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Abstract

This dissertation presents a collection of computational studies of model supercooled and glass-

forming systems. In Chapter 2, we present a family of systematically softened potentials based on

the well-known Lennard-Jones potential, and investigate how perturbations to the repulsive exponent

can affect the thermodynamic and dynamic properties of a system. The softer liquids have markedly

higher entropies and lower Kauzmann temperatures than their Lennard-Jones counterparts, and

remain diffusive down to appreciably lower temperatures. Chapter 3 provides a critical analysis of

the validity of using a relaxation time as a substitute for viscosity when studying Stokes-Einstein

behavior in simulations. For both model atomic (family of softened potentials) and molecular (Lewis

and Wahnström model of ortho-terphenyl) systems, the validity of this substitution, and assumption

of the interchangeability of different relaxations times, are strongly challenged. Chapter 4 contains

a comprehensive study of the viscosity of the SPC/E model of water. We map the anomalous

region for viscosity (decrease of viscosity upon compression) on the (ρ, T ) plane, and extend the

discussion of Chapter 3 by applying a similar analysis to water. We also present two studies of

properties of free-standing films. Films composed of the binary Lennard-Jones glass-forming mixture

(Chapter 5) exhibit substantial compositional inhomogeneity, while films composed of rigid Lewis

and Wahnström ortho-terphenyl molecules (Chapter 6) show oscillatory orientational preferences

induced by the surface. In all cases, diffusivity at the surface is greatly enhanced relative to the

interior. Additionally, we perform an energy landscape analysis of these films, and find that molecules

at the surface are able to sample the underlying energy landscape more effectively than those in the

interior.
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Chapter 1

Introduction

As computer hardware becomes exponentially more powerful[1], computational research has emerged

as an increasingly important tool to study liquid and amorphous states. These computational studies

fall between what is commonly considered theoretical and experimental research. On the one hand,

simulations, when considered as a computational “experiment”, can provide numerical solutions to

large-scale, multi-bodied problems to which no exact analytical solutions exist. On the other hand,

when used as a modeling tool to approximate real experimental data, simulations can provide a

molecular level understanding of the particular laboratory result. Indeed, computational studies

complement both theoretical modeling and experimental observation.

This dissertation presents a collection of computational studies of model supercooled and glass-

forming systems. These studies can be divided into two general categories. The first set, consisting

of three studies (Chapters 2, 3, and 4), explores in depth the bulk thermodynamic and dynamic

properties of a number of model systems of increasing complexity. The second set, consisting of two

studies (Chapters 5 and 6), focus on the properties of free-standing films. In the following sections

of this introductory chapter, we provide the motivations and background for each of these studies.

1.1 Computational Modeling: Tuning an Interaction

The well-known Lennard-Jones potential, given by

φLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (1.1)

1



approximates the interaction between a pair of neutral atoms (Figure 1.1, magenta line). It is char-

acterized by a steep r−12 short range repulsion and gradual r−6 long range attraction. ε corresponds

to the well depth, while σ gives the distance where the potential is zero. When used to model a

given experimental system, the two parameters ε and σ are fitted to reproduce experimental data.

The r−6 long range attractive term in Eq. 1.1 is physically justified as having the same r de-

pendence as the London dispersion forces[2]. However, the r−12 repulsive term, which describes the

short range Pauli repulsions, has no theoretical justification[2]. The exponent of this r−12 term is

chosen primarily for computational efficiency, as r−12 is simply the square of r−6.

Figure 1.1: The family of “softened” potentials used in Chapter 2. The arrows show the effect of
softening.

To date, relatively few investigations have explored systematically the effects of changes in spe-

cific features of the interaction potential upon viscous liquid behavior. Specifically, the effects of

systematically varying the repulsive force have not been studied. Computational studies are ideally

suited to study this type of systematic perturbation of a single variable, as this level of specificity

is generally not possible in experiments. In Chapter 2, we create a family of generalized (n, 6)

potentials (Figure 1.1),

φ = 4ε

[
λ
(σ
r

)n
− α

(σ
r

)6]
, (1.2)

where

λ =
3

2

(
2

n
6

n− 6

)
α =

n

2(n− 6)
. (1.3)

These potentials can be viewed as a perturbation of the standard (12, 6) Lennard-Jones potential.

The repulsive exponent is chosen to range from 7 to 12, and λ and α are chosen such that the well
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depth and location coincide across all exponents. In effect, the potential is “softened” as the exponent

is decreased. For potentials described by Eq. 1.2, n = 7 is the lowest integer value that maintains a

simple power law repulsive term. Although the limit of Eq. 1.2 as n → 6 is well behaved and can be

obtained by L’Hôpital’s rule, the functional form of the repulsive term in this n = 6 case becomes

(σr )
6ln(σr ).

Our constructed potentials thus allow us to tune one particular feature of the molecular interac-

tion, the repulsive exponent, or “softness”, and study the thermodynamic and dynamic properties as

a function of this softness. Over the range of conditions examined, we find only modest dependence

of structure on softness. In contrast, decreasing the repulsive exponent from n = 12 to n = 7 causes

the diffusivity to increase by as much as two orders of magnitude at fixed temperature and density,

and produces mechanically stable packings (inherent structures) with cohesive energies that are, on

average, ca. 1.7 well depths per particle larger than for the corresponding Lennard-Jones (n = 12)

case. The softer liquids have markedly higher entropies and lower Kauzmann temperatures than

their Lennard-Jones (n = 12) counterparts, and they remain diffusive down to appreciably lower

temperatures. We also find that softening leads to a modest increase in fragility.

1.2 The Stokes-Einstein Equation

In 1851, George Gabriel Stokes derived the drag force, Fd, on a small spherical particle of radius a

traveling with velocity v in a viscous fluid of viscosity η[3]:

Fd = −6πηav = −bv. (1.4)

This is now known as Stokes’ law, and b = 6πηa is the drag coefficient of this velocity-dependent

force. Note that while Stokes assumes a no-slip boundary condition at the particle-fluid interface,

for a slip boundary condition, the constant 6π in Eq. 1.4 is simply replaced by 4π[4].

The Einstein relation, first presented by Albert Einstein in his papers on Brownian motion in

1905[5], states that for particles suspended in a fluid,

D = µkBT. (1.5)

Here, D is the diffusion coefficient of the particles, T is the temperature, and kB is Boltzmann’s

constant. µ is the mobility coefficient, defined as the ratio of the drift velocity to an applied force,
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i.e., µ = v/Fd = 1/b.

Thus, for small spherical objects suspended in a viscous fluid, we can combine Stokes’ Law

(Eq. 1.4) and the Einstein relation (Eq. 1.5), and obtain the well-known Stokes-Einstein equation,

D =
kBT

6πηa
. (1.6)

It is important to note that this original derivation describes two interacting components: D and a

are properties of the spherical objects in suspension, while T and η are properties of the surrounding

fluid.

However, for a uniform fluid, a molecular version of Eq. 1.6, where D now represents the self-

diffusion coefficient, and a taken to be an effective hydrodynamic radius, has been found experimen-

tally to be valid over a wide range of temperatures for many liquids[6–13]. Thus, for a given liquid,

we can define a quantity, Dη/T , whose constancy, or lack thereof, over a range of thermodynamic

conditions, serves as a measure of the validity of the Stokes-Einstein equation at the molecular level.

One then says that the Stokes-Einstein equation is valid when

Dη

T
= constant, (1.7)

and any deviations away from Eq. 1.7 would indicate a Stokes-Einstein violation.

Computational studies offer us a particularly useful method to study Stokes-Einstein behavior. In

a molecular dynamics simulation, with the ability to track the trajectory of each individual molecule

throughout the duration of simulation, the self-diffusion coefficient, D, can be easily calculated by

the Einstein diffusion equation,

D =
1

6
lim
t→∞

d

dt

〈
∆r(t)2

〉
, (1.8)

where
〈
∆r(t)2

〉
is the mean squared displacement of the molecules after an interval of time t.

The viscosity, η, can also be computed in a straightforward manner by using a Green-Kubo time-

correlation relation[14]:

η =
V

kBT

∫ ∞

0

dt 〈Pxy(0)Pxy(t)〉 , (1.9)

where Pxy is an off-diagonal element of the stress tensor and V is the volume of the system.

Unfortunately, calculating the viscosity by using Eq. 1.9 can be a computationally intensive

process[15]. For a given system, as the temperature is lowered, the time needed for the stress

correlation product 〈Pxy(0)Pxy(t)〉 to decay to zero can increase by many orders of magnitude. Thus,
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when compared to the simulation time needed for calculating structural properties or diffusion, a

much longer simulation is needed to obtain viscosity.

For efficiency, it has become increasingly common in computational studies to reinterpret the

physical meaning of the Stokes-Einstein relation simply as the product of a diffusion coefficient and

a relaxation time, which is commonly obtained from the self-intermediate scattering function. This

assumes that relaxation time can be related to the viscosity by a simple proportionality. However,

the functional form of this proportionality varies across different studies; the two most often used

are τ ∝ η[16–18] and τ ∝ η/T [19–23]. Furthermore, when we examine the derivations for these

proportionalities, it becomes clear that they refer to two different relaxation times: one is a structural

relaxation time, while the other is a stress relaxation time.

The validity of using a relaxation time to study Stokes-Einstein behavior has not been throughly

addressed. Additionally, it is commonly assumed in the simulation literature that the structural

and stress relaxation times are interchangeable; the validity of this assumption has also not been

systematically tested. Chapter 3 provides a systematic study of the distinctions between the true

Stokes-Einstein equation, where viscosity is used, and the “proxy” Stokes-Einstein equations, where

a relaxation time is used instead, and also investigates the validity of the assumption of interchange-

ability between structural and stress relaxation times. The model systems used in Chapter 3 are

the family of atomic systems, developed and first analyzed in Chapter 2, and a molecular system

composed of Lewis and Wahnström ortho-terphenyl molecules[24–26]. This greatly simplified model

of ortho-terphenyl is essentially a rigid triangle: each of the three phenyl rings is represented by a

Lennard-Jones site, and the three sites are constrained by rigid bonds. In Chapter 4, we also apply a

similar analysis of the Stokes-Einstein variants to a system composed of SPC/E water molecules[27].

1.3 Anomalies of Water

Although water is the most common liquid found on Earth, it is also one of the most unique,

and exhibits a number of anomalous properties. These include, at atmospheric pressure, a density

maximum at 277 K, an isobaric heat capacity minimum at 308 K, and an isothermal compressibility

minimum at 319 K[28]. These anomalous properties may have been essential to the development

and sustainment of life on Earth, as a density maximum just above the freezing temperature results

in a stable environment for life forms at the bottom of lakes and oceans.

Water also exhibits a number of kinetic anomalies that have been observed experimentally. One

of these, which will be studied in depth computationally in Chapter 4, is that the viscosity of water,
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(a) (b)

Figure 1.2: Experimental data showing anomalous kinetic properties of water, where at low enough
temperatures, viscosity decreases (a) and diffusion increases (b) upon compression. (a) is reproduced
from ref. 29, and (b) from ref. 30. The unit of measurement of the y-axis in panel (b) is m2/s.

at sufficiently cold temperatures, decreases upon compression (Figure 1.2a)[29]. Meanwhile, the

self-diffusivity of water increases upon compression at low enough temperatures (Figure 1.2b)[30].

For both viscosity and diffusivity, the anomalous increase in mobility upon compression is explained

by the distortion of the hydrogen bond network[28].

One of the most influential computational studies of the anomalies of water was presented in 2001

by Errington and Debenedetti[31]. That study, which used the SPC/E model of water[27], mapped

on a (ρ, T ) diagram the regions of structural, kinetic (diffusivity), and thermodynamic anomalous be-

havior. Structural anomalies, where order decreases upon compression, is observed over the broadest

ranges of temperature and densities. The region of diffusivity anomalies, where the diffusion coeffi-

cient increases upon compression, is completely contained within the region of structural anomalies.

Thermodynamic anomalies, where density decreases upon cooling, occur entirely within the region

of diffusivity anomalies. These regions constitute a cascade based on increasing structural order

(Figure 1.3a).

Furthermore, within the structurally anomalous region, the orientational and translational order

are strongly coupled (Figure 1.3b). Orientational order is defined here as the orientational correlation

of a water molecule with its nearest neighbors, while translational order refers to the center-of-mass

positional correlation between water molecules. These results further show that the anomalies of

water arise from its unique hydrogen bond structure.

While there have been a number of computational studies on water viscosity, to date, the ma-
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(a) (b)

Figure 1.3: Two main results of the computational study by Errington and Debenedetti on the
anomalies of water. (a) The region of anomalies constitutes a cascade; the region of thermodynamic
anomalies (squares) is contained within the region of kinetic anomalies (circles and diamonds), which
is then contained inside the region of structural anomalies (upward and downward triangles). (b)
Within the structurally anomalous region, the orientational and translational order are strongly
coupled. The inset shows five isotherms in order-parameter space that span the density range 0.85
to 1.3 g/cm3 (0.8 to 1.3 g/cm3 at 400 K), while the data points in the main panel correspond to the
subset of thermodynamic states inside the structurally anomalous region. All state points with the
structurally anomalous region map onto a single curve. Both figures reproduced from ref. 31.

jority of these only use a limited set of state points. These studies focus on comparisons, between

different water models[32–38] or computational methods[39, 40], investigate the effect of different

concentration levels of a solute in aqueous solution[41], or study the effects of confinement[42]. In

Chapter 4, we instead provide a detailed investigation of the viscosity behavior of SPC/E water

across a wide range of temperatures and densities. We then map the region of viscosity anomalous

behavior, using a similar approach as the one used in the study by Errington and Debenedetti[31].

The SPC/E (extended simple point charge) model is a rigid 3-site water model. This model has

an O-H bond length of 1 Å, and an H-O-H bond angle of 109.47◦. The oxygen atom is assigned a

point charge of qO = −0.8476e, where is e is the magnitude of the electron charge, and the hydrogen

atoms are assigned charges of qH = −qO/2. Different water molecules also interact via Lennard-

Jones sites situated on the oxygen atoms, parameterized by σ = 3.166 Å and ε = 0.650 kJ/mol.

For this model, we provide a comprehensive analysis of viscosity over a wide range of thermo-

dynamic conditions. In agreement with experiment, we observe anomalous behavior at low enough

temperatures, where viscosity decreases upon compression. This results in another related anomaly:

if the viscosity data values along each isochore are fitted to the Vogel-Fulcher-Tammann (VFT)
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equation, the asymptotic VTF T0 values can decrease upon compression over a density range. When

mapped onto a (ρ, T ) plane, the region of the viscosity anomaly is comparable to that of diffusivity.

A comprehensive viscosity data set also allows us to study the Stokes-Einstein behavior of SPC/E

water. We observe here another anomaly, where the onset of the low temperature Stoke-Einstein

violation can decrease upon compression. This also provides us with an additional model system

to study the different Stokes-Einstein variants described in Chapter 3. Using the analysis method

developed in Chapter 3, we test the validity of using relaxation time to study Stokes-Einstein be-

havior in SPC/E water, and also continue the discussion of the relationship between the structural

and stress relaxation times.

1.4 Films and Interfaces

Ediger and co-workers recently discovered that glass films with exceptional kinetic and thermody-

namic stability can be formed by vapor deposition[43–51]. These films are created by using a slow

vapor deposition rate onto a substrate. They found that the stability of the resulting glass film

is highly dependent on the temperature of the substrate, with an optimal temperature of about

0.85Tg, where Tg is the glass transition temperature of the substance being deposited. Compared to

ordinary glass of the same material formed by quenching, these vapor deposited films have higher

density, lower enthalpy, and a higher glass transition temperature (Figure 1.4). These films also

exhibit enhanced mobility at the free surface[52, 53] and anisotropic molecular packing[54, 55].

The underlying mechanism causing the enhanced kinetic stability is being actively researched[56–

62]. Recently, the de Pablo research group has performed a number of studies that seek to computa-

tionally replicate the process of vapor deposition[60–62]. These simulations mimic the experimental

process by gradually adding molecules to the free interface of a growing film. While some of these in-

vestigations use a simple binary Lennard-Jones mixture[60, 61], a more realistic model, an atomistic

molecular model of trehalose, has also been studied[62]. Consistent with experiment, these studies

predict the formation of stable glasses having a higher density, a lower enthalpy, and a higher onset

temperature when compared to the corresponding ordinary glass formed by quenching.

In our studies of free-standing films in Chapters 5 and 6, we complement these explicit investi-

gations of the Ediger effect by instead focusing on effects inherent to the presence of an interface.

These chapters provide two computational studies of free-standing films. The films studied in Chap-

ter 5 are composed of binary Lennard-Jones atoms, while the films of Chapter 6 consist of Lewis and

Wahnström ortho-terphenyl molecules. We study the structural and configurational preferences of
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(a) (b)

(c)

Figure 1.4: Vapor-deposited glasses showing higher glass transition temperature (a), lower enthalpy
(b), and enhanced density (c). All three figures report data obtained from vapor deposition of the
glass former 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene (TNB). Panel (b) additionally shows the
enthalpy comparison for indomethacin (IMC). All figures reprinted from ref. 43.

atoms and molecules as a function of film depth, while also comparing the diffusivity at the surface

against in the interior.

For these free standing films, the film’s interior density and interface width depend solely on

temperature, and not the initialization method or the total number of atoms or molecules. For films

composed of a binary Lennard-Jones mixture, species segregation occurs at equilibrium, with the

smaller minority component preferentially excluded from the surface. For films composed of Lewis

and Wahnström ortho-terphenyl molecules, we find that the surface biases the orientation of the

molecules, and the resulting configurational ordering extends well below the interface to a distance

roughly equal to 1.5 times the thickness of the interfacial region. In all cases, diffusivity at the
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surface is greatly enhanced relative to the interior. Additionally, we perform an energy landscape

analysis of these thin films, and find that molecules at the surface are able to sample the underlying

energy landscape more effectively than those in the interior.

1.5 Publications of Research Results

The following chapters of this dissertation are based in full or in part on the following publications:

• Z. Shi, P. G. Debenedetti and F. H. Stillinger, “Properties of Model Atomic Free-Standing

Thin Films”. J. Chem. Phys. 134, 114524 (2011).

• Z. Shi, P. G. Debenedetti, F. H. Stillinger and P. Ginart, “Structure, Dynamics, and Ther-

modynamics of a Family of Potentials with Tunable Softness”. J. Chem. Phys. 135, 084513

(2011).

• Z. Shi, P. G. Debenedetti and F. H. Stillinger, “Relaxation Processes in Liquids: Variations

on a Theme by Stokes and Einstein”. J. Chem. Phys. 138, 12A526 (2013).

• Z. Shi, P. G. Debenedetti and F. H. Stillinger, “Interface Induced Processes: A Study of Free

Standing Films Composed of Rigid Molecules”. In Preparation (2014).

• Z. Shi, V. Hwang and P. G. Debenedetti, “Anomalies of Water: Viscosity and Stokes-Einstein

Violation”. In Preparation (2014).

The study presented in Chapter 4,“Anomalies of Water: Viscosity and Stokes-Einstein Viola-

tion”, is the result of a collaboration between Pablo Debenedetti (PGD), Victoria Hwang (VH),

and myself (ZS). The results of this study were also presented in VH’s Princeton University Senior

Thesis, “Viscosity Anomalies and Violations of the Stokes-Einstein Equation in Molecular Simula-

tions of Water” (2013). For this study, PGD is the principal investigator and corresponding author

of the resulting journal article. ZS developed all codes and scripts used to perform the molecular

dynamics simulations and subsequent post-processing trajectory analysis. The execution of these

codes and scripts were performed by both ZS and VH. Most procedures associated with creating

graphs, including plotting of the data points, curve fitting, analytical analysis of the fitted curves,

and error bar analysis, were performed by VH, under the guidance of both PGD and ZS.
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Chapter 2

Structure, Dynamics, and

Thermodynamics of a Family of

Potentials with Tunable Softness

2.1 Introduction

Understanding the microscopic origin of the pronounced temperature dependence of structural re-

laxation in supercooled liquids, and the laboratory glass transition to which this behavior gives rise,

is a major open question in condensed matter physics (see, e.g., refs. 1–16). An important aspect

of this question is elucidating how specific features of molecular interactions, such as attractive and

repulsive forces, influence the rich variety of phenomena associated with the glass transition[17].

Computer simulations are ideally suited to the pursuit of this question because they allow interac-

tions between particles to be varied in a systematic manner, thereby enabling the investigation of

the effects of changes in individual variables to be conducted with a level of specificity not generally

possible in experiments.

To date, relatively few investigations have explored systematically the effects of changes in the

interaction potential upon viscous liquid behavior. Bordat et al.[18, 19] investigated the dynamics

of three different binary mixtures: the Kob-Andersen Lennard-Jones mixture[20] (80%A, 20%B,

εAA = 1.0, εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, and σAB = 0.8), and two variants

thereof in which the AA interaction potential had repulsive and attractive exponents of (8, 5) and

15



(12, 11), respectively, while the well depth and its location remained fixed. The anharmonicity of

the pairwise interaction energy is largest for the (8, 5) case and smallest for the (12, 11) model, with

the Kob-Andersen mixture falling in between. These authors found a positive correlation between

fragility[21], a measure of the sensitivity of the structural relaxation time to changes in temperature,

and the anharmonicity of the interaction potential. Berthier and Tarjus[17, 22] investigated the effect

of attractive forces in viscous liquids by comparing the structure and dynamics of the Kob-Andersen

binary Lennard-Jones mixture to those of the corresponding Weeks-Chandler-Andersen[23] (WCA)

purely repulsive mixture, which lacks the attractive tail. These authors found that at liquid-like

densities and at temperatures characteristic of viscous liquid behavior, the dynamics is strongly

influenced by attractive forces. De Michele et al. investigated the scaling of the dynamics of soft

spheres upon varying the repulsive exponent, and found that the temperature dependence of the

diffusivity collapses onto a universal curve upon rescaling the temperature[24]. It has recently been

shown experimentally that colloidal particles exhibit decreasing fragility with increasing softness[25],

in apparent contradiction with the computational studies of Bordat et al. Krekelberg et al.[26] in-

vestigated the effects of short-range attractions on fluid structure and dynamics by comparing the

properties of the hard-sphere and square-well systems. Pond et al.[27] compared the applicability

of the generalized entropy-scaling approach[28, 29] for estimating transport properties in several

repulsive models (soft-sphere, Gaussian[30], Hertzian[31]). In addition to the above-mentioned stud-

ies, in which explicit perturbations of interparticle interactions were investigated, it should also be

mentioned that the accepted liquid-state picture whereby repulsive forces play a dominant role in

determining structure, with attractive forces providing a uniform cohesive background[23] underlies

important recent work on viscous liquids. This includes the successful temperature and density

scaling of supercooled liquid dynamics (e.g., refs. 32–36), and a promising picture of liquid-state

regularities based on the notion of strong pressure-energy correlations (e.g., refs. 37–41).

It appears useful, in light of the above-cited work, to formulate models in which specific aspects

of interparticle interactions can be perturbed systematically, and to investigate the consequences

of such perturbations on structure, dynamics, and thermodynamics, with emphasis on supercooled

states. This is the task that we undertake in this chapter. Specifically, we construct a family

of generalized Lennard-Jones binary mixtures with tunable softness, fixed well depth, and fixed

well location. We investigate computationally a broad spectrum of thermodynamic and dynamic

properties as a function of softness. In Section 2.2 we define the model and provide details of the

computational methods utilized in our investigation. The thermodynamic properties of the family

of mixtures are presented and discussed in Section 2.3, and the corresponding analysis for dynamic
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properties is the subject of Section 2.4. The principal conclusions and suggestions for further inquiry

are presented in Section 2.5.

2.2 Methods

2.2.1 Definition of Potentials

Starting from the well-known (12, 6) Lennard-Jones (LJ) potential,

φLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2.1)

we define, for a given repulsive exponent n, a generalized (n, 6) potential with the following functional

form:

φ = 4ε

[
λ
(σ
r

)n
− α

(σ
r

)6]
, (2.2)

where

λ =
3

2

(
2

n
6

n− 6

)
α =

n

2(n− 6)
. (2.3)

λ and α are chosen such that the well depth and location of the minimum of the generalized (n, 6)

potentials coincide with the minimum of the standard (12, 6) LJ potential (Figure 2.1). The second

and third derivatives of φ with respect to r, evaluated at r = 21/6σ, where φ′(r) = 0, are given by

σ2φ′′/ε = 22/3 · 3n, (2.4)

σ3φ′′′/ε = −21/2 · 3n(n+ 9). (2.5)

Thus, we have a family of potentials of varying softness, with the repulsive exponent n as the

tuning parameter, with all members of the family sharing identical characteristic energy and length.

It is important to point out that the constraints of invariant energy and length scales (well depth,

well depth location) give rise to progressively stronger attractive energies (more negative attractive

tails) for r > 21/6σ upon decreasing n (see Figure 2.1). Such constrained softening will be shown to

have a pronounced effect, particularly on the energy of the liquid and its inherent structures[42].

In this study, we consider the family of potentials defined by Eq. 2.2, with n = 7, 8, 9, 10, 11, 12.

Ahmed and Sadus[43] investigated solid-liquid equilibria in a family of potentials closely related to

those used in this work. Several authors have investigated vapor-liquid coexistence in (n, 6) or (n,m)

potentials[44–47]. The usefulness of such models in coarse-graining applications has also received
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Figure 2.1: The family of potentials used in this chapter. The arrows show the effect of softening.

attention[47, 48].

2.2.2 Simulation Details

For each interaction potential, we study the well-known binary glass-forming mixture as parame-

terized by Kob and Andersen[20], namely, a mixture of 80%A particles and 20%B particles, with

parameters εAA = 1.0, εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, and σAB = 0.8. Both types

of particles have the same mass, m. Thoughout this paper, all quantities are expressed in reduced

units: length in units of σAA, temperature in units of εAA/kB, where kB is Boltzmann’s constant,

and time in units of σAA(m/εAA)
1/2. In order to ensure continuity of the potential and its first

derivative at the potential cutoff (continuity needed for energy minimization calculations), we apply

a shifted force correction to the potentials:

φsf (r) =

⎧⎪⎪⎨
⎪⎪⎩
φ(r) − φ(rc)− (r − rc)φ

′(rc) r ≤ rc

0 r > rc

, (2.6)

where φ(r) is the pair potential. To minimize the effects of the shift on the shape of the various

potentials, we choose a rather large cutoff, rc = 3.5. Our computational cell consists of 500 particles

in a box of volume V = (7.368)3, corresponding to a reduced density of ρ = 1.25. Periodic boundary

conditions are applied in all directions. The velocity Verlet algorithm of numerical integration is

used, and the molecular dynamics time step is 0.002. The system is initialized as an fcc lattice,

where the identity of a particle is selected at random, while maintaining the overall 4 : 1 ratio of
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A to B particles, and is then melted at a high temperature of T = 5.0. It is then cooled to the

desired temperature, and equilibrated for 2.5×105 time steps. A coordinate snapshot is taken every

5000 time steps thereafter. The simulations are run at fixed particle number, total volume, and

temperature (N, V, T ), with a Nosé-Hoover thermostat[49].

To study the underlying inherent structures[42] embedded in the system’s multidimensional en-

ergy landscape[1], we perform energy minimization on each coordinate snapshot by applying the

Fletcher and Reeves[50] method of conjugate gradients. The particles in the system are moved iter-

atively along the gradient of the potential energy landscape until U(rN ), the potential energy as a

function of the system’s 3N translational degrees of freedom, is at a local minimum. The criterion

for convergence is satisfied when successive iterations reduce the energy per particle by less than

10−7.

Figure 2.2: Sastry curves showing the dependence of inherent structure pressure upon density. Each
point is the average of 100 energy minimizations at constant volume, starting from equilibrated liquid
configurations at T = 1.0. Note the progressive destabilization of inherent structures upon softening,
such that for n = 7, inherent structures with ρ ≤ 1.2 are fractured and spatially inhomogeneous.

The simulation density of 1.25 is slightly higher than used in earlier studies of the same 80-20

Kob and Andersen system interacting via the standard (12, 6) LJ potential[51]. It was found that

at a density of 1.2, a system interacting via the n = 7 potential cavitates upon isochoric energy

minimization, creating fractures in the inherent structure configurations. The reason for this is

apparent when we examine the so-called Sastry curves[52] for this family of potentials (i.e., the

relationship between inherent structure pressure and density, also called the equation of state of the

energy landscape[53])(Figure 2.2). The Sastry density, which corresponds to the minimum pressure

along the curve, is the limit of mechanical stability of the inherent structures[54]. Below the Sastry
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density, fractures form in the inherent structure because the system cannot simultaneously satisfy

mechanical stability and spatial homogeneity. Thus, as the interaction potential is softened, the

inherent structures become mechanically unstable at progressively higher densities. We thus choose

a density of 1.25 to ensure that the inherent structures are fracture-free for all values of the repulsive

exponent used in this work.

2.3 Results and Discussion: Thermodynamic and Structural

Properties

2.3.1 Radial Distribution

For each of the six repulsive exponents considered, we calculate the three radial distribution func-

tions, gAA(r), gAB(r), and gBB(r), for both liquid and inherent structure configurations. Represen-

tative results for gAA(r), gAB(r), and gBB(r) of the liquid configurations, equilibrated at T = 1.2,

are shown in the top row of Figure 2.3, for exponents n = 7, 9, 12, and the corresponding inherent

structure radial distribution functions are shown in the bottom row of Figure 2.3. It can be seen that

radial distribution functions are very similar for the three exponents; the inherent structure curves

are nearly identical, while the corresponding liquid configuration curves obtained before minimiza-

tion exhibit only a modest dependence on n. Qualitatively similar results are obtained across the

range of temperatures explored in this work (0.3 ≤ T ≤ 2.0). Thus, across the range of conditions

investigated in this work, the softening of the interaction potential and the resulting increase in

attractive energies beyond the potential minimum have only a modest effect on liquid structure,

and a negligible effect on the corresponding inherent structures. This is in contrast with several

transport and thermodynamic properties reported in the following sections.

2.3.2 Energy

Figure 2.4 shows the equilibrium potential energy as a function of temperature for n = 7, . . . , 12. The

marked decrease in energy upon softening is in sharp contrast with the corresponding insensitivity

of structure (compare Figures 2.3 and 2.4). Although surprising at first given that the family

of potentials has fixed well depth by construction, the behavior shown in Figure 2.4 is a direct

consequence of the progressively stronger attractions upon decreasing n (see Figure 2.1).

The same pronounced energetic stabilization upon softening of the potential (and the consequent

increase in attractive energies beyond the potential energy minimum) can also be seen in the inherent
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Figure 2.3: The AA, AB, and BB Radial distribution functions for both liquid configurations (top
row) and inherent structures (bottom row) at ρ = 1.25, for three values of the repulsive exponent.
The liquid configurations are equilibrated at T = 1.2; the inherent structures are obtained from the
corresponding equilibrated liquids at T = 1.2.
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Figure 2.4: Configurational energies per particle, for the equilibrated liquids at ρ = 1.25.

structures, as shown in Figure 2.5, where each point is the average of 2000 minimizations. Note that

the lowest attainable mean inherent structure energy per particle decreases from −8.28 (n = 12)

to −9.93 (n = 7). It is clear that the increase in attractive energies caused by softening allows the

system to sample deeper basins in its energy landscape. In addition, the onset temperature, below

which the depth of sampled inherent structures depends sensitively on the temperature at which

the liquid is equilibrated prior to minimization, decreases upon softening. Thus, our constrained

softening, which preserves the characteristic energy and length scales and thereby gives rise to

enhanced attractions at separations exceeding the potential energy minimum, allows the system

to more effectively sample its underlying energy landscape at fixed temperature. Equivalently, it

enables the extension of liquid-like behavior to progressively lower temperatures. Indeed, a low

temperature for n = 12 (e.g., T = 0.55; see Figure 2.5) still corresponds to a high temperature for

n = 7.

2.3.3 Entropy

We calculate the entropy associated with sampling different basins in the underlying energy land-

scape[1], commonly referred to as configurational entropy, Sconf , in the literature on supercooled

liquids[55, 56]. Following the methodology of Sciortino and co-workers, we approximate this quantity

as the difference between the entropy of the equilibrium liquid, Sliq, and the harmonic entropy of a

disordered solid, Ssol. The later is obtained from the eigenfrequency spectrum of inherent structures

generated from the equilibrium liquid at the given T and ρ.

The liquid entropy is calculated by thermodynamic integration. We begin with an ideal gas
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Figure 2.5: Mean inherent structure energies as a function of the temperature prior to energy
minimization, at ρ = 1.25, for the various potentials investigated in this work.
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reference point (T = 5.0, ρ = 0.01), where the entropy is known, and integrate along the T = 5.0

isotherm to the density studied, ρ = 1.25 using the thermodynamic identity

S(T, ρ) = Sideal gas(T, ρ) +
U(T, ρ)

T
+

∫ N/ρ

∞

PexdV
′

T
, (2.7)

where U is the potential energy and Pex is the excess pressure over the ideal-gas value at the same

temperature and density. For a binary ideal gas mixture,

Sideal gas(T, ρ)

NkB
= −NA

N
ln

(
NA

N

)
− NB

N
ln

(
NB

N

)
+

3

2
ln

(
mV 2/3

βh̄22π

)
− lnN +

5

2
, (2.8)

where NA and NB are the number of A and B particles respectively, N = NA+NB, V is the volume,

and β = 1/kBT . The last integral in Eq. 2.7 is evaluated numerically (Pex is calculated at discrete

steps of the density ρ from 0.01 to 1.25 in steps of 0.01).

Once we have S(T = 5.0, ρ = 1.25), we can then integrate along the isochoric path ρ = 1.25 to

any temperature T :

Sliq(T, ρ = 1.25) = S(T = 5.0, ρ = 1.25) +

∫ T

T=5.0

CV (T
′)

T ′ dT ′, (2.9)

where CV (T ) =
(

∂U(T )
∂T

)
ρ
+ 3

2NkB. For all the interaction potentials considered, we find that U(T )

obeys Rosenfeld-Tarazona scaling[57], U ∼ T 3/5 (Figure 2.6). This allows us to compute the integral

in Eq. 2.9 analytically and provides a reliable extrapolation below the temperatures studied.

Figure 2.6: Configurational energies of the equilibrated liquids plotted as a function of T 3/5. Lines
are linear fits to the data, showing precise agreement with Rosenfeld-Tarazona scaling, U ∼ T 3/5.

24



The entropy of the disordered solid, Ssol is computed by a normal mode analysis performed on

the underlying inherent structures by applying the harmonic approximation:

Ssol(T, V ) =

3N−3∑
j=1

[1− ln(βh̄ωj)] , (2.10)

where ωj is the eigenfrequency of the jth normal mode. For each exponent n and temperature T ,

ωj was calculated by evaluating the eigenvalues of the Hessian Matrix for 2000 inherent structure

configurations.
∑

ln ωj was then averaged over all configurations and used in Eq. 2.10 to calculate

the solid entropy in the thermodynamic limit. We find that when the explicit T dependence is

subtracted from Ssol, the resulting difference Ssol − ln T shows a weak T dependence and can

be fitted to a simple quadratic function[56]. This fit allows us to also extrapolate Ssol to lower

temperatures than those studied. To check the validity of the harmonic approximation applied here,

we evaluate u(T )−eIS(T )− 3
2kBT for each of our potentials (Figure 2.7). This quantity vanishes for

a harmonic system. It can be seen that in the range of temperatures for which entropy calculations

were performed (see Figure 2.8), deviations from harmonic behavior are quite minor.

Figure 2.7: Deviation of the difference between the average equilibrium configurational energy u(T )
and the average inherent structure energy, eIS(T ), from the corresponding quantity for a purely
harmonic system, 3

2kBT .

Figure 2.8 shows sconf = sliq − ssol as a function of temperature T , where s = S/N . We see

that softening (lowering n) results in an appreciable increase in configurational entropy for a given

temperature. We also see a significant and systematic lowering of the Kauzmann temperature, TK ,

defined by the condition[58] sconf(TK) = 0, as the softness of the interaction potential is increased.

Furthermore, Figure 2.9 shows that the increase in configurational entropy upon softening is not
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Figure 2.8: Configurational entropies per particle as a function of temperature, at ρ = 1.25, for the
various potentials investigated in this work. The inset shows the dependence of the temperature
where sconf = 0, upon the repulsive exponent.

simply a result of a lower Kauzmann temperature; when plotted as a function of T/TK, sconf

increases more rapidly with the scaled temperature as the potential is softened. This shows that

softening of the interaction potential results in an increase in the number of basins that the system

samples, illustrating the fact that a modest change in the interaction potential has a pronounced

effect on the system’s low-temperature thermodynamics.

Figure 2.9: Configurational entropies as a function of scaled temperature, at ρ = 1.25. The increase
in configurational entropy upon softening is evident.
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2.4 Results and Discussion: Dynamic Properties

2.4.1 Diffusion

For each repulsive exponent n, we calculate the diffusion coefficient using the standard Einstein

equation:

D =
1

6
lim
t→∞

d

dt

〈
∆r(t)2

〉
, (2.11)

where D is the diffusion coefficient, and
〈
∆r(t)2

〉
is the mean squared displacement of the particles

after an interval of time t. Figure 2.10 shows the diffusion coefficient of the A particles for the

various potentials, as a function of temperature. While we report here the diffusion results for A

particles, we note that the diffusion properties of B particles are qualitatively similar. It can be

seen that softening causes a pronounced increase in the diffusion coefficient, resulting in particles

interacting via softer potentials to remain diffusive down to appreciably lower temperatures. The

inset to Figure 2.10 shows the temperature at which D = 10−4, as a function of n (the line though

the D vs. T data is a simple logarithmic fit). Note that this characteristic temperature, like TK

(Figure 2.8 inset), decreases by a factor of 2 upon decreasing n from 12 to 7.

Figure 2.10: Diffusion coefficients of A particles at ρ = 1.25, as a function of temperature, for the
various potentials studied in this work. Lines are fits of the form logD = log(AT + B). The inset
shows the dependence of T0, such that D(T0) = 10−4, upon the repulsive exponent.

2.4.2 Self-Intermediate Scattering Function

To further quantitatively describe the dynamics of the systems under consideration, we compute the

self-intermediate scattering function Fs(k, t) = 〈exp[ik ·∆r(t)]〉, where ∆r(t) is the displacement
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experienced by a particle in time t. This quantity, evaluated for A particles, is shown in Figure 2.11.

The trajectory of the system was recorded for 1.5 × 107 times steps, with new time origins chosen

every 1000 time steps, to provide independent “experiments” over which to average. The wave

vector chosen is k = 7.28σ−1
AA, which is close to the first peak of the static structure factor. We shift

the time origin to t0 = 2.0 to eliminate the Gaussian time dependence at short t, and normalize

Fs(k, t) to the value at t0. We now define a relaxation time τ such that the shifted and normalized

self-intermediate scattering function equals 1/e.

Figure 2.11: Shifted and normalized self-intermediate scattering function for A particles, evaluated
at ρ = 1.25 and k = 7.28σ−1

AA, with t0 = 2.0. The curves shown correspond to n = 12.

Figure 2.12 shows the characteristic relaxation times as a function of temperature for the family

of interaction potentials considered in this study. The solid lines are fits to the data using the

Vogel-Tammann-Fulcher (VTF) equation,

ln

(
τ

τ0

)
=

B

T − TV TF
, (2.12)

where TV TF is the VTF singular temperature, τ0 is the high-temperature limit of τ , and kBB is a

characteristic energy (τ0, TV TF , and B were used as fitting parameters). For each exponent, the τ0

obtained from fitting is of order 1. The VTF equation is used here simply as a fitting procedure,

in order to extract the characteristic temperature where τ = 104 (dashed line in figure 2.12). This,

as well as T0 (Figure 2.10) and TK (Figure 2.8) is used to investigate the dependence of fragility on

the repulsive exponent n (see below). In general, for all of the repulsive exponents considered, the

fit of the data to the VTF equation is quite good.

Figure 2.13 shows a linear relationship between the logarithm of the characteristic relaxation time,

28



Figure 2.12: Temperature dependence of the structural relaxation times at ρ = 1.25, obtained from
the self-intermediate scattering function (Figure 2.11), using the condition Fs(k, t− t0)/Fs(k, t0) =
e−1. The lines are VTF fits (see text).

τ , and the inverse of the configurational entropy multiplied by temperature, 1/Tsconf , calculated in

the previous section. Thus, our systems behave in a manner that is consistent with the Adam-Gibbs

equation[59]:

τ(T ) = A exp

(
B

Tsconf(T )

)
, (2.13)

where A and B are constants. This correspondence between dynamics and thermodynamics suggests

that relaxation is influenced by the topography of the energy landscape[51].

2.4.3 Fragility

We now examine the effect of softening on the fragility of the family of glass formers. From the

previous section, we have two measures of relaxation rates for each repulsive interaction exponent:

the inverse of the diffusion coefficient, 1/D, and the characteristic time τ where Fs(k, τ) = 1/e.

These measures can be used to produce the Angell plot[1, 21], in order to compare the fragility of

the systems under differing interaction potentials. For inverse diffusion, we choose the characteristic

temperature, TD
0 , to be such that D(TD

0 ) = 10−4 (Figure 2.10). For the characteristic time based

on the self-intermediate scattering function (SISF), we investigate two characteristic temperatures:

T SISF
0 , such that τ(T SISF

0 ) = 104, and TK .

Figures 2.14–2.16 are the resulting Angell plots. Figure 2.14 shows a clear collapse of all the

curves, indicating no effect of softening on fragility when diffusivity is used as a measure of relaxation

rate. It remains to be seen whether this trend persists when longer simulations at lower temperatures
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Figure 2.13: Relationship between structural relaxation time obtained from the self-intermediate
scattering function, and the configurational entropy. Linear fits to the data show good agreement
with the Adam-Gibbs expression, Eq. 2.13.

are used. A modest increase in fragility upon softening can be seen from Figure 2.15 if τ is used as a

relaxation measure. Use of TK as the characteristic temperature accentuates this trend (Figure 2.16),

although the effect is not large. It should be noted though, that whereas in Figures 2.14 and 2.15

the attainable range of T0/T is close to 1, the lowest scaled temperature attained in Figure 2.16 is

0.65.

Figures 2.14–2.16 thus illustrate not only a modest dependence of fragility upon constrained soft-

ening, but, more broadly, they point to a challenge inherent in calculating fragility computationally.

This arises because, at the temperatures that can be sampled in MD simulations, the system is con-

siderably farther away from structural arrest than in the corresponding experimental determination

of fragilities.

2.5 Conclusions

In this chapter we have investigated numerically the structural, thermodynamic and dynamic prop-

erties of a family of potentials of variable softness, and fixed well depth and well depth location. In

order to explore the low-temperature non-crystalline behavior we considered, for each value of the

repulsive exponent, a Kob-Andersen glass-forming binary mixture[20]. Simulations were conducted

at a single density, chosen to be high enough to prevent cavitation even for the softer version of the

potential investigated here.

Liquid structure, as described by the pair correlation functions, is only moderately sensitive
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Figure 2.14: Fragility plot using diffusion as a relaxation rate measure, at ρ = 1.25. The diffusion
coefficients are for A particles (Figure 2.10), and T0 is chosen such that D(T0) = 10−4.

to constrained variations in softness, and inherent structures are remarkably insensitive to such a

perturbation. In sharp contrast, both dynamics and thermodynamics exhibit marked sensitivity to

softness. Upon decreasing the repulsive exponent from 12 to 7, the translational diffusion coefficient

increases by as much as two orders of magnitude, and liquids interacting via softer potentials remain

diffusive down to appreciably lower temperatures. The average configurational energy per particle is

larger in magnitude for the softer (n = 7) equilibrium liquid mixture than for the Lennard-Jones (n =

12) counterpart by more than two full well depths, reflecting the progressively stronger attractions

that ensue upon constrained softening, while satisfying the fixed well depth and location constraints

(Figure 2.1). Accordingly, the average inherent structure energies are appreciably more negative

for the softer mixtures. The lowest-energy mechanically stable packings (inherent structures) that

we were able to form, corresponding to the softer extreme considered here (n = 7), possess on

average an additional cohesive energy of roughly 1.7 well depths per particle relative to their n = 12

counterparts (Figure 2.5). This is a consequence of the stronger attractive energies (more negative

attractive tails) at separations greater than the well depth that arise as a result of softening.

Progressive softening also results in an increase in entropy, a decrease in the Kauzmann temper-

ature, and a marked extension towards lower temperatures of the conditions at which equilibrium

liquid behavior can be observed. Constrained softening, in other words, leads to enhanced entropy

and mobility, more stable particle packings, and diffusive behavior at lower temperatures. We find

only a modest increase in fragility upon softening, and in order to uncover this trend it is necessary

to use both extrapolated relaxation times and extrapolated characteristic temperatures. This points
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Figure 2.15: Fragility plot using τ as a relaxation rate measure (see Figure 2.11), at ρ = 1.25. T0 is
chosen such that τ(T0) = 104 (see Figure 2.12).

Figure 2.16: Same as Figure 2.15, but using TK as the characteristic temperature (see Figure 2.8).

to the challenge of calculating fragilities by molecular-based computer simulation, a challenge that

originates with the difficulty of sampling low enough temperatures.

The rich behavior identified in the course of this research suggests several directions for future

work. In light of the contrast of our results with experimental observations for colloidal particles[25]

in which softening leads to a progressive decrease in fragility, it would be interesting to extend the

present fragility calculations to other densities. This would allow exploration of regimes in which

particles sample different regions of their respective pair potentials. More generally, extending

the present structural, dynamic and thermodynamic calculations to a broader range of conditions,

including low-density states leading to cavitation in the softer models (Figure 2.2), is important in
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order to acquire a fuller picture of this family of potentials. It is also of interest to explore the

possibility of scaling behavior, whereby physical properties for the various models may be collapsed

into a single curve by appropriate scaling of temperature and/or density. The pronounced sensitivity

of inherent structure energy to softness (Figure 2.5) may be of relevance in optimization problems,

where strategies involving appropriately-chosen cycles of softness perturbations might be useful for

locating deep potential energy minima. Other families of models can be formulated, with an eye to

introducing similar systematic perturbations of alternative aspects of the interaction potential, such

as attractions. We plan to report our results on several of these topics in future publications.
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Chapter 3

Relaxation Processes in Liquids:

Variations on a Theme by Stokes

and Einstein

3.1 Introduction

The well-known Stokes-Einstein equation, which combines Einstein’s analysis of the diffusion of

small suspended particles[1], and Stokes’ formula for the drag on a rigid spherical particle moving

through a viscous fluid[2], is given by

D =
kBT

Cηa
. (3.1)

Here, D is the diffusion coefficient of the macroscopic spheres of radius a, η is the shear viscosity

of the surrounding fluid at temperature T , and kB is Boltzmann’s constant. C is a constant that

depends on the boundary conditions at the particle-fluid interface, and ranges from 6π for no-slip

to 4π for slip boundary conditions[3].

Equation 3.1 has been successfully applied to a wide variety of situations, including enhancement

in the thermal conductivity of nano-particle suspensions[4], diffusion of proteins or other macro-

molecules in solution[5–8], transport in cells[9], and magma flow beneath the Earth’s crust[10, 11].

In these cases, a is taken to be an effective hydrodynamic radius[12]. Furthermore, although Eq. 3.1

was derived for a sphere of supermolecular dimensions suspended in a continuum, a molecular-level

version of the Stokes-Einstein equation, where D now represents the self-diffusion coefficient of a
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uniform fluid, has been found experimentally to be valid over a wide range of temperatures for

many liquids[13–20]. Thus, for a given liquid, we can define a quantity, Dη/T , whose constancy, or

lack thereof, over a range of thermodynamic conditions, serves as a measure of the validity of the

Stokes-Einstein equation at the molecular level. One then says that the Stokes-Einstein equation is

valid when

Dη

T
= constant, (3.2)

and any deviations away from Eq. 3.2 would indicate a Stokes-Einstein violation.

A well-known condition where Stokes-Einstein violation occurs is when a liquid undergoes deep

supercooling[18–23]. As the temperature is decreased into the supercooled regime, the rate at which

the viscosity increases can become orders of magnitude larger than that at which the self-diffusion

coefficient decreases, and Dη/T then deviates strongly from Eq. 3.2. Interestingly, the rotational

analog of Eq. 3.1 (known as the Stokes-Einstein-Debye equation[24]), Dr = kBT/C
′ηa3, where Dr

is the rotational diffusion coefficient and C′ is a numerical constant, can remain valid even when

Eq. 3.2 begins to break down[25–27]. This decoupling of translational and rotational diffusion

has been explained by invoking dynamic heterogeneity, which refers to the presence of transient

spatially separated regions with vastly different relaxation times[24]. The microscopic origin of this

supercooled Stokes-Einstein violation, and of the decoupling between translational and rotational

motion, is a topic of considerable research interest[28–37].

Molecular dynamics simulation, which has the advantage of being able to track each atom individ-

ually, offers a useful and insightful perspective for the microscopic investigation of the mechanisms

underlying the Stokes-Einstein violation. Simulations calculating the Stokes-Einstein parameter

Dη/T for soft-sphere systems have shown good qualitative agreement with experiments[38, 39];

Eq. 3.2 is obeyed at moderately high temperatures, but deviations occur as the temperature is pro-

gressively decreased. However, because the shear viscosity, η, is a computationally intensive quantity

to calculate in simulations[38], it has become increasingly common in computational studies to rein-

terpret the physical meaning of the Stokes-Einstein relation simply as the product of a diffusion

coefficient and a relaxation time. Indeed, many studies of the Stokes-Einstein violation use a struc-

tural relaxation time, τ , as a substitute for the viscosity η[25, 40–46]. The functional form of the

relation between τ and η varies among different studies; the two most often used are τ ∝ η[44–46]

and τ ∝ η/T [25, 40–43].

The proportionality between η and τ is based on the expression η = G∞τ , where G∞ is the

instantaneous shear modulus, and τ is now a stress relaxation time. It is commonly assumed in
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the simulation literature that the structural and stress relaxation times are interchangeable; the

validity of this assumption has not been systematically tested. Although G∞ does have a slight

temperature dependence[47], in the supercooled regime both η and τ can increase by many orders of

magnitude as a result of modest decreases in temperature. Thus G∞ is treated as a constant, leading

to the approximate relation τ ∝ η, which in turn gives D ∝ T/τ . The second relation, τ ∝ η/T

results from the Gaussian solution to the diffusion equation[48], given by Fs(k, t) = exp(−k2Dt) ≡
exp(−t/τ), where Fs(k, t) is the self-intermediate scattering function and k is the associated wave

vector. It follows then that D ∝ 1/τ , which implies τ ∝ η/T . Yamamoto and Onuki have shown

empirical evidence in support of this second relationship[43]. It is important to point out that

although the relations τ ∝ η and τ ∝ η/T differ by a factor of 1/T , both appear to be reasonable

approximations when studying the Stokes-Einstein violation in the deeply supercooled regime, when

small temperature changes result in order of magnitude changes in both τ and η.

Although it has become standard in numerical studies to calculate Dτ/T or Dτ as substitutes for

Dη/T when investigating the Stokes-Einstein violation, a systematic study of the various forms of

the Stokes-Einstein ratio has not been carried out over broad ranges of thermodynamic conditions.

The goal of this chapter is to investigate numerically the temperature and density dependence of

the three Stokes-Einstein ratios, Dη/T , Dτ/T , and Dτ , for selected atomic and molecular model

systems. We seek to highlight some non-trivial distinctions between the true Stokes-Einstein equa-

tion, where viscosity is used, and the “proxy” Stokes-Einstein equations, where a relaxation time

is used instead. We also investigate the validity of the assumption of interchangeability between

structural and stress relaxation times. In Section 3.2 we define the models and provide details of the

computational methods utilized in our investigation. The qualitative differences that arise between

the three variants of the Stokes-Einstein relation are presented and analyzed in Section 3.3. The

principal conclusions and suggestions for further study are presented in Section 3.4.

3.2 Methods

3.2.1 Model Atomic System

We seek to investigate the Stokes-Einstein relation in both model atomic and molecular systems.

For the model atomic system, we choose a family of systematically softened (n, 6) pair potentials[49]
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with the following functional form:

φ(r) = 4ε

[
λ
(σ
r

)n
− α

(σ
r

)6]
, (3.3)

where

λ =
3

2

(
2n/6

n− 6

)
α =

n

2(n− 6)
. (3.4)

The parameters λ and α are chosen such that the well depth and radial location of the minimum of

the generalized (n, 6) potentials coincide with the minimum of the standard (12, 6) Lennard-Jones

potential. A detailed discussion of the thermodynamic and dynamic properties of binary mixture

systems interacting via this family of potentials is given in Chapter 2[49]. In this chapter, we

will use a representative sample of potentials defined by Eq. 3.3, with n = 7, 9, and 12. For each

interaction potential, we apply the well-known Kob and Andersen binary glass-forming mixture

parameterization[50], namely, a mixture of 80% A particles and 20% B particles, with parameters

εAA = 1.0, εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, and σAB = 0.8. Both types of particles

have the same mass, m. For these atomic systems, all quantities are expressed in reduced units:

length in units of σAA, temperature in units of εAA/kB, and time in units of σAA(m/εAA)
1/2. In

order to ensure continuity of the potential and its first derivative at a cutoff distance rc, we apply a

shifted force (sf) correction to the potentials:

φsf (r) =

⎧⎪⎪⎨
⎪⎪⎩
φ(r) − φ(rc)− (r − rc)φ

′(rc) r ≤ rc

0 r > rc

. (3.5)

To minimize the effects of the shift on the shape of the various potentials, a rather large cutoff of

rc = 3.5 is chosen.

3.2.2 Model Molecular System

For our molecular system, we choose the Lewis and Wahnström model for ortho-terphenyl[51] (1,2-

diphenylbenzene, OTP). In this model each phenyl ring is represented by a Lennard-Jones site

(ε = 5.276 kJ/mol, σ = 4.83 Å), and the three sites constitute a rigid isosceles triangle, with a

vertex angle of 75◦ and a bond length of 4.83 Å for the two equal sides. For simplicity, each site is

assigned the same mass of m = 78 g/mol. Although this is a somewhat simplistic model for OTP,

it allows us to observe how the results from the atomic systems change when rotational degrees of

freedom are added. The rigid bond constraints are maintained by the SHAKE algorithm, and for
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the OTP simulations, all quantities are expressed in real units.

3.2.3 Viscosity and Structural Relaxation Time

In molecular dynamics simulations, the shear viscosity can be calculated by a Green-Kubo time-

correlation relation[48]:

η =
V

kBT

∫ ∞

0

dt 〈Pxy(0)Pxy(t)〉 , (3.6)

where Pxy is an off-diagonal element of the stress tensor, given by

Pxy =
1

V

⎡
⎣∑

i

mivixviy +
∑
i

∑
j>i

(rix − rjx)Fijy

⎤
⎦ , (3.7)

where vix and viy are respectively the x and y components of the velocity vector for atom i, and Fijy

is the y component of the force on atom i due to atom j. We use the “atomic” form of the virial

to calculate the pressure tensor[52, 53], i.e., the sums are over each individual “atom” (force center)

in the system, and the double summation virial term includes contributions from intra-molecular

constraint forces, should any exist.

By exploiting the tensorial properties of the viscosity constant, Daivis and Evans[54] have shown

that it is possible to incorporate all elements of the pressure tensor into the calculation of viscosity

to improve statistics. The Green-Kubo relation then becomes[55]

η =
V

10kBT

∫ ∞

0

dt
∑
αβ

〈Pαβ(0)Pαβ(t)〉 , (3.8)

where αβ = xx, yy, zz, xy, xz, yx, yz, zx, zy,

Pαβ = (παβ + πβα)/2− δαβ

(∑
γ

πγγ

)
/3, (3.9)

and

παβ =
1

V

⎡
⎣∑

i

miviαviβ +
∑
i

∑
j>i

(riα − rjα)Fijβ

⎤
⎦ . (3.10)

The 1/10 prefix in Eq. 3.8 follows from the fact that the stress tensor is symmetric and consists of

five independent components[56]: Pxy, Pyz, Pxz, Pxx − Pyy, Pyy − Pzz .

We define a characteristic structural relaxation time by using the self-intermediate scattering

function Fs(k, t) = 〈exp[ik ·∆r(t)]〉, where k is a chosen wave vector and ∆r(t) is the center-of-mass
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displacement experienced by an atom or molecule in time t. In each of the systems, the magnitude

of the wave vector k is chosen to correspond to the first peak of the molecular center-of-mass static

structure factor. The relaxation time τ is then defined by Fs(k, τ) = 1/e.

3.3 Results and Discussion

3.3.1 The Stokes-Einstein Relations for a Softened Atomic System

We compute the three forms of the Stokes-Einstein ratio: Dη/T , Dτ/T , Dτ , for our family of

softened potentials for densities of ρ = 1.2, 1.25, and 1.3. Here, D corresponds to the diffusion

coefficient of the A particles for the various potentials, and the wave number k used to calculate the

self-intermediate scattering function corresponds to the first peak of the structure factor for the A-A

interactions, SAA(k). While there has been experimental evidence that the Stokes-Einstein relation

can break down for one component while holding for others in glass-forming alloys[57], we note that

for our system the calculations based on either the A or B components are qualitatively similar, and

the results we report here are calculated using the dynamic properties of the A particles.

In each case, we use a high temperature reference point at T = 1.2, which is well above the

landscape onset temperature, below which mechanically stable packings sampled upon energy min-

imization begin to depend sensitively on the system’s temperature prior to minimization[58]. The

condition T = 1.2 thus corresponds to a state in which the system can freely sample all portions of

energy landscape. Along each isochore we compute the ratio χ(T )/χ(T = 1.2), where χ = Dη/T ,

Dτ , or Dτ/T . Any deviation away from the horizontal line of height 1 indicates a violation of the

particular Stokes-Einstein relation under investigation.

In Figure 3.1, we plot the temperature dependence of the three ratios at a fixed density of ρ = 1.25

for n = 7, 9, and 12. Although all three ratios show a Stokes-Einstein violation at low enough

temperatures, their behavior at higher temperatures exhibits pronounced differences. In particular,

the “true” Stokes-Einstein relation, D ∝ T/η, is in fact valid for a wide range of temperatures,

regardless of n. The ratio Dτ/T shows large deviations from unity across the entire temperature

range investigated, and hence exhibits qualitatively different behavior. The product Dτ approaches

the Stokes-Einstein behavior as repulsions become steeper (n = 12). Note, however, thatDτ actually

exhibits a negative violation at high temperatures, an effect especially pronounced when the softness

of the interaction potential is increased. Here, we use the terminology “negative violation” to denote

the decrease of a Stokes-Einstein ratio below the high temperature limit, corresponding to an increase
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Figure 3.1: The Stokes-Einstein relations as a function of inverse temperature for a system interacting
via softened potentials of n = 7 (left), 9 (center), and 12 (right). The Stokes-Einstein (SE) ratio is
defined and color-coded as follows: Dη/T (black), Dτ (red), and Dτ/T (green), all normalized to
their respective values at T = 1.2. Note the wide range in temperature where the Stokes-Einstein
relation holds when viscosity is used to calculate the SE ratio.

of the effective hydrodynamic radius upon cooling.

For the case of n = 7, we also investigate how the three Stokes-Einstein relations change as

the density of the system is varied (Figure 3.2). In all three cases, the large (positive) violation

due to supercooling occurs at a higher temperature when the density is increased. This is a direct

consequence of the increase in the landscape onset temperature[49] as the density is increased,

effectively raising the temperature of the supercooled regime. However, the striking feature here

is that the original Stokes-Einstein ratio that uses viscosity is indeed constant over a broad range

of temperatures. Note again the negative Stokes-Einstein violation for the quantity Dτ , an effect

that disappears gradually upon compression. Although Dτ and Dτ/T show the expected violation

of Stokes-Einstein behavior at low temperatures, neither shows a range of temperatures where the

quantity of interest remains constant, in marked contrast to Dη/T .

3.3.2 The Stokes-Einstein Relations for OTP

In Figure 3.3, we plot the three Stokes-Einstein variants for the Lewis and Wahnström model of

OTP. At liquid temperatures, the Stokes-Einstein relation is again valid when Dη/T is used for the

calculation. However, in contrast to the atomic systems, none of the three ratios show a “negative

violation” at higher temperatures. In fact, the results of Figure 3.3 suggest that for this particular

system, the product Dτ is actually a quite good substitute for the original Stokes-Einstein ratio of

Dη/T . This suggests that the validity of using a relaxation time instead of viscosity when studying
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Figure 3.2: The three Stokes-Einstein relations plotted as a function of inverse temperature for a
system interacting via a softened potentials of n = 7 for a density of ρ = 1.2 (black), 1.25 (red),
and 1.3 (green). The Stokes-Einstein (SE) ratio is defined as Dη/T (left), Dτ (center), and Dτ/T
(right), and all normalized to their respective values at T = 1.2. A horizontal line at 1 would indicate
that the Stokes Einstein relation is observed.

Stokes-Einstein behavior depends on the specifics of the system being investigated; a substitution

that works well for one system might not work well for another. As was the case for the family

of systematically-softened atomic systems, the ratio Dτ/T , based on the approximation τ ∼ η,

deviates very substantially from “Stokes-Einstein”-like behavior, Dτ/T = constant, across the range

of conditions investigated in this work for OTP.

3.3.3 The Instantaneous Shear Modulus and Stress Relaxation Time

For our atomic systems, neither of the substitutions τ ∼ η or τ ∼ η/T work very well, and in this

section we seek to further clarify the relation between the shear viscosity and relaxation times. We

begin by rewriting the Green-Kubo relation for viscosity (Eq. 3.8) as follows[59]:

η =
V
∑

αβ 〈Pαβ(0)Pαβ(0)〉
10kBT

∫ ∞

0

dt

∑
αβ 〈Pαβ(0)Pαβ(t)〉∑
αβ 〈Pαβ(0)Pαβ(0)〉 . (3.11)

The shear viscosity is commonly written as a product of an instantaneous shear modulus, G∞ and

a characteristic stress relaxation time, τ :

η = G∞τ. (3.12)

G∞ is often approximated to be constant in temperature at constant density, in particular when

studying Stokes-Einstein violation, because when a liquid undergoes supercooling, changes on the
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Figure 3.3: The three Stokes-Einstein relations plotted as a function of inverse temperature for
a system of Lewis and Wahnström OTP molecules at a density of ρ = 1.0746 g/cm3 (top) and

1.0578 g/cm
3
(bottom). The SE ratio is defined and color-coded as Dη/T (black), Dτ (red), and

Dτ/T (green), all normalized to their respective values at T = 400 K. Note again the wide range in
temperatures where the Stokes-Einstein relation holds when viscosity is used for the calculation.
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right-hand side of Eq. 3.12 are dominated by the order of magnitude increases in τ . However,

G∞ does in fact have a slight temperature dependence[47], and we seek to investigate how this

temperature dependence affects the qualitative differences observed at liquid temperatures between

the Stokes-Einstein relations using η and those using τ .

Figure 3.4: The ratio of the structural and stress relaxation times, τ/τGK , as a function of temper-

ature for the softened potential systems (top, ρ = 1.25) and OTP (bottom, ρ = 1.0746 g/cm
3
and

1.0578 g/cm
3
).

Comparing Eq. 3.11 and Eq. 3.12, we can define G∞(T ) and a corresponding Green-Kubo stress

relaxation time τGK [59]:

G∞(T ) =
V
∑

αβ 〈Pαβ(0)Pαβ(0)〉
10kBT

, (3.13)

τGK =

∫ ∞

0

dt

∑
αβ 〈Pαβ(0)Pαβ(t)〉∑
αβ 〈Pαβ(0)Pαβ(0)〉 . (3.14)

Here, we have defined a new relaxation time, τGK , which we can now use to calculate Stokes-
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Einstein ratios DτGK and DτGK/T . Note that τGK is a stress relaxation time. Figure 3.4 compares

τGK with τ , the structural relaxation time derived from the self-intermediate scattering function. It

can seen that the temperature dependence of the ratio of relaxation times is non-trivial, with τ/τGK

increasing markedly upon cooling. For the binary atomic mixtures, the ratio τ/τGK approaches a

horizontal asymptote at high temperatures. This suggests a coupling of the structural and stress

relaxation times at high temperatures, especially for the softer mixtures, and a progressive breakdown

of this coupling as the temperature is decreased[60]. Figure 3.5 shows the resulting Stokes-Einstein

ratios based on τGK for the binary atomic systems. We can see that the behavior of these curves,

particularly for the softer mixtures, is qualitatively similar to those in Figure 3.1.

Figure 3.5: The Stokes-Einstein relations as a function of inverse temperature for a system interacting
via softened potentials of n = 7 (left), 9 (center), and 12 (right). The SE ratio is defined and color-
coded as follows: Dη/T (black),DτGK (red), andDτGK/T (green), all normalized to their respective
values at T = 1.2. Here, the characteristic relaxation time τGK is derived from the Green-Kubo
expression for viscosity and defined by Eq. 3.14. These curves behave qualitatively similarly to those
of Figure 3.1, where a characteristic relaxation time derived from the self-intermediate scattering
function was used in the calculation.

Figure 3.6 shows the temperature dependence of both G∞ (in units of εAA/σ
3
AA) and G∞ · kBT ,

also for the binary atomic systems. If we substitute the functional forms for the best fit lines into

Eq. 3.12, the relation between η and τGK can then be modeled as either τGK ∝ η/(T + const.)

or τGK ∝ η/T b, where 0.2 < b < 0.3. We note that these models are intermediate between the

commonly used proxy relations, τ ∝ η and τ ∝ η/T . Indeed, as has already been discussed in

connection with Figure 3.5, τ ∝ η overestimates the viscosity contribution to the Stokes-Einstein

relation, while τ ∝ η/T underestimates it.

Figures 3.7 and 3.8 show the results of the same analysis when applied to the Lewis and Wahn-

ström OTP systems. Similar to the softened potential systems, G∞ increases with increasing tem-
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Figure 3.6: The temperature dependence of the instantaneous shear modulus, G∞(T ), as defined
by Eq. 3.13, for a system density of ρ = 1.25. The three data sets in each graph correspond to
softened potential interactions of n = 7 (black), 9 (red), and 12 (green). For the top graph, the fit
lines are of the functional form aT b, resulting in a fitting parameter of a = 34.311, 48.070, 72.271
and b = 0.210, 0.231, 0.275 respectively for n = 7, 9, 12. For the bottom graph, the fit lines are
of the functional form cT (T + d). The regressed values of c and d are 9.744, 13.611, 21.952 and
2.518, 2.520, 2.278 for n = 7, 9, 12, respectively.
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Figure 3.7: The Stokes-Einstein relations as a function of inverse temperature for a system of Lewis
and Wahnström OTP molecules at a density of ρ = 1.0746 g/cm

3
(top) and 1.0578 g/cm

3
(bottom).

The SE ratio is defined and color-coded as follows: Dη/T (black), DτGK (red), and DτGK/T
(green), all normalized to their respective values at T = 400 K. The characteristic relaxation time
used here is τGK , derived from the Green-Kubo expression for viscosity and defined by Eq. 3.14.

50



Figure 3.8: The temperature dependence of the instantaneous shear modulus, G∞(T ), for a system

of Lewis and Wahnström OTP molecules at a density of ρ = 1.0746 g/cm3 and 1.0578 g/cm3. The
lines are guides to the eye.

perature. However, DτGK now exhibits a negative violation of Stokes-Einstein behavior at higher

temperatures. Collectively, these results show that the temperature dependence of G∞ is non-trivial.

Furthermore, when using relaxation time to investigate Stokes-Einstein validity over a broad range

of temperatures, using a different relaxation time (e.g., structural or stress relaxation times) can

result in a qualitatively different behavior. The validity of using a relaxation time as a substitute for

viscosity is dependent on both the particular definition of the relaxation time used, and the specifics

of the system under study.

3.4 Conclusions

In this chapter, we have examined three variants of the Stokes-Einstein ratio, namelyDη/T , Dτ , and

Dτ/T , for model atomic and molecular systems, over a broad range of temperatures and densities.

For the family of atomic binary systems investigated here, with τ a structural relaxation time,

the ratio Dτ/T , based on the approximation τ ∼ η, increases upon cooling much faster than the

true Stokes-Einstein ratio Dη/T . The product Dτ , based on the approximation τ ∼ η/T , exhibits

negative Stokes-Einstein violation at moderate temperatures, approaching the true Stokes-Einstein

ratio as the repulsive component of the potential becomes progressively steeper. The increase upon

cooling exhibited by the three Stokes-Einstein variants occurs at progressively higher temperatures

as the fluids are compressed. As can be seen from Figures 3.1 and 3.2, the Stokes-Einstein ratio

Dη/T is constant, to a very good approximation, over a broad range of thermodynamic conditions.
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The molecular system we studied, the Lewis-Wahnström model of OTP, exhibits similar behavior,

with one important difference: the product Dτ is a reasonably accurate proxy for the Stokes-Einstein

ratio across the conditions investigated here, and does not show negative violation of Stokes-Einstein

behavior. This is consistent with the trend observed in the atomic systems, where the approximation

τ ∼ η/T gets better as the close range repulsion becomes steeper, since this OTP model consists

of three Lennard-Jones sites connected by rigid bonds. For this system, too, Dη/T = constant is

satisfied over an appreciable range of thermodynamic conditions: 300 ≤ T ≤ 400 K at 1.0746 g/cm3

and 280 ≤ T ≤ 400 K at 1.0578 g/cm3.

Different choices of relaxation times can affect the behavior of the Stokes-Einstein variants in

non-trivial ways. In this work we considered two relaxation times. One, denoted simply by τ in this

paper, is a structural relaxation time obtained from the decay of the self-intermediate scattering func-

tion; the other, τGK , is a stress relaxation time obtained from the Green-Kubo stress autocorrelation

integral. While both relaxation times lead to similar behavior for the atomic binary mixtures, espe-

cially for the softer potentials, for the OTP system τGK leads to negative Stokes-Einstein violations

in DτGK , in contrast to Dτ which does not show negative violations. Furthermore, the relationship

between these two relaxation times displays a non-trivial temperature dependence, especially at low

temperatures.

The often-invoked simple proportionality between viscosity and relaxation time is predicated

on the assumed constancy of the instantaneous shear modulus, G∞. Our numerical study of this

quantity based on the Green-Kubo formalism reveals an appreciable temperature dependence for

the two classes of systems investigated here, and G∞ increases with temperature for both the atomic

binary mixtures and OTP.

In this study, we have explored the effects of temperature changes under constant density con-

ditions. Most experiments, on the other hand, are performed under isobaric conditions. It would

be interesting to investigate numerically the extent to which the main observations reported here

remain valid under the more experimentally-relevant isobaric conditions. Recent experiments sug-

gest that in some glass-forming alloys the product Dη is constant while Stokes-Einstein violation

occurs[61]; it would be interesting to explore computationally the extent to which this scaling applies

more broadly to other systems.

The present calculations suggest that commonly-invoked assumptions, such as τ ∼ η and τ ∼
η/T , deserve critical scrutiny when used to construct Stokes-Einstein variants. The behavior of

Dη/T , Dτ and Dτ/T needs to be investigated for a wider range of systems than the two considered

here, and across as broad a range of temperatures and densities as possible. It is also of interest to

52



explore numerically the behavior of different relaxation times, only two of which have been considered

here. It is hoped that such systematic numerical investigation will lead to a deeper understanding

of relaxation processes in liquids at both supercooled and ambient conditions. Our approach in this

work has been phenomenological. Numerical studies of the microscopic mechanisms underlying the

rich behavior presented here constitute a natural direction for future studies.

We wish to stress in closing the remarkably broad range of conditions across which the Stokes-

Einstein equation, meant to apply to supermolecular objects suspended in a fluid continuum, is also

valid at the molecular level.
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Chapter 4

Anomalies of Water: Viscosity and

Stokes-Einstein Violation

4.1 Introduction

Although it is the most common of liquids, water is also one of the most peculiar because it exhibits

a number of anomalous properties. For example, at atmospheric pressure, it has a density maximum

at 277 K, an isobaric heat capacity minimum at 308 K, and an isothermal compressibility minimum

at 319 K[1]. Another well-known anomaly is that, at sufficiently cold temperatures, the viscosity

of water decreases upon compression[2–4]. However, to date, the majority of the computational

studies of water viscosity have only sampled a limited set of state points. Some of these studies

focus on comparisons of viscosities calculated using various computational methods[5, 6] or different

water models[7–13]. The effects of solution composition[14] and of confinement[15] on the viscosity

of water have also been explored. In this study, we focus on the SPC/E model of water[16], but

provide a detailed investigation of the behavior of viscosity across a wide range of temperatures and

densities.

We choose the SPC/E model for this study to allow us to relate our results to an influential

computational work on water anomalies, published in 2001 by Errington and Debenedetti[17]. That

work focused on the relationship between the structural order and the transport and thermodynamic

anomalies of SPC/E water. Structural anomalies, where order decreases upon isothermal compres-

sion, are observed over the broadest range of temperatures and densities. The region of diffusiv-

ity anomalies, where the diffusion coefficient increases upon isothermal compression, is completely
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contained within the region of structural anomalies. Thermodynamic anomalies, where density de-

creases upon isobaric cooling, occur entirely within the region of diffusivity anomalies. These regions

constitute a cascade triggered by increasing structural order. Furthermore, within the structurally

anomalous region, the orientational and translational order are strongly coupled.

A comprehensive viscosity data set for SPC/E water also allows us to study a related phe-

nomenon, namely the breakdown of Stokes-Einstein behavior. The Stokes-Einstein equation[18],

D =
kBT

Cηa
, (4.1)

was originally derived to describe the diffusion of a macroscopic sphere suspended in a viscous fluid; D

is the diffusion coefficient of spheres of radius a, and η is the shear viscosity of the surrounding fluid at

temperature T . C is a constant that depends on the boundary conditions at the sphere-fluid interface,

and ranges from 6π for no-slip to 4π for slip boundary conditions[19]. However, a molecular-level

version of Eq. 4.1, where D now represents the self-diffusion coefficient of a uniform fluid, has been

found experimentally to be valid over a wide range of temperatures for many liquids[20–27]. For a

given liquid, we can then define a quantity, Dη/T , whose constancy, or lack thereof, over a range

of thermodynamic conditions, serves as a measure of the validity of the Stokes-Einstein equation at

the molecular level. One then says that the Stokes-Einstein equation is valid when

Dη

T
= constant, (4.2)

and any deviations away from Eq. 4.2 would indicate a Stokes-Einstein violation.

A well-known condition where Stokes-Einstein violation occurs is when a liquid undergoes deep

supercooling[25–30], where the rate at which the viscosity increases decouples from that at which

the self-diffusion coefficient decreases, and Dη/T deviates strongly from Eq. 4.2. However, the

rotational analog of Eq. 4.1 (known as the Stokes-Einstein-Debye equation[31]), Dr = kBT/C
′ηa3,

where Dr is the rotational diffusion coefficient and C′ is a numerical constant, can remain valid even

when Eq. 4.2 begins to break down[32–34]. This further decoupling of translational and rotational

diffusion has been explained by invoking dynamic heterogeneity, which refers to the presence of

transient spatially separated regions with vastly different relaxation times[31]. The microscopic

origin of this supercooled Stokes-Einstein violation, and of the decoupling between translational

and rotational motion, is a topic of considerable research interest[35–44]. Previous studies have

invoked the Stokes-Einstein equation for water, and although it has been tested over a limited set
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of conditions[45–48], a comprehensive study of the validity, and breakdown, of the Stokes-Einstein

equation for water across a wide range of densities is still lacking.

Additionally, in computational studies, it has become increasingly common to reinterpret the

physical meaning of the Stokes-Einstein relation simply as the product of a diffusion coefficient and

a relaxation time, and many studies of the Stokes-Einstein violation use a structural relaxation

time, τ , as a substitute for the viscosity η[32, 46–52]. The main reason underlying this common

approximation is computational expediency. The functional form of the relation between τ and

η varies among different studies; the two most often used are τ ∝ η[46–48] and τ ∝ η/T [32, 49–

52]. τ ∝ η/T results from the Gaussian solution to the diffusion equation[53], given by Fs(k, t) =

exp(−k2Dt) ≡ exp(−t/τ), where Fs(k, t) is the self-intermediate scattering function and k is the

associated wave vector. It follows then that D ∝ 1/τ , which implies τ ∝ η/T , and replaces Dη/T

in Eq. 4.2 with Dτ . The second proportionality, τ ∝ η, is based on the expression η = G∞τGK ,

where G∞ is the instantaneous shear modulus, and τGK is now a stress relaxation time. Here, G∞

is treated as a constant. The relation τ ∝ η then gives D ∝ T/τ , and thus replaces Dη/T in Eq. 4.2

with Dτ/T .

Many computational studies of Stokes-Einstein behavior focus on temperature ranges where

violation is expected to occur, and small temperature changes result in order of magnitude changes

in both τ and η. Even though the relations τ ∝ η and τ ∝ η/T differ by a factor of 1/T , in

the supercooled regime, both can appear to be reasonable approximations that result in a strong

Stokes-Einstein violation. Thus, it is then commonly assumed that a relaxation time is an adequate

substitute for viscosity when studying Stokes-Einstein behavior, and that the structural relaxation

time, τ , and stress relaxation time, τGK are interchangeable. Both of these assumptions have been

challenged in Chapter 3[54] that studied the Stokes-Einstein behavior of model atomic and molecular

systems. For those systems, while the ratios Dη/T , Dτ , and Dτ/T all show pronounced increases

at low enough temperatures, only Dη/T is constant at higher temperatures. Furthermore, the

qualitative behaviors of Dτ and Dτ/T are dependent on which relaxation time (structural or stress)

is used.

In this chapter, we present a detailed investigation of the viscosity of SPC/E water[16] over a wide

range of thermodynamic conditions, and map the region where viscosity behaves anomalously. Using

this viscosity data set, we also provide an analysis of the Stokes-Einstein behavior for SPC/E water.

Furthermore, we continue[54] the discussion of the relationship between the structural and stress

relaxation times, and the validity of the Stokes-Einstein variants based upon them. In Section 4.2

we provide details of the computational methods utilized in our investigation. The main results
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and discussion of SPC/E viscosity, Stokes-Einstein behavior, and relaxation times are presented in

Section 4.3. Finally, the principal conclusions and suggestions for further study are presented in

Section 4.4.

4.2 Methods

We use a comprehensive set of molecular dynamics simulations, at constant temperature and fixed

density (N, V, T ), to sample the wide range of thermodynamic conditions needed for this study.

Numerical integration of the equations of motion was performed by using the LAMMPS molecu-

lar dynamics simulation package[55]. For a given density ρ and temperature T , the position and

orientation of 1060 SPC/E water molecules are randomized in a periodic cubic cell of box length

(Nmw/ρ)
1/3, where mw = 18.0 g/mol is the molecular mass of water. The particle-particle particle-

mesh (pppm) method was used for long-range Coulombic interactions, and the target temperature

is maintained by a Nosé-Hoover thermostat[56]. The system is first equilibrated for 0.5 ns, after

which a 20 ns production run is used for analysis. The length of equilibration corresponds to 100

times the stress relaxation time at the lowest temperature investigated (220 K). To further verify

equilibration, we track the total energy of the system, which is found to be within 1.5% of its mean

value throughout the production run.

We calculate the shear viscosity by using the Daivis and Evans formulation of the Green-Kubo

relation[57], where all elements of the pressure tensor are used in order to improve statistics[54]:

η = lim
t→∞

1

10

V

kBT

∫ t

0

dt′
∑
αβ

〈Pαβ(0)Pαβ(t
′)〉 , (4.3)

where αβ = xx, yy, zz, xy, xz, yx, yz, zx, zy,

Pαβ = (παβ + πβα)/2− δαβ

(∑
γ

πγγ

)
/3. (4.4)

Here,

παβ =
1

V

⎡
⎣∑

i

miviαviβ +
∑
i

∑
j>i

(riα − rjα)Fijβ

⎤
⎦ (4.5)

is the virial expression for the stress tensor, where viα and viβ are respectively the α and β com-

ponents of the velocity vector for atom i, and Fijβ is the β component of the force on atom i due

to atom j[58, 59]. The 1/10 prefix in Eq. 4.3 results from the stress tensor being symmetric and

60



consisting of five independent components[60]: Pxy, Pyz, Pxz, Pxx − Pyy, Pyy − Pzz . The integral

is evaluated numerically, and the upper limit is taken to be the time when the long-term tail of

the stress correlation function crosses zero for the third time; the value of this integral corresponds

to the limiting value of the running integral in Eq. 4.3. Figure 4.1 gives an example of a typical

viscosity calculation, and shows reasonable agreement between the shear viscosity values calculated

in our study and experimental values given by the NIST Chemistry WebBook[61](Figure 4.2). Con-

sistent with previous studies[7–10], we find that the SPC/E model slightly underestimates the shear

viscosity.
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Figure 4.1: The stress correlation function and associated running integral for a viscosity calculation
by using Eq. 4.3, for a system of density 1.0 g/cm3 and temperature 280 K. The red curves correspond
to the calculation by using all elements of the pressure tensor (Eq. 4.3). An equivalent calculation
(green curves) which uses only the off-diagonal elements of the pressure tensor is also included for
comparison. In this study, the simulation runs are long enough such that the two curves superimpose
on top of each other.

Diffusion coefficients are calculated by using the well-known Einstein equation:

D =
1

6
lim
t→∞

d

dt

〈
∆r(t)2

〉
, (4.6)

where D is the diffusion coefficient, and
〈
∆r(t)2

〉
is the center-of-mass mean squared displacement of

water molecules after an interval of time t. Figure 4.3 shows the mean-squared-displacement curves

for ρ = 1.0 g/cm3. Diffusive behavior is indicated by the region where a mean-squared displacement

curve becomes linear. Here, for any given temperature and density, the diffusion coefficient is
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Figure 4.2: Comparison of SPC/E water viscosity calculated by Eq. 4.3 to data obtained from the
NIST Chemistry WebBook[61] at a density of 0.983 g/cm3.
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Figure 4.3: Evolution of the mean squared displacement for SPC/E water corresponding to different
temperatures at a density of 1.0 g/cm3. The increment between curves is 10 K. Caging is evident at
the lowest temperatures, but becomes less prominent as the temperature is increased. From these
curves, the slope of the linear regime is used to compute the diffusion coefficient.

62



determined by calculating the slope of the linear fit over the interval t ∈ [6.67, 13.33] ns.

We define two different relaxation times in this study[54]. The first, which we will call the

“structural” relaxation time and will label simply as τ , is derived from the self-intermediate scattering

function, Fs(k, t) = 〈exp[ik ·∆r(t)]〉, where k is a chosen wave vector and ∆r(t) is the center-of-mass

displacement experienced by an atom or molecule in time t. The magnitude of the wave vector k

is chosen to be constant, and corresponds to the first peak of the molecular center-of-mass static

structure factor of a system at ρ = 1.0 g/cm3. The structural relaxation time τ is then defined by

Fs(k, τ) = 1/e.

The shear viscosity is commonly written[62] as a product of an instantaneous shear modulus,

G∞ and a characteristic stress relaxation time, τGK :

η = G∞τGK . (4.7)

This relaxation time can be derived by comparing Eq. 4.7 to the Green-Kubo equation for viscosity

(Eq. 4.3). This “stress” relaxation time, which we will label as τGK , is thus defined as

τGK =

∫ ∞

0

dt

∑
αβ 〈Pαβ(0)Pαβ(t)〉∑
αβ 〈Pαβ(0)Pαβ(0)〉 , (4.8)

and the instantaneous shear modulus as

G∞ =
V
∑

αβ 〈Pαβ(0)Pαβ(0)〉
10kBT

. (4.9)

4.3 Results and Discussion

4.3.1 Viscosity

In this section, we present the viscosity values for SPC/E water across a wide range of thermodynamic

conditions, and then map the region of viscosity anomalies on a (ρ, T ) phase diagram. Figure 4.4

shows the temperature (T ) dependence of viscosity (η) for various densities (ρ). The solid line fits

here are of the Vogel-Fulcher-Tammann (VFT) form:

log η =
A

T − T0
+B, (4.10)
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Figure 4.4: Viscosity as a function of inverse temperatures for various densities. The solid lines are
VTF fits to the data. (a) High density behavior. (b) Low density behavior.

where T0, A, and B are fitting parameters. The raw viscosity data values and the associated VTF

fit parameters are presented in Appendix 4.A. At high densities (Figure 4.4a), the isochores exhibit

“normal” liquid behavior: the viscosity increases with density, or, equivalently, pressure, at fixed

temperature. However, at lower densities (Figure 4.4b), intersection occurs between isochores, an

indication of anomalous behavior, where now at low enough temperatures, an increase in density

results instead in a decrease in viscosity. This anomaly is also evident by examining the VTF T0

values (Figure 4.5). For a typical liquid, these asymptotic values increase monotonically with density,

a direct consequence of viscosity decreasing with temperature at fixed density. However, water also

behaves anomalously in this regard, and for ρ ≤ 1.1 g/cm3, the asymptotic VTF T0 values decrease

upon compression.

We can further investigate this anomalous behavior by plotting the collection of viscosity values

as a function of density, with each curve now corresponding to a different temperature (Figure 4.6).

From this set of curves, the anomalous region for viscosity, where η decreases as ρ increases at fixed

temperature, is clearly evident, and becomes particularly pronounced at the lowest temperatures.

Using fifth-order polynomial fits, we calculate the locus of the local maxima and minima for these

curves. This gives the density range of anomalous viscosity behavior for each given temperature.

This set of extrema points can then be collected onto a single curve on the (ρ, T ) plane, the interior of

which represents the region where water behaves anomalously with respect to viscosity (Figure 4.7a).

The method of obtaining the locus of local maxima, and their associated error bars, is explained

in Appendix 4.B. For comparison, this dome-shaped curve is overlaid with the loci of structural,
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Figure 4.5: VTF asymptotic temperatures, as defined by Eq 4.10. The line is a guide to the eye.
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Figure 4.6: Density dependence of the viscosity of SPC/E water at different temperatures. The
increment between adjacent curves is 10 K. The solid points here are obtained from the VTF fits
(see Appendix 4.A for the raw viscosity data and fitted VTF parameters). The values from the VTF
fits are used here to reduce noise, and this smoothing allows us to calculate the local maxima and
minima of each curve by using 5th order polynomials, shown in solid lines.
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diffusive, and thermodynamic anomalies calculated previously by Errington and Debenedetti[17]

(Figure 4.7b).

(a) (b)

Figure 4.7: (a) Dome of viscosity anomalies for SPC/E water. At each temperature, the points
correspond to the local maxima and minima of the η(ρ) curves (see Figure 4.6). The shaded region
is thus anomalous, in that viscosity decreases upon compression. Error bars indicate the range of
uncertainties in the location of the low-density onset of viscosity anomalies (see Appendix 4.B for
details). (b) The dome of viscosity anomalies shown in conjunction with the domes of structural,
diffusivity, and thermodynamic anomalies previously computed by Errington and Debenedetti[17]
for SPC/E water.

From the sequence of domes in Figure 4.7b, we see that the onset of anomalous behavior occurs in

a specific, hierarchical fashion. The structural anomaly occurs first; here metrics of translational and

orientational order both decrease upon compression[17]. The next onset of anomalous behavior is

that of the kinetic processes, namely diffusivity and viscosity. In this region, mobility increases upon

compression, which is caused by pressure-induced distortion of the hydrogen bond network. Finally,

the thermodynamic anomaly occurs, where a lowering of the temperature results in volumetric

expansion.

4.3.2 Stokes-Einstein Violations

For our system of SPC/E water molecules, we compute the diffusion coefficients by using Einstein’s

equation (Figure 4.8). These values agree well with those reported previously by Errington and

Debenedetti[17], and anomalous behavior is clearly evident by the non-monotonic curves, showing

an increase in diffusivity upon compression at sufficiently low temperatures. Similar to the viscosity

data, we fit the diffusion coefficients along each isochore to the VTF equation; the raw diffusivity
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Figure 4.8: Density dependence of the diffusivity of SPC/E water at different temperatures. The
increment between adjacent curves is 10 K. For a given isotherm, anomalous behavior corresponds to
the density range where diffusivity increases upon compression. The points are diffusion coefficients
obtained from the slope of the mean squared displacement curves, and the lines are 6th order
polynomial fits that serve as a guide to the eye. Data at 0.85 g/cm3 is excluded for fitting due to
the possibility of cavitation.

data and the fitted VTF parameters are presented in Appendix 4.A. We can now combine the

viscosity and diffusivity data, and compute the ratio χ(T )/χ(T = 350 K) along each isochore, where

χ = Dη/T . To obtain smooth curves, χ(T ) is computed by using the analytical VTF fits of both η

and D for each density. Any deviation of the ratio χ(T )/χ(T = 350 K) away from 1 then indicates

a violation of the Stokes-Einstein relation (Figure 4.9). As typical of many liquids, SPC/E water

obeys the Stokes-Einstein relation fairly well at high temperatures, but a clear violation occurs as

it becomes supercooled.

We can further investigate the breakdown of Stokes-Einstein behavior in water by mapping

the (ρ, T ) region where Eq. 4.1 is valid. In Figure 4.10, the shaded regions, using two different

quantitative measures on χ(T )/χ(T = 350 K), correspond to state points where Stokes-Einstein

behavior is violated, with the boundary corresponding to the onset of this violation. The red shaded

region corresponds to the condition χ(T )/χ(T = 350 K) ≥ 1.1, while the green shaded region

corresponds to χ(T )/χ(T = 350 K) ≥ 1.05. In a normal fluid, the glass transition temperature

increases as the density is increased, which results in a higher onset temperature for Stokes-Einstein

violation. Here however, the opposite is true for 0.9 ≤ ρ ≤ 1.15 g/cm3, which indicates another

anomaly. This density range is comparable to those where the other properties of water behave

anomalously, and suggests a correlation of the Stokes-Einstein onset anomaly to the structural
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Figure 4.9: The Stokes-Einstein ratio, Dη/T , plotted as a function of inverse temperature for various
densities. For each density, the ratio is normalized to its value at 350 K. A horizontal line at 1 would
indicate that the Stokes Einstein relation is observed. The smooth curves here are calculated by
using the analytic VTF forms for both η and D.
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Figure 4.10: The onset of Stokes-Einstein violation by using two objective criteria, when the normal-
ized Stokes-Einstein ratio is 1.05 (green) or 1.1 (red). For a typical liquid, this onset temperature
increases with density. Here, we clearly see a range of densities exhibiting the opposite trend,
indicating an anomalous property of water.
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Figure 4.11: The structural (a) and stress (b) relaxation times as a function of density. The increment
between adjacent curves is 10 K. The raw data (shown in Appendix 4.A) are fitted to splines and
polynomials respectively, which are guides to the eye.

and kinetic anomalies. Stokes-Einstein violation is typically associated with supercooling, where

the rapid increase in viscosity becomes decoupled with the rapid decrease in diffusivity. In the

density range of the kinetic anomalies, however, compression results in a decrease in viscosity and

increase in diffusivity. Together, this means the temperature of the onset of rapid viscosity and

diffusivity changes is then lowered upon compression. Consequently, in this region of anomalous

kinetic behavior, the onset temperature of Stokes-Einstein violation is also lowered with a density

increase.

4.3.3 Relaxation Times

Similar to viscosity and diffusion, we plot the density dependence of relaxation times for various

temperatures (Figure 4.11). We again apply VTF fits along each isochore, and the raw data and

associated VTF parameters for both the structural and stress relaxation times are also presented

in Appendix 4.A. For both types of relaxation times, anomalous behavior is evident by the re-

gion of negative slope on these curves, which indicate that the relaxation times decrease as the

density increases at fixed temperature. Combined with the viscosity (Figure 4.6) and diffusivity

(Figure 4.8) data sets, this indicates relaxation processes collectively behave anomalously at low

enough temperatures for SPC/E water.

We further investigate the relationship between the structural relaxation time, τ , and the stress

relaxation time, τGK , by plotting their ratio τ/τGK (Figure 4.12). Here, the curves are obtained
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Figure 4.12: The ratio of the structural relaxation time, τ , to the stress relaxation time τGK . The
five lowest densities shown are 0.87, 0.90, 0.942, 0.983, and 1.0 g/cm3, after which the increment
between adjacent curves is 0.05 g/cm3.

by taking the ratio of the respective analytic VTF forms of τ and τGK for each density. For a

given density, at higher temperatures, ln τ/τGK appears linear, but this relation breaks down as the

temperature is decreased, and a local maximum of the ratio occurs at low temperatures. Additionally,

note the crossing of isochores at low enough temperatures. This non-trivial relation directly reflects

that τ and τGK are two distinct relaxation times that are derived and defined differently.

4.3.4 Stokes-Einstein Variants

We further examine the differences between the structural relaxation time, τ , the stress relaxation

time, τGK , and viscosity, η, by comparing the Stokes-Einstein ratios derived from them: χ(T )/χ(T =

350 K), where χ = Dη/T , Dτ , Dτ/T , DτGK , or DτGK/T . To obtain smooth curves, we use the

analytical VTF forms for η, D, τ , and τGK when computing these ratios. In Figure 4.13, we plot the

temperature dependence of the various Stokes-Einstein ratios at a density of ρ = 1.0 g/cm3. At low

enough temperatures, all three variants exhibit a strong violation of the Stokes-Einstein relation.

However, only the “true” relation of Dη/T obeys Stokes-Einstein behavior at higher temperatures.

These results are representative of other densities investigated in this work.

Figure 4.13 further illustrates the distinction between the structural relaxation time, τ , and the

stress relaxation time, τGK . The structural relaxation time results from the Gaussian solution to

the diffusion equation[53], given by Fs(k, t) = exp(−k2Dt) ≡ exp(−t/τ), where Fs(k, t) is the self-

intermediate scattering function and k is the associated wave vector. This thus implies D ∝ 1/τ ,
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Figure 4.13: Comparison of different Stokes-Einstein variants. The Stokes-Einstein (SE) ratio is
defined and color-coded as follows: Dη/T (red), Dτ (green), and Dτ/T (blue), all normalized to
their respective values at T = 350 K. The relaxation time used in (a) is the structural relaxation
time, obtained from the self-intermediate scattering function, whereas the one used in (b) is the
stress relaxation time, obtained from the Green-Kubo equation.

which then relates to viscosity by τ ∝ η/T . Indeed, from Figure 4.13a, the Stokes-Einstein ratio

of Dτ is a good approximant for Dη/T at higher temperatures, although at low temperature the

Stokes-Einstein violation is not as strong. The ratio Dτ/T , however, is not constant over any

temperature range, and deviates significantly from Dη/T for all temperatures.

On the other hand, the proportionality that relates stress relaxation time to viscosity, τGK ∝ η,

is based on the relation η = G∞τGK , where G∞ is the instantaneous shear modulus and com-

monly approximated as a constant. Accordingly, from Figure 4.13b, we see that the Stokes-Einstein

ratio DτGK/T more closely follows Dη/T than DτGK does, with a particularly pronounced low

temperature violation. However, because G∞ does actually have a slight temperature depen-

dence(Figure 4.14), we still observe a slight, but noticeable, deviation of DτGK/T from Dη/T .

Collectively, the comparison of these ratios reinforces the findings of Chapter 3[54], namely that

the structural relaxation time and the stress relaxation time are not equivalent or interchangeable.

Furthermore, when using relaxation times as a substitute for viscosity to study Stokes-Einstein

behavior, the relation τ ∝ η/T appears to be a reasonable approximation at high temperatures,

while τGK ∝ η seems more acceptable at low temperatures. However, over a broad temperature

range, neither of these proportionatelies reflect the true Stokes-Einstein behavior. This once again

strongly indicates that caution is required when using relaxation time as a substitute for viscosity

to study Stokes-Einstein behavior.
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Figure 4.14: The temperature dependence of the instantaneous shear modulus, as defined by Eq. 4.9.
The five lowest densities shown are 0.87, 0.90, 0.942, 0.983, and 1.0 g/cm3, after which the increment
between adjacent curves is 0.05 g/cm3.

4.4 Conclusions

We presented in this chapter, to our knowledge, the first comprehensive analysis of viscosity for

SPC/E water over a wide range of thermodynamic conditions. At low enough temperatures, we

observe anomalous behavior, where viscosity decreases upon compression. When mapped onto the

(ρ, T ) plane, the region of the viscosity anomaly is comparable to that of diffusivity, and both of

these regions are contained within the region of structural anomalies. This suggests that in the

anomalous region for viscosity and diffusivity, the mobility increase is caused by pressure-induced

distortions of the hydrogen bond network.

We also investigated the Stokes-Einstein behavior for this system. Similar to many liquids, at

higher temperatures, SPC/E water is well described by the Stokes-Einstein equation, while at low

enough temperatures strong violation is observed. However, the temperature at which violation

occurs exhibits anomalous behavior, as for the density range 0.9 ≤ ρ ≤ 1.15 g/cm3, the onset

temperature of violation decreases upon compression.

We observe anomalous behavior for both the structural and stress relaxation times, which occurs

at similar state conditions as the viscosity and diffusivity anomalies. When used as a substitute

to study Stokes-Einstein behavior, the relaxation times based upon τ ∝ η/T and τGK ∝ η are

reasonable approximations for η at high and low temperatures, respectively. However, neither struc-

tural or stress relaxation times adequately describe the true Stokes-Einstein behavior over the full

72



temperature range explored in this investigation. We also find that no trivial proportionality exists

between τ and τGK . These results reinforce those of Chapter 3[54], and further demonstrate that

the structural relaxation time and the stress relaxation time are distinct quantities, and are not

equivalent or interchangeable.

For our study, we used the SPC/E model of water, one of the many molecular water models

currently available for use in computer simulations. While SPC/E shows prominently the struc-

tural, kinetic, and thermodynamic anomalies of water, it would be useful to compare the anomalous

domains of various water models. When considered together with the results of the earlier study

by Errington and Debenedetti[17], the region of anomalous behavior for kinetic processes (viscosity,

diffusivity, and relaxation times) is consistently contained within the region of structural anomalies,

suggesting that the anomalous increase in mobility upon compression is the result of the distortion

of the tetrahedral hydrogen bond structure. Although we can understand the relationship between

the structural and kinetic anomalies, the relationship of these anomalies to the corresponding ther-

modynamic anomaly is a topic of active ongoing investigation[63], and provides a natural direction

for future studies.
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Appendix 4.A Raw Data and VTF Parameters

This appendix contains the raw data for viscosity (η), diffusivity (D), structural relaxation time (τ),

and stress relaxation time (τGK), for all densities (from 0.85 to 1.3 g/cm3) and temperatures (from

220 to 350 K) investigated.

Each set of raw data is fit to the VTF equation, and the VTF parameters, A, B, and T0 are also

presented here. The VTF equation is given by

logX =
A

T − T0
+B, (4.11)

where X = η, D, τ , or τGK .
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Table 4.1: Viscosity Raw Data (103 η, in Pa.s)

T (K)
Density (g/cm3)

0.85 0.87 0.9 0.942 0.983 1.0
220 26.2 29.5 88.1 58.9 27.3 21.8
230 8.29 10.0 21.3 15.5 11.0 8.47
240 3.75 4.50 7.63 7.16 4.97 4.60
250 2.11 2.38 3.92 3.58 2.91 2.69
260 1.30 1.47 2.33 2.16 2.01 1.89
270 0.899 0.986 1.45 1.45 1.36 1.34
280 0.720 0.728 1.07 1.10 1.05 1.04
290 0.531 0.587 0.826 0.848 0.860 0.846
300 0.435 0.474 0.660 0.694 0.691 0.695
310 0.366 0.384 0.532 0.566 0.577 0.610
320 0.307 0.331 0.460 0.488 0.506 0.514
330 0.266 0.285 0.405 0.428 0.452 0.460
340 0.236 0.253 0.353 0.385 0.409 0.413
350 0.211 0.230 0.325 0.346 0.365 0.380

T (K)
Density (g/cm3)

1.05 1.096 1.15 1.2 1.25 1.3
220 11.4 7.97 7.72 9.36 10.8 17.3
230 5.96 4.69 4.56 5.38 6.51 9.22
240 3.42 3.18 3.03 3.83 4.16 5.76
250 2.33 2.14 2.19 2.76 3.06 3.89
260 1.68 1.63 1.69 2.08 2.27 2.91
270 1.30 1.28 1.35 1.67 1.87 2.26
280 1.02 1.05 1.12 1.41 1.47 1.88
290 0.847 0.882 0.953 1.20 1.29 1.62
300 0.731 0.783 0.832 1.06 1.11 1.39
310 0.625 0.669 0.728 0.910 0.987 1.24
320 0.546 0.597 0.656 0.843 0.899 1.09
330 0.485 0.538 0.595 0.759 0.830 0.991
340 0.451 0.489 0.561 0.698 0.758 0.935
350 0.419 0.445 0.510 0.652 0.701 0.859
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Table 4.2: Diffusivity Raw Data (109D, in m2/s)

T (K)
Density (g/cm3)

0.85 0.87 0.9 0.942 0.983 1.0
220 0.057 0.047 0.033 0.039 0.076 0.090
230 0.152 0.130 0.095 0.113 0.167 0.198
240 0.316 0.308 0.230 0.250 0.326 0.366
250 0.532 0.562 0.454 0.484 0.564 0.585
260 0.868 0.786 0.749 0.759 0.857 0.895
270 1.25 1.26 1.18 1.17 1.26 1.22
280 1.72 1.75 1.65 1.55 1.70 1.65
290 2.20 2.35 2.22 2.06 2.21 2.17
300 2.88 3.09 2.74 2.80 2.74 2.63
310 3.61 3.71 3.39 3.28 3.11 3.33
320 4.28 4.47 4.25 3.99 3.89 3.86
330 5.34 5.30 5.04 4.65 4.51 4.54
340 6.32 6.42 5.91 5.31 5.21 5.27
350 6.93 6.79 6.51 6.12 6.16 5.93

T (K)
Density (g/cm3)

1.05 1.096 1.15 1.2 1.25 1.3
220 0.154 0.193 0.214 0.193 0.149 0.102
230 0.279 0.346 0.324 0.313 0.247 0.184
240 0.453 0.537 0.497 0.452 0.391 0.309
250 0.727 0.747 0.727 0.670 0.531 0.458
260 0.992 0.957 1.03 0.885 0.754 0.590
270 1.32 1.39 1.28 1.16 0.958 0.791
280 1.65 1.61 1.62 1.36 1.24 1.01
290 2.14 2.12 1.93 1.71 1.50 1.32
300 2.73 2.49 2.31 2.08 1.67 1.52
310 3.08 3.10 2.63 2.35 1.94 1.69
320 3.66 3.47 3.22 2.74 2.46 1.93
330 4.26 4.02 3.39 3.13 2.74 2.19
340 4.85 4.40 3.94 3.58 3.02 2.51
350 5.53 4.90 4.75 3.80 3.24 2.72
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Table 4.3: Structural Relaxation Time Raw Data (102 τ , in ns)

T (K)
Density (g/cm3)

0.85 0.87 0.9 0.942 0.983 1.0
220 41.7 47.6 75.2 57.5 29.6 23.5
230 14.6 16.0 22.8 18.3 12.2 10.4
240 6.72 7.16 9.35 7.98 6.24 5.60
250 3.76 3.90 4.62 4.23 3.65 3.39
260 2.36 2.46 2.71 2.61 2.38 2.28
270 1.66 1.69 1.78 1.76 1.69 1.65
280 1.20 1.23 1.28 1.30 1.27 1.25
290 0.864 0.879 0.905 0.934 0.927 0.925
300 0.688 0.680 0.713 0.733 0.747 0.750
310 0.553 0.552 0.577 0.598 0.615 0.624
320 0.454 0.459 0.481 0.503 0.518 0.528
330 0.383 0.392 0.410 0.430 0.447 0.456
340 0.331 0.341 0.356 0.375 0.393 0.401
350 0.293 0.302 0.315 0.332 0.350 0.358

T (K)
Density (g/cm3)

1.05 1.096 1.15 1.2 1.25 1.3
220 13.7 10.6 9.84 10.6 13.3 19.7
230 7.35 6.12 5.86 6.40 7.82 10.8
240 4.37 3.89 3.84 4.19 5.04 6.73
250 2.89 2.69 2.72 2.96 3.54 4.59
260 2.01 1.96 2.00 2.24 2.66 3.35
270 1.57 1.56 1.62 1.77 2.03 2.59
280 1.21 1.23 1.32 1.46 1.69 2.02
290 0.932 0.946 1.04 1.20 1.42 1.72
300 0.759 0.790 0.857 0.965 1.18 1.47
310 0.643 0.673 0.739 0.834 0.971 1.25
320 0.551 0.584 0.643 0.729 0.851 1.05
330 0.481 0.514 0.569 0.644 0.748 0.909
340 0.428 0.459 0.510 0.576 0.676 0.813
350 0.384 0.412 0.460 0.521 0.611 0.734
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Table 4.4: Stress Relaxation Time Raw Data (104 τGK , in ns)

T (K)
Density (g/cm3)

0.85 0.87 0.9 0.942 0.983 1.0
220 42.6 45.8 101 62.4 27.2 21.2
230 13.7 15.8 24.9 16.7 11.1 8.35
240 6.30 7.20 9.09 7.88 5.12 4.62
250 3.59 3.88 4.73 4.01 3.04 2.74
260 2.25 2.45 2.86 2.45 2.14 1.95
270 1.58 1.67 1.82 1.68 1.47 1.40
280 1.29 1.25 1.35 1.29 1.14 1.10
290 0.968 1.03 1.06 1.00 0.946 0.902
300 0.808 0.854 0.853 0.833 0.768 0.751
310 0.690 0.702 0.696 0.687 0.648 0.664
320 0.594 0.612 0.608 0.598 0.577 0.565
330 0.525 0.531 0.540 0.529 0.519 0.510
340 0.471 0.477 0.475 0.480 0.472 0.461
350 0.427 0.438 0.441 0.434 0.424 0.427

T (K)
Density (g/cm3)

1.05 1.096 1.15 1.2 1.25 1.3
220 10.3 6.76 6.07 6.22 7.25 10.7
230 5.46 4.04 3.59 3.60 4.40 5.72
240 3.19 2.76 2.41 2.58 2.82 3.59
250 2.19 1.87 1.76 1.87 2.08 2.43
260 1.60 1.44 1.37 1.42 1.55 1.83
270 1.25 1.14 1.10 1.14 1.28 1.42
280 0.994 0.947 0.914 0.968 1.01 1.18
290 0.829 0.800 0.785 0.825 0.892 1.02
300 0.721 0.716 0.691 0.731 0.767 0.880
310 0.622 0.615 0.607 0.630 0.685 0.781
320 0.549 0.552 0.547 0.585 0.623 0.689
330 0.490 0.500 0.500 0.529 0.574 0.623
340 0.458 0.458 0.473 0.486 0.528 0.589
350 0.427 0.417 0.430 0.456 0.488 0.539
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Table 4.5: VFT Fitting Parameters for Shear Viscosity η.
ρ(g/cm3) A(K) T0(K) B

0.85 320.3 171.4 -10.24
0.87 340 169.8 -10.28
0.9 301.6 179.3 -9.823
0.942 297.7 176.6 -9.695
0.983 306.6 169.2 -9.616
1.0 297.1 167.7 -9.51
1.05 309.5 157.3 -9.403
1.096 336.6 145.7 -9.358
1.15 287.5 150.9 -9.023
1.2 288.9 149.5 -8.782
1.25 277.4 153.4 -8.68
1.3 246.9 163 -8.382

Table 4.6: VFT Fitting Parameters for Diffusivity D.
ρ(g/cm3) A(K) T0(K) B

0.85 -506 150.8 -16.25
0.87 -453.1 158.3 -16.42
0.9 -444.9 162.2 -16.46

0.942 -427 161.6 -16.65
0.983 -475.4 149.7 -16.57
1.0 -513.5 142.8 -16.47
1.05 -549.1 129.4 -16.54
1.096 -549.2 122.6 -16.7
1.15 -554 118.7 -16.83
1.2 -530.3 120.2 -17.06
1.25 -486.9 128.1 -17.33
1.3 -390 144.8 -17.82

79



Table 4.7: VFT Fitting Parameters for Structural Relaxation Time τ .
ρ(g/cm3) A(K) T0(K) B

0.85 459.4 157.1 -8.206
0.87 440 160.3 -8.126
0.9 414.2 166.7 -8.036
0.942 401.3 165.2 -7.88
0.983 452.7 152.8 -7.962
1.0 463.9 148.5 -7.942
1.05 499.9 135.5 -7.902
1.096 523.5 126.3 -7.839
1.15 508.8 124.1 -7.637
1.2 503.1 123.6 -7.479
1.25 470.4 129.5 -7.226
1.3 431.2 138.5 -6.935

Table 4.8: VFT Fitting Parameters for Stress Relaxation Time τGK .
ρ(g/cm3) A(K) T0(K) B

0.85 275.1 175.5 -11.63
0.87 298.4 173.2 -11.74
0.9 278.7 180.9 -11.71
0.942 273.8 178.3 -11.65
0.983 280.7 171.3 -11.65
1.0 272.4 169.7 -11.58
1.05 285.5 159.4 -11.58
1.096 311.4 148 -11.62
1.15 270.9 152.5 -11.42
1.2 277.6 150.6 -11.39
1.25 270.3 154 -11.31
1.3 247.3 162.7 -11.15
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Appendix 4.B Error Bars for Viscosity Anomalous Region

The contents of this appendix is based on Appendix C of Victoria Hwang’s Princeton University

Senior Thesis “Viscosity Anomalies and Violations of the Stokes-Einstein Equation in Molecular

Simulations of Water”[64]. Please see Section 1.5 for a discussion of the collaboration on this study.

The densities simulated in this study range from 0.85 to 1.3 g/cm3. To check for the possibility

of cavitation at the lowest densities, we plot the system pressure as a function of density for a

temperature of 200 K, which is lower than the temperature range used throughout the rest of the

study (from 220 to 350 K). We observe a minimum in pressure around 0.88 g/cm3. Although, at

a fixed density, cavitation can be suppressed by an increase in temperature, the data points taken

along the 0.85 and 0.87 g/cm3 isochores are near the onset of becoming mechanically unstable, and

should be treated with precaution.

Because the data points from 0.85 and 0.87 g/cm3 are near the local viscosity maxima of Fig-

ure 4.6, we use three options to fit the data points to find the local maxima: including the data

at 0.85 and 0.87 g/cm3, excluding the 0.85 g/cm3 data only, and excluding both the 0.85 and

0.87 g/cm3 data(Figure 4.15). The values of the resulting viscosity maxima vary slightly between

the three options, which then results in slight variations in the shape of the dome of anomalies for

viscosity.

In Figure 4.15, we also compare the results of the domes obtained from fitting the raw data

versus smoothed data (obtained by using the VTF fits). In this case, the overall shape of the domes

does not change, but for each dome, the data points obtained from using the smoothed data have

much less noise. This confirms the validity of using VTF fits as a method to decrease the scatter of

data.

In Figure 4.7, we consolidate the three options to produce the locus of viscosity maxima: each

point represents the average value of the three approaches obtained from the smoothed data, and

the error bars correspond to the range of values obtained across the three approaches. These error

bars directly result from the uncertainty of the mechanical stability of the systems at 0.85 and

0.87 g/cm3.
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Figure 4.15: Three options for constructing the viscosity dome. Option 1 (a-c): Spline fits through
all the data (from 0.85 to 1.3 g/cm3). Option 2 (d-f): Spline fits excluding the data at 0.85 g/cm3.
Option 3 (g-i): Fifth-order polynomial fits excluding the data at 0.85 and 0.87 g/cm3. Panels (b,e,h)
show the domes found from the raw data, and panels (c,f,i) show the domes from the smoothed data.
The blue regions under the domes correspond to the anomalous viscosity behavior. The solid lines
are sixth-order (a,g) and eighth-order (d) polynomial fits. The dotted lines represent the estimated
shape of the dome at higher temperatures. The points on the left side of the domes correspond to
the set of local maxima of the η(T ) curves, while those on the right correspond to the set of local
minima.
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Chapter 5

Properties of Model Atomic

Free-Standing Thin Films

5.1 Introduction

The effect of interfaces on the structure, dynamics and thermodynamics of materials, including

supercooled liquids and glasses, is a subject of considerable technical and scientific interest[1]. Im-

portant applications of glassy materials, such as organic electronics[2], nanolithography[3], corrosion

prevention[4], gas separation[5], and novel nanocomposites[6–8] involve geometries such as supported,

free-standing, or confined films, and filler-bulk interfaces, with characteristic dimensions in the 1-

100 nm scale. The rational design of these materials and devices requires knowledge of properties

such as glass transition temperature[9, 10], physical aging[11], and gas permeation[12], and their un-

derlying basis in the microscopic structure and dynamics of the spatially heterogeneous nanoconfined

material.

Numerous studies have probed experimentally the interfacial and confinement-induced properties

of glass-forming systems (e.g., refs. 9, 13–23). This remains a very active area of investigation[24],

in part because of the interest generated by unresolved differences between the various measure-

ments (e.g., refs. 25–28). A noteworthy recent development is the discovery by Ediger and cowork-

ers that glass films with exceptional kinetic and thermodynamic stability can be formed by vapor

deposition[29–35]. Enhanced mobility at the free surface has been invoked as a key mechanism in

the formation of such stable glasses[29]. Following Ediger and coworkers’ discovery, stable thin film

glasses of toluene and ethylbenzene have also been formed by vapor deposition[36–38].
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From a theoretical perspective[39], the presence of interfaces, hence of imposed spatial hetero-

geneity, renders one of the major problems in contemporary condensed matter physics, namely the

glass transition, even richer and more challenging. Although some computational studies have ad-

dressed the effects of confinement and interfaces on the structure, dynamics and thermodynamics

of non-polymeric systems[40–45], the majority of investigations to date have focused on confined

polymers (e.g., refs. 46–58). Recently, a schematic facilitated kinetic Ising model representing a

thin film, its substrate, and a vapor phase, was shown to reproduce key experimentally-observed

characteristics of vapor-deposited glasses, including surface-enhanced relaxation kinetics, and the

existence of an optimum substrate temperature for stable glass formation[59].

Motivated by the problem’s inherent scientific interest, by the variety of intriguing experimental

observations, and in particular the recent findings of Ediger and coworkers on stable glass forma-

tion, and by the interesting theoretical predictions on the nature of the glassy surface[39], we have

undertaken a systematic computational investigation of the effects of interfaces and geometric con-

finement on the structure, dynamics and thermodynamics of glass-forming systems. In this chapter

we report our results on the simplest system, a free-standing thin film of an atomic glass-forming

mixture[60]. In Section 5.2 we describe our system and the numerical techniques employed in this

investigation. Results on the film’s structure, layer-by-layer dynamics, and energetics, including, im-

portantly, an analysis of minimum-energy configurations (inherent structures)[61–64], are presented

in Section 5.3. The major conclusions as well as suggestions for future work are the subject of the

concluding Section 5.4.

5.2 Methods

We study the well-known binary Lennard-Jones glass-forming mixture as parameterized by Kob

and Andersen[60], namely, a mixture of 80% A particles and 20% B particles, with parameters

εAA = 1.0, εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, and σAB = 0.8. Both types of particles

have the same mass, m, and interact via a Lennard-Jones potential Uαβ(r) = 4εαβ[(σαβ/r)
12 −

(σαβ/r)
6]. Thoughout this chapter, all quantities are expressed in reduced units: length in units

of σAA, temperature in units of εAA/kB, where kB is Boltzmann’s constant, and time in units of

(σAAm/εAA)
1/2.

In order to ensure continuity of the potential and its first two derivatives at the potential cutoff

(continuity needed for energy minimization calculations), we apply a shifted force correction whereby
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Figure 5.1: Snapshot of 4050 atoms in a 22.4×22.4×35.8 simulation box at T = 0.7. The simulation
box is stretched in the z direction so that the resulting film does not self-interact. A particles are
shown in blue, and B particles in red.

the force between any two particles, Fs(r) is given by:

Fs(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F (r) r < r1

F (r) + S(r) r1 ≤ r < rc.

0 rc ≤ r

(5.1)

Here, F (r) = −∂Uαβ(r)/∂r is the unshifted force, and S(r) is a third order polynomial that is

switched on between r1 and rc, subject to the constraints S(r1) = 0, S′(r1) = 0, S(rc) = −F (rc),

S′(rc) = −F ′(rc). Thus, Fs(r) and its first derivative are smooth and continuous everywhere, and

vanish at and beyond rc. For this study, we set r1 = 2.0σαβ and rc = 2.5σαβ for all interactions.

To simulate a film, we use a computational cell with periodic boundary conditions that is

stretched in the z direction. The dimensions of the box are Lx = Ly = 22.407, Lz = 35.8512.

We initialize the system by placing N = 4050 atoms in an fcc lattice of density 1.2 spanning the

xy plane, and centered in the z direction. The identity of a particle is selected at random, while

maintaining the overall 4 : 1 ratio of A to B particles. The simulation length along the z-axis is

chosen to be large enough such that the film does not interact with its periodic images in the z

89



direction (Figure 5.1). The velocity Verlet algorithm of numerical integration is applied, and the

molecular dynamics time step used is 0.002. The film is allowed to equilibrate for 2×105 time steps,

and a coordinate snapshot is taken every 5000 time steps thereafter. The entire simulation is run at

fixed particle number, total volume, and temperature (N, V, T ), with a Nosé-Hoover thermostat[65].

Our results indicate that some properties of the free standing film, such as the interior density at

equilibrium, do not depend strongly on the initialization density, and depend only on the tempera-

ture T . The maximum temperature that we can simulate before a significant portion of the particles

evaporate from the film is T = 0.9. In addition, for any given temperature, there exists a minimum

thickness, below which the system fails to form a film (Figure 5.2). We note that the fit line in

Figure 5.2 is only a guide to help choose initialization parameters. The precise conditions under

which a film is allowed to form is beyond the scope of this paper (the reader is directed to ref. 66 for

a comprehensive study on this topic). Here, we simply choose initialization parameters well inside

the existence region to ensure that the film maintains its integrity throughout the simulation.

Figure 5.2: Temperature and thickness ranges for stable and unstable film formations. The line is a
guide to the eye

Naturally, some of the atoms will leave the film and form a vapor phase in the course of the

simulation. As a convenient criterion for differentiating the vapor and liquid phases, we say that an

atom i belongs to the film if ui < −1, where ui =
1
2ΣjUαβ(rij) is the potential energy attributed to

an atom, i.e., for every pair interaction between two atoms, half of the potential energy is assigned

to one atom and half to the other. We note that this ui < −1 “in film” definition is simply a

convenient criterion to identify particles in the film. Indeed, no visually obvious vapor particles have
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Figure 5.3: Density profiles (both species included) for films of 4050 atoms equilibrated at various
temperatures. The hyperbolic tangent fit lines give four defining properties of the density profile:
the liquid density ρL, the vapor density ρV , the location of the center of the interface ze, and the
width of the interface d. The values of ρL and d are given in Table 5.1, as a function of temperature.

been observed to obey the “in film” criterion. Since the atoms of the film are only a subset of the

total atoms in the simulation box, the center of mass of the film is allowed to shift in the z direction.

The magnitude of this shift is on the order of σAA, and this shift must be subtracted during analysis

so that the location of the z = 0 plane coincides with the film’s center of mass.

Finally, we apply the Fletcher and Reeves[67] method of conjugate gradients to perform energy

minimization on each coordinate snapshot to study the underlying inherent structures embedded in

the film’s multidimensional energy landscape. The particles in the system are moved iteratively along

the gradient of the potential energy landscape until U(rN ), the potential energy as a function of the

system’s 3N translational degrees of freedom, is at a local minimum. The criterion for convergence

is satisfied when successive iterations reduce the energy per particle by less than 10−7.

5.3 Results and Discussion

5.3.1 Film Profile

After equilibration, the interior density of a film is dependent only on temperature, and not on the

initial density. This is due to the nature of a free-standing film, which is free to expand and contract

in the normal direction. The density profile at a given temperature is calculated by partitioning the

film into slices of thickness 0.5σAA from the center of the film, and then dividing the average number

of particles in each slice by the volume of the given slice (Figure 5.3). We perform the following
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T 0.5 0.6 0.7 0.8
ρL 1.15 1.09 1.04 0.98
d 0.82 0.94 1.07 1.25

Table 5.1: Fitted values of the interior density, ρL, and interface thickness, d, for free-standing films
of various temperatures, T .

hyperbolic tangent fit[68] to the interfaces of the film:

ρ(z) =
1

2
(ρL + ρV )− 1

2
(ρL − ρV ) tanh

(
2(|z| − ze)

d

)
, (5.2)

where ρL is the interior density of the liquid phase, ρV is the density of the vapor phase, ze is the

location where the density is the average of ρV and ρL, and d is a measure of the thickness of the

interface. Thus, the fitting parameters give, in principle, important properties of the film. However,

the fitted vapor density is invariably vanishingly small, and ze depends on the number of particles

used in the simulation. Accordingly, in Table 5.1 we report the values of the two physically-relevant,

temperature-dependent fitting parameters, ρL and d. As shown, with decreasing T , the interior

density increases while the thickness of the interface decreases. This is consistent with the simulation

results of a pure component Lennard-Jones film as described by Rowlinson and Widom[68].

Figure 5.4: Mole fraction of B atoms as a function of film depth z for films at various temperatures.
A hyperbolic tangent fit line similar to the form given by Eq. 5.2 is also shown. Species segregation
is evident, with a higher concentration of B atoms in the interior of the film.

Another important property is the distribution of the A and B particles as a function of film depth

(Figure 5.4). B atoms tend to concentrate towards the center of the film. Since A-A interactions are

not as energetically favorable as A-B interactions, the surface is enriched in A atoms. In this way,

the system minimizes the energetic cost of forming an interface, namely the loss of half the nearest-

92



Figure 5.5: The lateral (top) and normal (bottom) stress profiles plotted as a function of film depth
z for films of various temperatures. Here, positive values correspond to compression, and negative
values to tension.

neighbor interactions for each surface atom. The corresponding segregation of B atoms towards the

center preserves the energetically favored A-B interactions. As a consequence, the vapor phase is

dominated by A atoms.

5.3.2 Stress

Due to the film’s inhomogeneous geometry, the stress varies along the z direction. We consider the

pressure normal and parallel to the xy plane, P⊥ = Pzz and P ‖ = (Pxx + Pyy)/2, respectively,

and use the virial expression[69] to compute the three diagonal components of the stress tensor in

slices of thickness ∆z = 0.5σAA. Figure 5.5 shows the lateral and normal stress profiles for various

simulated temperatures. The lateral stress near the center of the film is small, but appreciable
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tensile lateral stresses develop in a sub-surface region of thickness ∼4σAA, beginning at a depth of

∼σAA beneath the film’s surface. The film’s subsurface region is also under tensile normal stress, but

appreciable normal compression develops in a region of thickness ∼2σAA located approximately σAA

away from the center. It can also be seen that the film’s center is under slight normal compression,

and that the magnitude of all stresses increases upon lowering the temperature. This indicates that

the predominant contribution to the film’s mechanical properties is configurational.

Figure 5.6: The lateral mean squared displacement for A (top) and B (bottom) particles, plotted
for various layers in a film of 4050 atoms equilibrated at T = 0.7.

5.3.3 Diffusion

Because of the film geometry, particle motion is anisotropic and must be analyzed in the normal

and lateral directions. In this study, we are primarily concerned with the lateral diffusion rate. The
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trajectory of the system was recorded for 5× 106 time steps, with new time origins t0 chosen every

500 time steps, to provide independent “experiments” over which to average. To calculate the lateral

diffusion coefficient, we partition the film into slices of thickness σAA starting from the center of the

film, and use the following modified Einstein diffusion equation:

D|| =
1

4
lim
τ→∞

d

dτ

〈
∆r||(τ)2

〉
slice

, (5.3)

where D|| is the lateral diffusion coefficient, and
〈
∆r||(τ)2

〉
slice

is the average mean squared dis-

placement of the particles that remain in the slice for the entire interval duration τ . For slices that

are contained in the interior of the film, the diffusion coefficient is determined by calculating the

slope of
〈
∆r||(τ)2

〉
on the interval τ ∈ [2, 12]. For slices at the interface,

〈
∆r||(τ)2

〉
does not become

clearly linear until τ > 6, and the slope is calculated on the interval τ ∈ [7, 12].

Figure 5.7: Lateral diffusion coefficients for films of 4050 atoms equilibrated at T = 0.5 and T = 0.7.
The diffusion rate at the surface is roughly three times that of the interior.

Figure 5.6 shows the layer-by-layer lateral diffusion of both type A and type B particles for a film

at temperature T = 0.7. We see that the lateral diffusion coefficient at the surface is roughly three

times greater than at the center of the film (Figure 5.7). Further insight can be gained by considering

a related quantity, the velocity autocorrelation function (Figure 5.8). A striking difference between

the dynamics of the atoms at the surface as compared to the interior is evident. In the interior, after

a short time, the atoms on average “rebound” in the opposite direction. Atoms at the surface, on

the other hand, on average do not experience this “rebound”. As a check of consistency, we also find

that both the diffusion coefficient and the velocity autocorrelation function at the center of the film

match essentially exactly the corresponding quantities computed for a bulk system with the interior
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Figure 5.8: Normalized velocity auto-correlation function (VACF) for A (top) and B (bottom)
particles plotted for various layers in a film of 4050 atoms equilibrated at T = 0.7. For both
types of particles, the motion near the surface differs from that in the interior of the film. In the
interior, the VACF clearly becomes negative, indicating that the atoms on average “rebound” in the
opposite direction after a short time. However, at the surface, the VACF decays monotonically to
zero, indicating that, on average, the atoms on the surface do not experience this “rebound”. This
behavior is qualitatively the same at all other temperatures examined.
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Figure 5.9: Average atomic equilibrium and inherent structure potential energy assigned to an atom,
as a function of the initial position before minimization, z0, for atoms of type A and type B. The
potential energy assigned to an atom is calculated by splitting pair interaction energies equally
between both participating particles.

film density and composition as parameters.

5.3.4 Inherent Structures

We perform an energy minimization[67] on each coordinate snapshot to study the underlying in-

herent structures (potential energy landscape)[61] of these films. Here, we will denote by z0 the z

coordinate of a particle before minimization. Figure 5.9 shows the average energy per particle before

minimization, u0, and the corresponding inherent structure quantity, uIS, both plotted against z0.

We also plot the difference uIS − u0 as a function of z0 (Figure 5.10). At the film interface, the

quantity |uIS − u0| is much larger than in the interior. In other words, on average, the particles at

the surface of the film descend more deeply down their portion of the energy landscape than particles

in the film’s interior. This is in agreement with theoretical predictions[39], and with the interpreta-

Figure 5.10: Average difference of the energy of an atom with respect to its corresponding inherent
structure energy, as a function of the initial position before minimization, z0, for atoms of type A
and B. It can be seen that atoms initially at the surface descend deeper down their portion of the
energy landscape upon energy minimization.
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tion of the molecular mechanisms underlying the enhanced stability of slow-grown vapor-deposited

glasses[29, 30]. It suggests that particles at the surface are able to explore the energy landscape

more efficiently, and points to the pronounced basin anharmonicity introduced by the presence of

free surfaces; if the system were harmonic, u0 − uIS would equal 3
2kBT , independent of z.

The difference |uIS−u0| is also a measure of how far energetically an atom is from its underlying

single-particle inherent structure energy. This can be interpreted as a measure of stability, i.e., a

region of lower |uIS−u0| is more stable, in the sense that its energy differs by a comparatively smaller

amount from that corresponding to the mechanically stable state (inherent structure). We see that

as we move away from the center, |uIS −u0| does not increase monotonically, and the region slightly

under the interface, where the absolute difference attains a minimum, is then the most energetically

stable region of the film. This non-monotonic behavior is observed at all temperatures examined.

We also plot the average displacement of atoms upon descending down the energy landscape

towards the closest local minimum. Figure 5.11 shows the average lateral and normal displacement

as a function of z0. In both directions, the average physical distance to the inherent structure

minimum increases as we move outward from the center of the film. This result, combined with

the increased diffusion rate at the surface, shows the more efficient landscape sampling at the free

surface.

5.4 Conclusions

In this chapter we have investigated the properties of an atomic free-standing film. The 80%(A)-

20%(B) binary Lennard-Jones glass-forming mixture considered here exhibits substantial composi-

tional inhomogeneity, with weaker A-A interactions favored at the free surface and stronger A-B

contacts favored inside the film. This preferential enrichment of surface and “bulk” in A and B,

respectively, reflects primarily the energetics of free surface stabilization. Over the range of temper-

atures explored herein, we observe a substantial enhancement of lateral mobility at the surface with

respect to the film’s interior. In agreement with theoretical predictions[39], particles residing at the

free surface are able to descend deeper down the energy landscape than particles in the film’s inte-

rior. Since the difference between equilibrium and inherent structure energy should be independent

of position for a harmonic system, this behavior is an indication of the strong basin anharmonicity

introduced by the free surfaces.

Our observations suggest several avenues for future inquiry. The possible relevance of our two

key observations (enhanced diffusion at the surface, deeper descent down the energy landscape for
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Figure 5.11: The average lateral and normal displacement that an atom undergoes during energy
minimization as a function of its initial position z0. It can be seen that atoms near the surface suffer
larger lateral and normal displacements upon energy minimization than their counterparts located
in the film’s interior.

surface particles) to the recent discovery by Ediger and coworkers of stable glasses formed by slow

vapor deposition[29–35] remains to be established. In light of recent reports of surface anisotropy

in vapor-deposited stable glasses[70], simulation of model molecular systems that are capable in

principle of adopting different orientations at the surface and in the bulk would be informative. The

substrate temperature was shown by Ediger et al.[30] to be an important variable for controlling

the stability of vapor-deposited glasses. The corresponding computational studies remain to be

done. Also of interest would be an investigation of the relative importance of surface mobility and

anharmonicity in causing surface particles to descend deeper down the energy landscape. Finally,

we have described surface particles as being able to sample the energy landscape more efficiently,

and providing a general quantitative definition of this idea would be useful.
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Chapter 6

Interface Induced Processes: A

Study of Free Standing Films

Composed of Rigid Molecules

6.1 Introduction

The effects of surfaces and interfaces, and of the inherent spatial heterogeneity that they create, on

the structural, dynamic and thermodynamic properties of amorphous materials, have been investi-

gated extensively both in experiments[1–12] and simulations[13–32]. One particularly noteworthy

recent experimental discovery is that thin glassy films with exceptional kinetic and thermodynamic

stability can be formed by vapor deposition[33–41]. Compared to ordinary glass of the same material

formed by bulk phase quenching, these vapor deposited films have higher density, lower enthalpy,

and a higher glass transition temperature. These films also exhibit enhanced mobility at the free

surface[42, 43] and anisotropic molecular packing[44, 45]. The underlying mechanism causing the

enhanced kinetic stability is still being actively researched[46–48]. In our prior computational study

of free-standing films composed of binary Lennard-Jones particles in Chapter 5[32], we observed a

substantial enhancement of lateral mobility at the surface with respect to the film’s interior, and

found that, upon potential energy minimization, particles residing at the free surface are able to

descend deeper down the energy landscape than particles in the film’s interior. Here, we present a

follow up study of free-standing films composed of a model molecular system, namely the Lewis and
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Wahnström model for ortho-terphenyl molecules.

Ortho-terphenyl (1,2-diphenylbenzene, OTP) is a well-known glass forming substance and has

been extensively studied[49–57] as a canonical example of a fragile system in the Angell strong-

fragile classification scheme[58]. For computational studies, Lewis and Wahnström (LW) introduced

a greatly simplified model of the full ortho-terphenyl structure[59–61], where each phenyl ring is

represented by a Lennard-Jones site, and the three sites constitute a rigid triangle. This model does

not crystallize easily[59, 60], and has subsequently been used in a number of computational studies

on glassy behavior[62–71]. We note, however, that Pedersen et al.[71] reported crystallization in this

model in µs-long simulations. In the present chapter, we introduce orientational degrees of freedom

in a simple and straightforward way by considering the LW-OTP system.

The additional rotational degrees of freedom inherent in a molecular system allow us to explore a

number of properties that are inaccessible to an atomic system, such as spatially-dependent molecu-

lar orientation and rotational diffusion. Furthermore, in our previous study presented in Chapter 5,

a binary Lennard-Jones system was chosen to avoid crystallization. This, however, resulted in a

significant compositional inhomogeneity across the film, with the larger and compositionally more

numerous particles enriched at the surface with respect to the mixture’s overall composition[32].

The inherent compositional difference of the surface compared to the interior complicates the under-

standing of the surface effects observed for these binary films: are these effects due to the presence

of an interface, or do they simply result from a difference in composition? In the present study, we

seek to clarify this question, among others, by considering films composed of only one species (the

LW-OTP molecule). Thus, by definition, the composition is uniform throughout, and any properties

that differ at the surface when compared to the interior can be attributed directly to the presence

of the interface.

In this chapter, we expand on the study presented in Chapter 5[32], and investigate the extent

to which the results from the binary Lennard-Jones films extend to a single-component molecular

system. In Section 6.2 we describe our molecular model and the numerical techniques employed

in this investigation. Results on the film’s structure, molecular orientational ordering, layer-by-

layer dynamics, and energetics, including an analysis of minimum-energy configurations (inherent

structures)[72–75], are presented in Section 6.3. The major conclusions as well as suggestions for

further investigation are the subject of the concluding Section 6.4.
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Figure 6.1: Comparison of the chemical structure of ortho-terphenyl (a) and the Lewis and Wahn-
ström model (b), where each phenyl ring is represented by a Lennard-Jones site. For panel (b), the
z axis points out of the page, and the origin coincides with the center of mass of the molecule. The
coordinate axes correspond to the three rotational axes of the molecule.

6.2 Methods

The molecular system used for this study is the Lewis and Wahnström model for ortho-terphenyl[61]

(LW-OTP). In this model, each phenyl ring is represented by a Lennard-Jones site (ε = 5.276 kJ/mol,

σ = 4.83 Å), and the three sites constitute a rigid isosceles triangle, with a vertex angle of 75◦ and

a bond length of 4.83 Å for the two equal sides (Figure 6.1). In order to ensure continuity of the

potential and its first derivative at a cutoff distance rc, we use a shifted force (sf) Lennard-Jones

potential for intermolecular interactions between “atomic” sites (force centers):

φsf (r) =

⎧⎪⎪⎨
⎪⎪⎩
φ(r) − φ(rc)− (r − rc)φ

′(rc) r ≤ rc

0 r > rc

, (6.1)

where φ(r) is the Lennard-Jones (12, 6) potential, and the cutoff distance used here is rc = 2.5σ.

For simplicity, each site is assigned the same mass m = 78 g/mol. The rigid bond constraints are

maintained by the SHAKE[76] algorithm. This model for OTP, while simplistic, allows us to study

films composed of simple rigid bodies with orientational degrees of freedom.

To simulate the free-standing film, we use a computational cell with periodic boundary conditions

that is stretched in the z direction, with dimensions (100 × 100 × 200 Å3). We consider two film
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thicknesses in this study: “thin” films composed of 1014 molecules (thickness ∼7σ), and “thick”

films composed of 2028 molecules (thickness ∼13σ). The simulation length along the z-axis is large

enough such that the film does not interact with its periodic images in the z direction. The entire

simulation is run at fixed particle number, total volume, and temperature (N, V, T ), with a Nosé-

Hoover thermostat[77]. To initialize these films, we first place an OTP molecule, by replication, on

each point of a 13×13×6 or 13×13×12 cubic lattice, respectively for thin and thick films, spanning

the entire xy plane and centered in the z direction. These lattice dimensions are chosen so that the

resulting spacings between molecules do not result in large repulsions. This crystal structure is then

allowed to relax, and the attractive forces between molecules result in a film-like structure. The

system is then equilibrated for 50 ns, after which a production run of 1 µs is used for analysis.

Across all simulations in this study, no molecules are ever observed to be ejected from the surface

of the film. Thus, the center of mass of the film remains fixed throughout a given simulation.

Because the LW-OTP model does not crystallize easily, we note that, when compared to our

previous study of atomic based films, we are able to simulate at a lower reduced temperature, T ∗ =

kBT/ε. The highest temperature used in this study, 300 K, corresponds to a reduced temperature

of 0.473, whereas the lowest reduced temperature used in the previous study[32] was 0.5.

6.3 Results and Discussion

6.3.1 Film Structure

We calculated the density profile using two different criteria: One, which we will refer to as the

“atomic density profile”, is based on the position of the individual atomic sites; the other, which we

will call the “molecular density profile”, is based on the position of the molecular center of mass. In

each case, we divide the film into 1 Å-thick slices in the z direction, and then count the resulting

number of atomic sites or molecular centers of mass in each slice, from which a mass density is

calculated. The red lines of Figure 6.2 show the atomic density profile for both thin and thick films

at T = 270 K and T = 300 K[78]. The atomic density is uniform throughout the interior of the film,

while across the interface it can be fitted to a hyperbolic tangent curve:

ρ(z) =
1

2
ρL

[
1− tanh

(
2(|z| − ze)

d

)]
. (6.2)

Equation 6.2 provides us with a set of parameters to characterize the physical properties of a film:

ρL represents the interior density, ze gives the location where the density decays to half the interior
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Figure 6.2: Density profiles for thick (a, b) and thin (c, d) films, at two different temperatures. The
red points, ρ, are calculated by counting the number of atomic sites within a given ∆z, while the
black points, ρcom result from counting the number of centers of mass. The red line is a hyperbolic
tangent fit of the form given by Eq. 6.2. The black line is a spline that serves as a guide to the
eye. The insets are close-ups of the interfacial region of each film. The data points in the insets are
averaged over the z direction symmetry of the film.

value, and d is a characteristic length that defines the width of the interface. The range described

by |z| ∈ [ze − d, ze + d] corresponds to regions of the film where the density profile decreases from

98.2% of the interior value to 1.8%; hence, we will define the width of an interface to be w = 2d, and,

because there is no vapor phase, we call the regions |z| > ze− d the “interfaces” of the free-standing

film. Accordingly, we will refer to the region |z| < ze − d, where the density remains essentially

constant, as the “interior” of the film. Table 6.1 lists the parameters ρL, ze, and d for both thick

and thin films at 270 K and 300 K. We note that, at constant temperature, adding molecules to a

film only changes the thickness of the interior, and does not appreciably change the interior density

or the thickness of the interface.

These atomic density profiles directly reflect the distribution of matter within the films, and are
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Film ρL(g/cm
3) ze(Å) d(Å)

Thick 270 K 1.096 35.981 4.352
Thin 270 K 1.094 18.047 4.336
Thick 300 K 1.078 36.615 4.933
Thin 300 K 1.075 18.362 4.861

Table 6.1: Fitted values of the interior density, ρL, location of the point where the density decreases
to half its bulk value, ze, and half interface thickness, d, for various free-standing films.

similar to the density profiles observed in previous studies[32, 79] of free-standing films consisting

of monatomic systems. Indeed, we can consider our molecular system as a set of interacting atoms,

with additional forces constraining the triplet of atoms that constitute a molecule. However, these

additional intra-molecular forces make the films appreciably cohesive, and no molecules escape the

film to form a vapor phase. This is in contrast to our purely atom-based film, where although at a

slightly higher reduced temperature, a measurable vapor phase was found to be present[32].

The black lines of Figure 6.2 show the molecular density profile, where the location of each

molecule is considered to be at its center of mass. The interface now exhibits significant damped

density oscillations. These oscillations, present in the molecular density profile, but not in the atomic

one, suggest orientational ordering at the film’s surface.

We now define the orientation of a particular molecule with respect to the film by the angle,

θ, between the unit vector normal to the plane containing the three atomic sites (n̂), and the unit

vector normal of the surface of the film, which in this case is the z direction. Thus, cos θ = n̂ · ẑ, and
θ ∈ [0, π/2]. With this definition, a value of θ = 0 indicates a molecule lying flat in the plane of the

film, while a value of θ = π/2 corresponds to a molecule oriented perpendicular to the film. If the

molecules have no orientational preference, such as in a bulk system, the probability distribution

function of the orientational angle θ is

Pbulk(θ) dθ =
2πsinθ dθ∫ π/2

0
2πsinθ dθ

= sinθ dθ. (6.3)

Thus, the expectation value of θ, for a system with no orientational bias, is then

〈θ〉bulk =

∫ π/2

0

θPbulk(θ) dθ =

∫ π/2

0

θ sinθ dθ = 1. (6.4)

For our systems, Figure 6.3 shows the average orientational angle of molecules for a given center-

of-mass position z. Once again, a damped oscillatory trend appears. Moving from the surface to the

bulk, the average angle alternates between overshooting and undershooting the average bulk value
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Figure 6.3: Profiles of the average value of the angle, θ, spanned by the unit vector normal to the
plane containing the three Lennard-Jones centers for a given OTP molecule, and the unit vector
normal to the film interface (ẑ). Data are shown for thick (a, b) and thin (c, d) films, at two
different temperatures. The bulk value, with completely random angular orientational preference,
corresponds to 〈θ〉bulk = 1. The insets are close-ups of the interfacial region of each film, and the
data points in the insets are averaged over the z direction symmetry of the film. The damped
oscillatory surface-induced ordering is evident.

of 1. These fluctuations correlate with the oscillations of the molecular density profile, and suggest

that a particular orientational ordering of molecules in a layer induces an opposite ordering in the

layers adjacent to it. In this case, at the surface of the film, the molecules experience intermolecular

attractive forces from only one direction, and are more likely to lie flat on the film surface, i.e., θ < 1.

The layer below instead has a preference to be orientationally biased in the perpendicular direction

(θ > 1), and the layer below that once again has a slight preference to lie flat (θ < 1), and so on.

This “surface induced ordering” is further illustrated in Figure 6.4, where we show a normalized
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Figure 6.4: Probability distribution contour plot for molecular orientations, P (θ, z) for thin (top)
and thick (bottom) films at T = 270 K. P (θ, z) is normalized with respect to a bulk distribution, i.e.,
P (θ, z) > 1 indicates an occurrence more likely than the bulk average, while P (θ, z) < 1 indicates less
likelihood of occurrence. While the surface regions [|z| > 13.6 Å(top), 31.6 Å(bottom)] vividly show
a molecular orientational preference, the areas of green in the center of the film [|z| < 13.6 Å(top),
31.6 Å(bottom)] suggest that the surface induces an ordering that penetrates deep into the film. The
contour plots at T = 300 K are qualitatively similar, although the contour lines are not as smooth
due to increased thermal fluctuations.
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probability distribution function, P (θ, z), defined by

P (θ, z) =
Pfilm(θ, z)

Pbulk(θ)
=

Pfilm(θ, z)

sinθ
, (6.5)

where Pfilm(θ, z) is the orientational probability distribution function at a given film depth z.

Pfilm(θ, z) is normalized on the interval θ ∈ [0, π/2] for any particular value of z, i.e., at a given film

depth z = z′, ∫ π/2

0

P (θ, z)
∣∣∣
z=z′

dθ = 1. (6.6)

The value of P (θ, z), when compared to unity, then directly reflects whether a particular value of θ

is more or less favored relative to an orientationally unbiased (bulk) system, for molecules located

at a depth of z. Note the alternating coloring as a function of z for fixed values of θ, which shows

the alternating orientational ordering preference of the molecules.

Based on the atomic density profile hyperbolic tangent fits, the films reach a bulk density at

|z| = ze − d, where the density profile begins to plateau. This corresponds to |z| ≈ 13.5 Å for thin

films and |z| ≈ 31.6 Å for thick films. Strikingly, the oscillations of the molecular density profile,

while most prominent at the interface of the film, continue in regions where the atomic density

essentially is constant. From the insets of Figure 6.2, these oscillations persist well into the interior

of the thin films, and are visible until roughly |z| = ze−4d ≈ 18 Å for the thicker films. This suggests

that the effects of the surface induced ordering can extend deep below the surface; if w = 2d is the

width of the interface, then the orientational oscillations are detectable until a depth of 1.5w into

the interior.

6.3.2 Stress

Similar to our previous study[32], we calculated the pressure normal and parallel to the xy plane,

P⊥ = Pzz and P ‖ = (Pxx + Pyy)/2, respectively, as a function of z. The atom-based virial

expression[80–82], which takes into account both intermolecular and intramolecular forces on each

atom, is used to compute the three diagonal components of the stress tensor in slices of thickness

∆z = 1 Å. Figure 6.5 shows the lateral and normal stress profiles for thin films at T = 270 K and

300 K. These stress profiles are similar to those of films composed of binary atomic Lennard-Jones

spheres[32]. Both the lateral and normal stresses predominantly occur at the interfaces, defined by

|z| > ze − d ≈ 13.6 Å for thin films. In particular, the region of appreciable tensile lateral stress

is nearly entirely contained within the two interfaces. The film’s interfaces are also under tensile
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Figure 6.5: The lateral (solid) and normal (dashed) stress profiles plotted as a function of film depth
z for a film of T = 300 K (black) and 270 K (red). Here, positive values correspond to compression,
and negative values to tension.

normal stress, but appreciable normal compression develops in a region closer to the center.

For a free-standing film perpendicular to the z axis, the surface tension γ can be expressed

as[83, 84]

γ =
1

2

∫ ∞

−∞
[P⊥(z)− P ‖(z)]dz, (6.7)

where 1/2 prefix arises due to each film having two interfaces. This results in a calculated surface

tension of 43.7 and 40.43 dyne/cm at 300 and 270 K respectively for the LW-OTPmodel. The surface

tension for real OTP, obtained by using a functional fit to experimental data[85], is 42.1 dyne/cm at

300 K. We note that the Lewis and Wahnström model for OTP, although greatly simplified, predicts

a surface tension that is with 5% of the experimental value.

The variation of stresses across the depth of the film indicates that the predominant contribution

to the film’s mechanical properties is configurational. The magnitude of all stresses also increases

upon lowering the temperature. The stress profiles for the thick films are similar to the thin ones,

with the only difference being an extended interior region where both the lateral and normal stresses

are negligible.

6.3.3 Dynamics

Due to the anisotropic nature of the film, particle motion differs in the normal and lateral directions.

In this study, we focus on the lateral translational diffusion, and on the rotational diffusion of each

molecule, both as a function of zcom, where zcom is the z value of the center-of-mass location of a
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Figure 6.6: The lateral mean squared displacement, for a thin film equilibrated at T = 300 K for a
representative set of z values (in Å).

given molecule. To calculate the lateral translational center-of-mass diffusion, D|| , we define the

diffusion coefficient with the following modified Einstein diffusion equation:

D|| =
1

4
lim
τ→∞

d

dτ

〈
∆r||(τ)2

〉
slice

. (6.8)

〈
∆r||(τ)2

〉
slice

is the mean squared displacement of the particles that remain “in slice” after an

interval duration of τ . Here, the “slice” condition means that the center of mass of a given molecule,

at the end of the interval under consideration, is within a vertical displacement of 2 Å of its initial

position, i.e., |zi,com(t) − zi,com(t0)| < 2 Å. With this definition, a molecule is allowed to leave a

given slice and return later. The resulting mean squared displacement trajectories are then averaged

over bins of ∆z = 1 Å. Figure 6.6 shows an example of the resulting mean squared displacement

trajectories for a representative set of values of z. The lateral translational diffusion coefficient is

then calculated from the slope of the region where
〈
∆r||(τ)2

〉
becomes linear. For all mean squared

displacement trajectories, the time interval used to calculate these linear fits is t ∈ [80, 120] ps.

Figure 6.7 shows the resulting diffusion coefficients as a function of z. As with the previous

atomic system study[32], the molecules at the surface are more mobile than those in the bulk. In

this case, the surface molecules have a diffusivity that is eight times that of the bulk at T = 300 K,

and eighteen times the bulk at T = 270 K (compared to three times as much in the atomic case). As

we approach the surface from the center of the film, the lateral diffusivity begins to slowly increase

near z = 6 Å, and appreciably increase near z = 11 Å. When we compare z dependence of the lateral

diffusion coefficients to the atomic density profile plots from the previous section, the increase in
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Figure 6.7: Lateral diffusion coefficients for a film equilibrated at T = 300 K (closed circles, solid
line) and T = 270 K (open circles, dashed line). The diffusion rate at the surface is roughly eight
times that of the interior at 300 K, and eighteen times the corresponding interior value at 270 K.
The lines are guides to the eye.

diffusivity occurs well within the interior region of the film (defined by |z| < ze = d ≈ 13.6 Å), and

where the density still remains constant. This again shows that surface induced effects can extend

far below the interface; in this case, molecules have an appreciable increase in mobility even in the

bulk-like density regions of the film.

We can further investigate the mobility of the molecules by calculating the rotational diffusion

coefficient using an Einstein formulation similar to the translational diffusion equation[67]:

Dα
r =

1

2
lim
τ→∞

d

dτ

〈
∆ϕα(τ)2

〉
slice

, (6.9)

where α ∈ [x, y, z] corresponds to the three principal axes of rotation in the molecular frame (Fig-

ure 6.1 shows how the axes of rotation are defined). ϕα(τ) represents the integral of the rotations

a molecule undergoes in time τ , and is calculated by summing the angular displacements about

each axis of rotation between successive time steps. With this convention, we do no apply the 2π

rotational periodicity, i.e., one full rotation about an axis corresponds to an angular displacement

of 2π instead of 0. Using a similar “slice” constraint as for translational diffusion, we can then plot

the resulting rotational mean squared displacements (Figure 6.8) and calculate the corresponding

rotational diffusion coefficients (Figure 6.9). Note that the axis with the largest rotational diffusion

rate, the y axis, corresponds to the one with the smallest moment of inertia. Overall, we see that

rotational diffusion is also much higher at the surface than in the interior, further demonstrating

that surface molecules have higher mobility than those in the bulk.
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Figure 6.8: Rotational mean squared displacement, for a thin film equilibrated at T = 300 K for a
representative set of z values (in Å).
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Figure 6.9: Rotational diffusion coefficients for a film equilibrated at T = 300 K (closed circles, solid
lines) and T = 270 K (open circles, dashed lines) as a function of film depth. The three principal
axes of rotation, x (black), y (red), and z (blue), are defined in Figure 6.1. The lines are guides to
the eye.

At any given film depth, as the temperature is lowered, both translational and rotational diffu-

sivity decrease. This is simply a result of reduced thermal fluctuations. However, when we scale each

diffusion coefficient to the corresponding value in the center of the film (Figure 6.10), we see that

the diffusivity at the interface relative to the interior instead becomes greater as the temperature

is decreased. Thus, this mobility enhancement due to the presence of an interface, when defined

relative to the corresponding interior value, increases upon cooling.

Figure 6.10: Translational (squares) and rotational (circles) diffusion coefficients scaled to their
corresponding values at the center of the film, for films equilibrated at T = 300 K (filled symbols,
solid lines) and 270 K (open symbols, dashed lines).

We also note that all the diffusion coefficients increase at roughly the same rate in the interior of
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the film, and are thus coupled. However, as we approach the interfacial region (|z| > 13.6 Å) from the

interior, the translational diffusion coefficients increase at a much faster rate than the corresponding

three rotational diffusion coefficients. This indicates a decoupling of the rotational and translation

motion, and suggests that in addition to being spatially heterogeneous, the interfacial region and

the interior of a film are also inherently dynamically heterogeneous.

Although Figures 6.7, 6.9, and 6.10 show the translational and rotational diffusion coefficients

for thin films composed of 1014 molecules, these figures are also representative for the thick films

composed of 2028 molecules. At constant temperature, an increase in thickness does not appreciably

change the interfacial region of a film. Because the change in diffusivity, across the depth of a film,

occurs at or near the interface, corresponding plots for a thicker film simply show an extended

constant interior region where the diffusivity reaches the bulk limit, while the interfacial region is

quantitatively similar to that of the thin films.

6.3.4 Inherent Structures

For each film, we performed an energy minimization[86] on 7000 coordinate snapshots, each spaced

50 ps apart, to study the underlying inherent structures (potential energy landscape minima)[72] of

these films. For each snapshot, we apply the Fletcher and Reeves[86] method of conjugate gradients.

The force and torque of each molecule are iteratively recalculated as the molecules are moved and

rotated along the gradient of the film’s 6N -dimensional energy landscape. This process is continued

until a minimum is reached; the criterion for convergence is when successive iterations reduce the

system energy by less than one part in 1012.

We define ui =
1
2Σjφαβ(rij) as the potential energy attributed to an atom, i.e., for every pair

interaction between two atoms, half of the potential energy is assigned to one atom and half to the

other. We will also denote by z0 the z coordinate of a particle before minimization. Similarly, let

u0 denote average potential energy per atom before minimization, while uIS is the corresponding

inherent structure quantity. We plot the difference uIS −u0 as a function of z0 (Figure 6.11). These

results are analogous to those of the binary Lennard-Jones atomic films[32]. At the film interface,

the quantity |uIS − u0| is much larger than in the interior. In other words, on average, the particles

at the surface of the film descend more deeply down their portion of the energy landscape than

particles in the film’s interior. This is in agreement with theoretical predictions[87], and with the

interpretation of the molecular mechanisms underlying the enhanced stability of slow-grown vapor-

deposited glasses[33, 34]. It further suggests that particles at the surface are able to explore the
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Figure 6.11: Average difference of the energy of an atom with respect to its corresponding inherent
structure energy, as a function of the initial position before minimization, z0, for thin (a) and thick
(b) films equilibrated at T = 300 K and 270 K. Note that uis − u0 is negative, thus |uis − u0| is
greatest at the surface, which indicates that the molecules initially at the surface descend deeper
down the energy landscape upon energy minimization.

energy landscape more effectively, and points to the pronounced basin anharmonicity introduced

by the presence of free surfaces; if the system were harmonic, u0 − uIS would equal 3
2kBT on a

per-particle basis, independent of z.

The difference |uIS−u0| is also a measure of how far energetically an atom is from its underlying

inherent structure energy. This can be interpreted as a measure of stability, i.e., a region of lower

|uIS − u0| is more stable, in the sense that its energy differs by a comparatively smaller amount

from that corresponding to the mechanically stable state (inherent structure). We see that as we

move away from the center, |uIS − u0| does not increase monotonically, and near the boundary of

the film interior and the film interface (|z| ≈ 13.6 Å), there is a notable minimum in the absolute

difference. In this interpretation, this region is then the most energetically stable region of the film.

This non-monotonic behavior, first observed in our previous study of atomic based free-standing

films[32], and now reproduced for a molecular system, suggests that this is a surface-induced effect,

largely insensitive to system composition.
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6.4 Conclusions

In this chapter, we investigated the properties of films composed of model rigid molecules. This

project complements an earlier study of thin films composed of atomic particles. We used a three

site model of OTP constrained by rigid bonds. Compared to the atomic binary Lennard-Jones case

of Chapter 5[32], the films are more cohesive, with no molecules ever being ejected into the vapor

phase at T ≤ 300 K. We do, however, observe a higher mobility of the molecules near the surface

of the film when compared to the bulk. Furthermore, as we approach the surface from the bulk, the

rate of increase in translational and rotational diffusivity become decoupled, suggesting the presence

of dynamic heterogeneities[88] in the system. We also observe a similar inherent structure energy

difference profile when compared to the binary Lennard-Jones study, which suggests that particles

residing at the free surface are able to descend deeper down the energy landscape than particles in

the film’s interior, and indicates the strong basin anharmonicity introduced by the free surfaces.

One notable different feature with respect to the atomic study is the dampened oscillatory

center-of-mass density profile. This oscillatory behavior is also evident in the average orientation of

molecules within the film. Given a characteristic interfacial width w, the orientational oscillations

are noticeable until a depth of 1.5w into the film’s interior. This strongly suggests that the orienta-

tional ordering of molecules, while induced by the presence of an interface, extends well below the

interface.

It would be interesting to investigate whether this “sub-surface region” of surface-induced order-

ing, and the decoupling of translation and rotational diffusion, appear in films composed of other

non-spherical molecules, such as rod-like molecules or chains. Additionally, it would be useful to

understand how this orientational ordering applies to surface effects observed experimentally. Fi-

nally, most experiments are conducted on supported films, whereas our simulations have so far

explored free-standing films. We believe it is important to understand the effects of a substrate on

the dynamic and structural phenomena reported here and in the previous chapter[32].
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Chapter 7

Conclusions

In this dissertation, we examined a number of model supercooled and glass-forming systems. The first

three studies focused on isotropic systems, and investigated the bulk thermodynamic and dynamic

properties of different models: Chapter 2 presented a family of systematically softened potentials

based on the well-known Lennard-Jones potential; Chapter 3 provided an analysis on the validity

of using relaxation times as a substitute for viscosity when studying Stokes-Einstein violation in

simulations; and Chapter 4 investigated the viscosity properties of SPC/E water in the low temper-

ature liquid regime. In contrast, the last two studies focused on the properties of free-standing films:

Chapter 5 considers films composed of binary Lennard-Jones atoms, while the films of Chapter 6

consist of Lewis and Wahnström ortho-terphenyl molecules. In this concluding chapter, we again

summarize the main conclusions of each of these studies, and provide suggestions for future work.

Note that the contents of the following sections are the same as the concluding sections in each of

the proceeding chapters, and these conclusions are provided here for the convenience of the reader.

7.1 A Family of Systematically Softened Potentials

In Chapter 2 we investigated numerically the structural, thermodynamic and dynamic properties of

a family of potentials of variable softness, and fixed well depth and well depth location. In order to

explore the low-temperature non-crystalline behavior we considered, for each value of the repulsive

exponent, a Kob-Andersen glass-forming binary mixture[1]. Simulations were conducted at a single

density, chosen to be high enough to prevent cavitation even for the softer version of the potential

investigated here.

Liquid structure, as described by the pair correlation functions, is only moderately sensitive to
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constrained variations in softness, and inherent structure radial distribution functions are remark-

ably insensitive to such a perturbation. In sharp contrast, both dynamics and thermodynamics

exhibit marked sensitivity to softness. Upon decreasing the repulsive exponent from 12 to 7, the

translational diffusion coefficient increases by as much as two orders of magnitude, and liquids inter-

acting via softer potentials remain diffusive down to appreciably lower temperatures. The average

configurational energy per particle is larger in magnitude for the softer (n = 7) equilibrium liquid

mixture than for the Lennard-Jones (n = 12) counterpart by more than two full well depths, reflect-

ing the progressively stronger attractions that ensue upon constrained softening, while satisfying the

fixed well depth and location constraints (Figure 2.1). Accordingly, the average inherent structure

energies are appreciably more negative for the softer mixtures. The lowest-energy mechanically sta-

ble packings (inherent structures) that we were able to form, corresponding to the softer extreme

considered here (n = 7), possess on average an additional cohesive energy of roughly 1.7 well depths

per particle relative to their n = 12 counterparts (Figure 2.5). This is a consequence of the stronger

attractive energies (more negative attractive tails) at separations greater than the well depth that

arise as a result of softening.

Progressive softening also results in an increase in entropy, a decrease in the Kauzmann temper-

ature, and a marked extension towards lower temperatures of the conditions at which equilibrium

liquid behavior can be observed. Constrained softening, in other words, leads to enhanced entropy

and mobility, more stable particle packings, and diffusive behavior at lower temperatures. We find

only a modest increase in fragility upon softening, and in order to uncover this trend it is necessary

to use both extrapolated relaxation times and extrapolated characteristic temperatures. This points

to the challenge of calculating fragilities by molecular-based computer simulation, a challenge that

originates with the difficulty of sampling low enough temperatures.

The rich behavior identified in the course of this research suggests several directions for future

work. In light of the contrast of our results with experimental observations for colloidal particles[2]

in which softening leads to a progressive decrease in fragility, it would be interesting to extend the

present fragility calculations to other densities. This would allow exploration of regimes in which

particles sample different regions of their respective pair potentials. More generally, extending

the present structural, dynamic and thermodynamic calculations to a broader range of conditions,

including low-density states leading to cavitation in the softer models (Figure 2.2), is important in

order to acquire a fuller picture of this family of potentials. It is also of interest to explore the

possibility of scaling behavior, whereby physical properties for the various models may be collapsed

into a single curve by appropriate scaling of temperature and/or density. The pronounced sensitivity
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of inherent structure energy to softness (Figure 2.5) may be of relevance in optimization problems,

where strategies involving appropriately-chosen cycles of softness perturbations might be useful for

locating deep potential energy minima. Other families of models can be formulated, with an eye to

introducing similar systematic perturbations of alternative aspects of the interaction potential, such

as attractions.

7.2 The Stokes-Einstein Equation in Computational Studies

In Chapter 3, we have examined three variants of the Stokes-Einstein ratio, namely Dη/T , Dτ , and

Dτ/T , for model atomic and molecular systems, over a broad range of temperatures and densities.

For the family of atomic binary systems of variable softness investigated, with τ a structural

relaxation time, the ratio Dτ/T , based on the approximation τ ∼ η, increases upon cooling much

faster than the true Stokes-Einstein ratio Dη/T . The product Dτ , based on the approximation

τ ∼ η/T , exhibits negative Stokes-Einstein violation at moderate temperatures, approaching the true

Stokes-Einstein ratio as the repulsive component of the potential becomes progressively steeper. The

increase upon cooling exhibited by the three Stokes-Einstein variants occurs at progressively higher

temperatures as the fluids are compressed. As can be seen from Figures 3.1 and 3.2, the Stokes-

Einstein ratioDη/T is constant, to a very good approximation, over a broad range of thermodynamic

conditions.

The molecular system we studied, the Lewis-Wahnström model of OTP, exhibits similar behavior,

with one important difference: the product Dτ is a reasonably accurate proxy for the Stokes-Einstein

ratio across the conditions investigated here, and does not show negative violation of Stokes-Einstein

behavior. This is consistent with the trend observed in the atomic systems, where the approximation

τ ∼ η/T gets better as the close range repulsion becomes steeper, since this OTP model consists

of three Lennard-Jones sites connected by rigid bonds. For this system, too, Dη/T = constant is

satisfied over an appreciable range of thermodynamic conditions: 300 ≤ T ≤ 400 K at 1.0746 g/cm3

and 280 ≤ T ≤ 400 K at 1.0578 g/cm3.

Different choices of relaxation times can affect the behavior of the Stokes-Einstein variants in

non-trivial ways. In this work we considered two relaxation times. One, denoted simply by τ in this

paper, is a structural relaxation time obtained from the decay of the self-intermediate scattering func-

tion; the other, τGK , is a stress relaxation time obtained from the Green-Kubo stress autocorrelation

integral. While both relaxation times lead to similar behavior for the atomic binary mixtures, espe-

cially for the softer potentials, for the OTP system τGK leads to negative Stokes-Einstein violations
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in DτGK , in contrast to Dτ which does not show negative violations. Furthermore, the relationship

between these two relaxation times displays a non-trivial temperature dependence, especially at low

temperatures.

The often-invoked simple proportionality between viscosity and relaxation time is predicated

on the assumed constancy of the instantaneous shear modulus, G∞. Our numerical study of this

quantity based on the Green-Kubo formalism reveals an appreciable temperature dependence for

the two classes of systems investigated here, and G∞ increases with temperature for both the atomic

binary mixtures and OTP.

In this study, we have explored the effects of temperature changes under constant density con-

ditions. Most experiments, on the other hand, are performed under isobaric conditions. It would

be interesting to investigate numerically the extent to which the main observations reported here

remain valid under the more experimentally-relevant isobaric conditions. Recent experiments sug-

gest that in some glass-forming alloys the product Dη is constant while Stokes-Einstein violation

occurs[3]; it would be interesting to explore computationally the extent to which this scaling applies

more broadly to other systems.

The present calculations suggest that commonly-invoked assumptions, such as τ ∼ η and τ ∼
η/T , deserve critical scrutiny when used to construct Stokes-Einstein variants. The behavior of

Dη/T , Dτ and Dτ/T needs to be investigated for a wider range of systems than the two considered

here, and across as broad a range of temperatures and densities as possible. It is also of interest to

explore numerically the behavior of different relaxation times, only two of which have been considered

here. It is hoped that such systematic numerical investigation will lead to a deeper understanding

of relaxation processes in liquids at both supercooled and ambient conditions. Our approach in this

work has been phenomenological. Numerical studies of the microscopic mechanisms underlying the

rich behavior presented here constitute a natural direction for future studies.

We wish to stress in closing the remarkably broad range of conditions across which the Stokes-

Einstein equation, meant to apply to supermolecular objects suspended in a fluid continuum, is also

valid at the molecular level.
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7.3 Anomalies of Water: Viscosity and Stokes-Einstein Vio-

lation

We presented in Chapter 4, to our knowledge, the first comprehensive analysis of viscosity for

SPC/E water over a wide range of thermodynamic conditions. At low enough temperatures, we

observe anomalous behavior, where viscosity decreases upon compression. When mapped onto the

(ρ, T ) plane, the region of the viscosity anomaly is comparable to that of diffusivity, and both of

these regions are contained within the region of structural anomalies. This suggests that in the

anomalous region for viscosity and diffusivity, the mobility increase is caused by pressure-induced

distortions of the hydrogen bond network.

We also investigated the Stokes-Einstein behavior for this system. Similar to many liquids, at

higher temperatures, SPC/E water is well described by the Stokes-Einstein equation, while at low

enough temperatures strong violation is observed. However, the temperature at which violation

occurs exhibits anomalous behavior, as for the density range 0.9 ≤ ρ ≤ 1.15 g/cm3, the onset

temperature of violation decreases upon compression.

We observe anomalous behavior for both the structural and stress relaxation times, which occurs

at similar state conditions as the viscosity and diffusivity anomalies. When used as a substitute to

study Stokes-Einstein behavior, the relaxation times based upon τ ∝ η/T and τGK ∝ η are reason-

able approximations for η at high and low temperatures, respectively. However, neither structural or

stress relaxation times adequately describe the true Stokes-Einstein behavior over the full tempera-

ture range explored in this investigation. We also find that no trivial proportionality exists between

τ and τGK . These results reinforce those of Chapter 3, and further demonstrate that the structural

relaxation time and the stress relaxation time are distinct quantities, and are not equivalent or

interchangeable.

For our study, we used the SPC/E model of water, one of the many molecular water models

currently available for use in computer simulations. While SPC/E shows prominently the struc-

tural, kinetic, and thermodynamic anomalies of water, it would be useful to compare the anomalous

domains of various water models. When considered together with the results of the earlier study

by Errington and Debenedetti[4], the region of anomalous behavior for kinetic processes (viscosity,

diffusivity, and relaxation times) is consistently contained within the region of structural anomalies,

suggesting that the anomalous increase in mobility upon compression is the result of the distortion

of the tetrahedral hydrogen bond structure. Although we can understand the relationship between

the structural and kinetic anomalies, the relationship of these anomalies to the corresponding ther-
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modynamic anomaly is a topic of active ongoing investigation[5], and provides a natural direction

for future studies.

7.4 Model Free-Standing Films

In Chapters 5 and 6 we investigated the properties of free-standing films. The 80%(A)-20%(B) binary

Lennard-Jones glass-forming mixture considered in Chapter 5 exhibits substantial compositional

inhomogeneity, with weaker A-A interactions favored at the free surface and stronger A-B contacts

favored inside the film. This preferential enrichment of surface and “bulk” in A and B, respectively,

reflects primarily the energetics of free surface stabilization. Over the range of temperatures explored

herein, we observe a substantial enhancement of lateral mobility at the surface with respect to the

film’s interior. In agreement with theoretical predictions[6], particles residing at the free surface are

able to descend deeper down the energy landscape than particles in the film’s interior. Since the

difference between equilibrium and inherent structure energy should be independent of position for

a harmonic system, this behavior is an indication of the strong basin anharmonicity introduced by

the free surfaces.

In Chapter 6, we investigated the properties of films composed of model rigid molecules. We used

a three site model of OTP constrained by rigid bonds. Compared to the atomic binary Lennard-

Jones case[7], the film is more cohesive, with no molecules ever being ejected into the vapor phase

at T ≤ 300 K. We do, however, observe a higher mobility of the molecules near the surface of

the film when compared to the bulk. Furthermore, as we approach the surface from the bulk, the

rate of increase in translational and rotational diffusivity become decoupled, suggesting the presence

of dynamic heterogeneities[8] in the system. We also observe a similar inherent structure energy

difference profile when compared to the binary Lennard-Jones study, which again suggests that

particles residing at the free surface are able to descend deeper down the energy landscape than

particles in the film’s interior. One notable different feature with respect to the atomic study is

the dampened oscillatory center-of-mass density profile. This oscillatory behavior is also evident in

the average orientation of molecules within the film. Given a characteristic interfacial width w, the

orientational oscillations are noticeable until a depth of 1.5w into the film’s interior. This strongly

suggests that the orientational ordering of molecules, while induced by the presence of an interface,

extends well below the interface.

It would be interesting to investigate whether this “sub-surface region” of surface-induced order-

ing, and the decoupling of translation and rotational diffusion, appear in films composed of other
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non-spherical molecules, such as rod-like molecules or chains. Additionally, it would be useful to

understand how this orientational ordering applies to surface effects observed experimentally. Fi-

nally, most experiments are conducted on supported films, whereas our simulations have so far

explored free-standing films. We believe it is important to understand the effects of a substrate on

the dynamic and structural phenomena reported in these two chapters.

132



Bibliography

[1] W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).

[2] J. Mattsson et al., Nature 462, 83 (2009).

[3] J. Brillo, A. I. Pommrich, and A. Meyer, Phys. Rev. Lett. 107, 165902 (2011).

[4] J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001).

[5] J. R. Errington, P. G. Debenedetti, and S. Torquato, Phys. Rev. Lett. 89, 215503 (2002).

[6] J. D. Stevenson and P. G. Wolynes, J. Chem. Phys. 129, 234514 (2008).

[7] Z. Shi, P. G. Debenedetti, and F. H. Stillinger, J. Chem. Phys. 134, 114524 (2011).

[8] M. S. Shell, P. G. Debenedetti, and F. H. Stillinger, J. Phys. Condens. Matter 17, S4035 (2005).

133



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Helvetica
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


