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Abstract

Biological cells and tissue move and rearrange under the influence of mechanical,

locally applied forces. One open question is how such local forces combine together

to create large scale motions in cells and tissues for biological functions. This thesis

addresses this question in the context of how forces between molecular components

lead to polarization and motility for a single cell, and in the context of how forces at

the whole-cell level lead to morphogenesis of tissues.

In Chapter 2, we present a mathematical description for the crawling motion of a

single cell. This motion arises from the self-organized behavior of molecular components

pushing on a cell membrane, which may be thought of as a flexible boundary that

responds to contact forces. The molecular components themselves consist of many

filaments and motors, coarse grained such that they are described by continuum

concentration profiles. This system is intrinsically driven out of thermodynamic

equilibrium by active forces that include filament treadmilling and attractive forces

generated by motors. However, steady state configurations still exist in which the

modeled cell, coupled through a friction coe�cient with the outside environment,

moves persistently in a single direction. This symmetry broken, moving state results

from instabilities of the filament density distribution and in particular regions of

parameter space, coexists with symmetric, stationary states, thus making the system

capable of spontaneous polarization and bistable in certain regimes.

In Chapter 3, we consider a larger length scale. Specifically, we discuss a di↵erent

model based on mechanical forces existing at a cellular level and the organization of

tissue that results from the application of these forces. The biological system under

investigation is the sheet of epithelial cells covering the egg chamber of Drosophila

from which two breathing tubes are eventually molded. We adapt a model previously

employed in foam and Drosophila wing disc research, use it to model out-of-plane

deformations of a sheet of cells, and show that specific patterns of line tension within
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the sheet, combined with discrete topological rearrangement rules typical of such

models, can lead to the formation of tubes. We show that the model supports recent

experimental results on this system and that the novel mechanism of tube formation

proposed by the experiments can be driven by simple line tension patterning within a

sheet.
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Chapter 1

Introduction

Mechanical forces and interactions are important for a variety of biological phenomena

from the scale of molecules to cells to tissues. Importantly, mechanical forces are local,

and the length scale over which forces directly act is frequently much smaller than

the length scale of the resultant organized motion. Forces at the molecular level may

lead to motion of a cell, and forces generated by individual cells may be integrated to

create large scale changes at the tissue level. These general issues will be examined

through two specific problems, which shall be the focus of this thesis.

The current chapter gives the biological background and a review of the physics

and recent literature used in the remainder of this thesis. Chapter 2 discusses a

problem in which microscopic interactions between filaments and motors in a model

of cell cytoskeleton can drive motility and directional polarization of the whole cell.

Chapter 3 discusses a problem in which tensions are patterned within an epithelial

sheet and asks how such “programming” of a sheet may be related to deformations

in the final, three-dimensional tissue morphology. Finally, chapter 4 concludes this

thesis.
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1.1 Cell motility

1.1.1 Components of the cytoskeleton

A cell includes a lipid membrane surrounding a viscoelastic biological medium, the

cytoskeleton. The physical characteristics of the cytoskeleton are largely determined

by the properties of the filamentous proteins contained in it and their interactions with

motor proteins. Motor proteins use chemical energy in the form of ATP to generate

mechanical force, making the cytoskeleton an “active” biological material. These two

key molecular components, filaments and motors, largely contribute to the ability of

the cytoplasm to remodel itself, and this consequently allows the cell to change shape

and move.

Filamentous proteins

The three filamentous structures composing cytoskeleton are actin, microtubules, and

intermediate filaments [1]. These filaments are generally thought of as structural

elements that give the cell mechanical integrity and shape. The filaments are made

up of monomer subunits whose molecular composition and interactions with other

components in the cell help determine the sti↵ness and persistence length of the

filament. Filaments can also be crosslinked to each other by specific crosslinking

proteins, providing additional complexity to their collective structure. Although

filaments have the reputation of functioning as structural support within cells, they

actually are very active due to their interactions with motor proteins and crosslinking

molecules. Additionally, each of the subunits that form the filaments dynamically

come on and o↵, which can give rise to growing and shrinking dynamics.

Both actin and microtubules are oriented filaments, that is, the two ends of these

filaments are not identical. Intermediate filaments are not oriented; in fact, the

non-oriented structure of intermediate filaments make them useless for transport, so
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their function is mostly to provide structural integrity. Cytoplasmic intermediate

filaments do not even exist in Drosophila. Microtubules participate in cell division

by separating and transporting chromosomes to their respective new cells; they are

involved in the transport of various vesicles and organelles within the cell as well as in

the determination of cell shape. Actin is most actively involved in generating motion

for cells, and for the research presented in this thesis, we shall focus on actin and its

associated motor protein, myosin.



Figure 1.1: a) Schematic of actin filament taken from [2]. b) Electron micrograph of
actin branching at 70�, taken from [3]; scale bar indicates 0.1µm. Here, the actin is
decorated with myosin S1, the head domain of myosin, for the purposes of visualizing
the polarity of actin; the arrowheads align with the direction of pointed ends.

Actin is the most abundant protein in eukaryotic cells by mass [2], and is well

known to be a key molecular player in cell motion. An actin filament has a diameter

of 8 nm [4] and a persistence length of 15–18µm [5, 6]. The two ends of an actin

filament are called “barbed” and “pointed” ends. Addition of subunits occurs faster

than subtraction of subunits at the barbed end, while subtraction of subunits is

faster at the pointed end, leading to net polymerization at the barbed end and net

depolymerization at the pointed end in a process called “treadmilling”; a schematic

of an actin filament is shown in figure 1.1a). Actin interacts with many types of

proteins, including capping proteins that attach to actin’s barbed ends and prevent
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both addition and subtraction of subunits there, ADF/cofilin proteins that attach

to actin filaments and promote severing of filaments and dissociation of subunits,

and Arp2/3 protein complexes that bind to the side of existing filaments and initiate

the growth of new filaments at 70� angles with respect to the existing filaments at

the binding position, as shown in figure 1.1b). Arp2/3 is particularly essential for

actin polymerization because actin dimers and trimers are unstable, therefore, it is in

general di�cult to initiate an actin filament; however, an Arp2/3 complex plus just one

actin monomer is already stable. Formin proteins attach to the barbed end of actin

filaments and recuit monomers and, at the same time, prevent capping proteins from

attaching there; they also promote nucleation of actin filaments [7]. The regulation of

the growth, nucleation, and severing of actin filaments is critical in generating cell

motion because without regulation, actin filaments cannot treadmill or turn over fast

enough for cells to crawl and change shape on biologically relevant time scales [2].

Motor proteins

Some authors have classified five types of molecular motors [8]; we will focus on

just one class, the “linear stepper” motors. These motors use the energy released

by an ATP hydrolysis event to make a conformational change to their shape, and

subsequently convert a series of these conformational changes into net linear movement.

These motors frequently anchor themselves to filamentous proteins, although some

motors move along DNA or RNA. If one position on a motor is anchored to a filament,

then the conformational change of the motor will result in relative motion between the

filament and the motor; this event may be thought of as a “step” taken by a motor

along a filament, and these steps are repeated. If two positions, the head and the tail

(see figure 1.2), on a motor are anchored to di↵erent proteins, then the conformational

change of the motor may result in relative motion between the two places of anchorage.

Myosins are motors that step along actin; the precise procedure of myosin stepping
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Figure 1.2: The myosin molecule (green) is attached to actin at its head domain and
to a myosin thick filament at its tail domain. Alternatively, the tail domain could
interact with a variety of other proteins. An ATP molecule attaches to the myosin,
allowing it to detach from the actin filament. When ATP undergoes hydrolysis, the
energy released from the ADT-to-phosphate bond is used for the myosin to change
conformation. The myosin head reattaches to actin when the phosphate unbinds, and
the myosin again changes conformation when the ADT detaches in a process referred
to as a “power stroke”. Taken from [1].

is indicated in the cartoon and captions of figure 1.2. There are at least 18 classes

of myosins known. Molecularly, myosins all have a head and tail domain, where the

head domain attaches to actin while the tail domain anchors to something else, such

as a substrate. Frequently, myosin tails attach to each other to form dimers, or double

headed myosin, as myosin II does; myosin II is the type of myosin responsible for

contractions in muscle as well as for generation of cell motion in many motile cells such

as keratocytes and neutrophils. Myosin tails also sometimes attach to form groups

of myosin molecules all attached together by their tails as in myosin thick filaments,

frequently found in muscle, or myosin mini-filaments, made of ⇠ 20 myosins, found in

non-muscle cells. The presence of motors in a filamentous network can create stress in

the network, leading to network contraction, fluidity, or crosslinking.
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Myosin steps are typically 5-36 nm and generate forces of a few piconewtons, with

step rate 1-20 s�1 [8]. Dyneins and kinesins are motors similar to myosin but they

walk on microtubules; their head domains attach to microtubules while their tail

domains attach to cargos such as vesicles that they are transporting. Since actin and

microtubules are both oriented filaments, all motors step only in a particular direction

on these filaments. Myosins all step toward the barbed end of actin filaments, except

for myosin VI that steps toward the pointed end; while all dyneins step toward the

minus end of microtubules, and most kinesins step toward the plus end. Although

we focus on linear stepper motors, other types of motors can also contribute to cell

motility; for example, bacterial flagellar motion is generated by rotary motors.

1.1.2 Cells that crawl

A variety of cells in animals must be motile either for morphogenesis during embryonic

development, or for subsequent biological functions. For example, keratocytes are

wound healing cells that live on the scales of fish and that must crawl to close wounds;

in other tissues, fibroblasts move quickly over damaged tissues while synthesizing

collagen and extracellular matrix and are therefore also involved in wound healing;

neutrophils, or white blood cells, acting as part of an immune response, crawl quickly,

chase down, and are able to envelope invasive cells and bacteria; neurons crawl and

extend neurites such that the nervous system may extend over an animal’s entire body.

Cell motility also has a role in malignancy; for example, cancer cells must migrate

to be able to metastasize and invade other tissue. Some images of various crawling

cells are shown in figure 1.3. Understanding the mechanics of cell motility is useful for

understanding a wide variety of biological phenomena.

Typically, cell crawling consists of the following steps. The cell first extends some

part of its body forward and then anchors this part to the substrate beneath; next,

the cell somehow pulls the rest of its body forward. While it has been found that
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Figure 1.3: a) Phase-contrast image of a keratocyte moving toward the top of the page;
scale bar is 10µm; taken from [9]. b) Fluorescent image of a mouse NIH-3T3 fibroblast
with GFP-labeled actin; scale bar is 10µm; taken from [10]. c) Di↵erential interference
contrast images of human neutrophils; arrows indicate directions of motion for the
cells; scale bar is 10µm; taken from [11]

actin polymerization mechanically drives the initial extension by the front of the cell,

the retraction mechanism to pull the body forward is not well understood, although

most studies have suggested that myosin plays a role.

The parts of the cell that first extend forward in the process of motility are called

lamellipodia if the extension is sheet-like, and filopodia if the extension is stick-like.

Both types of extensions are due to pushing forces from actin which come from the

addition of subunits to the ends of actin that face the front of the cell when membrane

fluctuations leave room for a subunit to be added. This mechanism is often described

as a “thermal ratchet”, and the general process of successively adding subunits to a

filament is called treadmilling. In the case of lamellipodia, actin filaments arranged

in a dense, flat, branched network, about 1µm thick, push on a wide section of the

cell membrane, while in filopodia, actin filaments gather together, form a long thin

bundle and push on a point-like region of the cell membrane, as shown in figure 1.4.

The di↵erent arrangements and dynamics of actin driving these extensions are due

to the complex interactions of actin with regulating molecules and molecular motors

that consume energy and keep the system far from equilibrium. Detailed spatial

distributions of regulating molecules determine the behavior and structure of the

leading edge of cells. For example, signaling molecules such as WASp at the cell front

activate Arp2/3, which promotes polymerization of actin in a branched configuration
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Figure 1.4: Electron micrographs of di↵erent actin structures within cells. a) Branched
actin network at a keratocyte cell’s leading edge, taken from [3]; width of image is
⇡ 1µm. b) Longer and less branched actin structure away from the keratocyte’s
leading edge, taken from [3]; width of image is ⇡ 1µm. c) Actin structure within
filopodia, taken from [12], scale bar is 0.2µm .

only within 1µm of the front cell edge; further from the edge, where there is a a lower

concentration of Arp2/3, the actin filaments are longer and less branched [2,3]. It has

been shown that myosin is not required for front edge extension in cells [13].

In addition to the actin pushing force mechanism giving rise to protrusion of the

cell’s front edge, cell motility depends on adhesion to the substrate and the cytoskeletal

contraction needed to pull the cell forward. Marking experiments have shown that

actin at the leading edge of cells, once polymerized, tends to remain motionless with

respect to the substrate due to interactions with adhesion sites, although in the region

at the very front, closest to the cell membrane, there is some “retrograde flow” in

which actin slips backward in the lab reference frame [2]. It has also been proposed

that the contractile forces generated by myosin at the back of the cell may be able to

rip cell adhesions from the substrate [14], and in fact, traction force measurements
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have determined that the front and back of keratocyte cells experience di↵erent levels

of friction with the substrate, such that the back slips and the front does not [15]. The

details of how adhesion dynamics are regulated and their role in motility, however,

are not well-understood.

Although it has generally been determined that myosin contractility is important

for cell polarization and motility [3,13], the exact mechanism of how myosin-mediated

contractile forces pull the cell body forward is not completely understood. Through

imaging experiments, it has been shown that myosin is mostly present in the cell

body and cell rear, away from the leading edge [3]. Experiments involving physical

manipulations or independent pharmacological inhibition of actin polymerization and

myosin activity have determined that movement of the cytoskeleton at the front and at

the back of the cell are somewhat decoupled. For example, in keratocytes, inhibiting

actin polymerization stops the front edge of the cell from protruding, which in the

meantime allows the back edge to “catch up” and results in a shortened cell [15, 16],

and inhibiting both actin polymerization and myosin activity stops the cell from

moving entirely [15]. In another experiment, it has been shown that holding on to

or pushing forward on the back of a keratocyte with a pipette does not change the

rate of advance of the front edge for short manipulation times [16]. Although it is

generally agreed that the back of the cell requires myosin for “catching up” to the

front, it is di�cult to separate the forces due to myosin contraction of actin versus

adhesion ripping, among other processes.

1.1.3 Descriptions of cytoskeleton and cells

In vitro systems

The system of actin and myosin is a popular subject of recent research in physics.

This is largely because proteinous filaments may be compared to semiflexible polymers

for which there is already a large body of work, and the addition of motors to the
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filaments creates an active biological material with interesting properties, multiple

phases, and instability dynamics. Moreover, the symmetry and order in either the

density or orientation distribution of filaments is of interest to many condensed matter

physicists who would like to use the language of order parameters and phase transitions

to describe this new class of materials.

An actin filament may be mechanically thought of as a polymer, or a chain of

repeated molecular units. The physics of how polymers are distributed in volumes,

become tangled and crosslinked, interact with ambient fluid, and how their molecular

details can contribute to bulk viscoelastic properties have been studied extensively.

A simple illustration of how microscopic states of a polymer are connected to bulk

properties is the following. The entropy of a stretched polymer is smaller than that of

a relaxed polymer because the stretched state has fewer accessible microstates; this

implies that the stretched state has higher free energy, which means that stretching a

polymer at a fixed temperature requires work; the amount of work required per length

stretched is related, in this case, to the bulk elasticity.

From a statistical physics approach, actin filaments are often studied as a general

macromolecule. For example, the authors in [17, 18] examined isotropic to nematic

phase transitions in pure actin filament systems without myosin as functions of the

concentration and average lengths of filaments. They found that there is a continuous

phase transition for average lengths ` > 2µm, and a discontinuous phase transition

for average lengths `  2µm, where the concentration of filaments is greater in the

nematic phase. The authors interpreted these results using statistical mechanical

theories by Onsager for rodlike suspensions where rod-rod interactions are described

by an excluded volume e↵ect.

In the above mentioned studies, actin is considered as a stable polymer. However, in

biological systems, actin and myosin are both active, that is, they consume energy in the

form of ATP. Motors use ATP for conformational changes that lead to “linear stepping”,
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and actin requires ATP for treadmilling, the unequal addition and subtraction of

subunits to a filament’s plus and minus ends. The consumption of energy by the

cytoskeleton, is necessary for it to perform specific mechanical tasks such as dividing,

crawling, and changing shape. Continuous energy consumption causes filament-motor

systems to be intrinsically out of thermodynamic equilibrium, although non-equilibrium

steady states still exist. Out of thermodynamic equilibrium, these systems do not

satisfy the fluctuation-dissipation theorem; the authors in [19] show that in in vitro

actin-myosin systems, the theorem is violated with the addition of ATP, and that for

frequencies less than 10Hz, fluctuation is greater than dissipation. There are several

models and experimental set-ups addressing the non-equilibrium physics of active

filament-motor systems; these are discussed below.

Viewing systems of filamentous proteins and motors as systems of interacting rods,

it is clear that there may be emergent statistical order in steady states. There is a large

body of work exploring the spontaneous formation of asters, vortices, and bundles in

networks of filaments and motors. In one experiment, microtubules and kinesins were

mixed together in vitro and their concentrations varied; figure 1.5 shows the various

large scale patterns that resulted after some time, depending only on the concentration

of kinesins [20]. Other authors, in the same spirit, combined microtubules in vitro

with both plus and minus end directed motors, kinesins and Ncd fusion proteins,

respectively. While the presence of one type of motor led to uniform patterns of

asters or vortices depending on concentration, both motors together generated more

complicated structures such as lattices of asters where the motor proteins concentrated

at the centers of these structures alternated in a checkerboard pattern [21]. Although

in such simplified systems, the qualitative shapes of microtubule patterns are similar

to those seen in cells, the physical parameters in these two cases are very di↵erent [20].

In addition to experiments on purified filament-motor systems, there are mathematical

models exploring these systems. Motivated by the experiments on microtubule patterns,
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Figure 1.5: Structures formed by microtubules in the presence of various concentrations
of kinesin. a) ⇠ 25µg/mL kinesin, b) ⇠ 37.5µg/mL kinesin, c) ⇠ 50µg/mL kinesin,
d) < 15µg/mL kinesin. Taken from [20].

the authors in [22] presented a model of polar rods coupled by their orientations where

the strength of the interaction depends on motor density; they showed that this model

can give rise to patterns of asters and vortices.

In order to understand biological filament-motor systems, several models have

been developed. A theoretical framework describing viscoelastic polymer systems

with the addition of chemical energy was formulated by some authors who called it

active polar gel theory. In this framework, force balance equations from continuum

hydrodynamics are combined with a constitutive relation for stress that takes into

account force contributions from the orientation field of the filaments as well as the

chemical potential di↵erence between ATP and ADP used by the motors [23,24] to

calculate time evolution for gel density and polarization.

At the opposite length scale regime from continuum descriptions are models

capturing the molecular details of cellular machinery. Authors have explored molecular

dynamics models that account for the microscopic shapes of and interactions between

individual molecules; many of these models even simulate the ambient water as

particles. Coarse grained versions of molecular dynamics exist as well, in which an

actin subunit, for example, could be represented by a few molecular dynamics particles.
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These simulations are computationally expensive and are able to simulate only a few

actin filaments [25] or a small section of cell membrane [26] for a short time. While

the simulations can be used to explore detailed structures and dynamics of cellular

material, the short time and length scale covered by these models, as well as the

specificity of molecular details and parameters required, make them less useful for

broader understanding of the general properties of the cytoskeleton.

At an intermediate length scale, authors have written down mesoscopic descriptions

exploring self-organized behaviors in purified filament-motor networks [27, 28]. In

this case, individual filaments and motors are coarse grained and described at the

population level as density distributions satisfying mass and momentum conservation

equations. Microscopic interactions and constraints are pushed into the coarse grained

description by force terms in the equations of motion that couple densities in specific

ways; and force balance is explicitly satisfied by the choice of these terms. Such models

are used to explore order and symmetry breaking in purified systems in the form of

asters or traveling wave modes [29].

While a wide range of soft matter phenomena arises in active filament-motor

systems, there are few studies regarding how these materials behave when coupled to

a confining domain that has dynamics of its own. This interaction between material

and boundary is what this thesis will discuss in chapter 2.

Models for cells

A variety of experiments on motile cells have been conducted, including experiments

isolating the front from the back of the cell through pharmacological manipulation

[15, 16], measurements of cell shape and velocity taken on cells crawling on substrates

of varying sti↵ness [30], and experiments on cytoskeletal fragments that crawl and look

like whole cells [31]. This last example motivates the notion that cell motility may be

self-organized, since motion of cytoskeletal fragments cannot be due to an organizing
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center in the cell; this concept will be discussed in detail in Chapter 2. Extensive

experiments involving isolated parts of the cytoskeleton in simplified in vitro systems,

as described in section 1.1.3, have also been performed. Experiments such as the

above have been essential in determining the cytoskeletal components and interactions

involved in cell movement. For example, we are informed that mechanisms driving

the back of a cell may di↵er from the ones driving the front, that the mechanical

properties of the environment contacting the outside of a cell may influence its motion

by coupling to adhesion molecules, and that cell motility may arise from self-organized

coordination of material in the cytoskeleton. To complement experiments, physical

models may be more useful for exploring the minimal requirements for self-organized

motility.

The leading edge of most cells is well understood to be driven by actin polymeriza-

tion, and there have been a variety of models dealing with just motility at the leading

edge. The authors in [32, 33] use Brownian dynamics to simulate actin polymeriza-

tion against a barrier in the presence of Arp2/3 nucleators, obtaining force-velocity

relations for the leading edge that may be compared to experimental data. In this

study, actin monomers are represented by a simulation particle whose equation of

motion includes a stochastic force that simulates di↵usion and provides an e↵ective

temperature. Some authors model the cell’s leading edge as the advancement of a polar

gel interface with air [34,35]. And some authors append to the polar gel description

by adding semiflexible polymers with rigidity and growth dynamics anchored to the

active gel, pushing on a barrier [36,37]. In these models, cell polarity is defined by the

problem. Although these models have biological relevance, for example in describing

the advancement of the leading edge toward a chemical attractant or in obtaining

force-velocity relationships for the lamellipodia, they do not address how polarity

arises or the requirements for self-organized motility for the entire cell.

Additionally, there are models for whole cells. In some of these models, cell
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polarity arises naturally, for example, from instabilities in the dynamics of signaling

networks which regulate actin polymerization [38], or from the mechanical interactions

of membranes and cytoskeletal constituents [39,40]. Cellular automata models [41]

have also been explored, in which dynamics such as treadmilling are incorporated as

part of the energy Hamiltonian. These models, however, do not explicitly describe

the dynamics of molecular motor redistribution during the course of polarization.

Thus, the corresponding model predictions may not easily be compared to the relevant

experimental data on cytoskeletal dynamics accompanying cell polarization. A popular

set of models for cell motility [42] explicitly account for the dynamics of molecular

constituents such as motors, but other aspects of the description rely largely on

phenomenology; in particular, boundary conditions at the cell edge are imposed

phenomenologically and do not explicitly follow from a microscopic description of the

dynamics of the cytoskeletal filaments.

We shall, in Chapter 2, present a model of a moving cell that employs the mesoscopic

models of [27] to describe the cytoskeleton, mechanically coupled to a membrane with

dynamics described by previous work on lipid vesicles by [43].

1.2 Epithelial Morphogenesis

1.2.1 Epithelia in development

There are many ways of organizing cells into tissue. One particular approach is to

organize cells into epithelia, which are cell monolayers or sheets, and to use the sheets

to form structures with higher complexity. Epithelia are found in skin and the linings

of organs in the body, as well as in walls of passageways such as blood vessels.

Epithelial cells are cells with polarity along one axis, defining the “apical” and

“basal” side of the cell. Epithelial cells form tight attachments to each other via cell

surfaces that are oriented perpendicular to the axis of polarization of the cells, and
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cells that are attached this way are polarized the same way; that is, they are attached

to each other laterally with apical sides all facing the same direction. A close packing

of epithelial cells makes up a sheet, called the epithelium. This sheet is characterized

by the apical-basal orientation defined by the polarity of the cells making up the sheet,

the way in which the cells are attached to each other via various cell junctions and

adhesion molecules, as well as a basement membrane made up of a layer of proteins

on the basal side of the cells [44]. Many membrane bound adhesion molecules are

localized closer to the apical than basal sides of the cells and are involved in forming

cell junctions, which are belt-like structures located on the lateral surfaces of epithelial

cells that attach the cells to their neighbors. One of these types of junctions, the

adherens junction, is conserved in all metazoans. Adherens junctions play a key

role in certain types of cell shape change due to their direct interaction with the

cytoskeleton, and are also important in tissue level deformation since they link cells

together. There are other types of junctions, including septate junctions in Drosophila

and tight junctions in vertebrates that perform primarily non-morphogenetic functions,

such as providing a seal to isolate material on the apical side of the epithelia from

that on the basal side; these types of junctions will not be considered in this thesis.

Epithelial sheets and the processes by which they form various structures play key

roles in embryonic development as well as in evolution. Epithelial tissue is the most

highly conserved multicellular structure, in that the earliest multicellular animals,

relatives of sponges, had only epithelial tissue. It is the mechanical integrity of

epithelial tissue that was able to compartmentalize early animals, that allowed food

to be captured and digested extracellularly in an enclosed space, and that permitted

three-dimensional structures such as organs to be formed from it in animals with

higher complexity than sponges [44–46]. In fact, all organs in most animals, including

humans and Drosophila are derived from one of three germ layers, which are all in turn

derived from epithelial cells; in Drosophila embryos, from the stage of cellularization,
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cells immediately develop lateral adhesions through cadherin molecules, making them

immediately epithelial [44].

The organized sheet structure of epithelia is extremely useful for the shaping of

tissue, or morphogenesis. The fact that the cells in epithelia are already organized

planarly and attached tightly to each other means that coordinated motion of many

cells, for example through folding or bending of the sheet, can easily be achieved

through activities of individual cells. For example, the morphogenetic events of

gastrulation, including ventral furrow and posterior midgut invaginations, that separate

cell types eventually making up the three germ layers of the Drosophila, are shown to

be driven by active mechanical constrictions of the actin cytoskeleton on the apical

sides of individual cells of the epithelium.

The sculpting of epithelia is also responsible for the formation of organs and

importantly, tubes within organs. Tubes are conveniently formed from epithelial

sheets because the cells in epithelia are oriented and tightly joined to each other; these

features define the inside and outside of the tube, allowing proteins to be secreted

to the inside, and keeping material in the tube from leaking out. Epithelial sheets

frequently crease or fold to form tubes; for example, in vertebrates, the neural tube is

formed from a patch of cells in a sheet that lengthen along the apical-basal direction,

bend out-of-plane, and pinch o↵ en masse [47]. Another way of forming a tube from

a well-defined sheet is through budding [48], as, for instance, in some tubes of the

Drosophila trachea. Tube formation by coordinated motion within a well-defined sheet

structure will be the focus of chapter 3.

There are also other examples of tube formation that do not arise out of large-scale

movement of a well-defined sheet; in these cases, however, the cells forming the tube

must still be epithelial in nature. That is, in all systems, apical-basal polarity and the

epithelial nature of the cells must be established in order for tubes to form at all, and

always, the apical side of epithelial sheets faces the inside of the tube [48]. An example
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of polarity leading to tube formation is the following. Unpolarized MDCK cells form

a cluster, but there are vesicles carrying apical proteins floating inside these cells that

eventually merge with the outer membrane; after a number of merging events for

adjacent cells, an overall apical surface is established for a region of cells, allowing the

formation of a cavity that becomes filled with fluid, when this cavity joins another

larger cavity, the newly di↵erentiated cluster of cells would have formed a tube [48]

that branches o↵ of the larger cavity. This is an example in which tissue morphology

is driven by the acquisition of polarity by individual cells.

In many biological systems, characteristics of individual cells, and importantly,

epithelial characteristics such as apical-basal polarity, the nature of cell junctions,

and cell shape are all related concepts, together directing general morphology, and

in the case of tubes, diameter and length [49, 50]. To see this, one realizes that in

order for cells to change shape, the areas of the apical and basal sides need to change,

which in turn means that cell junctions need to shift. A concrete example of this idea

is that in the tracheal system of Drosophila, it is shown that genes responsible for

septate junction formation are also required for tube-size control; a proposed reason

being that the extent of septate junctions regulates the extent of the apical surface

which in turn regulates the inner diameter of the tube [50]. Thus, epithelial cells can

control the morphology of the tubes they form by tuning characteristically epithelial

properties such as polarity and location of adhesion proteins; this level of control also

extends to the formation of epithelial structures other than tubes, although these

latter questions will not be discussed in this work.

1.2.2 Drosophila egg chamber

In this thesis, we focus on the formation of dorsal appendage tubes by the epithelial

layer, made up of cells called “follicle cells”, covering the Drosophila egg chamber.

The Drosophila egg chamber consists of 16 germ cells, one of which is the egg cell,
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or oocyte, that sits at the posterior end of the egg chamber, while the other 15 are

nurse cells; additionally, there are approximately 650 follicle cells forming a sheet

covering the cluster of germ cells. The follicle cells are derived from somatic stem cells

from the mother that envelope the germ cells, proliferate, and then mature to take on

an epithelial nature with the apical surfaces of the follicle cells facing the germ cells

(figure 1.6). This orientation of the epithelial sheet, with apical side “in”, becomes

Figure 1.6: Schematic cartoon of the egg chamber. Anterior is to the left; posterior
is to the right. Dark gray cells are nurse cells; the large light gray cell is the egg, or
oocyte. Follicle cells covering the posterior end of the egg chamber are indicated as
small rectangles, with their apical sides (purple) facing the oocyte. Flatly shaped
follicle cells that cover the nurse cells are omitted in the cartoon as they are not
discussed in this thesis.

important because the follicle cells eventually secrete proteins and other material

through their apical sides that are needed for forming the eggshell and receiving signals

generated in the oocyte. The egg chamber of Drosophila is a powerful model system

in many respects. It is easy to dissect, abundant in various stages in a single fly, and

importantly, mutants derived from signaling and patterning perturbations are easily

accessible through genetic manipulation [51,52].

The egg chamber goes through 14 stages of development; some of these stages

are shown in figure 1.7. Elongation of the egg chamber, in which the egg chamber

changes from spherical to ellipsoidal, occurs in stages 5-9. Follicle cells acquire anterior-

posterior (A-P) di↵erences starting in stage 5. Proliferation of follicle cells ends by

stage 6. Follicle cells, with their knowledge of A-P directionality, reposition themselves

such that fewer and flatter follicle cells exist toward the anterior side of the egg
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Figure 1.7: Some stages of the egg chamber. The nurse cells with green nuclei, the
oocyte with a red nucleus, and follicle cells with yellow nuclei are indicated. Taken
from [53].

chamber, covering the nurse cells, while a larger number of columnar cells exist on the

posterior side of the egg, covering the oocyte. Nurse cells empty their cytoplasmic

contents into the oocyte from stages 11 to 13, during which the columnar follicle cells

covering the egg chamber stretch to continuously and completely cover the growing

oocyte. We focus on stages 10b through 12 when the dorsal appendages form. During

stages 13 and 14, the dorsal appendages continue to change shape by growing longer

and flattening out [52]; however, we will not address these last stages.

The follicle cells di↵erentiate into four cells types before forming the dorsal ap-

pendages, with each cell type eventually occupying a specific position within the

final appendages, as shown in figure 1.8. The gene expression of the follicle cells is

established in a pattern formation event that is initiated by the localized activation

of the EGFR (epidermal growth factor receptor) pathway at the dorsal anterior side

of the egg chamber that influences both the follicle cells and the future embryo; this

localization is specified by the release of the ligand Gurken from the nucleus of the

egg which is located there [54].

EGFR, along with the Dpp (Decapentaplegic) and Notch signaling pathways,

control interactions among a network of transcription factors that finally determine

the localized expression of the transcription factor Broad and the protease Rhomboid.
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EGFR is most activated in a “T”-shaped region at the dorsal anterior side of the egg

chamber due to the di↵usion dynamics of the ligand Gurken and the motion of the

nucleus secreting Gurken. The expression of Broad is influenced by three facts. EGFR

induces expression of Broad as well as Pointed, a transcription factor that represses

Broad; however, Pointed only exists where EGFR activation is highest, at the dorsal

midline. The Dpp ligand is produced dorsal-ventral symmetrically at the anterior

of the egg chamber and is responsible for signaling that represses Broad [55,56]. At

earlier times, the nucleus secreting Gurken is located at the posterior side of the egg

chamber, and while it was there, the Gurken gradient produced is proposed to have

made cells on the posterior side of the egg incompetent to express Broad [57]. Given

the one area of activation by EGFR and superimposing the three areas of repression,

one by Pointed, one by Dpp, and one by the earlier gradient of Gurken, Broad is

limited to being expressed in two patches on either side of the dorsal midline.

Notch, another signaling molecule, also exists at the dorsal midline; Notch activates

the gene coding for Rhomboid, and through additional unknown mechanisms [58, 59],

causes Rhomboid to be expressed only in the row of dorsal midline cells bordering

Broad-expressing cells. Cells expressing Broad become roof cells, while cells expressing

Rhomboid become floor cells. Midline cells are determined by high levels of EGFR.

These patterns of expression are schematically indicated in the first panel of figure 1.8.

As we will discuss in Chapter 3, we find that tube formation by the follicle cells

preserves the integrity of the epithelium and proceeds through a combination of sheet

bending and cell rearrangements. Since the general mechanical properties of epithelia

as well as rearrangements on the individual cell level apply to this system, we explore

in Chapter 3 a model of epithelial mechanics that takes into account the cells as basic

units; meanwhile, an exposition on the modeling of cellular material is presented in

the next section.
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Figure 1.8: The image at the left is a view of the egg chamber from the dorsal direction.
The image on the right is a view of the final eggshell from the lateral direction. Orange
indicates midline cells; red indicates floor cells; blue indicates roof cells, and gray
indicates main body cells. Cell types eventually end up at specific locations with
respect to the dorsal appendages.

1.2.3 Models for cellular materials and sheets

Several models have been proposed for morphogenesis in epithelial sheets. Epithelial

sheets share many properties with other random cellular materials, such as foams

or granular materials. In biological cells, cell positioning and sorting in cultures as

well as in organisms are driven largely by adhesion strengths between neighboring

cells [60–62], and cell surface adhesion is mathematically equivalent to negative surface

tension [63]. As a result of these similarities, authors in these fields have borrowed

each other’s approaches on cellular material; three general classes of these models are

discussed below.

One class of models represents entire cells without the details of geometry and

shape. In this case, cells are assumed to have spherical symmetry and to interact

with neighbors through terms that depend on the distance between their centers. It is

assumed that force contributions from contact geometry, surface tension, and pressure,

are coarsely captured by the distance dependence of the interaction force. Equations

of motion can be propagated explicitly with this description, as done by the authors

in [64] who study foam mechanics, or positions of cells can be found using an updating
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algorithm, as done by the authors in [65] who use the whole cell approach to simulate

proliferating epithelia. In this latter work, a dividing cell is prescribed to have a

dumbbell shape instead of a spherically symmetric one, and equilibrium positions of

the cells after rounds of division are found using a Metropolis algorithm instead of

explicit time integration. An advantage of modeling cells as spheres with neighbor

interactions is that the packing density of cells is easily varied; these approaches may

be useful for simulating loosely packed cell clusters.

In a second class of models, including cellular automata models and cellular Potts

models, sites on a lattice represent either cells or pixels within cells assigned to an

identity, or a “spin”. Monte Carlo algorithms and updating schemes are used to find

system minima. Forces like surface tension, for example, are e↵ectively captured by

terms in the Hamiltonian penalizing neighboring lattice sites with di↵erent “spins” [66],

and the system’s energy minima can be found using a Metropolis algorithm. These

updating methods are numerically simple to implement, light on computation time,

and very good at finding equilibrium distributions of cells. These models have been

successfully used to describe many cell sorting phenomena. However without explicit

reference to forces, the trajectories taken by the cells throughout such a simulation

do not correspond to real trajectories in time. Additionally, whole cell models and

cellular automata do not explicitly describe realistic forces such as surface tension and

pressure.

A third class of models, the vertex models, represent a tissue as a set of polygonal

cells that can be assigned an energy based on geometry, typically accounting for

cohesive forces as well as e↵ective elasticities that serve to constrain cell volumes. The

next section expands on vertex models, since Chapter 3 presents a modified version of

these to address how cell surface tension may give rise to three-dimensional shapes in

epithelial tissue.
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Physical motivation and biological applications of vertex models

Vertex models of cellular systems were originally motivated by comparison of cells to

soap bubbles, which long have been studied by physicists. It is known that the shapes

of soap bubbles are determined by the balance between surface tension and pressure,

as described by the Young-Laplace equation:
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in 3d, or
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in 2d, where p is the pressure di↵erence at the interface and R
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, and R refer to

local radii of curvature of the interface, and � is the surface tension.

With the Young-Laplace equation and the competition between surface tension and

pressure in mind, it can be shown that soap bubbles are minimal surfaces enclosing a

fixed volume, and that soap surfaces separating gases of equal pressure are minimal

surfaces with zero mean curvature. Assuming that soap surfaces are uniform in

thickness and using the math of minimal surfaces, geometric statements may be

derived for foams and bubbles. For example, it is shown that soap surfaces meet

at 120� in 2d and at the tetrahedral angle (⇡ 109.5�) in 3d under conditions of

uniform surface tension, that each junction consists of exactly three surfaces in 2d and

four surfaces in 3d [67], and additionally that the mean curvature of a soap film is

everywhere the same. From experiments, these observations had in fact been noticed

very early on, in the 1800’s, by the physicist Joseph Plateau.

Some of the behaviors of soap bubbles cannot be explained just by applying the

Young-Laplace equation. For example, over long time scales, gas di↵uses through
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bubble walls, so that foams always coarsen over time according to von Neumann’s

relation:

d

dt
A / (n� 6) (1.3)

in 2d, where n is the number of sides of the bubble, and A is the area of the

bubble. From this, it is clear that since cells in foams expand and shrink over long

time scales, they do not, in general, keep the same numbers of sides. Therefore,

discrete rearrangement rules about how cells change their numbers of sides need to be

determined. To this end, the author in [68], wishing to model soap bubble growth

and coarsening in a packed system, defines canonical ways in which cells rearrange to

change their numbers of sides and corrects for these rearrangements in the coarsening

theory.

Several similarities between soap bubbles and biological cells suggested that the

mathematical models used to describe foams could be adapted to describe biological

tissues. In both types of systems, the dynamics are driven largely by surface tension

and pressure. In addition, discrete rearrangements of cell edges observed in a wide

variety of epithelial tissues occur in the same canonical ways in which bubbles within

a foam rearrange. For example, in an early study of healing in the corneal endothelia

in cats [69], the authors observed that after removing a small number of cells from

this epithelium, other cells in the sheet stretched and rearranged to completely

cover the wounded area; this required cells to move past each other and exchange

neighbors, corresponding to specific edge and junctional remodeling in cells which

they quantified. Therefore, clear definitions of cell edge remodeling is necessary not

only for theoretical calculation, but also, canonical types of remodeling are directly

observed in experimental systems.

Vertex models have been developed with applications to both inorganic structures
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like foam [70, 71] as well as biological epithelia [72–75]. These models phenomeno-

logically describe cells in a sheet as a tessellation of polygons whose vertices satisfy

explicit equations of motion dictated by forces corresponding to physical properties

such as tension and elasticity. Forces are written down explicitly, or, an equivalent

description through the use of an energy function may be employed. In addition, these

models explicitly take into account cell rearrangement and remodeling.

The vertex model gives a simple framework under which forces may be combined

with geometry to phenomenologically describe the physics of cells. It is conceptually

easy to adapt the vertex model in order to apply it to specific systems by changing

the terms in the equations of motion. For example, the authors in [73], wishing to

study foam coarsening, a process driven mostly by surface tension, include only edge

tension forces in the equations of motion for vertices. Meanwhile, authors in [71]

who study foams on time scales that are much shorter than that of coarsening also

include constraining forces for the areas of individual cells so that coarsening e↵ects

are ignored. A similar type of area constraining force is used by authors in [74] who

simulate biological cells. In some cases, the area constraining force is implemented

as a hard constraint [71, 76], and in other cases, this type of force is formulated as

a restoring force [74, 75]. Yet other types of forces are easily added to the vertex

model: authors in [75] introduce a force contribution to the model that is absent from

previous studies; this force is referred to as “cortical tension” and is proportional to

cell perimeter and is directed normally to the cell surface.

The vertex model can be adapted in other ways to suit specific scientific questions,

for example by implementing rules allowing for cell growth and division. Investigators

that employ the developing wing disc of Drosophila as an experimental system have

used the vertex model to study the connectivity of equilibrium cell distributions in the

proliferating tissue [75]; consequently, they show that proliferation dynamics allows

the system to converge to steady state cell-sidedness and area distributions that agree
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with distributions quantified from experimental images of the Drosophila wing disc.

Note that the steady state distributions converged upon by proliferation dynamics are

not identical to the ground state distribution, which, for the parameters chosen, is a

regular array of hexagons, as calculated in [77].

Another way of adapting the vertex model is through patterning, in which specific

cells and edges may be picked out to have di↵ering values of model parameters. For

example, the authors in [78] use patterning to investigate the e↵ect of tension on

boundary integrity between di↵erent cell types. In this thesis, we incorporate a

patterning approach for the follicle cells in Drosophila. In addition, as described below,

we extend this traditionally two-dimensional model to three dimensions.

Morphogenesis in three dimensions

Although two-dimensional cellular material is useful for studies of cellular structure and

statistics, of great physical importance to biology is the formation of three-dimensional

structures. To elucidate the origins of out-of-plane motions and bending of epithelial

sheets, several biological mechanisms have been proposed. Mechanisms such as those

put forward for vertebrate neurulation and ventral furrow formation in Drosophila

work through contractile forces on the apical sides of the cells [79, 80], and bending of

the sheet is then generated by a di↵erence in apical versus basal properties of the cells.

The models for the processes in [79,80] are vertex-like, in that cells are described as

polygons and are coupled to each other through shared edges and vertices; however,

the face of a polygon in these cases describes a lateral side instead of an apical side,

such that an epithelium is described by a row of coupled cells instead of a sheet.

The mechanical models for ventral furrow and neural tube formation mentioned

above rely on buckling of a springy row of cells. Another mechanism in both plants

and animals that leads to buckling depends on spatial di↵erences in cell proliferation,

which eventually causes certain tissue to be pushed out-of-plane [81, 82]. Buckling is
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very interesting, and figure 1.9 indicates examples of buckling in other natural systems.

 







Figure 1.9: a) Buckling of a plastic sheet placed in a cup upon being poked by a
pencil; taken from [83]. b) Buckling of a plastic sheet under tension; taken from [84].
c) Buckling of the shell of a seed; taken from [85]. d) Buckling of a simulated epithelial
sheet, result taken from this thesis (see Chapter 3). e) Buckling patterns in a plastic
sheet after it has been teared; taken from [83].

In Chapter 3, I will present a modified version of the vertex model that we have

developed to explain formation of the dorsal appendages in Drosophila. This model

may be applied to describe the formation of a variety of 3d tissues through the

mechanism of buckling.
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Chapter 2

Self-organized motility

This is work done in collaboration with Konstantin Doubrovinski and Miriam Osterfield,

and is published [86]. This chapter is a lightly edited version of the published

manuscript.

2.1 Introduction

Cell motility is driven primarily by the dynamics of the cell cytoskeleton. It has

been proposed that cell motility is a self-organized process; that is, local short-range

interactions determine much of the necessary dynamics required for the whole-cell

organization that leads to polarization and directional motion. In this chapter, we

present a mesoscopic meanfield description of filaments, motors, and cell boundaries;

this description gives rise to a dynamical system exhibiting multiple self-organized

states. We discuss several qualitative aspects of the asymptotic states and compare

them to those of living cells.

Cell migration is critical to many biological processes, including immune response,

wound-healing, and embryonic development. Migration depends on the cytoskeleton,

a dynamic network of filamentous proteins and molecular motors that provide the

mechanical integrity and active force required for cell movement [87]; more of this is
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described in Chapter 1. The bulk of the cytoskeleton is composed of actin filaments.

These filaments are assembled from asymmetric actin monomers that are oriented

the same way, defining an orientation for the entire filament. Typically, one end of

an actin filament, the barbed end, polymerizes, while the other, the pointed end,

depolymerizes, leading to e↵ective translation of the filament in a process known

as treadmilling. Another major component of the cytoskeleton is myosin, a motor

protein that binds to actin filaments. Upon hydrolysis of ATP, myosin changes its

conformation, such that complexes of myosin can move actin filaments with respect

to each other [1]. A detailed review of these mechanisms are presented in section 2.1.

It has been found experimentally that actin polymerizes at the leading edge of

the cell. This is the generally accepted mechanism for protrusion and advancement

of the cell’s front edge [2]. Authors have also shown that myosin is important for

cell polarization and motility [13, 88, 89]; In fact, it has been proposed that myosin

mediated contractility of actin is responsible for retraction of the trailing edge of the

cell [3, 90].

It is increasingly recognized that cell motility can be a self-organized process, in that

the large scale patterns of cytoskeletal structure, including the cell’s ability to globally

polarize, may arise from simple, local interactions of molecular constituents [91–94].

For example, it is observed by authors in [31] that cytoskeletal fragments surrounded

by cell membrane from a single fish keratocyte can move persistently, assuming the

shape of an entire, intact keratocyte cell. In this experiment, the investigators observed

that a keratocyte fragment has both motile and stationary states, that a fragment

can be in a motile state for up to 40min, and that physical perturbations can toggle

the fragment between states; for example, collision between two moving fragments

may result in both fragments becoming stationary. These experiments suggest that

cell motion arises from local interactions and is not directed by a single “organizing

center” of the intact cell, and moreover, that cells may exhibit a bistability between
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polarized and unpolarized states. However, in what ways local interactions may give

rise to cell polarization and motility is still poorly understood.

Investigators have examined mesoscopic models of active material in periodic

or infinite systems where they have shown that active systems described by non-

linear continuum equations may be unstable to waves and aggregation of the density

fields [28, 95]. In this chapter we extend these mesoscopic meanfield models of actin-

myosin networks by coupling these networks to confining forces representing cell

membranes, and friction representing a substrate, and explore the emergent behaviors

of such systems.

Section 2.2 gives a complete mathematical description of our system involving

filaments, motors, and a cell boundary. Section 2.3 presents results of the analysis of

the equations of motion. Section 2.4 interprets the results of Section 2.3 and makes

comparisons to past experimental results as well as proposes new experiments.

2.2 Model of cytoskeleton and membrane

We describe a system of polar treadmilling filaments, motor proteins, and a movable,

closed boundary. The filaments and motors are confined to the region inside the

boundary; we term this region the “cell”, see figure 2.1. Filaments and motor proteins

are described by their respective densities c and m. The dynamics of these densities

are determined by the continuity equations

@tc(r, ✓, t) = Dr2c�r · J+ ⌫(r)� ⌫d c ,

@tm(r, t) = Dmr2m�r · Jm .

(2.1)

Here c(r, ✓, t) is the density of filaments with center of mass r, oriented along ✓, and

m is the density of molecular motors. Filaments are assumed to nucleate at a constant

rate ⌫
0

only within the boundary, denoted by the function ⌫(r), and degrade at a
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Figure 2.1: Cartoon of molecular processes described by our model. Polar filaments
oriented along ✓ add subunits at one end while they subtract subunits from the other
end in the process of treadmilling. Consequently, the filaments push against the
membrane, exerting force F

mem

on it while experiencing the opposite force from the
membrane. Motors attached to filaments generate force dipoles applied to filament
pairs.

constant rate ⌫d. D and Dm are di↵usion coe�cients capturing the e↵ect of random

fluctuations. The filament current J consists of three contributions:

J = jt + ja + jB , (2.2)

where jt describes treadmilling dynamics, ja describes molecular motor mediated

filament interactions, and jB captures the e↵ects of confining boundaries as specified

below. For simplicity, we assume all filaments to be of length `. This is justified

provided that a newly nucleated filament reaches some terminal length on a time-

scale much shorter than the time-scale of the evolution of the density fields [96].

Subsequently, subunits are added at the growing end of the filament at the same rate

as they are removed from the shrinking end, leading to translation of the filament

with e↵ective speed v, thus

jt(r, ✓) = vûc , (2.3)
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where û = (cos ✓, sin ✓) is a unit vector along ✓. The active current ja captures the

e↵ects of motor mediated inter-filament interactions [97, 98]. Explicitly:

ja(r, ✓) =

Z
dr0d✓0 ↵(✓, ✓0)f(r0 � r)

⇥
�
mo(r

0, ✓0)c(r, ✓) + c(r0, ✓0)mo(r, ✓)
�

(2.4)

Here mo(r, ✓) is the density of motors bound to filaments with center of mass r and

orientation ✓. It is assumed that locally, motors switch quickly enough among filaments

such that the distribution of motors bound to filaments of di↵erent orientations would

be always at equilibrium and therefore proportional to the angular filament density

distribution: mo(r, ✓) = m(r)c(r, ✓)/
R
d✓0c(r, ✓0); this assumption is valid provided

that motors do not travel very far after unbinding from a filament before rebinding

to another. The function ↵(✓, ✓0)~f(r0 � r) is the velocity of a filament at r0 due to

interactions, via a motor, with a filament at r. Here, ↵ = a⌘, where a is interpreted

as the strength with which myosin pulls on a pair of filaments, and ⌘ is the e↵ective

filament mobility. In the following discussions, we shall keep the notation in which

⌘ is absorbed into ↵, until we discuss varying the parameter ⌘ itself as presented in

figure 2.3d-e). In experimental systems, changes in ↵ could correspond to any changes

in myosin activity, for example, due to the phosphorylation state of myosin. The

proportionality between the velocity of a filament and the active force applied to it is

derived from force balance equations applied to a single filament in the low Reynolds

number limit, in which active forces are exactly canceled by viscous forces from the

ambient fluid. The expressions for the currents of the density fields follow from the

equations of motion for single filaments using a mean-field approximation; overall

force balance is therefore naturally satisfied. For center of mass attractive interactions
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between filaments, we put

f(r0 � r) =
r0 � r

|r0 � r| ⇥(`� |r0 � r|) , (2.5)

where filament length ` serves as a cuto↵ for the range of attractive interactions, and

⇥ is the Heaviside function. This choice of force f naturally ensures that the total

active force in the system is zero. The parameter ↵(✓, ✓0) encodes the magnitude of

the interaction between a motor-filament pair and has units of velocity. The local

velocity of filaments resulting from inter-filament attractive forces is � ⌘ (ja + jB)/c.

Motors are assumed to move with the filaments to which they are attached. Thus the

velocity of a motor at a point is given by the average filament velocity at that point:

Jm(r) = m(r)

R
d✓�(r, ✓)c(r, ✓)R

d✓ c(r, ✓)
. (2.6)

Filaments are confined to an evolving domain whose boundary � evolves according to

�̇ = ⇣f , (2.7)

where ⇣ denotes an e↵ective mobility determined by the Stokesian drag from the

ambient fluid. The force density on the boundary f = ��(F + FI)/�� is determined

from the Helfrich free energy F = �L+
R
d�H2+P (A�A

0

)2 and from the filament-

boundary interaction term FI =
R
dr d✓ c(r, ✓)V (�, r), where � is surface tension, 

is the bending modulus, L is the length of �, H is the local mean curvature, A is

the area of the domain constrained to remain approximately equal to A
0

for large

values of P , and the function V describes a repulsive potential between filaments and

� [43]. According to Newton’s third law, the boundary and filaments exert equal and
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opposite forces on each other, hence

jB = �⌘r
r

V (�, r)c(r, ✓) . (2.8)

We give details on the treatment of the boundary and explicitly show that the above

expression for filament-boundary interactions conforms to force balance in section 2.A.

Note that this description of the boundary neglects non-local hydrodynamic

interactions; this simplifying assumption is admissible when describing the motion

of the membrane in the vicinity of a substrate surface, where adhesive, friction-like

forces are dominant [39,99]. Details of boundary-filament interactions are described in

Section 2.A. The equations (2.1)-(2.8) fully specify the time-evolution of the system.

Importantly, equations (2.1)-(2.8) conform to local force balance. In particular,

filament-substrate interactions are captured by an e↵ective friction, such that the

force on a filament from the substrate cancels the force on the substrate due to that

filament. Likewise, total force on a filament pair due to motors, as well as the sum of

forces acting between filaments and the boundary, vanish.

2.3 Results

2.3.1 Analysis of the two-dimensional model

In this section, we present numerical solutions to the equations (2.1)-(2.8). The

details of the integration scheme are outlined in section 2.B. We find that the system

exhibits two asymptotic states. In the stationary state, the boundaries and density

profiles remain constant over time. Total filament density is rotationally symmetric

and relatively flat throughout the cell although with some accumulation near the

boundaries; this accumulation is due to the arrest of filament treadmilling by the

confining boundary potential. Motor densities are slightly elevated at the center,
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but fairly evenly distributed throughout the cell. In the moving state, boundaries

and density profiles translate at a constant velocity (see figure 2.2). The cell lacks

rotational symmetry, but has reflection symmetry about an axis parallel to its direction

of translation. In this case, motor and filament densities are peaked at the back of the

cell. At the front of moving cells, motor density is vanishingly small, while filament

distribution is flat, with accumulation near the boundaries, again due to treadmilling.

Filament velocities are shown in figure 2.2b); forward filament velocities are larger at

the back of the cell due to the presence of motors.
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Figure 2.2: Moving state solution to equations (2.1)-(2.8). The cell moves to the left.
The boundary is indicated by the green solid line. Parameters are D = Dm = 0.1`2⌫d,
↵ = 2.5`⌫d, v = 1`⌫d, ⌘ = 0.02⇣, � = 15⌫d`/⇣,  = 94⌫d`3/⇣, P = 200⌫d/⇣, and
A

0

= 20`2. As noted in Section 2.B, we choose non-dimensional scaling such that
⌫d = 1, ` = 1, and ⇣ = 1. a) The average density of filaments is represented by the
heat map. The average polarization of filaments is indicated by arrows. b) Average
local velocity fields of filaments. Filament velocities are larger at the back of the cell
due to the presence of motors.

Aggregation of motors is essential for the cell to commit to an asymmetric, moving

state. Orientation-independent filament nucleation and degradation results in equal

populations of filaments treadmilling in each direction; in the absence of motors, this

drives the cell into a symmetric, stationary state. When inter-filament interactions
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are weak, motors are di↵use, and local attractive forces are approximately uniform

throughout the cell; therefore they are not enough to destabilize the stationary

state. However, when inter-filament interactions are too large to be counteracted by

treadmilling and turnover, motors and filaments become aggregated. If the initial

filament and motor distributions are not exactly radially symmetric, this heterogeneity

exerts an asymmetric force on the surrounding boundary, leading to an asymmetric

state of the cell.

The system’s transition between stationary and moving states is presented in a

phase diagram (see figure 2.3a), determined as a function of the treadmilling speed

v and the interaction strength ↵, taken to be isotropic for simplicity. Below some

critical value of ↵, moving states of the cell do not exist. Above some other critical

value of ↵, only moving states exist. Between these two critical values, solutions to

the system are bistable between moving and stationary states. Treadmilling appears

to counteract the e↵ects of attractive interactions in that larger values of ↵ are needed

for moving states to emerge when v is increased. An intuitive explanation for this is

the following: when treadmillling speed increases, filaments of di↵erent orientations

move away from each other; to aggregate them, the attractive interaction needs also to

be increased. For very large values of ↵ and v, the back and front of the cell collapse

together due to the strengths of the interactions, and the cell stops moving (see upper

right corner of figure 2.3a).

The preceding analysis examined whether the cell could move in di↵erent parameter

regimes, but it is also interesting to examine resulting cell velocities and shapes as

functions of the parameters. Figure 2.3b-c) indicate cell velocities and aspect ratios in

parameter regimes where the cell exhibits a moving state, again, as functions of the

treadmilling velocity v and the strength of inter-filament attraction ↵. We define the

cell aspect ratio as the length of the cell measured perpendicular to its velocity divided

by that parallel to its velocity; as cells go from round to crescent shaped, this number
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Figure 2.3: a) Phase diagram indicated as a function of v and ↵. To the left of the
solid line, stationary states exist; to the right of the dashed line, moving states exist;
in the overlapping region, the two states coexist; to the right of the dotted line, cell
states are collapsed. Filament densities for cell states are color-coded on the diagram.
Other parameters are as in figure 2.2. b-e) Plots of resultant cell speeds and aspect
ratios as functions of ↵, v, and 1/⌘, represented as heat maps. Larger cell aspect ratios
correspond to more elongated cells. Other parameters are as in figure 2.2. Dashed
lines correspond to boundaries with non-moving states, and dotted lines correspond
to boundaries with collapsed states. b) Cell speed as a function of ↵ and v. c) Cell
aspect ratio as a function of ↵ and v. d) Cell speed as a function of 1/⌘ and v. e)
Cell aspect ratio as a function of 1/⌘ and v.
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increases from one. The results show that cell velocities are greatest for intermediate

values of v and large values of ↵. In addition, cell aspect ratios are large, that is, the

cells are most elongated, for a neighboring regime of values. Although the maximum

of cell aspect ratios does not exactly coincide with the maximum of cell speeds, the

trend indicates that larger cell aspect ratios correlates with larger cell velocities in

most regions of parameter space. Cells collapse when aspect ratios surpass a critical

value.

Since ⌘ represents the mobility of filaments in our system, then 1/⌘ is the parame-

ter corresponding most closely to adhesion strength between the filaments and the

substrate; it is then interesting to examine cell velocity and aspect ratio also as a

function of 1/⌘ (figure 2.3d-e). Cell velocities are largest for small values of 1/⌘ and

large values of v; interestingly, velocities are non-monotonic as functions of 1/⌘ for

small values of v. Cell aspect ratios are also non-monotonic, with a maximum for

intermediate values of both 1/⌘ and v.

2.3.2 Intuition from one-dimension

In order to intuitively explain some features of our model, we discuss a one-dimensional

version of the equations of motion. In this case, the continuous orientation variable

✓ is replaced by a two-valued discrete variable s = ±1 indicating whether filaments

are oriented along positive or negative x. In equations (2.1)-(2.8), we make the

modification
R
d✓ !

P
s; and for the treadmilling current, we put:

jt(x, s) = svc(x, s) . (2.9)

The boundaries in one dimension are parametrized by two points, xL(t) and xR(t).

The forces on the boundary consist of repulsive interactions with the filaments, as

before, while forces due to variations of the Helfrich free energy are replaced by a
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spring force fS = k(xR � xL � L
0

) prescribing a preferred distance L
0

between the

two boundary points with spring constant k.

The 1d system, like the 2d system, exhibits both a stationary and a moving

asymptotic state. The density profiles of these states are qualitatively similar to the

density profiles along the axis of symmetry of the cell in the 2d case. In the stationary

state, total filament density is flat with some accumulation near the boundaries, and

motor density is predominantly flat as well. In the moving state, boundaries and

density profiles translate at a constant velocity with an aggregation of motors and

filaments at the back of the cell (see figure 2.4).
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Figure 2.4: Phase diagram for a 1d system determined as a function of ↵ and v.
To the left of the solid line, stationary states exist. To the right of the dotted line,
moving states exist. In the overlapping region, moving and stationary states coexist.
Insets depict concentration profiles: motors (black, solid line), right-oriented filaments
(blue, dotted line), and left-oriented filaments (red, dashed line). The cell is moving
to the right; the length of the cell is L

0

= 6`, and k = 1000⌫d/⇣. Other parameter
values are the same as in figure 2.2.

A phase diagram for the one-dimensional model is presented again as a function of

the treadmilling velocity v and the strength of attractive interactions ↵, taken to be

isotropic. As in the 2d case, it is shown that a non-zero minimum critical value of ↵

is required for moving states to exist. Similarly, ↵ must be below some critical value
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for stationary states to exist. There is an intermediate region in parameter space of

coexistence, in which the asymptotic solutions are bistable.

The one-dimensional problem provides insight into how the system is able to

achieve a motile state. Where motor density is low, pressure on the nearby boundary

is primarily due to the treadmilling of filaments. However, when motors are localized

near one of the boundaries, attractive interactions pull filaments toward each other

and therefore away from the boundary, counteracting the e↵ects of treadmilling on

filament current and resulting in reduced net pressure on the boundary. The di↵erence

between forces on the two boundaries leads to a net velocity of the cell; the boundary

closer to the aggregate of motors consequently becomes the back of the cell, while the

boundary farther from the motors becomes the front.

This intuitive argument can be tested by making an “infinite cell approximation”,

in which we solve for the force-velocity relation for single boundaries of two types:

“front” and “back”, with motor densities approximating those seen in the front and

back of the motile one-dimensional cell. For the front boundary at position x = xR,

the density of the motors is set identically to zero. For the rear boundary at x = xL,

we do not require the motor density to vanish. We consider an infinite domain with

filaments nucleating to the left of the boundaries x < xR for the front, and x < xL for

the back. Without loss of generality, we can put xR = xL = 0. We impose the following

boundary conditions on the density fields: c(�1,±1) = ⌫
0

/⌫d, and c(1,±1) = 0.

Prescribing some boundary velocity v
cell

, such that c(x,±, t) = c(x � v
cell

t,±) and

solving for profiles in the moving frame, we get the solutions indicated in figure 2.5.

We obtain expressions for forces on the boundaries FR and FL in terms of other

parameters determined from these concentration profile solutions. In order to derive

the force-velocity relation for a moving cell, we require that the self-consistent equation

2v
cell

/⇣ = FR(vcell)�FL(�v
cell

) holds. From this, we obtain v
cell

, the resultant velocity

of the cell assuming that the front and the back of the cell interact exclusively through
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Figure 2.5: Concentration profiles for the two orientations of filaments (blue and
pink lines), and myosin (green), assuming that concentrations are near the a) “front”,
and b) “back” of the cell. The parameters are ↵/(`⌫d) = 1.2, v/(`⌫d) = 1, and
v
cell

/(`⌫d) = 0.28. Other parameters are as in figure 2.4.

the spring force which holds the boundaries together. Figure 2.6 presents a comparison

of cell velocity calculated in the infinite cell limit with that obtained from simulations

of cells of length 10`. These are in close agreement. Therefore, the di↵erence in net

Figure 2.6: The solid diamonds indicate the velocities of a cell of length 10` in a 1d
system as a function of ↵. The open circles connected by lines indicate the velocities
of an “infinite cell”, calculated by treating “front” and “back” boundaries separately.
Other parameters are as in figure 2.4.

pressures on the boundaries caused by di↵erent motor concentrations appears to be

su�cient to drive forward motion.
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2.3.3 Biological implications

The system that we have defined consisting of filaments, motors, and boundaries

exhibits characteristic features reminiscent of live cells. Importantly, the system is

self-organized: cell polarization and motility arise naturally out of local interactions

assigned to filaments and motors. Furthermore, the mechanism driving polarization

and motility in our model is an attractive, motor mediated interaction between

filaments, leading to contractile behaviors of the filament network; in fact, it has been

proposed that network contractility at the rear of the cell drives motility [3,90]. In

addition, our system exhibits both stationary and moving states; within the moving

states, motors are localized to the back of the cell, while the front edge is driven by

treadmilling filaments, as is seen in experiments [31].

It has been observed that keratocyte fragments may sometimes be switched between

motile and non-motile behaviors by mechanical stimulation [31]. Our model exhibits

bistability between these states, but only in intermediate parameter regimes. From

our 2d phase diagram in figure 2.3a), we predict that with increasing myosin activity,

cells would go from a completely immobile state, to a bistable regime, to a completely

mobile state. This prediction can be tested experimentally by pharmacologically

varying myosin activity, for example by using bebbistatin to lower activity, or calyculin

A to raise it. The fraction of cells moving in an environment noisy enough to toggle

cells between moving and non-moving states could then be measured for di↵erent drug

concentrations.

Recent work has begun to describe the e↵ect of experimental conditions on cell

shape and speed of moving keratocytes. Experiments changing substrate adhesivity

showed that cell aspect ratios and velocities vary non-monotonically as functions

of adhesion strength, with maxima at moderate adhesion levels [30]. In agreement

with these experiments, our model shows cell aspect ratios to be non-monotonic

functions of adhesion strength in figure 2.3e); we additionally find that cell velocities
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are non-monotonic functions of adhesion strength for small and intermediate values

of the treadmilling speed, as in figure 2.3d). Using calyculin A and blebbistatin to

modulate myosin activity, experiments have shown that increased myosin activity

result in increased cell velocities. This result is also predicted by our model, as shown

in figure 2.3b-c). However, our model disagrees with some previous experimental

results in that in those experiments, cells become rounder when myosin activity is

increased [30], while in the model, increasing myosin activity causes the cell to become

more elongated, as in figure 2.3c). Reasons for this di↵erence might include a more

lateral distribution of myosin in vivo due to the position of the nucleus, or changes in

the three dimensional shape of the cell that cannot be captured by our 2d model.

In addition to the above comparisons with pre-existing experiments, our model

suggests other experiments that may be conducted in the future. Relatively little work

has been done examining how cell velocities and shapes respond to changes in the rate of

actin polymerization. From figure 2.3b-e), we expect that in response to changing actin

polymerization rates, cell velocity and aspect ratio would change non-monotonically,

with maxima at intermediate values of polymerization rates. Furthermore, for higher

myosin activities, the peak of cell velocity or aspect ratio should occur at higher

polymerization rates. Another prediction is that increasing myosin activity beyond a

critical value would collapse the cell and stop movement. These predictions could all

be tested in experiments where actin polymerization or myosin activity are modified

pharmocologically.

Further theoretical and numerical work may o↵er additional insight into other

mechanisms for cell motility. Although myosin aggregation is central to our model,

there are also mechanisms of motility, described in models and experiments [13,99]

which do not include myosin aggregation. In particular, reference [99] proposes a

model in which motility arises through a combination of filament treadmilling and

cooperatively binding nucleators. The dynamics predicted by this system di↵ers

44



from the dynamics predicted in the present work. For example, the nucleator-based

system admits traveling wave solutions when the bounding domain is stationary,

while the myosin-based model described here does not. Also, the myosin-based model

exhibits “retrograde flow”, that is, filaments are transported by motors towards

regions of high motor density; this behavior is absent in the nucleator-based model.

In live cells, motility due to myosin and nucleator dynamics are most likely both

present. The contributions of these mechanisms could be determined pharmacologically

or genetically; alternatively, filament dynamics under di↵erent conditions could be

examined by speckle microscopy and compared to model predictions.

2.4 Discussion

We have presented a mathematical description of filaments, motors, and membranes

in an e↵ort to elucidate the self-organized mechanisms involving cytoskeletal networks

that drive cell polarization and motility. In the system that we define, motors mediate

attractive interactions between filaments; these interactions destabilize the stationary

state and give rise to spontaneous polarization of the system. Our system exhibits both

stationary and moving asymptotic states, in qualitative agreement with living cells.

The resulting localization of molecular components is also in qualitative agreement with

experimental observations. Our analysis suggests that motor mediated contractility of

filament networks may drive cell motility. More generally, our description shows that

local interactions of molecular components may be su�cient to determine cell-level

organization.

Our model predicts the dependence of cell speeds and cell shapes on parameters

physically corresponding to myosin motor activity, actin polymerization rate, and

adhesive properties of the substrate. Some of the trends indicated in the model’s

results have been shown in previous experiments, but there are also model predictions
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for which experiments have not been thoroughly conducted. We have proposed some

of these experiments in the text.

In this chapter, we explored, using a simple model, how whole-cell behavior may

arise through local cytoskeletal interactions, but we have not thoroughly examined

cellular interactions with the surrounding environment. In the future, it may be

interesting to see whether extensions of our physical description may help explain the

response of cells to their environment.

2.A Treatment of the boundary

The force density on the boundary f = fH + fI has two contributions. The Helfrich

free energy F(�) = �L+ 
R
d�H2 + P (A� A

0

)2 depends only on the positions of

the boundary and physical parameters. The forces on the boundary due to surface

tension, bending sti↵ness, and area constraint are then derived from variation of the

Helfrich energy with respect to the shape of the boundary � [43]. We parametrize �

as x(s) ⌘ (x(s), y(s)). The Helfrich energy is then written:

F = �

Z
ds|x0|+ 

Z
ds|x0|H2 + P

✓
1

2

Z
ds|x0|x · n̂� A

0

◆
2

, (2.10)

where the local curvature is denoted by the function H = (x0y00 � y0x00)/(x02 + y02)3/2

which is a function of only x0 and x00, and the vector n̂ = (�y0, x0)/|x0| which denotes

the outward unit normal. Primes indicate derivatives with respect to the parametrizing

variable s. Here, we used the divergence theorem to calculate the area A:

A =
1

2

Z

cell

dr (r · r) = 1

2

Z

�

ds|x0| (x · n̂) . (2.11)

The force density on the boundary at point x is obtained by taking the variation

of F with respect to the parametrization x and dividing by the line element ds|x0|.
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Let fH denote the force per unit length on the boundary due to the Helfrich energy:

fH(x) =
1

ds|x0|

✓
��F
�x

◆

=
�

|x0|
d

ds
(r

x

0 |x0|) + 

|x0|

✓
d

ds
r

x

0(|x0|H2)� d2

ds2
r

x

00(|x0|H2)

◆

+
2P (A� A

0

)

|x0|

✓
�r

x

(|x0|x · n̂) + d

ds
r

x

0(|x0|x · n̂))
◆

. (2.12)

This computes to

fH(x) = ��Hn̂� g(x)n̂� 2P (A� A
0

)n̂ , (2.13)

where

g(x) =

✓
� 1

y0
,
1

x0

◆
· d

ds

✓
� H

|x0| n̂
0 + 2

H 0

|x0| n̂
◆

, (2.14)

and primes again denote derivative with respect to the parametrizing variable s. In

the implementation of the numerics, the curve x(s) is given by as set of discrete points

{xi}, so that the boundary looks like a many-sided polygon with vertices {xi}. The

expression for force density on the right hand side of equation (2.12) is explicitly

evaluated at points xi and multiplied by the length element (|xi+1

�xi|+ |xi�xi�1

|)/2

to obtain the total force applied to a boundary point at each time step. Evaluation of

the right hand side of equation (2.12) may be computed by taking derivatives using

x0 = (xx
i+1

� xx
i�1

)/2, and so forth.

The second contribution to forces on the boundary comes from interactions with

the filaments. If the curve � again has coordinates defined parametrically by the

function x(s), then the filament-boundary interaction energy may be written as

FI =

Z
dr cT (r)V (d(x(s), r)) , (2.15)
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where the function V is a sigmoidal function describing the rise of the repulsive

potential between filaments and the boundary in the vicinity of the cell boundary.

The function d is the signed distance between point r and the boundary of the

cell at x, where d is negative for r inside the cell boundary and positive outside

of the cell boundary. The density cT (r) denotes total filament density at r, that is

cT =
R
d✓c(r, ✓).

The force FI(xi, r) applied to a boundary element at point xi on the curve x(s)

due to interactions with filaments in a small volume dr is determined from varying

equation (2.15) with respect to x and evaluating at the point xi. This evaluation will

be zero unless xi is the closest point on x to r, so assuming that xi is the closest point

on the curve to r, then d = |r� xi| and

Fxi,r
I = �dr cT (r)rxiV (d(x, r)) = �dr cT (r)

@V

@d

@

@xi

|r� xi| . (2.16)

The total force F(r) on filaments in a volume dr due to the boundary is minus the

gradient of the potential multiplied by the number of filaments dr cT (r):

F(r) = �drcT (r)rr

V (d(x, r)) . (2.17)

The contribution to the total force due to an element of the boundary at xi is zero if

xi is not the closest point on the boundary to r and is equal to the following if it is:

Fr,xi
I = �dr cT (r)

@V

@d
r

r

|r� xi| . (2.18)

From 2.16 and 2.18 it follows that

Fxi,r
I = �Fr,xi

I , (2.19)
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implying that the force on the filaments at r due to the boundary element at xi is

equal to the force on the boundary element at xi due to filaments at r.

2.B Numerical details of implementation

The numerical solutions to equations (2.1)-(2.8) are obtained from simulations on

a 128 ⇥ 128 grid. Periodic boundary conditions in both dimensions are imposed.

The angular spacing for numerical simulations is discretized into 8 angles. The cell

boundary is parametrized by 40 points, and boundary-filament interactions are treated

numerically via a repulsive potential as described above. More details are found in [99].

We put

�rV (|d|) = F
0

e�(|d|)/d0)4d̂ . (2.20)

The vector d ⌘ d(�, r) refers to the shortest vector from the boundary � to a point

r in the simulation domain. In the case where the boundary is parametrized by

points {xi}, the vector d may either be the normal vector from a line segment joining

adjacent points on the boundary to the point r, or it may be the vector from a point

xi on the boundary to r. The numerical parameters F
0

and d
0

are chosen to make

the boundary approximately reflecting within the practical requirements of numerical

stability; that is, we choose F
0

� 1 and d
0

⌧ 1.

The parameters are non-dimensionalized by expressing length in units of `, express-

ing time in units of 1/⌫d, and expressing forces in units of `⌫d/⇣. In the simulations,

filaments nucleate at a rate ⌫
0

only within the boundary and at least a distance d
0

from the boundary; this is to insure that no forces are introduced on the boundary

due to nucleation e↵ects. The integrals over r0 in equation (2.4) are computed using

Fourier transforms. For simplicity, we take ↵ to be isotropic in the simulations. In

this case, the ✓0 integral in equation (2.4) becomes trivial. The r0 integral, however,

49



remains a convolution, which we rewrite in terms of Fourier transforms; for example,

if we put cT (r) ⌘
R
d✓0 c(r, ✓0), then the second term in equation (2.4) contains the

factor

Z
dr0f(r0 � r)cT (r

0) = F�1 [F [f(r)]⇥ F [cT (r)]] , (2.21)

which is numerically more e�ciently computed using the Fourier transform employing

the FFTW subroutine library. Two-dimensional transforms are formulated as a set of

one-dimensional transforms. All numerical work is performed in C++.
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Chapter 3

Model of Epithelium

This is work done in collaboration with Miriam Osterfield, Trudi Schüpbach, Eric

Wieschaus, and Stanislav Shvartsman. Miriam Osterfield is responsible all the experi-

ments quoted. This chapter is a lightly edited version of the manuscript in [100].

3.1 Introduction

We describe a mathematical model based on mechanical forces that describes the

time-evolution and shape of a sheet of epithileal cells. Frequently, in a biological system

of cells, gene expression and patterning determine cell fate and cell properties for each

cell in the group. This information is often su�cient to dictate the morphological

changes that the overall tissue undertakes. While fate mapping between initial cell

positions and the final structure has been performed in a number of systems including

Drosophila and zebrafish [51,101], the general questions of how the specification of

cell fate leads to the formation of useful and often three-dimensional structures in

organisms, and what the dynamics of these transformations might be, are not well-

understood. We address these questions by exploring the mechanical forces that may

be applied within a sheet to drive three-dimensional transformations. In this thesis,

we are interested in the formation of two tubes from a sheet of approximately 650
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epithelial cells that cover the developing Drosophila egg. We approach this question

using mathematical modeling.

Section 3.2 describes in detail the biological system motivating a model for tube

formation from a sheet of cells. Section 3.3 describes our choice of model and

model parameters. Section 3.4 describes the results of numerical analysis and makes

comparisons to the experimental system.

3.2 Biological System

Dorsal appendage formation in the Drosophila egg chamber provides a powerful

experimental system for the study of how sheets of cells transform into complex

structures. During oogenesis, the epithelium, made up of follicle cells surrounding the

egg chamber, develops from a simple ovoid surface to one with two projecting tubes.

After and during the formation of the tubular projections, proteins are secreted from

the apical surface of the epithelium which faces the inside of the tubes; these proteins

subsequently form a solid structure. The follicle cells that secreted the proteins then

die, leaving two eggshell appendages that are used for gas exchange in the embryo,

when, for example, the embryo is buried in soil.

Each of the two tubular eggshell appendages is derived from an epithelial pri-

mordium made up of a patch of “roof” cells bordered by an “L”-shaped row of “floor”

cells. These cell types eventually form the upper and lower surfaces of the appendage,

respectively. Surrounding the patch of roof and floor cells, are two more cell types,

“midline” cells, residing anterior to and in between the two patches, and “mainbody”

cells, residing ventral and posterior to the patches. These cells do not end up in one

of the tubular structures, but their final positions are also specific to type: midline

cells make up the operculum of the fly eggshell, and main body cells cover the rest of

the egg chamber. The arc of floor cells initially borders the roof cell region on both its
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anterior and dorsal sides. During formation of the appendage tube, opposite ends of

the floor cell arc extend beneath the roof cells and meet to form a seam. As a result,

the dorsal-anterior corner of the original epithelial sheet maps to the tip of the tube.

The fate map of this system has been established [51,102].

3.2.1 Description of dorsal appendage formation

Appendage morphogenesis proceeds through a sequence of steps involving first, the

formation of a straight boundary between the floor cells and their neighboring roof

and midline cells as in figure 3.1a-b). This is followed by an “out-of-plane” motion

of a region of the epithelium, shown in figure 3.1c), and subsequent formation and

elongation of the tube in figure 3.1d-e). While the overall sequence of these events

have been established [51,102], the details of the dynamics need to be filled in. We

show through image analysis and mathematical modeling that the dynamics involved

in tube formation are based on a combination of sheet bending and a specific ordered

sequence of lateral cell rearrangements.

    

Figure 3.1: Fixed images of appendage formation; E-cadherin is stained. a) Floor-roof
boundary straightens. b) Both Floor-midline and floor-roof boundaries straighten. c)
Floor and roof cells move out-of-plane. d) Tubes form. e) Tubes elongate.

Our proposition of the overall dynamics of dorsal appendage formation is summa-

rized in the cartoon in figure 3.2. The early phase of tube formation can be roughly

divided into two main stages. First, the floor-midline boundary straightens, then

constricts. As a result, the epithelial sheet bends so that the apical surface of the
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floor cells transitions from pointing downward toward the oocyte to pointing upwards

toward the lumen of the newly created tube. Next, an ordered sequence of cell neighbor

exchanges eliminates the floor-midline boundary, creating a new floor-floor boundary

and thus forming a tube (figure 3.2).

Figure 3.2: Floor cells move “down”; the two “arms” of the “L”-shaped floor cell
region meet each other and “zip up”. Green line indicates floor cell border which
initially contacts midline cells and later contacts other floor cells. a-d) Schematic of
the apical sides of floor cells during tube-formation. e-h) Schematic of the apical sides
of floor and roof cells during tube-formation.

A key feature of the dorsal appendage tube is the seam that eventually forms

between the two “arms” of the “L”-shaped floor cell region. The detailed mechanism

by which this seam forms is unknown, and in fact, the final polarity of the floor cells

within the epithelial tube had not been characterized until the experiments quoted

in this chapter. It has previously been suggested [51] that the seam is formed by an

apical fusion of the floor cells. However, our recent experiments [100] show that the

seam is formed by a process of neighbor rearrangements in which the epithelial nature

of these cells, in particular that they maintain polarity and contact each other only

laterally, is continuously maintained. A brief summary of these recent experimental

findings is quoted below.
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In live-imaging experiments, egg chambers are dissected from flies expressing the

apical marker E-cadherin:GFP. After establishing that appendage formation occurs

normally under these conditions, we focus on events at the interface of the floor cells

and their neighbors. Analyzing our results using 3d image reconstruction software,





































Figure 3.3: The time stamp on each image is in minutes. In panels a-c), the three cell
types of roof, floor, and midline appear from top to bottom within each image. In
panels d-i), the roof cells are cropped out, and we focus on the row of apical sides of
floor cells seen from the oocyte.

we present the results in figure 3.3. We note that first of all, the edges of the floor

cells facing the midline cells shrink, resulting in a “sliding” movement of the floor

cells relative to the midline cells. As a result, the number of floor cell neighbors for an

individual midline cell at the corner increases from one or two to several, indicated

by the marked cell in figure 3.3a-c). Next, the floor cells bend under the roof cells

until it appears that a multicellular rosette is formed, eliminating several floor-midline

edges, as indicated by the arrow in figure 3.3g). The rosette resolves, creating a new

floor-floor boundary and thus initiating the formation of the seam on the lower side

of the tube in figure 3.3h-i). In summary, the exchange of floor-midline edges for
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floor-floor edges proceeds through spatially ordered cell intercalations. At the same

time as this is occurring, the roof cells constrict apically and form a dome-shaped

structure that is eventually pushed up with the movement of the floor cells.

3.2.2 Experimental evidence for the model

Investigating what may be the forces driving for dorsal appendage formation, we

are motivated by the first morphological features that appear prior to any three-

dimensional rearrangements in the follicle cell epithelium, specifically the appearance

of smooth floor-roof and floor-midline boundaries. In other experimental systems, it

has been shown that smooth boundaries within epithelial sheets can be caused by

the recruitment of myosin II [78, 103–105]. Therefore, we quote studies of subcellular

localization of myosin in the follicle cells using Spaghetti Squash-GFP (Sqh-GFP), a

fluorescently-tagged fusion of the Drosophila Myosin Regulatory Light Chain. The

results of these molecular localizations are indicated in figure 3.4.

Sqh is enriched along the boundaries between the floor and roof cells as well as

between floor and midline cells, forming a pattern of two“cables” running along these

boundaries, as indicated in figure 3.4a-c). This localization pattern fits with the

early straightening of these boundaries. Additionally, Sqh is enriched on outlines of

roof cells in what appears to be a random fashion. Stainings of Bazooka, a protein

that frequently has a complementary pattern to myosin in other epithelia undergoing

cell rearrangements [105, 106], are also indicated in figure 3.4. We show that the

localization of Bazooka appears in a pattern complementary to the localization of Sqh

in the follicle cells in that it disappears from both the floor-midline and floor-roof

boundaries; that is, Bazooka is missing from the “cables” of myosin. Intriguingly,

Bazooka is also highly down-regulated on a subset of roof cell edges, suggesting some

spatial or temporal non-uniformity in roof cell contractility. Taken together, the

localization patterns of Sqh and Bazooka suggest increased tissue tension within the
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Figure 3.4: Images indicate the apical side of the follicle cells. a) Spaghetti Squash
(Sqh), or myosin, is enriched along both the floor-roof and floor-midline boundaries as
indicated by the arrows; it is also somewhat enriched on other apical edges among
the roof and floor cells. b) E-cadherin (E-cad) staining marking cell membranes. c)
Merged image of Sqh (green) and E-cad (red) showing that there are localizations
of myosin in “cable-like” forms along floor-midline and floor-roof edges. d) Bazooka
(Baz) is down-regulated along the floor-midline and floor-roof boundaries, as well
as on subset of apical edges within the roof domain, as indicated by the arrows.
e) E-cadherin staining marking cell membranes. f) Merged image of Baz (green)
and E-cad (red) showing that Baz is missing from the cables. Red arrows indicate
floor-midline boundaries; yellow arrows indicate floor-roof boundaries.

appendage forming cells, and particularly high levels of tension along two “cables”,

the floor-midline and floor-roof boundaries.

3.3 Description of model

Since a coherent story of how a sheet of follicle cells bend and rearrange can be

told from the point of view of just the apical surfaces of the cells, and since indeed

there are molecular indications that there exist active molecular components localized

to the apical sides of these cells, we hypothesize that the early steps of appendage

morphogenesis, from the out-of-plane bending of the original epithelium to the joining
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of the floor cells, may be explained by a mechanism that takes into account only the

processes on the apical side of the epithelium. That is, we propose a model whose

special feature is that it predicts tissue transformations similar to those observed

experimentally utilizing tensions generated exclusively in the apical surface, without

consideration of other cellular features such as volume constraints and active processes

on the basal surface.

We want to explore whether prescribing the patterns of tension suggested by

the signatures of molecular markers’ distributions found in experiments is su�cient

to produce the changes in morphologies of the cells and tissues required to form a

tube. To show su�ciency, we turn to a mathematical approach. To focus on cellular

dynamics on the apical side of the epithelium, we employ a vertex model that takes

into account the connectivities of cells in a two-dimensional sheet. This follows the

approach that had been used to model sheets of closely packed cells in biological as

well as other contexts, as described in section 1.2. In this model, each cell in the sheet

is described by a polygon with vertices and edges, where vertices and edges are shared

between adjacent cells, and a vertex is shared between exactly three cells. The sheet

may be interpreted as a tessellation of polygons. The state of this model epithelium is

then completely characterized by the coordinates and connectivity of the vertices.

3.3.1 Energy function description

An energy function for a system consisting of any number of cells may be defined as a

function of the coordinates of the vertices as the following [75]:

E =
X

↵

⇣
a↵
�
A↵ � A0

↵

�
2

+ b↵L
2

↵

⌘
+
X

hi,ji

�i,jli,j . (3.1)

The first term in this expression corresponds to an area elasticity, where A↵ is the

area of cell ↵, A0

↵ is a parameter indicating the preferred area of cell ↵, and a↵ is its
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elasticity coe�cient. The sum over ↵ indicates a sum over all cells. Similarly, the

second term corresponds to perimeter elasticity, with L↵ as the perimeter and b↵ as

the elasticity coe�cient for the perimeter of cell ↵. The third term describes line

tension, where lij is the length of the edge connecting vertices indexed by i and j,

and �ij is the line tension coe�cient for the bond connecting vertices i and j. The

sum over hi, ji indicates a sum over all bonds. A dimensionless version of the energy

function in equation 3.1 is written down in section 3.A. Clearly, this function depends

on vertex coordinates as well as vertex connectivities. These parameters for individual

cells can imply bulk elastic properties for the tissue [77].

Given a particular connectivity of vertices, the force on each vertex is determined

by the negative derivative of the energy with respect to the coordinates of that vertex:

F
x

= �@E

@x
, (3.2)

where F
x

denotes the force applied to a vertex whose position is x. Assuming that the

vertex is embedded in viscous medium that applies a drag force on it with mobility

coe�cient ⌘, and using the Reynold’s number approximation that estimates inertia as

vanishing, we obtain equations of motion for each vertex:

�1

⌘

dx

dt
+ F

x

= 0 (3.3)

or

dx

dt
= �⌘

@E

@x
. (3.4)

For our system, the mobility ⌘ simply determines the scale of time and does not

influence steady states, as shown in section 3.A. The steady state configuration of

vertex positions (dx/dt = 0, 8x), that is, the mechanical equilibrium, corresponds
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to a stable local minimum of the energy E. From [74], it is shown that total energy

decreases if equations of motion are satisfied:

dE

dt
=
X

i

dxi

dt
·r

xiE =
X

i

�⌘

✓
dxi

dt

◆
2

 0 , (3.5)

where the sum is over all vertices, enumerated with the index i. We need to stress

that the mechanical equilibria of equation 3.4 depends on the connectivities of the

vertices; our model finally employs both propagation toward equilibria using equation

3.4 for a particular connectivity, and changing connectivities according to discrete

transformations, as we will describe in section 3.3.3,

Evaluation of force

The forces on each vertex are obtained as the negative derivative of the energy with

respect to the coordinate of the vertex. If a vertex at x is connected to three vertices

r
1

, r
2

, r
3

and three cells ↵
1

,↵
2

,↵
3

, then the force on this vertex depends only on the

geometries of these three cells and bonds. Letting f
x

denote the force on a vertex at

x; letting f
x↵ denote the force on a vertex at x due to this vertex being part of cell ↵,

and letting f
xr

denote force on a vertex at x due to a connected vertex at r, we have:

f
x

=
X

↵2{↵1,↵2,↵3}

(fa
x↵ + fp

x↵) +
X

r2{r1,r2,r3}

f e
xr

, (3.6)

where the superscripts “a”, “p”, and “e” indicate forces due to area, perimeter, and

edge connectivities, respectively. We write down each of these forces in terms of

coordinates in the next paragraph.

If the vertex at x is connected to one at r through a bond, then the force on a
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vertex at x due the vertex at r, according to the energy formulation, is

f e
xr

= �
xr

✓
�@ |r� x|

@x

◆
= �

xr

û
rx

. (3.7)

where �
xr

denotes the line tension between vertices at x and r and û
rx

= (r�x)/ |r� x|

is the unit vector from x to r.

Let {x
0,...,n�1

} denote the vertices of an n-sided cell, numbered in an ordered

fashion, either clockwise or counter clockwise. The perimeter of the cell is evaluated

as:

L↵ =
n�1X

i=0

|xi+1

� xi| , (3.8)

where xm is identified to xm mod n for wrapping purposes. For notational simplicity,

from now on, let xm be identified to xm mod n, and let the sum
Pn�1

i=0

be denoted
P

i.

The force from the perimeter term contributed by cell ↵ on a vertex at xi that is part

of ↵ is then:

f p
xi↵

= 2b↵L↵

✓
�@L↵

@xi

◆
= 2b↵L↵

�
û
xi+1xi + û

xi�1xi

�
. (3.9)

In two dimensions, the expression for the area A↵ may be computed as:

A2d

↵ =
X

i

1

2
|xi+1

⇥ xi| (3.10)

where the cross product is evaluated using 0 as the z-component of each position

vector. In three-dimensions, the area of a cell given the positions of the vertices is not

defined since the vertices in 3d are not in general coplanar. In this case, a choice for

triangulation for the vertices of the cell must be made in order to unambiguously define

the area of a cell. For this purpose, we compute the average position of the vertices
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belonging to each cell as xc =
P

i xi/n and use this position to define a triangulation

for the polygon that defines the cell surface in order to calculate an e↵ective area. In

this case, we compute the area as:

A3d

↵ =
X

i

1

2
|(xi+1

� xc)⇥ (xi � xc)| (3.11)

The force due to the area term in the energy, contributed by cell ↵ on a vertex

belonging to that cell with position xi is:

fa
xi↵

= 2a↵(A↵ � A0

↵)

✓
�@A↵

@xi

◆
. (3.12)

Depending on whether the system is two-dimensional or three-dimensional, we may

substitute the proper expression for the area A↵ and the derivative @A↵/@x. The 2d

expression for the area derivative is:

@A2d

↵

@xi

=
1

2

@

@xi

(|xi+1

� xi|+ |xi � xi�1

|) = 1

2

✓
Rxi+1

|xi+1

� xi|
� Rxi�1

|xi � xi�1

|

◆
. (3.13)

where R is the counter clockwise 90 degrees rotation matrix:

R =

0

B@
0 �1

1 0

1

CA . (3.14)

Therefore, the area term for cell ↵ in 2d contributes to the total force:

fa
xi↵

= a↵(A
2d

↵ � A0

↵)

✓
� Rxi+1

|xi+1

� xi|
+

Rxi�1

|xi � xi�1

|

◆
. (3.15)

The three-dimensional expression for @A3d

↵ /@x is lengthy and is left for the appendix

in section 3.B.

Equations 3.7, 3.9, and 3.15 substituted into equation 3.6, and multiplied by the

62



mobility constant ⌘ give the full expression on the right hand side of equation 3.4.

These forces completely determine the trajectories of all vertices given a particular

connectivity. If an edge shrinks to length zero, then the equations become ill-defined,

and the connectivity must be modified through a discrete transformation as described

in section 3.3.3, and the equations e↵ectively rewritten before equilibrium for the

positions of the vertices can be solved for.

3.3.2 Active force generation from patterning

The energy function from section 3.3.1 prescribes the time-evolution of the system

depending on the parameters chosen. A central aspect then, to the energy function

and the choice of the model, are choices for the parameters a↵, b↵, A
0

↵, and �ij for

each cell and bond in equation 3.1. To usefully employ the generic vertex model for

follicle cells in Drosophila, we need to distinguish cells of four di↵erent types according

to their properties. Here, cells of di↵erent types are assigned parameter values that

represent hypothesized di↵erences in mechanical properties.

Motivated by the localizations of molecular markers and basic size comparisons of

cells in the final configuration of appendage formation in the data, we propose that

there are three parameters of the model whose roles are particularly useful for us to

investigate in the endeavor to replicate the morphologies of the follicle cell system.

The following set of arguments is essential for understanding our choice of parameters.

Since gene expression patterns group the cells according to type, the simplest

assumption is that a↵ and b↵ depend only on the cell type of cell ↵, and that �ij

depends only on the types of the two cells sharing that bond. Experiments suggest

that there exist two myosin “cables” running along the boundaries between floor

and midline cells and between floor and roof cells; it then makes sense that bonds

between floor and midline cells, as well as between floor and roof cells, are chosen

to have tensions larger than that of other bonds. It has been found [75] that for
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the Drosophila wing disc epithelium, certain ranges of values for a↵, b↵, and �ij

in the vertex model describe particularly well the sidedness and area distributions

of polygonal cells as well as recovery dynamics from laser ablation experiments in

uniformly patterned, proliferating wing disc tissue. For simplicity, we use these “wing

disc” parameter values for our follicle cells. These values correspond to ratios of

a/� = 1 and b/� = 0.1 in our terminology, as shown in section 3.A.1. For uniform

infinite systems conforming to these parameter choices, the ground state of the system

has hexagonal order [75], and the equilibrium cell size is about 0.772A
0

, as computed

in section 3.4.1. Finally, it is clear from both live and fixed data, that main body and

midline cells are stretched to much larger sizes compared to roof and floor cells in

the process of appendage formation; this motivates us to describe the main body and

midline cells as “more compliant” compared to floor and roof cells, and the simplest

manifestation of “compliancy” in the model may be to choose midline and mainbody

cell parameters such that each of these cells contribute to the total energy only a

fraction f of what a roof or floor cell of the same shape may contribute.

Given the above, we choose wing disc values a↵ = a and b↵ = b for the roof and

floor cells, and �ij = � for the roof-roof and floor-floor boundaries, as determined

by [75]. We choose a↵ = fa and b↵ = fb for midline and mainbody cells, and

�ij = f� where f  1 for midline-midline and mainbody-mainbody boundaries. For

roof-mainbody, mainbody-midline, and mainbody-floor boundaries, we choose �, f�,

and �, respectively. Finally, for the locations of the myosin cables at the floor-midline

and floor-roof boundaries, we choose tensions To� and Ti� respectively, indicating

the descriptions “out” and “in”, generically with To, Ti � 1; Moreover, we assume

that A0

↵ = A
0

is the same for all cells ↵. A visual representation of the parameter

patterning is indicated by figure 3.5.

If we let the side of a hexagon with area A
0

be the unit of length and � be the

unit of force, then, as discussed in section 3.A along with the details of dimensionless
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Figure 3.5: Color-coded representation of how cells and edges are patterned. Orange
cells and edges, represented by light and dark orange colors, respectively, have pa-
rameter values a, b, and �. Gray cells and edges, represented by light and dark gray
colors, respectively, have parameter values fa, fb, and f�. Green edges coincide with
the floor-roof myosin cable and have tensions Ti�; and pink edges coincide with the
floor-midline myosin cable and have tensions To�.

scaling, we have A
0

= 3
p
3/2 and � = 1 in dimensionless parameters. Additionally,

using the findings of [75] for a and b, we have a = 1 and b = 0.1. For the rest of this

thesis, we focus mainly on varying the patterning of the multiplicative factors Ti, To,

and f indicating the relative tensions in the cables compared to the rest of the tissue,

and the relative “compliancy” of the midline and mainbody cells compared to the roof

and floor cells. We only refer to dimensionless parameters from now on.

In summary, we assume main body and midline cells are identical, and that roof

and floor cells are identical, amounting to categorizing the four cell type into just two:

appendage-forming cells and non-appendage-forming cells; we superimpose on this

picture the two myosin cables. While our assumptions do not completely replicate

experimental reality, they are simplifying assumptions made to elucidate the minimal

requirements of the early stages of tube formation.

3.3.3 Cell-neighbor exchange

In addition to a description of time-evolution in section 3.3.1 and a description of tissue

properties in section 3.3.2, the model may specify the set of allowed “discrete moves”
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available to a vertex. From other authors, the canonical set of allowed moves for such

models usually allows for cell neighbor exchange (also called cell “intercalation”), cell

death, and cell division. The three types of moves are pictured in figure 3.6. In the

follicle cells only cell neighbor exchange is observed experimentally, so this is the only

discrete move that we will consider in this thesis.

Figure 3.6: Cell intercalation, cell death, and cell division moves are indicated.

Biologically, cell neighbor exchange is natural and comes out of the ability for

cells in a sheet to squeeze past one another. In processes such as germband extension,

cells need to move past and in between one another to account for global changes

in tissue shape and dimensions [107]. Sometimes, neighbor exchange arises passively

as the tissue is stretched by external forces, and sometimes, neighbor exchange is

actively generated by cells changing their own shape. In the language of the vertex

model, the process of cell neighbor-exchange necessarily involves either the formation

of “T1” junctions or “rosettes”. In a T1 junction, a bond shrinks to length 0, and

the two vertices at the ends of the bond become e↵ectively one vertex that borders

four cells. The neighbor-exchange is completed when the 4-vertex “resolves” into two

new 3-vertices, where the connectivities of the two new 3-vertices imply an interface

between two cells that originally did not border each other. The formation and

resolution of multi-cell rosettes is equivalent to the formation and resolution of a

sequence of T1 junctions. Work by other authors on cell intercalation, death, and
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division are reviewed in Chapter 1.

An intercalation event is a discrete move that changes the system in a non-

Hamiltonian way. The system may then reach a new equilibrium with less energy that

is not allowed by the previous connectivity. Thus a tissue with intercalation allowed

is dissipative.

We additionally explore models where cell intercalation is not possible. In this case

the intercalation move is replaced by a “merging” move, as in figure 3.7, in which two

Figure 3.7: A “merging” move is indicated.

3-vertices are pulled close together form a single 4-vertex. The “merging” process may

be repeated to form vertices with six, eight, and so forth, numbers of connected edges,

arising from three, four, and so forth numbers of 3-vertices, respectively. Biologically,

the “merging” move corresponds to the formation of a junction or rosette that is

inhibited from resolving. With merging instead of intercalation, the tissue is not

dissipative.

3.4 Results of Numerical Analysis

Once geometry, patterning, and a set of allowed discrete moves are chosen for the model,

we may investigate the system numerically. Equations of motion are solved starting

from an initial configuration. The final, steady state configuration of the vertices is

shown to be a stable equilibrium of the system both by numerical perturbation and

by linear stability analysis via Jacobian diagonalization. Because of the non-linear

nature of the equations, multiple steady states and buckling modes are found.
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3.4.1 Boundary conditions and geometric setup

For numerical investigations, we set up an array of hexagonal cells with a given set of

of initial positions. We align the simulations such that the anterior side of the egg

chamber points towards the negative x axis, while the dorsal side of the egg chamber

points towards with the positive y axis. Three rows of midline cells exist anterior and

dorsal to the floor cells while six rows of mainbody cells exist posterior and ventral to

the roof cells. The appendage region consists of 13 floor cells and 49 roof cells. This

geometric set-up is chosen to approximate the layout of cell types in the experimental

system and is indicated in figure 3.5.

For simplicity, we use pinned boundary conditions at the edges of the simulation

domain. Since we do not use free boundary conditions, we need to choose the size

of the simulation domain. We do so in the following way: if we model a system of

N ⇥M cells, then we fix the system boundaries such that N ⇥M hexagons of side `
0

fit exactly, where `
0

is the side length of an equilibrium cell given the parameters a, b,

�, and A0.

To do this, we compute the equilibrium size of a hexagonal cell in an infinite

system with parameters a, b, and A
0

for the cell, and � for each of a cell’s six edges.

The e↵ective energy of a cell in an infinite array as a function of `, the length of an

edge, is:

Ecell(`) = a

 
3
p
3

2
`2 � A

0

!
2

+ b(6`)2 +
1

2
6�` , (3.16)

where the factor of 1/2 in front of the last term comes from the fact that each edge is

shared between two cells. Computing a derivative of Ecell with respect to `, we get

that the force on a cell of side `
0

vanishes if and only if:

0 =
dEcell

d`

���
`0
= 3

⇣
9a`3

0

+ (24b� 2
p
3aA

0

)`
0

+ �
⌘

(3.17)
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Solving this cubic equation for `
0

and choosing the real and positive solution that

gives a stable equilibrium for the expression Ecell, we can find the equilibrium side

length `
0

for a hexagonal cell in an infinite system given the parameters a, b, �, and

A
0

. As an example, using dimensionless values A
0

= 3
p
3/2 and � = 1 obtained from

scaling, and a = 1 and b = 0.1 from [75], the function Ecell(`) is indicated in figure 3.8.

From this we see that the expression Ecell has three real extrema as a function `, two

  









Figure 3.8: Plot of Ecell as a function of ` with A
0

= 3
p
3/2, � = 1, a = 1, and b = 0.1.

of which are stable extrema, and only one of which appears at a positive value of ` at

` ⇡ 0.77; therefore, the equilibrium hexagonal cell length in an infinite system with

these parameters is `
0

⇡ 0.77. Note that in this example, if a cell starts as a hexagon

with side length smaller than the unstable extremum of Ecell at ` ⇡ 0.16, then the cell

collapses instead of ever reaching the equilibrium size.

3.4.2 Two-dimensional modeling

As an elementary test of this model, we compute equilibrium states in two dimensions

for di↵erent parameter values of To, Ti, and f . It is obvious that choices of To, Ti > 1

lead to relatively straight boundaries delineating the floor cells, in agreement with

intuition as well as previous literature; an example of said straight edges in a 2d

system is modeled in figure 3.9. This stage of tissue deformation may be compared
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with the experimental data in figure 3.1b).

Figure 3.9: Parameters are Ti = To = 2 and f = 0.2, with a = 1, b = 0.1, and � = 1.

Near the ends of the floor cells, edges are short due to large di↵erences in tension

between an edge that is part of a myosin cable and an edge that is not. Simulating

a tissue in which the cells have cell neighbor exchange as an allowed discrete move,

the main result is that mainbody cells bordering the cables are pulled in between

floor and midline cells. In order to look at tissue deformations without taking into

account this artifact, we can instead employ the model where the vertices have the

“merging” rule. Application of merging instead of cell neighbor exchange limits the

scope of the investigation to cell deformation without rearrangement and also chooses

a model where the tissue is not dissipative. For the first part of our 3d analysis, we

will make such choices. Another way to by-pass the artifact of mainbody cells coming

in between floor and midline cells would be to prescribe a graded tension along the

cables, such that the vertices at the ends of the cables are not connected to edges with

vastly di↵erent tensions. This second option is discussed later in this thesis.
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3.4.3 Three-dimensional analysis and buckling

We want to explore the dynamics and equilibrium configurations of cells defined

by vertices if we embed the sheet of cells in three dimensions. To investigate this,

we extend the traditional vertex model by allowing the vertices to move in three

dimensions. Intuitively, it is clear that a non-uniform distribution of line tension

embedded in the sheet of cells may produce a buckling of the tissue, in the same way

that a blade of grass would be wrinkled if the thickness were not uniform, implying

non-uniform in-plane tensions; see illustrative examples in figure 1.9.

For investigations of wrinkling and buckling in a tissue defined by the vertex

model and a specified pattern of tensions, we choose the model with the “merging”

rule instead of cell neighbor exchange. This is because we wish to avoid the artifact

mentioned in the previous section of a main body cell moving in between floor and

midline cells while also avoiding the complication of investigating a model with a

graded distribution of tension along the myosin cables. Additionally, we know that

buckling instabilities can appear in physical systems of sheets without dissipation

of energy or cell rearrangement in biological cases [83, 84]. Choosing the “merging”

rule for our model is simple and su�cient to investigate out-of-plane buckling and

deformation. Finally, it appears from the data in figure 3.1 that floor and roof cells

at the early stages of appendage formation are buckled out-of-plane with extremely

distorted mainbody and midline cells near the cables’ edges that form rosettes without

resolution.

As a simple example of the e↵ects of embedding the vertices in our model epithelium

in three dimensions, we see in figure 3.10a-a”), that using the same parameter values

as figure 3.9 in 3d, we find an equilibrium state in which the roof and floor cells move

out-of-plane, in a fashion similar to the early stages of appendage formation. If we

set the parameter To large enough, the floor cells can “twist under” the roof cells in

the simulations as they appear to do in experiments, as indicated in figure 3.10b-b”).
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Figure 3.10: a-a”) Parameters are Ti = To = 2 and f = 0.2. b-b”) Parameters are
Ti = 1.4, To = 4, and f = 0.2, with other parameters same as figure 3.9. In a”) and
b”) are schematics of cross sections of a) and b), respectively, taken along a diagonal
from the upper left to the lower right of the panel.

To test the robustness of these results, we explored the e↵ects of varying Ti, To, and

f . For values of parameters leading to large deformations of the system, multiple

buckling modes are frequently present; for example, the panels in figure 3.11 show

di↵erent buckled shapes corresponding to the same set of parameter values. Clearly,

the reflections of each of the shapes in figure 3.11 across the x-y plane are additional

buckling modes.

Phase diagrams exploring parameter space as functions of To and Ti are constructed

for four di↵erent values of f , as shown in figure 3.12; these indicate the angle ✓ of

the corner floor cell with respect to the x-y plane and the maximum height h of the

roof cells, both marked in figure 3.10, as heat maps. To avoid plotting multiple points
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Figure 3.11: Parameters are Ti = 2, To = 3.6 and f = 0.2, with other parameters
same as figure 3.9. a-d) Di↵erent buckled modes of the same system.

in the heat maps for di↵erent buckling modes, we choose a single mode to plot. To

make this choice, we solve an initial value problem using the shape at To = Ti = 1

and f = 0.2 as an initial configuration, since for this parameter set, there is only one

mode. The final equilibrium configuration reached from this initial configuration is

the mode chosen for plotting on the heat maps. In the experimental system, only

the mode similar to figure 3.11a) is frequently seen. One can imagine that in the

experimental system, various environmental perturbations, not present in the model,

help choose the mode; for example, experimentally, the oocyte exists on one side of

the sheet that we are modeling while the bulk parts of follicle cells exist on the other

side; so there really is no z ! �z symmetry. Moreover, follicle cells secrete proteins

toward the oocyte throughout the tube-formation process, perhaps leading to pressure
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forces normal to the surface, directed outward.

The solid white lines in figure 3.12e-f) indicate the boundary between parameters

giving rise to systems with three-dimensional buckled equilibrium shapes and those

without; for parameters left of those lines, the system stays flat even though cells

become deformed. Left of the solid red lines in figure 3.12c-d), the angle ✓ between

floor cells and the x-y plane is less than 90�, while right of the white lines, the angle ✓

is greater than 90�, implying that for large values of To, the floor cells are “twisted

under” the roof cells.

    










      










    










     








   








      










     








   








   

   

Figure 3.12: a-d) Angle ✓ from figure 3.10a”) and b”) in radians plotted as a heat map
as a function of Ti and To for fixed f ; other parameters are the same as in figure 3.9.
The angle ✓ is determined by the corner floor cell, the neighboring corner midline cell,
and their shared edge. Precisely, it is the supplement of the angle formed between two
planes: the plane determined by the shared edge and the corner floor cell’s centroid,
and the plane determined by the shared edge and the corner midline cell’s centroid.
Red line indicates ✓ = 90�. a) f = 1. b) f = 0.6. c) f = 0.2. d) f = 0.1. Height h
from figure 3.10a”) and b”) with the unit of length as in section 3.A, plotted as a heat
map as a function of Ti and To for fixed f ; other parameters are the same as in figure
3.9. White line indicates the boundary between regions of h = 0 and h > 0. e) f = 1.
f) f = 0.6. g) f = 0.2. h) f = 0.1.

To investigate linear stability of the equilibrium states, a steady state is found by

restricting the system to move in only two dimensions. We perform linear stability

analysis on this state by diagonalizing the corresponding Jacobian, taking into account
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perturbations in the z direction. Figure 3.13 shows that as a function of f for

Ti = To = 1, 3d buckled shapes become stable, and the 2d system of compressed cells

become unstable approximately when f < 0.52, when the maximum height h of the

roof cells becomes di↵erent from 0, and when the maximum eigenvalue of the system’s

Jacobian becomes positive. For the range of parameter values indicated in the phase

diagrams, this Jacobian has a single positive eigenvalue, indicating that the system is

linearly unstable to perturbations in the z direction. According to the same analysis,

   















  















 

Figure 3.13: a) For Ti = To = 1, maximum height h of the roof cells become non-zero
at f ⇡ 0.52. b) For Ti = To = 1, maximum eigenvalue of the system’s Jacobian
becomes positive at f ⇡ 0.52.

the 3d steady state configuration corresponding to the same set of parameter values is

shown to be a stable equilibrium solution. This shows that the out-of-plane state is

a buckled state of the apical surface, resulting from a buckling instability of a flat,

patterned surface. From the diagrams in figure 3.12, it is also obvious that any of

the three parameters To, Ti, and f can be tuned in order to cross from a parameter

regime without stable three-dimensionally deformed shapes to a regime in which only

the buckled shapes are stable.

3.4.4 Modeling tube formation driven by cell neighbor-exchange

In the previous section, we analyze tissue deformations and buckling without cell

intercalation moves. This is appropriate and fits well with the experimental data

for the early steps of appendage morphogenesis. However, ordered cell intercalation
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becomes a central feature of later stages of appendage formation. Therefore, to test

whether patterned tension may be su�cient to explain ordered intercalations, we

implement cell neighbor exchange in the form of T1 transitions as described in section

3.3.3 and as has been done by other authors [73, 75]. We examine the time-evolution

of the system.

As mentioned in the previous section, implementation of the intercalation move

leads to the artifact of mainbody cells near the ends of the myosin cables to be pulled

in between floor and midline cells. To treat this artifact, we modify the model such

that the floor-midline cable multiplicative factor To is a peaked distribution as a

function of the position of the midpoint of each bond in the cable. The distribution

for To in our studies is explicitly a function of the angle �, defined pictorially in figure

3.14; the location of the peak is at the corner of the “L”-shaped row of floor cells, and

the amplitude of the peak of To(�) falls toward the ends of the cables. We keep a

flat distribution for Ti because we wish to use the model with as few parameters as

possible.

 

Figure 3.14: a) Schematic showing how the angle � is measured; the midpoint of a
bond is used and the angle is measured with respect to an origin and a direction 60�

to the left of the positive y direction that defines � = 0, as indicated in the cartoon.
b) Tension multiplicative factors To (pink) and Ti (green) as functions of the angle
� (degrees). Here we have Ti = 1.4 and To = 1.4 + 2e��2/(2s2), where s, the standard
deviation of the gaussian distribution is set to s = 5 in degrees.

The assignment of a sharply peaked distribution of tension in the outer cable
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is su�cient to induce spatially ordered intercalation of the floor cells and produce

an appendage-like structure, as indicated in figure 3.15. Cell intercalation for some

   







Figure 3.15: a) Frames showing the first few T1 junctions formed by the floor cells
taken from a simulation of appendage formation with a = 1, b = 0.1, � = 1, and
A

0

= 3
p
3/2 in dimensionless form. Here, we have f = 0.1, and To(�) and Ti as

plotted in figure 3.14. b) The final equilibrium state of the system shown in a side
view (left) and front view (right).

parameter ranges is spatially ordered in a manner highly reminiscent of that seen

in live imaging of the biological system; although, further experiments exploring

variability in intercalation order and further simulations varying the geometry and

tension distributions would be needed to more precisely compare experiment and

modeling.

An additional force contribution to the three-dimensional model with cell neighbor

exchange is a small pressure term directed outward from the simulated appendages,

as described in section 3.E. This force, however, is small compared to other forces

driving the dynamics of the system, and serves only to ensure that buckled shapes

formed by cell surfaces “bulge outward” with respect to the tube that is simulated.

The assignment of the position-dependent To makes adjustments to the model and

introduces new variables, such as the form of the function To(�) and its associated
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parameters. Assuming that To(�) is Gaussian in nature, this introduces four new

parameters: the baseline of the Gaussian, the width, the amplitude, and the position

of the peak. Further analysis needs to be made to explore the e↵ects that these

parameters might have on the dynamics in the simulations.

The origin of ordered intercalation in the model can be explained as follows. Due

to the distribution of tensions, the floor-midline edges near the corner of the “L” of

floor cells pinch to form T1 junctions. These junctions then resolve in favor of new

floor-floor boundaries because these boundaries cost less energy than the floor-midline

boundaries. This intercalary event then brings new floor-midline interfaces toward the

corner of the “L”, where the tensions are again higher, and the process is repeated, see

figure 3.16. Note that active force is generated in the system because a bond tension

   

Figure 3.16:

at the floor-midline boundary increases as that bond moves closer to the position

at � = 0. In summary, we propose a pattern of tension that is su�cient to explain

ordered intercalation. Further work is required to confirm whether tension is indeed

patterned in this way, and to determine mechanistically how this occurs.

3.4.5 Summary and discussion

Tubes are common products of epithelial morphogenesis. The sealing or closure of

tubes is one of the least understood aspects in systems where they arise from a

“wrapping” process, for example as in the vertebrate neural tube or the Drosophila

ventral furrow [47, 108]. The dorsal appendage is proposed to be sealed by ordered

lateral rearrangements of cells, or a “zipping up” process, and this motivates us to
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look for such lateral cell rearrangements in the sealing of tubes in systems that have

not yet been carefully explored [109].

In our model of dorsal appendage formation, patterned line tension plays a key role.

Future work will be needed to address the biological and molecular mechanisms by

which patterns of tension are established. Mutant egg chambers with dorsal appendage

defects in which gene expression patterning is modified [110] and other species of

Drosophila that have egg chambers with various numbers of appendages become useful

systems in which to test models based on geometry, tension, and adhesive forces.

3.A Dimensionless scaling of energy expression

Let the unit of length � be the length of the side of a hexagon with area A
0

, and

let the tension of a bond between two mainbody cells, �, be the unit of force. Then

A
0

= 3
p
3/2 �2, and we may write all quantities in equation 3.1 as a dimensionless

number, indicated notationally by primes multiplying dimensionful units.

E = E 0�� , a↵ = a0↵
�

�3

, A↵ = A0
↵�

2

b↵ = b0↵
�

�
, L↵ = L0

↵� , �ij = �0
ij� , lij = l0ij� .

(3.18)

Rewriting equation 3.1 substituting the primed quantities, we have:
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Dividing every term by ��, we have:
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where conversion between dimensionless numbers and physical quantities are translated

according to equation 3.18. The scale of time may be set as

⌧ =
�

⌘�
, (3.21)

such that the dimensionless mobility ⌘0 = ⌘⌧�/� = 1. In the analysis in the main text,

primes are dropped from dimensionless variables for notational simplicity.

3.A.1 Numerical values for parameters

The authors in [75] find that the ratios 2b↵/(2a↵A0

) ⇡ 0.04 and �ij/(2a↵A
3/2
0

) ⇡ 0.12

are satisfied by the parameters in the vertex model that predicts the closest agreement

with experiments for Drosophila wing disc, both based on sidedness distributions of cells

in the proliferating tissue, and from laser ablation experiments. Using A
0

= 3
p
3/2 �2,

these ratios translate as the following in our notation:

�ij

2a↵A
3/2
0

= 0.12 =) a↵
�ij

=
1

2A3/2
0

0.12
⇡ 1

�3

✓
2b↵
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�ij
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=

0.04

0.12
=) b↵

�ij

=
0.04

0.12 · 2
p
A

0

⇡ 0.1

�
.

(3.22)

Using the conversions in equation 3.18 to translate to dimensionless quantities, we

find that parameter ratios

a0↵
�0
ij

⇡ 1 and
b0↵
�0
ij

⇡ 0.1 (3.23)

imply optimal match between model and experiment in the wing disc.
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3.B Calculation of cell area in three dimensions

As mentioned in section 3.3.1, given the vertices of a cell, {x
0,...,n�1

}, where each

vertex is a three-dimensional vector, we define the area of this cell to be the sum of the

areas of the triangles formed by xi+1

,xc, and xi for i 2 {0, n� 1}, where an index m

is identified with the index m mod n, and where xc is defined as the average vertex

position xc =
Pn�1

i=0

xi/n. The area of this is then indicated in equation 3.15. The

derivative of this expression with respect to coordinate xi is a long calculation that

may most easily be evaluated by separating the area expression into terms depending

explicitly on xi and terms depending on xi through xc.

A3d

↵ =
1

2
|A

1

|+ 1

2
|A

2

|+
X

j 6=i,i+1

1

2
|Aj| , (3.24)

where

A
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2
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Note that
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Given this form, let
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be defined for convenience. Then the following holds:
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Finally,
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with the substitutions from equation 3.28, where the additional index ↵ on the right

hand side is added for consistency of notation to indicate the ↵’th cell, and ex, ey,

and ez are unit vectors in the x, y, and z directions, respectively.

3.C Implementation of cell neighbor exchange

One may think of a cell intercalation or cell neighbor exchange move as a reassignment

of connectivities that influences two vertices and four cells. If two vertices are under

a threshold distance apart, the bond connecting them executes a T1 transition, as

indicted in figure 3.6. We only implement cell neighbor exchange when the intercalation

event influences three or four cells, as illustrated in figure 3.17; for transitions involving

two cells or one cell, we always implement merging, as described in appendix 3.D.

This detail is only relevant for the studies with free boundary conditions.

Moreover, in an intercalation event, if there are four cells involved in an intercalation

event, the new orientation of the intercalating bond is set parallel to the vector

connecting the centers of the two cells that do not contact each other after the

transition, and the new midpoint of the intercalating bond is set to be identical to the

old midpoint. If only three cells are involved in the intercalation event, then the new
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Figure 3.17: a) An intercalation event involving four cells. b) An intercalation event
involving three cells; this case would appear at the boundary of a simulation if we do
not use fixed boundary conditions.

orientation of the intercalating bond is set along the direction perpendicular to the

old orientation. The midpoint and the length of this bond does not change in this

implementation. See figure 3.17 for a schematic of this description.

The threshold edge length for implementing a T1 transition is twice the tension

of the edge multiplied by the mobility constant ⌘ and by the size of the time step

during which the transition is implemented. This threshold may, of course, be chosen

in a variety of ways as long as the choice allows for smooth numerical propagation of

equations, and is not too large. For a T1 junction that forms repeatedly, we implement

a step in which the tension of the bond that results from the resolution of the junction

is either multiplied or divided by a factor p after every additional successive instance

in which the junction forms, where multiplication or division is chosen at random

in each instance. The factor p may depend on the number of successive times the

junction has already formed, for example, p may be an increasing function of this

number, such that the code e↵ectively “tries harder” to resolve more “stubborn” T1

junctions. These details of implementation are somewhat arbitrary, and simulation

results do not depend significantly on them.

3.D Implementation of vertex “merging”

Under a threshold distance, two vertices that are programmed to merge will adjust

their connectivities in the following way. One of the vertices with be chosen at random
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to become inert or eliminated from the simulation, while the other vertex acquires

the neighboring cells and bonds of the newly inert vertex, excluding the bond that

connects the two vertices involved in the transition, whose tension and length is set to

zero. This move makes the non-inert vertex a “4-vertex”, that is, it is connected to a

maximum of four cells and four bonds, as shown in the earlier figure 3.7. Regardless

of whether the study involves a model with cell intercalation or vertex merging, we

always implement merging on the boundaries of the system where two or fewer cells

are involved in the transition, as indicated in figure 3.18; these situations correspond

to a bond simply vanishing at the boundary of a simulation.



Figure 3.18: a) A merging event involving two cells. b) A merging event involving one
cell.

3.E Form of pressure force for 3d simulations

Let a cell be composed of vertices {x
0

, . . . ,xn�1

}, and let us denote
Pn�1

i=0

by
P

i. A

pressure term added to the expression for force in the equations of motion for each

vertex is computed as follows: the normal unit vector for each cell ↵ is obtained,

computed as the unit direction corresponding to the average of the area vectors of the

triangles triangulating the cell, where the triangulation is defined using the average

coordinate xc =
P

i xi

n̂↵ =
1

|
P

i Ai|
X

i

Ai (3.30)
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with Ai = 1/2(xi+1

� xc)⇥ (xi � xc). A proportionality constant P corresponding to

pressure multiplied by the area of the cell A3d

↵ as defined in equation 3.11 gives the

total force on a cell due to pressure. Assuming that pressure force on a cell is shared

equally by vertices participating in the cell, and that a vertex borders cells {↵j} with

numbers of sides {nj}, we have that the force fP due to pressure on this vertex is

fP =
X

j

P
1

nj

A3d

↵j
n̂↵j , (3.31)

where the sum on j indicates summing on neighboring cells of the vertex in question.

3.F Details of numerical implementation

The equation 3.4 is propagated for each vertex using a second-third order, time-

adaptive, Bogacki-Shampine method [111]. The updating scheme at each time step is

briefly as follows:

1. Let the configuration be given by {x} at time t. Evaluate for each vertex,

based on the current position of vertices, the right hand side of equation 3.4, or

correspondingly, the forces in equation 3.6. Evaluate all derivatives necessary

for implementation of the Bogacki-Shampine method.

2. Calculate the size of the time step dt specified by the Bogacki-Shampine method

as a function of the numerical error tolerance, which is set by the user. The size

of the first time step is set explicitly by the user.

3. Use the time step to evaluate {dx} and put

xnext = x+ dx (3.32)

for each vertex.
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4. Update all explicitly time-dependent parameters to their values at t+ dt.

5. Perform all necessary discrete moves such as merging or intercalation.

6. Set t ! t+ dt.

All simulations are coded in object-oriented C++. The main objects in the code

are the Vertices, Cells, and Bonds. Cells keep data pertaining to patterning at the cell

level, i.e. cell type, a↵, and b↵. Cells also keep data about their areas and perimeters

to avoid calculating these quantities for the same cell several times in the same time

step while making force evaluations of di↵erent vertices. Bonds keep data about

patterning at the bond level, i.e. �ij , as well as their length, also to avoid calculating

the same bond length twice in the same time step when evaluating forces. Vertices

keep data about their positions, whether they belong to the fixed boundary, and

their connectivities to Bonds and Cells. Specifically, Vertices keep data about the

identities of their adjacent Bonds and Cells so that evaluation of forces is easy to

manage. The Simulation object implements the time propagation and keeps data

about the propagation of the explicitly time-dependent parameters.
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Chapter 4

Conclusions and Outlook

4.1 Cell motility

In the first part of this thesis, we explored the phenomenon of self-organized behavior

leading to cell directional polarization and motility. We described coupled, active

filaments and motors by non-linear mesoscopic equations of motion; additionally, we

coupled to these equations a movable boundary. From the theoretical and numerical

analysis of these equations, phase diagrams were constructed. An exploration of

parameter space in terms of motor strength and treadmillling velocity reveals the

existence of regions containing purely motile cells, purely stationary cells, and bistable

cells. The analysis of a simplified system showed that motility in the model is driven

by actin treadmilling at the cell front and myosin contractility bringing forward the

cell’s rear. Importantly, the polarization of the cell that allows for di↵erent behaviors

at the front versus back arises from self-organization of the model cytoskeleton.

Models emphasizing other mechanisms of motility exist, and at least for some

models, phase space has been partially explored. Qualitative predictions about

cell motility vary between models; as a result, experiments would be useful to test

the mechanisms proposed in the various mathematical models. However, there are
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not many experiments exhaustively exploring parameter space in the form of phase

diagrams, and these should be done. Experiments such as the ones in [31] report on

the bistability between symmetric and asymmetric states in cell fragments, but do

not characterize the bistability quantitatively as a function of tunable parameters,

such as actin polymerization rate and myosin activity. For future investigation, we

propose that experiments may be done to explore parameter space in the same spirit

as numerical work, for example by quantifying bistable regions by the “size” of the

perturbation needed to push a cell from one state to another.

Cell crawling depends not only on the dynamics of the cytoskeleton but also on

cell adhesion to the substrate [112]. Future work on modeling cell motility therefore

should include understanding adhesion regulation and how mechanical cues from

the outside world may influence and feed back to internal controls within the cell.

We somewhat explored the e↵ects of changing adhesion strength in Chapter 2 by

tuning the mobility constant between actin filaments and the substrate. However,

this analysis does not consider adhesion to be dynamic; a model with one or two

more mesoscopic fields representing the concentration of adhesion molecules bound

or unbound to the substrate while coupling to the other fields may be the simplest

starting point for further studies.

Also as part of future exploration, it may be interesting to understand cell motility

in three-dimensional environments. We presented a model in this thesis that works

in two dimensions, which may be compared to experiments in which cells crawl on

substrates. However, many cells crawl through extracellular matrix or burrow between

other cells. Since these cells interact with and alter their environments as they move,

for example, by secreting proteases that eat away at the extracellular matrix in front

of them [113], models for these cells may need to include dynamics of components in

the environment outside of the cell.
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4.2 Epithelial morphogenesis

In Chapter 3, we examined the morphogenesis of the epithelial tissue covering the

Drosophila egg chamber, and in particular, the formation of the dorsal appendage tubes

from a flat epithelial sheet. The important experimental discovery is that throughout

this formation process, the apical side of the epithelium remains continuous, that is,

no holes appear, and the tube forms by lateral “shifting around” and rearrangements

of epithelial cells within the sheet.

To test the feasibility of the experimental results, we proposed a model that

qualitatively replicates some of the direct observations. The model is a vertex model

of a two-dimensional sheet of cells, adapted such that tensions within it are patterned

according to distributions of molecular constituents such as myosin motors and

assumed cell properties of the four follicle cell types. Moreover, the sheet of cells is

embedded in three dimensions. This allowed us to investigate how the patterning

of a two-dimensional domain can give rise to three-dimensional deformations of the

epithelial sheet which supports the view that biologically, the tube forming process

may be driven only by active forces generated on the apical sides of the cells, while

other parts of the cells matter less. The out-of-plane deformations arise out of a

buckling instability; we analyze the deformations, among other quantities, using

phase diagrams. Giving an additional degree of freedom to the positions of cells and

implementing cell rearrangement rules, we found patterns of tension that give rise to

ordered rearrangements and the generation of a tube branching o↵ of the sheet with

”realistic” morphology.

Analysis of our model suggested that some physical properties may be required for

morphogenesis to proceed normally. For example, we predict that the series of ordered

cell intercalations needed to produce the morphology of the final two rows of floor

cells in the tube would require a peaked distribution of tension along the floor-midline

cell type boundary. The model also requires the floor-midline boundary to have higher
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tension than the floor-roof boundary in order for the row of floor cells to buckle to

the extent observed experimentally. These predicted physical properties are yet to be

checked by force quantitation methods such as laser-ablation experiments.

To further test this model, it may be useful to cast the model in other geometries.

This may be done by exploring mutants and other species of Drosophila that have

di↵erent patterns of tension giving rise to di↵erently structured tubes. Some of these

other flies’ eggshells are indicated in figure 4.1. We think that the case of Drosophila

  

Figure 4.1: a) Eggshell of Drosophila melanogaster ; from two patches of floor and roof
cells, two appendages emerge. b) Eggshell of Drosophila melanogaster with Cy2-mae
mutation; from one patch of floor and roof cells, one appendage emerges. c) Eggshell
of Drosophila virilis ; from two patches of floor and roof cells, four appendages emerge.

virilis, indicated in figure 4.1, is particularly interesting because two appendages

emerge from a single connected patch of appendage cells.

In the future, it may be interesting to investigate alternative or complementary

possible explanations for tube formation. It is notable that many proteins are di↵er-

entially expressed in tissues undergoing morphogenesis in systems including ours. For

example, it is not unreasonable to think that perhaps proteins localized to vertices

can act as “glue” to prevent neighbor exchange among some cells, and absence of such

proteins can allow cell neighbor exchange among others. We are currently beginning

to investigate this possibility using an extended version of this model.
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4.3 From cell to tissue

In this thesis, we discussed biological problems at two length scales using arguments and

methods based on force generation and basic mechanics. In future work, investigators

may want to bridge the descriptions of single cell and multi-cell phenomena. This

may include the intermediate step of understanding two cell systems, or systems made

of small clusters of cells.

91



References

[1] B. Alberts, A. Johnson, J. Lewis, and M. Ra↵, Molecular Biology of the Cell.

Garland Science, New York, 5th ed., 2007.

[2] T. Pollard and G. Borisy, “Cellular motility driven by assembly and

disassembly of actin filaments,” Cell 112 (2003) 453–465.

[3] T. Svitkina, A. Verkhovsky, K. McQuade, and G. Borisy, “Analysis of the

actin-myosin II system in fish epidermal keratocytes: mechanism of cell body

translocation,” J. Cell Biol 139 (1997) 397–415.

[4] K. C. Holmes, D. Popp, W. Gebhard, and W. Kabasch, “Atomic model of the

actin filament,” Nature 347 (1990) 44–49.

[5] H. Isambert, P. Venier, A. C. Maggs, A. Fattoum, R. Kassab, D. Pantaloni, and

M. F. Carlier, “Flexibility of actin filaments derived from thermal fluctuations.

E↵ect of bound nucleotide, phalloidin, and muscle regulatory proteins,” Journal

of Bilogical Chemistry 270 (1995), no. 19 11437–11444.

[6] F. Gittes, B. Mickey, J. Nettleton, and J. Howard, “Flexural rigidity of

microtubules and actin filaments measured from thermal fluctuations in shape,”

Journal of Cell Biology 120 (1993), no. 4 923–934.

[7] H. N. Higgs, “Formin proteins: a domain-based approach,” Trends in

Biochemical Sciences 30 (2005), no. 6 342–353.

92



[8] D. A. Fletcher and J. A. Theriot, “An introduction to cell motility for the

physical scientist,” Physical Biology 1 (2004), no. 1 T1–T10.

[9] C. A. Wilson, M. A. Tsuchida, G. M. Allen, E. L. Barnhart, K. T. Applegate,

P. T. Yam, L. Ji, K. Keren, G. Danuser, and J. A. Theriot, “Myosin II

contributes to cell-scale actin network treadmilling through network

disassembly,” Nature Letters 465 (2010) 373–377.

[10] O. Collin, P. Tracqui, A. Stephanou, Y. Usson, J. Clément-Lacroix, and

E. Planus, “Spatiotemporal dynamics of actin-rich adhesion microdomains:

influence of substrate flexibility,” Journal of Cell Science 119 (2006) 1914–1925.

[11] L. M. Pierini and F. R. Maxfield, “Optical microscopybased migration assay for

human neutrophils,” Current Protocols in Cell Biology 12.6 (2003) 1–15.

[12] T. M. Svitkina, E. A. Bulanova, O. Y. Chaga, D. M. Vignjevic, S. ichiro

Kojima, J. M. Vasiliev, and G. G. Borisy, “Mechanism of filopodia initiation by

reorganization of a dendritic network,” The Journal of Cell Biology 160 (2003),

no. 3 409–421.

[13] D. Wessels, D. Soll, D. Knecht, W. Loomis, A. D. Lozanne, and J. Spudich,

“Cell motility and chemotaxis in dictyostelium amebae lacking myosin heavy

chain,” Developmental Biology 128 (1988) 168–177.

[14] P. Y. Jay, P. A. Pham, S. A. Wong, and E. L. Elson, “A mechanical function of

myosin II in cell motility,” Journal of Cell Science 108 (1995) 387–393.

[15] M. F. Fournier, R. Sauser, D. Ambrosi, J.-J. Meister, and A. B. Verkhovsky,

“Force transmission in migrating cells,” Journal of Cell Biology 188 (2010),

no. 2 287–297.

93



[16] K. Anderson, Y.-L. Wang, and J. Small, “Coordination of protrusion and

translocation of the keratocyte involves rolling of the cell body,” The Journal of

Cell Biology 134 (1996), no. 5 1209–1218.

[17] J. Viamontes and J. X. Tang, “Continuous isotropic-nematic liquid crystalline

transition of F-actin solutions,” Phys. Rev. E 67 (2003) 040701.

[18] J. Viamontes, P. W. Oakes, and J. X. Tang, “Isotropic to nematic liquid

crystalline phase transition of F-actin varies from continuous to first order,”

Phys. Rev. Lett. 97 (2006) 118103.

[19] D. Mizuno, C. Tardin, C. F. Schmidt, and F. C. MacKintosh, “Nonequilibrium

mechanics of active cytoskeletal networks,” Science 315 (2007) 370–373.
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[24] K. Kruse, J. Joanny, F. Jülicher, J. Prost, and K. Sekimoto, “Generic theory of

active polar gels: a paradigm for cytoskeletal dynamics,” European Physical

Journal E 16 (2005) 5–16.

94



[25] J.-W. Chu and G. A. Voth, “Coarse-grained modeling of the actin filament

derived from atomistic-scale simulations,” Biophysical Journal 90 (2006)

1572–1582.

[26] G. Ayton, A. M. Smondyrev, S. G. Bardenhagen, P. McMurtry, and G. A.

Voth, “Calculating the bulk modulus for a lipid bilayer with nonequilibrium

molecular dynamics simulation,” Biophysical Journal 82 (2002) 1226–1238.
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