebra. The spinorial representations of so(3) � the

representations with half-integral s � do not participate in this correspondence, since there is

no representation of osp(1|2) whose highest weight is a half-integral multiple of the smallest

positive weight. The spinorial representations of so(3) have a dual in terms of twisted line

operators, but not in terms of representations.

This correspondence between so(s) and osp(1|2) maps tensor products of so(3) repre-

sentations to tensor products of osp(1|2) representations if one ignores whether the highest

weight of an osp(1|2) representation is bosonic or fermionic. To illustrate this correspon-

dence, let s denote an irreducible so(3) representation of spin s. Let s′ and s̃′ denote irre-

ducible osp(1|2) representations whose highest weight is s times the smallest positive weight,
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with the highest weight vector being bosonic or fermionic, respectively. Then one has, for

example, 
1⊗ 1 ∼= 2⊕ 1⊕ 0 for so(3)

1′ ⊗ 1′ ∼= 2′ ⊕ 1̃′ ⊕ 0′ for osp(1|2).

(2.222)

There is an obvious matching, if we ignore the reversed statistics of 1̃′ on the osp(1|2) side.

We interpret this matching to re�ect the fact that the duality between so(3) and osp(1|2)

preserves the operator production expansion for Wilson line operators. (In Chern-Simons

theory, for generic q the OPE of line operators is given by the classical tensor product, so we

can compare such OPE's by comparing classical tensor products.) However, we do not know

the interpretation of the reversed statistics of 1̃′. Perhaps it somehow involves the fact that

the quantum duality changes the sign of q. In [71], it is shown that an analogous matching

of tensor products holds in general.

Additional relevant results are in [16]. Let Uq(osp(1|2n)) and Uq′(so(2n + 1)) be the

quantum deformations of the universal enveloping algebras of the corresponding Lie (su-

per)algebras. It has been shown in [16] that there exists a natural map between the repre-

sentations of these two quantum groups if one takes q′ = −q, and restricts to non-spinorial

representations of the latter. One would expect such a result from our duality, assuming

that Chern-Simons theory of a supergroup is related to a corresponding quantum group in

the manner that is familiar in the bosonic world.

Now we return to our mapping λ = λ′ (eqn. (2.221)), which extends the known results

described above to general m and n. It has several nice properties. As follows from our

discussion of the framing anomaly, it preserves the quadratic Casimir. From the Harish-

Chandra isomorphism, it follows that, for non-spinorial weights, (2.221) gives a natural

mapping not only of the quadratic Casimir, but of the higher Casimirs as well. It would be

interesting to �nd an explanation of this directly from the quantum �eld theory. The map also

preserves the atypicality conditions (2.50). Next, let us look at the Weyl character formula

(2.203), assuming that the weights are typical. The Weyl groups for the two superalgebras
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are equivalent and act in the same way on t∗ ' t∗′; therefore, with the mapping (2.221), the

numerators of the character formula coincide for the dual representations. The denominators

are also equal, as one can easily check, using the list of simple roots (2.199). However, the

supercharacters are not mapped in any simple way. In particular, the duality preserves the

dimensions of typical representations, but not the superdimensions.49

Let us actually see what the equation (2.221) says about the map of representations.

Writing it as Λ′ = Λ + ρ − ρ′ and using equations (2.200), (2.201), one gets that the labels

µ• and µ̃•, de�ned in those equations, transform into µ′j = µ̃j + n, µ̃′i = µi −m. According

to the equation (2.202), this gives a mapping for the Dynkin labels,

ã′i = ai, i = 1, . . . , n− 1 ,

a′j = ãj, j = 1, . . . ,m− 1 ,

ã′n = 2(an −m) ,

a′m =
1

2
ãm + n. (2.223)

If we restrict to �large� non-spin dominant weights (an ≥ m), then this formula gives a one-

to-one correspondence. The non-spin condition means that ãm is even, so that the mapping

(2.223) is well-de�ned, and the �large� condition an ≥ m ensures that ã′n ≥ 0.

It is not immediately obvious what to say for �small� representations, since for them

the dual Dynkin label ã′n comes out negative. Note that all the �small� representations are

atypical, and in general we have less control over them by methods of this chapter. There

can be di�erent possible conjectures as to how to make sense of our map for them. First of

all, we can still treat (2.221) as a correspondence between monodromy operators. Then to

understand to which representation a given operator corresponds, we should make a Weyl

transformation on λ′, to bring it to a positive Weyl chamber. This is one possible way to

understand the map (2.221) for the �small� representations. (For an atypical weight, there

49Of course, for m,n 6= 0 the superdimensions of typical representations on both sides of the duality are
simply zero. But for m or n equal to 0, they are non-zero and do not agree.

150



can be several di�erent ways to conjugate it to the positive Weyl chamber; these give di�erent

weights, though belonging to the same atypical block.)

There is another very elegant possibility. If we simply transpose the hook diagram for

a B(m,n) weight, we will get some weight of B′(n,m). It is a curious observation that for

the �large� representations, this operation reproduces our duality (2.223). Moreover, one

can prove that even for the �small� representations this �ip preserves the quadratic Casimir

operator and therefore the framing anomaly, and can be a candidate for the generalization

of our map to the �small� highest weights. Unfortunately, this is merely a possible guess.

In short, we have found a natural 1-1 mapping between non-spinorial representations

of OSp(2m + 1|2n) and OSp(2n + 1|2m). Now let us turn to spinorial ones. The mapping

(2.221) sends spinorial line operators to twisted operators. Here is a simple consistency check

of this statement. In the electric theory, consider a Wilson-'t Hooft operator in a spinorial

representation R that is supported on a knot K in a three-manifold W . If the class of K

in H1(W ; Z2) is nonzero, then the expectation of the operator vanishes because it is odd

under a certain �large� gauge transformation that is single-valued in SO(2m + 1) but not if

lifted to Spin(2m + 1). (The gauge transformations along a Wilson-'t Hooft operator are

constrained to lie in the maximal torus, but there is no problem in choosing such an abelian

�large� gauge transformation.) The dual of such a Wilson-'t Hooft operator under the S−1TS

duality should have the same property. Indeed, a twisted operator, as described in section

2.3.3.3, does have this property (in this case because the de�nition of the twisted operator

involves picking a Z2 bundle with monodromy around K).

Let Λ be a spinorial dominant weight of the B(m,n) superalgebra, and let Λ′ be a non-

spinorial weight of the bosonic algebra so(2n+ 1)× sp(2m) that we use in de�ning a twisted

line operator. The mapping (2.221) would then be Λ′ + ρ′
0

= Λ + ρ. The bosonic Weyl

vector that is used here can be obtained from (2.200) by exchanging ε• with δ• and m with

n. From this one �nds that the coe�cients in the expansion of the weights in the δ•, ε• basis

transform as µ̃′i = µi−m, µ′j = µ̃j − 1/2. Therefore, according to (2.202), the Dynkin labels
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of the weights are related as

ã′i = ai, i = 1, . . . , n− 1 ,

a′j = ãj, j = 1, . . . ,m− 1 ,

ã′n = 2(an −m) ,

a′m =
1

2
(ãm − 1). (2.224)

This gives a one-to-one correspondence between the spinorial supergroup representations

and the non-spinorial weights of the bosonic algebra so(2n + 1) × sp(2m). In fact, for a

spinorial representation of osp(2m+1|2n), ãm is odd, ensuring that a′m is an integer. On the

other hand, ã′n is always even, so the twisted line operator with Dynkin labels a′i, ã
′
j is always

associated to a non-spinorial representation of the bosonic subalgebra of OSp(2n + 1|2m).

Moreover, the supplementary condition guarantees that an−m is non-negative for a spinorial

superalgebra representation.

The twisted operators for spinorial representations of the bosonic subgroup should be

mapped into similar twisted spinorial operators. The mapping (2.221) reduces in this case

to Λ + ρ0 = Λ′ + ρ′
0
. This gives µ̃′i = µi + 1/2, µ′j = µ̃j − 1/2, or, in terms of the Dynkin

labels,

ã′i = ai, i = 1, . . . , n− 1 ,

a′j = ãj, j = 1, . . . ,m− 1 ,

ã′n = 2an + 1 ,

a′m =
1

2
(ãm − 1) , (2.225)

which is indeed a one-to-one correspondence between the spinorial representations of the

bosonic subgroups. In other words, the weights a′i and ã
′
j are integers if the ai and ãj are

integers and ãm is odd, and moreover in that case ã′n is odd.
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2.6 Appendix A: Conventions And Supersymmetry Trans-

formations

We mostly follow the notation of [23, 6], with some minor di�erences. Euclidean signature is

used, except in section 2.2.1 and the beginning of section 2.4. The Lorentz vector indices are

denoted by Greek letters µ, ν, . . . in four dimensions and by Latin i, j, k in three dimensions.

The defect is at x3 = 0, and x3 is assumed to be the normal coordinate such that ∂3 is the

unit normal vector at the defect. The 3d spinor indices are denoted by α, β, . . . . When the

indices are not shown explicitly, they are contracted as vαwα. They are raised and lowered

with epsilon symbols,

ε12 = ε12 = 1 ,

vα = εαβvβ. (2.226)

Vector and spinor notation are related by sigma-matrices,

Vαβ = σiαβVi =

 −iV2 + V3 iV1

iV1 iV2 + V3

 . (2.227)

With this de�nition, the product of the sigma-matrices is

σiαβσjβγ = δijδαγ + εijkσαkγ. (2.228)

The boundary conditions are invariant under 3d supersymmetry, with R-symmetry group

SU(2)X × SU(2)Y . The spinor indices for these two groups are denoted by A,B, . . . and

Ȧ, Ḃ, . . . , respectively, and the vector indices are denoted by a, b, c and ȧ, ḃ, ċ. Conventions

for the R-symmetry indices are the same as for the Lorentz indices. In particular, the

R-symmetry sigma-matrices are as in 2.227.
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Fields that take values in the adjoint representation are understood as anti-hermitian

matrices.

The three-dimensional N = 4 supersymmetry acts on the �elds in the following way:

δAi = − 1√
2
εα
AḂ

(
ΨAḂβ

1 sinϑ+ ΨAḂβ
2 cosϑ

)
σiαβ ,

δA3 = − i√
2
εα
AḂ

(
−ΨAḂ

1α cosϑ+ ΨAḂ
2α sinϑ

)
,

δXa = − i√
2
εA
Ḃ

ΨBḂ
1 σaAB ,

δY a =
i√
2
εȦAΨAḂ

2 σa
ȦḂ

,

√
2δΨAḂ

1α = εβBḂ
(
− /DαβX

A
B −

i

2
εαβ sinϑ[XAC , XBC ]

)
−εAȦα

(
iD3Y

Ḃ
Ȧ

+
i

2
sinϑ[YȦĊ , Y

ḂĊ ]

)
+i cosϑεCĊα [XA

C , Y
Ḃ
Ċ

] + εβAḂ
(
i

2
sinϑεijkF

ij + cosϑFk3

)
σkαβ ,

√
2δΨAḂ

2α = εβAȦ
(
/DαβY

Ḃ
Ȧ
− i

2
εαβ cosϑ[Y ḂĊ , YȦĊ ]

)
−εBḂα

(
iD3X

A
B −

[
i

2
µABδ

(
x3
)]
− i

2
cosϑ[XAC , XBC ]

)
−i sinϑεCĊα [XA

C , Y
Ḃ
Ċ

]− εβAḂ
(
− i

2
cosϑεijkF

ij + sinϑFk3

)
σkαβ ,
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δQI
Ȧ

= −εA
Ȧ
λIA ,

δλIαA = εβȦA i /DαβQ
I
Ȧ
− εαAȦω

IJ ∂W4

∂QJ
Ȧ

+ εBḂα sinϑXm
ABT

I
mJQ

J
Ḃ
,

δZA = −εA
Ȧ
ζȦ ,

δZ
A

= −εA
Ȧ
ζ
Ȧ
,

δζȦ = εȦAi /DZ
A − εBḂY

ȦḂZB ,

δζ
Ȧ

= εȦAi /DZ
A

+ εBḂZ
B
Y ȦḂ. (2.229)

The term with the moment map µAB in the transformation of the Ψ2 fermion is present only

for the magnetic theory. In the language of N = 1 three-dimensional super�elds, it comes

from the δ(x3) term in the auxiliary �eld FY (see eqn. (2.264) for more details). This term

propagates in all equations in combination with D3X
a, canceling the delta-contribution from

the discontinuity of the �eld Xa.

2.7 Appendix B: Details On The Action And The Twist-

ing

2.7.1 Constructing The Action From N = 1 Super�elds

In this section, we review the construction [23] of the action for the D3-NS5 system. One of

the reasons for discussing this in some detail is that we will need parts of it to write out the

action for the magnetic theory.

Here we work in Euclidean signature. In [23], the D3-NS5 action was constructed by

writing an N = 1 3d supersymmetric action with a global SU(2) symmetry, and then ad-

justing the couplings to extend this symmetry to a product SU(2)X × SU(2)Y . This group

does not commute with the supersymmetry generators, and therefore extends the N = 1

supersymmetry to N = 4. The N = 1 multiplets in the bulk are a vector multiplet50 (Ai, ξA)

50The subscript A in ξA is not an R-symmetry index.
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and three chiral multiplets (Xa, ρa1, F
a
X), (Y a, ρa2, F

a
Y ) and (A3, ξ3, F3), where Xa and Y a are

the six scalars of the N = 4 SYM51, and A3 is a component of the gauge �eld. The fermionic

�elds can be packed into two N = 4 SUSY covariant combinations

√
2ΨAḂ

1 = −iρ(AḂ)
1 + εAḂ(− sinϑ ξA + cosϑ ξ3) ,

√
2ΨAḂ

2 = −iρ(AḂ)
2 + εAḂ(− cosϑ ξA − sinϑ ξ3). (2.230)

The action of the bulk N = 4 super Yang-Mills, rephrased in three-dimensional notation,

has the following form,

− 1

g2
YM

∫
d4x tr

(
1

2
F 2
µν + (DiX

a)2 + (DiY
a)2

+iΨAḂ
1α D

α
βΨβ

1AḂ
+ iΨAḂ

2α D
α
βΨβ

2AḂ
+ 2ΨAḂ

2α D3Ψα
1AḂ

+XA
B

(
− sinϑ([ΨBĊα

1 ,Ψ1AĊα]− [ΨBĊα
2 ,Ψ2AĊα])− 2 cosϑ[ΨBĊα

2 ,Ψ1AĊα]
)

+Y Ċ
Ḋ

(
− cosϑ([ΨAḊα

1 ,Ψ1AĊα]− [ΨAḊα
2 ,Ψ2AĊα]) + 2 sinϑ[ΨAḊα

2 ,Ψ1AĊα]
)

−F 2
X − F 2

Y − F 2
3 + 2D3 (FXY )− 2F3[X, Y ]

+F a
X

(
−2D3Ya − sinϑεabc([X

b, Xc]− [Y b, Y c])− 2 cosϑεabc[X
b, Y c]

)
+F a

Y

(
2D3Xa − cosϑεabc([X

b, Xc]− [Y b, Y c]) + 2 sinϑεabc[X
b, Y c]

))
+
iθYM

8π2

∫
tr (F ∧ F )

+

∫
d4x tr

(
θYM

8π2
∂3

(
ξ2
A

)
− 1

g2
YM

∂3

(
(ξ2
A − ξ2

3) sinϑ cosϑ− 2ξ3ξA cos2 ϑ
))

. (2.231)

Here the �rst four lines are the usual kinetic and Yukawa terms. The next three lines contain

the auxiliary �elds, after eliminating which these terms will give the usual quartic N = 4

super Yang-Mills potential, but they will also give some total ∂3 derivatives, which we cannot

drop if we want to couple the theory to the defect in a supersymmetric way. Next, there is

also a theta-term, and �nally in the last line there are some total derivatives of the non-R-

51In non-R-symmetrized expressions, where only the diagonal subgroup of the SU(2)X×SU(2)Y is explicitly
visible, it does not make sense to distinguish SU(2)X and SU(2)Y indices.
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symmetric combinations of fermions, which appear from rearranging the fermionic kinetic

terms and from the theta-term.

For the NS5-type defect we can use (2.7) to reduce the last line in (2.231) to

cotϑ

g2
YM

∫
d4x ∂3tr (ξA cosϑ+ ξ3 sinϑ)2 . (2.232)

This term is important for R-symmetrizing the fermionic couplings on the boundary.

On the three-dimensional defect live chiral multiplets (QA, λA, FA
Q ). In N = 1 nota-

tion, the action on the defect includes a usual kinetic term for the Q-multiplet, a quartic

superpotential K
4π
W4(Q) with

W4 =
1

12
tIJ ;KSε

ABεCDQIAQJBQKCQSD ,

tIJ ;KS =
1

4
κmn (τmIKτnJS − τmISτnJK) , (2.233)

and a superpotential that couples the four-dimensional scalar Xa to the defect theory,

WQXQ = − K
4π

sinϑQIAXm
ABτmIJQJB. (2.234)

This choice of the superpotential corresponds to the case when the NS5-brane is stretched

in directions 456. Indeed, the bifundamental �elds will have a mass term proportional to

X2, i.e. their mass is proportional to the displacement in these directions.

The boundary conditions of the theory form a current multiplet of three-dimensional
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N = 4 supersymmetry,

Y m
ȦḂ

= − 1

2 cosϑ
τmIJQ

I
Ȧ
QJ
Ḃ
,

√
2Ψm

2αAḂ
=

i

cosϑ
τmIJλ

I
αAQ

J
Ḃ
,

sinϑFm
k3 −

i

2
cosϑεijkF

m
ij = − 2π

cosϑ
κmnJnk ,

D3X
m
a −

1

2
cosϑεabcf

m
npX

bnXcp =
1

2
tanϑωIJεȦḂX

n
a T

mI
K T JnSQ

KȦQSḂ

− 1

4 cosϑ
λIAσ

AB
a τmIJλ

J
B , (2.235)

where Jmk is the current

Jmi =
δIQ
δAim

=
1

4π
τmIJ

(
εȦḂQI

Ȧ
DiQ

J
Ḃ

+ εAB
i

2
λIAσiλ

J
B

)
. (2.236)

The �rst of the boundary conditions has the following origin. At stationary points of the

action the auxiliary �eld F a
X has a contribution from the boundary, proportional to the delta

function. Then the term F 2
X would produce a square of the delta function. To avoid this

and to make sense of the action, the boundary contribution to F a
X should be set to zero, and

this gives the boundary condition for the �eld Y ȧ. The other three boundary conditions can

be obtained in a usual way from the variation of the action, after eliminating the auxiliary

�elds.

The complete action after eliminating the auxiliary �elds is

Ielectric = ISYM +
iθYM

2π
CS(A) +KIQ(A)

+
K
4π

∫
d3x

(
1

2
sin2 ϑωIJεȦḂX

maXnaT ImKT
J
nSQ

KȦQSḂ − 1

2
sinϑλIAX

mABτmIJλ
J
B

)
+

1

g2
YM

∫
d3xTr

(
−2

3
εabc cosϑXaXbXc − 2

3
εabc sinϑY aY bY c + 2ΨAḂ

1 Ψ2AḂ

)
,(2.237)
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where

IQ(A) =
1

4π

∫
d3x

(
1

2
εȦḂωIJDiQ

I
Ȧ
DiQJ

Ḃ
− i

2
εABωIJλ

I
A
/DλJB

+
1

4
κmnτmIJτnKSQ

IȦQK
Ȧ
λJCλSC +

1

2
εȦḂω

IJ ∂W4

∂QI
Ȧ

∂W4

∂QJ
Ḃ

)
. (2.238)

is the N = 4 super Chern-Simons action with the CS term omitted.

Before proceeding to twisting, it is useful to remove the term λXλ in the action, using

the last line in the boundary conditions52 (2.235). Then the action is

Ielectric = ISYM +
iθYM

2π
CS(A) +KIQ(A)

+
K
4π

∫
d3x

(
−1

2
sin2 ϑωIJεȦḂX

maXnaT ImKT
J
nSQ

KȦQSḂ

)
+

1

g2
YM

∫
d3xTr

(
−2

3
εabc cosϑXaXbXc − 2

3
εabc sinϑY aY bY c + 2ΨAḂ

1 Ψ2AḂ

)
− 2

g2
YM

∫
d3xTr

(
XaD3Xa − cosϑεabcX

aXbXc
)
. (2.239)

The supersymmetry transformations for this theory can be found by R-symmetrization of the

N = 1 supersymmetry transformations, or, for the bulk super Yang-Mills �elds, by reduction

from the N = 4 formulas in four dimensions. The result can be found in Appendix 2.6.

2.7.2 Twisted Action

Now we would like to twist the theory and to couple it to the metric. Let us recall, what

is the set of �elds of our topological theory. The four scalars Xa and Y 1 of the bulk super

Yang-Mills become components of a 1-form φ, and the other two scalars are combined as

σ = Y2−iY3√
2

and σ = Y2+iY3√
2

. The fermions of the twisted bulk theory are [14] two scalars η

and η̃, two one-forms ψ and ψ̃, and a 2-form χ. The selfdual and anti-selfdual parts of the

two forms are denoted by ± superscripts. These fermions are related to the �elds of the

52One might be worried that after this transformation the action no longer gives the same boundary
conditions from the boundary variation. In section 2.7.3 we will make our argument more accurate.
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physical theory as follows,

2
√

2ΨαAȦ
1 = (η̃ − t−1η)εαAvȦ + (−ψ̃ − tψ)3ε

αAuȦ +

+2(t−1χ+ + χ−)i3σ
αA
i vȦ + (ψ̃ − tψ)iσ

αA
i uȦ ,

−2
√

2iΨαAȦ
2 = (−η̃ − t−1η)εαAvȦ + (−ψ̃ + tψ)3ε

αAuȦ +

+2(t−1χ+ − χ−)i3σ
αA
i vȦ + (ψ̃ + tψ)iσ

αA
i uȦ. (2.240)

Here is a summary of Q-transformations of the bulk �elds, as derived in [14],

δA = itψ̃ + iψ , δφ = −iψ̃ + itψ ,

δσ = 0 , δσ = itη̃ + iη ,

δη = tP + [σ, σ] , δη̃ = −P + t[σ, σ] ,

δψ = Dσ + t[φ, σ] , δψ̃ = tDσ − [φ, σ] ,

δχ = H , (2.241)

where on-shell

P = Dµφµ , H+ = V+(t) , H− = tV−(t) (2.242)

and

V+(t) = (F − φ ∧ φ+ tDφ)+ ,

V−(t) =
(
F − φ ∧ φ− t−1Dφ

)−
. (2.243)

As it was described in [14], the manifestly Q-invariant topological action for the bulk super

Yang-Mills theory contains a topological term and a Q-variation of a fermionic expression

(see section 3.4 of that paper). In our case the theory is de�ned on the two half-spaces with

the defect W between them, and therefore the equations have to be completed with some
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boundary terms:

ISYM =
{

Q, . . .
}
− t− t−1

t+ t−1

4π

g2
YM

CS(A)

+
1

g2
YM

∫
W

Tr

(
4

t+ t−1

(
F ∧ φ− 1

3
φ ∧ φ ∧ φ

)
+
t− t−1

t+ t−1
φ ∧Dφ

)
+

1

g2
YM

∫
W

d3x
√
γ Tr

(
2σD3σ + γijφiDjφ3 − γijφ3Djφi

)
. (2.244)

Let us give some explanations on this formula. Recall that in our notation, ISYM is the part

of the bulk super Yang-Mills action, which is proportional to 1/g2
SYM, � that is, with the

θYM-part omitted. Here and in what follows we ignore expressions on W bilinear in the bulk

fermions, because in the end they have to cancel by supersymmetry, anyway. As usual, the

Chern-Simons form CS(A) is just a notation for the bulk topological term. By γ we denote

the induced metric on W. The third component of various bulk tensors on the boundary is

de�ned as a contraction of these tensors with a unit vector �eld nµ, normal to the defect.

For example, Djφ3 means a pullback to W of a one-form nνDµφν .

The �rst line in the expression above is the formula that was used in [14]. The coe�cient

of the topological term in this expression adds with the usual theta parameter θYM to become

the canonical parameter, which we called K. The second line in this formula is what appeared

in the purely bosonic Chern-Simons case [6]. Finally, the last line was dropped in that paper

as a consequence of the boundary conditions, but in our case it is non-zero.

A useful transformation is to integrate by parts in the last line of (2.244) to change

−φ3D
iφi into another φiDiφ3, but in doing so we have to remember that the metric con-

nection in the covariant derivatives is four-dimensional. Because of this, the integration by

parts produces a curvature term

1

g2
YM

∫
W

d3x
√
γ Tr

(
−sijφiφj + siiφ3φ3

)
, (2.245)

where sij is the second fundamental form of the hypersurface W. This curvature term should
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be canceled by adding a curvature coupling to the last line in (2.239).

We will substitute what we have just learned about ISYM into the action (2.239) of the

theory, but �rst let us make some transformations of the action (2.239). We would like to

complexify the gauge �eld in the hypermultiplet action IQ(A). The seagull term for (DQ)2

comes from XXQQ in the second line of (2.239). To change the terms linear in the gauge

�eld we need to add and subtract i sinϑX times the boundary current (2.236). Using the

third of the boundary conditions (2.235), the current can be rewritten as a combination of

gauge �eld strengths. After these manipulations, a twisted version of (2.239) will look like

Ielectric = ISYM +
iθYM

2π
CS(A) +KIQ(Ab) +

1

g2
YM

∫
d3xTr

(
−2

3
cosϑφ ∧ φ ∧ φ

)
+

1

g2
YM

∫
d3x
√
γ Tr

(
−i sinϑφ3[σ, σ]− 2φiD3φi − 2i sinϑφiFi3 + sijφ

iφj − siiφ3φ3

)
+

2 cosϑ

g2
YM

∫
d3xTr (φ ∧ φ ∧ φ− φ ∧ F ) . (2.246)

Now we substitute here the expression (2.244) for the super Yang-Mills action. The

Chern-Simons term in (2.244) changes the coe�cient in front of the Chern-Simons term

in (2.246) from θYM/2π to K. Expression in the second line in (2.244) and the term with

φ∧φ∧φ in the �rst line of (2.246) combine with the Chern-Simons term, changing the gauge

�eld in it from A into complexi�ed gauge �eld Ab, as shown in [6]. We are left with the

following action,

Ielectric =
{

Q, . . .
}

+ iKCS(Ab) +KIQ(Ab)

+
1

g2
YM

∫
d3x
√
γ Tr (−i sinϑφ3[σ, σ] + 2σD3σ)

+
1

g2
YM

∫
d3x
√
γ Tr

(
−2φiD3φi + 2φiDiφ3 − 2i sinϑφiFi3

)
+

2 cosϑ

g2
YM

∫
Tr (−φ ∧ F + φ ∧ φ ∧ φ) . (2.247)

We are almost done. All we need to show is that the last three lines here are Q-exact. This
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is indeed so (again, we ignore the fermion bilinears):

∫
d3x
√
γ Tr (σD3σ) = − 1

2 cosϑ

{
Q,
∫

d3x
√
γ Tr

(
σ(t−1ψ3 + ψ̃3)

)}
,∫

d3x
√
γ Tr (φ3[σ, σ]) = − 1

2 cosϑ

{
Q,
∫

d3x
√
γ Tr

(
σ(t−1ψ̃3 − ψ3)

)}
, (2.248)∫

Tr (φ ∧ (?Dφ− i sinϑ ? F − cosϑ(F − φ ∧ φ))) =

{
Q,
∫

Tr
(
φ ∧ (t−1χ+ + χ−)

)}
.

Up to Q-exact terms, our action is the sum of the Chern-Simons term and the twisted

action IQ(Ab). This combination is just the (twisted) action of the N = 4 Chern-Simons

theory. Let us see, how it is related [24] to the Chern-Simons theory with a supergroup. We

de�ne the �elds of the twisted theory as

QȦ = ivȦC +
1

2
uȦC ,

λαA = − i
2
εαAB + iσiαAA f i. (2.249)

Substituting this into the action and using the explicit form (2.238) of IQ(A), one �nds,

iKCS(Ab) +K IQ(Ab) = iKCS(A) + iKIg.f. , (2.250)

where A = Ab + A f is the complexi�ed superconnection. The Q-exact gauge �xing term

Ig.f. = {Q, Vg.f.} for the fermionic part of the superalgebra is

Ig.f. =

∫
d3x
√
γ Str

(
−DibBA f i +DibCDbiC + {A f , C}{A f , C}

+
1

4
{C,B}{C,B}+

1

16
[C, {C,C}][C, {C,C}]

)
, (2.251)

Vg.f. =

∫
d3x
√
γ Str

(
−DibCA f i +

1

8
{C,C}{C,B}

)
.
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2.7.3 Boundary Conditions

Let us rewrite the boundary conditions (2.235) in terms of �elds of the twisted theory. The

�rst line of that formula gives

σ =
i

2

1

1 + t2
{C,C} , σ =

i

1 + t−2
{C,C} , φ3 = − 1

t+ t−1
{C,C}. (2.252)

These three formulas are related to one another by SU(2)Y rotations. The boundary condi-

tion for the fermion in (2.235) gives one new relation

t−1χ+
i3 − χ−i3 =

2

t+ t−1
{A f i, C} , (2.253)

two relations, that can be obtained from (2.252) by Q-transformations

η̃ + t−1η =
2

t+ t−1
{B,C} , −ψ̃3 + tψ3 =

i

t+ t−1
{B,C} , (2.254)

and one relation which comes from the bulk and boundary Q-variation of the gauge �eld Ab,

which we have already discussed,

ψ̃i + tψi = − 2i

t+ t−1
{A f i, C}. (2.255)

The third line in (2.235) gives boundary condition for the gauge �eld,

cosϑ ı∗ (i sinϑ ? F + cosϑF ) = −A f ∧A f +
1

2
?3

(
{C,DC} − {C,DC}+ [B,A f ]

)
. (2.256)

The twisted version of the last line in (2.235) is a long expression with a contribution from

the curvature coupling. It can be somewhat simpli�ed by subtracting a Di derivative of the
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boundary condition (2.252) for φ3. The result is the following,

cosϑı∗ (?Dφ+ cosϑφ ∧ φ) = −A f∧A f +
1

2
?3

(
D{C,C}+ i sinϑ

(
{C, [φ,C]} − {C, [φ,C]}

)
− [B,A f ]

)
.

(2.257)

If we subtract (2.257) and (2.256), we get just a Q-variation of the fermionic boundary

condition (2.253). A new relation results, if we add these two:

Fb +A f ∧ A f = ?3{C,DC − i sinϑ[φ,C]} − {Q,χt} , (2.258)

where we de�ned

χt =
t−2 − 3

4
χ+ +

t2 − 3

4
χ−. (2.259)

Q2 acts as a gauge transformation with parameter −i(1+t2)σ in the bulk and with parameter

{C,C}/2 on the defect (2.33), (2.31). This agrees with the boundary conditions.

The Q-transformations of the set of boundary ghosts C, C and B were given in (2.31).

To �x the residual gauge symmetry in perturbation theory, we introduce the usual ghosts c, c

and the Lagrange multiplier �eld b, and the BRST-di�erential Qbos, associated to this gauge

�xing. This di�erential acts on all �elds in the usual fashion. The topological di�erential Q

acts trivially on b and c, but generates the following transformation, when acting on c:

δc = i(1 + t2)σ. (2.260)

On the boundary, this corresponds to [24]

δc = −1

2
{C,C}. (2.261)

The full BRST di�erential in the gauge �xed theory is the sum Q + Qbos. This operator

squares to zero, and in the boundary theory it corresponds to the usual gauge �xing for the

full supergroup gauge symmetry.
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Finally, let us comment on the fact that we used the boundary conditions to transform

the action (to pass from (2.238) to (2.239), and then to get (2.246)). We did it to exploit

more directly the relation to the N = 4 Chern-Simons theory, but that transformation was

not really necessary. Indeed, the terms that came from using the boundary conditions gave

essentially the last line in the list (2.248) of Q-exact expressions. The combination of the

boundary conditions that we used was just a Q-variation of the boundary condition for the

χ fermion (2.253). (More precisely, this combination di�ers by a derivative of (2.252), but

this is �ne, since the boundary condition (2.252) is Dirichlet.) So we could equally well keep

the expressions that involved the hypermultiplet �elds, instead of transforming them into

the bulk �elds, and this would give Q-exact expressions as well.

2.8 Appendix C: Details On The Magnetic Theory

2.8.1 Action Of The Physical Theory

Here we would like to give some details on the derivation of the action and the boundary

conditions for the D3-D5 system, with equal numbers if the D3-branes in the two sides of

the D5-brane. This action has been constructed in [83], but our treatment of the boundary

conditions is slightly di�erent.

As in the electric theory, we write the action in the three-dimensional N = 1 formalism.

The bulk super Yang-Mills part of the action has been given in (2.231) (one should set ϑ to

π in that formula). On the defect there is a fundamental hypermultiplet (ZA, ζA, FA), where

the �rst two �elds have already appeared in our story, and FA is the auxiliary �eld. Besides

the usual kinetic term, the boundary action contains a superpotenial that couples the bulk

and the boundary �elds,

WZY Z = −ZAYABZB. (2.262)

This superpotential has been chosen in such a way as to make the boundary interactions
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invariant53 under the full SO(3)X × SO(3)Y R-symmetry group. Speci�cally, the bound-

ary action contains Yukawa couplings −iζAξAZA + iZAξAζ
A coming from the kinetic term,

and ZAρ
AB
2 ζB + ζAρ

AB
2 ZB from the superpotential. They can be packed into R-symmetric

couplings

i
√

2
(
ZAΨAḂ

2 ζḂ + ζḂΨAḂ
2 ZA

)
, (2.263)

where the N = 4 fermion ΨAḂ
2 was de�ned in (2.230).

The superpotential contains a coupling of the auxiliary �eld FY to the moment map µam,

which was de�ned in (2.106). This coupling will add a delta-function contribution to the

equation for the auxiliary �eld,

F am
Y = D3X

am +
1

2
εabc([Xb, Xc]− [Yb, Yc])

m − 1

2
µamδ(x3). (2.264)

The square of the auxiliary �eld in the Yang-Mills action would produce a term with a square

of this delta-function. To make this contribution �nite, we require the scalars Xa to have a

discontinuity across the defect. This discontinuity equation extends via the supersymmetry

to a set of equations for two three-dimensional current multiplets,

Xam
∣∣+
− =

1

2
µam ,

√
2ΨAḂ

1m

∣∣+
− = i

(
ζ
Ḃ
TmZ

A + Z
A
Tmζ

Ḃ
)
,

Fm
3i

∣∣+
− =

1

2
Jmi ,

D3Y
a
m

∣∣+
− =

1

2

(
ZA{Y a, Tm}ZA − ζȦTmζḂσaȦḂ

)
, (2.265)

where the current is

Jmi =
δI∨hyp

δAmi
= −ZATmDiZ

A +DiZATmZ
A − iζαȦTmσ

β
iαζ

Ȧ
β . (2.266)

53As we have said, we choose t∨ = 1. For t∨ = −1 the sign of the superpotential would be the opposite.
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Next we have to substitute expressions for all the auxiliary �elds into the Lagrangian, and

make it manifestly R-symmetric. Also, we would like to rearrange the action in such a way

that the squares of the delta-function would not appear. In the Yang-Mills action (2.231)

there is a potentially dangerous term F 2
Y , but with the gluing conditions (2.265) it is non-

singular and produces no �nite contribution at x3 = 0. Then for this term we can replace the

x3-integral over R by an integral over x3 < 0 and x3 > 0. The term F 2
X is also non-singular,

so we delete the plane x3 = 0 in the same way. There is a singular term D3(FXY ), but in can

be dropped as a total derivative. The total ∂3 derivative of the non-R-symmetric fermion

combination in (2.231) can be dropped in the same way. There is also a delta-function

contribution from the D3 part of the fermionic kinetic term. Collecting all the boundary

terms in the integrals with x3 = 0 deleted, we get a simple action

Imagnetic = ISYM +
iθ∨YM

8π2

∫
tr (F ∧ F )

+
1

(g∨YM)2

∫
d3x

(
DiZAD

iZA − iζȦ /Dζ
Ȧ − ζȦY

Ȧ
Ḃ
ζḂ − ZAY

aYaZ
A
)

+
1

(g∨YM)2

∫
d3x

2

3
tr
(
εabc(X

aXbXc)
∣∣+
−

)
. (2.267)

Here in ISYM the usual super Yang-Mills Lagrangian in the bulk is integrated over the two

half-spaces x3 < 0 and x3 > 0, with the hyperplane x3 = 0 deleted. On the defect the ZY Y Z

terms from the superpotential combined with the XY Y term from the bulk action into an R-

symmetric coupling. The Yukawa terms ζΨ2Z +ZΨ2ζ canceled with the delta-contribution

from the bulk fermionic kinetic energy.
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2.8.2 Action Of The Twisted Theory

From the action of supersymmetry (2.229) one �nds the following Q-transformations for the

boundary �elds of the twisted theory,

δZ = −2iζu ,

δZ = −2iζu ,

δζu = σZ ,

δζu = −Zσ. (2.268)

The two other fermions transform as δζv = f and δζv = f , where

f = /DZ + φ3Z ,

f = /DZ − Zφ3 , (2.269)

but with these transformation rules the algebra does not close o�-shell. For this reason we

introduce two auxiliary bosonic spinor �elds F and F , for which the equations of motion

should impose F = f and F = f . The topological transformations are then

δζv = F ,

δζv = F ,

δF = −2iσζv ,

δF = 2iζvσ. (2.270)

The transformation rules for the auxiliary �elds were chosen in a way to ensure that the

square of the topological supercharge acts by the same gauge transformation, by which it

acts on the other �elds.

Now we would like to prove our claim that the action of the magnetic theory is Q-exact
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(2.97), up to the topological term. The �rst step is to notice that the following identity

holds, up to terms bilinear in the bulk fermions,

∫
d3x
√
γ

(
DiZαD

iZα − iζȦ /Dζ
Ȧ + ζȦY

Ȧ
Ḃ
ζḂ + Zα

(
−φ2

3 − {σ, σ}+
1

4
R

)
Zα

)
=

{
Q,
∫

d3x
√
γ

((
1

2
F − f

)
ζv + ζv

(
1

2
F − f

)
+ Zσζu − ζuσZ

)}
+

∫
d3x
√
γ tr

(
φ3Diµ

i
)
−
∫

d3x tr (F ∧ µ) . (2.271)

In the �rst line R is the scalar curvature of the three-dimensional metric γij, which appears

in this equation from the Lichnerowicz identity.

We can apply this formula to the action (2.267) of the theory, after adding appropriate

curvature couplings. We see that there are several unwanted terms, which are not Q-exact.

They come from the last line in the identity (2.271), from the boundary terms in the Yang-

Mills action (2.244), and, �nally, there is a cubic XXX term in (2.267). Using the Dirichlet

boundary condition (2.105), we see that most of these terms cancel. What is left is the

tr(σD3σ|±) term from the super Yang-Mills action (2.244), but this term is Q-exact (after

adding appropriate fermion bilinear), as we noted in (2.248). So the only non-trivial term

in the action of the magnetic theory is the topological term. This is, of course, what one

would expect, since in the electric theory we are integrating the fourth descendant of the

scalar BRST-closed observable trσ2. In the S-dual picture this should map to the fourth

descendant of the analogous scalar operator, which gives precisely the topological term.

Let us comment on the role of the discontinuity equations (2.265) in the localization

computations. In fact, only the �rst condition in (2.265) should be explicitly imposed on

the solutions of the localization equations. Indeed, one can show with some algebra that the

last two conditions in that formula follow from the �rst one automatically, if the localization

equations {Q, λ} = 0 for every fermion are satis�ed.

170



2.9 Appendix D: Local Observables

In a topological theory of cohomological type (see [58] for an introduction), there generally are

interesting local observables. In fact, typically there are Q-invariant zero-form observables

(local operators that are inserted at points) and also p-form observables which must be

integrated over p-cycles to achieve Q invariance. They are derived from the local observables

by a �descent� procedure.

We will describe here the local observables in our problem and the descent procedure.

In the magnetic description, everything proceeds in a rather standard way, so we have little

to say. The action of electric-magnetic duality on local observables is also straightforward.

The zero-form operators of the electric theory are gauge-invariant polynomials in σ, as we

discuss below, and duality maps them to the corresponding gauge-invariant polynomials in

σ∨; the duality mapping of k-form observables is then determined by applying the descent

procedure on both sides of the duality. We focus here on the peculiarities of the electric

description that re�ect the fact that there are two di�erent gauge groups on the two sides of

a defect.

First we recall what happens in bulk, away from the defect. The theory has a complex

adjoint-valued scalar σ (de�ned in eqn. (2.25)) that has ghost number 2 (that is, charge

2 under U(1)F ). This ensures that {Q, σ} = 0, as super Yang-Mills theory has no �eld of

dimension 3/2 and ghost number 3 (the elementary fermions have ghost number ±1). The

gauge-invariant and Q-invariant local operators are simply the gauge-invariant polynomials

in σ. For a semisimple Lie group of rank r, it is a polynomial ring with r generators.

To be concrete, we consider gauge group U(n), in which the generators are Ok = 1
k
trσk,

k = 1, . . . , n. These are the basic Q-invariant local observables.

In a topological �eld theory, one would expect that it does not matter at what point in
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spacetime the operator Ok is inserted. This follows from the identity

dOp =

{
Q,

1

2
tr
(
σp−1(t−1ψ̃ + ψ)

)}
, (2.272)

where d =
∑

dxµ∂µ is the exterior derivative, and ψ and ψ̃ are fermionic one-forms. (See

Appendix 2.7.2 for a list of �elds of the bulk theory and their Q-transformations.) This

identity, which says that the derivative of Ok is Q-exact, is actually the �rst in a hierarchy

[7]. If we rename Ok as O
(0)
k to emphasize the fact that it is a zero-form valued operator,

then for each k, there is a hierarchy of s-form valued operators O
(s)
k , s = 0, . . . , 4, obeying

dO
(s)
k = [Q,O(s+1)

k }. (2.273)

Construction of this hierarchy is sometimes called the descent procedure. This formula can

be read in two ways. If Σs is a closed, oriented s-manifold in W , then Ik,Σs =
∫

Σs
O

(s)
k is a

Q-invariant observable, since

[
Q,
∫

Σs

O
(s)
k

}
=

∫
Σs

dO
(s−1)
k = 0. (2.274)

And Ik,Σs only depends, modulo [Q, . . . }, on the homology class of Σs, since if Σs is the

boundary of some Σs+1, then

∫
Σs

O
(s)
k =

∫
Σs+1

dO
(s)
k =

[
Q,
∫

Σs+1

O
(s+1)
k

}
. (2.275)

For s = 0, Σs is just a point p , and
∫
p

O
(0)
k is just the evaluation of Ok = O

(0)
k at p; the

statement that
∫

Σs
O

(s)
k only depends on the homology class of Σs means that it is independent

of p, as we explained already above via eqn. (2.272).

In the magnetic description, we simply carry out this procedure as just described. How-

ever, in the electric theory, it is not immediately obvious how much of this standard picture
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survives when a four-manifold M is divided into two halves M` and Mr by a defect W .

Starting with zero-forms, to begin with we can de�ne separate observables Ok,` = 1
k
tr` σ

k

and Ok,r = 1
k
trr σ

k in M` and Mr respectively. Ok,` is constant mod {Q, . . . } in M`, and

similarly Ok,r is constant mod {Q, . . . } in Mr. But is there any relation between these two

observables? Such a relation follows from boundary condition (2.15), which tells us that on

the boundary

σ =
i

2

1

1 + t2
{C,C}. (2.276)

(This concise formula, when restricted to the Lie algebras of G` or of Gr, expresses the

boundary value of σ on M` or on Mr in terms of the same boundary �eld C.) Hence the

invariance of the supertrace implies that Strσk = 0 along W , or in other words that

tr` σ
k = trrσ

k (2.277)

when restricted to the boundary betweenM` andMr, where it makes sense to compare these

two operators.

Now let us reconsider the descent procedure in this context. We will try to construct an

observable by integration on a closed one-cycle Σ1 = Σ1` ∪ Σ1r, which lies partly in M` and

partly in Mr, ∫
Σ1

O
(1)
k ≡

∫
Σ1`

O
(1)
k,` +

∫
Σ1r

O
(1)
k,r. (2.278)

Given that O
(0)
k,` = O

(0)
k,r alongM`∩Mr = W , and in particular on C0 = Σ1∩W , our observable

is Q-closed, [
Q,
∫

Σ1

O
(1)
k

}
=

∫
C0

(
O

(0)
k,r −O

(0)
k,`

)
= 0. (2.279)

The relative minus sign comes in here, because Σ1` and Σ1r end on C1 with opposite orien-

tations.

Next we would like to go one step further and de�ne an analogous 2-observable. To check

Q-invariance of such an observable, analogously to the case just considered, we would need a
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relation between O
(1)
k,` and O

(1)
k,r. From the relations dO

(0)
k,` = [Q,O(1)

k,`} inM`, dO
(0)
k,r = [Q,O(1)

k,r}

in Mr, it follows that, if ı : W ↪→M is the natural embedding, then

[
Q, ı∗(O(1)

k,` −O
(1)
k,r)
}

= 0. (2.280)

In topological theory, a Q-closed unintegrated one-form should be Q-exact, so there should

exist some operator Õ
(1)
k , such that

ı∗(O
(1)
k,` −O

(1)
k,r) =

[
Q, Õ(1)

k

}
, . (2.281)

Then for a closed 2-cycle Σ2 = Σ2` ∪ Σ2r that intersects W along some C1 we can de�ne an

observable ∫
Σ2

O
(2)
k ≡

∫
Σ2`

O
(2)
k,` +

∫
Σ2r

O
(2)
k,r +

∫
C1

Õ
(1)
k . (2.282)

This observable is Q-closed.

Let us see how to de�ne the next descendant. From the de�nition of O(2) and from (2.281)

we have [
Q, ı∗(O(2)

k,` −O
(2)
k,r)
}

=
[
Q, dÕ(1)

k

}
, (2.283)

therefore, there exists Õ
(2)
k such that

ı∗(O
(2)
k,` −O

(2)
k,r) = dÕ

(1)
k +

[
Q, Õ(2)

k

}
. (2.284)

Continuing in the same way, we �nd Õ
(n)
k such that

ı∗(O
(n)
k,` −O

(n)
k,r ) = dÕ

(n−1)
k +

[
Q, Õ(n)

k

}
, (2.285)

174



and the Q-invariant (n)-observable can be de�ned as

∫
Σn

O
(n)
k ≡

∫
Σn`

O
(n)
k,` +

∫
Σnr

O
(n)
k,r +

∫
Cn−1

Õ
(n−1)
k . (2.286)

Let us �nd explicit representatives for all these operators in our case. A formula for O
(1)
k

was already given in the right hand side of (2.272):

O
(1)
k,`,r = tr`,r

(
σk−1ψt

)
, (2.287)

where we now de�ned

ψt =
1

2
(t−1ψ̃ + ψ). (2.288)

This �eld has useful properties

{Q,ψt} = Dbσ , [Q,Fb] = i(1 + t2)Dbψt , (2.289)

and satis�es the boundary condition

ı∗(ψt) = − i

1 + t2
{A f , C}. (2.290)

Therefore on the defect

ı∗
(

O
(1)
k,` −O

(1)
k,r

)
∼ Str

(
{C,C}k−1{C,A f}

)
= 0. (2.291)

Since this is zero, Õ
(1)
k vanishes, and the 2-observable can be de�ned without a boundary

contribution. A representative for the 2-observable is

O
(2)
k,`,r = tr`,r

(
1

2

∑
k−2

σj1 ψt ∧ σj2 ψt −
i

1 + t2
σk−1Fb

)
, (2.292)

where Fb is the �eld strength for the complexi�ed gauge �eld Ab. Here and in what follows
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we use the notation
∑

m for a sum where the set of indices j1, j2, . . . runs over partitions of

m.

Using the boundary condition (2.290) and invariance of the supertrace, one �nds on the

boundary,

ı∗
(

O
(2)
k,` −O

(2)
k,r

)
=

i

1 + t2
Str
(
σk−1F ′

)
, (2.293)

where F ′ = Fb +A f ∧A f is the part of the super gauge �eld strength that lies in the bosonic

subalgebra. The expression under the supertrace is non-zero, but we know that it should be

Q-exact. Indeed, one �nds that this is a Q-variation of

Õ(2)
k =

1

2

(
i

1 + t2

)k
Str
(
C2k−3DbA f

)
. (2.294)

Proceeding further with the descent procedure, we can �nd the 3-descendant,

O(3)
k,`,r = tr`,r

(
1

3

∑
k−3

σj1 ψt ∧ σj2 ψt ∧ σj3 ψt −
i

1 + t2

∑
k−2

σj1 Fb ∧ σj2 ψt

)
. (2.295)

On the boundary after some computation we �nd

Õ(3)
k =

1

2

(
i

1 + t2

)k
Str

(∑
2k−4

C j1A fC
j2DbA f

)
. (2.296)

The bulk part of the four-observable has a representative

O
(4)
k,`,r = tr`,r

(
1

4

∑
k−4

σj1ψt ∧ σj2ψt ∧ σj3ψt ∧ σj4ψt −
i

1 + t2

∑
k−3

σj1Fb ∧ σj2ψt ∧ σj3ψt

− 1

2(1 + t2)2

∑
k−2

σj1Fb ∧ σj2Fb

)
. (2.297)

The four-observable, which is formed from (2.296) and (2.297), has ghost number zero for

k = 2. In this case, of course, it reduces just to our super Chern-Simons action.

One might wonder how unique this procedure is. Clearly, for the nth descendant of O
(0)
k ,
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we can try to modify it by adding a suitable (n− 1)-observable with ghost number (2k−n),

integrated over Cn−1 = Σn ∩W . Since Cn−1 is a boundary in the bulk (it is the boundary

of ΣnM`, for example), such a modi�cation would be non-trivial only if the observable that

we add cannot be extended into the bulk. One possible example is adding a Wilson loop

to Õ
(1)
1 in the 2-descendant of the operator trσ. What other boundary observables might

one consider? If we denote the bosonic subgroup of the supergroup by SG0
∼= G` ×Gr, the

Q-invariant scalar observables on the defect correspond to the SG0-invariant polynomials of

the ghost �eld C. However, one can check that for the basic classical Lie superalgebras all

such polynomials come54 from the invariant polynomials in σ ∼ {C,C}, and therefore the

corresponding observables are bulk observables.

54See, e.g., a list of these polynomials in [84].
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Chapter 3

Analytic Torsion, 3d Mirror Symmetry

and Supergroup Chern-Simons Theories

3.1 Introduction

In this chapter, we study the topological quantum �eld theory that computes the Reidemeister-

Milnor-Turaev torsion [88], [89] in three dimensions. This is a Gaussian theory of a number

of bosonic and fermionic �elds in a background �at complex GL(1) gauge �eld. It can be

obtained by topological twisting from a free hypermultiplet with N = 4 supersymmetry.

This theory is very simple and can be given di�erent names � the one-loop Chern-Simons

path-integral [90], or the Rozansky-Witten model [91] with target space C2, or the U(1|1)

supergroup Chern-Simons theory [61] at level equal to one, but we prefer to call it psl(1|1)

supergroup Chern-Simons theory.

Let us give a brief summary of the chapter. In section 3.2, we describe the de�nition of

the theory. We explain that its functional integral computes a ratio of determinants, which

depends holomorphically on a background �at GL(1) bundle L. We also de�ne various line

operators, the most important of which lead to the Alexander polynomial for knots and links.

In section 3.3, we use mirror symmetry in three dimensions to represent the psl(1|1)
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theory as the endpoint of an RG �ow, that starts from the twisted version of the N = 4

QED with one fundamental �avor. The computation of the partition function of the QED

can be localized on the set of solutions to the three-dimensional version of the Seiberg-

Witten equations [11]. This provides a physicist's derivation of the relation between the

Reidemeister-Turaev torsion and the Seiberg-Witten invariants, which is known as the Meng-

Taubes theorem [20], [92]. We consider, in particular, the subtle case of three-manifolds with

�rst Betti number b1 ≤ 1 and show, how the quantum �eld theory manages to reproduce

the details of the Meng-Taubes theorem in this case. Previously, the same RG �ow has been

used in [93] to derive a special case of the Meng-Taubes theorem for the trivial background

bundle, when the torsion degenerates to the Casson-Walker invariant. (We elaborate a little

more on this in the end of section 3.3.) In comparison to [93], the new ingredient in our

thesis is the coupling of the QED to the background �at bundle L, so let us explain, how

this works. In �at space and before twisting, the QED has a triplet of FI terms φa, which

transform as a vector under the SU(2)X-subgroup of the SU(2)X × SU(2)Y R-symmetry.

(In our notations, the scalars of the vector multiplet of the QED transform in the vector

representation of SU(2)Y .) These FI terms can be thought of as a vev of the scalars of

a background twisted vector multiplet. The vector �eld Bi of the same multiplet can be

coupled in a supersymmetric way to the current of the topological U(1)-symmetry of the

QED. Upon twisting the theory by SU(2)X , the scalar and the vector �elds of the twisted

vector multiplet combine into a complex gauge �eld B+ iφ. Invariance under the topological

supercharge Q requires this background �eld to be �at. One can easily see that the partition

function depends on it holomorphically. In the psl(1|1) theory, which emerges in the IR, the

�eld B + iφ gives rise to the complex �at connection that is used in the de�nition of the

Reidemeister-Turaev torsion.

In section 3.4, we consider the U(1|1) supergroup Chern-Simons theory. It is obtained

from the psl(1|1) theory by coupling it to U(1)k ×U(1)−k Chern-Simons gauge �elds. It has

been argued previously [59], [61] that this theory computes the torsion that we study. We
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show that, in fact, the U(1|1) theory for the compact form of the gauge group is a Zk-orbifold

of the psl(1|1) theory, and thus, indeed, computes essentially the same invariant. To be more

precise, there exist di�erent versions of the U(1|1) theory, which di�er by the global form of

the gauge group, but they all are related to the psl(1|1) theory. Mirror symmetry maps the

U(1|1) Chern-Simons theory at level k to an orbifold of the same twisted N = 4 QED, or

equivalently, to an N = 4 QED with one electron of charge k.

In section 3.5, we present the Hamiltonian quantization of the theory. This section does

not depend on the results of section 3.3, and can be read separately. By considering braiding

transformations of the states on a punctured sphere, we recover the skein relations for the

multivariable Alexander polynomial. We consider in some detail the Hilbert space of the

psl(1|1) theory on a torus, and the correspondence between the states and the loop operators.

We �nd the OPEs of line operators and the action of the modular group. In fact, as long as

the background bundle L has non-trivial holonomies along the cycles of the Riemann surface,

on which the theory is quantized, the Hilbert space is one-dimensional, and our analysis is

very straightforward. We also discuss the canonical quantization of the U(1|1) Chern-Simons

theory. We consider modular transformations of the states on the torus, and �nd results very

similar to those obtained from the GL(1|1) WZW model [60]. To our knowledge, this is the

�rst example of the canonical quantization of a supergroup Chern-Simons theory, that does

not assume an a priori relation to the WZW model.

In section 3.6, we discuss possible generalizations to other supergroup Chern-Simons

theories. We make a summary of properties of such theories. (Some of these were brie�y

discussed in Chapter 2.) We also present some brane constructions, and consider possible

dualities.

Besides the papers that we have already mentioned, previous work on the topological

�eld theory interpretation of the Meng-Taubes theorem includes [94], where the subject was

approached from the four-dimensional Donaldson theory, and [95], where a mathematically

rigorous proof of the Meng-Taubes theorem using TQFT was presented. All the mathe-
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matical facts about the Reidemeister-Turaev torsion, the Seiberg-Witten invariants and the

Meng-Taubes theory, that we touch upon in this chapter, can be found in a comprehensive

review [88].

Finally, let us mention that there exists yet another approach [96] to the Reidemeister-

Turaev torsion, which presumably can be given a physical interpretation, � in this case, in

terms of the �rst-quantized theory of Seiberg-Witten monopoles. Unfortunately, this will

not be considered in the present thesis.

3.2 Electric Theory

In this section, we describe the theory, which computes an analytic analog of the Reidemeister-

Turaev torsion. Up to some details, it is simply the theory of the degenerate quadratic func-

tional [3]. One important di�erence, however, is that we introduce a coupling to a complex

background �at bundle, and consider the torsion as a holomorphic function of it. Our de�ni-

tion is similar but not quite identical to the de�nition of the analytic torsion, known in the

mathematical literature [97]. The discussion will be phrased in the language of supergroup

Chern-Simons theory. Though this might seem like an unnecessary over-complication, it will

make our formulas a little more compact, and will also help, when we discuss generalizations

in later sections. Throughout the chapter, the theory of this section will be called �electric�,

while its mirror, considered in section 3.3, will be called �magnetic�.

3.2.1 The Simplest Supergroup Chern-Simons Theory

In this section we introduce the psl(1|1) Chern-Simons theory. We work on a closed oriented

three-manifold W .

The superalgebra g ' psl(1|1) is simply the supercommutative Grassmann algebra C0|2.

The Chern-Simons gauge �eld will be a C2-valued fermionic one-form A = AI f̂I , where f̂+

and f̂− are the superalgebra generators. To make the theory interesting, we want to couple
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it to a background �at bundle. It could possibly be a GL(2)-bundle, where GL(2) acts on g

in the obvious way. However, the de�nition of the Chern-Simons action requires a choice of

an invariant bilinear form. This reduces the symmetry to SL(2), so we couple the theory to

a �at SL(2)-bundle B. The Chern-Simons action can be written as1

Ipsl(1|1) =
i

4π

∫
W

StrA dBA , (3.1)

where the supertrace denotes an invariant two-form, Str(ab) = εIJa
IbJ , and dB is the covari-

ant di�erential, acting on the forms valued in B. One could eliminate the �at gauge �eld

from dB by a suitable choice of trivialization of B, but we prefer not to do so.

The supergroup gauge transformations act by A → A − dBα. To �x the gauge, we

introduce a g-valued ghost �eld C. Since our gauge symmetry is fermionic, this �eld has

to be bosonic: its two components are complex scalars C+ and C−. We also introduce a

bosonic g-valued antighost �eld C and a g-valued fermionic Lagrange multiplier λ. The

BRST generator Q is de�ned to act as

δA = −dBC , δC = 0 , δλ = 0 , δC = λ . (3.2)

Next we have to choose an appropriate gauge-�xing action. It will contain in particular the

kinetic term for the bosonic �elds C and C, and we want to make sure that this term is

positive-de�nite. To that end, we pick a hermitian structure on our �at bundle and restrict to

unitary gauges. We impose a reality condition C
I

= −εIJ(CJ)†. The complex �at connection

in B can be decomposed as B + iφ, where B is a hermitian connection and φ is a section of

the adjoint bundle. We introduce a covariant derivative Di = ∂i + iBi, and also introduce

notations Di = Di−φi for the covariant derivative in the �at bundle B and Di = Di +φi for

the covariant derivative with the conjugate gauge �eld. We pick a metric γ on W and take

1Throughout the chapter we use Euclidean conventions, in which the functional under the path-integral
is exp(−I).
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the gauge-�xing action to be

Ig.f. =

{
Q,
∫

d3x
√
γγij Str

(
DiCAj

)}
= −

∫
d3x
√
γγij Str

(
DiCDjC − AiDjλ

)
. (3.3)

The bosonic part of this action is manifestly positive-de�nite. The gauge-�xing condition is

DiAi = 0. The action has a ghost number symmetry U(1)F, under which the ghost and the

antighost �elds have charges ±1. If the background �eld satis�es [Di,Di] = 0, or equivalently

Diφi = 0, this symmetry is enhanced to SU(2), which rotates C and C as a doublet and which

we will call SU(2)Y . If we turn o� the background gauge �eld completely, we also recover the

��avor� SU(2)fl symmetry, which is the unitary subgroup of the SL(2) automorphism group

of the superalgebra. The groups SU(2)Y and SU(2)fl commute. Together they generate an

action of SO(4) on the real four-dimensional space parameterized by C and C.

In this chapter, we will not consider the general SL(2) analytic torsion2. From now on,

we restrict our attention to the case that the background �at bundle is abelian, B = L⊕L−1,

where3 L ∈ Hom(H1(W ),C∗). By abuse of notation, we will denote the connection in L by

the same letters B+ iφ, where now B is understood to be a connection in a �at unitary line

bundle, and φ is a closed one-form, whose cohomology class determines the absolute values

of the holonomies in L.

The abelian background �eld preserves a U(1)fl-subgroup of the �avor symmetry group

SU(2)fl. We will furthermore assume that φ is chosen to be the harmonic representative in

its cohomology class, so that the SU(2)Y -symmetry is present.

2The reason is that the Meng-Taubes theorem, which will be the subject of section 3.3, does not seem to
generalize to SL(2) torsion, since only the abelian part of the symmetry is visible in the UV. However, what
could be generalized to the SL(2) torsion (and, in fact, to Sp(2n,C) torsion) is the Hamiltonian quantization
that we consider in section 3.5. This generalization will be discussed elsewhere.

3Throughout the chapter, the coe�cients in homology and cohomology are assumed to be Z, unless
explicitly speci�ed otherwise.
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3.2.2 Relation To A Free Hypermultiplet

Our theory can be obtained by making a topological twist of the theory of a free N = 4

hypermultiplet. This is a trivial special case of the general relation between supergroup

Chern-Simons and N = 4 Chern-Simons-matter theories, found in [24]. For completeness,

we provide some details.

The R-symmetry group ofN = 4 supersymmetry in three dimensions is SU(2)X×SU(2)Y .

The supercharges transform in the (2,2,2)-representation of SU(2)Lorentz×SU(2)X×SU(2)Y .

A supersymmetric theory can be twisted by taking the Lorentz spin-connection to act by

elements of the diagonal subgroup of SU(2)Lorentz × SU(2)X . This leaves an SU(2)Y doublet

of invariant supercharges. We pick one of them, to be called Q, and use it to de�ne a

cohomological topological theory. The ghost number symmetry U(1)F is the subgroup of

SU(2)Y , for which Q is an eigenvector.

The scalars of the free hyper give rise to the ghost �elds C and C. They parameterize

a copy of the quaternionic line H, which has a natural action of two commuting SU(2)

groups. One of them is identi�ed with the R-symmetry group SU(2)Y , and the other is

the �avor symmetry SU(2)fl. The hypermultiplet fermions, which transform in the (2,2,1)

representation of the Lorentz and R-symmetry groups, upon twisting give rise to a vector

�eld and a scalar, which we identify with the fermionic gauge �eld Ai and the Lagrange

multiplier �eld λ.

Finally, the imaginary part of the �at connection φi originates from the SU(2)X-triplet

of hypermultiplet masses. While they are constant parameters in the untwisted theory, they

are promoted to a closed one-form in the topological theory, still preserving the Q-invariance.

Di�erent terms in the action (3.1), (3.3) can be easily seen to originate from the kinetic and

the mass terms for the hypermultiplet scalars and fermions.
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3.2.3 A Closer Look At The Analytic Torsion

Here we would like to take a closer look at the invariant that our theory computes. We

discuss its properties and relation to other known de�nitions of the torsion. For simplicity,

the manifold W is assumed to be closed, unless indicated otherwise.

3.2.3.1 De�nition And Properties

The partition function of the theory can be written as a ratio of determinants,

τ(L) =
detL−

det2∆0

. (3.4)

Here the operator L− = ?(dB − φ) + (dB + φ)? is acting in Ω1
L(W )⊕ Ω3

L(W ), where Ωp
L(W )

is the space of p-forms valued in L. The twisted Laplacian ∆0 = −DiD
i + φiφ

i is acting in

Ω0
L(W ). Note that the operator ∆0 is hermitian, while L− is hermitian only when φ = 0.

The ratio τ(L), by construction, is a holomorphic function of the �at bundle, even though

the determinants in (3.4) are not. We can understand the analytic properties of τ(L) rather

explicitly. The absolute value of the torsion can be written in the usual Ray-Singer form as

|τ(L)| = (det ∆1)1/2

(det ∆0)3/2
, (3.5)

where ∆1 is the twisted Laplacian, acting on one-forms. The numerator in this formula

vanishes, whenever the twisted cohomology H1(W,L) is non-empty. This subspace, possibly

with the exception of the trivial �at bundle, is the locus of zeros of τ(L). The denominator

vanishes, when the twisted cohomology H0(W,L) is non-empty, which is precisely when the

�at bundle L is trivial. At this point the function τ(L) can potentially have a singularity.

In fact, if the �rst Betti number b1 of W is greater than one, the singularity would be of

codimension at least two, which is not possible for a holomorphic function. For b1 = 1, let
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the holonomies of L around the torsion4 one-cycles be trivial, and let t be the holonomy

around the non-torsion one-cycle. At t = 1, the operators ∆0 and ∆1 have one zero mode

each. At small t−1, these eigenfunctions become quasi-zero modes with eigenvalues of order

(t − 1)2, according to the non-degenerate perturbation theory. Plugging this into (3.5), we

see that the ratio τ(L) near the trivial �at bundle is proportional to 1/(t− 1)2, that is, has

a second-order pole. Finally, for b1 = 0 the torsion is a function on the discrete set of �at

bundles. For the trivial �at bundle and b1 = 0, it is natural to set τ to be equal to in�nity5.

Another important property of the torsion is the relation

τ(L) = τ(L−1) , (3.6)

which follows from the charge conjugation symmetry C that maps the superalgebra generators

as f̂± → ±f̂∓, and the line bundle L to its dual L−1.

3.2.3.2 Details Of The De�nition

We would like to make a more precise statement about what we mean by the formal de�nition

(3.4). Let us assume for now that the �at bundle L is unitary. If we eliminate the ambiguities

in the de�nition of τ(L) for such bundles, the de�nition for complex �at bundles will also be

unambiguous, by analyticity.

The absolute value (3.5) of τ(L) is (the inverse of) the Ray-Singer torsion, which is

a well-de�ned and metric-independent object. However, as is well-known in the context

of Chern-Simons theory [4], the de�nition of the phase of τ(L) requires more care. With

our assumption that L is unitary, the operator L− is hermitian and has real eigenvalues.

4A cycle is called �torsion� if it lies in the torsion part of H1(W ), that is, if some multiple of it is trivial.
This use of the word �torsion� is totally unrelated to �torsion� as an invariant of the manifold. Hopefully,
this will not cause confusion.

5One could say that for the trivial bundle the path-integral is unde�ned, since it has both bosonic and
fermionic zero modes. But it is natural to set it equal to in�nity for b1 = 0, because, thinking in terms of
gauge-�xing, the path-integral has a factor of inverse volume of the gauge supergroup, which is in�nity, since
this volume is zero. Taking Z(S3) =∞ also makes the factorization formulas of the ordinary Chern-Simons
valid in the supergroup case.
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Since the determinant of L− comes from a fermionic path-integral, it is natural to choose a

regularization, in which it is real. The only possible ambiguity then is in its sign. Note that

this is mainly interesting in the case when there is torsion in H1(W ), so that the space of

�at bundles is not connected, and signs can potentially be changed for di�erent connected

components.

Let us suggest a way to de�ne the sign of L−. What we are about to say might not seem

particularly natural at �rst sight, but, as we show later, matches well with known de�nitions

of the analytic and combinatorial torsion. Let us pick a spin structure s on the three-manifold

W , and take some oriented spin four-manifold V , of which W with a given spin structure is

a boundary. The line bundle L can be extended onto V , though the extension might not be

�at. On V we consider the Donaldson operator L4 : Ω1
L(V )→ Ω0

L(V )⊕ Ω2,−
L (V ) that arises

from the linearization of the self-duality equations, twisted by the line bundle L. Here Ω2,−

is the bundle of anti-selfdual two-forms. We de�ne the sign of the determinant of L−, and

therefore of the torsion τ(L), using the index of the elliptic operator L4,

sign τ(L) = (−1)ind(L4)−ind(L4,triv) , (3.7)

where L4,triv is the Donaldson operator coupled to the trivial line bundle. The motivation

behind this de�nition is that, if we were to compute the change of sign of detL− under a

continuous change of L, we could naturally do it by using the formula (3.7) with the four-

manifold taken to be the cylinder W × I, since the index of L4 on such a cylinder computes

the spectral �ow of L−.

We started with a choice of a spin structure, but so far it did not explicitly enter the

discussion. Its role is the following. For two di�erent choices of the four-manifold, the change

in the sign of detL− is governed by the index of L4 on a closed four-manifold V ′, which,
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according to the index theorem, is

ind(L4)− ind(L4,triv) =

∫
V ′
c1(L)2 . (3.8)

However, since the spin structure on W can be extended to V ′, the four-manifold V ′ is spin,

and therefore its intersection form is even, and so is the right hand side of (3.8). We conclude

that the sign of τ(L) depends on a spin structure on W , but not on the choice of the four-

manifold. (This is equivalent to the well-known fact [98] that a choice of a spin-structure

allows to de�ne a half-integral Chern-Simons term for an abelian gauge �eld.)

It is not hard to calculate the dependence on the spin structure explicitly. Let s1 and s2

be two spin structures on W , which di�er by some x ∈ H1(W,Z2). Let V1 and V2 be four-

manifolds with boundary W , onto which s1 and s2 extend. Now the closed four-manifold

V ′, glued from V1 and V2 along their boundary W , need not be spin, and its Stiefel-Whitney

class w2 ∈ H2(V ′,Z2) can be non-zero. The intersection form is not even, but its odd part

is governed by the Wu's formula, which tells us that c2
1 = c1 ^ w2, where c1 is the mod 2

reduction of c1(L). (This is true for any H2(V ′,Z2) class, of course.) The Stiefel-Whitney

class of V ′ is determined by x. For a given good covering of V ′, the two spin structures s1

and s2 de�ne a lift of the transition functions of the tangent bundle of V ′ from SO(4) to

Spin(4), and this lift is consistent everywhere, except for a codimension-two chain, lying in

W . This chain de�nes the Stiefel-Whitney class of V ′, but it is also the Poincaré dual of the

class x in W . These arguments allow us to write

∫
V ′
c1(L)2 =

∫
V ′
c1(L)^w2 =

∫
PD(w2)

c1(L) =

∫
PD(x)

c1(L) =

∫
W

c1(L)^x mod 2 , (3.9)

where PD stands for Poincaré dual. We conclude that under a change of the spin structure

by x, the sign of τ(L) changes by the factor

(−1)
∫
W c1(L)^x . (3.10)
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It will be useful to rearrange this formula a little. For that we need to recall a couple of

topological facts. The topology of a �at line bundle is completely de�ned by its holonomies

around the torsion one-cycles. This is formalized by the following exact sequence,

H1(W )→ H1(W,R)
α−→ H1(W,U(1))

β−→ torH2(W )→ 0 , (3.11)

which is associated to the short exact sequence of coe�cients 0→ Z→ R→ U(1)→ 0. By

Pontryagin duality, H1(W,U(1)) ' Hom(H1(W ),U(1)) is the abelian group of (unitary) �at

line bundles on W . The morphism α gives a �at bundle with trivial holonomy around the

torsion cycles and given holonomy around the non-torsion cycles6. The morphism β maps a

given �at bundle to its �rst Chern class, which depends only on the holonomies around the

torsion cycles, by exactness of the sequence. Pick a pair of classes y1 and y2 from torH2(W ).

Let L1 be some �at bundle with Chern class y1. Its holonomies around the torsion cycles are

completely de�ned by y1. We can take a holonomy of L1 around the one-cycle, Poincaré-dual

to y2. The logarithm of this number gives a pairing torH2(W )×torH2(W )→ Q/Z, which is

known as the linking form. An important fact is that it is bilinear and symmetric. (Actually,

this pairing is just the U(1)× U(1) Chern-Simons term for �at bundles.)

Returning to the formula (3.10), we note that x ∈ H1(W,Z2) de�nes a Z2-bundle, and

(3.10) is the holonomy of this bundle around the one-cycle, Poincaré dual to c1(L). Since the

linking form is symmetric, this holonomy is equal to the holonomy of L around the one-cycle,

Poincaré dual to c1(x), where, to construct c1(x), we think of the Z2-bundle de�ned by x as

of a U(1)-bundle. This holonomy will be denoted by L(c1(x)). We conclude that it de�nes

the change of the sign of τ(L), when the spin structure on W is changed by x. To indicate

the dependence on the spin structure explicitly, we will sometimes write the torsion as τs(L),

so that

τx·s(L) = L(c1(x)) τs(L) . (3.12)

6What one means by non-torsion cycles is not canonically de�ned, but this does not matter, when the
holonomies around the torsion cycles are trivial.
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It is noteworthy that if the line bundle L has trivial holonomies around 2-torsion cycles, the

de�nition of τ(L) is independent of any choices at all.

In fact, even for a generic �at bundle, τs(L) depends on something less than a spin

structure. There is a natural map from the set of spin structures to the set of spin-C

structures with trivial determinant, which is given by tensoring with a trivial line bundle,.

This map is not an isomorphism, because in general two di�erent spin structures can map

to the same spin-C structure. Since the change of the sign of τs(L) under a change of s by

an element x of H1(W,Z2) depends only on the �rst Chern class of the line bundle obtained

from x, the sign of τs(L) really depends only on a spin-C structure with trivial determinant,

and not on the spin structure itself.

One could consider some trivial generalizations of our de�nition of the torsion. For

example, τs can be naturally de�ned for an arbitrary spin-C structure s, not necessarily with

trivial determinant. Let s0 be some arbitrary spin-C structure with trivial determinant, s

be an arbitrary spin-C structure, and let y ∈ H2(W ) be such that y · s = s0. We can set

τs(L) = L(y)τs0(L). Clearly, (3.12) implies that τs depends only on s, and not on the choice

of s0. In quantum �eld theory terms, this modi�cation amounts to adding to the action

a local topologically-invariant functional of the background gauge �eld � the Wilson loop

of L around the cycle, Poincaré-dual to y ∈ H2(W ). Another possible modi�cation of the

de�nition would be to add a Chern-Simons term for the background �eld B. Note that, if we

choose the coe�cient of this term to be a half-integer, this would eliminate the dependence of

τs on the spin structure. In what follows, we will mostly restrict to our most basic de�nition

of τs, unless indicated otherwise.

3.2.3.3 Comparison To Known De�nitions

Let us comment on the relation of our torsion to some known de�nitions from the mathe-

matical literature. A rigorous de�nition of the complex analytic torsion was given in [97].
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The authors consider essentially7 the same ratio of determinants (3.4) and use the ζ-function

regularization to de�ne it as a holomorphic function of the �at bundle L. An important dif-

ference, however, is that for a unitary �at bundle their torsion is not real, but has a phase,

proportional to the eta-invariant of L−. In the language of functional integral, such de�nition

is perhaps more natural [4], when the determinant of L− comes from a bosonic, rather than

a fermionic functional integral. The relation to our de�nition is given by the APS index

theorem: to transform the eta-invariant into the index, one needs to subtract what might be

called a half-integral Chern-Simons term of the �at connection in the line bundle L. This is

why the dependence on a spin structure appeares in our story, but not in [97].

In fact, there is a combinatorial de�nition of torsion, which, as we conjecture, is precisely

equal to our τs(L). This is the Turaev's re�nement of Reidemeister torsion8. We brie�y

summarize some facts about it. For a detailed review, as well as references, the reader can

consult [88].

Let W ′ be a compact three-manifold, which is closed or is a complement of a link neigh-

borhood in a closed three-manifold, so that it has a boundary consisting of a number of tori.

(In our language, non-empty boundary will correspond to adding line operators, to which we

turn in the next section.) In either case, the Euler characteristic of W ′ is zero. Reidemeister

torsion of W ′ is de�ned as the determinant of a particular acyclic complex, twisted by a

vector representation of the fundamental group of the manifold. The determinant of this

combinatorially de�ned complex can be viewed as a discretisation of the functional integral,

which computes the analytic torsion. We will assume that the representation of the funda-

mental group is given by the �at line bundle L. Reidemeister torsion is de�ned only up to

7There are some di�erences. The discussion in [97] is more general: the authors consider a manifold of
arbitrary odd dimension, and not necessarily one-dimensional �at vector bundles. Another di�erence from
our approach, if phrased in path-integral language, is that in [97] the gauge-�xing term in the analog of (3.3)
is de�ned using the derivative D, rather than its conjugate. This eliminates the need to pick a hermitian
structure on the �at bundle, but makes the functional integral representation of the determinant more formal.
Finally, the ratio of determinants in [97] is actually the inverse of ours.

8Note that sometimes Reidemeister torsion is de�ned to be the inverse of what we consider here. With the
de�nition that we use, the absolute value of the combinatorial torsion is equal to the inverse of Ray-Singer
torsion, de�ned in the usual way.
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a sign and up to multiplication by a holonomy of L around an arbitrary cycle in W ′. This

happens because the determinant depends on the basis in the complex, of which there is no

canonical choice. Turaev has shown [99] that this ambiguity can be eliminated, once one

makes a choice of what he called an Euler structure9. In analytical terms, it is a choice of a

nowhere vanishing vector �eld, up to homotopy and up to an arbitrary modi�cation inside

a three-ball. Such vector �elds always exist on W ′, since χ(W ′) = 0. In three dimensions,

it is not hard to see that Euler structures are in a canonical one-to-one correspondence with

spin-C structures. For a spin-C structure s, let us denote the Reidemeister-Turaev combina-

torial torsion by τRT
s (L). Under a change of the spin-C structure by an element y ∈ H2(W ′),

the torsion changes as

τRT
y·s (L) = L(y) τRT

s (L) , (3.13)

where, as usual in our notations, L(y) is the holonomy of L around the cycle Poincaré dual

to y. The combinatorial torsion also has a charge conjugation symmetry C

τRT
s (L−1) = (−1)`τRT

s (L) = (−1)` L−1(c1(det s))τRT
s (L) , (3.14)

where s is the conjugate of the spin-C structure s, and ` is the number of connected compo-

nents of the boundary of W ′. The second equality here follows from (3.13).

If the three-manifold W ′ is closed and the spin-C structure s has trivial determinant,

we claim that τRT
s coincides with our analytic torsion τs. (Modulo signs, that is, ignoring

the dependence on the spin structure, this statement would follow from the results of [97]

and [100].) For a spin-C structure with trivial determinant, the properties (3.13) and (3.14)

reduce to our formulas (3.12) and (3.6), respectively. When the three-manifold W ′ is not

closed but is a complement of a link, the relation between τRT
s and our τs should still hold,

with an appropriate de�nition of the analytic torsion in presence of line operators. This will

9More precisely, the choice of an Euler structure eliminates the freedom to multiply the torsion by a
holonomy of L, while the overall sign can be �xed by choosing an orientation in the homology H•(W

′).
At least for a closed three-manifold, there exists a canonical homology orientation, de�ned by the Poincaré
duality, and we assume that our theory automatically picks this orientation.
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be discussed in the next section.

An important special case is when the �at bundle L has trivial holonomies around the

torsion one-cycles. Then τRT
s (L) is a holomorphic function of b1(W ′) variables t1, . . . , tb1 .

Let us also ignore the dependence on s, so that we consider τ modulo sign and modulo

multiplication by powers of t•. This variant of the combinatorial torsion is known as the

Milnor torsion. A theorem due to Milnor [101] and Turaev [102] describes its relation to

the Alexander polynomial ∆ of W ′, which is a function of the same variables t1, . . . tb1 . If

b1(W ′) > 1, then τ = ∆. If b1(W ′) = 1, then τ = t∆/(t − 1)2, if W ′ is a closed three-

manifold, and τ = ∆/(t − 1), if W ′ is a complement of a knot in a closed three-manifold.

For a closed W ′, these statements are in agreement with the analytical properties of our τ ,

described in section 3.2.3.1.

3.2.4 Line Operators

We would like to de�ne some line operators in our theory, in order to study knot invariants.

First thing that comes to mind is to use Wilson lines. For these to be invariant under the

transformations (3.2), they should be labeled by representations of pl(1|1). This superalgebra

contains psl(1|1) as well as one bosonic generator, which acts on the fermionic generators

with charges ±1. The Wilson lines should be de�ned with the pl(1|1) connection A+B+ iφ.

In fact, the only irreducible representations of pl(1|1) are one-dimensional representations, to

be denoted (m), in which the bosonic generator acts with some charge m, and the fermionic

generators act trivially. Inserting a Wilson loop in representation (m) along a knot K

is equivalent to multiplying the path-integral by the m-th power of the holonomy of the

background bundle L around the cycle K. Though this operator is of a rather trivial sort,

it will be convenient to consider it as a line operator. It will be denoted by Lm, m ∈ Z.

According to the remarks at the end of section 3.2.3.2, inserting operators Lm around various

cycles is equivalent to changing the spin-C structure, with which the torsion is de�ned.

All the other representations of pl(1|1) are reducible, but, in general, can be indecompos-
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Figure 3.1: Examples of reducible indecomposable representations of pl(1|1). The dots are the basis
vectors, and the arrows show the action of the fermionic generators f̂±. The numbers n, n−1, . . . are
the eigenvalues of the bosonic generator of pl(1|1), that is, the U(1)fl-charges. The representations
(0, n)− and (0, n)+ are known as the (anti-)Kac modules.

able10. Some examples are shown on �g. 3.1. (There are more such representations � they are

listed e.g. in [103], � but we will not need them.) In this chapter, we are mostly interested

in closed loop operators. Naively, due to the presence of the supertrace, a closed Wilson

loop labeled by a reducible indecomposable representation splits into a sum of Wilson loops

for the invariant subspaces and quotients by them. If this were true, the indecomposable

representations would not need to be considered separately. We will later �nd that, due to

regularization issues, at least for some indecomposable representations the Wilson loops do

not actually reduce to sums of Wilson loops Lm. This will be discussed in section 3.5, but

till then we will not consider indecomposable representations.

In the case that the holonomy of the background �eld along some loop K is trivial, one

can construct a line operator by inserting an integral
∮
K
A± into the path-integral. Note

that these operators transform as a doublet under the SU(2)fl �avor symmetry. These will

play the role of creation/annihilation operators in the Hamiltonian picture in section 3.5,

but, again, will not be important till there.

The most useful line operator can be obtained by cutting a knot (or a link) K out of W ,

and requiring the background gauge �eld to have a singularity near K with some prescribed

holonomy t around the meridian of the knot complement11. It is this type of line operators

10That is, they have invariant subspaces, but need not split into direct sums.
11The meridian is the cycle that can be represented by a small circle, linking around the knot. A longitude

is a cycle that goes parallel to the knot. The longitude, unlike the meridian, is not canonically de�ned. Its
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that will give rise to the Alexander knot polynomial.

One has to be careful in de�ning the determinants (3.4) in presence of such a singular-

ity. In this chapter, our understanding of the determinants in this case will be much less

complete than in the case of closed three-manifolds. We will not attempt to give a rigorous

de�nition, but will simply state some results that are consistent with other approaches to line

operators, which are discussed later in the thesis, and with known properties of the Alexan-

der polynomial. Let t be the holonomy around the meridian of the knot K, and t‖ be the

holonomy around the longitude. While t is a part of the de�nition of the line operator along

K, t‖ depends on the �at connection and, in particular, on other line operators, linked with

K. The problem with the determinants (3.4) in presence of line operators is that in general

they can be anomalous, that is, they can change sign under large gauge transformations of

the background gauge �eld. Equivalently, one will in general encounter half-integral powers

of t and t‖ in the expectation values. One possible resolution is to choose a square root of

the holonomies, or, equivalently, to take L ' L′2, and to consider the knot polynomial as a

function of the holonomies of L′. One expects this to produce a version of the Alexander

polynomial known as the Conway function. (See section 4 of [102] for a review.) Alternative

approach, which we will assume in most of the chapter, is to add along the longitude of the

knot a Wilson line for the background gauge �eld. So, we will in general consider combined

line operators, labeled by two parameters t and m, with m being the charge for the Wilson

line for the background �eld B+ iφ. It will be clear from the discussion of the U(1|1) theory

in section 3.4 that for gauge invariance, the charge m should be taken valued in 1/2 + Z.

It is more convenient to work with an integer parameter n = m + 1/2, and we will accord-

ingly label our line operators as Lt, n. Note that, since the longitude cycle is not canonically

de�ned, the de�nition of these line operators depends on the knot framing. Under a unit

change of framing, the Wilson line for the background gauge �eld will produce a factor of

tn−1/2. With suitable choices of framing, half-integral powers of t will not appear in the

choice is equivalent to choosing a framing of the knot.
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expectation values.

The operators Lt, n will sometimes be called typical, while Ln and Wilson lines for the

indecomposable representations will be called atypical. This terminology originates from the

classi�cation of superalgebra representations, as we brie�y recall in section 3.4.1.

3.3 Magnetic Theory And The Meng-Taubes Theorem

As was explained in section 3.2.2, our Chern-Simons theory can be obtained from the theory

of a freeN = 4 hypermultiplet by twisting. An alternative description of the same topological

theory can be obtained, if we recall that the free hypermultiplet describes the infrared limit

of the N = 4 QED with one electron. This is the basic example of mirror symmetry [104]

in three-dimensional abelian theories, which was understood in [105] as a functional Fourier

transform. By metric independence of the topological observables, they can be equally well

computed in the UV or in the IR description. We now consider the topologically-twisted

version of the UV gauge theory, which we will call the �magnetic� description.

(On a compact manifold, the claim that the RG �ow from the UV theory leads to a free

hypermultiplet depends on the presence of the non-trivial background �at bundle, which

forces the theory to sit near its conformally-invariant vacuum. When the background gauge

�eld is turned o�, e.g. as is necessarily the case for a manifold with trivial H1, the situation

is more subtle. This and some other details will be discussed in part 3.3.3 of the present

section.)

3.3.1 The N = 4 QED With One Electron

We now describe the bosonic �elds of the theory. The fermionic �elds, as well as the details

on the action, are discussed in the Appendix A. Bosonic �elds of the vector multiplet are a

gauge �eld Ai and an SU(2)Y -triplet of scalars Y
ȧ. (Bosonic gauge �eld Ai here is completely

unrelated to the fermionic gauge �eld of the electric gauge theory. In fact, the �elds of the
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electric description emerge from the monopole operators of the UV theory.) In the twisting

construction we use the SU(2)X-subgroup of the R-symmetry, so the scalars of the vector

multiplet will remain scalars. It is convenient to introduce a combination σ = (Y2− iY3)/
√

2,

which has charge 2 under the ghost number symmetry U(1)F . The remaining component Y1

has ghost number zero. The hypermultiplet contains an SU(2)X-doublet of complex scalars,

which upon twisting become a spinor Zα. They have charge one under the gauge group. The

imaginary part φ of the background �at connection originated from the masses in the electric

description. Under the mirror symmetry, it is mapped to a Fayet-Iliopoulos parameter.

The �avor symmetry SU(2)fl is emergent in the infrared limit. In the UV, only its Cartan

part is visible � it is identi�ed with the shift symmetry of the dual photon. The current for

this symmetry is −i
2π
?F , where F = dA. The real part of the background gauge �eld couples

to this symmetry, so, it should enter the action in the interaction − i
2π

∫
B ∧ F . In fact, the

whole action of the topological theory has the form

IQED = {Q, . . . }+ Itop , (3.15)

where

Itop = − i

2π

∫
(B + iφ) ∧ F . (3.16)

(More details are given in Appendix A.) This can be more accurately written as

exp(−Itop) = L−1 (c1(A)) , (3.17)

where A is a line bundle, in which A is the connection. The �elds Zα take values in a spin-C

bundle, and correspondingly, the path-integral includes a sum over spin-C structures s′. We

view this spin-C bundle as a spin bundle S for some �xed spin structure s, tensored with

the line bundle A. We identify the reference spin structure s with the spin structure, which

was used in the de�nition of torsion on the electric side. A change of the spin structure
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by an element x ∈ H1(W,Z2) is equivalent to twisting the bundle A by the Z2-bundle,

corresponding to x. The formula (3.17) then changes in the same way (3.12) as the torsion

τs(L), in agreement with the mirror symmetry12. The theory also has a charge conjugation

symmetry, which, as on the electric side, implies that the invariants for L and L−1 are the

same.

Note that, instead of (3.16), we could try to use

exp(−Itop)
?
= L−1

(
1

2
c1(det s′)

)
. (3.18)

Here det s′ is the determinant line bundle of the spin-C bundle, in which the �elds Zα live.

However, the factor of 1/2 inside the brackets means that one has to take a square root of

the holonomy of L, and therefore the sign of this quantity is not well de�ned. This is the

same ambiguity that we encountered in section 3.2.3.2, and it is resolved, again, by picking

a reference spin structure s.

The functional integral of the magnetic theory can be localized on the solutions of BPS

equations {Q, ψ} = 0, where ψ is any fermion of the theory. One group of these equations

actually tells us that the solution should be invariant under the gauge transformation with

parameter, equal to the �eld σ. We will only consider irreducible solutions, and therefore σ

must be zero. We also only consider the case that the background �eld satis�es d ? φ = 0,

so that the twisted theory has the full SU(2)Y -symmetry. (We have seen on the electric side

that d ? φ = 0 is the condition for this symmetry to be present. On the magnetic side, one

can also explicitly check this, as shown in the Appendix A.) This symmetry, together with

vanishing of σ, implies that Y1 is also zero. With this vanishing assumed, the remaining BPS

12Again, s should be more appropriately viewed as a spin-C structure with trivial determinant. Of course,
we could equally well take an arbitrary reference spin-C structure. That would give the trivial generalization
of τs to arbitrary spin-C structures, as described at the end of section 3.2.3.2.
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equations take the form of the three-dimensional Seiberg-Witten equations,

F +
1

2
?
(
µ− e2φ

)
= 0 ,

/DZ = 0 , (3.19)

where µ = iσβj α Z
αZβ dxj is the moment map, with σβi α being the Pauli matrices contracted

with the vielbein, e2 is the gauge coupling, and /D is the Dirac operator, acting on the sections

of S ⊗ A. Generically, the localization equations have a discrete set of solutions, and the

partition function of the theory can be written as

τs(L) =
∑
S

(−1)f L−1(c1(A)) , (3.20)

where the sum goes over the set S of solutions of the Seiberg-Witten equations, A is a

line bundle, corresponding to the given solution, and (−1)f is the sign of the fermionic

determinant.

The relation between the Reidemeister-Turaev torsion and the Seiberg-Witten invariant

in three-dimensions is the content of the Meng-Taubes theorem [20] and its re�nement due

to Turaev [92]. We have presented a physicist's derivation of this theorem. Some subtleties

that arise for three-manifolds with b1 ≤ 1 are discussed later in this section.

3.3.2 Adding Line Operators

Let us describe the magnetic duals of line operators, which were introduced in section 3.2.4.

The �rst type of line operators were the integrals of the fermionic gauge �eld
∫
K
A±. On

the magnetic side, their duals will be the integrals of monopole operators, which we will not

discuss. The second type were the Wilson lines for the background gauge �eld. Obviously,

their de�nition will be the same on the magnetic side.

Non-trivial and interesting line operators were de�ned by singularities of the background
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�at connection. We denoted them by Lt ,n in section 3.2.4. Since the one-form φ enters the

BPS equations (3.19) on the magnetic side, the singularity of φ implies that those equations

will have solutions with a singularity along the knot K. The line operator is then de�ned

by requiring the �elds to diverge near K as in a particular singular model solution. We use

notation W for the closed three-manifold, and W ′ for the manifold, obtained from W by

cutting out a small toric neighborhood of the singular line operator. Let r and θ be the

polar coordinates in the plane, perpendicular to K. Near the knot, the singularity of the

imaginary part of the background gauge �eld has the form

φ = −γ dθ + β
dr

r
. (3.21)

(We follow the notations of [53].) Note that whenever the parameter β is non-zero, the closed

two-form ?φ has a non-vanishing integral around the boundary of the toric neighborhood of

the link. This might be forbidden for topological reasons � e.g., if K is a one-component link

in S3. In such cases, β cannot be turned on. Even when the parameter β can be non-zero,

we expect the invariants to be independent of it.

To �nd the model solution, consider the case thatW is the �at space, and K is a straight

line. Let Z1 and Z2 be the two components of Zα, and z = r exp(iθ) be the complex

coordinate in the plane, perpendicular to K. We are looking for a time-independent, scale-

invariant solution of the Seiberg-Witten equations. The gauge �eld in such a solution can

be set to zero, so that the remaining equations give

Z1(Z2)† =
e2(β + iγ)

2z
, Z1(Z1)† − Z2(Z2)† = 0 , ∂zZ

1 = ∂zZ
2 = 0 , (3.22)

and the scale-invariant solution is simply Z1 = a/
√
z, Z2 = b/

√
z, where ab† = e2(β + iγ)/2

and |a|2 = |b|2. Note that the �eld Zα here is antiperiodic around K. Since we view Zα as

a spinor �eld on the closed three-manifold W , it should rather be periodic, so, we make a
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gauge transformation to bring the model solution to the form

Z1 =
a√
r
, Z2 =

b√
r

exp(iθ) , A = −1

2
dθ . (3.23)

To complete the de�nition of the line operator, we also need to explain, how the topolog-

ical action (3.17) is de�ned in presence of the singularity. The �at bundle L is naturally an

element of Hom(H1(W ′),C∗). By Poincaré duality, it can be paired with an element of the

relative cohomology H2(W ′, ∂W ′), and this pairing will de�ne the action. If we forget for a

moment about possible torsion, the relative cohomology class that we need is naturally the

cohomology class [F/2π] of the gauge �eld strength for a given solution. However, here we

encounter the mirror of the problem that we had on the electric side: this class in general

is not integral. The reason, roughly speaking, is the antiperiodicity of the �eld Zα around

K, or equivalently, the half-integral term −1
2
dθ in the gauge �eld (3.23) near the line op-

erator. (Depending on the topology, there can also appear a similar term with θ replaced

by the angle along K.) This will in general cause half-integral powers of the holonomies

t and t‖ to appear in the torsion invariant. To remove them, just as in section 3.2.4, one

introduces along K a Wilson line for the background gauge �eld with a half integral charge

n−1/2. With a suitable choice of framing, this is enough to remove the half-integral powers

of holonomies.

Here we viewed the �eld Zα as a section of the spin bundle on W , tensored with a

line bundle A with connection A. A more systematic way to de�ne these line operators

is to allow spin (or spin-C) structures on W ′ that do not necessarily extend to W . The

antiperiodicity of Z in the model solution (3.23) can then be absorbed into the de�nition

of this spin structure. The �eld Zα then provides an honest cross-section of the line bundle

A in the neighborhood of the link, and this allows to canonically de�ne an integer-valued

relative Chern class c1(A) ∈ H2(W ′, ∂W ′). The charge n of the background �eld Wilson

line and the choice of the framing are then absorbed into the choice of the spin-C structure.
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This is the approach taken in the mathematical literature13, see e.g. [88]. This point of

view is consistent with the picture that inserting line operators of type Lm, or changing the

parameter n for operators Lt, n, is equivalent to changing the spin-C structure.

We only considered the case that the holonomy of the background �at connection around

the meridian of the knot is not unimodular. In the opposite case, we have γ = 0 in eq.

(3.21), and, assuming that the parameter β is also zero, the singular model solution seems

to disappear. This makes it unclear, how to de�ne the magnetic duals of line operators with

unimodular holonomy, except by the analytic continuation from γ 6= 0. This problem looks

analogous to the one described in the end of section 2.4.4.5 of Chapter 2.

3.3.3 More Details On The Invariant

In our derivation of the relation between the Seiberg-Witten invariant and the Reidemeister-

Turaev torsion we ignored some subtleties [20], [106], which occur for three-manifolds with

b1 ≤ 1. Here we would like to close this gap. First we look at the UV theory, and then we

describe the RG �ow to the IR theory in more detail. We will see that the claim that the

IR theory is the psl(1|1) Chern-Simons model sometimes has to be corrected.

3.3.3.1 Seiberg-Witten Equations For b1 ≤ 1

Let us look closer at the Seiberg-Witten counting problem. Our goal here is not to derive

something new, but merely to understand, how gauge theory takes care of some subtleties

in the formulation of the Meng-Taubes theorem.

Note that in the analogous problem in the context of Donaldson theory in four dimensions,

the gauge theory gives the �rst of the Seiberg-Witten equations roughly in the form F+ +

ZZ = 0. To avoid dealing with reducible solutions with F+ = 0, one introduces by hand

a deformation two-form in the equation [11]. In our case, the situation is di�erent: the

13There is also another di�erence of our treatment of line operators from mathematical literature. There,
the analogs of line operators are typically introduced by gluing in an in�nite cylindrical end to the manifold
W ′, rather than by considering solutions on W with singularities.
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deformation two-form e2 ? φ/2 is already there. In nice situations, the counting of solutions

does not depend on the choice of this deformation, so any two-form could be taken. But

sometimes it is not true, and then it will be important, what deformation two-form is chosen

for us by the gauge theory.

The properties of the counting problem depend on the �rst Betti number b1(W ), whose

role here is analogous to b+
2 in four dimensions. For b1 > 0, a reducible solution has Z = 0 and

F = e2?φ/2. For such a solution to occur, the cohomology class of e2?φ/2 has to be integral.

When in the parameter space we pass through such a point, so that reducible solutions are

possible, the counting of solutions can in principle jump. This makes the Seiberg-Witten

invariant dependent on the deformation two-form, or the metric and e2, if we prefer to keep

the deformation two-form equal to e2 ? φ/2 with �xed φ. Actually, for b1 > 1 no jumping

is possible, since in the space of deformation two-forms we can always bypass the point,

where reducible solutions can occur. But for b1 = 1, non-trivial wall-crossing phenomena

do happen. As we change the two-form e2 ? φ/2, and its cohomology class passes through

an integer point, the number of solutions with �rst Chern class [F/2π] equal to this integer

does change in a known way [107]. (For the particular case of S1 × S2, the Seiberg-Witten

counting problem is worked out in detail in the Example 4.1 in [88].)

There is another related issue. As we explained in section 3.2.3.1, the torsion, to which the

Seiberg-Witten invariant is supposed to be equal to, for b1 = 1 has a second order pole. Just

for concreteness, consider the manifold S1× S2, for which the torsion is14 τ(t) = t/(t− 1)2,

where t is the holonomy around the non-trivial cycle. If we expand this, say, near t = 0,

we get a semi-in�nite Laurent series t + 2t2 + . . . . However, it is known that for any given

deformation two-form the Seiberg-Witten equations have only a �nite number of solutions.

The resolution of these puzzles is that we need to take the infrared limit of the theory,

e.g. by taking e2 to in�nity. This means that we have to take the deformation two-form

14The function τ(t) should have a second order pole at t = 1. Also, it cannot have any zeros for t ∈ C∗\{1},
since the twisted cohomology H1(S1×S2,L) for such t is empty. Imposing also invariance under the charge
conjugation C, we recover the stated result, up to a constant numerical factor.
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to be +∞ · ?φ. That is, it should be proportional to ?φ with a positive coe�cient, and, to

count solutions with a given Chern class [F/2π], we should use a deformation two-form with

Chern class much larger than [F/2π] in absolute value. This is equivalent to the prescription

of Meng and Taubes. Depending on the sign of φ, the two expansions that we get in this

way for S1 × S2 would be t + 2t2 + . . . and t−1 + 2t−2 + . . . . One can check that the sign

of φ is such that |t| < 1 in the �rst case and |t| > 1 in the second, so that in either case the

expansion is absolutely convergent.

Just like for closed three-manifolds, for manifolds with links in them, the Seiberg-Witten

counting problem for b1(W ′) = 1 is special. (This case arises e.g. when one cuts out a one-

component knot from a simply-connected manifold.) As we reviewed in the end of section

3.2.3.3, the Reidemeister torsion for such a manifold has a �rst order pole. Therefore, it has

two di�erent Laurent expansions near t = 0 and t = ∞. The Seiberg-Witten equations in

this case have an in�nite number of solutions, with Chern class unbounded from above or

from below, depending on the sign of the deformation two-form e2 ? φ. The sign of e2 ? φ is

such that these expansions are absolutely convergent. Unlike the case of a compact three-

manifold, here we do not need to explicitly take e2 to in�nity, since the deformation two-form

e2 ? φ already diverges near the knot.

When W is a rational homology sphere, that is b1 = 0, there is no way to avoid reducible

solutions in working with the Seiberg-Witten equations. Because of this, a simple signed

count of solutions is no longer a topological invariant. Still, one can de�ne a topological

invariant by adding an appropriate correction term [107]. We will not attempt to derive it

from the quantum �eld theory, but will in what follows use the fact that the de�nition of

the invariant for b1 = 0 does exist.

3.3.3.2 Massive RW Model And The Casson-Walker Invariant

Let us now turn to the IR theory, which is a valid description, when the size of the three-

manifoldW is scaled to be large. The topological theory reduces in this case to the Rozansky-
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Witten (RW) sigma-model [91] with the target space being the Coulomb branch manifold,

which for the N = 4 QED is [108] the smooth Taub-NUT space XTN. The U(1) graviphoton

translation symmetry is generated on XTN by a Killing vector �eld V . The coupling of the

UV theory to the �at gauge �eld B + iφ translates into a coupling of the RW model to the

same �at gauge �eld via the isometry V . In the untwisted language, the imaginary part φ

of the gauge �eld would be a hyperkäler triplet of mass terms. For this reason, we call our

IR theory the massive Rozansky-Witten model. An explicit Lagrangian and more detailed

treatment of this theory will appear elsewhere. The coupling of the Rozansky-Witten model

to a dynamical Chern-Simons gauge �eld has been previously considered in [24]. We will

now see, how and when the massive RW model reduces to the Gaussian psl(1|1) theory.

First, let us turn o� the background �at gauge �eld. What we get then is the ordinary

RW model for XTN. The path-integral of that theory has the following structure [91]. The

kinetic terms have both bosonic and fermionic zero modes. The bosonic ones correspond

to constant maps to the target space. The integral over the bosonic zero modes thus is an

integral over XTN. The one-loop path-integral produces a simple measure factor, while most

of the higher-loop diagrams vanish. The reason is that all the interactions (which involve the

curvature of XTN) are irrelevant in the RG sense, and can be dropped, when the worldsheet

metric is scaled to in�nity. However, some diagrams do survive due to the presence of the

zero modes. Overall, the path-integral for each b1 is given by a simple Feynman diagram,

which captures the topological information about W , times the integral of the Euler density

of XTN. It is important that the path-integral depends on the target space only by this

curvature integral. The Euler numbers happen to be the same for XTN and for the Atiyah-

Hitchin manifold XAH. This was used in [93] to derive a special case of the Meng-Taubes

theorem by the following argument. The RW model for XAH can be obtained from the IR

limit of the topologically-twisted N = 4 SU(2) Yang-Mills theory [108], which computes the

Casson-Walker invariant [109], [110], [111]. Since the Rozansky-Witten invariants computed

usingXTN andXAH are the same, the Casson-Walker invariant is equal to the Seiberg-Witten
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invariant, when the background bundle is trivial.

Now let us turn on the background bundle back again. In its presence, the kinetic terms

of the RW model have no zero modes. The classical solution, around which one expands, is

the map to the �xed point of the vector �eld V , that is, to the conformally-invariant vacuum.

In the absence of the zero modes, all the irrelevant curvature couplings can be thrown away.

In this way, the RW path-integral reduces to the Gaussian integral of the psl(1|1) model. It is

natural to expect the path-integral to be continuous in L. To the extent that this is true, the

torsion τ(L) evaluated for trivial L should thus coincide with the Casson-Walker invariant.

Note that on the level of Feynman diagrams this is not completely trivial, since for B+iφ = 0

the interaction vertices come from the curvature terms, while for B+ iφ 6= 0 they come from

expanding the Gaussian path-integral in powers of the background gauge �eld. Still, the

actual Feynman integrals should coincide. We will not explicitly analyze the diagrams here

(most of them were analyzed in [91]), but will just use the known relation between τ and

the Casson-Walker invariant to check the continuity of the massive RW path-integral in L.

Let τ(1) denote the torsion evaluated for the trivial background �at bundle15, and CW

be the Casson-Walker invariant. For b1 ≥ 2, it is indeed true that τ(1) = CW. For b1 = 1,

the torsion has the form

τ(t) =
t∆(t)

(t− 1)2
, (3.24)

where ∆(t) is the Alexander polynomial. Setting t = exp(m) and expanding this in m, we

get

τ(t) =
∆(1)

m2
+

1

2
∆′′(1)− 1

12
∆(1) +O(m2) . (3.25)

Dropping the 1/m2 term, we de�ne the regularized torsion τreg(1) = 1
2
∆′′(1) − 1

12
∆(1).

This combination, again, is equal to the Casson-Walker invariant for b1 = 1. However, the

presence of the extra divergent piece ∆(1)/m2 means that the path-integral of the massive

RW model in this case is not continuous in its dependence on the background gauge �eld:

15Note that for τ(1) the dependence on the spin-C structure drops out.
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for L approaching the trivial �at bundle, the torsion tends to in�nity, while for L taken to

be exactly the trivial �at bundle, the invariant is �nite. One can trace the origin of this

discontinuity to the wall-crossing in the UV theory. Indeed, for non-zero φ, the Seiberg-

Witten invariant is evaluated using the deformation two-form e2 ? φ/2, which in the infrared

limit e2 → ∞ lands us in the in�nite wall-crossing chamber. The 1/m2 singularity of the

torsion form→ 0 arises from the in�nite number of solutions of the Seiberg-Witten equations

in this chamber. On the other hand, for trivial L we have φ = 0, and the deformation two-

form vanishes for all e2. To evaluate the invariant, one should properly deal with reducible

solutions. Instead, we will simply assume that the deformation two-form is non-zero, but

in�nitesimally small. It is known [88] that in such chamber the Seiberg-Witten invariant is

equal to 1
2
∆′′(1), which, again, is the Casson-Walker invariant, up to a correction − 1

12
∆(1) =

− 1
12
|torH1(W )|, which, presumably, would be recovered with an appropriate treatment of

the reducible solutions. Thus, one can say that the discontinuity at trivial L in the massive

RW model for b1 = 1 is a �squeezed version� of the wall-crossing in the UV theory16

Finally, for b1 = 0, assuming that the torsion subgroup tor H1(W ) is non-empty, the

Reidemeister-Turaev torsion is a function on the discrete set of �at bundles. For non-trivial

L, the Seiberg-Witten counting problem computes the torsion, while for trivial L it computes

the Casson-Walker invariant, which now is not related to the torsion, since there is no way

to continuously interpolate to the trivial L, starting from a non-trivial L. In fact, for b1 = 0

the Casson invariant is computed by a two-loop Feynman integral [91], and it is clearly not

possible to obtain it from the one-loop torsion.

Let us summarize. The UV topological theory, and thus the Seiberg-Witten counting

problem, is equivalent to the massive RW theory. For non-trivial L, this theory reduces to

the psl(1|1) Chern-Simons theory and computes the Reidemeister-Turaev torsion. For trivial

L, it computes the Casson-Walker invariant, which for b1 > 0 can be obtained from a limit

16It is a �squeezed version�, because the wall-crossing condition is not conformally-invariant, and thus we
cannot see all the walls in the IR theory, but only see a discontinuity at φ = 0. This can be contrasted with
the situation in the Donaldson theory in four dimensions, where the wall-crossing condition is conformally-
invariant, and the walls can be seen both in the UV and in the IR descriptions [112].
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of the psl(1|1) invariant, while for b1 = 0 is not related to it. Our results agree with the

mathematical literature [88], [106].

3.4 U(1|1) Chern-Simons Theory

In a series of papers [59, 60, 61], it has been shown that the Alexander polynomial and the

Milnor torsion can be computed from the U(1|1) Chern-Simons theory. We would like to

revisit this subject and to show, how it �ts together with our discussion in previous sections.

We point out that for the compact form of the bosonic gauge group, the U(1|1) Chern-

Simons theory is simply an orbifold of the psl(1|1) theory. (A direct analog of this statement

is well-known in the ABJM context.) In particular, it contains no new information compared

to the psl(1|1) Chern-Simons with a coupling to a general background �at bundle L, and

computes, indeed, essentially the same invariant.

3.4.1 Lie Superalgebra u(1|1)

We start with a brief review of the superalgebra u(1|1). A more complete discussion can be

found e.g. in [103]. Let f̂+ and f̂− be the fermionic generators, and t̂` and t̂r the generators

of the left and right bosonic u(1) factors. It will also be convenient to use a di�erent basis in

the bosonic subalgebra, which is Ê = t̂r + t̂` and N̂ = (t̂r− t̂`)/2. The element N̂ acts on the

fermionic subalgebra by the U(1)fl transformations, and the element Ê is central. Explicitly,

the non-trivial commutation relations are

[N̂ , f̂±] = ±f̂± , {f̂+, f̂−} = Ê . (3.26)

The group of even automorphisms of u(1|1) is generated by the charge conjugation Ê → −Ê,

N̂ → −N̂ , f̂± → ±f̂±, rescalings f̂± → a±f̂±, Ê → a+a−Ê with a± ∈ R \ 0, and shifts

N̂ → N̂ + bÊ, b ∈ R.

As for any Lie superalgebra, the representations of u(1|1) can be usefully divided into two
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classes � the typical and the atypical ones. (For a brief review of superalgebra representations,

the reader can consult section 2.3.1.) The typicals are precisely the ones, in which the central

generator Ê acts non-trivially. They are two-dimensional, and the generators, in some basis,

act by matrices

Ê = w

 1 0

0 1

 , N̂ =

 n 0

0 n− 1

 , f̂+ =

 0 w

0 0

 , f̂− =

 0 0

1 0

 , (3.27)

with w 6= 0. These will be called representations of type (w, n). To be precise, one has

to make a choice, whether to assign a bosonic or a fermionic parity to the highest weight

vector. This e�ectively doubles the number of representations. In our applications, the rep-

resentations will be labeling closed Wilson loops, which come with a supertrace. Therefore,

di�erent parity assignments will be just a matter of overall sign, and we will mostly ignore

this.

In the atypical representations the generator Ê acts trivially, and therefore they can be

equivalently thought of as representations of pl(1|1). These have already been described in

section 3.2.4. Note that the indecomposable representation (0, n)− of �g. 3.1 can be obtained

as a degeneration of the typical representation (w, n) for w → 0. With a suitable rescaling of

the generators f̂± before taking the limit, one can similarly obtain the representation (0, n)+

of �g. 3.1. The representations (0, n)− and (0, n)+ are known as the atypical Kac module

and anti-Kac module.

Let us also write out some tensor products. Tensoring any representation with the one-

dimensional atypical (n) simply shifts the N̂ -charges. The other tensor products are

(w1, n1)⊗ (w2, n2) = (w1 + w2, n1 + n2)⊕ (w1 + w2, n1 + n2 − 1)′ , w1 + w2 6= 0 ; (3.28)

(w, n1)⊗ (−w, n2) = Pn1+n2 , (3.29)

where the indecomposables Pn were de�ned on �g. 3.1. The prime on the second represen-
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tation in the r.h.s. of (3.28) means that the highest weight vector in it has reversed parity.

The set of representations (n), (w, n), Pn is closed under tensor products.

The superalgebra u(1|1) possesses a two-dimensional family of non-degenerate invariant

bilinear two-forms, which can be obtained by taking a supertrace over a (w, n) representation

with w 6= 0. Note that all the representations (w, n) for di�erent values of w 6= 0 and

n, and therefore also the corresponding invariant forms, are related by the superalgebra

automorphisms.

3.4.2 Global Forms

There exist di�erent versions of Chern-Simons theory based on the superalgebra u(1|1), and

here we would like to classify them. To de�ne such a theory, one needs to pick a global form

of the gauge group, and also to choose an invariant bilinear form, with which to de�ne the

action. These data should be consistent, in the sense that the action should be invariant

under the large gauge transformations. Theories related by the superalgebra automorphisms

are equivalent. We can use this symmetry to bring either the invariant bilinear form, or

the lattice, which de�nes the global form of the group, to some simple canonical form. To

classify the theories, it is convenient to take the �rst approach.

Let g0 ' R2 be the bosonic subalgebra of u(1|1). The u(1|1) gauge �eld, in components,

is A = ANN̂ + AEÊ + A+f̂+ + A−f̂−. For the bosonic part of the gauge �eld, we will also

use expansion in a di�erent basis, ANN̂ +AEÊ ≡ A` t̂` +Ar t̂r. The action of the theory can

be written as

Iu(1|1) = Ibos + Ipsl(1|1)(LAN ⊗ L) + Ig.f. , (3.30)

where Ibos is the Chern-Simons term for the bosonic gauge �eld, Ipsl(1|1) is the action (3.1),

coupled to the line bundle LAN with connection AN , and to some background �at bundle L.

Finally, Ig.f. is the gauge-�xing action (3.3) for the fermionic part of the gauge symmetry.

By using the superalgebra automorphisms, we bring the bosonic Chern-Simons term to
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the form

Ibos =
i

4π

∫
W

ArdAr − A`dA` . (3.31)

(As usual, this formula is literally true only for topologically-trivial bundles. More gener-

ally, it is implicitly understood that the action is de�ned by integrating Chern classes of a

continuation of the bundle to some four-manifold.)

Di�erent versions of the theory will correspond to di�erent choices of the global form of

the bosonic subgroup G0 of U(1|1). A global form is �xed, once we choose a cocharacter

lattice Γcoch ⊂ g0, that is, the lattice by which to factorize the vector space g0 to get the

torus G0. The �rst constraint on possible choices of the lattice Γcoch comes from the fact

that the fermionic generators of u(1|1) should transform in a well-de�ned representation of

G0. In the basis dual to (t̂`, t̂r), the corresponding weight has coordinates (−1, 1), and we

require that this vector be contained in the dual lattice Γch ' Γ∗coch.

We also need to make sure that the action (3.31) is invariant under the large gauge

transformations. This will be true, if the number

1

2

∫
V

cr1 ∧ cr1 − c`1 ∧ c`1 (3.32)

is integer on any closed spin four-manifold V . (We restrict to spin four-manifolds, because

we already have a choice of a spin structure on W .) Here cr,`1 = [dAr,`/2π] are the H2(V,R)-

valued Chern classes for some extension of the G0-bundle onto V .

The classes cr and c` for di�erent G0-bundles form a lattice in H2(V,R)⊕H2(V,R), which

is naturally isomorphic to Γcoch ⊗H2(V ) (modulo torsion). Any element of this lattice can

be expanded as v1ω1 + v2ω2, where ω1 and ω2 are arbitrary classes in H2(V ), and v1 and v2

are the generators of the lattice Γcoch. The quadratic form (3.32) can be explicitly written

as

a11

∫
V

1

2
ω1 ∧ ω1 + a12

∫
V

ω1 ∧ ω2 + a22

∫
V

1

2
ω2 ∧ ω2 , (3.33)

with a11 = (vr1)2− (v`1)2, a12 = vr1v
r
2−v`1v`2 and a22 = (vr2)2− (v`2)2. For (3.33) to be an integer
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for arbitrary ω1 and ω2, the three coe�cients aij should be integers. (We used again the

fact that the intersection form on a spin four-manifold is even.) This condition is precisely

equivalent to the requirement for Γcoch to be an integral lattice in R1,1. We conclude that

U(1|1) Chern-Simons theories are labeled by integral lattices in R1,1, whose dual contains

the vector (−1, 1).

3.4.3 The Orbifold

To show that the theory is an orbifold of psl(1|1) Chern-Simons, it is convenient to rewrite

it in a di�erent way. Let us use the basis (Ê, N̂) in g0, in which the R1,1 scalar product is

(u, v) = uNvE + uEvN . Let k and ν be some positive integers, and ξ be an integer or a

half-integer, de�ned modulo k. By taking v1 = (k/ν, 0) and v2 = (ξ/ν, ν) as the generators,

for any such set we de�ne a lattice, which actually has the right properties to serve as Γcoch.

The opposite is also true: any lattice Γcoch has a basis of this form, and it is unique modulo

shifting ξ by a multiple of k. (The parameter k is actually the area of the fundamental

domain of Γcoch.) This can be seen as follows. Let v1 = (a, b) and v2 = (c, d) be some

generators of Γcoch. The condition that the weight of the fermionic part of the superalgebra

is a well-de�ned weight of G0 means that b and d are integers. Let ν be their greatest

common divisor. Then, by Euclidean algorithm, there exists an SL(2,Z)-matrix of the form

 d/ν −b/ν

p q

 , (3.34)

with some p and q. Transforming the basis of the lattice with this matrix, we �nd a basis

of the form v1 = (a′, 0), v2 = (b′, ν). (We choose a′ to be positive.) The integrality of the

lattice means that a′ν ∈ Z and 2b′ν ∈ Z, so we can indeed parameterize the basis vectors in

terms of k, ξ and ν. Residual SL(2,Z)-transformations of the basis shift ξ by multiples of k.

Now we can make a superalgebra automorphism Ê ′ = k
ν
Ê, N̂ ′ = N̂ + ξ

ν2 Ê to transform

this basis into v′1 = (1, 0), v′2 = (0, ν), at the expense of changing the action from its canonical
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form (3.31) to

Ibos =
i

2π

∫
W

k

ν
ANdAE +

ξ

ν2
ANdAN . (3.35)

The path-integral involves a sum over topological classes of bundles, which are parame-

terized by the �rst Chern classes of the AE and AN bundles, which take values in H2(W )

and νH2(W ), respectively. For every topological type, let us write the gauge �eld AE as a

sum of some �xed connection AE(0) and a one-form aE. Integrating over aE produces a delta-

function, which localizes the integral to those connections AN , which are �at. The psl(1|1)

part of the path-integral can then be taken explicitly, and we get for the U(1|1) partition

function,

τU(1|1)
s (L) =

∫
DAN

∑
cE1

δ(kdAN/2π)LAN (kcE1 ) exp(ξCS(LAN )) τs(LνAN ⊗ L) . (3.36)

Here for convenience we changed the integration variable AN → νAN . The origin of di�erent

terms here is as follows. The sum over the (integral) Chern classes cE1 is what remained from

the functional integral over AE. The delta-function came from the integration over aE. The

holonomy of the �at bundle LAN around the Poincaré dual of kcE1 is just a rewriting of the

exponential of the Chern-Simons term kANdAE/2π. The Chern-Simons term for LAN with

coe�cient ξ came from the ANdAN/2π term in the action (3.35). Finally, τs is the psl(1|1)

torsion evaluated for a �at bundle, which is the ν-th power of LAN , tensored with some

background �at bundle L.

Essentially the same path-integral as (3.36) was considered in section 2.2 of [113]. It was

noted that the sum over cE1 is proportional to the delta-function, supported on �at bundles

with Zk-valued holonomy, since the pairing between H2(W ) and the group of �at bundles is

perfect. (That paper actually considered k = 1.) Using this, we �nally get

τU(1|1)
s (L) =

1

k

∑
Lk

exp(ξCS(Lk)) τs(Lνk ⊗ L) , (3.37)
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where the sum goes over all Zk-bundles Lk. The factor of k appeared from the delta-function

in (3.36). To be precise, the explanations that we gave are su�cient to �x this formula only

up to a prefactor. For manifolds with b1 = 0, the normalization (3.37) can be recovered from

the considerations in section 2.2 of [113]. We expect that it is correct in general. The factor

of 1/k has a natural interpretation in terms of the orbifold � it is the volume of the isotropy

subgroup, which is Zk.

An important special case is the U(1|1) Chern-Simons de�ned with the most natural

global form of the group, where we simply set exp(2πit̂`) = exp(2πit̂r) = 1. The action is

(3.31) with an integer factor k in front of it. By making an automorphism transformation,

this theory can be mapped to the form (3.35) with ξ = k/2 and ν = 1. Interestingly, it

becomes independent of the spin structure, if k is odd. This is because the sign of the

fermionic determinant is changing in the same way as the half-integral Chern-Simons term

for AN . For the general version of the theory, the dependence on the spin structure drops

out when ν/2 + ξ ∈ Z. In what follows, we restrict to the version of the theory with ξ = 0

and ν = 1.

Let us make some terminological comments. We call the theory U(1|1) Chern-Simons,

and not gl(1|1) or u(1|1), because we need to choose a reality condition and a global form

for the bosonic subgroup � and we take it to be U(1)×U(1). One could in principle consider

other real and global forms. Those theories, if well-de�ned, would not need to be related to

the psl(1|1) theory by orbifolding. For the psl(1|1) theory, we do not use the name PSU(1|1),

because there is no bosonic subgroup, and therefore no choice of the real form or the global

form. This theory is naturally associated to the complex Lie superalgebra.

In this thesis, we will not attempt to derive a relation between the supergroup Chern-

Simons theory and the WZW models. However, if such a relation does exist, then what we

have explained in this section would imply some correspondence between the U(1|1) and the

psl(1|1) WZW models. A duality of this kind is indeed known [114], although its derivation

does not look similar to ours.

214



3.4.4 Magnetic Dual

The dual magnetic description of the theory is, of course, simply the orbifold of the QED

of section 3.3. (This fact can also be independently derived from brane constructions, as

we review later in section 3.6.3.) For the polynomial (3.20), summing over �at bundles has

simply the e�ect of picking only powers of holonomies, which are multiples of k. Equivalently,

note that the action of the magnetic theory will have the form analogous to (3.30), but with

Ipsl(1|1) + Ig.f. replaced by the QED action. The �eld AN couples to the QED topological

current iF/2π. Integrating over AN , we simply get that the Chern class of the QED gauge

�eld is the k-th multiple of the Chern class of the AE bundle. Since this bundle is arbitrary,

we conclude that the orbifold of the magnetic theory is just the same QED, but with a

constraint that the Chern class of the gauge �eld takes values in kH2(W ). This can be

equivalently viewed as17 an N = 4 QED with one electron of charge k.

The u(1|1) partition function τ
U(1|1)
s (L) inherits from the torsion τs the dependence on

the spin-C structure with trivial determinant. As we noted in the end of section 3.2.3.2,

the de�nition of τs(L) can be easily extended to construct a torsion, which depends on

an arbitrary spin-C structure, with no constraint. The same applies to τ
U(1|1)
s (L). Now,

consider the limit k → ∞. Since now we sum essentially over all �at bundles, the U(1|1)

partition function cannot depend on the unitary part of the �at connection in L. Therefore,

by holomorphicity, it will not depend on L at all. We denote this version of the torsion by

τs,∞. This is a number, which depends only on W and on the choice of a spin-C structure.

Looking at the magnetic side, it is clear that this number is precisely the signed count

of solutions to the Seiberg-Witten equations, with the �elds Zα valued in a given spin-

C bundle s. We conclude that the version of the electric theory with k = ∞ has these

integers as its partition function. We note that this version of the torsion invariant has been

de�ned and studied in [115] and [92]. The fact that it is an integer was demonstrated by

purely combinatorial methods. One pedantic comment that we have to make is that τs,∞ is

17I thank N. Seiberg for pointing this out.
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completely independent of L only for a manifold with b1 > 1. For b1 = 1, it does depend on

the orientation in H1(W,R), induced by the absolute value of the holonomy of L, since we

need to choose the chamber, in which the Seiberg-Witten invariant is computed.

3.4.5 Line Operators

In the U(1|1) theory, we can de�ne some Wilson loops. For the atypical representations,

these are essentially the operators that were already de�ned earlier in section 3.2.4 for the

psl(1|1) theory. These are the operators Ln, labeled by one-dimensional atypicals (n), as well

as Wilson lines for the indecomposable representations, whose role we still have to clarify.

For the typical representations (w, n), we want to claim that the Wilson lines are actually

equivalent to the twist line operators of type Lt ,n with t = exp(2πiw/k). This relation is the

usual statement of equivalence of Wilson lines and monodromy operators in Chern-Simons

theory. (For U(1|1), this relation was �rst suggested in [61].) The argument adapted to the

supergroup case is given18 in section 2.3.2. One consistency check can be made by looking

at the transformation of these operators under the charge conjugation symmetry C. As

can be seen from (3.27), the representation changes as (w, n) → (−w, 1 − n), while the

twist operator changes as Lt ,n → Lt−1,1−n, as follows from its de�nition in section 3.2.4.

This is consistent with the identi�cation of the operators. Note also that the boson-fermion

parity of the highest weight vector of the representation (w, n) is changed under the charge

conjugation. A Wilson loop with a supertrace will consequently change its sign. This can be

taken as an explanation of the factor (−1)` in the formula (3.14) for the charge conjugation

transformation of torsion in presence of the boundary. For t = exp(2πiw/k), we will also

denote the operators Lt ,n by Lw, n. Hopefully, this will not cause confusion.

18In fact, for U(1|1) the statement is quite obvious. The two-dimensional representation (w, n) can be
obtained by quantizing a pair of fermions, living on the Wilson line. After gauging these fermions away, one
is left with a singularity in the gauge �eld, which is equivalent to the monodromy t. The ubiquitous shift
of n by 1/2 can be understood as a shift of the weight by the Weyl vector of the superalgebra u(1|1). The
combination m = n− 1/2, which appeared in section 3.2.4, is the �quantum-corrected� weight.
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3.5 Hamiltonian Quantization

It is a well-established fact that the quantization of the Chern-Simons theory with an ordinary

compact gauge group leads to conformal blocks of a WZW model [4, 48, 86, 116]. For the

supergroup case, it is often assumed that a similar relation holds [59, 61, 34], however,

to our knowledge, no derivation of this statement is available in the literature, and the

properties of the supergroup theories in the Hamiltonian picture are fundamentally unclear.

In this section, we take an opportunity to bring some clarity to the subject by explicitly

quantizing the Chern-Simons theories, which were considered in previous sections. Since

these theories are essentially Gaussian, the quantization is straightforward. In this thesis,

we do not attempt to derive a relation to the conformal �eld theory.

3.5.1 Generalities

In the quantization of an ordinary, bosonic Chern-Simons theory on a Riemann surface

Σ, the classical phase space to be quantized is the moduli space of �at connections on Σ.

Dividing by the gauge group typically introduces singularities, which, however, do not play

much role � the correct thing to do is to throw them away by replacing the moduli space

of �at connections by the moduli space of stable holomorphic bundles. In the supergroup

case, this approach does not seem to lead to consistent results. Reducible connections here

can lead to in�nite partition functions (as in the case of the theory on S3), and that should

somehow be re�ected in the canonical quantization. The correct approach, we believe, is

to consider the theory with gauge-�xed fermionic part of the gauge symmetry. The Hilbert

space of the supergroup Chern-Simons should then be constructed by taking the cohomology

of the BRST supercharge in the joint Hilbert space of gauge �elds and superghosts. Due

to �non-compactness� of the fermionic directions, even in the ghost number zero sector this

cohomology is not equivalent to throwing the ghosts away.

First we consider the quantization of the psl(1|1) Chern-Simons theory. We take the
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three-manifold to be a product Rt ×Σ, where Rt is the time direction, and Σ is a connected

oriented Riemann surface. Non-zero modes of the �elds along Σ do not contribute to the

cohomology of Q, and can be dropped. Zero-modes are present, when the cohomology

H•(Σ,L) of the de Rham di�erential on Σ, twisted by the connection in the �at bundle

L, is non-trivial. When H1(Σ,L) is non-empty, there is a moduli space of fermionic �at

connections on Σ. This gives a number of fermionic creation and annihilation operators, and

a �nite-dimensional factor for the Hilbert space, � in complete analogy with the ordinary,

bosonic Chern-Simons. This will be illustrated in examples later in this section. The zeroth

cohomology H0(Σ,L) is non-empty, if and only if the �at bundle L is trivial on Σ. In this

case, the cohomology is one-dimensional, since we have assumed Σ to be connected. The

ghosts and the time component A0 of the fermionic gauge �eld now have zero modes, which

organize themselves into the quantum mechanics of a free superparticle in R4|4, with the

action

−
∫

dt Str(−A0λ̇+ ĊĊ) . (3.38)

(Here for simplicity we did not write the coupling to the external gauge �eld.) The Hilbert

space19, before we reduce to the cohomology of Q, is the space of functions on C2 (with

holomorphic coordinates given by the components C± of the scalar superghost), tensored

with the four-dimensional Hilbert space of the fermions λ± and A±0 . We can write the states

as

ψ0|0〉+ ψ+λ
+|0〉+ ψ−λ

−|0〉+ ψ+−λ
+λ−|0〉 , (3.39)

where |0〉 is annihilated by A±0 , and ψ• are functions of C and C. We recall from eq. (3.2)

that the BRST di�erential transforms C into λ. If we treat λ± as the di�erentials dC
±
and

identify the wavefunctions (3.39) with di�erential forms on C2 with antiholomorphic indices,

then Q acts as the Dolbeault operator. Thus, formally, the Hilbert space of the ghost system

19Here and in what follows, by �Hilbert space� we really mean the space of states. It does not, in general,
have an everywhere-de�ned non-degenerate scalar product.
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Hgh is the Dolbeault cohomology20 of C2 with antiholomorphic indices.

Since C2 is non-compact, it is not obvious, how to make precise sense of this statement.

Certainly, the path-integral of the theory on some three-manifold with a boundary produces a

Q-closed state on the boundary. But to divide by Q-exact wavefunctions, we need to specify,

what class of states is considered. For example, one could consider di�erential forms with no

constraints on the behavior at in�nity. This would lead to the ordinary Dolbeault complex.

By the ∂-Poincaré lemma, the cohomology is supported in degree zero, and consists simply

of holomorphic functions on C2. This space will be denoted by H0,0

∂
, and the states will be

called non-compact. In our applications, we can usually restrict to states, which are invariant

under the U(1)F ghost number symmetry. In H0,0

∂
, such states are multiples of v0 = |0〉,

the constant holomorphic function. Another possibility is to look at the cohomology with

compact support21. By Serre duality, it is the dual of the space of holomorphic functions,

and lives in degree (0, 2). We will denote this space by H0,2

∂,comp
, and call the corresponding

states compact. The U(1)F -invariant states here are multiples of v1 = δ(4)(C,C)λ+λ−|0〉.

To understand the interpretation of these states in our theory, we need to recall some

properties of the torsion. Let W ′ be a three-manifold with boundary Σ, together with some

choice of the �at bundle L and, possibly, line operators inside. Let the holonomies of L be

trivial on Σ, so that H0(Σ,L) is non-empty. If the �at bundle L is completely trivial even

inside W ′, and, in particular, W ′ contains no line operators Lt ,n, we call the manifold with

this choice of the �at bundle unstable. In the opposite case, we call it stable. Let W be a

connected sum of two three-manifolds W1 and W2 along their common boundary Σ, with no

holonomies of L along the cycles of Σ. There are three possibilities. If both W1 and W2 are

stable, the path-integral onW vanishes, because of the fermionic zero modes, � this property

of the torsion is known as �unstability�. If both W1 and W2 are unstable, the path-integral is

not well-de�ned, because of the presence of both fermionic and bosonic zero modes. Finally,

20In the context of general Rozansky-Witten theories this statement � with C2 replaced by a compact
hyper-Kähler manifold � appeares already in the original paper [91].

21For our purposes, the cohomology with compact support and the integrable cohomology will be consid-
ered as identical.
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if one of W1, W2 is stable, and the other is unstable, the functional integral generically has

no zero modes, and the torsion is a �nite number.

We claim that our functional integral for an unstable three-manifold W ′ with boundary

Σ naturally yields a state for the ghosts in the non-compact cohomology H0,0

∂
. Indeed, the

zero modes of C, C and λ are completely free to �uctuate inside W ′, and therefore the

wavefunction as a function of C is constant and should not contain insertions of λ, � so, it

is a multiple of v0. On the other hand, if the manifold W ′ is stable, we get a state in the

compact cohomology H0,2

∂,comp
. The holonomies of the �at bundle inside W ′ do not allow the

zero modes of the ghosts and λ to freely go to in�nity. Modulo Q, the wavefunction in this

case is a multiple of the state v1. The natural pairing between the compact and the non-

compact cohomology yields a �nite answer for a closed three-manifold, glued from a stable

and an unstable piece. If, on the other hand, we try to pair two stable manifolds, we get zero,

since we have too many insertions of the operators λ± in the product of the wavefunctions.

If we try to pair two non-compact, unstable states, the result is not well-de�ned, because one

encounters both bosonic and fermionic zero modes22. This is consistent with the properties

of the torsion, described above.

In the special case that Σ is a two-sphere with no punctures, the ghost Hilbert space Hgh

is all of the Hilbert space. Since it is not one-dimensional, the topological theory contains

non-trivial local operators. They are in correspondence with ∂-closed (0, p)-forms on C2.

Again, one might think that all of these, except for the holomorphic functions, are Q-exact,

and therefore decouple, but this is not in general true due to the non-compactness of the

�eld space. Let us introduce a special notation O1 for the operator λ+λ−δ(4)(C,C), which

we will need in what follows.

22For a manifold W glued from two unstable pieces, depending on the situation, it can be natural to
de�ne the torsion to be in�nity, or zero, or some �nite number, by perturbing L away from the singular
case. However, it does not seem to be possible to give any universal meaning to the pairing of non-compact
wavefunctions in the ghost Hilbert space.
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3.5.2 The Theory On S1 × Σ

Let us illustrate in some examples, how this machinery works. First we compute the invari-

ants for the theory on S1 × Σ, with Σ a closed Riemann surface with no punctures. Then

we add punctures and derive the skein relations for the Alexander polynomial. In the whole

section 3.5, we typically ignore the overall sign of the torsion, and its dependence on the spin

structure.

3.5.2.1 No Punctures

Consider a three-manifold S1 × Σ, where Σ is a Riemann surface of genus g. Let the �at

bundle L have a holonomy t along the S1, and no holonomies along the cycles of Σ. We

would like to compute the torsion τ(t) of this manifold. For simplicity, we take |t| = 1.

The topological theory on this manifold reduces to the quantum mechanics of zero modes

of the �elds on Σ. The components of the gauge �eld A±, tangential to Σ, will produce 4g

fermionic zero modes, which can be grouped into 2g pairs of fermions, corresponding to some

choice of a- and b-cycles on Σ. For each pair of the fermions, the action is de�ned with the

kinetic operator i∂t + B0, where B0 is the background gauge �eld in the time direction. If

we denote the determinant of this operator by d(t), the gauge �elds contribute a factor of

d2g(t) to the torsion. The time component of the gauge �eld A±0 together with the Lagrange

multiplier λ give two more pairs of fermions with the same action, and hence a factor of

d2(t). Finally, the zero-modes of the superghosts C± and C
±
give two complex scalars,

which contribute a factor of d−4(t). The torsion altogether is τ(t) = d2g−2(t). Using the

zeta-regularization,23 one readily computes d(t) = t1/2 − t−1/2. For the torsion of S1 × Σ,

we get

τ(t) = (t1/2 − t−1/2)2g−2 . (3.40)

23One needs to use the identity exp (−ζ ′(0, a)− ζ ′(0, 1− a)) = 2 sin(πa) for the derivative ∂sζ(s, a) of the
Hurwitz zeta-function. In the text we ignored the factor of −i, which results from this computation, since
we are not interested in the overall sign of τ(t).
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Let us derive the same result by a Hilbert space computation. The torsion can be

computed by taking the supertrace StrHt
Ĵ over the Hilbert space, where Ĵ is the generator

of the U(1)fl-symmetry. In this formalism, it is obvious that the contribution of a single

pair of fermions is indeed d(t) = t1/2 − t−1/2. The contribution of the superghosts C and C

can also be easily computed. We set t = exp(iα). The quantum mechanics of the complex

�eld C+ is the theory of a free particle in R2, and we need to �nd the trace of the rotation

operator exp(iαĴ) over its Hilbert space,

tr exp
(
iαĴ

)
=

∫
d2~p d2~x

(2π)2
exp(i~p~x) exp(−i~p ′~x) =

1

4 sin2(α/2)
, (3.41)

where ~p ′ is the vector obtained from ~p by a rotation by the angle α. This is equal to −d−2(t),

and together with a similar contribution from C− leads to the correct result d−4(t).

In the computation above, the trace was taken over the whole Hilbert space of the

ghost system, and not over the cohomology of Q, since it is not clear in general, what one

should mean by this cohomology. However, it is curious to observe that one can obtain the

same results by tracing over the non-compact (or over the compact) Dolbeault cohomology.

Indeed, H0,0

∂
is the space of holomorphic functions on C2, which can be expanded in the basis

generated by the monomials 1, C+, C−, (C+)2, etc. The trace of tĴ over this space can be

written as

t0 + e−ε(t−1 + t) + e−2ε(t−2 + t0 + t2) + . . . , (3.42)

where we introduced a regulator ε > 0. The sum of this convergent series for ε→ 0 is equal

to −d−2(t), which is the correct contribution of the ghost system to the torsion. I do not

know, if this computation should be taken seriously.

3.5.2.2 Surfaces With Punctures

Next, let us incorporate some line operators. Consider a Riemann surface Σ of genus g with

p ≥ 2 punctures, corresponding to p parallel line operators Lt1, n1 . . . Ltp, np , stretched along
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the S1. For consistency, we assume t1t2 . . . tp = 1. Let there also be a background holonomy

t around the S1. We introduce the number N =
∑

i(ni − 1/2), which measures the total

U(1)fl-charge. For N = 0, the con�guration is symmetric under the charge conjugation (up

to the substitution t→ t−1 for all the holonomies.)

Due to the presence of line operators, the cohomology H0(Σ,L) is empty, and the Hilbert

space does not contain the ghost factor Hgh. However, the cohomology H1(Σ,L) ≡ H1 is in

general non-empty, so there will be h = dimH1 zero modes of the fermionic gauge �eld A+

and h zero modes of the �eld A−. Our Lie superalgebra is a direct sum, and correspondingly

it is convenient to choose a polarization, in which the modes of A+ are the creation operators,

and the modes of A− are the annihilation operators. The Hilbert space is

(detH1)−1/2+N/h ⊗ ∧•H1 . (3.43)

It contains states with charges ranging from −h/2 +N to h/2 +N , with

N(q) =

(
h

q + h/2−N

)
(3.44)

states of charge q. (The overall power of detH1 was chosen so as to ensure that for N = 0

the spectrum of U(1)fl-charges is symmetric.) Taking the supertrace of tĴ over this Hilbert

space, we �nd the invariant for S1 × Σ,

τ(t) = tN(t1/2 − t−1/2)h . (3.45)

As we will see, h = −χ = 2g − 2 + p. An important special case is that Σ is S2 with two

marked points. Then h = 0, the Hilbert space is one-dimensional, and the invariant τ is

equal to one, up to an overall power of t.

Let us give a more explicit description of the twisted cohomology for the simple case of

Σ ' S2. In the presence of a singular background �eld, corresponding to an insertion of a line
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operator Lt, n along some knot K, the behavior of the dynamical �elds of the psl(1|1) theory

near K is determined by a boundary condition, which is described in Appendix B. It says

that the superghost �elds C± should vanish near K, while the components of the fermionic

gauge �eld A±, perpendicular to K, are allowed to have a singularity, which however has to

be better than a pole. This boundary condition is elliptic. The cohomology H1, therefore,

can be represented by L-twisted one-forms, which lie in the kernel of the operator d + d∗

on Σ and which near the marked points are less singular than 1/r. Just for illustration, we

can write an explicit formula for these one-forms. For that, pick a complex structure on Σ,

and let the marked points be z1, . . . , zp. The cohomology will be represented by holomorphic

(1, 0)- and antiholomorphic (0, 1)-forms. Let us write ti = exp(2πi ai), with ai ∈ (0, 1), for

the holonomies. (We assume that the bundle L is unitary.) Note that the sum
∑
ai is a

positive integer. Any twisted holomorphic one-form can be written as

ω =

p∏
i=1

(z − zi)aiP (z)dz , (3.46)

with some rational function P (z), which is allowed to have simple poles at points zi, according

to our boundary condition. Assuming that in�nity is not among the marked points, we should

have ω ∼ dz/z2 +o(1/z2) at large z. Writing P (z) as
∑
Pi/(z− zi), the condition at in�nity

gives 1 +
∑
ai linear equations on the coe�cients Pi, so the space of twisted holomorphic

forms is of dimension p−1−
∑
ai. Similarly, the space of twisted antiholomorphic forms has

dimension
∑
ai − 1, and the total dimension of H1 is p− 2, in agreement with the formula

h = −χ.

Instead of working with cohomology, it is more convenient to look at the dual homology,

which for S2 with marked points is generated by contours, connecting di�erent punctures24.

(The di�erential forms, which behave better than 1/r near the punctures, can be integrated

over such contours, and the integrals do not change, when the forms are shifted by di�eren-

tials of functions that vanish at the punctures. Moreover, the pairing between this version

24I am grateful to E. Witten for the suggestion to look at the homology and for helpful explanations.
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Figure 3.2: a. Marked points, basis contours, and a particular choice of cuts on the p-punctured
sphere. Locally-constant sections of L pick a factor of ti upon going counter-clockwise around the
i-th puncture. b. This contour is trivial, since it can be pulled o� to in�nity. This gives a relation
(1− t1)C1 + · · ·+ (1− t1 . . . tp−1)Cp−1 = 0.

Figure 3.3: a. Two cuts and two basis contours for a four-punctured sphere. b. The result of the
braiding transformation. c. We moved the contour C1 across the cut and reversed its orientation,
which produced a factor of −t.

of homology and the twisted cohomology is non-degenerate.) The basis in the homology

consists of p − 2 contours C1, . . . ,Cp−2, shown on �g. 3.2a. One might think that the con-

tour Cp−1 should also be included in the basis, but actually it can be expressed in terms of

C1, . . . ,Cp−2, using the relation of �g. 3.2b. On a general Riemann surface, one obtains in

the same way that the dimension of the homology is h = −χ = p− 2 + 2g.

It is possible to �nd modular transformations of states in the Hilbert space. For that,

one needs to �nd the action of large di�eomorphisms on the twisted cohomology H1, or,

equivalently, on the basis contours in the dual homology. To give an example of such ar-

gument, we derive the skein relations for the Alexander polynomial25. Consider a Riemann

25Rather similar contour manipulations are used in [59] to obtain braiding transformations of the states
from the CFT free-�eld representation. The contours in question are then integration contours for the
screening �elds. In fact, the two computations seem to be directly related, since the screening �elds are
the CFT currents, which in the Chern-Simons theory correspond to the gauge �elds A±, whose modes are
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sphere with four punctures, two of which are labeled by holonomies t, and two by t−1. This

con�guration arises on the boundary of a solid three-ball with two line operators Lt, n inside.

We set the parameters n equal to one-half, so that the line operators are expected to have

trivial framing transformations and to give rise to the Conway function. (We have to men-

tion once again that our understanding of these line operators is incomplete. This will lead

to some uncontrollable minus signs in their expectation values.) The twisted cohomology

H1 on the four-punctured sphere is two-dimensional. A pair of basis contours C1 and C2 for

the dual homology is shown on �g. 3.3a. We make a large di�eomorphism, which exchanges

the two punctures labeled by t. This leads to the con�guration of �g. 3.3b. We move the

upper cut through the contour C1. This multiplies C1 by a factor of t. This brings us to the

con�guration of �g. 3.3c, where we have also reversed the orientation of the upper contour.

The cuts can now be deformed back to the con�guration of �g. 3.3a, and we �nd that the

braiding transformation acts on the contours as

 C′1

C′2

 =

 −t 0

0 1


 C1

C2

 . (3.47)

The Hilbert space of the four-punctured sphere, according to eq. (3.43), consists of four

states � one of U(1)fl-charge −1, one of charge +1, and two of charge 0. The neutral states

are the ones that arise on the boundary of a three-ball with a pair of line operators inside.

The state of charge −1 transforms under the braiding by some phase. From eq. (3.43), we

would expect this phase to be the inverse square root of the determinant of the matrix in

(3.47). The two U(1)fl-invariant states then transform with the matrix

 it1/2 0

0 −it−1/2

 . (3.48)

the cohomology that we are considering. To make the connection more precise, one needs to switch to the
holomorphic polarization.
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Figure 3.4: A skein relation for the Alexander polynomial. In the canonical framing, u = 1.

Figure 3.5: The result of closing the strands in the skein relation and using the fact that the
Alexander polynomial for a disjoint link is zero. The relation is consistent, if it is written in the
vertical framing, and the invariant transforms by a factor of u under a unit change of framing.

Note that the braiding action (3.47) is de�ned only up to an overall phase, since we could

make a constant U(1)fl gauge transformation, or, equivalently, could move the cuts on �g. 3.3

around the sphere any number of times. Such a phase, however, would cancel out in 3.48,

since the two states of interest are U(1)fl-invariant.

From (3.48) it follows [4] that the knot invariant satis�es the skein relation of �g.3.4,

with u = i. (On the way, we made an arbitrary choice of the square root of the determinant

of the matrix (3.47). With an opposite choice, we would get u = −i.) Initially, we assumed

that our line operators have no framing dependence. But now we can see that this would be

inconsistent with �g. 3.5, which is obtained from the skein relation by closing the braids and

using the fact that the Alexander polynomial of a disjoint link is zero. We are seemingly

forced to conclude that our invariant does have a framing dependence, with a framing factor

u = i. On S3, there exists a canonical choice of framing, in which the self-linking number

of all components of the link is zero. If we bring all the links to this choice of framing,

the polynomial would satisfy the skein relation of �g. 3.4, but with u = 1. This skein

relation, together with a normalization condition, which we derive later in this section,

de�nes the single-variable Alexander polynomial (or the Conway function), as expected.
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But the fact that we found a non-trivial framing dependence is rather unsatisfactory. In

the dual Seiberg-Witten description, the knot invariant is clearly a polynomial with real

(and integral) coe�cients, and there can be no factors of i. To get rid of the problem, we

have to put an extra factor of i in the braiding transformation of the highest weight state

of U(1)fl-charge −1. This will multiply the matrix (3.48) by i, and make u = 1 in the skein

relation. It would be desirable to understand the physical origin of this factor.

To be able to compute the multivariable Alexander polynomial, that is, the invariant for

multicomponent links, with di�erent components labeled by arbitrary holonomies, one needs

two more skein relations [117]. We derive them in Appendix C.

3.5.3 T 2 And Line Operators

In this section, we look more closely on the Hamiltonian quantization of the theory on a

two-torus T 2. First we describe the Hilbert space abstractly, and then relate di�erent states

to line operators of the theory.

3.5.3.1 The Torus Hilbert Space

Let us �x a basis of cycles a and b on T 2, and denote the corresponding holonomies of the

background bundle by ta and tb. Assume �rst that at least one of the holonomies is non-

trivial. In this case, the twisted cohomology H•(T 2,L) is empty, and the torus Hilbert space

Hta,tb is one-dimensional. Let us choose some basis vector |ta, tb〉 for each of these Hilbert

spaces. We pick a normalization such that under any SL(2,Z) modular transformationM

the vectors map as

M|ta, tb〉 = |tM−1(a), tM−1(b)〉 , (3.49)

without any extra factors. Note that the charge conjugation symmetry C is equivalent to

the modular transformation S2, which �ips the signs of both cycles.

A slightly more complicated case is ta = tb = 1. The Hilbert spaceH1,1 is a product, with
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one factor being the vector space Hgh of states of the ghosts, which was described before.

Another factor comes from the fact that the fermionic gauge �elds now have zero modes A+
a ,

A+
b , A

−
a and A−b , arising from components of the one-forms A± along the a- or the b-cycle.

With a natural choice of polarization, the modes of A− are the annihilation operators, and

the modes of A+ are the creation operators. The four states in the Hilbert space of the

vector �elds are

|−1〉, |0a〉 ≡ A+
a |−1〉, |0b〉 ≡ A+

b |−1〉, |+1〉 ≡ A+
aA

+
b |−1〉 . (3.50)

The states |±1〉 are of charge ±1, and are invariant under the modular group SL(2,Z), since

they have nowhere to transform. The two states |0a〉 and |0b〉 are neutral, and transform

under SL(2,Z) as a doublet.

3.5.3.2 Line Operators Lt ,n

Consider a solid torus with boundary T 2, with cycle a contractible, and put a line operator

of type Lta, n along the b-cycle inside. Here it is assumed that ta 6= 1. The operator is taken

with the natural framing for loops in the solid torus. We can also turn on a background

holonomy tb. The resulting state lives in Hta,tb , and we claim that it is

|Lta ,n, tb〉 = t
n−1/2
b |ta, tb〉 , (3.51)

with a suitable normalization of |ta, tb〉. (Note that tb is not a parameter of the line operator

itself, but is de�ned by the background bundle, and in particular by the other line operators,

linked with the given one.) It is easy to see that both sides of (3.51) depend on n in the same

way. (In taking a half-integer power of tb, we ignored the sign ambiguity, since we generically

do not try to �x the overall signs in this section. A more accurate treatment of signs would

require keeping track of spin structures.) The non-trivial content of this equation is the

statement that |ta, tb〉, de�ned in this way, transforms under the modular group as in (3.49),
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without any extra factors. For the charge conjugation symmetry C, this is easy to see from

the transformation properties of the line operators Lta, n. For the element T of the modular

group SL(2,Z), the l.h.s. changes into t
−n+1/2
a |Lta, n, tb〉, where the factor of ta is due to the

change of framing. This is again consistent with (3.49). It requires a little more work to see

that |ta, tb〉 transforms as in (3.49) also for the element S of SL(2,Z). Note that a pair of

solid tori can be glued together to produce S1 × S2 with two parallel line operators along

the S1. The gluing identi�es the b-cycles of the two tori, and maps the a-cycle of one torus

to the −a of the other. This gives a bilinear pairing between the Hilbert spaces Ht−1
a ,tb

and

Hta,tb . In the section 3.5.2.2, we learned that the dimension of the Hilbert space on S2 with

two marked points is equal to one. It follows that, under the bilinear pairing,

(
|t−1
a , tb〉, |ta, tb〉

)
=
(
|Lt−1

a , 1−n, tb〉, |Lta, n, tb〉
)

= 1 . (3.52)

Note that we can apply the elements CS and S to the two vectors in this equation, and get the

same gluing of the tori. Suppose that the S-transformation of the state |ta, tb〉 gives the state

|t−1
b , ta〉 with some factor f(ta, tb). It then follows that f(ta, tb)f(t−1

a , tb) = 1. The function

f should be holomorphic, and can only have zeros or singularities at ta or tb equal to 0, 1

or in�nity. However, 1 is excluded by the equation above. Then, f can only be a monomial

in powers of ta, but this possibility is excluded by the charge conjugation symmetry. We

conclude that the vectors |ta, tb〉, de�ned as in (3.51), transform under the modular group

according to (3.49). (We did not exclude the possibility of non-trivial t-independent phases

in (3.49), but there seem to be no possible candidates for such phases.)

As a check of the modular transformations that we have described, consider a Hopf link,

formed by two unknots with some operators Lta, n and Ltb,m in S3. Up to powers of t•,

which depend on the framings, the invariant for this con�guration is equal to the same

scalar product (3.52), that is, to one. This is the correct result for the Alexander polynomial

of the Hopf link. In the discussion of the Hilbert space of empty S2, we have de�ned a local
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operator O1. Now we can give it a geometric interpretation26: it can be obtained by inserting

a small Hopf link of loop operators of type Lt, n.

3.5.3.3 Other Line Operators

Consider again the same solid torus, and put a line operator Ln along the b-cycle27. We

�rst assume that tb 6= 1, so that the resulting state is |Ln, tb〉 = tnb g(tb)|1, tb〉, for some

holomorphic function g(t). To �x it, note that the invariant for S1 × S2 with holonomy tb

around S1 can be represented by

τ(S1 × S2, tb) = (|L0, tb〉, |L0, tb〉) = g2(tb) . (3.53)

On the other hand, it is equal to (t
1/2
b − t

−1/2
b )−2, so we �nd that g(tb) = 1/(t

1/2
b − t

−1/2
b ),

and therefore

|Ln, tb〉 =
1

1− t−1
b

t
n−1/2
b |1, tb〉 . (3.54)

Using this, we can �nd the Milnor torsion for an unknot in S3. This invariant is equal to

(|Lt ,n, 1〉,S|L0, t〉) =
1

t1/2 − t−1/2
, (3.55)

which is the correct result. (One can get rid of the half-integer power of t by choosing a

di�erent framing.) Another application is to �nd the degeneration of the operator Lt ,n in

the limit t→ 1. From (3.51) and (3.54) we �nd

lim
t→1

Lt, n = Ln − Ln−1 , tb 6= 1 . (3.56)

26This operator can be given yet another interpretation. Consider cutting out a small three-ball, and
gluing in a non-compact space, which is the complement of the three-ball in R3. The zero-modes of the
ghosts cannot freely �uctuate in such geometry, so, this construction produces the desired operator. We can
also give arbitrary non-zero vevs C0 ∈ C2 to the �elds C in the asymptotic region. This would produce the
operator λ+λ−δ(4)(C − C0, C − C0).

27These operators di�er from the vacuum just by a factor of tn, so, we would loose nothing by considering
only n = 0. But we prefer to keep general n, because it will be helpful, when we come to the U(1|1) theory.
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Figure 3.6: The anticommutation relation for the modes of A+ and A−, written geometrically.

(This formula is valid only in the sector tb 6= 1, that is, in presence of a non-trivial holonomy

along the line operator.) This relation, when applied to invariants of links in the three-sphere,

is known as the Torres formula [118].

Now, consider the case that tb = 1, so that Ln is inserted inside a solid torus with

no background holonomy. The parameter n then does nothing, and the resulting state

corresponds just to the empty torus. We want to identify the corresponding state |vac〉 in

H1,1. In the ghost Hilbert space, it is the vector v0, as de�ned in section 3.5.1. In the gauge

�elds Hilbert space, it is some vector from (3.50), which should have zero charge and should

be invariant under the T -transformation. The vector with these properties is |0a〉, so we �nd

|Ln, 1〉 = |vac〉 = v0 ⊗ |0a〉 . (3.57)

Let us also give a geometrical interpretation to some other states in H1,1. For that, we

simply need to write the modes A±a,b, used as the creation and annihilation operators in (3.50),

as integrals of A± over di�erent cycles. The anticommutation relation for these operators is

equivalent to a geometrical identity, shown on �g. 3.6. To obtain the state v0 ⊗ |−1〉, one

inserts into the empty solid torus the operator
∮
b
A−, e�ectively undoing the action of A+

a in

(3.50). Similarly, the states v0 ⊗ |0b〉 and v0 ⊗ |+1〉 can be obtained by inserting operators∮
b
A+

∮
b
A− and

∮
a
A+, respectively. On �g. 3.7, we show the operators needed to create the

neutral states, which are obtained by applying transformations T p to the S-transform of the

vacuum.
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Figure 3.7: By inserting the operator
∮
C1
A+
∮
C2
A−, with cycles C1 and C2 shown on the �gure,

one obtains the state T pS|vac〉 = (S + p)|vac〉, with p equal to the number of times the cycles wind
around each other.

Figure 3.8: a. A relation that follows from one-dimensionality of the Hilbert space of a sphere with

two marked points. b. The con�gurations on the left and on the right are proportional with some

coe�cient.

3.5.3.4 OPEs of Line Operators

We would like to �nd the OPEs of our line operators. For products involving the atypical

operator Ln, the OPE is trivial: such an operator simply shifts the value of n for the other

operators, with which it is multiplied. More interesting are the products of the typical

operators Lt, n. To �nd their OPE, we will need the relation of �g. 3.8a. It can be derived

from the fact that the Hilbert space of the two-punctured sphere is one dimensional, and

from comparison of the invariants for two linked unknots and for a single unknot in S3.

To derive the expansion for the product Lt1, n1 × Lt2, n2 , we place two parallel operators

along the b-cycle inside a solid torus, and look at the resulting state on the boundary T 2.

Assuming that t1t2 6= 1, the Hilbert space for the torus with this insertion is one-dimensional,

and the state created by the insertion of the two operators is proportional to the state created

by Lt1t2, n1+n2 , with some proportionality coe�cient f , which in general can be a holomorphic
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function of t1, t2, and also of the holonomy tb of the background bundle along the b-cycle

of the torus. To �x this coe�cient, consider the con�guration on �g. 3.8b. To get from the

l.h.s. to the r.h.s., one can apply the relation of �g. 3.8a twice, or one can �rst fuse Lt1, n1

and Lt2, n2 , and then apply the relation once. The two ways of reducing the picture should

be equivalent, and this �xes the proportionality factor f , mentioned above, to be equal to

1− t−1
b . This leads to the following OPE,

Lt1, n1 × Lt2, n2 = Lt1t2, n1+n2 − Lt1t2, n1+n2−1 . (3.58)

(Here we absorbed a factor of t−1
b into the shift n1 + n2 → n1 + n2 − 1.)

Now let us turn to the more subtle case of t1t2 = 1. Let us write the OPE as

Lt, n1 × Lt−1, n2
= LP, n1+n2 , (3.59)

where LP, n is some new line operator, to be determined. Again, assume that the operators

Lt, n1 and Lt−1, n2
lie along the b-cycle of a solid torus. In the sector tb 6= 1, the Hilbert space

on T 2 with this insertion is one-dimensional, and one can apply the same arguments that we

used above. The result is

LP, n1+n2 = Ln1+n2 − 2Ln1+n2−1 + Ln1+n2−2 , tb 6= 1 , (3.60)

where we applied the relation (3.56) to the OPE (3.58). For tb = 1, the product Lt, n1×Lt−1, n2

creates some state |LP, n1+n2 , 1〉 in the Hilbert space H1,1. In the ghost sector, this state is

v1 (in the notations of sec. 3.5.1), since the singularities in Lt, n1 and Lt−1, n2
do not allow

the ghosts to �uctuate. We also need to �nd, what linear combination of the states (3.50) of

the fermionic gauge �elds is created by LP, n1+n2 . For that, we note that gluing a solid torus

with the operator LP, n1+n2 to an empty solid torus produces S1×S2 with two line operators
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Lt, n1 and Lt−1, n2
along S1. The corresponding invariant is equal to one, so

(|LP, n1+n2 , 1〉, v0 ⊗ |0a〉) = 1 . (3.61)

On the other hand, if we glue the same tori, but with transformation S sliced in between,

we get a three-sphere with two unlinked unknots Lt, n1 and Lt−1, n2
inside. The invariant for

this con�guration is zero, so

(|LP, n1+n2 , 1〉, v0 ⊗ |0b〉) = 0 . (3.62)

From the two equations above, we �nd that

|LP, n1+n2 , 1〉 = v1 ⊗ |0b〉 . (3.63)

Thus, the line operator LP, n, which can be obtained from the OPE of Lt, n1 and Lt−1, n2
, is

de�ned by (3.60) in the sector tb 6= 1, and by (3.63) in the sector tb = 1.

The set of line operators Lt, n, Ln and LP, n for di�erent values of n and t 6= 1 forms a

closed operator algebra. The OPEs of operators LP, n with themselves and with Lt, n follow

from (3.58) and (3.59) by associativity.

3.5.3.5 A Comment On Indecomposable Representations

It is convenient to think of the operators Lt, n as of Wilson lines, coming from the typical

representations of the u(1|1) superalgebra, though, of course, this will be literally true only

in the U(1|1) theory, and not in psl(1|1). The OPE (3.58) of these operators agrees with

the tensor product decomposition (3.28) of the typical representations. For the second OPE

(3.59) to agree with (3.29), we have to assume that the line operator LP, n is actually the

Wilson line for the indecomposable representation Pn, de�ned in �g. 3.1. This statement

makes sense already in the psl(1|1) theory, since Pn is also a representation of pl(1|1). In
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(3.60) we found that LP, n reduces in a special case to a sum of atypical line operators Ln.

Comparing this statement to �g. 3.1, we see that it agrees with the decomposition that one

would expect to happen for the Wilson loop in representation Pn. (Recall that Wilson loops

in reducible indecomposable representations are naively expected to decompose into sums

of Wilson loops for irreducible representations.) But we also note that this decomposition

does not hold always. Indeed, if it were true also in the sector tb = 1, the r.h.s. of (3.60)

would tell us that LP,n is identically zero in that sector, which is not correct, since for tb = 1

the operator LP,n actually produces a non-zero state v1 ⊗ |0b〉. This state can be obtained

by inserting the operators
∮
A+ and

∮
A−, as shown on �g. 3.7, together with the local

operator O1, to produce the ghost wavefunction v1. It is tempting to speculate that this

combination of operators should arise as some point-splitting regularization of the Wilson

loop in representation Pn, but we do not know, how to make this statement precise.

If the typical operators Lt, n are thought of as Wilson lines in the typical representations

(w, n), then their limit for t→ 1 should correspond to Wilson lines in the (anti-)Kac modules

(0, n)±, introduced on �g. 3.1. The Torres formula (3.56) then says that the Wilson loops

in these indecomposable representations actually reduce to sums of Wilson loops Ln for the

irreducible building blocks of the indecomposables. This statement, again, is true in the

sector tb 6= 1. For tb = 1, one should �nd some independent way to �x the state in H1,1,

produced by the operator L1, n. More precisely, since there are two di�erent versions (0, n)+

and (0, n)− of the limit of (w, n) for w → 0, one would expect that there are two versions

L1,n,+ and L1,n,− of the operator limt→1 Lt,n, which produce two di�erent states in H1,1. We

are not sure, what these states are.28.

The general situation with Wilson loops in reducible indecomposable representations is

the following. It is consistent to assume that they do split into sums of Wilson loops Ln,

if the background monodromy tb along the knot is non-trivial. When tb = 1, one has to

28One possible guess would be that L1,n,+ for tb = 1 is equivalent to λ−δ(2)(C−, C
+

)
∮
A+, and similarly

for L1,n,−, with plus and minus indices interchanged. The reason is that this combination is U(1)fl-invariant,
and depends only on A+, and not on A−, as the Wilson line in representation (0, n)+ should.
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�nd some independent way to determine, what states in H1,1 they produce. For Pn, we

used the OPE of two typical operators, and for the (anti-)Kac modules (0, n)±, one could

possibly use the relation to the degeneration limit of the typical operators. But for general

indecomposable representations, there seems to be no natural way to determine the state in

H1,1, and therefore it does not make much sense to consider such Wilson loops as separate

operators at all.

3.5.4 U(1|1) Chern-Simons

Since the U(1|1) theory is the Zk-orbifold of the psl(1|1) Chern-Simons, it is completely

straightforward to write out its Hamiltonian quantization, once it is known for psl(1|1). For

that, one simply needs to restrict to states with U(1)fl-charge divisible by k, and to sum over

winding sectors.

For illustration, we consider explicitly the torus Hilbert space. The windings around the

two cycles will be labeled by integers w and w′, which we take to lie in the range 0 ≤ w,w′ ≤

k − 1. The corresponding holonomies are tw = exp(2πiw/k) and tw′ = exp(2πiw′/k). Let

H0,0 be the Zk-invariant subspace of the psl(1|1) zero-winding Hilbert space H1,1, and let

Hw,w′ ≡ Htw,tw′
be the one-dimensional Hilbert spaces in the sectors with windings w and

w′. The Hilbert space of the U(1|1) theory on T 2 is the direct sum HT 2 = ⊕w,w′Hw,w′ .

To �nd the states that are created by loop operators Lw, n, Ln and LP, n, we take cor-

responding states in the psl(1|1) theory, set the longitudinal holonomy tb to be equal to

exp(2πiw′/k), and sum over the winding sectors w′ = 0, . . . k− 1. Setting |w,w′〉 ≡ |tw, tw′〉,
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from the equations (3.51), (3.54), (3.57), (3.60) and (3.63) we �nd

|Lw,n〉 =
k−1∑
w′=0

exp(2πi(n− 1/2)w′/k)|w,w′〉, w 6= 0 ;

|Ln〉 = v0 ⊗ |0a〉+
1

2i

k−1∑
w′=1

exp(2πinw′/k)

sin(πw′/k)
|0, w′〉 ;

|LP,n〉 = v1 ⊗ |0b〉+ 2i
k−1∑
w′=1

sin(πw′/k) exp(2πi(n− 1)w′/k)|0, w′〉 . (3.64)

The parameter n is periodic with period k, and we take it to belong to the interval 0 ≤ n ≤

k − 1. If we project out the subspace H0,0, the states |Ln〉 and |Lw,n〉 with n = 0, . . . k − 1,

w = 1 . . . k − 1, corresponding to a restricted set of irreducible representations, would form

a basis in the remaining Hilbert space. This is what one would have in the ordinary, bosonic

Chern-Simons theory. In the full Hilbert space HT 2 , the states created by the line operators

that we have discussed do not form a basis. More precisely, it is not even clear, what one

would mean by such a basis, due to the rather weird nature of H0,0.

The bilinear product of states in U(1|1) theory is 1/k times the product in the psl(1|1)

theory, where the factor 1/k comes from eq. (3.37). In particular, we have

(|w,w′〉, |w̃, w̃′〉) =
1

k
δw+w̃mod k, 0 δw′−w̃′mod k, 0 , (3.65)

and therefore

(|Lw,n〉, |Lw̃,ñ〉) = δw+w̃mod k, 0 δn+ñ−1 mod k, 0 . (3.66)

Let us look at the modular properties of the states, created by the line operators. Under

the transformation T , the state |w,w′〉 transforms into |w,w′ −w〉. The operator Lw, n thus

picks a phase exp(2πiw(n− 1/2)/k). The combination w(n− 1/2) is the quadratic Casimir

for the typical representation (w, n), and the framing factor that we got is what one would

expect from the conformal �eld theory. The operator Ln is invariant under T . The operator
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LP, n does not transform with a simple phase, but rather is shifted as

T |LP,n〉 = |LP, n〉+ v1 ⊗ |0a〉 . (3.67)

Geometrically, the reason is that the operator, which de�nes the state |0b〉, is given by

integration of A+ and A− over the contours of �g. 3.7. Under the T -transformation, the

winding number of the two contours changes. We note that in the sector H0,0 the operator

T is not diagonalizable. This is the signature of the logarithmic behavior of the CFT, which

presumably corresponds to our Chern-Simons theory.

Under the modular transformation S, the state |Lw, n〉 changes into
∑

R′ S
R′
w,n|LR′〉 with

Sw
′n′

w,n =
1

k
exp(−2πi((n− 1/2)w′ + (n′ − 1/2)w)/k) , (3.68)

Sn
′

w,n =
2i sin(πw/k)

k
exp(−2πin′w/k) . (3.69)

The other line operators transform as S|Ln〉 = v0 ⊗ |0b〉 +
∑

R′ S
R′
n |LR′〉 and S|LP,n〉 =

−v1 ⊗ |0a〉+
∑

R′ S
R′
P,n|LR′〉, with

Sw
′,n′

n = − 1

2ik sin(πw′/k)
exp(−2πinw′/k) , (3.70)

Sw
′,n′

P,n = −2i sin(πw′/k)

k
exp(−2πi(n− 1)w′/k) (3.71)

Modular transformations very similar to (3.68)-(3.71) were previously derived in the U(1|1)

WZWmodel in [60]. There are, however, some di�erences. The transformations most similar

to ours, but with H0,0 part omitted, are called �naive� in that paper. A slightly di�erent

version of transformations is derived using a particular regularization, whose role is essen-

tially to avoid dealing with H0,0. (The Chern-Simons interpretation of this regularization

is explained on �g. 11-12 of that paper.) We will not attempt to rederive the modular

transformations with the regularization of [60], since in our approach a regularization is not

needed.
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3.6 Some Generalizations

In this section, we make some brief comments on supergroup Chern-Simons theories other

than psl(1|1) or U(1|1). Much of what we are going to say here is a summary of results of [1].

The reason we decided to make this summary is that there, the focus was not on the three-

dimensional, but on the analytically-continued version of the theory. Here we would also like

to emphasize the importance of coupling to a background �at bundle. Our understanding

of the supergroup Chern-Simons theories is very limited, and this section will contain more

questions than answers.

3.6.1 De�nition And Brane Constructions

To de�ne a supergroup Chern-Simons theory, one needs to choose a complex Lie superalgebra

g, which possesses a non-degenerate invariant bilinear form. The bosonic and the fermionic

parts of g will be denoted by g0 and g1, respectively. One also needs to choose a real form

gR
0
for g0, and a global form G0 for the corresponding ordinary real Lie group29. A real

form for the whole superalgebra g is not needed. The action of the theory is the usual

Chern-Simons action, except that the gauge �eld is a sum of an ordinary gR
0
-valued gauge

�eld and a Grassmann g1-valued one-form. The action is multiplied by a level k, whose

quantization condition is determined by the global form G0, as in the usual Chern-Simons

theory. More precisely, the fermionic part of the action can have a global anomaly, in which

case the quantization condition for k should be shifted by 1/2, to cancel the anomaly. To

state exactly what we mean by k, we have to specify the regularization scheme. In �at space,

one can make the path-integral absolutely convergent by adding a Yang-Mills term, at the

expense of breaking the supersymmetry from N = 4 to N = 3. The Chern-Simons level

29One could also imagine de�ning a complex supergroup Chern-Simons theory, in which the bosonic gauge
�elds would be valued in the complex Lie algebra g0, and the fermions � in two copies of g1. More generally,
it should be possible to de�ne quivers of supergroup Chern-Simons theories, as mentioned in section 2.2.6 of
[1].
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Figure 3.9: Brane construction for an N = 4 Gaiotto-Witten theory. The complexi�ed type IIB
string coupling should belong to a semicircle of radius k, as shown on the left. The relative dis-
placement φa of the two (1, k)-branes is the SU(2)X -triplet of masses. The D3-branes are shown
slightly displaced along the direction of the NS5-brane just for clarity of the picture.

then receives no one-loop renormalization. By k we mean this �quantum-corrected� level30.

An equivalent de�nition of k is by a brane construction, which is presented below. On a

curved space, the correct treatment of the theory at one-loop is not entirely clear (see e.g.

Appendix E of [1].)

By analogy with the ordinary Chern-Simons theory, one can de�ne an �uncorrected� level

k′ by

k = k′ + |hg| sign(k′) , (3.72)

where hg is the dual Coxeter number of the superalgebra. One expects that this k′ is the

level of the current algebra, which one would �nd in the Hamiltonian quantization of the

theory, but that remains to be shown. We note that, while k can be a half-integer, with

de�nition (3.72) k′ is always an integer.

Completely analogously to the psl(1|1) case, the fermionic part of the gauge symmetry

can be globally gauge-�xed. This introduces g1-valued bosonic superghost C and antighost

C, as well as a fermionic g1-valued Lagrangian multiplier λ. Observables of the topological

theory are then in the cohomology of a BRST charge Q. This partial gauge-�xing procedure

for supergroup Chern-Simons was �rst described in [24].

As was found in [24], supergroup Chern-Simons theories can be obtained by topological

twisting from the N = 4 Chern-Simons-matter theories of [23]. For unitary and orthosym-

30Note that we changed notations slightly compared to chapter 2. What we call k here is equal to what
was called K in that chapter.
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0 1 2 3 4 5 6 7 8 9
D3 X X X (X) − − − − − −
NS5 X X X − X X X − − −
(1, k) X X X − − − − X X X

Table 3.1: Details on the brane con�guration of �g. 3.9. The D3-branes span a �nite interval in
the third direction. The R-symmetry groups SU(2)X and SU(2)Y act on the directions 456 and 789,
respectively.

plectic gauge groups, the latter can be engineered in type IIB string theory by brane con-

structions [119], [120], [121]. For the U(m|n) theory, the brane con�guration is shown on

�g. 3.9. Table 3.1 shows, in which directions the branes are stretched. For eight supersymme-

tries to be preserved, the complexi�ed type IIB coupling should lie on a semicircle of radius

k, as shown on the left of �g. 3.9. The coupling constant can thus be of order g2 ∼ 1/k,

so, the theory has a well-de�ned perturbative expansion in 1/k. The level k for U(m|n)

should satisfy the generalized s-rule condition |k| ≥ |n−m|, and otherwise the theory breaks

supersymmetry [36], [119], [122], [123]. One can also turn on an SU(2)X-triplet of masses

φa, which correspond in the brane picture to the relative displacement of the (1, k)-branes

in directions 456, as shown on �g. 3.9. For this deformation to preserve supersymmetry, the

generalized s-rule requires |k| ≥ max(m,n).

Let us also discuss brane construction for the orthosymplectic theories. For that, we add

an orientifold three-plane to the con�guration of �g. 3.6.3. (For a review of orientifold planes,

see [25], [26], or section 2.5.1.) Recall that the orientifold three-planes have two Z2-charges,

one of which is usually denoted by plus or minus, and the other by a tilde. Upon crossing a

(p, q)-�vebrane, the type of the orientifold changes: if p mod 2 6= 0, then plus is exchanged

with minus, and if q mod 2 6= 0, then the tilde is added or removed. A possible con�guration

is shown on �g. 3.10. In the interval between the two (1, k)-�vebranes, the gauge group is

O(2m+1) on the left and Sp(2n) on the right. The leftmost and rightmost orientifold planes

on the �gure have a tilde, if k is even, and do not have it, if k is odd. If the Õ3
−
-plane would

appear on the far right, the theory would have an extra three-dimensional hypermultiplet,
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coming from the fundamental strings that join the D3-branes and the Õ3
−
-plane. That

would give a theory di�erent from what we want. Therefore, we have to take k to be an odd

integer. In the OSp(2m+ 1|2n) Chern-Simons, we normalize the action to be

kosp
4π

∫
Str

(
AdA+

2

3
A3

)
, (3.73)

where Str is the supertrace in the fundamental representation of the supergroup. Here

kosp = k/2, where the factor of 1/2 comes from the orientifolding. Let us call a bosonic Chern-

Simons term canonically-normalized, if it transforms by arbitrary multiples of 2π under large

gauge transformations, assuming that the gauge group is connected and simply-connected.

With the normalization (3.73), the level kosp multiplies the canonically-normalized Chern-

Simons term for the Sp(2n) subgroup, and twice the canonically-normalized action31 for

Spin(2m+ 1). From what we have said about the brane con�guration, we see that k is odd,

and thus kosp ∈ 1/2 + Z. Therefore, the Sp(2n) part of the bosonic action is anomalous

under large gauge transformations. But that precisely compensates for the anomaly for

2m+ 1 hypermultiplets in the fundamental of Sp(2n), so, the theory is well-de�ned. For any

supergroup Chern-Simons theory, one expects the analog of the s-rule to be |kg| ≥ |hg|. This

is equivalent to the requirement that k′g, as de�ned in (3.72), does exist. For OSp(2m+1|2n),

this condition reads as |k| ≥ |2(n−m) + 1|.

For the even orthosymplectic group OSp(2m|2n), the brane con�guration is shown on

�g. 3.11. To avoid having an Õ3
−
-plane and an extra hypermultiplet, this time we have

to take k to be even, and therefore kosp = k/2 is an arbitrary integer, consistently with

the fact that the fermionic determinant has no global anomaly. The generalized s-rule is

|k| ≥ 2|n−m+ 1|.
31More precisely, this is true for m > 1. For m = 1, it is four times the canonically-normalized action.
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Figure 3.10: The brane construction for the N = 4 Gaiotto-Witten theory, which upon twisting

would give OSp(2m+ 1|2n) Chern-Simons. The leftmost and rightmost orientifold planes are Õ3
±
,

if k is even, and O3±, if k is odd.

Figure 3.11: The brane construction for the N = 4 Gaiotto-Witten theory, which upon twisting
would give OSp(2m|2n) Chern-Simons. The leftmost and rightmost orientifold planes are O3±, if

k is even, and Õ3
±
, if k is odd.

3.6.2 Some Properties

Importantly, for Lie superalgebras there exist automorphisms, which commute with the

bosonic subalgebra. For the so-called type I superalgebras, the group of these automorphisms

is U(1). Type I superalgebras are gl(m|n), together with the subquotients sl and psl, and the

orthosymplectic superalgebras osp(2|2n). The fermionic part g1 for type I decomposes under

the action of g0 into a direct sum of two representations. The U(1)-automorphism acts on

them with charges ±1. For superalgebras of type II, which are all the other superalgebras,

the relevant group of automorphisms is only Z2. It acts trivially on g0, and �ips the sign

of elements of g1. In Chern-Simons theory, one can use these automorphisms to couple the

theory to a background �at connection. For type I, this can be a complex �at line bundle,

just as we found for psl(1|1) and U(1|1). The partition function of the theory depends on the

background complex �at connection holomorphically. In �at space, the imaginary part of the
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background �at connection can be identi�ed with the SU(2)X-triplet of masses, mentioned

above. For a theory with a type II superalgebra, the background bundle can only be a Z2-

bundle. Equivalently, one can assign antiperiodic boundary conditions around various cycles

of the three-manifold for the g1-valued �elds.

Line observables of the supergroup Chern-Simons theory include Wilson lines in various

representations of the supergroup, as well as vortex operators, which are expected to be

equivalent to the Wilson lines, at least modulo Q. One can also construct twist line operators

by turning on a singular holonomy for the background �at gauge �eld, as we did in simple

examples in the present chapter. For special values of the holonomy, those operators can be

equivalent to ordinary vortex operators.

Consider the theory on R3, or other space with three non-compact directions, and assume

that the background �at bundle was turned o�. It is then possible to give vevs to the scalar

superghost �elds C and C and to partially Higgs the theory. For example, the U(m|n)

gauge supergroup can in this way be reduced down to U(|n − m|). (In the brane picture,

this corresponds to recombining a number of D3-branes and taking them away from the

NS5-brane in the directions 789.) Since the superghosts appear only in Q-exact terms, this

procedure does not change the expectation values of observables in the Q-cohomology. By

this Higgsing argument one can see that the expectation values of Wilson loops vanish for

almost all representations, except for the maximally-atypical ones. The classes of maximally-

atypical representations are in a natural correspondence with representations of U(|n−m|),

and the Wilson loops in those representations reduce to Wilson loops of the ordinary, bosonic

U(|n−m|) Chern-Simons theory upon Higgsing. Thus, on R3 the U(m|n) supergroup theory

does not produce new knot invariants. (A similar story holds for other supergroups32.) It is

however interesting to turn on a background �at bundle, which in �at space means just a

constant SU(2)X-triplet of mass terms. Looking at the brane picture, one would expect that

32Almost all supergroup Chern-Simons theories can be reduced in this way to bosonic Chern-Simons.
One exception is the series OSp(2m + 1|2n), which can be Higgsed only to OSp(1|2n). However, we found
in section 2.5.5 that the analytically-continued version of OSp(1|2n) Chern-Simons is dual to the ordinary
Chern-Simons with gauge group O(2n+ 1).
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for large φa the U(m|n) theory would reduce to U(m) × U(n) Chern-Simons. If this were

true, then, in particular, we would have a knot invariant, which interpolates between the

U(|n−m|) and the U(m)×U(n) invariants. This is certainly very puzzling. Unfortunately,

we cannot test this in the simple examples considered in this chapter, since the atypical

representations of U(1|1) do not produce non-trivial knot invariants.

On a compact closed three-manifold, the theory has both bosonic and fermionic zero

modes. To get a well-de�ned invariant, one needs to turn on a background �at bundle. The

partition function is then a holomorphic function thereof. Alternatively, one can insert loops

with vortex operators. As discussed in section 2.3.2, to remove all the zero modes by a single

vortex operator, it has to be labeled by a typical weight of the superalgebra.

3.6.3 Dualities

The con�guration of �g. 3.9 is clearly similar to the brane contruction for the analytically-

continued theory, discussed in Chapter 2. If we moved the (1, k)-branes along the third

direction away to in�nity, we would recover precisely the con�guration studied in [6] and

in the previous Chapter. In the language of the analytically-continued theory, the role of

the (1, k)-branes is to choose the real integration contour for the path-integral. Indeed, the

�uctuations of the D3-branes in the directions 456 are described in the 4d N = 4 Yang-Mills

theory by three components of the adjoint-valued scalar �eld. Upon twisting, those become

the imaginary part of the gauge �eld of the analytically-continued Chern-Simons theory. At

the positions of the (1, k)-branes these �elds are set to zero, which means that we are working

with the real integration contour.

Having a brane construction, one can apply various string theory dualities. In the

analytically-continued Chern-Simons, it has been shown that the S-dual theory gives a new

way to compute the Chern-Simons invariants [6], [74]. One might ask, whether we can obtain

anything useful by considering the S-dual of our con�guration of �g. 3.9, which is shown on

�g. 3.12. Unfortunately, this does not seem to be the case, beyond the duality for the psl(1|1)
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Figure 3.12: The S-dual of the brane con�guration, which describes the U(m|n) Chern-Simons
theory.

Figure 3.13: The interaction of n D3-branes with a (k, 1)-brane is described by coupling the D3-
brane gauge �elds to the T (U(n)) theory via the U(n) symmetry of the Higgs branch of T (U(n)),
and gauging the Coulomb branch of T (U(n)) with a U(n) Chern-Simons gauge �eld at level k.

and U(1|1) theory, which has been considered in previous sections.

The problem is that the S-dual con�guration of �g. 3.12 contains D3-branes ending on

(k, 1)-�vebranes. The low energy �eld theory for such a �tail� has been described in [29],

and is shown on �g. 3.13. The U(n) gauge theory of n D3-branes is coupled to the Higgs

branch of the three-dimensional theory T (U(n)), the Coulomb branch of which is gauged

by a level k Chern-Simons gauge �eld. The T (U(n)) theory with non-abelian symmetries

of the Coulomb branch gauged does not have a Lagrangian description, and therefore the

con�guration of �g. 3.12 does not seem to be particularly useful for the purpose of studying

supergroup topological invariants.

More precisely, there exists one case, where gauging the Coulomb branch of T (U(n)) is

easy [29] � namely, n = 1. Using the description of this case in [29], one can readily see

that the con�guration of �g. 3.12 for m = n = 1 gives the mirror of U(1|1) Chern-Simons,

which was considered in section 3.4.4.

One can alternatively view the mirror transformation of the U(m|n) theory as follows.

We represent the bifundamental hypermultiplet of the U(m|n) theory as the IR limit of the

Coulomb branch of some UV theory, and then couple it to bosonic Chern-Simons gauge

�elds. The relevant UV theory can be found by replacing the (1, k)-�vebranes on �g. 3.9 by
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Figure 3.14: A brane con�guration, which produces a free U(n)×U(m) bifundamental hypermul-
tiplet. There are m and n D5-branes on the left and on the right, arranged so as to impose the
Dirichlet boundary condition in the 4d N = 4 Yang-Mills theory.

a bunch of D5-branes, so as to impose the Dirichlet boundary condition (see �g. 3.14), and

then applying the S-duality and making some Hanany-Witten moves. (For n = m = 1, this

procedure would give the psl(1|1) theory and its mirror.) The resulting UV theory is given

by the quiver of �g. 3.15. It is an �ugly� quiver, in the terminology of [29]. As demonstrated

in section 2.4 of that paper, it has nm monopole operators, which in the IR give rise to nm

free hypermultiplets, as expected.

Again, this description is not useful for non-abelian supergroup Chern-Simons theories,

since the non-abelian symmetry of the Coulomb branch of the quiver emerges only in the

IR. We can nevertheless play a game similar to what we did for the single hypermultiplet.

We can couple the quiver theory to n+m− 1 �at GL(1) gauge �elds, using the dual photon

translation symmetries and FI terms of the UV theory. On the one hand, it is clear from

the IR theory that the resulting invariant is a product of nm abelian torsions. On the other

hand, it can be computed by solving non-abelian Seiberg-Witten equations33 for the quiver

of �g. 3.15. One expects that the solutions to those equations, in the limit of large FI terms,

can be obtained by embedding nm solutions of the abelian equations, so as to reproduce a

product of abelian torsions. Since, anyway, this invariant does not produce anything new,

we will not consider it in more detail.

There is one last case, where the mirror symmetry can be useful for supergroup Chern-

Simons. This is when the level k is equal to one. The reason is that a (1, 1)-�vebrane can be

related by S-duality, say, to a D5-brane, while preserving the NS5-brane in the con�guration

33Those equations are completely analogous to the abelian ones, and are written out in Appendix3.7.
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Figure 3.15: A quiver gauge theory, which is obtained by S-duality and a sequence of Hanany-
Witten moves from the brane con�guration of �g. 3.14.. We follow the notations of [29]: the circles
denote unitary gauge groups, the square is the fundamental hypermultiplet, and connecting lines
are bifundamental hypermultiplets.

of �g. 3.9. The generalized s-rule requires in this case that |n−m| ≤ 1. By applying a further

S-duality, the theory can be mapped to an N = 4 Yang-Mills with no matter or with a single

fundamental hypermultiplet. In this way, e.g., the U(n|n) Chern-Simons theory at level one

would be related to the non-abelian U(n) Seiberg-Witten equations. The problem, however,

is that the s-rule in this case does not allow us to turn on a background �at bundle, except

for the case of the U(1|1) theory. Therefore, even if the mirror theory does compute some

non-trivial invariant, it will not be computable in the U(m|n) supergroup Chern-Simons. It

is possible that in the orthosymplectic OSp(2m+ 1|2n) case the situation is better, and one

can turn on a background Z2-bundle and get a non-trivial duality of invariants, but we will

not explore this here.

3.7 Appendix A: Details On The N = 4 QCD

Here we describe the �elds, the BRST transformations and the Lagrangian for the topolog-

ically twisted N = 4 SQCD with one fundamental �avor. The bosonic �elds of the theory

are the gauge �eld A, the triplet of scalars, which we write as a complex scalar σ and a real

�eld Y1, and the hypermultiplet scalar �elds, which upon twisting become a spinor Zα. The

fermions of the vector multiplet transform in the (2, 2, 2) representation of the Lorentz and

R-symmetry groups, and upon twisting produce fermionic scalars η and ψ̃ of ghost numbers

−1 and +1, a one-form ψ of ghost number +1, and a two-form χ of ghost number −1. The
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fermions of the hypermultiplet after twisting remain spinors, and will be denoted by ζu (of

ghost number +1) and ζv (of ghost number −1).

The BRST transformations of the �elds can be obtained by dimensional reduction34 from

the formulas of Chapter 2,

δA = ψ , δσ = 0 , δσ = η , δY1 = ψ̃ , δZ = ζu

δη = i[σ, σ] , δψ = −dAσ , δψ̃ = i[σ, Y1] , δχ = H , δζu = iσZ , δζv = f .

Here µ = iZα ⊗ Zβσ
β
α is the moment map, and H and f are auxiliary �elds. The equations

of motion set H = F + ?
(
dAY1 + 1

2
µ− 1

2
e2φ
)
and f = /DZ + iY1Z, and the Seiberg-Witten

equations are

F + ?

(
dAY1 +

1

2
µ− 1

2
e2φ

)
= 0 , (3.74)

/DZ + iY1Z = 0 . (3.75)

The FI one-form φ is valued in the center of u(n). Here are a couple of useful identities,

∫
d3x
√
γ

(
DiZαD

iZα + Zα

(
Y 2

1 +
1

4
R

)
Zα

)
=

∫
d3x
√
γ |f |2 −

∫
d3x
√
γ tr

(
Y1Diµ

i
)

+

∫
d3x tr (F ∧ µ) , (3.76)∫

d3x
√
γ tr

(
1

2
F 2
ij + (DiY )2 +

1

4
(µi − e2φi)

2 − e2φiDiY1

)
=

∫
tr (H ∧ ?H) +

∫
tr (F ∧ e2φ− F ∧ µ) +

∫
d3x
√
γ tr (Y1Diµ

i) . (3.77)

where R is the scalar curvature. These identities allow to rewrite the SQCD action in the

form (3.15)-(3.16). (Our normalization of the coupling constant is such that the gauge �eld

kinetic term is
∫

trF 2
ij/4πe

2.)

The action of the twisted theory in general contains the term Y1D
iφi, which breaks the

34Our notations here are slightly di�erent from Chapter 2 in that here the adjoint-valued �elds are Her-
mitian. The covariant di�erential is dA = d+ iA.
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SU(2)Y -symmetry. This, in fact, is the same term that we saw in section 3.2.1 in the electric

theory. If d ? φ = 0, the symmetry is restored. For an irreducible solution of the Seiberg-

Witten equations, one then has Y1 = σ = σ = 0, and the equations (3.74)-(3.75) can be

simpli�ed to (3.19). For a more general φ, the �eld Y1 is non-zero and can be found by

applying dA to the equation (3.74).

We focused on the QCD with one fundamental �avor, but this twisting procedure gener-

alizes in an obvious way to an arbitrary quiver theory with vector multiplets and hypermul-

tiplets.

3.8 Appendix B: Boundary Conditions Near A Line Op-

erator

In general, in giving a de�nition of a disorder operator, one needs to specify the boundary

conditions for the �elds near the singularity, to ensure that the Hamiltonian in presence of the

operator remains self-adjoint. (A closely related condition is that in Euclidean signature the

kinetic operator of the �elds should remain Fredholm.) For that, the boundary conditions

should satisfy two requirements. First, to verify the Hermiticity of the Hamiltonian, one

integrates by parts, and the boundary term should vanish. Second, the boundary conditions

should set to zero half of the modes near the boundary. Here we would like to sketch

these boundary conditions for our disorder operators Lt, n, since we use them explicitly in

section 3.5.2.2. (Note that sometimes in similar problems there exist families of possible

boundary conditions, and this leads to important physical consequences [124], [125]. In our

case, nothing like this happens.)

We consider an operator Lt, n, stretched along a straight line in R3. The coordinate along

the operator will be denoted by t and will be treated as time, and the polar coordinates in

the transverse plane will be denoted by r and θ. For the background gauge �eld, we choose

the gauge in which B is zero, but �elds with positive U(1)fl-charge are multiplied by t in
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going around the operator. We assume t to be unimodular and write it as t = exp(2πia),

with a ∈ (0, 1).

For the scalar �eld C+, we want to impose a boundary condition with which the two-

dimensional Laplacian ∆ would be self-adjoint. The �eld can be expanded in modes of

di�erent angular momentum `, valued in a + Z. Near r = 0, the modes with angular

momentum ` behave like r±|`|. We impose the boundary condition C|r→0 = 0. It actually

implies that C vanishes at least as rmin(a,1−a). This boundary condition has the required

properties.

The Q transformations act as

δA0 = −∂tC , δA = −dC , δC = λ , (3.78)

where we separated the fermionic gauge �eld into its time component A0 and components

A in the transverse plane. The boundary condition for the fermions, which is compatible

with vanishing of C and with Q-invariance, is to require that λ and A0 vanish at r = 0, and

that A is less singular than 1/r, in an orthonormal frame. Then, in fact, the �elds λ, A0

and rA vanish at least as rmin(a,1−a), and are square-integrable. The fermionic Hamiltonian

is the operator d+ d∗ in two dimensions, acting on the �eld A = A0 +A+ ?λ, where ? is the

2d Hodge operator. It is easy to see (on the physical level of rigor) that with our boundary

condition the Hamiltonian is self-adjoint. If z = r exp(iθ) is the complex coordinate, then

the operator reduces to  0 −∂

∂ 0

 , (3.79)

acting on the doublet ((A0 + iλ)/2, Az), plus a similar operator for the other pair of �elds

((A0 − iλ)/2, Az). In verifying the Hermiticity of this operator, the boundary term in the

integration by parts vanishes. The boundary condition sets to zero a minimal possible

number of modes, so one expects that the operator is not only Hermitian, but is self-adjoint.
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Figure 3.16: a. Two cuts and two basis contours for a four-punctured sphere. b. The result of the
braiding transformation. The contour C1 got multiplied by t1 in crossing the left cut. It will also
get a factor of t2, when the right cut is moved back to its place.

3.9 Appendix C: Skein Relations For The Multivariable

Alexander Polynomial

Here we derive two skein relations for the multivariable Alexander polynomial, which are

known [117] to de�ne it completely, together with the skein relation of �g. 3.4, the normal-

ization (3.55), the formula of �g. 3.8a, and the fact that the invariant is zero for a disjoint

link.

Consider the case of two strands, labeled by holonomies t1 and t2. The sphere with four

punctures t1, t
−1
1 , t2, t

−1
2 and two basis contours is shown on �g. 3.16a. Upon performing

a braiding transformation, which brings the marked point t2 around the point t1, we arrive

at the picture on �g. 3.16b. The contour C1 gets a factor of t1 in crossing the left cut. To

compare to �g. 3.16a, we also need to move the right cut back to its place. That will multiply

the contour C1 by a factor of t2. Overall, the transformation acts on the contours as

 C′1

C′2

 =

 t1t2 0

0 1


 C1

C2

 . (3.80)

Therefore, the state of U(1)fl-charge −1 transforms by a factor (t1t2)−1/2, and the two

U(1)fl-neutral states are transformed by a matrix with eigenvalues (t1t2)1/2 and (t1t2)−1/2.
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Figure 3.17: A skein relation for the multivariable Alexander polynomial.

Figure 3.18: Braids for the 3-strand skein relation.

(In taking a square root, we made a choice of sign such that the resulting skein relation for

t1 = t2 is consistent with �g. 3.4.) The skein relation that we �nd is shown on �g. 3.17.

To completely characterize the multivariable Alexander polynomial, one more skein re-

lation is needed [117]. It relates seven three-strand con�gurations, shown on �g. 3.18. The

existence of this skein relation follows from the fact that the dimension of the U(1)fl-invariant

subspace of the Hilbert space of the six-punctured sphere, according to (3.44), is
(

4
2

)
= 6.

We need to �nd the action of the braiding transformations of �g. 3.18 on the four contours

that generate the twisted homology of the six-punctured sphere. For example, let us consider

the link L2211. The basis contours and the result of the braiding transformation are shown

on �g. 3.19. On the contours C1 and C2 we put cross-marks at some points, which are not

moved in the transformation. At these points the one-form, which is being integrated over
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Figure 3.19: a. A particular choice of cuts and basis contours for the six-punctured sphere. b. The
result of the braiding transformation, corresponding to the link L2211.

Figure 3.20: Contour t2C1, which comes from C1 of �g. 3.19 after moving the middle cut back to
its place. We show the new basis contours C′1 and C′2 by dashed lines.

the contour, is taken on the �rst sheet, and on the rest of the contour it is de�ned by analytic

continuation. The �rst step in comparing �gures 3.19b and 3.19a is to bring the middle cut

back to its place. On the way, it will cross the contours C1 and C2, and that will multiply

them by t2. On �g. 3.20, we show the contour t2C2. We need to expand it in the new

basis C′1 and C′2, which is shown by dashed lines. We start comparing the contours from

the cross-mark, and add a factor of t−1 each time we cross a cut counterclockwise around a

puncture t. We �nd

t2C1 = C′1 + C′2 + t−1
3 (−C′2 − C′1 + t−1

1 C′1) . (3.81)

Repeating the same steps for C2, and for each link from �g. 3.18, we �nd the braiding
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matrices

B2112 = t3

 1 0

t2(t1 − 1) t1t2

 , B1221 = t1

 t2t3 t3 − 1

0 1

 ,

B2211 = t2

 t1 t1(1− t3)

1− t1 1− t1 + t1t3

 , B1122 = t2

 1− t3 + t1t3 t−1
2 (1− t3)

t2t3(1− t1) t3

 ,

B11 =

 t1t2 0

t2(1− t1) 1

 , B22 =

 1 1− t3

0 t2t3

 , B0 =

 1 0

0 1

 . (3.82)

Here we de�ned the matrices by (C′1,C
′
2)T = B(C1,C2)T . The contours C3 and C4 are

transformed trivially.

Let a+
1,2,3,4 be the four creation operators, obtained by integrating the fermionic gauge

�eld A+ over the corresponding contours. The Hilbert space of the six-punctured sphere

contains one state of charge −2, from which we build the other states by applying a+
• . The

six neutral states, which we are interested in, are

a+
1 a

+
2 |−2〉,

a+
1 a

+
3 |−2〉, a+

2 a
+
3 |−2〉,

a+
1 a

+
4 |−2〉, a+

2 a
+
4 |−2〉,

a+
3 a

+
4 |−2〉 . (3.83)

The highest weight state |−2〉 transforms under braiding by a factor det−1/2B, and therefore

so does the state a+
3 a

+
4 |−2〉. The state a+

1 a
+
2 |−2〉 transforms by a factor det1/2B. The states

in the second and the third lines of (3.83) transform in doublets by the matrix B det−1/2B.

In total, for each braiding transformation, the 6 × 6 braiding matrix has 1 + 1 + 4 = 6

independent matrix elements. We can collect them in a 7 × 6 matrix, in which the rows

correspond to the diagrams of �g. 3.18. The null-vector of this matrix will give us the skein
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relation. Let us set g±(t) = t1/2 ± t−1/2. Using the explicit expressions for the braiding

matrices (3.82), one �nds the skein relation to be

g+(t1)g−(t2)L2112 − g−(t2)g+(t3)L1221 + g−(t1t
−1
3 )(L2211 + L1122)

+ g−(t2t3t
−1
1 )g+(t3)L11 − g−(t1t2t

−1
3 )g+(t1)L22 + g−(t2

1t
−2
3 )L0 = 0 . (3.84)

This, indeed, is the correct skein relation for the multivariable Alexander polynomial. To-

gether with other relations and normalization conditions that we have found, it �xes the

knot invariant completely [117]. We should note, however, that we did not explain, how to

properly choose the square root of the determinant of the braiding matrix in the transfor-

mation of the highest weight state. Thus, our derivation does not allow to unambiguously

�x relative signs of di�erent diagrams in the skein relation.
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