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Abstract

This thesis develops a non-Archimedean analog of the usual Archimedean anti-

de Sitter (AdS)/conformal field theory (CFT) correspondence. AdS space gets

replaced by a Bruhat–Tits tree, which is a regular graph with no cycles. The

boundary of the Bruhat–Tits tree is described by an unramified extension of

the p-adic numbers, which replaces the real valued Euclidean vector space on

which the CFT lives. Conformal transformations on the boundary act as linear

fractional transformations.

In the first part of the thesis, correlation functions are computed in the simple

case of massive, interacting scalars in the bulk. They are found to be surprisingly

similar to standard holographic correlation functions down to precise numerical

coefficients, when expressed in terms of local zeta functions. Along the way,

we show that like in the Archimedean case, CFT conformal blocks are dual to

geodesic bulk diagrams, which are bulk exchange diagrams with the bulk points

of integration restricted to certain geodesics. Other than these intriguing sim-

ilarities, significant simplifications also arise. Notably, all derivatives disappear

from the operator product expansion, and the conformal block decomposition

of the four-point function. Finally, a minimal bulk action is constructed on the

Bruhat–Tits tree for a single scalar field with nearest neighbor interactions, which

reproduces the two-, three-, and four-point functions of the free O(N) model.

In the second part, the p-adic O(N) model is studied at the interacting fixed
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point. Leading order results for the anomalous dimensions of low dimension

operators are obtained in two separate regimes: the ε-expansion and the large

N limit. Remarkably, formulae for anomalous dimensions in the large N limit

are valid equally for Archimedean and non-Archimedean field theories, when ex-

pressed in terms of local zeta functions. Finally, higher derivative versions of

the O(N) model in the Archimedean case are considered, where the general for-

mula for anomalous dimensions obtained earlier is still valid. Analogies with

two-derivative theories hint at the existence of some interesting new field theories

in four real Euclidean dimensions.
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Chapter 1

Introduction

1.1 An invitation to the thesis

The Standard Model of particle physics and Einstein’s theory of General Rela-

tivity are the two theoretical pillars of physics which describe the four known

fundamental forces of Nature: electromagnetism, weak interactions, strong in-

teractions, and gravity, and all observed particles. While the Standard Model

is a quantum field theory governed by the gauge group SU(3) × SU(2) × U(1),

which describes the quantum phenomena associated with electromagnetism, weak

and strong interactions at small length scales, Einstein’s General Relativity is a

classical theory of gravity based on the principle of general covariance, describ-

ing gravitation at large length scales. Both these theories have found incredible

success with experiments. The Standard Model (see [1] for the latest survey of

the theory), which is currently being tested at the Large Hadron Collider (LHC)

at CERN, has exceeded all expectations and shown exceptional agreement with

experimental observations over the past few decades, with a recent high point

the discovery of the Higgs boson five years ago [2, 3]. General Relativity too has

survived intense experimental scrutiny both in the weak field regime, as well as
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the strong field, highly non-linear regime, which most recently is being probed

by studying black hole mergers and the direct detection of gravitational waves

generated in such events [4, 5, 6] (the latest experimental confirmation coming

as recently as June 2017). While individually very successful,1 these theoretical

frameworks remain disconnected from each other, and have so far evaded all at-

tempts at a unification, leading to a consistent theory of quantum gravity. How

then does gravity behave at the quantum level? This is one of the biggest and

deepest open problems in theoretical physics at the moment. Experiments too

have been unable to provide direction, as experimental signatures of quantum

gravity have stayed out of reach thus far. On the one hand the LHC continues to

carefully probe the Standard Model and physicists await experimental clues on

what lies beyond the Standard Model. On the other, several recent experiments

in cosmology are probing early Universe physics, where quantum gravity effects

may turn out to play an important role. I remain hopeful that breakthroughs

in experiments in the near future will provide us theoretical directions and shed

light on new, unexplored ideas, and hints about quantum gravity.

Precision tests of the Standard Model at particle accelerators require the

computation of cross-sections of many scattering processes, so that theoretical

predictions can be compared with experimental observations. This way mis-

matches signalling deviations from the Standard Model can be uncovered with

sufficient statistical significance. However, many scattering processes at energy

scales of interest involve the strong interactions, and computations involving the

strong force become incredibly unwieldy at low enough energies of interest, due

to that fact that quantum chromodynamics (QCD), the theory of strong inter-

actions becomes very strongly coupled and goes outside the regime of validity of

1Some experimental results point already to the fact that these theories are incomplete: the
detection of neutrino masses [7, 8, 9], and the lack of understanding of dark matter and dark
energy which together combine to form 95% of the Universe, to name a few.
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perturbation theory. This serves as a major obstacle in probing the strong inter-

actions sector of the Standard Model. Thus finding new computational tools and

techniques for predicting scattering amplitudes of processes at strong couplings

is desirable.

Two related theoretical revolutions of the last few decades, namely string

theory and the gauge/gravity duality, have led to incredible insight into under-

standing the dynamics of quantum field theories at strong coupling, as well as

quantum gravity. These advances form the backbone of this dissertation. Essen-

tially, string theory describes the quantum mechanics of extended objects, the

simplest ones being one-dimensional “strings”. Historically, string theory was

born as a candidate theory of strong interactions [10], but found limited suc-

cess and was abandoned in favor of QCD. However, soon it was realized that the

framework of string theory allowed the construction of mathematically consistent

quantum theories of gravity [11, 12, 13]. Unfortunately, so far they have not had

success in describing our physical world — for instance consistent theories live in

spacetimes with the number of dimensions higher than the observed four. It is not

clear precisely how the extra dimensions should be compactified or otherwise got-

ten rid of so as to describe our four-dimensional world. Additionally, the theories

involve supersymmetry, and particles with quantum numbers not yet observed in

any experiments. On top of this, a complete theoretical understanding of string

theory is still lacking, although the “second superstring revolution” led to a lot of

non-perturbative insight into string theory (see for example, [14, 15, 16, 17, 18]).

However, these theories provide examples of (mathematically consistent) unifica-

tion of quantum mechanics with gravity, and provide a concrete framework for

learning more about quantum gravity. Moreover, the non-perturbative explo-

ration of string theory gave us D-branes [19], the study of which eventually led

to the gauge-string duality.
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This brings us to the second revolution, the discovery of the holographic

principle (or the gauge/gravity duality, or the anti-de Sitter (AdS)/conformal field

theory (CFT) correspondence) [20, 21, 22, 23, 24]. It equates a quantum theory

of gravity with a quantum field theory in one lower dimension. Such a duality

came as a big surprise, given that it equates very different kinds of theories. Many

examples of the duality include the equivalence between a string theory and a

conformal field theory (CFT). It is often a weak/strong duality, which means

that a string theory in the weak coupling limit is dual to a strongly interacting

conformal field theory and vice versa. This makes the AdS/CFT duality a very

useful tool for learning about quantum field theories at strong couplings (by

studying instead the more tractable semi-classical limit of a string theory), and

learning about quantum gravity (by studying instead a weakly coupled quantum

field theory). We will discuss this correspondence in more detail in the next

section.

Over time, several surprising mathematical structures in quantum field theo-

ries (QFTs) have come to light, thanks to the AdS/CFT correspondence as well

as many other complimentary approaches (see [25] for one example), but much

more remains undiscovered. In chapter 4 we study quantum field theories in a

non-Archimedean spacetime motivated by this goal of uncovering interesting as-

pects of the structure of QFTs. Archimedean field theories are the ones usually

studied in textbooks, based on fields defined on the spacetime Rn or Rn−1,1. More

precisely, the Archimedean property (of real numbers) is that if 0 < |a| < |b|,
then there is some integer n such that |na| > |b|. This property fails to hold

in non-Archimedean metrics.2 The remarkable simplicity and other surprising

properties of non-Archimedean field theories, as well as their intimate connection

2In this dissertation the term Archimedean will always refer to any construction based
entirely on real numbers, and the non-Archimedean spacetime will be constructed out of p-adic
numbers, which are explained in section 1.3.
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with Archimedean field theories forms the subject of chapter 4.

On the gravity side, it is the general expectation that the notion of spacetime

will be drastically different at the Planck length (`p =
√

~G/c3 ≈ 10−33 cm in

four dimensions), which is the length scale at which effects of quantum gravity

disrupt the very structure of spacetime. Spacetime is thought to be emergent at

these distances. Could it be that at Planck scales, spacetime is no longer contin-

uous but discrete? Various aspects of gravity in a “discrete spacetime” have been

explored in the literature (see, for example [26, 27, 28]). Recently, Refs. [29, 30]

formulated an exact discretization of the evolution of strings in curved space-

times, with a purely algebraic evolution law governing the classical dynamics. It

was proposed [29] and later explicitly demonstrated [31], that the target space-

time could be suported on algebraic number fields, for example the rationals Q

or an algebraic extension of Q. We will develop yet another discretization ap-

proach in chapters 2-3 based on the local field of p-adic numbers, and study scalar

field theories in a fixed gravitational background with a tree-like graph theoretic

topology. (This was recently extended [32] to include a fluctuating spacetime.)

In fact, such gravity theories are interesting to study for another reason: via the

(non-Archimedean) AdS/CFT correspondence which will be developed in chapter

2, these theories of gravity share many features with the putative bulk duals of

non-Archimedean field theories, such as the one discussed in chapter 4.

In the rest of this chapter, we briefly review some of the basic ingredients

which go into this dissertation, namely the AdS/CFT correspondence, and the

notion of number fields, particularly the non-Archimedean field of p-adic numbers.

We end the chapter with a brief outline and summary of this dissertation.
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1.2 The AdS/CFT correspondence

In this section we give a brief introduction to the AdS/CFT correspondence

[22, 23, 24] (for a comprehensive review, see for example [33]). Loosely, it says

that a quantum field theory in an n-dimensional spacetime is equivalent to a the-

ory of quantum gravity in an (n + 1)-dimensional spacetime. This is sometimes

called a “holographic duality” because using this duality we may in principle

“reconstruct” a higher dimensional theory entirely by studying its dual theory

in lower dimensions. The simplest examples of this correspondence equate cer-

tain special quantum field theories called conformal field theories (CFTs), with

theories of gravity in anti-de Sitter (AdS) space, hence the name AdS/CFT.

Moreover, in many examples the quantum field theory is a gauge theory, and

for this reason this is also often referred to as the gauge/gravity duality. The

AdS/CFT correspondence is a conjectural statement, so although there are now

many well studied examples providing strong evidence in its support, a proof

remains elusive. The goal of the rest of this section is to explain this duality in

some detail.

What is meant by the statement that a quantum field theory and a

theory of gravity are “equivalent” or “holographically dual” to each

other?

Broadly, a quantum field theory and a theory of gravity in a higher dimensional

spacetime are holographically dual if all the information in one theory is encoded

in some way in its dual. Here by a theory of gravity we do not necessarily mean

Einstein’s theory of General Relativity, which as we mentioned earlier has found

incredible success in describing our Universe at cosmological length scales. Any

mathematically consistent (quantum) theory of gravity which may or may not
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have Einstein’s General Relativity as its classical limit is welcome. That such a

theory might not describe our real world should not be a disincentive to study

the AdS/CFT correspondence — we will explain why later in this section in the

answer to the question: “Why is it useful?”

To appreciate the profundity of the statement of the AdS/CFT correspon-

dence, one should note that naively, a (quantum) theory of gravity is expected to

describe physics fundamentally different from the physics of any quantum field

theory, which is a theory without gravity. In particular, in a theory of gravity

spacetime itself is dynamical, thus all matter in the theory must live on and

interact with this dynamical spacetime. In fact, due to general coordinate in-

variance of gravity, it is impossible to define local observables. Remarkably by

the AdS/CFT correspondence, a theory of gravity describes the same physics

as its dual quantum field theory, which is a local field theory defined on a fixed

background spacetime! To the untrained eye, these theories couldn’t have been

more different from each other, yet quite unexpectedly they are precisely equal

or dual to each other by the holographic duality. Precisely how all the informa-

tion of one theory is encoded in its dual is thus an important question, but not

always easy to answer. We understand some aspects of this encoding, which we

can use to develop a “holographic dictionary” that helps translate results in the

language of one theory to results in the language of its dual. In other words,

such a dictionary demonstrates explicit examples of how a theory with gravity

and a theory without gravity can conceivably convey the same physics. The task

of figuring out the full dictionary remains far from complete; we will give some

examples of entries in this dictionary later in this section.

Even finding examples of holographically dual theories is not usually easy or

obvious. By now we have many (conjectural) examples of such dual pairs, and a

lot of non-trivial evidence in support of the respective dualities. Evidence comes



8

in many forms, such as calculating quantities in one theory, and the same quan-

tities in the dual theory (more precisely, quantities related via the holographic

dictionary) and verifying that they agree. As more and more agreements are

uncovered, evidence in support of the duality grows. However, often it turns out

if computations are easy to perform in one theory, they are almost intractable in

the dual.3 This means testing these dualities can be hard; on the other hand

this also means that the holographic duality can be incredibly powerful — calcu-

lations which were completely inaccessible in one theory become very easy after

translating to the language of the dual theory. We will say more about this later

in this section.

Having painted a rough picture, let us turn to some concrete details. It helps

to recall that the (Euclidean) partition function of a theory, which in a sense

captures all available information in the theory, is given by

Z =

∫
[Dφ] exp (−S[φ]/~) , (1.1)

where S[φ] denotes the action functional which depends on the field content

φ of the theory. The partition function represents the sum over all possible

field configurations, weighted by the value of the action at each configuration.

Equivalently, it represents the quantum mechanical vacuum to vacuum transition

amplitude. The integration measure [Dφ] implements the sum over all possible

phase space configurations, which in the classical limit, ~ → 0 leads (via the

saddle point approximation) to the evaluation of the partition function simply at

the extremum of the action,4

Zclassical ∼ exp (−Sextremum[φ]) . (1.2)

Returning to the AdS/CFT correspondence, at its heart it is a duality between

3This is a consequence of the weak/strong nature of the correspondence which we alluded
to earlier.

4From here on we will work in the units where c = ~ = 1.
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a theory of gravity in an (n + 1)-dimensional spacetime (sometimes referred to

as the “bulk”) that has an n-dimensional asymptotic boundary, and a quantum

field theory which “lives on that boundary”. It may be expressed schematically

as the equality of the partition functions of the two theories [23, 24]

〈
exp

(∫
dnxφ0(~x)O(~x)

)〉
QFT

= Z
[
φ(z,~x)

∣∣
z=0

=φ0(~x)
]

gravity , (1.3)

where on the QFT side, we take the vacuum expectation value of the exponential

of an operator O sourced by an independently chosen function φ0(~x). Thus the

left hand side is the generating function of all correlators of the operator O,

generated via taking successive functional derivatives of the left hand side with

respect to φ0 and setting φ0 = 0 at the end. On the gravity side, we write the full

partition function for the gravitational theory, where φ(z, ~x) is a dynamical field

“dual to O”, and z is the extra “radial” direction (i.e. the additional dimension

in the gravity theory), with the asymptotic boundary of the spacetime situated

at z = 0. The field φ is subject to the boundary condition that at the asymptotic

boundary (z = 0), it takes the value specified by the source function φ0(~x).

By (1.3), computing M -point correlators of O in the field theory is equivalent

to computing M -point Feynman diagrams of the field φ in the gravity theory,

subject to appropriate boundary conditions.

In a holographically dual pair, for every field in the gravitational theory, there

exists an operator in the QFT such that (1.3) holds. This field↔ operator corre-

spondence represents one of the basic entries of the holographic dictionary. More

can be said about the relation between the bulk field φ and the dual operator

on the boundary O; for example the relation between the mass of φ and the

(scaling) dimension of O. We will explain this in more detail later in this section

in the answer to the question: “What are some examples of the AdS/CFT cor-

respondence?” Here we note a related correspondence: for every local conserved
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current in the boundary QFT, there is a massless gauge field in the bulk theory

of gravity; for example a local (conserved) stress-tensor operator is dual to the

graviton field in the gravity theory. At this stage, we can mention one more

example of an entry in the holographic dictionary: moving the radial coordinate

z, which measures the distance from the asymptotic boundary of the spacetime,

is dual to performing renormalization in the dual quantum field theory. We will

explain this in more detail soon.

As stated earlier, the simplest versions of the duality involve a gravitational

theory in an AdS background and a conformal field theory as the dual quantum

field theory. Before we present explicit examples of the duality, let us briefly

review these constructions in more detail.

What is anti-de Sitter (AdS) space?

AdS space is the unique space which is maximally symmetric and negatively

curved. It is a solution to Einstein’s field equations (with a negative cosmological

constant term) in the theory of General Relativity, described by the Einstein-

Hilbert action,

SEH =
1

16πG

∫
dn+1x

√−g (R− 2Λ) , (1.4)

where g = det gµν is the determinant of the metric, R is the Ricci scalar, G is

the (n+ 1)-dimensional version of Newton’s gravitational constant, and Λ is the

cosmological constant. The field equations following from (1.4) are

Rµν −
1

2
Rgµν + Λgµν = 0 , (1.5)

where Rµν is the Ricci curvature. The maximally symmetric solution to these

equations for negative Λ is

ds2 = −
(

1 +
r2

L2

)
dt2 +

1(
1 + r2

L2

)dr2 + r2dΩ2
n−1 , (1.6)
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with

Λ = −n(n− 1)

2L2
R = gµνR

µν = −n(n+ 1)

L2
, (1.7)

where L is the radius of curvature of AdSn+1 (i.e. (n+1)-dimensional AdS space),

and dΩ2
n−1 is the metric on an Sn−1 sphere. Here is r ∈ [0,∞) and t ∈ R. With

the coordinate transformation

r = L sinh ρ t = Lτ , (1.8)

the metric takes the form

ds2 = L2
(
− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2

n−1

)
. (1.9)

This metric is referred to as the (universal cover) of AdS space in global coordi-

nates.

AdS space may also be parametrized as the equation of a hyperboloid in a

flat R2,n spacetime endowed with a (− − + . . .+) signature. In equations, this

means AdSn+1 is the hyperboloid

−X2
−1 −X2

0 +
n∑
j=1

X2
j = −L2 , (1.10)

in R2,n which has the metric

ds2 = −dX2
−1 − dX2

0 +
n∑
j=1

dX2
j . (1.11)

It’s easy to verify that

X−1 = L cosh ρ cos τ

X0 = L cosh ρ sin τ

Xj = L sinh ρΩj with j = 1, . . . , n and
n∑
j=1

Ω2
j = 1

(1.12)

is a solution to (1.10). These are referred to as the global coordinates of AdS.

Substituting them in (1.11), we recover (1.9) (once we “unwrap” the τ direction
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to cover whole of R rather than just the interval [0, 2π]). The SO(n, 2) isometry

of AdSn+1 is apparent from (1.10)-(1.11), while the SO(2)× SO(n) subgroup of

SO(n, 2) is manifest in (1.9). Another way to parametrize AdS is:

X−1 =
1

2u

(
1 + u2(L2 + ~x2 − t2)

)
X0 = Lut

Xj = Luxj with j = 1, . . . , n− 1

Xn =
1

2u

(
1− u2(L2 − ~x2 + t2)

)
,

(1.13)

where u > 0 and ~x ∈ Rn−1. Substituting this in (1.11), we get the AdS metric in

the following form,

ds2 = L2

(
du2

u2
+ u2(−dt2 + d~x2)

)
. (1.14)

These coordinates cover only half of the AdS hyperboloid, and are referred to

as the Poincaré coordinates or the Poincaré patch. The isometry subgroups

manifest in this metric are the Poincaré group ISO(1, n− 1) and the dilatations

transforming the metric under SO(1, 1).

Since anti-de Sitter space features prominently in this dissertation, we take

this opportunity to highlight some features of AdS which will be important for

us later. In chapters 2-4, we will be working in the Euclidean signature. Wick

rotating the global time direction in (1.9) or the Poincaré time coordinate in

(1.14), we get Euclidean AdS (also simply called hyperbolic space Hn+1). It is

the hyperboloid,

−X2
−1 +X2

0 +
n∑
j=1

X2
j = −L2 , (1.15)

in R1,n+1, which has the metric

ds2 = −dX2
−1 + dX2

0 +
n∑
j=1

dX2
j . (1.16)
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Thus it is clear that the isometry group of Euclidean AdSn+1 space is SO(n+1, 1).

The metric (1.9) in global coordinates becomes

ds2 = L2
(
cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2

n−1

)
, (1.17)

while the Poincaré patch metric becomes

ds2 = L2

(
du2

u2
+ u2(dt2 + d~x2)

)
, (1.18)

where now τ and t are the Wick rotated Euclidean time coordinates. A more

convenient coordinate choice for us is obtained by sending u = 1/z, which gives

ds2 =
L2

z2

(
dz2 + dt2 + d~x2

)
. (1.19)

In chapters 2-4, we will differ slightly in our notation by renaming the “radial

direction” z as z0 with the boundary of Euclidean AdS at z0 = 0, and the flat Rn

directions (t, ~x) as ~z, in which case (1.19) becomes

ds2 =
L2

z2
0

(
dz2

0 + d~z2
)
. (1.20)

AdS is a space of infinite volume, but light rays can reach its boundary in finite

time, thus one must specify boundary conditions at the asymptotic boundaries of

AdS space. This is essentially why we need to specify boundary conditions for the

field φ in the evaluation of the gravity partition function in (1.3). Note that at

the boundary of Eucliedean AdS space Hn+1, the metric is conformally flat, being

conformally equivalent to Rn. Compactifying the boundary by adding a point

at infinity we obtain Sn. On the other hand, the conformal compactification of

Hn+1 is the Poincaré ball Dn+1, whose boundary once again is Sn. This is an

essential ingredient of the AdS/CFT correspondence.

For n = 1, the metric (1.20) represents the upper half plane. The upper

half plane is the coset space H2 = SL(2,R)/SO(2) where SO(2) is the maximal
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compact subgroup of SL(2,R) ∼= SO(2, 1). 5 The isometries SL(2,R) act as

Mobius transformations on the upper half plane (where z ∈ R and z0 ∈ R+),

w = z + iz0 →
aw + b

cw + d
a, b, c, d ∈ R ad− bc = 1 . (1.21)

By adding a point at infinity, we may compactify the upper half plane to the

Poincaré disk. Then the boundary of the disk is the real projective line P1(R) =

R ∪ {∞}. Isometries of the upper half plane act as linear fractional transforma-

tions on the projective line at the boundary:

z → az + b

cz + d
a, b, c, d ∈ R z ∈ P1(R) ad− bc = 1 . (1.22)

What are conformal field theories (CFTs)?

Conformal field theories are quantum field theories with conformal symmetry,

comprising Poincaré invariance (which includes Lorentz invariance and transla-

tional invariance) and invariance under angle preserving transformations. Angle

preserving transformations include but are not restricted to scaling transforma-

tions.6 Quantum field theories in general exhibit renormalization group (RG)

flows, and the fixed points of these flows correspond to CFTs. Thus roughly

speaking, conformal invariance means the physics described by a CFT looks the

same at all length/energy scales. The fixed points can be massless and free CFTs

or interacting fixed points. Many statistical systems, such as water at the critical

point, exhibit IR interacting fixed points; thus CFTs prove useful for describing

the long-distance behaviour of these statistical systems at criticality, and can

accurately predict, for example the critical exponents.

5In much the same way, for n = 2, we have EAdS3 = H3 = SL(2,C)/SO(3) with SO(3) the
maximal compact subgroup of SL(2,C) ∼= SO(3, 1).

6We will not concern ourselves with issue of conformal invariance versus the smaller group
of scale invariance. It suffices to say that under suitable assumptions, scale invariance in a large
number of quantum field theories automatically implies conformal invariance, at least in lower
dimensional examples. There exist exceptions, and a full understanding is still lacking. See, for
instance [34, 35] and references therein for more details.
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The conformal group on R1,n−1 (for n > 2) includes Poincaré transforma-

tions: xµ → Λµ
νx

ν + aµ, where Λ is the Lorentz transformation matrix and

µ = 0, 1, . . . n − 1, scaling (dilatation) transformations xµ → λxµ and special

conformal transformations:

xµ → xµ + aµxνxν
1 + 2xνaν + aρaρxσxσ

. (1.23)

The special conformal transformations can be thought of as the composition of

an inversion: xµ → xµ/x2, followed by a translation and then an inversion once

again, thus they leave the origin invariant.

Denoting the generators of translations by Pµ, Lorentz transformations by

Mµν , scaling byD and special conformal transformations byKµ, the commutation

relations amongst the generators are

[Mµν , Pρ] = −(ηµρPν − ηνρPµ) [Mµν , Kρ] = −(ηµρKν − ηνρKµ)

[D,Pµ] = −Pµ [D,Kµ] = Kµ [Pµ, Kν ] = 2Mµν − 2ηµνD

[Mµν ,Mρ,σ] = −ηµρMνσ − ηρνMσµ − ηνσMµρ − ησµMρν ,

(1.24)

where all other commutators vanish, and ηµν = diag{−1, 1, . . . , 1}. To show that

the conformal group is the same as SO(n, 2), we define the generators JMN where

M,N = {0, . . . , n+ 1} and ηMN = diag{−1, 1, . . . , 1,−1}:

Jµν = Mµν Jµn =
1

2
(Kµ − Pµ) Jµ(n+1) =

1

2
(Kµ + Pµ) J(n+1)n = D ,

(1.25)

and then check that

[JMN , JRS] = −ηMRJNS − ηRNJSM − ηNSJMR − ηSMJRN , (1.26)

which is indeed the algebra of SO(n, 2). Recall that this was also the isometry

group of AdSn+1. The match between the symmetry group of the boundary QFT

and the isometry group of the bulk theory is an essential part of the AdS/CFT
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dictionary. In Euclidean signature, the conformal group becomes SO(n + 1, 1)

which matches the isometry group of Euclidean AdSn+1.

For low values of n, i.e. n = 1 or n = 2, SO(n+ 1, 1) is isomorphic to the lin-

ear fractional transformations generated by SL(2,R) and SL(2,C) respectively.

However, linear fractional transformations capture only the global part of confor-

mal transformations, for recall that at n = 1, 2, the full conformal symmetry is

enhanced to the infinite dimensional Virasoro symmetry (to be precise, two copies

of Virasoro for n = 2). In this dissertation however, we restrict ourselves to a

study of just global conformal transformations, and avoid any further discussion

of the Virasoro algebra.

Representations of the conformal group SO(n+1, 1) are labelled by represen-

tations of the Lorentz group and the scaling dimension ∆, which is the eigenvalue

under a dilatation:

[D,O(0)] = ∆O(0) . (1.27)

The operators transform under a dilatation (suppressing Lorentz indices) z → λz,

as O(z) → λ∆O(λz). The operators which are annihilated by special conformal

transformations at the origin are called primary operators. The descendants of

a primary operator can be built by systematically acting on the primaries with

the “raising” operators Pµ. This increases the scaling dimension ∆ by integral

values, one for each action of Pµ.

Conformal invariance strongly constrains the form of the correlators. For a

scalar operator of scaling dimension ∆, its two-point function with any operator

of scaling dimension unequal to ∆ vanishes, while

〈O(z)O(0)〉 ∝ 1

(z2)∆
. (1.28)

The three-point function is also completely fixed by conformal invariance, up to

an overall constant. The four-point functions are determined upto a function of
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the conformally invariant cross-ratios built out of the four points of insertion. We

will discuss this in more detail in chapter 3.

Some simple examples of CFTs include free massless scalars in any number of

dimensions, and IR critical φ4 theories between two and four dimensions. These

include the so-called vector models, which are theories with O(N) symmetry.

Such theories will be the subject of chapters 3-4. Another classic example is the

maximally supersymmetric N = 4 super-Yang-Mills theory in (3+1)-dimensions.

What are some examples of the AdS/CFT correspondence?

The original example of the AdS/CFT correspondence [22] is the conjectured

duality between the N = 4 super-Yang-Mills (SYM) theory in (3+1)-dimensions

with the gauge group SU(N) and the coupling constant gYM on the CFT side,

and the Type IIB superstring theory in AdS5 × S5 (with the radius of AdS and

S5 given by L) and with the five-form field strength having flux N through S5.

This duality came from studying a stack of N coincident D3-branes, whose near

horizon geometry is empty AdS5×S5 spacetime and whose low-energy dynamics

on the worldvolume is described by the N = 4 SU(N) super-Yang-Mills. The

string coupling gs is related to the field theory coupling via gs = g2
YM , while

the AdS radius is related to N via L4 = 4πgsN`
4
s where `s is the string length.

Describing these theories in detail will take us too far afield, so we will limit

ourselves to describing just the weak/strong aspect of this duality. The strongest

version of the conjecture is that these theories are dual to each other at all values

of λ ≡ g2
YMN (which is the effective coupling in the field theory) and N , thus it

is an equivalence between two fully quantum theories. This includes, but is not

limited to, a one-to-one correspondence between all gauge invariant operators in

the SYM theory and fields or states in Type IIB string theory, and the equality

between appropriate correlators.
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A weaker form of the conjecture states that the two theories are dual in the

limit of N → ∞ with λ held fixed. On the SYM side, this corresponds to the

’t Hooft limit of large N gauge theory at fixed coupling λ. On the string theory

side, fixed λ translates to fixed L/`s but gs small since N is large; thus this limit

corresponds to a weak coupling classical string perturbation theory.

In the weakest form of the correspondence, we first take the ’t Hooft limit

followed by sending λ → ∞. On the SYM side, this corresponds to a strongly

coupled, large N gauge theory while on the string theory side, a large λ corre-

sponds to a large L/`s leading to a weakly coupled classical Type IIB supergravity

theory in an `2
s = α′ expansion. The weakest form of the correspondence is of

great practical utility, for it allows us a chance to explore the previously inacces-

sible regime of strongly coupled dynamics of gauge theories by studying classical

supergravity in the weak coupling limit. In this case, for example, the equivalence

of the partition functions in (1.3) simplifies on the gravity side to become

〈
exp (dnxφ0(~x)O∆(~x))

〉
N=4 SYM

= exp (−SIIB sugra[φ]) , (1.29)

with appropriate boundary conditions, for every field in the supergravity dual to

a gauge-invariant operator O∆ of scaling dimension ∆. If instead, we take the

’t Hooft limit, followed by λ → 0, we obtain a weakly coupled large N gauge

theory on the field theory side, while a strongly coupled classical Type IIB string

theory on the gravity side. Thus this duality is an example of a weak/strong

duality, where a theory is weakly coupled when its dual is strongly coupled, and

vice versa.

We now explicitly demonstrate some aspects of AdS/CFT with a simple toy

model involving a scalar degree of freedom in a weakly coupled classical gravity

theory. This is also of relevance to later chapters in this dissertation. We work in

the (Euclidean) AdS background in the Poincaré patch, with ds2 = gµνdx
µdxν =
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L2

z2 (dz2 + d~x2), where ~x labels the n Euclidean boundary directions and z = 0 is

the boundary of AdS. The minimal quadratic action of a scalar field in curved

background is

S =

∫
dn+1x

√
g

(
1

2
gµν∂µφ∂νφ+

1

2
m2φ2

)
. (1.30)

The equation of motion for φ is

1√
g
∂µ (
√
ggµν∂ν)φ−m2φ = 0 . (1.31)

The solution to this equation has the asymptotics:

φ(z, ~x) ∼ A(~x)zn−∆(1 + · · · ) +B(~x)z∆(1 + · · · ) , (1.32)

at small z, where the exponent satisfies ∆(∆ − n) = m2L2, and the ellipses

indicate terms with higher powers of z. The mass-scaling dimension relation (for

scalar operators) ∆(∆− n) = m2L2, or equivalently

∆± =
n

2
±
√
n2

4
+m2L2 (1.33)

is one of the basic entries in the holographic dictionary. Which of the two roots

should we use? If m2 > 0, then we must pick ∆ = ∆+ as ∆− < 0 which is not

allowed by the unitarity bound for scalar operators in conformal field theories,

which restricts ∆ > n/2− 1. In this case ∆+ > n, so that near the boundary of

AdS space, where z → 0, the second term in (1.32) vanishes, and we are left with

limz→0 φ(z, ~x) ∼ A(~x)zn−∆+ which diverges near the boundary. However this is

the standard UV divergence of the boundary theory, which can be regulated. So

the boundary condition in (1.3) which properly accounts for the UV divergences

should more precisely be written as φ(z, ~x) = φ0(~x)zn−∆+ as z → 0, where we

identify A(~x) with the source function on the boundary φ0(~x), and ∆ = ∆+ is

identified with the scaling dimension of the operator O in (1.3). We call this

the “standard quantization,” and use it exclusively in chapters 2-3. In chapter
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Figure 1.1: Holographic renormalization. Left: Going deeper in the radial di-
rection z corresponds to course graning (block spin transformations). Right: A
cartoon of AdS with its conformally flat boundary. (Figure source [38].)

2 we present details on how to compute the two-point function and higher-point

correlators in this setup.

The mass-squared of the scalar field can actually be made slightly negative

in AdS space without causing instabilities, because the gravitational background

makes an additional contribution to the potential in curved space. It turns out

the bound is m2L2 > −n2/4 (called the BF bound [36]), and this precisely

corresponds to real scaling dimensions with ∆+ > n/2 and 0 < ∆− < n/2.

Now we can choose between ∆+ and ∆− for the choice of ∆. Note that ∆+

never falls below the BF bound, but for a narrow range of mass-squared we

can arrange n/2 − 1 < ∆− < n/2; the corresponding mass range is −n2/4 <

m2L2 < −n2/4 + 1. Choosing ∆ = ∆− (which is usually called “alternative

quantization” [37]), the asymptotic solution near the boundary, (1.32), becomes

φ(z, ~x) → B(~x)z∆− = B(~x)zn−∆+ as z → 0. Now the scaling dimension of the

operator dual to the bulk field φ is ∆ = ∆−.

Let us also briefly discuss holographic renormalization. The radial coordi-

nate z probes short or long distance physics of the boundary QFT depending on

whether it is nearer to or farther away from the boundary. This is the essence of

holographic renormalization group flow. One can start with a boundary CFT and

add a relevant deformation. For a relevant deformation, the scaling dimension of
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the operator must be ∆ < n, which means in the bulk theory, the dual scalar field

must have negative mass-squared. This triggers an RG flow in the boundary the-

ory. On the gravity side, moving deeper into the bulk corresponds to decreasing

the energy scale in the boundary QFT, and the geometry deep inside the bulk

changes to reflect the IR structure of the dual field theory (see figure 1.1).

Finally, let us present some more examples of pairs of theories dual to each

other by the AdS/CFT correspondence. One duality is between the (single trace

sector of) the non-supersymmetric free O(N) vector model in n-dimensions on

the CFT side, and a Vasiliev higher spin gauge theory in AdSn+1 on the gravity

side with the bulk coupling constant, G ∝ 1/N [39] (see [40] for a review). The

free O(N) vector model has the action

S =

∫
dnx

1

2
(∂µφ

i)2 , (1.34)

where i = 1, . . . , N . The spectrum of single trace operators in the theory consists

of a scalar operator J0 = φiφi which has scaling dimension n − 2, and an infi-

nite tower of even-spin conserved currents Js with scaling dimensions n− 2 + s,

schematically of the form Js ∼
∑

k ∂
kφi∂s−kφi. By the AdS/CFT correspondence,

the single trace operators of the free O(N) model are in one-to-one correspon-

dence with single particle states in the dual gravity theory. Thus the dual gravity

theory must have a scalar field of mass m2L2 = −2(n−2),7 and an infinite tower

of higher (even) spin massless gauge fields.8 This is the spectrum of the so-called

minimal bosonic Vasiliev theory in AdSn+1 [41]. Since by the AdS/CFT corre-

spondence correlators of operators in the CFT are to be matched with Feynman

diagrams in AdS space, and since the three-point functions of higher-spin cur-

rents are obviously non-zero, we must have interacting higher spin gauge fields

7Note that the negative mass-squared lies above the BF bound, since −2(n− 2) < −n2/4.
8In the case of spin-s fields, the mass-scaling dimension relation becomes m2L2 = (∆ + s−

2)(∆− s+ 2− n).
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in the bulk theory, to be able to reproduce the three-point function obtained

from simple Wick contractions on the boundary. Indeed, the Vasiliev theory is a

strongly coupled, non-linear theory of interacting higher spin gauge fields and a

scalar, whose classical equations of motions are known but no satisfactory action

principle exists at the moment. In this duality, the CFT side is weakly coupled

which can be used to learn more about the strongly coupled gravity side. A gen-

eralization of this construction to complex vector models with U(N) symmetry

leads to a Vasiliev theory which involves higher spin gauge fields of all integral

spins.

Let us move to the critical O(N) vector model. We start with the interacting

O(N) model,

S =

∫
dnx

(
1

2
(∂µφ

i)2 +
λ

4
(φiφi)2

)
, (1.35)

where the mass term is tuned to zero. The renormalization group flow of this

theory in the Wilson-Fisher ε expansion as well as the large N expansion, is

discussed in detail in chapter 4. Here we just note that between 2 < n < 4, the

(φiφi)2 term is relevant and the model flows from a free theory in the UV to a

non-trivial interacting theory in the IR, called the critical O(N) model (with the

mass parameter suitably tuned away). The critical O(N) model may be viewed

as the double trace deformation of the free O(N) model, by the operator J2
0 where

J0 = φiφi [42]. The AdS dual of double trace deformations are well known [37, 43].

In this case, the AdS dual of the critical O(N) model is the same Vasiliev theory

as the one dual to the free O(N) model, but with a different choice of boundary

condition on the bulk scalar field [39]. Indeed, the mass-squared of the scalar field,

m2L2 = −2(n − 2) falls precisely in the window −n2/4 + 1 < m2L2 < −n2/4

where both the roots of ∆(∆ − n) = m2L2 lead to unitary theories. The free

O(N) model corresponds to choice ∆ = ∆+ = n − 2 while the critical O(N)

model corresponds to the choice ∆ = ∆− = 2. From the point of view of RG
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flow in the boundary, the dimension of the operator J0 goes from n−2 in the UV

to 2 + O(1/N) in the large N limit in the IR [42]. Correspondingly, higher spin

operators are no longer conserved currents; current conservation laws are weakly

broken in the large N limit, which comes from operators picking up anomalous

dimensions in the IR. We will return to the computation of anomalous dimensions

in chapter 4.

Why is it useful?

We have briefly described the AdS/CFT correspondence in this section, and

shown some glimpses of how it captures the equivalence between a quantum field

theory and a theory of gravity. In most cases, one can take various limits so that

the correspondence becomes a duality between a weakly coupled theory and a

strongly coupled theory. It is precisely in these cases that AdS/CFT is incredibly

powerful, allowing us easy access to strong coupling regimes of theories of interest

via their weakly coupled duals. In fact, this is perhaps how one could conceivably

have such a counter-intuitive equality (or duality) between a theory with gravity

and a theory without gravity. In most cases we do not really understand the

strong coupling limits of theories, and how the degrees of freedom are arranged;

the AdS/CFT duality gives a precise prescription how this happens whenever the

dual theory is known.

Applications of AdS/CFT is a vast topic and outside the purview of this

dissertation. Let us just point out that applications extend to condensed matter

systems (see, for example [44]), whether at criticality or away from criticality,

as well as the strong coupling limit of various quantum field theories, such as

QCD, via string theory/gravity constructions (see, for example [45]). In this way

AdS/CFT has revived the original reason for studying string theory: to describe

strong interactions between gluons and quarks. The “AdS/CFT” correspondence
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is not just limited to gravity theories in AdS space and conformal field theories

on the boundary. Gravity in more general background spaces, and quantum

field theories without conformal invariance are also welcome. In applications to

physical systems of interest, if the dual gravity theory turns out to be highly

contrived and unphysical, so be it; the goal in that case is not to learn about how

gravity works in the real world, but how that particular physical system can be

conveniently expressed in a language where calculations become possible.

Little is known about the quantum theory of gravity experimentally, and

while string dualities give insight into non-perturbative phenomena in theories of

quantum gravity, those insights tend to focus on objects preserving some fraction

of supersymmetry. On the other hand, the AdS/CFT correspondence is better at

giving access in principle to all the dynamics of bulk quantum gravity in terms

of a well-defined (perhaps weakly coupled) boundary theory.

In this section we restricted ourselves to a discussion of the AdS/CFT corre-

spondence over R, the real number field. By this we mean that we assumed the

coordinates of the n-dimensional spacetime over which the quantum field the-

ory is defined are real numbers. It turns out this assumption is not crucial for

AdS/CFT to work. Indeed it is possible to extend the correspondence to other

number fields, such as the p-adic numbers, Qp or their extensions. (For a brief

account on the application of p-adic numbers to different branches of physics, see

for example [46].) When the spacetime of the boundary quantum field theory is

p-adic rather than real, the dual gravitational theory lives in a spacetime which

has a discrete tree-like geometry that serves as the analog of AdS space. Such a

p-adic construction will be the subject of chapters 2, 3 and 4. In the next section,

we review some basic facts about number fields in general and p-adic numbers in

particular, which will play an important role in this dissertation.
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1.3 Global and local fields

The goal of this section is to give a short, non-rigorous account of algebraic

number fields (which we’ll simply call global fields) and locally compact fields

(simply called local fields), directed towards physicists who may be unfamiliar

with these topics. While the subject of local and global fields is extremely vast

and interesting, here we will briefly discuss (without proofs) topics only of direct

relevance to this dissertation. At first this section will likely seem unrelated to

the previous section, but towards the end, we will draw attention to interesting

connections between the two which form the basis for the rest of the dissertation.

Before we proceed with definitions, let us give some intuition: Roughly speak-

ing, a field is a set which comes with an operation of addition and multiplication,

such that any two elements of the set when added, subtracted, multiplied or di-

vided together (excluding division by zero) result in an element which belongs to

the same set. Some examples of fields are: the rational numbers Q, the real num-

bers R, the complex numbers C, and the p-adic numbers Qp (which we describe

in section 1.3.2).

Textbooks in physics mostly restrict attention to theories where spacetime is

a real manifold, and where fields (fields as in physical fields, e.g. scalar fields,

fermionic fields) and operators are real or complex valued, so that correlation

functions and scattering amplitudes are real or complex valued. In this dis-

sertation, we will be studying the consequences of defining theories where the

spacetime is a p-adic manifold. We begin with some basic definitions.

Groups

A group G is a set, together with an operation + such that

• G is closed under the operation: ∀a, b ∈ G, a+ b ∈ G,
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• the operation is associative: ∀a, b, c ∈ G, (a+ b) + c = a+ (b+ c),

• there is a unique identity element e ∈ G such that for all a ∈ G, e + a =

a+ e = a

• for each element a ∈ G, there exists an element b ∈ G, called the inverse of

a, such that a+ b = b+ a = e.

Some common examples of groups include the integers Z under the operation of

addition, Z/mZ the additive group of integers modulom, Sm the symmetric group

on a set of m elements with the group operation the composition of permutations,

and SO(m) the group of orthogonal m×m matrices of unit determinant.

Rings

A ring R is a set together with two operations, + and × such that

• R is an abelian (i.e. commutative) group under + where we denote the

“additive” identity element by 0 ∈ R (commutativity means if a, b ∈ R,

then a+ b = b+ a),

• R is closed under ×,

• the operation × is associative,

• there exists a unique “multiplicative” identity element 1 ∈ R under × such

that ∀a ∈ R, a× 1 = 1× a = a,

• distributivity holds: ∀a, b, c ∈ R, a × (b + c) = (a × b) + (a × c) and

(b+ c)× a = (b× a) + (c× a).

Some common examples of rings include the integers Z under addition (+) and

multiplication (×), Z/mZ the additive (+) group of integers modulo m together
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with multiplication (×), M(m,R) the ring of m ×m matrices with real entries

under matrix addition (+) and matrix multiplication (×), and SL(m,R) the ring

of m×m matrices with real entries and unit determinant under matrix addition

(+) and matrix multiplication (×). Note that in the final two examples, the

operation × is not commutative (i.e. ∃A,B ∈ R, such that A×B 6= B × A).

Fields

A field F is a commutative ring (meaning commutative under ×) such that all

nonzero elements in F (i.e. all a ∈ F with a 6= 0) have a “multiplicative” inverse

under ×. Q,R and C together with addition and multiplication are all examples

of fields.

Another important class of examples of fields are the finite fields. There exists

a unique finite field with q elements for every q = pn where n is any positive

integer and p is a prime. We will refer to this unique field as the finite field Fq.

For n = 1, Fp is isomorphic to Z/pZ. Later in this section we will spend some

time discussing the non-Archimedean field of p-adic numbers, Qp.

Field extensions

Let K be a field. If K contains L as a subfield, that is, L is a subset of K such

that L is a field with respect to the field operations inherited from K, then (the

larger field) K is a field extension of L. Sometimes, this is denoted as K : L and

read as K is a field extension of L. An example of a field extension is the field

of complex numbers C over the reals R. We may write it as C = R(
√
−1), which

means that C is obtained by adjoining to R a root of the polynomial X2 + 1 = 0,

which is an irreducible polynomial of degree two (more precisely, irreducible in

R).

The larger field K may be considered as a vector space over the smaller field
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L. The dimension of the vector space, denoted [K : L] is referred to as the degree

of extension of K over L. The degree of extension is the same as the degree

of the irreducible polynomial whose root is adjoined to L to construct K. For

example, the complex numbers are a degree two extension over the reals. In this

dissertation, we will only consider field extensions of finite degree.

Another example of a simple field extension of degree 2 is Q(
√

2), which is

the smallest field including both Q and
√

2. Any element may be expressed as

z = x+ y
√

2. If we adjoin the root of X2− 3 = 0 to Q(
√

2), we get a degree four

field extension Q(
√

2,
√

3) = {a+ b
√

2 + c
√

3 + d
√

6 : a, b, c, d ∈ Q}.
Usually, we need to specify multiplication rules for multiplying two elements of

the field extension. This can be specified by providing the multiplication table for

the elements adjoined to the base field to construct the larger field. For example,

in C = R(
√
−1), we have (

√
−1)2 = −1 ∈ R. In Q(

√
2), we have (

√
2)2 = 2 ∈ Q.

In Q(
√

2,
√

3), we have (
√

2)2 = 2 ∈ Q, (
√

3)2 = 3 ∈ Q, and
√

2
√

3 =
√

6 /∈ Q.

Using these rules, any two elements in Q(
√

2,
√

3) may be multiplied together, to

give another element of the form a+ b
√

2 + c
√

3 + d
√

6, where a, b, c, d ∈ Q.

Alternately, we could have specified the field extension Q(
√

2,
√

3) as the

degree four extension of Q obtained by adjoining to Q one of the roots of the

irreducible polynomial f(X) = X4 − 10X2 + 1. To see why, let K be the field

extension over Q obtained by adjoining to Q one of the roots of the polynomial

f(X) = X4− 10X2 + 1. Let r ∈ K be one of those roots, so that f(r) = 0. Then

any element z ∈ K has the form z = a0+a1r+a2r
2+a3r

3 where a0, a1, a2, a3 ∈ Q.

We multiply two elements z, w ∈ K by “reducing” using the defining polynomial

f(r) = 0. For example, if w = b0 + b1r + b2r
2 + b3r

3, with b0, b1, b2, b3 ∈ Q,

then the product zw involves powers of r which are higher than r3, which can be

iteratively removed by substituting the equation r4−10r2 + 1 = 0. We now show

that K contains
√

2 and
√

3. Let’s pick r =
√

5 + 2
√

6, which is allowed since
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it is one of the four roots of f(r) = 0. Now note that
√

5 + 2
√

6 =
√

2 +
√

3,

because (
√

2+
√

3)2 = 5+2
√

6, and we picked the positive root. So, r =
√

2+
√

3,

which means r2 = 5+2
√

6 and r3 = 11
√

2+9
√

3. Thus z = a0 +a1r+a2r
2 +a3r

3

has an equivalent representation as z = c0 + c1

√
2 + c2

√
3 + c3

√
6 where ci ∈ Q

are related to the ai ∈ Q. Thus we have shown that K = Q(
√

2,
√

3). In

mathematical terms, K is the quotient of the polynomial ring Q[X] by the ideal

generated by the irreducible polynomial f(X) = X4 − 10X2 + 1.

Another important example of a finite extension is Fpn , the finite field with

pn elements, which is the unique extension of Fp (the finite field with p elements)

of degree n. We will not explain the construction of Fpn in detail, but just note

that the construction is similar to the one outlined in the previous paragraph:

Fpn is the quotient of the polynomial ring Fp[X] by the ideal generated by an

irreducible polynomial in Fp of degree n. An alternate construction of Fpn will

be discussed near the end of this section.

1.3.1 Global fields

The simplest examples of global fields are algebraic number fields, or simply

number fields, and the most basic of them is the field of rational numbers Q.

More generally, an algebraic number field is a finite degree field extension of

the field of rational numbers. Q(
√

2) and Q(
√

2,
√

3) are examples of algebraic

number fields, of degrees two and four respectively. We gave an example of the

construction of the algebraic number field Q(
√

2,
√

3) in the previous section.

For our purposes, we will not need to delve deeper into the theory of algebraic

number fields, so we move on to consider local fields.



30

1.3.2 Local fields and p-adic numbers

Local fields, also called locally compact fields, arise as completions of global fields.

In this section we focus on the local fields R and Qp, obtained by completing the

global field Q with respect to the (usual) absolute value norm and the p-adic

norm, respectively. Here, by completion we mean that every Cauchy sequence

with elements in Q converges in R with respect to the absolute value norm, and

in Qp with respect to the p-adic norm.

Are other completions of Q possible? Ostrowski’s theorem states that every

non-trivial norm on Q is equivalent to either the absolute value norm (denoted

| · |∞) or the p-adic norm | · |p for some prime p.9 Thus by Ostrowski’s theorem,

R and Qp exhaust the list of possible completions of Q. Qp is sometimes referred

to as the completion of Q at the finite places (one at every prime p), and R as

the completion of Q at “the place at infinity,” which explains the notation | · |∞
for the norm on R.

Let us now turn to Archimedean and non-Archimedean norms. A norm on a

field K is a function | · | : K → R such that

• |x| ≥ 0 with equality iff x = 0

• |xy| = |x||y|

• Triangle inequality: |x+ y| ≤ |x|+ |y|.

An Archimedean norm has the property that given any a, b ∈ K with a 6= 0,

there exists a positive integer n such that |na| > |b|. This property does not hold

for a non-Archimedean norm. Alternately (but equivalently), one can distinguish

between Archimedean and non-Archimedean norms by the following property:

9The trivial norm is the one with |x| = 0 if x = 0 and |x| = 1 otherwise. Two norms | · |1, | · |2
on a field K are equivalent if there exists a positive real number s such that |x|1 = |x|s2 for all
x ∈ K.
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For an Archimedean norm, sup{|n| : n ∈ Z} = +∞, while for a non-Archimedean

norm, sup{|n| : n ∈ Z} = 1.

It is obvious the absolute value norm on R is Archimedean, for if a, b ∈ R

with 0 < |a|∞ < |b|∞, then for some n ∈ Z we have |na|∞ > |b|∞. By contrast, if

a, b ∈ Qp, we will show this property no longer holds, thus the p-adic norm is non-

Archimedean. The key difference between Archimedean and non-Archimedean

norms may be summed up in the property of ultrametricity. A non-Archimedean

norm (which satisfies by definition all the properties of a norm listed above)

satisfies a stronger version of the triangle inequality: |x+ y| ≤ sup(|x|, |y|). This

is the property of ultrametricity. An important consequence of ultrametricity

is that all triangles are ‘tall isosceles’. That is, if x + y + z = 0 in a non-

Archimedean field K, then after relabelling x, y and z if necessary, we always

have |x| = |y| ≥ |z|.
How do norms work in field extensions? In general, if K is a degree n extension

of a field L, then we remind the reader that K can be represented as an n-

dimensional vector space over L. Given an element a ∈ K, the map v → av for

any other element v ∈ K amounts to a linear map on Ln; so we can calculate its

determinant NK:L(a). The determinant of this map is the field norm N(a), or

in more precise notation NK:L(a) where K : L specifies the field extension under

consideration. NK:L is a homogeneous map from K to L of degree n, in the

sense that NK:L(λa) = λnNK:L(a) when λ ∈ L. Note that NK:L(1) = 1 because

multiplying an element of K by 1 is represented as multiplying the associated

vector in Ln by the n × n identity matrix. The norm | · | : K → R may then

be defined as |a| = |NK:L(a)|sL for some fixed positive real number s, where | · |L
is the norm on the base field L. Returning to algebraic number fields for a

moment, in the field extension Q(
√

2) of degree 2, any element may be expressed

as z = x + y
√

2, and the natural field norm is N(z) = x2 − 2y2. In this case,
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N(z) = zz̄ where z̄ = x− y
√

2 can be characterized as the conjugate of z.10

p-adic numbers

Let’s finally turn our attention to the p-adic numbers Qp. Every non-zero p-adic

number in Qp has a unique series decomposition,

x = pvp(x)

∞∑
m=0

amp
m a0 6= 0 , (1.36)

where am ∈ {0, 1, . . . , p − 1} are the digits and vp(x) ∈ Z is called the p-adic

valuation of x, which basically measures the divisibility of x by p. The p-adic

norm is then defined to be,

|x|p ≡ p−vp(x) . (1.37)

We define |0|p = 0, and correspondingly vp(0) = ∞. The sum in (1.36) is con-

vergent with respect to the norm | · |p. Intuitively, the p-adic norm is based on

regarding p as small but non-zero, while integers prime to p are all the same size.

To define addition and multiplication on Qp, we can define them in the standard

manner (as rationals) for series that terminate, and then extend the definition

to all of Qp by insisting that addition and multiplication should be continuous

maps with respect to | · |p.
Since Qp is a completion of the rationals, all rational numbers belong to Qp;

in fact, Q is dense in Qp. It is obvious that every positive integer has a unique

decomposition of the form (1.36). For example, for p = 3, the integer 11 has the

representation: 11 = 2 ·30 +0 ·31 +1 ·32 +0 ·32 +0 ·33 + · · · , with v3(11) = 0. Thus

|11|3 = 1. As a second example in Q3, consider 27 = 33(1 · 30 + 0), so |27|3 = 3−3.

Note that 54 = 33(2 · 30 + 0) so |54|3 = 3−3 as well.

To write negative integers, or fractions in the series representation of (1.36),

the key point to note is that the series in (1.36) can be an infinite series. So for

10More generally, if the field extension is a Galois field, then the field norm of an element in
the extension is obtained by multiplying all its conjugates together with itself.
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example,

−1 =
p− 1

1− p = (p− 1)(1 + p+ p2 + · · · ) . (1.38)

Thus −1 can be written as an infinite series with coefficients am = p − 1 for

all m ≥ 0, and vp(−1) = 0. The series in (1.38), and more generally in (1.36)

converges p-adically, because higher powers of p get smaller and smaller in the

p-adic norm.

It turns out every rational number may be written in the form (1.36), and

its series representation either terminates (am = 0 for all m > N for some non-

negative integerN) or it has a non-terminating but repeating series representation

(the digits am repeat in a pattern after some m > N for some non-negative

integer N). For example, in Q3, 1/9 = 3−2(1 · 30 + 0), with v3(1/9) = −2,

2/9 = 3−2(2 · 30 + 0), with v3(2/9) = −2, and,

1

2
= 1− 1

2
= 1 +

1

1− 3
= 2 + 3 + 32 + 33 + 34 + 35 +O(36) . (1.39)

In the final example, v3(1/2) = 0, and all am = 1 for m > 0. Also, note that the

r.h.s. of (1.39) corresponds to specifying 1/2 with a p-adic accuracy of O(36). All

non-terminating non-repeating series expansions are p-adic “irrational” numbers.

p-adic numbers may also be written in a “decimal representation” (more pre-

cisely, a p-nary representation), which is read from right to left. For example, in

Q3, 1 = 1., 3 = 10., 11 = 102., 27 = 1000. and 54 = 2000. . Any digits to the right

of the decimal point multiply negative powers of p. For example in Q3, 1/9 = 0.01

and 2/9 = 0.02. p-adic numbers with non-terminating decimal representation

continue to the left infinitely. For example, −1 = . . . 222222. = 222222.+O(36),

and 1/2 = . . . 111112. = 111112.+O(36). 11

11Amusingly, Qp can also contain roots of −1 depending on the value of the prime p. For ex-
ample, Q5 contains the two primitive fourth roots of unity. They are ζ1 = . . . 140223032431212.
and ζ2 = ζ3

1 = . . . 304221412013233. . They both square to −1: ζ2
1 = ζ2

2 = . . . 444444444. and
their fourth power gives unity.
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Let’s mention two important subsets of Qp. The ring of p-adic integers, Zp is

defined to be

Zp = {x ∈ Qp : |x|p ≤ 1} . (1.40)

Note that the set of all integers Z is dense in Zp. (It is clear all integers belong to

Zp because if an integer is relatively prime to p, then it has unit norm, and if it is

divisible by p then its norm will be pN for some negative integer N , thus smaller

than 1.) We conclude sup{|n|p : n ∈ Z} = 1. Earlier in the section, we claimed

that this is the defining property of non-Archimedean norms. Equivalently, if

a, b ∈ Qp with 0 < |a|p < |b|p, then since |na|p = |n|p|a|p ≤ |a|p for all n ∈ Z, we

have |na|p < |b|p for all n ∈ Z. Thus the p-adic norm is non-Archimedean. In

fact, starting with the definition of the p-adic norm, it is easy to directly check

that it is ultrametric, i.e. |x+ y|p ≤ sup(|x|p, |y|p).
The other important subset of Qp is the set of units in Zp, i.e. elements of

Zp that have a multiplicative inverse (so form a multiplicative group). This set

is given by

Up = {x ∈ Qp : |x|p = 1}, (1.41)

and we will simply refer to it as the “units.” Note that 1/2 ∈ Z3, in fact 1/2 ∈ U3.

We may now re-express (1.36) as

x = pvp(x)x̂ , (1.42)

where x̂ is a unit (x̂ ∈ Up), uniquely determined by non-zero x. Intuitively, we

think of Zp as the unit ball in Qp, while Up is the unit sphere. Because the

decomposition (1.42) is unique, we may express the non-zero p-adic numbers as

Q×p =
⊔
m∈Z

pmUp , (1.43)

where t indicates a disjoint union and Q×p is the multiplicative group of units in

Qp, namely Qp \ {0}.
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Adelic products

A striking consequence of defining the p-adic norm as in (1.37) is that the product

of norms of a rational number over all the local places (i.e. over the p-adics for

all prime p and the reals) is simply unity:

|x|∞
∏
p

|x|p =
∏
v

|x|v = 1 x ∈ Q , (1.44)

where v runs over all primes p and ∞. This is the simplest example of an adelic

product, and is straightforward to prove by writing out x in it’s prime factor

decomposition.

In chapters 2-4, we will encounter some more adelic products, the simplest

versions of which can be constructed out of local zeta and Gamma functions

defined as follows:

Γv(s) ≡
ζv(s)

ζv(1− s)
v =∞, p , (1.45)

where

ζ∞(s) ≡ π−s/2ΓEuler(s/2) ζp(s) ≡
1

1− p−s . (1.46)

Here ΓEuler(s) is the usual Euler Gamma function (so, for example, ΓEuler(N) =

(N−1)! for positive integer N). Then the adelic (or global) zeta function is given

by the product 12

ζA(s) ≡
∏
v

ζv(s) , (1.47)

and it can be checked that it satisfies the functional equation

ζA(s) = ζA(1− s) . (1.48)

From (1.48) and (1.45), it is clear that

ΓA(s) ≡
∏
v

Γv(s) = 1 . (1.49)

12Note that the restricted product,
∏
p ζp(s) = ζ(s) is the usual Riemann zeta function.
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Thus the local zeta and Gamma functions over the finite places (Qp) and the

place at infinity (R) are tied together via adelic products. Incredibly, we show in

chapters 2-4 that correlators in the Archimedean (respectively non-Archimedean)

AdS/CFT may be written entirely in terms of these local ζ∞ and Γ∞ (respectively

ζp and Γp) functions, thus hinting at some unexplored, and possibly deep number

theoretic connections between these constructions!

The Bruhat–Tits tree as AdS space

We will now argue that p-adic numbers provide a natural setting for holography.

Let’s first introduce the Bruhat–Tits tree (perhaps better known amongst physi-

cists as the infinite Bethe lattice). The Bruhat–Tits tree, associated with the

p-adic numbers Qp, is an infinite regular graph with no cycles, having the coor-

dination number p+ 1. We begin by establishing the relation between the p-adic

numbers and the tree. Consider first an element of Up. The first (rightmost) digit

is non-zero, so there are p− 1 choices for it. Once that choice is made, there are

p choices for the next digit, and the next, and so forth. A convenient graphical

way to depict the relation (1.43) is to show the sets pmUp as bushes rooted in

a trunk, with each root corresponding to some fixed power pm. Each non-zero

p-adic number x is the terminus of a unique upward path through one of the

bushes, and the magnitude |x|p corresponds to the bush in which the path lies. It

is natural to go further and include points 0 and∞ as the terminal points on each

end of the trunk. Altogether, the resulting graph is precisely the Bruhat–Tits

tree, Tp, with coordination number p+ 1. See figure 1.2.

The boundary of the Bruhat–Tits tree is Qpt{∞}, which more properly is the

projective line P1(Qp). We can realize P1(Qp) as all pairs (x, y) ∈ Q2
p \ {(0, 0)}

modulo the relation (x, y) ∼ (λx, λy) for λ ∈ Q×p . There is a natural action of
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Figure 1.2: The Bruhat–Tits tree for Qp with p = 2, with a coordinate system
(z0, z) shown. (Figure source [47].)

PGL(2,Qp) on P1(Qp), most simply realized as linear fractional transformations

x→ αx+ β

γx+ δ
, (1.50)

where α, β, γ, and δ are all elements in Qp, satisfying αδ−βγ 6= 0. The maximal

compact subgroup of PGL(2,Qp) is PGL(2,Zp) and a remarkable fact is that the

Bruhat–Tits tree, Tp, is naturally identified as the quotient PGL(2,Qp)/PGL(2,Zp).

Thus every node on the tree is in a one-to-one correspondence with a coset

of PGL(2,Qp)/PGL(2,Zp). The nodes transform under the action of the group

PGL(2,Qp), which is an isometry of Tp. Thus the graph distance between nodes

is invariant under the action of PGL(2,Qp).

The alert reader might have started noticing similarities between the Bruhat–

Tits tree and low dimensional (Euclidean) AdS spaces (in particular AdS2 and

AdS3). Recall that AdSn+1 is the quotient space SO(n + 1, 1,R)/SO(n + 1,R)

where SO(n + 1,R) is the maximal compact subgroup of SO(n + 1, 1,R). For
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n = 1, the isometry group SO(2, 1,R) ∼= SL(2,R)/Z2
∼= PSL(2,R), while for n =

2, the isometry group is isomorphic to SO(3, 1,R) ∼= SL(2,C)/Z2
∼= PSL(2,C).

This is to be compared with PGL(2,Qp) in the case of the Bruhat–Tits tree. The

boundary of AdSn+1 is S1 = P1(R) for n = 1 and S2 = P1(C) for n = 2, where

linear fractional transformations act.

Thus by intent, the Bruhat–Tits tree is a discrete analog of a Riemannian

symmetric space. The analogy can be summarized in tabular form as follows:

symmetry group maximal compact subgroup quotient space boundary

PGL(2,Qp) PGL(2,Zp) Tp P1(Qp)

PSL(2,R) SO(2,R) D P1(R)

PSL(2,C) SO(3,R) B P1(C)

(1.51)

where D is the Poincaré disk and B is the Poincaré ball.13 The volume of

both AdS and the Bruhat–Tits tree scales exponentially with radius. A precise

comparison between the scalings of the respective volumes is made in section

2.5.2 of chapter 2.

We should be encouraged by this table to think that some p-adic version of

the AdS2/CFT1 or AdS3/CFT2 correspondence can be formulated. Indeed, we

will develop a p-adic AdS/CFT correspondence in chapter 2.

In fact a natural form of holographic renormalization is manifest on the

Bruhat–Tits shown in figure 1.2, as we explain now. We find it natural to refer

to a particular depth coordinate z0 on the Bruhat–Tits tree, where z0 = pω and

ω ∈ Z. Along the trunk of the tree, z0 is pm at the point where the bush termi-

nating in pmUp is rooted. At a node of the tree not on the trunk, we have chosen

some finite number of p-adic digits, and z0 is the first power of p corresponding

13The tree drawn in figure 1.2 is closer to the upper-half-plane H2 (the Poincaré patch picture)
for n = 1 or H3 for n = 2, rather than the Poincaré disk or ball
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to a digit we have not chosen. For instance, at the point 10.1 on the 2-adic tree

shown in figure 1.2, z0 = p2 because in writing 10.1 we have specified the 1/p-

place digit, the ones-place digit, and the p-place digit, but not the p2-place digit.

In short, z0 is p-adic accuracy. 14 15 Thus the “deeper” a node is in the bulk,

meaning the larger the value of |z0|p, the lower its p-adic accuracy in describing a

specific boundary point. In fact, specifying a bulk node specifies an open subset

of p-adic numbers on the boundary to which the particular bulk node provides

an approximation. This open set is the set of all boundary points which lie at the

terminus of the bush which originates at the node. Moving deeper and deeper

in the bulk corresponds to a larger and larger open set on the boundary. This is

the essence of holographic renormalization.

Bruhat–Tits tree associated with field extensions

We would like to inquire whether there is a natural generalization of the Bruhat–

Tits tree for Qp which allows us to formulate a p-adic version of AdSn+1/CFTn.

For n = 2, our goal is captured pictorially in figure 1.3. To eventually discuss

n-dimensional p-adic field theories on the boundary, we will need to define some

natural norm |x| for vectors x in a vector space Qn
p .

There are in fact natural norms on the vector space Qn
p . A surprise, however,

is that they are formulated rather differently from the usual O(n) symmetric

norm on Rn, and they are non-unique. To construct these norms, we start with

14More formally, any point on the tree can be considered an equivalence class of p-adic
numbers, where the equivalence relation is equality up to O(z0) corrections. The equivalence
classes all take the form z + z0Zp, where z ∈ Qp. To say it another way: if z is any p-adic
number, then the point (z0, z) on the tree is the point whose digits up to pvp(z0) match the
corresponding digits of z. This even works for points along the trunk if we think of all their
chosen digits as 0.

15To bring this discussion closer to the standard mathematical description of the Bruhat–Tits
tree (see e.g. [48]), we can rephrase our definition of a point on Tp so that each point is an
equivalence class in Qp × Qp, where elements (z0, z) and (z′0, z

′) in Qp × Qp are identified if
|z0| = |z′0| and z ∈ z′ + z′0Zp.
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Figure 1.3: A variant of the Bruhat–Tits tree for the unramified extension Qp2

with p = 2. Notice the parallels with figure 1.1. (Figure source [47].)

a field extension K of Qp of degree n. Using the associated field norm N(x) for

x ∈ K, we can define a norm

|x|K = |N(x)|1/np . (1.52)

This is the unique norm on K satisfying |x|K = |x|p for any x ∈ Qp and |xy|K =

|x|K |y|K for any x, y ∈ K. Since K = Qn
p as a vector space, (1.52) defines a

natural norm on Qn
p , and it turns out to be an ultrametric norm; so in particular

it satisfies the tall isosceles property. Different field extensions of the same degree

define inequivalent norms on Qn
p . We will be most interested in the unramified

extension of degree n, which we will denote by Qpn . By definition, it is the field

extension (which turns out to be unique) such that |x|K as defined in (1.52) is

always an integer power of p for non-zero x. Other field extensions of Qp can

be labeled (though not always uniquely) by the smallest integer divisor e of n

such that |x|eK is an integer power of p for all non-zero x. One refers to e as the

ramification index, and e = 1 corresponds to the unramified case.

Given a field extension K of Qp (not necessarily unramified), we can introduce
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analogs of Zp and Up, namely

ZK ≡ {x ∈ K : |x|K ≤ 1} and UK ≡ {x ∈ K : |x|K = 1} . (1.53)

Like the p-adic integers, ZK is a ring but not a field. If we define pK ≡ {x ∈
K : |x|K < 1}, then it can be shown that pK is a maximal ideal in ZK , so that

ZK/pK is a field, called the residue field. It is in fact the finite field Fpf with pf el-

ements, where f = n/e. It can also be shown that one can find an element π ∈ K
with |π|K = p−1/e, and that once such an element (called a “uniformizer”) is cho-

sen, the polar decomposition summarized in (1.36) and (1.42) can be generalized

to a unique representation of any non-zero element of K:

x = πvK(x)

∞∑
m=0

amπ
m , a0 6= 0 , (1.54)

where vK(x) ∈ Z is the valuation of x in K, and the ak are elements of the residue

field, with a0 6= 0. From the perspective of a tree representation, we see from

(1.54) that we can represent the sets πmUK as bushes rooted in a trunk, with

each root marked by a power πm of the uniformizer. Starting on the trunk, the

first step up into a chosen bush amounts to choosing a0 6= 0, and subsequent

steps amount to choosing successive “digits” ak in the residue field. We see that

the tree has uniform coordination number pf + 1.

Two examples may help make the discussion of the previous paragraph clearer.

First, the totally ramified extension of Qp of degree n comes from extending Qp

by p1/n. Then e = n and f = 1, and the uniformizer can be chosen as p1/n itself.

The tree is identical to the original Bruhat–Tits tree, only the natural depth

coordinate z0 now takes values pm/n where m ∈ Z. Thus it can be thought of as

a refinement of the Bruhat–Tits tree for Qp itself. Second, the unique unramified

extension Qpn of Qp of degree n can be obtained by adjoining to Qp a primitive

(pn−1)-th root of unity. This non-trivial assertion is demonstrated, for example,
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on pp. 167ff of [49]. The obvious choice of uniformizer is p, and the natural tree

structure associated with Qpn is shown in figure 1.3. The depth coordinate z0

takes values pω with ω ∈ Z. The boundary is Qpn t {∞}, which more properly

is P1(Qpn). We will denote this modified Bruhat–Tits tree by Tpn . It can be

realized as a group quotient, Tpn = PGL(2,Qpn)/PGL(2,Zpn), where Zpn = ZQpn

[50]. We can use the same parametrization (z0, z) of points in Tpn as we did for

Tp, and it is made precise by uniquely associating a point on the tree with the

set z+ z0Zpn of points on the boundary that can be reached by traveling upward

from it.

We will only consider unramified extensions in this dissertation. Since the

isometry group of Tpn is PGL(2,Qpn), which is more like PSL(2,R) and PSL(2,C),

than SO(n+1, 1,R), the non-Archimedean AdSn+1/CFTn correspondence we will

develop will have many features of a low dimensional AdS/CFT, and in fact n

may sometimes serve merely as a tunable parameter. On the other hand, we

will discover surprising connections with results obtained in higher dimensional

Archimedean AdSn+1/CFTn correspondence.

1.4 Outline of the dissertation

This dissertation is organized as follows. In chapter 2, we set up a non-Archimedean

AdS/CFT correspondence. The AdS bulk gets replaced by a discrete regular

graph, and its boundary is described by p-adic numbers. We compute various

simple holographic correlators in a simple bulk theory of interacting scalar fields

in a fixed background, and find the first hints of adelic relations between the

Archimedean and the non-Archimedean AdS/CFT. This involves expressing fi-

nal expressions for the various correlators in terms of local zeta functions. We

take the first steps towards a description of p-adic Wilson loops, and discuss
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the relation between the discrete Bruhat–Tits tree, and the geometry of chordal

distances.

In chapter 3, we continue our investigation of the non-Archimedean AdS/CFT

correspondence by focussing on the computation of the complete four-point func-

tion of scalar operators of arbitrary dimensions. We develop various computa-

tional techniques which help simplify the evaluation of complicated bulk Feynman

diagrams. These techniques include the identification of the bulk dual of the p-

adic scalar conformal blocks. Just like in the Archimedean case, the bulk dual

turns out to be the so-called “geodesic bulk diagram,” which is a bulk exchange

diagram where the bulk points of integration are restricted to lie along specific

geodesics. This identification, together with various useful propagator identities,

helps us write down the full conformal block decomposition of the four-point func-

tion. Not only do we obtain closed-form expressions for the four-point function,

we are able to discover striking (adelic) similarities between the Archimedean

and non-Archimedean four-point functions, down to precise coefficients. That

the p-adic expressions are simpler than the Archimedean ones can be attributed

to the fact that the p-adic operator product expansion is significantly simpler,

importantly lacking derivative expansions.

Finally, we write down a minimal bulk action which reproduces the two-,

three-, and four-point functions of a free O(N) model at leading order in large

N . The bulk action describes a single massive scalar field on the Bruhat–Tits tree,

with an on-site cubic, on-site quartic and a nearest neighbor quartic interaction

vertex. We demonstrate precise agreement between a computation done both on

the bulk and the boundary sides, to test the proposed duality. This is the first

instance of a (non-trivial) check of the non-Archimedean AdS/CFT duality.

In chapter 4, we switch gears and turn to a purely field theoretic treatment

of the p-adic interacting O(N) model in n-dimensions and its IR fixed point. We
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begin by reviewing the O(N) model over the p-adic numbers and the discrete

renormalization group transformations, which can be understood as spin block-

ing in an ultrametric context. We discuss an important property of ultrametric

field theories: a non-renormalization theorem for the kinetic terms. We then

obtain leading order results for the anomalous dimensions of low dimension op-

erators near the Wilson-Fisher fixed point in the ε expansion. We next turn to

large N methods, and obtain universal formulae for anomalous dimensions of low

dimension operators which are equally valid for both (non-Archimedean) field

theories over the p-adic numbers as well as (Archimedean) field theories on Rn.

These universal formulae are expressible in terms of local Beta functions (which

are eventually constructed out of local zeta functions), and have an adelic flavor

associated with them. Results for anomalous dimensions agree between the ε ex-

pansion and large N methods when they can be meaningfully compared, as well

as with previous results from the literature. Finally, we consider higher derivative

versions of the (Archimedean) O(N) model on Rn, the simplest of which has been

studied in connection with spatially modulated phases. Our general formula for

anomalous dimensions can still be applied. Finally, we comment on the existence

of some interesting new field theories in four real Euclidean dimensions.

The overarching theme in this dissertation has been the search for methods

which afford computational simplicity on the one hand, and uncover intriguing

mathematical structures in physical theories on the other. We have taken a few

steps towards connecting known formalisms with new ones and discovered sur-

prising mathematical connections which are teaching us new lessons. We end

with some concluding remarks and outlook for the future in chapter 5. I am opti-

mistic the greatest surprises in the research direction pursued in this dissertation

are yet to come and lie just around the corner.



Chapter 2

Non-Archimedean AdS/CFT

This chapter is based on a lightly edited version of a paper with Steven S. Gubser,

Johannes Knaute, Andreas Samberg and Przemek Witaszczyk [47]. This work

was also presented at the conferences [51, 52, 53].

2.1 Introduction and summary

We pointed out in chapter 1 several hints of holography already apparent in the

description of p-adic numbers and the Bruhat–Tits tree. In fact, p-adic numbers

and Bruhat–Tits tree have already appeared in the literature in connection with

dS/CFT, in the context of a statistical mechanical model capturing certain as-

pects of eternal inflation [54]. We would like to pursue this in a different direction

and develop a (Euclidean) AdS/CFT correspondence based on p-adic numbers,

where real spacetime coordinates of the boundary theory are replaced by p-adic

coordinates, and the bulk AdS geometry gets replaced by the Bruhat–Tits tree,

so we might call this the BT/CFT correspondence, the p-adic AdS/CFT corre-

spondence or simply the non-Archimedean AdS/CFT correspondence.

Considering a discrete bulk geometry (such as that of the Bruhat–Tits tree)

45
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is also interesting from the point of view of tensor networks and holography

[55, 56, 57, 58]. Indeed, shortly after the publication of the work on which this

chapter is based [47], connections between p-adic AdS/CFT and tensor networks

were pointed out in [59] and more recently in [60].

In fact, even from the point of view of a formulation of a discrete string

worldsheet with the target space based on (global) algebraic number fields [61,

62, 63, 30, 29, 31, 31, 64]), one might ask whether there is a worldsheet formulation

based on the (local) field of p-adic numbers. (Of course, a description in terms of

real coordinates exists, and it is the standard framework of string theory.) Indeed

the framework of p-adic string theory was developed in [65, 66, 48] (see [67] for

a review), where the open string worldsheet was described as a Bruhat–Tits tree

of coordination number p+1 [68], and the boundary of the string worldsheet was

described by p-adic numbers (more precisely, the projective line P1(Qp)). Let us

discuss a remarkable aspect of p-adic string theory, which will serve as a useful

guide to us while formulating p-adic AdS/CFT. In the standard formulation of

open strings, the (crossing symmetric) Veneziano amplitude (i.e. the four tachyon

open string tree amplitude symmetrized over all channels) is given by

A(4)
∞ =

∫
R
dz|z|k1·k2

∞ |1− z|k1·k3
∞ , (2.1)

where as in chapter 1 the norm | · |∞ means the usual absolute value norm on the

reals, and the tachyon momenta satisfy

k2
i = 2

4∑
i=1

ki = 0 . (2.2)

Defining the Mandelstam variables

s ≡ −(k1 + k2)2 t ≡ −(k1 + k3)2 u ≡ −(k1 + k4)2 , (2.3)
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so that s+ t+ u = −8, the integral in (2.1) evaluates

A(4)
∞ = BEuler(−α(s),−α(t)) +BEuler(−α(t),−α(u)) +BEuler(−α(u),−α(s))

= B∞(−α(s),−α(t)) ,

(2.4)

where α(x) ≡ 1 + x/2, and

BEuler(t1, t2) ≡ ΓEuler(t1)ΓEuler(t2)

ΓEuler(t1 + t2)
, (2.5)

where ΓEuler is the (usual) Euler Gamma function. 1 In the second line of (2.4),

we have rewritten the Veneziano amplitude in terms of the local Beta, Gamma

and zeta functions, defined as follows: 2

B∞(t1, t2) ≡ Γ∞(t1)Γ∞(t2)

Γ∞(t1 + t2)
(2.9)

with

Γ∞(s) ≡ ζ∞(s)

ζ∞(1− s) ζ∞(s) ≡ π−s/2ΓEuler(s/2) . (2.10)

Analogously in p-adic string theory, the p-adic (or non-Archimedean) Veneziano

amplitude is given by

A(4)
p =

∫
Qp
dz|z|k1·k2

p |1− z|k1·k3
p , (2.11)

with the momenta satisfying (2.2) like in the Archimedean case. The difference

with the Archimedean case is stems from the fact that z ∈ Qp, so that the

1The Euler Gamma function is defined via the integral

ΓEuler(s) ≡
∫ ∞

0

dx exp(−x)|x|s−1
∞ . (2.6)

2The B∞(t1, t2) and Γ∞(s) functions are actually defined by the integrals

B∞(t1, t2) ≡
∫
R
dx |x|t1−1

∞ |1− x|t2−1
∞ , (2.7)

Γ∞(s) ≡
∫
R
dx exp(2πix) |x|s−1

∞ , (2.8)

which can be evaluated to verify (2.9)-(2.10).
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absolute value norms are now replaced with p-adic norms and the integration

is now performed over Qp. Performing the p-adic integrals (we discuss p-adic

integration in detail in section 2.2), we obtain 3

A(4)
p = Bp(−α(s),−α(t)) , (2.15)

where

Bp(t1, t2) ≡ Γp(t1)Γp(t2)

Γp(t1 + t2)
(2.16)

with

Γp(s) ≡
ζp(s)

ζp(1− s)
ζp(s) ≡

1

1− p−s . (2.17)

The authors of [66] showed that the following remarkable product formula holds:

A(4)
∞

∏
p

A(4)
p = 1 , (2.18)

where the product is over all primes p (with the key observation being that

ΓA(s) ≡ Γ∞(s)
∏

p Γp(s) = 1). This product is similar to the simple adelic prod-

uct |x|∞
∏

p |x|p = 1, mentioned in chapter 1. 4 This observation that the

3Like in footnote 2, Bp(t1, t2) and Γp(s) functions are actually defined by the integrals

Bp(t1, t2) ≡
∫
Qp

dx |x|t1−1
p |1− x|t2−1

p , (2.12)

Γp(s) ≡
∫
Qp

dx exp(2πi[x]) |x|s−1
p , (2.13)

where [x] is the “fractional part” of x ∈ Qp. The precise details are not important for now and
will be explained in more detail in section 2.2, but the upshot is that one can verify (2.16)-(2.17)
starting from the integrals in (2.12)-(2.13). In fact even the local zeta functions in (2.10) and
(2.17) have integral representations:

ζ∞(s) ≡ ζ∞(1)

∫
R
dx exp(−πx2)|x|s−1

∞

ζp(s) ≡ ζp(1)

∫
Qp

dx γp(x)|x|s−1
p ,

(2.14)

where ζ∞(1) = 1, ζp(1) = 1/(1− p−1) and γp(x) is the characteristic function of Zp, which we
will describe in section 2.2. A key property of γp(x) is that it is it’s own Fourier transform.

4The generalization of this adelic product to higher point tachyon amplitudes involves a
recursive relation between the N - and (N − 1)-point amplitudes [69].
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amplitudes at the finite places (local fields at all primes p as well as the “prime

at infinity”) are related to each other is quite tantalizing. We could even say

that the Archimedean Venziano amplitude can be “reconstructed” starting from

the p-adic amplitudes via the adelic product. Could something along these lines

hold in AdS/CFT? In fact, it is worth pointing out that in retrospect, we can

recognize the derivation in [68] of an effective non-local action on the boundary

of the p-adic string worldsheet, for a classical theory of massless scalars on the

Bruhat–Tits tree as already in the spirit of AdS2/CFT1. In this chapter and the

next, we provide evidence that something similar happens in holography, in fact

almost just as well.

The bulk of the present chapter is devoted to a detailed account of how to

formulate AdS/CFT when the boundary is not Rn but instead an n-dimensional

vector space Qn
p . More precisely, we take the boundary to be the unramified

extension of Qp of degree n,5 and the bulk is a modification of the Bruhat–

Tits tree for Qp such that each vertex has pn + 1 nearest neighbors.6 We will

formulate a version of AdS/CFT that relates classical dynamics on the Bruhat-

Tits tree of Qpn to a conformal field theory on Qpn . We will find it to be similar

5One reason for sticking with the case of unramified extensions is that it is simpler than the
case of ramified extensions, where conflicting notions of dimension may arise. Starting with the
unramified field extension Qpf , we may extend further by adjoining p1/e for some e > 1. The

residue field is still Fpf , and the natural uniformizer is p1/e. The Bruhat–Tits tree is unchanged

from Tpf , except in that the depth coordinate on the Bruhat–Tits tree z0 takes values pm/e for
m ∈ Z; thus it is a refinement of the Bruhat–Tits tree for Qpf in the sense of [70]. This ramified
extension has two conflicting notions of dimensionality: The residue field Fpf has dimension
f as a vector space over Fp, but the full field extension has dimension ef as a vector space
over Qp. Possibly the resulting holographic dynamics will show a mix of f -dimensional and
ef -dimensional behaviors.

6Quadratic field extensions appeared already in [65] in connection with closed strings, which
is to say two-dimensional conformal field theory. Ramified extensions have been considered in
the context of the p-adic string in [70], following work of [71], and other field extensions of the
p-adics have also been considered for some time in the program of Gervais [72] to generalize p-
adic string amplitudes. Field extensions of Qp, the modified Bruhat–Tits tree and its Schottky
uniformization were also discussed in [73] in the context of tachyon multiloop amplitudes in
p-adic string theory, and in [74] (building on work of [75]) in the context of black holes in
AdS3/CFT2.
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in many regards to the usual Euclidean AdSn+1/CFTn duality, although we are

limited in this work to scalar fields and operators. One significant difference,

however, is that the symmetry group of the Bruhat-Tits tree is PGL(2,Qpn),

which is closer to SL(2,R) than to the group O(n+1, 1,R) of isometries of AdSn+1.

Correspondingly, conformal field theories over Qpn can be expected to have some

common algebraic features independent of the value of n. For simplicity, our

discussion will be limited to the simplest possible action on the modified Bruhat–

Tits tree (which corresponds to the gravity side of the AdS/CFT correspondence),

namely a nearest neighbor action for a single real scalar defined on the vertices

of the Bruhat–Tits tree (which serves as the fixed background geometry). with

a mass and possibly some cubic or quartic self-interactions,

S[φ] = ηp
∑
〈ab〉

1

2
(φa − φb)2 + ηp

∑
a

(
1

2
m2
pφ

2
a +

g3

3!
φ3
a +

g4

4!
φ4
a

)
, (2.19)

where ηp, g3, and g4 are coupling constants. The seemingly “missing” factor of

√
g in the action, which for example is present in the Archimedean case (see, for

instance (1.30) in chapter 1) is actually implicit in (2.19). Essentially, starting

with a continuum (Euclidean) pAdS space given by the product space pAdSn+1 =

Q×p ×Qpn , where Q×p corresponds to the radial direction in the bulk, and an action

defined on this space (which does include an explicit factor of
√
g), (roughly

speaking) after consistently identifying points “within one AdS radius distance”

of each other as belonging to the universality class, the geometry of pAdSn+1

can be shown to become that of the Bruhat–Tits tree Tpn , with the continuum

integral over all of AdS space in the action becoming the discrete tree sum shown

in (2.19). We explain this point in detail in section 2.5.3.

So starting with the action in (2.19), where the sum
∑
〈ab〉 represents a sum

over all nearest neighbor vertices and the sum
∑

a is over all vertices of the tree,

we will express Green’s functions in terms of bulk-to-boundary and bulk-to-bulk
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propagators, and a number of formal similarities to ordinary AdS/CFT will be

noted. In general — up to subtleties with regularization as discussed in section

2.4.1 — the expression for p-adic correlators is found from the prescription

− log

〈
exp

{∫
Qq
dz φ0(z)O(z)

}〉
p

= extremum
φ→φ0

S[φ] (2.20)

where by φ→ φ0 we mean

lim
z0→0
|z0|∆−np φ(z0, z) = φ0(z) , (2.21)

and S[φ] is the bulk action (2.36) or some generalization thereof. The formula

(2.20) is closely analogous to the standard AdS/CFT prescription of [23, 24] as

discussed in chapter 1, and it should be understood as receiving corrections from

loops in the bulk, so that the full story is that the partition functions of the bulk

and boundary coincide when appropriately sourced.

Final expressions for two- and three-point correlators are computed using

(2.20) in section 2.4 and are found to be mostly, but not entirely, amenable to

being assembled into adelic products. The main feature of p-adic four-point am-

plitudes is a remarkably simple closed form expression for the p-adic amplitudes

as compared to their real counterparts. A detailed account of the complete four-

point function of operators of arbitrary dimensions (which includes both contact

as well as exchange diagrams) is postponed to chapter 3. A remarkable feature of

the p-adic correlators is their striking similarities with the Archimedean results

when the standard expressions found in the literature are reexpressed in term

of the local zeta functions ζ∞ (rather than ΓEuler). In fact all explicit factors

of π disappear, and the final Archimedean expressions take considerably sim-

pler (and almost universal) forms in terms of local zeta functions. (Universal in

the sense independent of the choice of the local field — whether p-adic or real.)

This continues to hold for more complicated calculations presented in chapters
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3 and 4, where we rewrite standard expressions for the full four-point function

and anomalous dimensions in terms of local Beta, Gamma and zeta functions.

On top of their remarkable resemblance with the Archimedean results, the p-adic

results are also associated with great simplicity. For example, the exact bulk-to-

boundary propagator is a linear combination of precisely two terms associated

with the two power laws allowed by the equations of motion, upto a certain depth

in the bulk beyond which it vanishes exactly. The Archimedean bulk-to-boundary

propagator instead has subleading correction terms near the boundary, and an

exponentially fall-off deeper in the bulk. As another example, the p-adic four-

point function admits a closed form expression, in contrast to the Archimedean

four-point function (a detailed analysis of the four-point function, along with a

discussion on what causes the p-adic correlators to have simpler final expressions

will be undertaken in chapter 3). Finally, the simplicity of CFT correlators can

also be seen as the simplicity of the bulk. The discrete tree geometry of the bulk

causes the holographic computation of correlators to reduce to simple geometric

sums rather than complicated integrals in the Archimedean case. In fact, any

diagram in the bulk, be it higher-point functions or loop corrections, should be

exactly calculable in closed form because it may be reduced to a combination of

geometric sums.

The organization of the rest of this chapter is as follows. In section 2.2 we

summarize some aspects of p-adic integration that we will need. Most of our ac-

count is standard, and more thorough treatments can be found, for example, in

[48, 49]. In section 2.3, we introduce the classical scalar dynamics that we are in-

terested in on the Bruhat–Tits tree, and we explain how to compute bulk-to-bulk

and bulk-to-boundary propagators. We then pass in section 2.4 to the compu-

tation of holographic m-point amplitudes for m = 2, 3, and 4. In section 2.5

we touch upon the relation of p-adic correlators to their real counterparts, the
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geometry of chordal distance on p-adic AdSn+1, and a brief account of Wilson

loops, and finally conclude in section 2.6 with some future directions.

We will simplify notation by setting q = pn so that Qq is the unramified

extension of degree n. We will abbreviate the norm | · |Qq to | · |q and the valuation

vQq to vq.

2.2 p-adic integration

We will need to perform integrals over Qp or over the unramified extension Qq.

Such integrals may be approximated as Riemann sums built by sampling a typical

value of the integrand at each point in the Bruhat–Tits tree Tq, and then summing

these typical values over all points at a fixed depth z0. In practice, we will often

work with integrands which are piecewise constant over easily enumerated subsets

of Qq, and then the integral can be replaced by a discrete sum.

In order to write down the Riemann sums of interest explicitly, it is helpful

to define the sets

Sωµ ≡
{
x ∈ Qq : x =

ω−1∑
m=µ

amp
m where all am ∈ Fq

}
(2.22)

for ω > µ, and Sωµ = {0} for ω ≤ µ. If ω > µ, then the elements of Sωµ uniquely

label the qω−µ points in Tq at depth z0 = pω which can be accessed by going

upward ω − µ steps from the point (pµ, 0). Given a function f : Qq → R which

is continuous and tends swiftly to 0 when its argument is large in the | · |q norm,

we may approximate ∫
Qq
dx f(x) ≈

∑
x∈Sωµ

q−ωf(x) , (2.23)

where we usually require ω > µ. The approximate equality in (2.23) becomes

an exact equality in the limit where µ → −∞ and ω → ∞. We should think of

µ as an infrared cutoff which essentially tells us to replace the integral over Qq
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by an integral over pµZq. The ultraviolet cutoff ω tells us to sample the integral

at evenly spaced points, with a small volume q−ω assigned to each point. We

observe that for fixed ω and fixed µ with ω ≥ µ, we can split up pµZq into many

copies of pωZq, each shifted by an element of Sωµ . Explicitly, we can write pµZq

as a disjoint union:7

pµZq =
⊔
x∈Sωµ

(x+ pωZq) for fixed ω ≥ µ . (2.25)

The disjoint union (2.25) helps motivate the form of the right hand side of (2.23).

Using (2.23), one can show that ∫
Zq
dx = 1 , (2.26)

and that ∫
ξS

dx = |ξ|nq
∫
S

dy (2.27)

for any measurable set S ⊂ Qq and any fixed non-zero element ξ ∈ Qq. Then

ξS = {ξs : s ∈ S}. We think of the prefactor in (2.27) as coming from |dx/dy|nq =

|N(dx/dy)|p where x = ξy. Since Uq = Zq \ pZq, we see by combining (2.26) and

(2.27) that ∫
Uq
dx = 1− 1

q
. (2.28)

In later sections we will need the Fourier transform over Qq. The first ingredi-

ent is an additive character χ : Qq → S1, where we think of S1 as a complex phase.

The key properties of χ are χ(ξ + η) = χ(ξ)χ(η), χ(0) = 1, and χ(ξ)∗ = χ(−ξ),
7We will have enough occasion in this chapter to use both ordinary unions, represented by

∪, and disjoint unions, represented by t, that we emphasize the distinction. By definition,⋃
α∈S

Aα ≡ {x : x ∈ Aα and α ∈ S} while
⊔
α∈S

Aα ≡ {(x, α) : x ∈ Aα and α ∈ S} .

(2.24)
Note that the ordinary union and disjoint union of sets can be naturally identified if and only if
all the sets Aα are disjoint. Sometimes, as in (1.43), we use t to indicate a union of obviously
disjoint sets; elsewhere, as in (2.118), we use t on overlapping sets when the multiplicity of
elements in the final union matters. We reserve ∪ for use in situations where we want the
ordinary union of sets which may overlap.
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where ∗ means complex conjugation. The standard additive character on R is

χ(ξ) = e2πiξ. On Qp, the standard choice is χ(ξ) = e2πi[ξ], where [ξ] is the frac-

tional part of ξ: That is, [ξ] ∈ [0, 1), and ξ = [ξ] + m for some m ∈ Zp. Note

that [ξ] is a rational number whose denominator is a power of p. To handle an

unramified extension Qq, we start with an arbitrary non-zero element

ξ =
∞∑

m=vq(ξ)

bmp
m , (2.29)

where each bm ∈ Fq and bvq(ξ) 6= 0, and define the fractional part as [ξ] = 0 if

ξ ∈ Zq, and

[ξ] =
−1∑

m=vq(ξ)

TrFq :Fp(bm)pm (2.30)

otherwise. To make sense of (2.30), recall that TrFq :Fp : Fq → Fp is a homomor-

phism of the additive group structures on Fq and Fp, and Fp can be identified with

the set {0, 1, 2, . . . , p − 1}, so the right hand side of (2.30) is a rational number

in [0, 1) whose denominator is a power of p. Now we can define χ(ξ) = e2πi[ξ] as

in the case of Qp.

The Fourier and inverse Fourier transforms over Qq can be defined as

f(x) =

∫
Qq
dk χ(kx)f̃(k) f̃(k) =

∫
Qq
dxχ(kx)∗f(x) . (2.31)

A key feature of the p-adic Fourier transform is that

γq(x) ≡


1 for x ∈ Zq

0 otherwise

(2.32)

is its own Fourier transform. Indeed, if k ∈ Zq, then for all x ∈ Zq, we have

[kx] = 0, so χ(kx) = 1 and the second integral of (2.31) reduces to the integral

of 1 over Zq, which is 1; whereas, if instead k /∈ Zq, the character χ(kx) takes

values symmetrically distributed around the unit circle in C, so that the average
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is 0. Using (2.27) and (2.32), we can show that

∫
ξUq

dy χ(y) = |ξ|nq
(
γq(ξ)−

1

q
γq(pξ)

)
=



|ξ|nq
(

1− 1

q

)
if vq(ξ) ≥ 0

− 1 if vq(ξ) = −1

0 if vq(ξ) < −1 .

(2.33)

With the formula (2.33) in hand, we can find the Fourier transform of any function

f(x) which depends only on the norm |x|q.
In the computation of two-point functions we will use∫

Qq
dxχ(k1x)χ(k2x) = δ(k1 + k2) . (2.34)

This formal relation is rendered meaningful by integrating both sides against a

smooth function f̃(k1) which decreases rapidly for large argument:∫
Qq
dk1 f̃(k1)

∫
Qq
dxχ(k1x)χ(k2x) =

∫
Qq
dxχ(k2x)

∫
Qq
dk1 f̃(k1)χ(k1x)

=

∫
Qq
dxχ(k2x)f(x) = f̃(−k2) ,

(2.35)

where in the first step we switched order of integrations (still as a formal ma-

nipulation), and the remaining steps are rigorously defined examples of Fourier

transforms.

2.3 Propagators

Following the philosophy of AdS/CFT, we would like to study a classical action

on the modified Bruhat–Tits tree Tq, where q = pn. From the behavior of classical

fields on this p-adic version of AdSn+1, we expect to obtain correlators on the

boundary, ∂Tq = Qq (more precisely, ∂Tq = P1(Qq)). Readers interested in the

simplest examples may consistently set n = 1 and q = p, so that the whole
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discussion reduces to the unmodified (p + 1)-regular Bruhat–Tits tree and the

boundary is just Qp (more precisely, P1(Qp)).

2.3.1 Action, bulk-to-bulk propagator, and mass formula

Consider the following discrete bulk Euclidean action on the tree,

S =
∑
〈ab〉

1

2
(φa − φb)2 +

∑
a

(
1

2
m2
pφ

2
a − Jaφa

)
, (2.36)

where a and b label vertices on the tree. The notation 〈ab〉 indicates that the

sum is over nearest neighboring lattice sites, or in other words over all edges of

the tree. The equation of motion derived from (2.36) is

(�+m2
p)φa = Ja , (2.37)

where the laplacian on the tree is

�φa =
∑
〈ab〉
a fixed

(φa − φb) . (2.38)

The choice of sign in (2.38) corresponds to the choice � = − 1√
g
∂µ
√
ggµν∂ν on a

real manifold, i.e. � is positive definite as an operator acting on functions with

swift fall-off at infinity. A solution to (2.37) is

φa =
∑
b

G(a, b)Jb , (2.39)

where the Green’s function G(a, b) satisfies

(�a +m2
p)G(a, b) = δ(a, b) . (2.40)

In (2.40) the laplacian �a is understood to act on the first index of G, and

δ(a, b) =


1 if a = b

0 otherwise .

(2.41)
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A solution to (2.40) depending only on the distance d(a, b) between vertices a

and b on the tree is

G(a, b) =
ζp(2∆)

p∆
p−∆d(a,b) , (2.42)

where ∆ satisfies the relation

m2
p = − 1

ζp(∆− n) ζp(−∆)
. (2.43)

We have introduced the p-adic zeta functions

ζp(s) ≡
1

1− p−s . (2.44)

Results on bulk-to-bulk propagators for a massless scalar on the Bruhat–Tits

tree were obtained in [68], both for asymptotic Dirichlet and Neumann boundary

conditions. The result for Dirichlet boundary conditions matches exactly with

the n = ∆ = 1 case of (2.42), up to an overall sign due to a notational difference

in the definition of the tree Laplacian.

If m2
p = m2

BF,p ≡ −1/ ζp(−n/2)2, then the unique real solution to (2.43)

is ∆ = n/2. If m2
p > m2

BF,p, there are two real solutions ∆± to (2.43) with

∆+ + ∆− = n and ∆+ > ∆−. If m2
BF,p < m2

p < 0, then ∆± are both positive,

whereas if m2
p > 0, ∆+ > 0 while ∆− < 0. This is similar to the situation

for real AdSn+1 of radius L, where m2
∞L

2 = ∆(∆ − n) as discussed in chapter

1. Following standard terminology, we will refer to constructions based on R

as the Archimedean place. In either the Archimedean or p-adic places, we will

assume ∆ = ∆+ > n/2 from here on and leave aside considerations of alternative

quantization.

2.3.2 Bulk-to-boundary propagator

Next we want to formulate the bulk-to-boundary propagator K(a, x), where a ∈
Tq is a bulk point and x ∈ Qq is a boundary point. K(a, x) should be a limit
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of G(a, b) where b is taken to the boundary point x ∈ Qq. As this limit is taken

with a held fixed, we must multiply by some function of b to keep the result finite

while preserving the property

(�a +m2
p)K(a, x) = 0 (2.45)

throughout the bulk. An obvious adaptation of the standard normalization con-

vention is ∫
Qq
dxK(z0, z;x) = |z0|n−∆

p , (2.46)

where the power on the right hand side makes sense because then the right hand

side itself is annihilated by �+m2
p, and we remember that the bulk point a can

be expressed as (z0, z).

We insist on translation invariance in the Qq direction: that is, K(z0, z;x)

depends on z and x only through the difference z − x. We propose the form

K(z0, z;x) =
ζp(2∆)

ζp(2∆− n)

|z0|∆p
|(z0, z − x)|2∆

s

. (2.47)

By | · |s we mean the supremum norm:

|(z0, z − x)|s = sup{|z0|p, |z − x|q} , (2.48)

where |z0|p = p−ω when z0 = pω.

To check that (2.47) is correct, it is enough to start by setting z = 0 and

holding z0 fixed. Then the bulk point is precisely the point along the trunk

labeled by z0 = pω, which is to say the point at which the bush below z0Uq is

rooted. For points x ∈ z0Zq =
⊔
m≥ω p

mUq t{0}, a path from x to the bulk point

(z0, 0) goes straight down. By contrast, to go from a boundary point x ∈ p−1z0Uq

to the bulk point (z0, 0) we must go down to the root point p−1z0 and then back

up one step to z0. This means there are two extra steps in the paths from points

x ∈ p−1z0Uq as compared to paths from points x ∈ z0Zq. There are 2m extra
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steps if x ∈ p−mz0Uq, since we must go down to the root point p−mz0 and then

back up m steps to z0.8 Because G(a, b) ∝ p−∆d(a,b), we are penalized by a factor

of p−2∆ for each extra step we take. Hence K(z0, 0;x) is constant for x ∈ z0Zq,

whereas K(z0, 0;x) = p−2∆mK(z0, 0; 0) when |x|q = pm|z0|q for m > 0. Observing

that

|(z0, x)|s =


|z0|p for |x|q ≤ |z0|p

pm|z0|p for |x|q = pm|z0|p and m > 0 ,

(2.49)

we see that the factor |(z0, z− x)|2∆
s in the denominator of the right hand side of

(2.47) is just what we need to account for the x-dependence of K.

To figure out the z0 dependence of K, let’s set x = z = 0. Then the number

of steps from the boundary point to the bulk point (that is, from x = 0 to the

point marked z0 = pω on the tree) increases by 1 every time we decrease ω by

1. Each such step should decrease K by a factor of p−∆. So we conclude that

K(z0, 0; 0) ∝ |z0|−∆
p . Together with the considerations of the previous paragraph,

we see that K(z0, z;x) ∝ |z0|∆p /|(z0, z − x)|2∆
s . At this point one can explicitly

verify the property (2.45).

All that remains is to check that the overall normalization of K in (2.47)

matches the condition (2.46). To this end we calculate the integral∫
Qq

dx

|(z0, x)|2∆
s

=

∫
z0Zq

dx

|z0|2∆
p

+
∞∑
m=1

∫
p−mz0Uq

dx

p2m∆|z0|2∆
p

= |z0|n−2∆
p

[
1 +

(
1− 1

q

) ∞∑
m=1

qmp−2m∆

]

= |z0|n−2∆
p

[
1 +

(
1− 1

pn

)(
1

1− pn−2∆
− 1

)]
= |z0|n−2∆

p

ζp(2∆− n)

ζp(2∆)
,

(2.50)

8The number of steps from a boundary point to a bulk point is always infinite, so the careful
reader may prefer the more precise statement that if we start counting steps at some fixed depth
w0, with |w0|p < |z0|p, then the number of steps is the same for all x ∈ z0Zq, and increases by
2m for x ∈ p−mz0Zq.
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where the key step was to split the integral over all of Qq to integrals over disjoint

domains across which the integrand is constant. The final result in (2.50) confirms

the normalization in (2.47).

It is interesting to note that the normalized bulk-to-boundary propagator for

a scalar field in Euclidean AdSn+1 is

K(z0, ~z; ~x) =
ζ∞(2∆)

ζ∞(2∆− n)

z∆
0

(z2
0 + (~z − ~x)2)∆

, (2.51)

where we have used the normalization condition∫
Rn
dnxK(z0, ~z; ~x) = zn−∆

0 (2.52)

and introduced the local zeta function

ζ∞(s) = π−s/2ΓEuler(s/2) . (2.53)

2.3.3 Bulk-to-boundary propagator in Fourier space

Recall in the real case that we may express

K(z0, ~z; ~x) =

∫
Rn
dnk e2πi~k·(~x−~z)K(z0, ~k) , (2.54)

where

K(z0, ~k) =
2

ζ∞(2∆− n)
k∆−n

2 z
n
2
0 K∆−n

2
(2πkz0) , (2.55)

where Kν is a modified Bessel function of the second kind. The positioning of the

factors of 2π in (2.54) is non-standard, but it is easily understood if ~k is thought

of as momentum as the result of setting Planck’s constant h = 1 instead of the

usual ~ = 1. It is useful to note the asymptotics

K(z0, ~k) = zn−∆
0 [1 + . . .] +

ζ∞(−2∆ + n)

ζ∞(2∆− n)
k2∆−nz∆

0 [1 + . . .] (2.56)

for small kz0, while

K(z0, ~k) =
k∆−n

2
− 1

2 z
n
2
− 1

2
0

ζ∞(2∆− n)
e−2πkz0 + . . . (2.57)
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for large kz0. In (2.56), [1 + . . .] denotes a Taylor series in (kz0)2. Readers

familiar with the standard formulas for bulk-to-boundary propagators in Fourier

space may be amused to note that by using ζ∞ in favor of ΓEuler and following

the h = 1 convention rather than ~ = 1, we obtain simpler expressions for the

coefficients than the usual ones.

Now we would like to generalize (2.55) to the p-adic case. Explicitly,

K(z0, k) ≡
∫
Qq
dxχ(kx)∗K(z0, 0;x) =

ζp(2∆)

ζp(2∆− n)
|z0|∆p

∑
m∈Z

∫
pmUq

dx
χ(kx)∗

|(z0, x)|2∆
s

.

(2.58)

In the second equality, we have split Qq into nested spheres pmUq. We were able

to drop integration over the point 0 because this point has zero measure and the

integrand is finite there. |(z0, x)|2∆
s depends on x only through its norm |x|q, so

each integrand in the last expression in (2.58) is constant over its domain pmUq

of integration. As a result we may use (2.33). After some work, we obtain the

simple result

K(z0, k) =

(
|z0|n−∆

p + |k|2∆−n
q |z0|∆p

ζp(−2∆ + n)

ζp(2∆− n)

)
γq(kz0) . (2.59)

(We could simplify (2.59) further using ζp(−2∆ + n)/ ζp(2∆ − n) = −p−2∆+n,

but for comparison with (2.56) it is best to leave (2.59) in terms of p-adic zeta

functions.) A remarkable point about (2.59) is that K(z0, k) is exactly a linear

combination of the two power laws |z0|n−∆
p and |z0|∆p down to the point where

|kz0|q = 1, and then for larger |kz0|q (meaning, further from the boundary of the

Bruhat–Tits tree), K(z0, k) vanishes exactly, instead of the exponentially small

behavior (2.57) observed in the real case. The exact vanishing explains a point

that may have been puzzling the reader: an on-shell scalar with momentum k

should take the form

φ(z0, z) = K(z0, k)χ(kz) , (2.60)

but how can this be a well-defined function on the Bruhat–Tits tree when χ(kz)
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itself is not? The answer is that χ(kz) is well-defined at points on the tree (z0, z)

precisely if |kz0|q ≤ 1. To see that this is true, remember that for a point (z0, z)

on the tree, the p-adic coordinate z can only be specified up to O(z0) corrections.

That means that kz is determined up to O(pvq(kz0)) corrections. χ(kz) is well-

defined if and only if the fractional part [kz] is well-defined, which is the same

as saying that kz is determined up to O(pm) corrections for some m ≥ 0. We

conclude that the condition for χ(kz) to be well-defined at (z0, z) is vq(kz0) ≥ 0,

and that is the same condition as |kz0|q ≤ 1. In other words, χ(kz) is not defined

on the whole tree, but χ(kz)γq(kz0) is, and that is enough for the expression

(2.60) to be well-defined.

It is possible to go further and verify not only that (2.60) is well-defined, but

also that it is a solution of (�+m2
p)φ = 0. There are four cases to consider:

• |kz0|q > p. Trivial because φ(z0, z) = φ(pz0, z) = φ(z0/p, z) = 0 for all z in

this case.

• |kz0|q < 1. In this case, φ is a sum of the two power laws permitted by the

mass formula (2.43), so the result is again trivial.

• |kz0|q = p. This case is straightforward because φ(z0, z) = φ(z0/p, z) = 0

for all z, whereas for fixed z, φ(a) ranges over a non-trivial character of

Fq as its argument a ranges over the q nearest neighbors of (z0, z) in the

upward direction.

• |kz0|q = 1. An explicit calculation starting from (�+m2
p)φ = 0 leads to

−qK(p|k|q, k) + (q + 1 +m2
p)K(|k|q, k) = 0 , (2.61)

which is easily verified by direct substitution.

In fact, using (2.43) one can show from (2.61) that the relative coefficient between

the two terms in parentheses in (2.59) must be as written there. If we further
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require that K(z0, 0) = |z0|n−∆
p , which is the same as the normalization condition

(2.46), we can conclude that (2.59) is the only possible answer for K(z0, k),

independently of the Fourier transform calculation given in (2.58).

2.3.4 Cross-ratios and limiting procedures

It will sometimes be useful to have expressions for propagators which are less

attached to the particular choice of depth coordinate, and correspondingly to

a particular Qq patch of the projective space P1(Qq). For this purpose, a key

formula expresses the distance d(a, b) between two points a and b on Tq in terms

of points x, y, u, and v in P1(Qq) such that the paths on Tq from x to y and from

u to v intersect precisely along the path from a to b, as in figure 2.1:

p−d(a,b) =

∣∣∣∣(x− u)(y − v)

(x− y)(u− v)

∣∣∣∣
q

=

∣∣∣∣(x− u)(y − v)

(x− v)(u− y)

∣∣∣∣
q

. (2.62)

In writing (2.62), we are assuming that none of x, y, u, and v are at ∞. The

second and third expressions in (2.62) are easily seen to be invariant under

PGL(2,Qq). If one of x, y, u, and v is at ∞, then we must first apply a suitable

PGL(2,Qq) transformation to all four points so that they all are mapped to Qq,

and then use (2.62).

From (2.42) and (2.62) it is clear that we may express the bulk-to-bulk Green’s

function as

G(a, b) =
ζp(2∆)

p∆

∣∣∣∣(x− u)(y − v)

(x− y)(u− v)

∣∣∣∣∆
q

. (2.63)

A little less obvious is the expression for the bulk-to-boundary propagator:

K(a, y) =
ζp(2∆)

ζp(2∆− n)

∣∣∣∣ x− u
(x− y)(u− y)

∣∣∣∣∆
q

, (2.64)

where a is the unique point where paths from x, y, and u meet: see figure 2.1.

It is obvious that K should be a limit of G(a, b) as b approaches the boundary:
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x

u

y

v

a b

dHa,bL

P1HQqL x

y

u

a

P1HQqL

Figure 2.1: Left: The distance d(a, b) between a and b is the number of steps
along Tq in the path from a to b. The path from x to y in Tq goes through a and
then b; likewise the path from u to v. The intersection of the paths from x to y
and from u to v is precisely the path from a to b. Right: Paths on Tq from three
boundary points x, y, and u meet at a unique bulk point a.

Explicitly,

K(a, y) = 2νp lim
v→y
|y − v|−∆

q G(a, b) , (2.65)

where G(a, b) is written in the form (2.63) and νp is some constant. The most

straightforward way to obtain the prefactor written in (2.64) is to explicitly

compare with (2.47) using y = 0, x ∈ Q×q , and u ∈ Q×q with |u|q > |x|q.
Then, using the tall isosceles property of | · |q, we have from (2.65) the relation

K(a, y) = 2νp
ζp(2∆)

p∆ |x|−∆
q , and from (2.47) it is clear that K(a, y) =

ζp(2∆)

ζp(2∆−n)
|x|−∆

q .

The prefactor claimed in (2.64) follows immediately.

An alternative derivation of the prefactor in (2.65) proceeds by comparison

with the Archimedean case, where in order to derive the relation analogous to

(2.65) together with the correct prefactor, the natural starting point is the relation

K(z0, ~z; ~x) = lim
x0→0

√
hx

∆−
0 n · ∂G(z0, ~z;x0, ~x) , (2.66)

where h is the determinant of the induced metric and n is the outward facing

normal vector at the boundary x0 = 0. (The relation (2.66) is essentially in the
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spirit of the treatment of [76].) Here we are using the short-hand ∆− = n−∆+ =

n−∆. Then using Green’s second identity∫
M
dn+1x

√
g
(
φ(�+m2

∞)ψ − ψ(�+m2
∞)φ

)
= −

∫
∂M

dny
√
h (φn · ∂ψ − ψn · ∂φ)

(2.67)

with the substitutions φ(z0, ~z) = G(z0, ~z;x0, ~x) and ψ(z0, ~z) = K(z0, ~z; ~x), to-

gether with the scalings near the boundary

z0∂z0G(z0, ~z;x0, ~x) = ∆+G(z0, ~z;x0, ~x) lim
z0→0

K(z0, ~z; ~x) = z
∆−
0 δ(~z − ~x) ,

(2.68)

it follows that

K(z0, ~z; ~x) = 2ν∞ lim
x0→0

x
−∆+

0 G(z0, ~z;x0, ~x) where 2ν∞ ≡ ∆+ −∆− = 2∆− n .
(2.69)

In the p-adics, to derive (2.65) together with the coefficient νp, it is more conve-

nient to start instead with the identity

φa =
∑
b∈Tq

(
φb
(
�b +m2

p

)
G(a, b)−G(a, b)

(
�b +m2

p

)
φb
)

(2.70)

where a = (w0, w) and b = (z0, z) are vertices on Tq, and rewrite φa on the

l.h.s. using

φa =

∫
Qq
dz K(a, z)φ0(z) ≈

∑
z∈SΩ

µ

q−ΩK(a, z)φ0(z) , (2.71)

where µ and Ω are the infrared and ultraviolet cutoffs, respectively (see the

discussion following (2.23)), chosen such that p−Ω < |w0|p < p−µ. With some

work, the r.h.s. of (2.70) can be partially integrated, and using the scalings

G(a; z0/p, z)
∣∣∣
z0=pΩ

= p∆+G(a; z0, z)
∣∣∣
z0=pΩ

lim
|z0|p→0

φ(z0, z) = |z0|∆−p φ0(z) ,

(2.72)

we arrive at

K(z0, z;x) = 2νp lim
|x0|p→0

|x0|−∆+
p G(z0, z;x0, x) (2.73)
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where

2νp ≡ p∆+ − p∆− =
p∆

ζp(2∆− n)
. (2.74)

Using (2.74), the final result of taking the limit (2.73) agrees with (2.47) and

(2.64).

When computing correlators, it will sometimes be convenient to refer to the

unnormalized propagators

Ĝ(a, b) ≡
∣∣∣∣(x− u)(y − v)

(x− y)(u− v)

∣∣∣∣∆
q

= p−∆d(a,b)

K̂(a, y) ≡
∣∣∣∣ x− u
(x− y)(u− y)

∣∣∣∣∆
q

=
|z0|∆p

|(z0, z − y)|2∆
s

,

(2.75)

where in the first line the arrangement of a, b, x, y, u, and v are as described

around (2.62), and in the second line a = (z0, z) is the unique point where paths

from x, y, and u meet.

2.4 Correlators

Let’s start with a naive approach to p-adic AdS/CFT two-point correlator, which

misses some overall factors but nevertheless gives us some interesting partial

guidance on what to expect. In this naive approach, the two-point function is

extracted as the limit of the bulk-to-boundary propagator, where the bulk point

is taken to the boundary. Explicitly, starting from (2.47),

〈O(x)O(y)〉p,naive = lim
x0→0
|x0|−∆

p K(x0, x; z) =
ζp(2∆)

ζp(2∆− n)
lim
x0→0

1

|(x0, x− y)|2∆
s

=
ζp(2∆)

ζp(2∆− n)

1

|x− y|2∆
q

,

(2.76)

where limx0→0 refers to setting x0 = pω and sending ω → +∞ so that x0 becomes

small in the p-adic norm | · |p. (The same answer could be obtained by starting

from (2.64), multiplying by |x−u|−∆
q , and taking the limit u→ x in the topology
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of Qq.) An equally naive calculation in the Archimedean case starts with (2.51)

and works the same way:

〈O(x)O(y)〉∞,naive = lim
x0→0

x−∆
0 K(x0, ~x; ~y) =

ζ∞(2∆)

ζ∞(2∆− n)

1

|~x− ~y|2∆
. (2.77)

We can add a bit of formal polish in the unextended case n = 1 by noting that

if x and y are rational, then we can define

〈O(x)O(y)〉v,naive =
ζv(2∆)

ζv(2∆− 1)

1

|x− y|2∆
v

(2.78)

equally for v = p and v =∞, where | · |∞ is the ordinary absolute value. We are

led to the adelic relation

〈O(x)O(y)〉A,naive ≡
∏
v

〈O(x)O(y)〉v,naive =
ζA(2∆)

ζA(2∆− 1)
for unequal x, y ∈ Q ,

(2.79)

where the product is over all primes as well as ∞, and we used the key relation∏
v

|ξ|v = 1 for ξ ∈ Q . (2.80)

We have also introduced the adelic zeta function,

ζA(s) ≡
∏
v

ζv(s) = π−s/2ΓEuler(s/2) ζ(s) , (2.81)

where ζ(s) =
∑∞

n=1
1
ns

is the ordinary Riemann zeta function. The adelic zeta

function obeys the simple functional relation ζA(s) = ζA(1 − s), and its non-

trivial zeros are the same as the non-trivial zeros of ζ(s), i.e. a discrete sequence

at Re s = 1/2 according to the Riemann Hypothesis.

The above treatment of the two-point correlator is wrong (or, at least, against

the usual spirit of AdS/CFT) because it leaves the on-shell action entirely out of

the story. We tackle the two-point function more in the next section.
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2.4.1 Two-point function

As a warmup to p-adic calculations, let’s review the standard account for Archimedean

AdSn+1, using Fourier space since it’s easier to sort out prefactors reliably in

Fourier space than in position space. The on-shell scalar configuration we are

interested in is

φ(z0, ~z) = λ1e2πi~k1·~zKε(z0, ~k1) + λ2e2πi~k2·~zKε(z0, ~k2) . (2.82)

We have defined

Kε(z0, ~k) ≡ K(z0, ~k)

K(ε,~k)
=
zn−∆

0 + ζRk
2∆−nz∆

0

εn−∆ + ζRk2∆−nε∆
+ . . . where ζR ≡

ζ∞(−2∆ + n)

ζ∞(2∆− n)
.

(2.83)

The notation + . . . in the third expression of (2.83) reminds us that we have

dropped terms which are subleading to the ones shown in both the numerator

and the denominator by positive even powers of kz0 or kε. The point of (2.83)

is that we have arranged to have φ(ε, ~z) = λ1e2πi~k1·~z + λ2e2πi~k2·~z, which we use

as source for a regulated version of the operator of interest, call it Oε. Then the

prescription we will use for Green’s functions is

− log

〈
exp

{∫
Rn
dnz φε(~z)Oε(~z)

}〉
∞

= extremum
φ(ε,~z)=φε(~z)

Sε[φ] , (2.84)

where

Sε[φ] = η∞

∫
z0>ε

dn+1z
√

det gµν

[
1

2
gµν∂µφ∂νφ+

1

2
m2
∞φ

2

]
, (2.85)

and the AdSn+1 metric is ds2 = gµνdz
µdzν = L2

z2
0

(dz2
0 + d~z2). The prefactor η∞ is

related to the gravitational coupling in string theory realizations of AdS/CFT. In

order to make it easy to compute the extremum, we add to the action a multiple
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of the equation of motion:

Son-shell = η∞

∫
z0>ε

dn+1z
√

det gµν

[
1

2
gµν∂µφ∂νφ+

1

2
m2
∞φ

2 − 1

2
φ(�+m2

∞)φ

]
= −η∞

4

∫
z0>ε

dn+1z
√

det gµν �φ2

= −η∞
4

(
L

ε

)n−1 ∫
z0=ε

dnz ∂z0φ2 ,

(2.86)

where � = − 1√
g
∂µ
√
ggµν∂ν . In order to extract the desired two-point function,

we compute

〈Oε(~k1)Oε(~k2)〉∞ = −∂
2Son-shell

∂λ1∂λ2

∣∣∣∣
λ1=λ2=0

=
η∞
2

(
L

ε

)n−1(∫
Rn
dnz e2πi(~k1+~k2)·~z

)[
∂z0

(
Kε(z0, ~k1)Kε(z0, ~k2)

)]
z0=ε

= η∞
Ln−1

εn
δ(~k1 + ~k2)

[
−∆ + n+ (2∆− n)(k1ε)

2∆−nζR + . . .
]
.

(2.87)

We discard the k1-independent term from inside square brackets in the last ex-

pression of (2.87) on grounds that its Fourier transform is a pure contact term in

position space. The terms we have omitted by writing . . . inside square brackets

are suppressed by positive integer powers of (k1ε)
2∆−n relative to the last term

shown, so for small ε and fixed k1 we may discard them too. (We are ignoring

the possibility of alternative quantization.) Thus, if we ignore contact terms and

also drop terms subleading in ε, we find

〈Oε(~x1)Oε(~x2)〉∞ =

∫
Rn
dnk1d

nk2 e2πi(~k1·~x1+~k2·~x2)〈Oε(~k1)Oε(~k2)〉∞

= η∞L
n−1ε2(∆−n)(2∆− n)ζR

∫
Rn
dnk1 e2πi~k1·~x12k2∆−n

1

= η∞L
n−1ε2(∆−n)(2∆− n)

ζ∞(2∆)

ζ∞(2∆− n)

1

|~x12|2∆
,

(2.88)

where we have set ~x12 = ~x1 − ~x2. In the last equality of (2.88) we started with

(2.51) and (2.56) and expanded at small z0 to obtain

ζR

∫
Rn
dnk e2πi~k·~xk2∆−n =

ζ∞(2∆)

ζ∞(2∆− n)

1

|~x|2∆
. (2.89)
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Note that the precise value of ζR doesn’t matter, since it enters the holographic

calculation (2.87) from the Fourier-space bulk-to-boundary propagator, and from

precisely the same propagator we can extract (2.89). The overall normalization

of this propagator does enter, and it leads to the ζ∞(2∆)/ ζ∞(2∆− n) factor in

the last expression of (2.88). The factor 2ν∞ = 2∆− n arises when passing from

the second line of (2.87) to the third line: That is, it is related to evaluating the

z0 derivative of φ2 at z0 = ε. This is similar to the way the normal derivative

in (2.66) leads to a factor of 2ν∞ in (2.69). We will therefore refer to 2∆− n as

a boundary factor. To obtain the final form of the two-point function, we note

that K(ε,~k) ≈ εn−∆ for small ε. Thus the solution φ(z0, ~z) in (2.82) contains an

extra factor of ε∆−n, which can be regarded as a leg factor for defining a truly

local operator:

O(~x) = lim
ε→0

εn−∆Oε(~x) . (2.90)

Using (2.90), we obtain the final answer

〈O(~x1)O(~x2)〉∞ = η∞L
n−1(2∆− n)

ζ∞(2∆)

ζ∞(2∆− n)

1

|~x12|2∆
. (2.91)

This expression is valid only up to contact terms. The more general expression

for fully local correlators is

− log

〈
exp

{∫
Rn
dnz φ0(~z)O(~z)

}〉
∞

= extremum
φ→φ0

S[φ] (2.92)

where by φ→ φ0 we mean

lim
z0→0

z∆−n
0 φ(z0, ~z) = φ0(~z) , (2.93)

and S[φ] is the same as Sε[φ] in (2.85) but integrated over all of AdSn+1.

Now let’s consider the analogous computation on the Bruhat–Tits tree, using

the action (2.19). Only the quadratic terms are of interest to us since, for now,

we only want the two-point function and are not concerned with loop corrections.
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The on-shell scalar configuration of interest is

φ(z0, z) = λ1χ(k1z)Kε(z0, k1) + λ2χ(k2z)Kε(z0, k2) . (2.94)

We have defined

Kε(z0, k) ≡ |z0|n−∆
p + ζR|k|2∆−n

q |z0|∆p
|ε|n−∆

p + ζR|k|2∆−n
q |ε|∆p

γq(kz0) (2.95)

where now

ζR ≡
ζp(−2∆ + n)

ζp(2∆− n)
= −p−2∆+n . (2.96)

Note that we cannot quite follow (2.83) because K(z0, k)/K(ε, k) is ill-defined for

|εk|q > 1. In practice, we aim to keep momenta fixed while we take a limit ε→ 0

(in the p-adic sense), so we will never encounter a situation where |εk|q > 1.

As compared to (2.83), it is notable that in (2.95) we are not discarding any

subleading terms at all. This makes the structure of contact terms simpler. Note

that φ(ε, z) = λ1χ(k1z) + λ2χ(k2z) (on the assumption |εk|q ≤ 1), so the obvious

adaptation of (2.84) is

− log

〈
exp

{∫
Qq
dz φε(z)Oε(z)

}〉
p

= extremum
φ(ε,z)=φε(z)

Sε[φ] (2.97)

where

Sε[φ] = ηp
∑

|ε|p<|a0|p

1

4

∑
〈ab〉

a fixed

(φa − φb)2 +
1

2
m2
pφ

2
a

 , (2.98)

where in a slight abuse of notation we use a0 to mean the value of the depth

coordinate z0 at the point a ∈ Tq. The reader should be forewarned that the cutoff

procedure has an O(1) impact on the normalization of the two-point function.

We are following what seems like the most sensible approach in (2.98) of first

writing the sum
∑
〈ab〉 over edges as a sum over vertices with an inner sum over

the edges coming off of each vertex, and then restricting only the outer sum over

vertices. We have chosen to restrict the sum to points a with |ε|p < |a0|p; later we
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will consider what happens if we say instead |ε|p ≤ |a0|p. It would be interesting

to explore more systematically the full range of possible cutoffs for the sum.

The next step is to reduce the sum (2.98) to a boundary term. Toward this

end, we note

1

4

∑
〈ab〉

a fixed

(φa − φb)2 +
1

2
m2
pφ

2
a −

1

2
φa(�+m2

p)φa = −1

4
�φ2

a . (2.99)

Thus, by adding a multiple of the equation of motion to the action (2.98), we

obtain

Son-shell = −ηp
4

∑
|ε|p<|a0|p≤|M|p

restricted

�φ2
a , (2.100)

where we have imposed an infrared cutoff by restricting the sum to run over only

those points in the subtree rooted at pvq(M). To simplify notation, it helps to

consistently set

z0 = pω M = pµ ε = pΩ , (2.101)

with µ large and negative while Ω is large and positive. Denoting a point a ∈ Tq
by a = (z0, z), we can enumerate the points in the sum (2.100) first by letting

ω run over the integers in [µ,Ω) and then, for each fixed ω, letting z run over

Sωµ . Next we need to have an explicit way of labeling the points b which are the

nearest neighbors of a. Writing

z =
ω−1∑
m=µ

κmp
m ∈ Sωµ where each κm ∈ Fq , (2.102)

we see that

z → [z]ω−1 ≡
ω−2∑
m=µ

κmp
m (2.103)

is a q-to-1 map from Sωµ to Sω−1
µ provided ω > µ, and if ω ≤ µ it is the trivial

1-to-1 map—since in this latter case Sωµ = Sω−1
µ = {0}. Note that for Qp, [z]0 is

just the fractional part of z. The map (z0, z)→ (z0/p, [z]ω−1) takes a point (z0, z)
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to its nearest neighbor in the downward direction (i.e. the nearest neighbor one

step closer to ∞). We can also define q 1-to-1 maps from Sωµ to Sω+1
µ as follows:

z → z + pωκ (2.104)

where κ ∈ Fq. Then the maps (z0, z) → (pz0, z + pωκ) take a point (z0, z) to its

nearest neighbors in the upward direction. Now we can rewrite (2.100) as

Son-shell = −ηp
4

Ω−1∑
ω=µ

∑
z∈Sωµ

(q + 1)φ(pω, z)2−φ(pω−1, [z]ω−1)2−
∑
κ∈Fq

φ(pω+1, z + pωκ)2


= −ηp

4

Ω−1∑
ω=µ

∑
z∈Sωµ

(q + 1)φ(pω, z)2 −
Ω−2∑
ω=µ

∑
z∈Sωµ

qφ(pω, z)2 − φ(pµ−1, 0)2

−
Ω∑

ω=µ+1

∑
z∈Sωµ

φ(pω, z)2


= −ηp

4

 ∑
z∈SΩ−1

µ

qφ(pΩ−1, z)2 −
∑
z∈SΩ

µ

φ(pΩ, z)2 + φ(pµ, 0)2 − φ(pµ−1, 0)2

 .

(2.105)

Because the Fourier space propagator vanishes identically for sufficiently large

|kz0|q, we can drop the last two terms in square brackets in the last line of

(2.105). The resulting expression is the discrete version of the last line of (2.86).

We now compute the two-point function as

〈Oε(k1)Oε(k2)〉p = −∂
2Son-shell

∂λ1∂λ2

=
ηp
2

q ∑
z∈SΩ−1

µ

χ((k1 + k2)z)


×
[
p2n−2∆

1 + ζRp
2∆−n|k1ε|2∆−n

q

1 + ζR|k1ε|2∆−n
q

1 + ζRp
2∆−n|k2ε|2∆−n

q

1 + ζR|k2ε|2∆−n
q

]

− ηp
2

∑
z∈SΩ

µ

χ((k1 + k2)z)

 .

(2.106)
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To obtain (2.106) we have assumed that |kiε|q ≤ 1/p for i = 1, 2. Now we use

(2.23) to obtain

q
∑

z∈SΩ−1
µ

χ((k1 + k2)z) ≈
∑
z∈SΩ

µ

χ((k1 + k2)z) ≈ qΩ

∫
Qq
dz χ((k1 + k2)z) = qΩδ(k1 + k2),

(2.107)

where the approximate equalities become exact in the limit where the cutoffs are

removed. Of course, we mean (2.107) in the sense that if we integrate either of

the discrete sums with respect to k1 against a continuous test function f̃(k1) with

bounded support, the result is f̃(−k2). Simplifying also the quantity in square

brackets in (2.106) by expanding through first order in |ε|2∆−n
q (where we assume

∆ > n/2), we obtain

〈Oε(k1)Oε(k2)〉p =
ηp
|ε|np

δ(k1 + k2)

[
− 1

2 ζp(2∆− 2n)
+

pnζR
ζp(2∆− n)

|k1ε|2∆−n
q + . . .

]
.

(2.108)

The omitted terms, indicated as . . ., are suppressed by positive integer powers

of |k1ε|2∆−n
q relative to the last term shown. To return from Fourier space to

position space, we start by inverting the Fourier transform (2.59) and then take

z0 → 0 (p-adically) to obtain

ζR

∫
Qq
dk χ(kx)|k|2∆−n

q =
ζp(2∆)

ζp(2∆− n)

1

|x|2∆
q

, (2.109)

up to a divergent term proportional to δ(x). Thus (for separated points) we find

〈Oε(x1)Oε(x2)〉p = ηp|ε|2∆−2n
p

pn ζp(2∆)

ζp(2∆− n)2

1

|x12|2∆
. (2.110)

Because K(ε, k) ≈ |ε|n−∆
p for small ε, we introduce a leg factor in the p-adic case,

O(x) = lim
ε→0
|ε|n−∆

p Oε(x) , (2.111)

and correspondingly the two-point function for the local operator O(x) is

〈O(x1)O(x2)〉p,exclusive = ηp
pn ζp(2∆)

ζp(2∆− n)2

1

|x12|2∆
, (2.112)
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up to contact terms. We use the notation “p, exclusive” in (2.112) as a reminder

that we employed a specific cutoff procedure, namely to restrict |ε|p < |a0|p in the

outer sum of (2.98), which excludes the points right at the boundary |ε|p = |a0|p.
Carrying through the whole computation with the restriction |ε|p ≤ |a0|p which

includes these boundary points, we obtain instead

〈O(x1)O(x2)〉p,inclusive = p2∆−2n〈O(x1)O(x2)〉p,exclusive . (2.113)

We see no reason to prefer the condition |ε|p ≤ |a0|p over |ε|p < |a0|p, or vice

versa. We therefore take the democratic approach of taking the geometric mean

of (2.112) and (2.113) to get our final result:

〈O(x1)O(x2)〉p = ηp
p∆ ζp(2∆)

ζp(2∆− n)2

1

|x12|2∆
, (2.114)

again up to contact terms. We will comment further on the prefactor in (2.114)

in section 2.6.

2.4.2 Contact diagrams and higher-point correlators

A crucial ingredient in higher-point correlation functions is contact diagrams,

which in the Archimedean place are diagrammatic representations of amplitudes

A∞(~x1, ~x2, ~x3) ≡
∫
dn+1y

yn+1
0

3∏
i=1

K̂(y0, ~y − ~xi)

=
ζ∞(∆)3 ζ∞(3∆− n)

2 ζ∞(2∆)3

1

|~x12|∆|~x23|∆|~x13|∆

(2.115)

for three-point functions, and

D∞(~x1, ~x2, ~x3, ~x4) ≡
∫
dn+1y

yn+1
0

4∏
i=1

K̂(y0, ~y − ~xi) (2.116)

for four-point functions. We would like to consider the analogous p-adic ampli-

tudes. We will consider the exchange diagram for four-point functions in chapter

3.
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For the three-point function, the first observation is that three non-coincident

points x1, x2, and x3 in P1(Qq) determine a unique point c ∈ Tq as the point

where paths from x1, x2, and x3 meet. We may therefore express

Ap(x1, x2, x3) ≡
∑
a∈Tq

3∏
i=1

K̂(a, xi) =

[
3∏
i=1

K̂(c, xi)

]∑
a∈Tq

Ĝ(c, b)Ĝ(b, a)3 , (2.117)

where in every term of the sum, b is the point where a path from a to c first joins

one of the paths from the xi to c: see the so-called subway diagram, figure 2.2a.

To demonstrate the second equality in (2.117), let the path (with no backtracking)

in Tq t ∂Tq from x to y be denoted (x : y). Consider a path to be a collection of

edges. Then for every a ∈ Tq, we have

3⊔
i=1

(xi : a) =
3⊔
i=1

(xi : c) t (b : c) t 3(a : b) . (2.118)

Here we are using t to form a union in which the multiplicity of each element

is counted. For example, if an edge e is in A with multiplicity 2 and B with

multiplicity 1, it is in A t B with multiplicity 3. Of course, 3(a : b) means

(a : b)t (a : b)t (a : b). Noting that each edge leads to a factor of p−∆, we arrive

at (2.117). Figure 2.2a illustrates how this works for a particular point a ∈ Tq.
Using (2.75), we see that

K̂(c, x1) =

∣∣∣∣ x23

x12x13

∣∣∣∣∆
q

, (2.119)

with similar expressions for K̂(c, x2) and K̂(c, x3). Thus, straightforwardly we

find
3∏
i=1

K̂(c, xi) =
1

|x12x23x13|∆q
. (2.120)

We will refer to the union of the three paths (xi, c) as the main tree, and then b

can be thought of as the projection of a onto the main tree.

In order to work out the sum in (2.117), we denote

` = d(a, b) m = d(b, c) . (2.121)



78

x1

x2

x3

c
b

a

P1HQqL

m steps

{ steps

(a)

x1

x2

x3

x4

c1 c2

a
b

P1HQqL

(b)

x1

x2

x3

x4

c1 c2

a

b

P1HQqL

(c)

Figure 2.2: Subway diagrams, indicating disjoint unions of paths on Tq t ∂Tq.
(a) Paths from x1, x2, and x3 meet at the bulk point c ∈ Tq and comprise what

we refer to as the main tree. The product
∏3

i=1 K̂(a, xi) relates to paths from
the xi which all go to the point a after first passing through the point b, which
is the projection of a onto the main tree. (b) and (c): Paths from x1 and x2 to
x3 and x4 overlap between c1 and c2. There are two classes of subway diagrams
contributing to the four-point amplitude, depending on whether the projection b
of a onto the main trunk falls between c1 and c2 or on a leg between some xi and
the appropriate cj.
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Then if m = 0, meaning that b and c coincide, there is one point with ` = 0

(namely a = c), and there are (pn − 2)pn(`−1) points a at a fixed distance ` > 0

from c whose projection onto the main tree is c. On the other hand, if m > 0,

then there are three possible choices for b. Once the choice of b is made, there is

a single point with ` = 0 (namely a = b), and there are (pn−1)pn(`−1) points a at

a fixed distance ` > 0 from b whose projection onto the main tree is b. Therefore∑
a∈Tq

Ĝ(c, b)Ĝ(b, a)3 = 3
∞∑
m=1

p−∆m

[
1 +

∞∑
`=1

(q − 1)q`−1
(
p−∆`

)3

]

+

[
1 +

∞∑
`=1

(q − 2)q`−1
(
p−∆l

)3

]

=
ζp(∆)3 ζp(3∆− n)

ζp(2∆)3
,

(2.122)

where for convergence we must require ∆ > n/3, which is certainly true since we

choose the root ∆ = ∆+ > n/2. To summarize,

Ap(x1, x2, x3) =
ζp(∆)3 ζp(3∆− n)

ζp(2∆)3

1

|x12x23x13|∆q
. (2.123)

With the three-point amplitude (2.123) in hand, we can give an account of three-

point correlators of the operator O dual to φ. By the same arguments as used in

the real case [76, 77], one finds

〈O(x1)O(x2)O(x3)〉p = −ηpg3

ζp(2∆)3

ζp(2∆− n)3
Ap(x1, x2, x3) . (2.124)

To study the four point amplitude

Dp(x1, x2, x3, x4) =
∑
a∈Tq

4∏
i=1

K̂(a, xi) , (2.125)

let us first stipulate that |(x12x34)/(x13x24)|q < 1, so that the paths among the xi

on Tq have the topology shown in figures 2.2b and 2.2c: The paths from x1 and

x2 meet at c1; the paths from x3 and x4 meet at c2; and the separation of the

bulk points c1 and c2 is

d(c1, c2) = − logp

∣∣∣∣x12x34

x13x24

∣∣∣∣
q

= − logp

∣∣∣∣x12x34

x14x23

∣∣∣∣
q

, (2.126)
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where logp is the base p logarithm. (Note that the middle expression in (2.126)

is also the valuation of (x12x34)/(x13x24).) Just as in (2.117), we may decompose

the amplitude into the product of an xi–dependent part based on the main tree

(x1 : c1)t (x2 : c1)t 2(c1 : c2)t (x3 : c2)t (x4 : c2) times a prefactor expressed as

a sum over Tq:

Dp(x1, x2, x3, x4) =
[
K̂(c1, x1)K̂(c1, x2)K̂(c2, x3)K̂(c2, x4)Ĝ(c1, c2)2

]
D̂p (2.127)

where

D̂p = 4
∞∑
m=1

p−2∆m

[
1 +

∞∑
`=1

(q − 1)q`−1(p−∆`)4

]

+ (d(c1, c2)− 1)

[
1 +

∞∑
`=1

(q − 1)q`−1(p−∆`)4

]

+ 2

[
1 +

∞∑
`=1

(q − 2)q`−1(p−∆`)4

]

=

[
− 1

ζp(4∆)
logp

∣∣∣∣x12x34

x13x24

∣∣∣∣
q

+

(
ζp(2∆)

ζp(4∆)
+ 1

)2

− 3

]
ζp(4∆− n) ,

(2.128)

and we need ∆ > n/4 for convergence, which is always the case for ∆ = ∆+.

The first line of (2.128) comes from configurations where b is on one of the legs

(xi : cj) of the main trunk, as in figure 2.2b. The second line of (2.128) comes

from configurations where b is on the connecting leg (c1 : c2), as in figure 2.2c.

The third line comes from configurations where b = c1 or b = c2. To simplify the

factor in square brackets in (2.127), we use relations

K̂(c1, x1) =

∣∣∣∣ x23

x12x13

∣∣∣∣∆
q

=

∣∣∣∣ x24

x12x14

∣∣∣∣∆
q

Ĝ(c1, c2) =

∣∣∣∣x12x34

x13x24

∣∣∣∣∆
q

=

∣∣∣∣x12x34

x14x23

∣∣∣∣∆
q

.

(2.129)

There are similar relations for the other factors of K̂ in (2.127). Combining them,

we find

Dp(x1, x2, x3, x4) =

[
− 1

ζp(4∆)
logp

∣∣∣∣x12x34

x13x24

∣∣∣∣
q

+

(
ζp(2∆)

ζp(4∆)
+ 1

)2

− 3

]
ζp(4∆− n)

|x13x24|2∆
q

.

(2.130)
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We derived (2.130) on the assumption |(x12x34)/(x13x24)|q < 1. If instead it were

|(x12x34)/(x13x24)|q = 1, then all four paths from the xi meet at a common vertex

c, and by an explicit calculation similar to (2.122), it is straightforward to check

that (2.130) still holds as written. (Of course, the logp term vanishes identically.)

Amusingly, this degeneration is impossible for q = 2. By relabeling the xi if

necessary, we can always reach a situation where |(x12x34)/(x13x24)|q ≤ 1, so

(2.130) is in fact a general result. Note that it is also an exact result, which

shows that Dp is considerably simpler than D∞. In chapter 3, we will undertake

a detailed comparison between the Archimedean and p-adic four-point functions,

and point to remarkable similarities between them. In this chapter, we restrict

ourselves to noting that the leading logarithmic term of D∞ for extreme values

of the argument of the log essentially agrees with the logp term in (2.130), as we

now show.

The leading logarithmic part of D∞ can be extracted from the expression

for D∞ in [78] written as a series expansion in powers of conformally invariant

variables s and t,

s ≡ 1

2

|~x13|2|~x24|2
|~x12|2|~x34|2 + |~x14|2|~x23|2

t ≡ |~x12|2|~x34|2 − |~x14|2|~x23|2
|~x12|2|~x34|2 + |~x14|2|~x23|2

. (2.131)

Specializing to identical operators of dimension ∆ in equations (A.1), (A.3) and

(6.30) of [78], we obtain

D∞(~x1, ~x2, ~x3, ~x4)log =
−(2s)∆2∆−2

|~x13|2∆|~x24|2∆

ζ∞(4∆− n)

ζ∞(2∆)2
log(1− t2)

×
∆−1∑
`=0

∞∑
k=0

(−2)−`ΓEuler(k + 1) s∆−`−1(1− 2s)k+`−2∆+2

ΓEuler(∆− `)2 `!ΓEuler(k + `− 2∆ + 3)
αk(t)

(2.132)

where

αk(t) =
∞∑
`=0

ΓEuler(`+ 1/2)

ΓEuler(1/2) `!

(1− t2)`

2`+ k + 1
, (2.133)

and now log indicates a natural logarithm. It is noteworthy that if |~x12||~x34| �
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|~x13||~x24|,

s→ 1

2
t→ −1 (1− t2)→ 4

|~x12|2|~x34|2
|~x14|2|~x23|2

≈ 4
|~x12|2|~x34|2
|~x13|2|~x24|2

, (2.134)

αk(t) =
1

1 + k
+O(1− t2) (2.135)

and the leading logarithmic singularity in (2.132) arises at k = −`+2∆−2 in the

infinite sum. Then the leading order contribution from the second line of (2.132)

evaluates to
∆−1∑
`=0

(−2)−`ΓEuler(2∆− `− 1)

2∆−`−1ΓEuler(∆− `)2 `!

1

2∆− `− 1
= 22−3∆ ζ∞(2∆)

ζ∞(2∆ + 1)
. (2.136)

Combining (2.136) with the first line of (2.132), we obtain to leading logarithmic

order

D∞(~x1, ~x2, ~x3, ~x4)log = −ζ∞(4∆− n)

ζ∞(4∆)

(
log
|~x12||~x34|
|~x13||~x24|

)
1

|~x13|2∆|~x24|2∆
(2.137)

for |~x12||~x34| � |~x13||~x24|. The corresponding expressions in the |~x14||~x23| �
|~x13||~x24| and |~x13||~x24| � |~x12||~x34| limits can be obtained by appropriately rela-

beling the ~xi in (2.137).

If g3 = 0 so that only the contact diagram contributes to the four-point

function, then standard reasoning leads to

〈O(x1)O(x2)O(x3)O(x4)〉p = −ηpg4

ζp(2∆)4

ζp(2∆− n)4
Dp(x1, x2, x3, x4) . (2.138)

If g3 6= 0, then there are exchange diagrams. We expect that, analogous to the real

case [78], the full four-point function can be reduced to a sum of contact diagrams,

some of them generalizing theDp amplitude we have worked out explicitly. Indeed

we work this out explicitly in chapter 3.

2.5 Taking stock

In this section, we collect the main technical results of this chapter: expressions

for the non-Archimedean propagators and correlators, and contrast them with
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their Archimedean analogs. The resemblance between the two is striking! We

continue in section 2.5.2 with further comparisons between standard Archimedean

results and our new p-adic results and show how some strange factors in the

p-adic results presented in section 2.5.1 reduce to the standard Archimedean

counterparts upon taking a p→ 1 limit. Then we discuss the geometry of chordal

distance in section 2.5.3 and explain the origin of the tree-sum, and finally give

a brief account of long thin Wilson loops in section 2.5.4.

2.5.1 Main results

Here are our main results on propagators and correlators:

• The relationship between mass and dimension is

m2
∞L

2 = ∆(∆− n) for v =∞

m2
p = − 1

ζp(∆− n) ζp(−∆)
for v = p .

(2.139)

(The local zeta functions ζ∞ and ζp were introduced in (2.53) and (2.44),

respectively.)

• The bulk-to-boundary propagator is

K(z0, ~z; ~x) =
ζ∞(2∆)

ζ∞(2∆− n)

z∆
0

(z2
0 + (~z − ~x)2)∆

for v =∞

K(z0, z;x) =
ζp(2∆)

ζp(2∆− n)

|z0|∆p
|(z0, z − x)|2∆

s

for v = p ,

(2.140)

• The bulk-to-bulk propagator is

G(z0, ~z;w0, ~w) =
1

2∆− n
ζ∞(2∆)

ζ∞(2∆− n)
u−∆
∞

× 2F1

(
∆,∆− n+

1

2
; 2∆− n+ 1;− 4

u∞

)
for v =∞

G(z0, z;w0, w) =
ζp(2∆− n)

p∆

ζp(2∆)

ζp(2∆− n)
u−∆
p for v = p ,

(2.141)
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where we define

u∞ ≡
(z0 − w0)2 + (~z − ~w)2

z0w0

up ≡ pd(z0,z;w0,w) . (2.142)

• The two-point function is

〈O(~x1)O(~x2)〉∞ = η∞L
n−1(2∆− n)

ζ∞(2∆)

ζ∞(2∆− n)

1

|~x12|2∆
for v =∞

〈O(x1)O(x2)〉p = ηp
p∆

ζp(2∆− n)

ζp(2∆)

ζp(2∆− n)

1

|x12|2∆
q

for v = p .

(2.143)

Recall that in computing the two-point function for the p-adics, we faced

some arbitrariness in the prefactor based on the precise cutoff scheme we

employed. The result in (2.143) is based on the democratic approach of

geometrically averaging over the inclusive and exclusive cutoff scheme as

explained around (2.112)–(2.113).

• The three-point function is

〈O(~x1)O(~x2)O(~x3)〉∞

= −η∞Ln−1g3
ζ∞(∆)3 ζ∞(3∆− n)

2 ζ∞(2∆− n)3

1

|~x12|∆|~x23|∆|~x13|∆
for v =∞

〈O(x1)O(x2)O(x3)〉p

= −ηpg3

ζp(∆)3 ζp(3∆− n)

ζp(2∆− n)3

1

|x12x23x13|∆q
for v = p .

(2.144)

• The four-point function is built from contact diagrams, the simplest of
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which have leading logarithmic singularities of the form

D∞(~x1,~x2, ~x3, ~x4)log

= −ζ∞(4∆− n)

ζ∞(4∆)

(
log
|~x12||~x34|
|~x13||~x24|

)
1

|~x13|2∆|~x24|2∆
for v =∞

Dp(x1,x2, x3, x4)log

= −ζp(4∆− n)

ζp(4∆)

(
logp

∣∣∣∣x12x34

x13x24

∣∣∣∣
q

)
1

|x13x24|2∆
q

for v = p .

(2.145)

The Archimedean results in (2.139)–(2.145) are standard in the literature, al-

though their simplified presentation in terms of the local zeta function ζ∞(s) is

new as far as we are aware.

There are some natural simplifying features of p-adic AdS/CFT. To begin

with, all quantities of interest lie in the field extension Q(p∆): that is, rational

numbers combined with integer powers of p∆. Many of the powers of p can

be efficiently packaged in the p-adic zeta function ζp, and Archimedean results

can be (almost) recovered by replacing p by ∞. The reason why the p-adic

formulas we derived are valued in Q(p∆) is that they come from sums of products

of propagators over the Bruhat–Tits tree, and these sums typically reduce to

geometric series,
∑∞

`=1 x
` = x

1−x , with x ∈ Q(p∆), and the map x→ x
1−x involves

only field operations. In the Archimedean place, we are struck by the complete

absence of factors of π when we express correlators in terms of ζ∞ rather than

ΓEuler. This is analogous to seeing p-adic correlators taking values in Q(p∆).

2.5.2 Comparing Archimedean and p-adic results

It is clear from (2.139)–(2.145) that we generally cannot write closed-form ex-

pressions for physical quantities which are valid equally for v = ∞ and v = p.

We are often close to being able to do so, as in the cases of the bulk-to-boundary
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propagator (2.140), the three-point function (2.144), and the leading-log term

in the four-point amplitude (2.145); note however the mismatched factor of 2 in

(2.144), which is operationally related to the fact that we integrate over y0 > 0

in the Archimedean calculations, whereas the sum over Tq can be thought of as

including an integral over all non-zero p-adic numbers y0 (more on this later).

To better understand the relation between v =∞ and v = p, consider first the

growth of volume in Euclidean AdSn+1 with radius as compared to the growth in

the number of vertices of Tq with radius. The volume of a ball Bn+1(R) of radius

R in AdSn+1 is

vol(Bn+1(R)) ∼ constant× enR/L for R� L , (2.146)

where L is the radius of curvature of AdSn+1. On the other hand, introducing a

lattice spacing a on the Bruhat–Tits tree, the volume of a ball BTq(R) of radius

R in Tq—meaning all points within a graph distance R/a of a specified point—is

given by

vol(BTq(R)) ∼ constant× pnR/a = constant× enR/Lp for R� a , (2.147)

where we have introduced a length scale

Lp ≡
a

log p
, (2.148)

which stands in place of the radius of curvature L and makes (2.146) and (2.147)

directly comparable. It is helpful to see in (2.147)–(2.148) how dimensions work,

but elsewhere we set a = 1. (Changing this to a = 1/e where e is the ramification

index could be helpful in discussing ramified extensions.)

With the length scale Lp in hand, we can better understand the apparent

mismatch in the two-point functions (2.143) between the boundary factor 2∆−n
in the Archimedean place and p∆/ ζp(2∆− n) for the p-adics. If we set p = elog p
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and formally treat log p as small, as in [71, 70], then the p-adic results become,

to leading order in log p,

m2
pL

2
p ≈ ∆(∆− n)

p∆Lp
ζp(2∆− n)

≈ 2∆− n . (2.149)

An improved discussion along these lines is probably possible if we extend Qq

by including p1/e and using the uniformizer π = p1/e = e(log p)/e. In addition to

(2.149), we have

d(m2
∞L

2)

d∆
= 2∆− n for v =∞

d(m2
pL

2
p)

d∆
=

p∆Lp
ζp(2∆− n)

for v = p ,

(2.150)

where we have not made any formal expansion in small log p. Finally, we note

that the same factor of p∆/ ζp(2∆− n) = 2νp also appears in the normalizations

of the p-adic two-point function and bulk-to-bulk propagator, and in this latter

context there is no cutoff-related ambiguity: See the discussion ending in (2.74).

In short, the results of p-adic and Archimedean calculations have strong affini-

ties, but we are not generally in a position to write down adelic products. Per-

haps we should not be too surprised by the mismatches between p-adic and

Archimedean calculations, since our starting point on the p-adic side was only

the simplest lattice action. It seems possible that a more informed treatment of

the bulk action will lead to progress toward an adelic version of AdS/CFT.

2.5.3 The geometry of chordal distance

We believe that a good first step toward adelic AdS/CFT is to re-examine the

geometry of Tq from a point of view that makes its similarities to ordinary AdSn+1

more transparent. Indeed, the Bruhat–Tits tree Tq is a natural bulk construction

both from the perspective of the representation of p-adic numbers as a string

of digits, and from the more geometric point of view of a coset construction
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PGL(2,Qq)/PGL(2,Zq), where the denominator is the maximal compact sub-

group of the numerator. But from the point of view of classical AdS/CFT, it is

a bit surprising, especially since the bulk Tq has a smaller cardinality than the

boundary Qq. Our parametrization of Tq in terms of (z0, z), where z0 = pω and

z ∈ Qq is known up to O(z0) corrections, suggests that it might be more natural

to let the bulk be all of

pAdSn+1 ≡ Q×p ×Qq , (2.151)

with coordinates (z0, z) where now z0 ∈ Q×p (a non-zero p-adic number) and

z ∈ Qq. Introduce a chordal distance function between any two points (w0, w)

and (z0, z):
9

up =
|(z0 − w0, z − w)|2s

|z0w0|p
, (2.153)

where | · |s indicates the supremum norm (2.48). It is easy to show that if (z0, z)

and (w0, w) parametrize different points on Tq in the sense explained in chapter

1, with z0 and w0 restricted to integer powers of p, then up = pd(z0,z;w0,w), in

agreement with (2.142). On the other hand, up can be an arbitrarily small power

of p if (w0, w) and (z0, z) are p-adically very close to one another. So we can ask,

how is Tq related to the larger space pAdSn+1?

It turns out there is a simple and pleasing answer: To get Tq, we must coarse-

grain pAdSn+1 at the AdS scale. Specifically, we can form an equivalence relation

(z0, z) ∼ (w0, w) iff up(z0, z;w0, w) ≤ 1 . (2.154)

9The Archimedean quantity u∞ introduced in (2.142) is actually the square of the chordal
distance divided by L2. To be precise, if we define global coordinates

Z0 =
1

2z0
(L2 + z2

0 + ~z2) ~Z = L
~z

z0
Zn+1 =

1

2z0
(−L2 + z2

0 + ~z2) , (2.152)

and similarly for WM , then Euclidean AdSn+1 is the locus ηMNZMZN = −L2, where ηMN =
diag{−1, 1, 1, . . . , 1}, and u∞ = ηMN (ZM −WM )(ZN −WN )/L2.
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To find the equivalence classes under the relation (2.154), note that∣∣∣∣( z0

w0

+
w0

z0

− 2,
(z − w)2

z0w0

)∣∣∣∣
s

= up ≤ 1 , (2.155)

which implies that z0
w0

+ w0

z0
− 2 is a p-adic integer. It follows that w0

z0
∈ Up. Next

one can show using (2.155) that z−w
z0

is also a p-adic integer, so z −w ∈ z0Zq. In

other words, for fixed (z0, z), the set of all (w0, w) with up(z0, z;w0, w) ≤ 1 is

B(z0, z) = z0Up × (z + z0Zq) . (2.156)

In the natural measure on pAdSn+1, the volume of each block is the same:∫
B(z0,z)

dw0 dw

|w0|n+1
p

=
1

|z0|n+1

(∫
z0Up

dw0

)(∫
z0Zq

dw

)
=

1

ζp(1)
, (2.157)

where we have used the fact that Up has measure 1− 1/p = 1/ ζp(1).

We can label the blocks B(z0, z) uniquely by requiring z0 = pω for some ω ∈ Z

and z ∈ Sω−∞ ≡
⋃
µ<ω S

ω
µ . The blocks B(z0, z) can now be regarded as the nodes

of the tree Tq, and the distance function on Tq is defined by

pd(z0,z;w0,w) = up(z0, z;w0, w) provided B(z0, z) 6= B(w0, w) , (2.158)

together with the trivial definition d(z0, z; z0, z) = 0. In the Archimedean place,

the relation u∞(z0, ~z;w0, ~w) ≤ 1 means that (z0, ~z) and (w0, ~w) are essentially

within an AdS radius of one another; thus (2.154) can be regarded as a p-adic

analog of coarse-graining at the AdS curvature scale. However, there is no analog

of the sets B(z0, z) in the Archimedean place, essentially because if we carried

(2.154) over to the reals, the transitive property would fail. Less formally, we

can’t carve ordinary Euclidean AdS into blocks without points near the edges

being very close to one another.

With the blocks B(z0, z) specified, we can go further and define a coarse

topology on pAdSn+1 by saying that the closed sets are arbitrary unions of blocks.
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Continuous functions with respect to this topology are precisely the ones which

are constant on each block, which is to say well-defined as functions on Tq. If f

is such a function, then we can calculate its integral as a sum over Tq:

ζp(1)

∫
pAdSn+1

dz0 dz

|z0|n+1
p

f(z0, z) =
∑
a∈Tq

f(a) , (2.159)

where we have used (2.157).

It is natural to inquire whether we can coarse-grain pAdSn+1 differently. It

is easy to see that if we try to form an equivalence relation by saying (z0, z) ∼
(w0, w) iff up(z0, z;w0, w) ≤ pm for a positive integer m, then the transitive

property fails, so we do not have a natural way to split pAdSn+1 into larger blocks

than the ones defined in (2.156). On the other hand, for m ∈ N ≡ {0, 1, 2, 3, . . .},
we may define

(z0, z) ∼m (w0, w) iff up(z0, z;w0, w) ≤ p−2m , (2.160)

and then ∼m is an equivalence relation, and it coincides with ∼ when m = 0.

(There is no point in considering up(z0, z;w0, w) ≤ p−2m−1, because up, if non-

zero, must take the form pσ where either σ ∈ N or σ = −2m for m ∈ N.)

The equivalence classes B(z0, z) under ∼ are subdivided into smaller equivalence

classes Bm(z0, z) under ∼m: In other words, ∼m for m > 0 is a refinement of

∼. From the point of view of quantum gravity, such refinements are appealing

because they allow us to use “ordinary” geometry down to a scale that we identify

as the Planck scale, and length scales smaller than the Planck scale either don’t

exist or are qualitatively different. An interesting point of comparison is that

tensor networks in AdS based on MERA generally cannot be made finer than the

AdS scale [79].

To better understand the refinements described in the previous paragraph,

let’s examine how the block B(1, 0) splits into smaller blocks Bm(z0, z). The
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Tq = B B = B1 B1 = B2 B2 = B3

(a)

B

B

B

B

B

B

B

B1

B1

B1

B2

(b)

Figure 2.3: Successive refinements of the Bruhat–Tits tree. The example shown
is for q = p = 2. (a) Successive refinements reveal more and more structure as
we zoom in on any given bulk region. The first step is to write Tq as a disjoint
union of blocks B as defined in (2.156). The next step is to write each block B as
a disjoint union of blocks B1 as defined in (2.162); then each block B1 is written
as a disjoint union of blocks B2, and so forth. (b) Successive refinements of Tq
lead to the enhanced tree Tqp, in which each vertex is a block Bm. The base tree
Tq is shown in gray, and the height h measures how many steps away a point on
Tqp is from the base tree.
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first task is to parse the relationship up(z0, z;w0, w) ≤ p−2m for points (z0, z) and

(w0, w) in B(1, 0). We have in particular z0, w0 ∈ Up, so

up = |(z0 − w0, z − w)|2s ≤ p−2m , (2.161)

The result (2.161) indicates that from the point of view of chordal distance,

B(1, 0) is like a patch of Qq × Qp equipped with the supremum norm; in other

words, we don’t see any sign of the curvature of pAdSn+1 once we look at length

scales within a given block B(z0, z). From (2.161) we see immediately that the

equivalence classes of ∼m inside B(1, 0) are

Bm(z0, z) = (z0 + pmZp)× (z + pmZq) . (2.162)

These equivalence classes are uniquely labeled by (z0, z) if we require

z0 ∈ sm0 \ sm1 and z ∈ Sm0 . (2.163)

The sets Sωµ were defined in (2.22), and by sωµ we mean the analogous sets for Qp

instead of Qq. For m > 0, there are pm(n+1)(1−1/p) equivalence classes Bm(z0, z)

inside B(1, 0), and the volume of each one is
∫
Bm(z0,z)

dw0dw

|w0|n+1
p

= p−m(n+1). If m = 1,

then (2.163) simplifies to z0 ∈ F×p = {1, 2, . . . , p − 1} and z ∈ Fq. In this case,

it is easy to see that up = 1 between any two points in distinct blocks B1(z0, z)

and B1(w0, w), whereas (by definition) up ≤ p−2 between any two points in the

same block. If we proceed next to m = 2, then each block B1(z0, z) splits into

pn+1 smaller blocks B2(w0, w), and each pair of B2 blocks within a given B1 block

is separated by a distance up = p−2. A cartoon of these successive refinements

is shown in figure 2.3a. Evidently, a sequence of topologies on pAdSn+1 can be

defined, such that functions which are constant over all the blocks Bm(z0, z) are

continuous with respect to the mth topology. Without a Planck scale cutoff, the

endpoint of the refinement process is the full geometry pAdSn+1. A simple way

to think of a Planck scale cutoff is to stop refining after a finite number of steps.
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The successive refinements of Tq into pAdSn+1 can be summarized by an

enhanced tree structure, constructed as follows. From each node of the base tree

Tq, we add q(p − 1) edges to indicate the splitting of B(z0, z) into blocks B1.

From the terminus of each of these edges, we add qp new edges to indicate the

splitting of B1 blocks into B2 blocks. Continuing in this way, we wind up with a

tree with uniform coordination number qp+1, which is to say Tqp: see figure 2.3b.

We can identify each vertex on the enhanced tree with a block Bm, where the

index m increases the further off of the base tree we go. Let the standard graph

theoretic distance between two points a and b on Tqp be denoted D(a, b), and let

the distance from a point a on Tqp to the nearest point on the base tree Tq be

denoted h(a). Then if we define

σ(a, b) = D(a, b)− h(a)− h(b) , (2.164)

it can be checked that the maximum value of the chordal distance up between a

point in the block associated with a and a point in the block associated with b is

pσ(a,b).

We would like to use pAdSn+1 and the geometry of chordal distance as jumping

off points for the construction of bulk models that are more interesting than just

a scalar with nearest neighbor interactions on Tq as in (2.19). Ideally we would

like to have some notion of fluctuating bulk geometry. The absence of cycles in

Tq makes it hard to see how to study gauge fields or Riemannian curvature. So

it is interesting to observe that at each stage of refinement, the newly introduced

blocks (for example, all the B3 blocks inside a given B2 block) form a complete

graph in the sense that each is equidistant from all the others using the chordal

distance function up. Can we take advantage of the cycles in these complete

graphs to formulate some useful lattice notions of curvature? If we can, how does

curvature fit in with the structure of the enhanced tree Tqp?
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2.5.4 Wilson loops

Wilson loops are important observables in field theory. A natural question to ask

is: What are the properties of p-adic Wilson loops? We give some preliminary

indications in this section.

We begin by reviewing a simple case in the Archimedean place [80, 81]. The

interquark potential energy V (R) of a heavy quark-antiquark pair is given by the

expectation value of the Wilson loop operator,

〈W (C)〉 ∝ e−V (R) T , (2.165)

where C is a long thin rectangular contour, of length T along the time direction,

and length R � T along the spatial direction. The calculations are all done in

Euclidean signature, so the time direction is picked out essentially arbitrarily.

According to the AdS/CFT prescription, the expectation value of a Wilson loop

is given by the partition function for a string in AdS, whose edge at the boundary

lies along C. In particular, in the supergravity limit,

〈W (C)〉 ∝ e−(SΦ−`Φ) (2.166)

where SΦ is the action of the minimal surface in AdS of the string worldsheet

ending on C. The minimal action SΦ and hence V (R) suffer from UV divergences.

We must subtract away from V (R) the infinite energies of the free quark and the

free antiquark to get a sensible finite answer. In other words, we must renormalize

the minimal action SΦ by subtracting from it the action of the worldsheets asso-

ciated with the free quark and the free antiquark, both of which stretch all the

way to infinity in AdS. This is what is meant by `Φ in (2.166). In conformal field

theories, symmetry dictates that the potential energy take the form V (R) ∝ 1/R.

Indeed, an AdS calculation of the (regulated) minimal surface yields, via (2.165)
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and (2.166)

V (R) T = − 4π2

ΓEuler(1/4)4

L2

α′
T

R
, (2.167)

where 1/2πα′ is the string tension. We include only the T -extensive contribution

and ignore endpoint effects having to do with how we close the loop off at times

t = ±T/2. In (2.167), T serves as an infrared regulator imposed to avoid a

divergent factor from integrating in the t direction.

Let’s move on to discuss a simple analog of the long thin rectangular Wilson

loop in the context of p-adic AdS/CFT. We restrict ourselves to a two-dimensional

subspace of Qpn , which itself is an n-dimensional vector space over Qp. Every

point z in this two-dimensional subspace can be written as z = tr`+xrk for fixed

`, k ∈ {0, 1, . . . n − 1}, ` 6= k, and t, x ∈ Qp. Here r is a primitive (pn − 1)-th

root of unity. For the rest of this discussion we set ` = 0 and k = 1 without loss

of generality. Let the time direction be along the r0 component, and let space be

along r1.

The p-adic analog of parallel lines in the t direction with spatial separation R

is clear enough: each line is an affine map of Qp to Qq, so that the quark line is all

points of the form t+xr with x fixed and t varying across Qp, while the antiquark

line is t+ x̃ r, again with x̃ fixed and t varying across Qp. We anticipate the need

for an infrared regulator, so we restrict the p-adic norm of the time coordinate:

|t|p ≤ |T |p, where we require

|T |p � |R|p (2.168)

and R = x− x̃. For convenience we set

vp(T ) = τ and vp(R) = ρ . (2.169)

Our results depend on T and R only through their norms, so we could set T = pτ

and R = pρ without loss of generality. None of our calculations below depend on

this choice.
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Now we must specify what we mean in the discrete context of the Bruhat–

Tits tree Tq by a string worldsheet whose edge is on one of the parallel lines.

Consider the quark line for specificity. Any point t+ x r on the line is associated

to a unique path through Tq from ∞ to t + x r. Adapting previous notation,

let’s denote this path as (∞ : t + x r), with the convention that we exclude the

endpoints at the boundary. The union of these paths is a subtree of Tq isomorphic

to Tp. This subtree is what we want to regard as the string worldsheet. It is like a

(Euclidean) AdS2 subset of AdSn+1. To bring in our infrared regulator, let’s first

assume that |T |p > |x|p. Then each path on Tq from ∞ to a point t + x r with

|t|p ≤ |T |p passes through the point (pτ , 0) on the main trunk of Tq. We think

of the infrared regulated path ((pτ , 0) : t + x r) as only that portion of the path

starting at (pτ , 0) and continuing upward to t + x r. We include (pτ , 0), but not

the boundary point t+ x r, in the regulated path ((pτ , 0) : t+ x r). The infrared

regulated worldsheet is the union

Mx(T ) ≡
⋃

|t|p≤|T |p

((pτ , 0) : t+ x r) . (2.170)

The number of vertices of Tq in Mx(T ) is still infinite, but if we discard points

sufficiently close to the boundary (i.e. impose an ultraviolet regulator) it becomes

finite.

Next we need to describe in the context of Tq the string worldsheet with an

edge on each of the parallel lines. To begin with, consider the x-direction only,

and correspondingly the Tp subtree at t = 0. The common ancestor of x and x̃

on Tp is at bulk depth z0 = 1/|R|p. Moreover, there is a unique path leading

from x to x̃ along Tp, and it goes through their common ancestor. Returning to

Tq, we consider the string worldsheet with an edge on each of the parallel lines

to be the union over t of all paths in Tq from t+ x r to t+ x̃ r:

Mqq̄(T ) ≡
⋃

|t|p≤|T |p

(t+ x r : t+ x̃ r) , (2.171)
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where as before we exclude boundary points from the paths. Note that it is

important that we consider only paths from t + x r to t + x̃ r with the same

value of t: If we allowed paths from t + x r to t̃ + x̃ r with |t − t̃|p > |R|p, then

we would include points that go lower in Tq than the bulk depth pρ = 1/|R|p.
We caution that our prescription for forming the string worldsheet as a union

of paths does not directly refer to minimal surfaces. Intuitively, the worldsheet

(2.171) is the only discretized surface with no back-tracking with edges on the

quark and antiquark lines. Closer consideration of how to describe more general

string worldsheets in Tq is clearly merited.

The obvious p-adic analog of the Nambu–Goto action is the number of vertices

on the string worldsheet. More precisely, we want to count each vertex on Mqq̄(T )

with multiplicity 1, and at the same time count each vertex on Mx(T ) tMx̃(T )

with multiplicity −1. As shown in figure 2.4, this counting is made easier by the

observation that Mqq̄(T ) covers precisely the points in Mx(T ) ∪Mx̃(T ) down to

a depth z0 = pρ, so points above this depth (that is, points with |z0|p < p−ρ)

can be ignored. Right at z0 = pρ, where Mqq̄(T ), Mx(T ), and Mx̃(T ) intersect,

we should count points with net multiplicity −1 (which comes from 1 for Mqq̄(T )

plus −1 for each of Mx(T ) and Mx̃(T )). Below this depth, continuing down to

the infrared cutoff z0 = pτ , we should count points with net multiplicity −2. At

a depth m ≥ τ (meaning closer to the boundary than the infrared cutoff), the

number of points on Mx(T ) (or Mx̃(T )) is pm−τ . Thus the total count of points,

including multiplicities as just described, is

Sreg = −pρ−τ − 2

ρ−1∑
m=τ

pm−τ = −
∣∣∣∣TR
∣∣∣∣
p

p+ 1− 2|R/T |p
p− 1

≈ −ζp(1)2

ζp(2)

∣∣∣∣TR
∣∣∣∣
p

, (2.172)

where in the last term we have dropped a term which is suppressed by a relative

factor of |R/T |p � 1. The scaling of (2.172) with |T |p and |R|p is as expected

for a conformal theory, so that the potential V (R) ∝ 1/|R|p. The coefficient
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Figure 2.4: Two views of a Wilson loop in the Bruhat–Tits tree Tq for q = 22.
Top: Constant-t and constant-x slices of a Wilson loop with length |T |p = p−τ

and |R|p = p−2. Bottom: Segment of a Wilson loop in a perspective view. The
green region in both views indicate the vertices that are in common for the Wilson
lines of the free quark and antiquark. The purple region pertains to the quark,
and the blue region pertains to the antiquark.
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in (2.172) is negative, so that quarks and antiquarks in the dual theory attract,

but it does not seem closely related to the prefactor in (2.167). Possibly a better

understanding of more general Wilson loops could help shed light on this apparent

mismatch.

2.6 Discussion

In p-adic AdS/CFT, the Bruhat–Tits tree plays the role of anti-de Sitter space,

while the p-adic numbers replace the reals. In the simplest case, we eschew any

extension of Qp, and then the relation between Tp and Qp is like the relation

between the upper half plane and the reals. In other words, unextended p-adic

AdS/CFT is best compared to ordinary (Euclidean) AdS2/CFT1. Passing to

the unramified extension Qq, where q = pn, we have suggested that there is

a natural comparison to Euclidean AdSn+1/CFTn. The obvious point in favor

of this comparison is that Qq is an n-dimensional vector space over Qp with

dimension n and a natural norm | · |q with the property |x|q ≥ 0 with equality iff

x = 0. Likewise, Tq can be thought of as having n dimensions in the directions

parallel to the boundary; more technically, the edges rising up from a given

vertex of Tq toward Qq are enumerated by elements of Fq, which is a vector

space of dimension n over Fp. On the other hand, the natural analog of the

conformal group for Qq is PGL(2,Qq), which seems closer to SL(2,R) than to

O(n + 1, 1,R). Thus, field theories over Qq are expected to be similar to n-

dimensional Archimedean field theories, but they may possess simplifying features

comparable to low-dimensional conformal field theories. Our main results, as

summarized in section 2.5.1, reinforce these expectations.
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2.6.1 Future directions

There are a number of potentially interesting directions for further work. To begin

with, a more thorough analysis of the symmetries of p-adic field theories should be

interesting. We started with the simplest possible lattice action invariant under

the isometries of Tq, and from it we derived correlators with some version of p-

adic conformal symmetry. We should ask, what exactly are the symmetries of

these correlators? Is the symmetry group simply PGL(2,Qq)? Or is there a larger

symmetry algebra analogous to the Virasoro algebra? How much of the structure

of correlators is fixed by symmetry considerations? For example, how much is the

four-point function constrained by symmetry? We should also ask whether we

can proceed beyond scalar fields on the Bruhat–Tits trees and correspondingly

scalar operators in the field theory. If we start with more sophisticated lattice

models on Tq, might we obtain correlators which can be expressed as products of

multiplicative characters other than |x|sp?
Another interesting avenue to pursue is loop corrections. All our calculations

have relied on treating the bulk theory as classical, meaning that we focus on the

specific field configuration which extremizes the action. Adding in fluctuations

perturbatively does not seem impossible, but the more interesting prospect is to

pass to a fully statistical mechanical account of the bulk, where a “temperature” is

dialed up from 0, where our classical account is justified, to arbitrary finite values.

This may allow a closer connection with [54] as well as earlier works including

[82, 83]. Ideally, it may help us understand deeper connections with fluctuating

fields in Archimedean AdS/CFT. The real prize, of course, is to understand

fluctuating geometry. We suspect it is necessary to go beyond the Bruhat–Tits

tree in order to properly formulate questions about dynamical geometry. Perhaps

the refinements of Tq introduced in (2.151)–(2.163) will be of help in this regard.

Finally, yet another direction to explore is the full range of possible extensions
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of Qp. Some questions include: What is the most natural notion of dimension in

a boundary theory formulated on a (partially) ramified extension of Qp? What

sorts of correlators are sensitive to the particular extension we pick? How is

information about the extension encoded in the tree structure and in natural

bulk actions?

In the next chapter, we take a closer look at p-adic CFTs, the operator product

expansion, conformal blocks, and the full four-point function.



Chapter 3

Efficient computation techniques

on the Bruhat–Tits tree

This chapter is based on a lightly edited version of a paper with Steven S. Gubser

[84]. We thank Bartek Czech, Eric Perlmutter, and Shivaji Sondhi for useful

discussions.

3.1 Introduction and summary

In the previous chapter, we initiated the formulation of a non-Archimedean

AdS/CFT correspondence, focussing on a toy model in the bulk - an interacting

scalar field in a fixed classical geometry. We performed simple bulk calculations

to obtain holographic correlators, namely the two-point function and the three-

and four-point functions (limited to the contact diagram) of identical scalar op-

erators. Like in the Archimedean case, the three-point function is entirely fixed

by conformal invariance, upto an overall constant, and we found that this overall

constant, which gives the OPE coefficient in the dual CFT once the normaliza-

102
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tion of the two-point function is fixed, admitted an adelic expression,1 when

expressed in terms of local zeta functions. The p-adic four-point function had a

simple closed form expression, and the coefficient of the log term also admitted

an adelic form. In this chapter we will study the connection between the p-adic

and Archimedean four-point functions more closely, and include this time the

exchange diagrams arising from cubic bulk interaction vertices in the analysis.

Thanks to the tree-like geometry of the bulk, the computation of holographic

correlators, done via evaluating Feynman diagrams on the tree, gets reduced to

simple geometric sums. In principle, we should be able to evaluate exactly any

Feynman diagram on the Bruhat–Tits tree (at least as long as backtracking is

disallowed), although the complexity of the diagram might make the calculation

computationally tedious. It is desirable to develop computational techniques

which make the evaluation of Feynman diagrams, for example higher-point cor-

relators between different operators or loop diagrams in the bulk, more straight-

forward. To this end, in this chapter we introduce various “propagator identities”

on the Bruhat–Tits tree, some of which are inspired by analogous identities in

the Archimedean setting, which help evaluate bulk diagrams without ever having

to explicitly do any tedious bulk integrations (more precisely, tree summations).

These identities can be proven once and for all, and the proofs involve straight-

forward tree summations. Our focus in this chapter will be on finding these

identities, and then applying them to evaluate the complete four-point function

of scalar operators. 2 These identities can easily be used to evaluate higher-point

correlators and loop corrections to tree-level bulk Feynman diagrams as well, but

1More precisely, we found they had adelic forms up to an overall factor of 2.
2After the publication of work on which this chapter is based [84], related work appeared [85]

where a direct computation of the p-adic exchange diagram was attempted, in the special case
of identical external operators. The limited applicability of the brute-force calculations is in
stark contrast with the leverage provided by the computational techniques introduced in [84]
(and described in this chapter).
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we won’t have occasion to comment on that in this dissertation.

A key component of the methods presented here will be the equivalence be-

tween “geodesic bulk diagrams” and conformal blocks [86], often termed “geodesic

Witten diagrams” since they are a simplification of the diagrammatic techniques

introduced in [24]. In the Archimedean case, geodesic bulk diagrams are bulk

exchange diagrams with the bulk points of integration restricted to the geodesics

joining the boundary points, rather than the whole of AdS space. A geodesic

bulk diagram so constructed turns out to be directly proportional to the four-

point conformal blocks of the boundary CFT [86]. Due to the fact that all paths

on the Bruhat–Tits tree are geodesics (provided backtracking is disallowed), we

expect that if an analogous result were to be true in non-Archimedean AdS/CFT,

it would be straightforward to prove. Indeed, we show that the proportionality

between geodesic bulk diagrams and conformal blocks carries over to the p-adics

effortlessly.

The computation of the four-point functions then proceeds as follows: we use

various propagator identities to reduce the tree summation to geodesic bulk dia-

grams, following which we use the relation between geodesic bulk diagrams and

conformal blocks to obtain the physical conformal block decomposition of the

four-point function. Compared to the situation in Archimedean AdS/CFT, we

find the p-adic contact and exchange diagrams in the direct and crossed channels

have much simpler forms, and in fact we are able to obtain explicit closed-form

expressions for them. These remarkable simplifications arise due to the fact that

only the simplest double-trace operators appear in the conformal block decom-

position of the diagrams — the ones with no derivatives; additionally no descen-

dants contribute either. Despite the simplifications, one continues to find striking

similarities between the results in Rn and Qpn , and we emphasize these in this
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chapter.3

To better understand the contrast between the Archimedean and non-Archime-

dean four-point functions, we highlight the key difference between operators in

the Archimedean case and the non-Archimedean case, which are both real (or

complex) valued functions, but have domains lying, respectively in the reals and

the p-adics: a real (or complex) valued function which is supported on the p-adics

does not admit local derivatives [87]. 4 (To write down the kinetic term in a

p-adic CFT, we will use a non-local notion of derivative, called the Vladimirov

derivative, defined in the next chapter.) The lack of local derivatives leads to

much simpler operator product expansions (OPEs) in p-adic CFTs, first studied

in [87] for two-dimensional CFTs. No descendants appear in the p-adic OPE; in

fact in such a CFT a local stress-tensor is absent. 5 This is the reason why the

p-adic conformal blocks are trivial, and the conformal block decomposition of the

p-adic four-point function is significantly simpler.

In order to make contact with the standard results in Rn, we restrict ourselves

to a bulk scalar field on a fixed AdS background, since in this case the dual CFT

3We will often refer to the usual (Archimedean) AdS/CFT correspondence over the reals
simply as Rn, and refer to the non-Archimedean case over the p-adics simply as Qpn .

4The theory of p-adic valued functions supported on the p-adics, referred to as p-adic anal-
ysis, is richer (see, for example, chapter 4 of [49]). However, it still is limited and different from
real analysis in several aspects, the root cause being the lack of a mean-value theorem in the
p-adics. The basic reason for that is while R is a connected metric space, the non-Archimedean
p-adic field has a totally disconnected topology, which means for instance, that two open sets
are either totally disjoint or one is fully contained inside the other. One can define intervals in
R since it is an ordered field, and there is a well-defined notion of inequalities when comparing
two elements in R. This is not true in Qp.

It turns out p-adic valued functions which may be expressed as power series are simpler to
deal with and a bit more like their real valued counterparts, but for a richer and more complete
theory of p-adic analysis, one must study the sophisticated subject of rigid analytic spaces (see,
for instance, [88]).

5Nevertheless, p-adic field theories share several common features with usual field theories,
including renormalization group flows and the existence of a Wilson-Fisher fixed point which
we study in the next chapter. At the fixed point, we will find in chapter 4 that anomalous
dimensions admit universal expressions independent of the choice of space, whether p-adic or
real.
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in Rn lacks a stress tensor as well.6 Like in chapter 2, the discrete bulk Euclidean

action we will consider is

S[φ] =
∑
〈ab〉

1

2
(φa − φb)2 +

∑
a∈Tpn

(
1

2
m2

∆φ
2
a +

g3

3!
φ3
a +

g4

4!
φ4
a

)
, (3.1)

which describes a single scalar field φ living on the vertices. This is the same

action as the one written in (2.19), but with a slight change in notation. As

before, the first sum in (3.1) runs over all edges, and the second sum runs over

all the vertices of Tpn , the Bruhat–Tits tree with coordination number pn + 1.

Here g3 and g4 are coupling constants, and the mass of the scalar is related to

the scaling dimension of the dual operator, ∆ via

Qpn m2
∆ ≡ m2

Qpn ,∆ =
−1

ζ(−∆)ζ(∆− n)
. (3.2)

The somewhat non-standard notation used in (3.2) and the rest of this chapter

and the next is explained at the end of this section. It is worth noting here that

the zeta function that appears in (3.2) is not the Riemann zeta function; instead,

we reserve the symbol ζ to stand for the so-called local zeta functions introduced

in the previous chapter, repeated once again in (3.4)-(3.5) with a slight notational

change.

Thus far, we have lacked an explicit example of a dual pair of theories in

the non-Archimedean AdS/CFT correspondence. The final goal in this chapter

is to make progress along this direction by constructing a minimal bulk action

which reproduces the two-, three- and four-point functions of a free-field theory.

We will do that by introducing a nearest neighbor interaction in the bulk tree,

6In [32], in the context of p-adic AdS/CFT, a “stress-tensor” like operator dual to “graviton
fluctuations” was considered. The bulk description consisted of a scalar field defined on the
vertices of the Bruhat–Tits tree, with the “graviton” described as edge-length fluctuations.
The operator dual to edge-length fluctuations shared some properties with the stress-tensor,
such as the correct scaling dimension, but seemed to lack others, such as a notion of spin. In
this dissertation, we avoid the unresolved question of the properties of a stress tensor in p-adic
CFTs by restricting to a fixed bulk without dynamical gravity. For unrelated reasons, CFTs
in Rn without a stress tensor were also recently considered in [89, 90, 91].
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evaluating its contributions to the four-point correlator, and tuning the cubic

and quartic bulk couplings to obtain the connected free-field correlators up to

the four-point function. We will also make some comparisons of our construction

with the Archimedean case.

We would now like to explain the non-standard notation used in this chapter

and the next. Equations applicable only in Rn or Qpn will be marked to indicate

so. For instance, the mass-scaling dimension relation between mass of a scalar

field, and the scaling dimension of the dual operator in Qpn is given by (3.2),

while in Rn it is the well known relation

Rn
m2

∆ ≡ m2
Rn,∆ = ∆(∆− n) . (3.3)

Throughout chapters 3 and 4, we will be expressing results in terms of the local

zeta functions, defined to be

Qpn ζ(s) ≡ ζQp(s) =
1

1− p−s (3.4)

and

Rn
ζ(s) ≡ ζR(s) = π−s/2ΓEuler(s/2) , (3.5)

in Qpn and Rn, respectively.7 The reason for defining the local zeta functions is

that holographic correlators in Rn and Qpn have more or less a universal form as

we already saw in chapter 2, when expressed in terms of these local zeta functions.

Equations which hold both in Rn and Qpn will be left unmarked. For instance in

Rn and Qpn , it will be useful to define8

β(∆1,∆2) ≡ ζ(∆1)ζ(∆2)

ζ(∆1 + ∆2)
. (3.6)

7Here and in chapter 4, we avoid defining local zeta functions for Rn or Qpn and prefer to
use only the local zeta functions defined in (3.4) and (3.5).

8In Rn, β(∆1,∆2) reduces to the usual Euler Beta function, β
(∆1,∆2)
Rn = BEuler(∆1/2,∆2/2).
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From a purely CFT perspective, it will be shown in chapter 4 (in the context

of the p-adic O(N) model), that correlators and anomalous dimensions of various

operators admit expressions expressible entirely in terms of suitably defined local

Gamma and Beta functions, which are ultimately constructed out of the local

zeta functions defined in (3.4)-(3.5). It is satisfying to see the same functions

appear both from purely bulk calculations as well as purely boundary consid-

erations, especially since in the context of p-adic AdS/CFT the bulk/boundary

correspondence relates two seemingly disparate constructs: a bulk described by

a discrete tree and a boundary described by the continuum of p-adic numbers.

We will not have occasion to use the local Gamma and Beta functions in this

chapter (though (3.6) is related); however, to prevent confusion we will always

use Euler’s Gamma and Beta functions as ΓEuler(z) and BEuler(z, w).

We also emphasize and clarify the terminology used in this chapter with ref-

erence to bulk exchange diagrams in various channels. Throughout the chapter,

we will assume that the boundary operator insertion points xi ∈ Qpn are in a

configuration as depicted in figure 3.1, which corresponds to u < v = 1 (u and

v are cross-ratios defined in (3.30)), and we have reserved the term ‘s-channel’

to refer to that. (This admittedly confusing terminology has no connection with

the textbook terminology for exchange of particles in an intermediate channel.

Instead we refer to exchanges as, for example, the “exchange in the (12)(34)

channel.”) Note that this is not a simplification but in fact fully general on the

Bruhat–Tits tree. Given any four boundary points, up to relabelling the xi, they

always arrange themselves in an ‘s-channel’ configuration, with one exception.

The exceptional case corresponds to u = v = 1, or equivalently when the bulk

points c1 and c2 in figure 3.1 coincide. All our formulae derived in this chapter

are applicable when u = v = 1, which can be thought of as a degeneration of the

s-, t-, and u-channel boundary configurations, where for example, the ‘t-channel’
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configuration is obtained after switching x2 and x3 in figure 3.1.9 It is worth

emphasizing that u = v = 1 is the only case which admits a pairwise overlap

between the s-, t- and u-channels [87].

Finally the normalization of bulk-to-boundary propagator and the two-point

function differs slightly from the one used in chapter 2 — see footnotes 12 and

23 in this chapter.

The organisation of the rest of the chapter is as follows. In section 3.2 we

establish the relation between p-adic conformal blocks and geodesic bulk diagrams

on the Bruhat–Tits tree, and in section 3.3 we use results from section 3.2 as well

as some bulk propagator identities to evaluate the full four-point function of

scalar operators (including contact interactions as well as exchange diagrams in

all channels). In section 3.4 we describe a minimal bulk construction which yields

the two-, three-, and four-point functions of a free theory on the boundary. We

end with a summary and discussion of some open questions in section 3.5. In the

appendices we list some additional propagator identities on the Bruhat–Tits tree,

illustrate crossing symmetry in the p-adics, and explore the connection between

nearest neighbor interactions and derivative couplings.

3.2 Conformal blocks and geodesic bulk diagrams

3.2.1 The p-adic OPE and the three-point function

The OPE between two (scalar) operators in a CFT takes the general form

O1(x1)O2(x2) =
∑
r

C̃12r|x12|−∆1−∆2+∆rOr(x2) , (3.7)

9Curiously, this degeneration is impossible when pn = 2, since the Bruhat–Tits tree T2 has
coordination number 3, while we need a coordination number of at least 4 to realize u = v = 1.
This is one of the many reasons, which are all related to the fact that 2 is an even prime, why
2-adic conformal field theories may be quite exotic.
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where the sum is over all operators in the CFT. The operator Or has scaling

dimension ∆r, and C̃ijks are the OPE coefficients. In a p-adic CFT, descendants

do not appear in the OPE, and the index r runs only over the ‘primaries’ [87].

A scalar ‘primary’ operator O with scaling dimension ∆ transforms under p-adic

conformal transformations,

Qpn z → z′ =
az + b

cz + d
,

a b

c d

 ∈ PGL(2,Qpn) (3.8)

as

Qpn O′(z′) =

∣∣∣∣ ad− bc(cz + d)2

∣∣∣∣−∆

O(z) , (3.9)

where |·| represents the p-adic norm. This serves as the defining property of scalar

‘primary’ operators in p-adic CFTs [87]. Moreover, we postulate orthonormality

〈Oi(x1)Oj(x2)〉 =
δij

|x12|2∆j
. (3.10)

First consider a theory of bulk scalars of generic masses with cubic couplings

of the form φiφjφk in a fixed AdS background. The p-adic OPE of two non-

degenerate operators takes the form in (3.7) where the sum runs over all operators,

including multi-trace. Inserting a single-trace operator O3 at x3 of dimension

∆3 6= ∆1 + ∆2 such that |x12| < |x13|, |x23|, the three-point function of three

single-trace operators following from the OPE is

Qpn

〈O1(x1)O2(x2)O3(x3)〉 =
∑
r

C̃12r|x12|−∆1−∆2+∆r〈Or(x2)O3(x3)〉

= C̃123|x12|−∆1−∆2+∆3|x23|−2∆3 ,

(3.11)

where we used the orthonormality property (3.10) and assumed that the cubic

coupling φ1φ2φ3 is present. Since p-adic conformal invariance fixes the form of

the three-point function up to an overall constant f̃ijk [87], we may set (3.11) to

〈O1(x1)O2(x2)O3(x3)〉 =
f̃123

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1|x13|∆3+∆1−∆2
. (3.12)
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Ultrametricity of the p-adic norm implies |x13| = |x23|.10 This immediately

yields at leading order (i.e. tree-level),

Qpn C̃123 = f̃123 . (3.13)

The OPE coefficient can be determined by working out the three-point func-

tion holographically. For operators with generic dimensions ∆1,∆2,∆3, which

are bulk duals to φ1, φ2, φ3 appearing in a cubic vertex,11 the standard prescrip-

tion in Rn to compute the tree-level contribution to the three-point function is

to evaluate the integral12

Rn 〈O1(~x1)O2(~x2)O3(~x3)〉 = N3

∫
dn+1y

yn+1
0

(
3∏
i

K̂∆i
(y0, ~y − ~xi)

)
, (3.14)

where K̂∆ is the unnormalized bulk-to-boundary propagator

Rn K̂∆(y0, ~y − ~x) =
y∆

0

(y2
0 + (~y − ~x)2)∆

, (3.15)

and

Nk ≡ −gk
(

k∏
i

√
c̃∆i

)
, (3.16)

with

Rn
c̃∆ ≡ c∆/(2∆− n) , (3.17)

and

c∆ ≡ ζ(2∆)/ζ(2∆− n) . (3.18)

10The proof proceeds as follows. Rewrite |x13| = |x12 + x23|. By assumption, |x12| < |x23|.
Then the desired relation follows directly from the general property of the p-adic norm that
|x+ y| = |x| if |x| > |y|.

11In the special case of non-generic scaling dimensions with ∆i + ∆j −∆k = 0, anomalous
dimensions become important at tree-level. We will not address this case here.

12The normalization differs slightly from the one used in chapter 2, due to the different choice
of normalization for the two-point function. (See also footnote 23.)
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In Qpn , as discussed in chapter 2, integration over the bulk point y gets

replaced by a sum over all vertices a of the Bruhat–Tits tree, giving

Qpn 〈O1(x1)O2(x2)O3(x3)〉 = N3

∑
a∈Tpn

(
3∏
i

K̂∆i
(a, xi)

)
, (3.19)

where the unnormalized bulk-to-boundary propagator K̂∆ is given by

Qpn K̂∆(a, x) = K̂∆(y0, y − x) =
|y0|∆

|y0, y − x|2∆
s

, (3.20)

N3 is as in (3.16), c̃∆ is defined to be

Qpn c̃∆ ≡
c∆

p∆/ζ(2∆− n)
, (3.21)

and c∆ is given by (3.18). In the first equality in (3.20), the bulk vertex a is

re-expressed in terms of the boundary coordinate y ∈ Qpn and the bulk depth

coordinate y0 ∈ pZ which, as we explained in chapter 2, together specify a. The

notation |z, w|s stands for supremum norm, |z, w|s ≡ sup{|z|, |w|}.13

In Rn, evaluating the three-point function given in (3.14), leads to (3.12)

with [77]

Rn f̃123 =
N3

2
f123 , (3.22)

where

fijk ≡ ζ(∆i + ∆j + ∆k − n)
ζ(∆i + ∆jk)ζ(∆j + ∆ki)ζ(∆k + ∆ij)

ζ(2∆i)ζ(2∆j)ζ(2∆k)
. (3.23)

Here ∆ij = ∆i − ∆j and ζ(s) is defined in (3.5). By comparison in p-adic

AdS/CFT, to evaluate (3.19) a simple generalization of the computation of the

holographic three-point amplitude presented in chapter 2 leads to (3.12) with

Qpn f̃123 = N3 f123 , (3.24)

13For brevity, from now on we will suppress the vector symbol on boundary coordinates in
Rn, and analogous to the p-adics, refer to bulk coordinates with lower-case Latin alphabets
such as a, b, c, so that for example, a = (y0, ~y). Boundary coordinates will usually be denoted
using letters from the other end of the alphabet, for example x, y, z.
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where f123 is again given by (3.23), and ζ(s) is defined in (3.4).

While the equalities in (3.22) and (3.24) are sufficient to show the striking

similarity between the form of the structure constants in Rn and Qpn , an alternate

form for the structure constants will be more instructive when we later compare

the scalar four-point functions in Rn and Qpn . For n = 2 in Rn,

Rn f̃123
(n=2)

=
−N3

c̃∆1+∆2

β(∆3+∆12,∆3−∆12)

∞∑
M=0

a
(∆1,∆2)
M

m2
∆3
−m2

∆1+∆2+2M

, (3.25)

where c̃∆ is defined in (3.17), β(s,t) is defined in (3.6), the mass squared in Rn is

given by (3.3), and

Rn a
(∆1,∆2)
M ≡ 1

β(2∆1+2M,2∆2+2M)

(−1)M

M !

(∆1)M(∆2)M
(∆1 + ∆2 +M − n/2)M

, (3.26)

where (∆)M ≡ ΓEuler(∆ + M)/ΓEuler(∆) is the Pochhammer symbol. On the

other hand, in Qpn for general n,

Qpn f̃123 =
−N3

c̃∆1+∆2

β(∆3+∆12,∆3−∆12) a(∆1,∆2)

m2
∆3
−m2

∆1+∆2

. (3.27)

Here c̃∆ is defined in (3.21) and β(s,t) is defined in (3.6). The p-adic mass squared

is given by (3.2), and

Qpn a(∆1,∆2) ≡ 1

β(2∆1,2∆2)
. (3.28)

Although the equality in (3.25) holds only for n = 2, the comparison between

(3.25) and (3.27) proves useful in section 3.3, when we compare the four-point

functions in Rn and Qpn for any n. The absence of an infinite sum in (3.27) along

the lines of (3.25) turns out to be directly related to the absence of derivatives in

the OPE in p-adic CFTs. We will return to this point in section 3.3. It is worth

making the trivial observation that at M = 0, a
(∆1,∆2)
M in (3.26) reduces to the

simple form

Rn a
(∆1,∆2)
0 =

1

β(2∆1,2∆2)
, (3.29)

which is to be compared with the definition (3.28) in Qpn .
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x1

x2

x3

x4

c1 c2

d(c1,c2)

u < 1

ℙ1(ℚpn)

Figure 3.1: Boundary points xi in the s-channel configuration. Solid lines are
geodesics on the Bruhat–Tits tree, tracing the path joining the four points to-
gether. Bulk points c1, c2 are uniquely fixed once xi are specified. The conformal
cross-ratio in (3.30) is given by u = p−d(c1,c2) where d(c1, c2) is the graph distance
between points c1 and c2. In the s-channel configuration, u < 1.

3.2.2 Four-point contact diagram

For four boundary points x1, x2, x3 and x4, the conformal cross-ratios u and v are

defined to be

Qpn u ≡
∣∣∣∣x12x34

x13x24

∣∣∣∣ v ≡
∣∣∣∣x14x23

x13x24

∣∣∣∣ . (3.30)

In this chapter, the points of insertion of external scalar operators will always

be in an ‘s-channel’ configuration on the boundary (see figure 3.1). The defining

property of ‘s-channel’ is that the cross-ratio u < 1. A striking consequence of

ultrametricity is that, u < 1⇒ v = 1. To prove this, observe that

Qpn
x14x23

x13x24

= 1− x12x34

x13x24

. (3.31)

The claim then follows directly from an application of the ultrametric property

of p-adic norms described in footnote 10.

We define the p-adic four-point contact amplitude to be the sum

Qpn D(xi) ≡
1

W0(xi)

∑
a∈Tpn

(
4∏
i

K̂∆i
(a, xi)

)
, (3.32)
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where

Qpn W∆(xi) ≡ K̂∆1(c1, x1)K̂∆2(c1, x2)Ĝ∆(c1, c2)K̂∆3(c2, x3)K̂∆4(c2, x4) ,

(3.33)

and Ĝ∆ is the unnormalized bulk-to-bulk propagator computed in chapter 2,

given by

Qpn Ĝ∆(c1, c2) = p−∆d(c1,c2) = u∆ , (3.34)

where c1 and c2 are the unique points of intersection of the geodesics joining

together the boundary points xi (see figure 3.1), and u is the cross-ratio defined in

(3.30). The product in (3.33) evaluates to (see chapter 2 for similar computations)

Qpn W∆(xi) = u∆ W0(xi), (3.35)

where

Qpn
W0 =

1

|x12x34|σ/2
∏

1≤i<j≤4

1

|xij|∆i+∆j−σ/2
, (3.36)

with σ ≡ ∑4
i=1 ∆i. It is clear that W0(xi) carries the trivial coordinate depen-

dence of the four-point function. An alternate representation for W0 is

Qpn W0 =

∣∣∣∣x24

x14

∣∣∣∣∆12
∣∣∣∣x14

x13

∣∣∣∣∆34 v(∆12−∆34)/2

|x12|∆1+∆2|x34|∆3+∆4
, (3.37)

where we can freely set v = 1 in the ‘s-channel’.

The sum over Bruhat–Tits tree in (3.32) was computed in chapter 2 in the

special case of identical ∆i. Generalizing to non-identical ∆i, we obtain14

Qpn D(xi) = u∆Af34A + u∆Bf12B , (3.38)

14For convergence of the sum in (3.32), we require:

4∑
i=1

∆i > n ∆2 + ∆3 + ∆4 > ∆1 and other permutations.

The computation proceeds straightforwardly using the tree-summation methods described in
chapter 2. Later in section 3.3.2, we will provide an alternate derivation of (3.38).
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where

∆A = ∆1 + ∆2 ∆B = ∆3 + ∆4 , (3.39)

and the fijks are given by (3.23). We note that D(xi) depends on the coordinates

only through the cross-ratio u, and from here on we will simply write it as D(u).

The tree-level four-point function is thus given by

Qpn 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = N4W0(xi)D(u), (3.40)

assuming no bulk cubic couplings are present, with N4 given by (3.16). In Rn,

conformal invariance constrains the four-point function of scalar operators to be

of the form

Rn 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = W0(xi)g(u, v), (3.41)

where W0(xi) is given by

Rn
W0 ≡

( |x24|
|x14|

)∆12
( |x14|
|x13|

)∆34 1

|x12|∆1+∆2|x34|∆3+∆4
, (3.42)

and g(u, v) is an arbitrary function of cross-ratios u and v, defined to be

Rn u ≡ |x12||x34|
|x13||x24|

v ≡ |x14||x23|
|x13||x24|

, (3.43)

where | · | are L2-norms in Rn. As noted above (3.31), in the ‘s-channel’ in Qpn

one of the cross-ratios is trivial. So we see that up to an overall normalization

factor, D(u) is the p-adic analog of g(u, v). From here on we will not concern

ourselves with the four-point function 〈O . . .O〉, but study directly the amplitude

D(u), which is stripped off of the trivial kinematic factors and contains only the

dynamical information of the theory.
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3.2.3 p-adic conformal blocks

In analogy with the decomposition of g(u, v) into conformal blocks in Rn, the

amplitude D(u) may also be decomposed into (scalar) conformal blocks G∆(u),

Qpn
D(u) =

∑
r

C12rC34r G∆r(u) . (3.44)

Comparing with (3.38), we see the p-adic conformal blocks are simply given by

Qpn G∆(u) = u∆ . (3.45)

We can now also identify the kinematic factor W∆(xi) in (3.35) with the scalar

conformal partial wave, since

Qpn W∆(xi) = W0(xi)G∆(u) . (3.46)

Incidentally in Rn, the conformal partial wave takes the form

Rn
W∆(xi) ≡ W0(xi)G∆(u, v) , (3.47)

where G(u, v) is the scalar conformal block.15

To arrive at (3.44) starting from the OPE, consider a bulk theory of four scalar

fields φi with a quartic interaction of the form φ1φ2φ3φ4 and no cubic coupling.

The OPEs to consider are

O1(x1)O2(x2) =
∑
r

C̃12r|x12|−∆1−∆2+∆rOr(x2)

O3(x3)O4(x4) =
∑
r

C̃34r|x34|−∆3−∆4+∆rOr(x4) .

(3.49)

15The contrast between the p-adic conformal blocks (3.45) and scalar conformal blocks in
Rn is striking. In Rn the conformal block admits a double power series expansion in u2 and
(1− v2),

Rn G∆(u, v) = u∆
∞∑

m,n=0

amnu
2m(1− v2)n , (3.48)

for some (known) coefficients amn [92].
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For the OPEs to make sense, we must have

|x12|, |x34| < |x13|, |x24|, |x14|, |x23| . (3.50)

These requirements are consistent with the s-channel configuration shown in fig-

ure 3.1. In fact the conditions (3.50) are stronger than just requiring u < 1, and

due to ultrametricity, they lead to the following equalities:

Qpn |x13| = |x24| = |x14| = |x23| , (3.51)

which are consistent with but stronger than v = 1. Then using (3.10) we obtain

〈O1(x1)O2(x2)O3(x3)O4(x4)〉
∑
r

C̃12rC̃34r|x12|−∆1−∆2+∆r |x34|−∆3−∆4+∆r |x24|−2∆r .

(3.52)

Recalling the properties of the p-adic OPE from section 3.2.1, and exploiting

the fact that there are no bulk cubic couplings but only the quartic coupling

φ1φ2φ3φ4, we conclude that at tree-level, the index r in (3.49) runs over only

the double-trace operators OB ≡ O3O4 in the first line, and OA ≡ O1O2 in the

second line of (3.49), with ∆A and ∆B given by (3.39) to leading order. Then

using (3.40) and various equalities from (3.51), it is easy to show that (3.52)

reproduces (3.38) provided we make the identification

Qpn C̃12rC̃34r = N4C12rC34r r = A,B (3.53)

with

Qpn C12AC34A = f34A C12BC34B = f12B , (3.54)

where fijks are given in (3.23). Crossing symmetry imposes the p-adic OPE

coefficients C̃ijk to satisfy associativity:[87]

Qpn

∑
r

C̃ijrC̃k`r =
∑
r

C̃i`rC̃jkr =
∑
r

C̃ikrC̃j`r . (3.55)
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The coefficients given in (3.53)-(3.54) satisfy (3.55) at leading order in the cou-

pling. The associativity constraints with {i, j, k, `} being some permutation of

{1, 2, 3, 4} leave some freedom to rescale the Cijk while maintaining (3.54).16

3.2.4 Geodesic bulk diagrams

Following [86], we define the geodesic bulk diagram WS
∆ to be

Qpn
WS

∆ ≡
∑
a∈γ12

∑
b∈γ34

(
K̂∆1(x1, a)K̂∆2(x2, a)Ĝ∆(a, b)K̂∆3(b, x3)K̂∆4(b, x4)

)
,

(3.56)

where the bulk point a (b) is summed over the unique bulk geodesic γ12 (γ34)

on the Bruhat–Tits tree joining boundary points x1 and x2 (x3 and x4). The

label S is unrelated to the ‘s-channel’ configuration of the boundary points xi,

but indicates that the bulk points a and b are integrated along γ12 and γ34,

respectively. Later in section 3.3.4 we will have occasion to define WT
∆ and WU

∆ .

Figure 3.2 shows the subway diagram, i.e. a Feynman diagram on the Bruhat–

Tits tree, for the geodesic bulk diagram WS
∆. Summing over a and b as indicated

in (3.56) leads immediately to (see appendix 3.D for details)

Qpn
WS

∆

W∆

= β(∆+∆12,∆−∆12)β(∆+∆34,∆−∆34). (3.57)

The result (3.57) is to be compared with results of [86], where it is shown that

that the Archimedean geodesic bulk diagram, WS
∆ is related to the conformal

partial wave W∆ via

Rn WS
∆

W∆

=
1

4
β(∆+∆12,∆−∆12)β(∆+∆34,∆−∆34), (3.58)

16The aforementioned associativity boils down to verifying the unobvious identity

f34A + f12B = f24C + f13D = f23E + f14F ,

where the fijks are given in (3.23), ∆A,∆B are given in (3.39) and ∆C = ∆1 + ∆3,∆D =
∆2 + ∆4,∆E = ∆1 + ∆4 and ∆F = ∆2 + ∆3.
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x1
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ℙ1(ℚpn)

Figure 3.2: A geodesic subway diagram. Bulk point a runs along the geodesic
joining x1 with x2, and b runs along the geodesic joining x3 with x4. Colors
differentiate the individual propagators in (3.56).

and β(s,t) is defined in (3.6).17 Remarkably, comparing (3.58) with (3.57), we see

that the proportionality factors in Rn and Qpn have an (almost) identical form.

A special case of interest corresponds to setting all external dimensions equal

to the dimension of the exchanged scalar. In this case, the tree-sum in (3.56)

simplifies to (where now all ∆i = ∆)

Qpn
WS

∆ = W0(xi)×
∑
a∈γ12

∑
b∈γ34

Ĝ∆(a, b), (3.59)

On the other hand, setting all dimensions equal in (3.57) yields

Qpn
WS

∆

W∆

=
(
β(∆,∆)

)2
. (3.60)

From (3.59), (3.60) and (3.46), it follows

Qpn

(
β(∆,∆)

)2 G∆(u) =
∑
a∈γ12

∑
b∈γ34

Ĝ∆(a, b) . (3.61)

17Our notation differs slightly from the one used in [86]. In [86],

β∆ij ≡
1

2
β

(∆+∆ij ,∆−∆ij)
Rn =

1

2

ζR(s)ζR(t)

ζR(s+ t)
,

so that WS
∆ = β∆12β∆34W∆ (c.f. (3.3) of [86]). The difference in notation is the origin of the

explicit factor of 1/4 in (3.58).



121

For comparison, the Archimedean analog of (3.61) is [86, 93]

Rn
1

4

(
β(∆,∆)

)2 G∆(u, v) =

∫
a∈γ12

∫
b∈γ34

Ĝ∆(a, b) , (3.62)

where Ĝ(a, b) is the unnormalized scalar bulk-to-bulk propagator in Rn, and

G∆(u, v) is the scalar conformal block.

3.3 Four-point contact and exchange diagrams

In this section we introduce some p-adic propagator identities which greatly re-

duce the complexity of performing bulk integrations (more precisely, tree summa-

tions) encountered while evaluating various four-point amplitudes. The Archimedean

analogs of these identities [86] proved to be of great use in Rn for the evaluation

of bulk integrals in the scalar four-point contact and exchange diagrams, and we

show below how this carries over to Qpn .

3.3.1 Two AdS propagator identities

An identity which will be especially useful for decomposing bulk diagrams into

geodesic bulk diagrams (and as a consequence of (3.57) and (3.46) into a confor-

mal block decomposition) is

Qpn
K̂∆1(b, x1)K̂∆2(b, x2) = a(∆1,∆2)

∑
a∈γ12

K̂∆1(a, x1)K̂∆2(a, x2)Ĝ∆1+∆2(a, b)

(3.63)

where a(s,t) is given by (3.28), and the bulk point a is restricted to lie along

γ12, which is the unique bulk geodesic joining x1 to x2. This identity can be

verified straightforwardly by explicit evaluation, but it’s helpful to think about

it geometrically as well. On the Bruhat–Tits tree, the paths from x1 and x2 to

b can be divided into two sub-paths each: the first which lies along the geodesic
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joining x1 and x2, and the second which lies off of that geodesic, and which is

in fact common to both the paths from x1 and x2 to b. The r.h.s. of (3.63) can

similarly be seen to decompose into subpaths: the bulk-to-boundary propagators

are restricted to lie along the geodesic joining x1 and x2, while the bulk-to-bulk

propagator travels partially along the geodesic, and partially along the common

subpath mentioned above. The overall factor accounts for the over-counting of

paths on the r.h.s. The corresponding identity in Rn is [86]18

Rn K̂∆1(b, x1)K̂∆2(b, x2) = 2
∞∑

M=0

a
(∆1,∆2)
M

∫
a∈γ12

K̂∆1(a, x1)K̂∆2(a, x2)Ĝ∆1+∆2+2M(a, b)

(3.64)

where a
(s,t)
M is given by (3.26). The crucial difference between (3.63) and (3.64)

is the infinite sum over M that has collapsed to the leading M = 0 term in

(3.63). The bulk-to-bulk propagators appearing in the identity represent a scalar

of scaling dimension ∆ with ∆ = ∆1 + ∆2 in Qpn , while in Rn one must perform

a (weighted) sum over all scalars with ∆ = ∆1 + ∆2 + 2M for all integral M ≥ 0.

Another identity, which is extremely useful for replacing certain integrations

over all of AdS with unintegrated expressions, takes the following form:

Qpn

∑
c∈Tpn

Ĝ∆1(a, c)Ĝ∆2(b, c) =
−Ĝ∆1(a, b)/c̃∆2 + Ĝ∆2(a, b)/c̃∆1

m2
∆1
−m2

∆2

, (3.65)

where we remind the reader that m∆ is the p-adic mass given by (3.2), and c̃∆

is given in (3.21). It is worth rewriting this identity in terms of the normalized

bulk-to-bulk propagators of chapter 2,19

Qpn G∆(a, b) = c̃∆Ĝ∆(a, b) , (3.66)

18There is an overall explicit factor of 2 as compared with (4.1) of [86] due to a small
difference in notation — see footnote 17.

19Likewise in Rn, c̃∆ given in (3.17) is the usual normalization constant of the bulk-to-bulk
propagator. See, for example, equations (6.12) and (8.29) of [94], and (2.141) of chapter 2.
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in which case it becomes

Qpn

∑
c∈Tpn

G∆1(a, c)G∆2(b, c) =
G∆2(a, b)−G∆1(a, b)

m2
∆1
−m2

∆2

. (3.67)

The corresponding identity satisfied by the unnormalized bulk-to-bulk propaga-

tors in Rn takes the form [86]

Rn

∫
c

Ĝ∆1(a, c)Ĝ∆2(b, c) =
Ĝ∆1(a, b)− Ĝ∆2(a, b)

m2
∆1
−m2

∆2

, (3.68)

where the Archimedean mass is given by (3.3). We list some more propagator

identities in appendix 3.A, which we will not have occasion to use in this thesis,

but which may prove useful in evaluating higher-point correlators and bulk loop

diagrams.

Curiously, despite having very different expressions, the masses in Qpn and

Rn subtract in a surprisingly similar manner. From the expression for the p-adic

mass in (3.2), it follows

Qpn m2
∆A
−m2

∆B
=

−p∆B

ζ(∆B −∆A)ζ(∆A + ∆B − n)
. (3.69)

This is to be compared with the Archimedean place, where

Rn
m2

∆A
−m2

∆B
= (∆A −∆B)(∆A + ∆B − n) . (3.70)

This observation will prove useful later when we discuss and compare the the

logarithmic singularity structure of the four-point function in Rn and Qpn .

3.3.2 Four-point contact diagram, again

We will now use (3.63) and (3.65) to rederive (3.38). Starting with (3.32) with

the xi arranged in the s-channel configuration shown in figure 3.1, and applying
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identity (3.63) to the pairs K̂∆1K̂∆2 and K̂∆3K̂∆4 , we obtain

Qpn

DW0 = a(∆1,∆2)a(∆3,∆4)
∑
a∈Tpn

∑
b1∈γ12

∑
b2∈γ34

× K̂∆1(b1, x1)K̂∆1(b1, x2)Ĝ∆1+∆2(b1, a)

× K̂∆3(b2, x3)K̂∆4(b2, x4)Ĝ∆3+∆4(b2, a) .

(3.71)

While it may seem we have made our lives harder by introducing two additional

summations over geodesics within the Bruhat–Tits tree, the effect is in fact the

opposite: Thanks to the identities of sections 3.2.4 and 3.3.1, we never have to

explicitly evaluate any of these integrals. We first eliminate the sum over the

bulk point a by recognising it takes exactly the form of identity (3.65). This

results in two terms with the propagator content schematically of the form ∼∑
γ

∑
γ K̂K̂Ĝ∆K̂K̂, with ∆ = ∆1 + ∆2 in one term, and ∆ = ∆3 + ∆4 in the

other. This combination is exactly the same as (3.56), which is the definition of

a geodesic bulk diagram. Substituting the geodesic bulk diagram with conformal

partial waves using (3.57), we arrive at

Qpn D(u) = P
(12)
1 G∆A

(u) + P
(34)
1 G∆B

(u) , (3.72)

with the squared OPE coefficients

Qpn

P
(12)
1 =

−1

c̃∆B

(
β(2∆1,2∆2)a(∆1,∆2)

)(
β(∆A+∆34,∆A−∆34) a(∆3,∆4)

m2
∆A
−m2

∆B

)
P

(34)
1 =

−1

c̃∆A

(
β(2∆3,2∆4)a(∆3,∆4)

)(
β(∆B+∆12,∆B−∆12) a(∆1,∆2)

m2
∆B
−m2

∆A

)
.

(3.73)

It is straightforward to check that (3.72) with the coefficients given in (3.73) agrees

precisely with (3.38). That the expression for the p-adic four-point amplitude

in (3.38) has an equivalent representation featuring p-adic mass singularities as

shown in (3.72)-(3.73) is highly non-trivial but physical. We comment more on

this at the end of section 3.3.4.
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A calculation in Rn, similar to the one described for Qpn using the propagator

identities, results in an expression for the contact diagram similar to (3.73), but

with an important difference. We quote the result computed in [86]:

Rn g(u, v) =
∞∑

M=0

P
(12)
1 (M)G∆A+2M(u, v) +

∞∑
N=0

P
(34)
1 (N)G∆B+2N(u, v) , (3.74)

where the squared OPE coefficients are given by

Rn

P
(12)
1 (M) =

(
β(2∆1+2M,2∆2+2M)a

(∆1,∆2)
M

)
×
(
β(∆A+∆34+2M,∆A−∆34+2M)

∞∑
N=0

a
(∆3,∆4)
N

m2
∆A+2M −m2

∆B+2N

)

P
(34)
1 (N) =

(
β(2∆3+2N,2∆4+2N)a

(∆3,∆4)
N

)
×
(
β(∆B+∆12+2N,∆B−∆12+2N)

∞∑
M=0

a
(∆1,∆2)
M

m2
∆B+2N −m2

∆A+2M

)
.

(3.75)

It can be seen in the conformal block decomposition of the four-point contact

diagram in (3.74) that double-trace operators, schematically of the form Oi∂2NOj
with scaling dimension ∆i + ∆j + 2N at leading order, run in the intermediate

channel. In Qpn , looking at (3.72), we conclude that only double-trace operators

without derivatives appear in the intermediate channel. (Essentially, in (3.72)-

(3.73), the infinite sums over M and N in (3.74)-(3.75) have collapsed to the

M = N = 0 term.) This is consistent with the general expectation that local

derivatives of operators do not appear in p-adic CFTs. This expectation stems

in turn from the understanding that the ultrametric analog of a smooth function

from reals to reals is a piecewise constant function from an ultrametric field to

the reals.

3.3.3 Exchange diagram in the direct channel

In the rest of this section, we will use the previously stated propagator identities to

evaluate four-point exchange diagrams. First we compute the diagram associated
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with the exchange of a scalar of dimension ∆ in the (12)(34) channel, which we

will express in terms of a conformal block decomposition in the direct channel.

Explicitly, we wish to evaluate

Qpn

DS∆(xi) ≡
1

W0

∑
a1,a2∈Tpn

K̂∆1(a1, x1)K̂∆2(a1, x2)

× Ĝ∆(a1, a2)K̂∆3(a2, x3)K̂∆4(a2, x4).

(3.76)

Applying the propagator identity (3.63) on the K̂∆1K̂∆2 and K̂∆3K̂∆4 legs leaves

us with an expression involving the following double integration on the tree

Qpn

∑
a1,a2∈Tpn

Ĝ∆A
(b1, a1)Ĝ∆(a1, a2)Ĝ∆B

(a2, b2), (3.77)

where b1 ∈ γ12 and b2 ∈ γ34. This can be immediately reduced to a combination

of unintegrated bulk-to-bulk propagators by applying the identity (3.65) twice.

Altogether, we wind up with

Qpn

DS∆ =
a(∆1,∆2)a(∆3,∆4)

W0c̃∆c̃∆A
c̃∆B

∑
b1∈γ12

∑
b2∈γ34

[
K̂∆1(b1, x1)K̂∆2(b1, x2)K̂∆3(b2, x3)K̂∆4(b2, x4)

×
(

c̃∆Ĝ∆(b1, b2)

(m2
∆ −m2

∆A
)(m2

∆ −m2
∆B

)
+

c̃∆A
Ĝ∆A

(b1, b2)

(m2
∆A
−m2

∆)(m2
∆A
−m2

∆B
)

+
c̃∆B

Ĝ∆B
(b1, b2)

(m2
∆B
−m2

∆)(m2
∆B
−m2

∆A
)

)]
.

(3.78)

Recognizing the integral over points b1, b2 as the geodesic bulk diagram defined

in (3.56), and using (3.57) and (3.46) to express in terms of conformal blocks, we

obtain

Qpn DS∆(u) = C12∆C34∆ G∆(u) + P
(12)
1 G∆A

(u) + P
(34)
1 G∆B

(u) (3.79)
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Figure 3.3: Geodesic subway diagram WT
∆, with exchange of a scalar in the

(13)(24) channel. The bulk point a runs along the geodesic joining x1 with x3,
and b runs along the geodesic joining x2 with x4, while a scalar of dimension ∆
is exchanged between a and b. Colors differentiate the individual propagators
found in WT

∆ in (3.81).

where

Qpn

C12∆C34∆ =
1

c̃∆A
c̃∆B

(
β(∆+∆12,∆−∆12) a(∆1,∆2)

m2
∆ −m2

∆A

)(
β(∆+∆34,∆−∆34) a(∆3,∆4)

m2
∆ −m2

∆B

)
P

(12)
1 =

1

c̃∆c̃∆B

(
β(2∆1,2∆2) a(∆1,∆2)

m2
∆A
−m2

∆

)(
β(∆A+∆34,∆A−∆34) a(∆3,∆4)

m2
∆A
−m2

∆B

)
P

(34)
1 =

1

c̃∆c̃∆A

(
β(2∆3,2∆4) a(∆3,∆4)

m2
∆B
−m2

∆

)(
β(∆B+∆12,∆B−∆12) a(∆1,∆2)

m2
∆B
−m2

∆A

)
.

(3.80)

This is the p-adic analog of equations (4.16)–(4.17) in [86]. The similarities be-

tween the p-adic and Archimedean OPE coefficients (squared) are remarkable.

In the conformal block decomposition in the direct channel, in addition to the

double-trace exchanges (albeit without derivatives just like in the case of the con-

tact diagram), we find as expected, a term representing the single-trace exchange

of a scalar of dimension ∆.
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3.3.4 Exchange diagrams in the crossed channel

In section 3.2.4, we computed the geodesic bulk diagram for boundary points xi in

an ‘s-channel’ configuration (i.e. u < 1) with a scalar of dimension ∆ exchanged

in the (12)(34) channel (see figure 3.2). Equation (3.57) then states that up to

an overall factor, the geodesic bulk diagram is simply the conformal partial wave

W∆(xi). Let’s now consider two closely related geodesic bulk diagrams which will

prove useful for computing exchange diagrams in the crossed channels. In these

geodesic diagrams the boundary points xi remain in the ‘s-channel’ configuration

shown in figure 3.1 with u < 1, but a scalar of dimension ∆ is exchanged in the

(13)(24) channel, or the (14)(23) channel. Explicitly, we define these geodesic

bulk diagrams to be (see figure 3.3)

Qpn

WT
∆(xi) ≡

∑
a∈γ13
b∈γ24

K̂∆1(x1, a)K̂∆3(x3, a)Ĝ∆(a, b)K̂∆2(x2, b)K̂∆4(x4, b)

WU
∆(xi) ≡

∑
a∈γ14
b∈γ23

K̂∆1(x1, a)K̂∆4(x4, a)Ĝ∆(a, b)K̂∆2(x2, b)K̂∆3(x3, b) .

(3.81)

A direct computation on the Bruhat–Tits tree, detailed in appendix 3.D, reveals

the following decomposition of a geodesic bulk diagram in the crossed-channel,

Qpn

WT
∆ = β(∆+∆13,∆−∆13)β(−∆13−∆24,∆+∆24)W∆A

+ β(∆+∆13,∆−∆13)β(∆13+∆24,∆−∆24)W∆B

= β(∆+∆24,∆−∆24)β(−∆13−∆24,∆+∆13)W∆A

+ β(∆+∆24,∆−∆24)β(∆13+∆24,∆−∆13)W∆B
.

(3.82)

The corresponding identity for a geodesic diagram with exchange in the (14)(23)

channel, WU
∆ , is obtained simply by switching ∆3 ↔ ∆4 in (3.82).

A non-trivial consistency check on (3.82) can be obtained by starting from

the defining expression (3.32) for the contact diagram, then using (3.63) on the
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K̂∆1K̂∆3 and K̂∆2K̂∆4 legs, then applying (3.65) once, and finally employing

(3.82) to obtain (3.38). This slightly round-about method is easily seen to agree

with the simpler calculation outlined in section 3.3.2.

We can now use the identity (3.82) to evaluate the four-point exchange di-

agram where a scalar of dimension ∆ is exchanged in the (13)(24) channel (we

remind the reader that the boundary points xi will always be in the ‘s-channel’

configuration shown in figure 3.3, i.e. u < 1):

Qpn
DT∆(xi)≡

1

W0

∑
a1,a2∈Tpn

K̂∆1(a1, x1)K̂∆3(a1, x3)Ĝ∆(a1, a2)K̂∆2(a2, x2)K̂∆4(a2, x4).

(3.83)

We will express the final result in terms of a conformal block decomposition in

the crossed channel. The computation proceeds along lines similar to the one for

DS∆ sketched in section 3.3.3, and is described in appendix 3.D. The final result

is

Qpn DT∆(u) = P
(12)
1 G∆A

(u) + P
(34)
1 G∆B

(u), (3.84)

where

Qpn

P
(12)
1 =

1

c̃∆C
c̃∆D

(
β(∆+∆13,∆−∆13) a(∆1,∆3)

m2
∆ −m2

∆C

)(
β(−∆13−∆24,∆+∆24) a(∆2,∆4)

m2
∆ −m2

∆D

)
+

1

c̃∆c̃∆D

(
β(2∆1,2∆3) a(∆1,∆3)

m2
∆C
−m2

∆

)(
β(−∆13−∆24,∆C+∆24) a(∆2,∆4)

m2
∆C
−m2

∆D

)
+

1

c̃∆c̃∆C

(
β(2∆2,2∆4) a(∆2,∆4)

m2
∆D
−m2

∆

)(
β(−∆13−∆24,∆D+∆13) a(∆1,∆3)

m2
∆D
−m2

∆C

)
,

(3.85)
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and

Qpn

P
(34)
1 =

1

c̃∆C
c̃∆D

(
β(∆+∆13,∆−∆13) a(∆1,∆3)

m2
∆ −m2

∆C

)(
β(∆13+∆24,∆−∆24) a(∆2,∆4)

m2
∆ −m2

∆D

)
+

1

c̃∆c̃∆D

(
β(2∆1,2∆3) a(∆1,∆3)

m2
∆C
−m2

∆

)(
β(∆13+∆24,∆C−∆24) a(∆2,∆4)

m2
∆C
−m2

∆D

)
+

1

c̃∆c̃∆C

(
β(2∆2,2∆4) a(∆2,∆4)

m2
∆D
−m2

∆

)(
β(∆13+∆24,∆D−∆13) a(∆1,∆3)

m2
∆D
−m2

∆C

)
.

(3.86)

Here we have defined

∆C = ∆1 + ∆3 ∆D = ∆2 + ∆4 . (3.87)

From a diagrammatic point of view in the bulk it appears that Gδ(u) for various

other values of δ, like ∆1+∆4+∆ or ∆2+∆3+∆, might appear in the intermediate

steps while computing (3.83). But miraculously these contributions wind up

canceling in the final result, and as expected for exchange diagrams expressed

in the conformal block decomposition in a crossed-channel, only double-trace

exchanges appear. (See appendix 3.B for an explanation of this point and related

comments on crossing symmetry.) The exchange diagram DU∆, where a scalar of

dimension ∆ is exchanged in the (14)(23) channel is obtained from (3.84) simply

by switching ∆3 ↔ ∆4.

It is worth pointing out that in Rn, anomalous dimensions appear in the tree-

level four-point contact amplitude in the form of logarithmic singularities when

the integrality condition, ∆A−∆B ∈ 2Z is met, or equivalently when the algebraic

condition m2
∆A+2M = m2

∆B+2N is satisfied in (3.75) for integral M,N ≥ 0 [95, 86].

Instead in Qpn , we find logarithmic singularities arise only when ∆A −∆B = 0,

or equivalently when m2
∆A

= m2
∆B

.20 This is intriguingly reminiscent of the

20If alternate quantization is allowed, it is clear from (3.69)-(3.70) that the condition
m2

∆A+2M = m2
∆B+2N has in addition to ∆A −∆B ∈ 2Z, a second solution, ∆A + ∆B − n = 2`

where ` is a non-positive integer. (In the p-adics, M = N = 0, so the conditions are more
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existence of an infinite sequence of poles in the anomalous dimension of composite

operators in CFTs in Rn as opposed to just one pole in p-adic CFTs, at least in

the context of the O(N) model (see chapter 4). Analogously for the exchange

diagrams, logarithmic singularities arise in the exchange amplitude (3.79)-(3.80)

when any of m2
∆,m

2
∆A
,m2

∆B
coincide, and in (3.84)-(3.86) simply when any of

m2
∆,m

2
∆C
,m2

∆D
coincide.

3.4 Towards a bulk dual of free field theory

So far in this chapter, we have presented, in the context of p-adic AdS/CFT,

the holographic computation of the four-point contact and exchange diagrams

for scalar composite operators of general dimensions. In this section we would

like to construct a minimal bulk theory that reproduces the correlators of a free

p-adic field theory, featuring an operator O of dimension ∆.

In the minimal construction, we would include only one bulk field, namely a

scalar φ with mass squared m2
∆ as defined in (3.2), and with only cubic interac-

tions. It turns out this is not enough to give a four-point function that agrees with

a free p-adic field theory. As a next-to-minimal construction, we could consider

adding quartic interactions for φ. This is still not enough to reproduce the four-

point function of a free boundary theory. As we will explain, a strategy which

does work (at least as far as the four-point function) is to include also quartic

restrictive: ∆A −∆B = 0 or ∆A + ∆B − n = 0.) For n > 4, the second solution is disallowed
since it violates the unitarity bound, which restricts ∆A,∆B ≥ n− 2. For the second solution
to exist in n = 4, ∆A and ∆B must saturate the unitarity bound, so ∆A = ∆B = 2 and
∆A−∆B ∈ 2Z is satisfied. However, for n ≤ 3 there exist pairs of scaling dimensions satisfying
the unitarity bound, such that ∆A + ∆B = n but ∆A − ∆B /∈ 2Z. Such exceptional choices
would seem to hint at the appearance of a new kind of logarithmic singularity with an origin
different from the usual integrality condition ∆A −∆B ∈ 2Z. In the p-adics, the convergence
conditions listed in footnote 14 portend the appearance of severe singularities in the four-point
contact amplitude if ∆A + ∆B ≤ n. So for example, (3.38) or equivalently (3.72)-(3.73) is
altogether not to be trusted when ∆A + ∆B − n ≤ 0, and we cannot reasonably inquire about
singularities at special values. Might a similar argument in Rn prevent the appearance of these
exceptional singularities?
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interactions for φ which act across a link: that is, nearest neighbor interactions.

An efficient way to package all the constructions we have in mind is to introduce

an additional bulk scalar φ̃ whose scaling dimension ∆̃ we will eventually take

to be large, and to allow only cubic on-site interactions of the form φ3 and φ̃φ2.

The action for such a φ-φ̃ theory takes the form

Qpn

S[φ, φ̃] =
∑
〈ab〉

1

2
(φa − φb)2 +

∑
〈ab〉

1

2
(φ̃a − φ̃b)2 +

∑
a∈Tpn

(
1

2
m2

∆φ
2
a +

1

2
m2

∆̃
φ̃2
a

+
g3

3!
φ3
a +

g̃3

2
φ2
aφ̃a

)
.

(3.88)

In the strict limit of large m∆̃, any diagram where φ̃ propagates even a single

step becomes negligible.

Specialising in (3.79) and (3.84) to the case of all four ∆i = ∆ with the

dimension of the exchanged scalar relabelled ∆̃, we get, after summing up the

exchange contributions from all channels,

Qpn D(exchange)

∆̃
≡ DS

∆̃
+DT

∆̃
+DU

∆̃
= F1u

∆̃ + F2u
2∆ + F3u

2∆ log u

log p
, (3.89)

where the constants Fi depend on n, p,∆ and ∆̃ but not on u. The Fi can be

evaluated immediately from (3.79)-(3.80) and (3.84)-(3.86), but the explicit form

is complicated enough as to be unenlightening at this stage. In (3.89) we are

not assuming large m∆̃. The first term in (3.89) indicates, heuristically, that an

operator of dimension ∆̃ can participate in the connected four-point function of

an operator O of dimension ∆, while the second two terms are evidence that one

or more operators with dimensions close to 2∆ participate.

We now show explicitly that integrating out φ̃ results in the contact diagram.

If we set

Qpn y = p−∆̃ , (3.90)
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then we find

Qpn F1 = O(y2) F2 = O(1) F3 = O(1) . (3.91)

Setting y = 0 is the same as ∆̃→∞, and because of (3.91) it gives a finite limit:

Qpn

D(contact) ≡ lim
∆̃→∞

D(exchange)

∆̃
= D(exchange)

∆̃

∣∣∣
y=0

=
3(1 + 4p2∆ + p4∆ + d(−1 + p4∆))

−pn + p4∆
u2∆ ,

(3.92)

where d ≡ − log u/ log p. A useful check is to note that D(contact) = 3D|∆i=∆,

where D is the four-point contact amplitude given in (3.72).21

If instead of setting y = 0 we pick out the O(y) term of D(exchange)

∆̃
at large

∆̃ (meaning small y), it means we are focusing on nearest neighbor interactions,

i.e. an interaction which takes place when two bulk points are precisely one step

apart. Thus we define

Qpn D(nearest) ≡
dD(exchange)

∆̃

dy

∣∣∣∣∣
y=0

= (p2∆ + pn−2∆)D(contact) − u2∆

(
3

c̃2∆

+
2d

c̃2
∆

)
,

(3.93)

where c̃∆ is given by (3.21).

To gain more intuition on the nearest neighbor interaction, it helps to arrive

at (3.93) from a different starting point. Define the nearest neighbor exchange

amplitudes,

FS ≡
1

W0

∑
a∈Tpn

∑
b∼a

K̂∆(x1, a)K̂∆(x2, a)K̂∆(x3, b)K̂∆(x4, b)

FT ≡
1

W0

∑
a∈Tpn

∑
b∼a

K̂∆(x1, a)K̂∆(x2, b)K̂∆(x3, a)K̂∆(x4, b)

FU ≡
1

W0

∑
a∈Tpn

∑
b∼a

K̂∆(x1, a)K̂∆(x2, b)K̂∆(x3, b)K̂∆(x4, a).

(3.94)

21Moreover, D(contact) = 3Dp/W0, where Dp is the four-point contact amplitude evaluated
in (2.130) of chapter 2.
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Here
∑

b∼a represents summing over all nearest neighbors of a, with a held fixed.

Thus, nearest neighbor interactions are manifest in the amplitudes (3.94). In fact,

one can easily check that D(nearest) = FS +FT +FU . This was expected precisely

because D(nearest) represents a nearest neighbor interaction where two pairs of

propagators meet one edge apart, and summing the amplitudes in (3.94) accounts

for all the possible ways that may happen. We briefly discuss the connection

between nearest neighbor interactions and derivative couplings in appendix 3.C.

Now we observe that including both contact and nearest neighbor interactions

allows us to form a four-point function where we can control F2 and F3, where

F1, F2 and F3 are the coefficients of u∆, u2∆ and u2∆ logp u, respectively. In par-

ticular, we can cancel off F3 and control the ratio F2/F1. The interesting case to

consider is the amplitude

Qpn

D(combined) ≡ −(1 + p∆)2(−pn + p4∆)

2(pn − p3∆)2
D(contact)

+D(exchange)
∆ − p2∆(−1 + p2∆)

2(pn − p3∆)2
D(nearest)

=
f 2

∆∆∆

2

(
2u∆ + u2∆

)
,

(3.95)

where the structure constant f∆∆∆ is given by (3.23). The coefficients of D(contact)

andD(nearest) in (3.95) were chosen carefully so that the u-dependence ofD(combined)

would be exactly the 2u∆ + u2∆ behavior expected in case the operator O = ~Φ2

where ~Φ is a free field on the boundary.22

Having found in (3.95) a combination of bulk amplitudes suggestive of a free

22To see this, note that

u∆W0(xi) =
1

|x12x24x34x13|∆
=

1

|x12x23x34x41|∆

u2∆W0(xi) =
1

|x13x24|2∆
=

1

|x13x23x24x14|∆
,

where in the second and fourth equalities we used |x14x23| = |x13x24| (which is simply a
rephrasing of v = 1). These account for the three possible Wick contractions we expect to see
in the connected four-point function of a free theory.
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field dual, we should next inquire what bulk action leads to (3.95). It is awkward

to use (3.88) because to get D(nearest) from it we require the derivative operation

(3.93) in the ∆̃→∞ limit. Let us therefore start instead from the action

Qpn
S[φ] =

∑
〈ab〉

1

2
(φa − φb)2+

∑
a∈Tpn

(
1

2
m2

∆φ
2
a +

g3

3!
φ3
a +

g4

4!
φ4
a

)
+
g̃4

8

∑
a∈Tpn

∑
b∼a

φ2
aφ

2
b ,

(3.96)

which is precisely (3.1) augmented by a nearest neighbor interaction. Straight-

forward diagrammatic considerations lead us from (3.96) to

Qpn

1

W0

〈O(x1)O(x2)O(x3)O(x4)〉

= −g4c̃
2
∆

D(contact)

3
+ g2

3 c̃
3
∆D(exchange) − g̃4c̃

2
∆D(nearest) .

(3.97)

The factors of c̃∆ arise because each external leg picks up a factor of
√
c̃∆ (c.f. the

discussion around (3.14)-(3.21)) and an extra factor of c̃∆ comes from the bulk-

to-bulk propagator, as in (3.66). The factor of 1/3 in the first term comes from

the relation D(contact) = 3D|∆i=∆. Choosing the couplings to be

Qpn g4 =
3g2

3

2

m2
3∆ −m2

∆

(m2
2∆ −m2

∆)
2 g̃4 =

g2
3

2

(
β(∆,−4∆)β(∆,3∆)

)−1

(m2
2∆ −m2

∆)
2 , (3.98)

we arrive at the connected four-point function of a free theory,

Qpn 〈O(x1)O(x2)O(x3)O(x4)〉 =
g2

3

2
c̃3

∆f
2
∆∆∆(2u∆ + u2∆)W0 . (3.99)

Now, from the boundary perspective, O = ~Φ2 where ~Φ is a free-field on the

boundary, with the propagator

Qpn 〈ΦI(x1)ΦJ(x2)〉 =
CδIJ

|x12|2∆Φ
, (3.100)

for some constant C, and I, J = 1, . . . , N . We set C = 1/
√

2N . It then follows

that the two- and three-point functions of the composite operator O are (up to

contact terms)

Qpn 〈O(x1)O(x2)〉 = 〈ΦI(x1)ΦI(x1)ΦJ(x2)ΦJ(x2)〉 =
1

|x12|4∆Φ
(3.101)
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and

Qpn 〈O(x1)O(x2)O(x3)〉 =
2
√

2√
N

1

|x12x23x31|2∆Φ
, (3.102)

where 2
√

2/
√
N = 8C3N , with the factor of 8 coming from the possible Wick

contractions. On the other hand, the holographically obtained two- and three-

point functions are23

Qpn

〈O(x1)O(x2)〉 =
1

|x12|2∆

〈O(x1)O(x2)O(x3)〉 =
−g3c̃

3/2
∆ f∆∆∆

|x12x23x31|∆
.

(3.103)

Equating (3.101)-(3.102) with the holographic correlators in (3.103) we conclude

∆ = 2∆Φ, with

Qpn g3 =
−1√
N

2
√

2

c̃
3/2
∆ f∆∆∆

. (3.104)

In a free p-adic CFT, ∆Φ = (n − s)/2 where s is a (continuous) free parameter

and is usually restricted to be in the range n/2 < s < n (these points will be

explained in chapter 4). Using (3.104), referring to (3.23) for the explicit form of

f∆∆∆, and setting ∆ = 2∆Φ, we see that g3 vanishes at n = 3s/2, while g4 and

g̃4 in (3.98) stay finite and non-vanishing there. It is interesting to compare this

with the situation in the Archimedean case, where we usually set s = 2 and the

cubic scalar coupling vanishes at n = 3 [96, 97].24

Continuing on to the connected free-field four-point function, up to contact

23The three-point function in (3.103) comes from (3.19). The calculation of the two-point
function is slightly subtle and is discussed in detail in chapter 2. To translate from chapter 2 to
our current conventions, set ηp = 1 and Ohere =

√
c̃∆/c∆Othere where c∆, c̃∆ are given in (3.18)

and (3.21) respectively. This rescaling leads directly to 〈Ohere(x1)Ohere(x2)〉 = 1/|x12|2∆.
24Curiously, the p-adic couplings g3, g4 and g̃4 vanish simultaneously for n = s. Could this

be related to higher spin theories at n = s = 2 (i.e. AdS3) in the Archimedean case, which are
known to have special properties [98, 99, 100]?
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terms, it is

Qpn

〈O(x1)O(x2)O(x3)O(x4)〉

=
4

N

(
1

|x12x23x34x41|2∆Φ
+

1

|x12x24x43x31|2∆Φ
+

1

|x13x32x24x41|2∆Φ

)
,

(3.105)

where 4/N = 16C4N with the factor of 16 coming from the possible Wick con-

tractions. Holographically, we found the four-point function to be given by (3.99).

Since g3 has already been fixed, a non-trivial consistency check is to verify that

(3.104) is consistent with

Qpn
4

N
=
g2

3

2
c̃3

∆f
2
∆∆∆ , (3.106)

and we find that it is.

In Rn, the coupling constant for a spin-`1–spin-`2–spin-`3 cubic vertex in the

minimal bosonic higher spin theory conjecturally dual to the free O(N) model in

n dimensions is (c.f. (2.14) of [101] for the scalar–scalar–spin-` coupling, or more

generally (1.12) of [102])

Rn
g

(`1,`2,`3)
3 =

π
n−3

4 2
1
2

(3n+`1+`2+`3−1)

√
N ΓEuler(n+ `1 + `2 + `3 − 3)

3∏
i=1

√
ΓEuler(`i + n−1

2
)

ΓEuler(`i + 1)
,

(3.107)

which at `i = 0 for all i reduces to the scalar–scalar–scalar coupling constant

Rn g
(0,0,0)
3 =

1√
N

2
√

2

c̃
3/2
∆ f∆∆∆

, (3.108)

where c̃∆ is given by (3.17), f∆∆∆ by (3.23), and ∆ = n−2. Equation (3.108) is to

be compared with the p-adic result in (3.104). The authors of [101] determine the

full quartic scalar coupling in the bulk dual to the free O(N) model by choosing

an ansatz for the contact interaction schematically of the form

Rn V =
∞∑

m,`=0

λm,`(φ(x)∇µ1 . . .∇µ`φ(x) + · · · )�m(φ(x)∇µ1 . . .∇µ`φ(x) + · · · ) ,

(3.109)
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which together with contributions from exchange diagrams [103], must repro-

duce the full connected four-point function of the free-theory. This leads to a

generating function for the constants λm,` [101].

In the minimal construction presented in this chapter, we have avoided a dis-

cussion of higher spin operators in the boundary theory since local currents in

p-adic field theories are still not properly understood. Analogously, an under-

standing of gauge fields on the Bruhat–Tits tree remains elusive so far. With this

caveat in mind, we may summarise the findings of this section in the form of a

bulk quartic coupling on the Bruhat–Tits tree

Qpn V =
1∑

m=0

λmφ
2
a�

m φ2
a , (3.110)

which, together with exchange diagrams coming from the cubic coupling repro-

duces the O(1/N) four-point function of the free p-adic O(N) model. Here � is

the Laplacian on the tree, defined by

Qpn �φa ≡
∑
b∼a

(φa − φb) , (3.111)

where the sum
∑

b∼a is over the nearest neighbors b of a, and the coefficients λm

are related to g4, g̃4 given in (3.98) via

Qpn λ0 =
g4

4!
+
g̃4

8
(pn + 1) λ1 = − g̃4

8
. (3.112)

In this section we were guided by Occam’s razor to find the simplest action

which produces the desired correlators of a free field theory, up to the four-point

function. A reasonable expectation is that if we allow more interaction terms

(for example, next-to-nearest neighbor quartic interactions), the bulk theory will

no longer be entirely constrained by its correlators up to four-point functions.

Indeed, it is possible that the introduction of gauge degrees of freedom, or con-

siderations of higher-point correlators, will suggest the existence of additional

interaction vertices. It would be interesting to find symmetry principles which

fully dictate the form of the bulk dual of the free p-adic O(N) model.
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3.5 Discussion

Despite appearances, non-Archimedean AdS/CFT is not disconnected from the

usual Archimedean AdS/CFT correspondence; this becomes strikingly transpar-

ent when all quantities are expressed in terms of the right functions, namely the

local zeta functions defined in (3.4)-(3.5) (and related physical quantities such as

the mass). Building on chapter 2, we have shown in this chapter explicit evidence

in line with this point of view, via the holographic computation of the structure

constants as well as the complete four-point function of scalar operators – i.e. the

four-point contact and exchange diagrams. We showed that the conformal block

decomposition essentially truncates at the leading term, and the coefficients of

the leading terms admit an adelic structure. Logarithmic singularities occur in

the tree-level four-point function when there are multiple operators (single trace

or double trace) with identical scaling dimensions, just like in the Archimedean

case. In fact, just like in the Archimedean case [86], we wrote down algebraic

conditions when these singularities occur. These conditions are the same as the

Archimedean conditions, except there are finitely many of them, rather than in-

finitely many in the Archimedean case. This can be attributed to the presence

of a single pole in the p-adic zeta function, as opposed to infinitely many poles

in the Archimedean zeta function. We will see this more explicitly in the next

chapter, when we compute anomalous dimensions of operators purely from the

CFT perspective.

A related source of considerable simplifications in p-adic field theories is the

absence of derivatives in the p-adic OPE and hence in the conformal block decom-

position of the p-adic four-point function. In fact, the p-adic conformal blocks

themselves are significantly simpler than their Archimedean counterparts. Thus

subleading (derivative) terms in the conformal block decomposition are absent,
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which allows the four-point function to be expressible in closed form. We believe

that further insight into how p-adic and Archimedean field theories are to be

compared may be gained by studying the integral representation of the p-adic

OPE, which does not rely on a derivative expansion even in Rn. Additionally,

the simple structure of the OPE, and the remarkable similarity with the geodesic

bulk diagram story in the Archimedean place, leads naturally to the expecta-

tion that a p-adic analog of kinematic space technology [93] exists. It would be

interesting to explore this connection further.

Since the absence of derivatives leads to remarkable simplifications in calcu-

lations, we anticipate the computation of higher-point correlators as well as the

evaluation of loop corrections in AdS to be considerably easier than in Rn. It

will be interesting to compute loop corrections and compare with recent results

in Rn [90]. It will also be interesting to compute diagrams which have remained

out of reach so far on the Archimedean side, since the p-adic results may poten-

tially shed some light into computations in Rn. To this end we have presented in

appendix 3.A some propagator identities which we expect to be of use in direct

computations of certain diagrams.

Crossing symmetry and Mellin space methods were found to be especially use-

ful in computing loop diagrams in Rn [90]. In p-adic CFTs, crossing symmetry

is not as constraining as in Rn; it merely restricts the OPE coefficients to obey

the associativity property of a commutative algebra. Once the OPE coefficients

have been chosen to obey the associativity property (3.55), there are no further

constraints to impose on the scaling dimensions of operators. (We show an ex-

plicit example of the triviality of crossing symmetry in the p-adics in appendix

3.B.) On the other hand, application of Mellin space methods in the context of

p-adic AdS/CFT do lead to further significant simplifications. However, we leave

further comment on this to future work. Recent progress along the lines of [104]
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would also be interesting to realize in the p-adic setting.

So far we have restricted ourselves to correlators of external operators without

spin. It would be very interesting to include spin degrees of freedom both in the

bulk and on the boundary. This will likely involve the use of more general mul-

tiplicative characters of the multiplicative group Q×pn , along the lines mentioned

in [59, 105]. Comparisons with recent work on geodesic bulk diagrams for oper-

ators with spin [86, 106, 107, 108, 109] as well as other alternative approaches

to conformal block decomposition, such as the one in [110], would also be very

interesting.

A difficulty in the study of p-adic AdS/CFT has been the absence of a clean

dual pair, where on the bulk side we have a classical theory on the Bruhat–Tits

tree and on the boundary side we have a large N field theory which can be

formulated independently of any holographic considerations. Our calculations in

section 3.4 bring us a step closer to exhibiting such a pair, as we summarize in

the next two paragraphs.

On the field theory side, we have the free O(N) model, which admits a la-

grangian treatment and has deformations that lead to a Wilson-Fisher fixed point

(this will be discussed in detail in chapter 4). On the bulk side, we have the theory

(3.96) with couplings chosen as in (3.98) and (3.104). Though this theory seems

contrived, it has the virtue of matching the two-, three-, and four-point functions

of the operator O = ~Φ2. We should ask, what part of this matching was forced,

or guaranteed, and what part is non-trivial? The functional form of the two-point

and three-point functions are fixed by conformal invariance, so that is an example

of a guaranteed match once we choose the mass m2
∆ correctly in the bulk action

(3.96). The dependence of the four-point function on u is not fixed by conformal

invariance, but by including on-site cubic, on-site quartic, and nearest neighbor

quartic interactions in (3.96), we are giving ourselves just enough parameters to
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force an agreement in the functional form of the four-point function between the

field theory and the bulk theory. This agreement of the functional form of the

four-point function is guaranteed once we impose the relations (3.98).

With functional forms matching perfectly between the field theory and the

bulk, there remains the question of whether normalizations match. At the level

of our analysis, the normalization of the two-point function is another forced

match, based essentially on choosing the normalization of the operator O. Even

the normalization of the three-point function is a forced match, because we have

one last free parameter in the bulk theory to adjust, namely the cubic coupling g3.

The choice made in (3.104) guarantees a match in the normalization of the three-

point function. But there is one more calculation to do, namely the normalization

of the four-point function! The condition (3.106) providing for a precise match

in the four-point normalization is non-trivial because all quantities involved in it

have been fixed by previous considerations as just described. Thus, finding that

(3.106) holds is the first non-trivial match we have found between explicit field

theory calculations and bulk calculations in p-adic AdS/CFT.

Of course, we hope for much more. In particular, because the setup is so

similar to the correspondence [39] between the Archimedean O(N) model and

Vasiliev theory in AdS4 [111, 112], we naturally hope to find some way to refor-

mulate Vasiliev theory on a discrete geometry such as the Bruhat–Tits tree. And

we expect to see that the interacting Wilson-Fisher fixed point can be treated

holographically just by changing boundary conditions on the bulk field φ, as in

the Archimedean case. As a step in this direction, we describe the p-adic CFT

at the interacting Wilson-Fisher fixed point in the next chapter.

Appendices
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3.A Some more propagator identities

In this appendix we list (without proof) some additional propagator identities on

the Bruhat–Tits tree which could prove useful in evaluating higher-point corre-

lators and higher loop bulk integrals. Moreover, it is likely they will be useful in

obtaining by analogy with Qpn the corresponding, as yet unknown, propagator

identities in Rn, which could in turn potentially simplify the evaluation of loop

diagrams and higher-point functions in Rn.

3.A.1 Identities involving two propagators

Two identities, similar in spirit to (3.67), are:

Qpn

∑
c∈Tpn

K̂∆1(x1, c)K̂∆2(x2, c) =
K̂∆1(x1, o)K̂∆2(x2, o)

m2
∆1+∆2

ζ(∆1 + ∆2)
, (3.113)

where o is any fixed bulk point lying on the geodesic between x1 and x2, and

Qpn

∑
c∈Tpn

G∆1(a1, c)K̂∆2(x2, c) =
K̂∆2(x2, a1)

m2
∆1
−m2

∆2

. (3.114)

3.A.2 Identities involving three propagators

We begin by recalling the three-point amplitude

Qpn

∑
c∈Tpn

K̂∆1(x1, c)K̂∆2(x2, c)K̂∆3(x3, c) = K̂∆1(x1, o)K̂∆2(x2, o)K̂∆3(x3, o) f123 ,

(3.115)

where o is the unique point of intersection of the geodesics connecting the (bound-

ary) points x1, x2, x3, and f123 is a constant given in (3.24).

A few identities which may be useful in evaluating loop diagrams involve,

similar to (3.115), a reduction of the integration over a bulk point of a product

of three propagators, to a combination of unintegrated propagators. We list here
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the identities:

Qpn

∑
c∈Tpn

G∆1(a1, c)K̂∆2(x2, c)K̂∆3(x3, c)

= G∆1(a1, o)K̂∆2(x2, o)K̂∆3(x3, o) f123 −
K̂∆2(x2, a1)K̂∆3(x3, a1)

m2
∆2+∆3

−m2
∆1

,

(3.116)

where o is now the bulk point of intersection of geodesics connecting a1, x2, x3.

In addition,

Qpn

∑
c∈Tpn

G∆1(a1, c)G∆2(a2, c)K̂∆3(x3, c)

= G∆1(a1, o)G∆2(a2, o)K̂∆3(x3, o) f123

− G∆2(a2, a1)K̂∆3(x3, a1)

m2
∆2+∆3

−m2
∆1

− G∆1(a1, a2)K̂∆3(x3, a2)

m2
∆1+∆3

−m2
∆2

,

(3.117)

and

Qpn

∑
c∈Tpn

G∆1(a1, c)G∆2(a2, c)G∆3(a3, c)

= G∆1(a1, o)G∆2(a2, o)G∆3(a3, o) f123 −
G∆2(a2, a1)G∆3(a3, a1)

m2
∆2+∆3

−m2
∆1

− G∆1(a1, a2)G∆3(a3, a2)

m2
∆1+∆3

−m2
∆2

− G∆1(a1, a3)G∆2(a2, a3)

m2
∆1+∆2

−m2
∆3

.

(3.118)

As a check, when a1 = a2 (in which case the point of intersection o = a1 = a2),

we recover from (3.118) the two propagator identity (3.67),

Qpn

∑
c∈Tpn

G∆1+∆2(a1, c)G∆3(a3, c) =
G∆1+∆2(a1, a3)−G∆3(a1, a3)

m2
∆3
−m2

∆1+∆2

. (3.119)

3.B Crossing symmetry of the four-point func-

tion

In this appendix, we demonstrate how crossing symmetry of the p-adic four-point

function works with an explicit example (see [87] for a more general argument).
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Let us consider an exchange diagram where the boundary configuration is in the

‘s-channel’ (more accurately, we’d like to allow u ≤ v = 1), and a scalar of

dimension ∆ is exchanged in the (13)(24) channel. This is precisely the diagram

defined in (3.83), whose conformal block decomposition in the crossed channel is

given in (3.84)-(3.86). As expected it involves just the conformal blocks of double-

trace operators. If we wanted the conformal block decomposition of (3.83) in the

direct channel (for which the boundary points xi must be able to admit a ‘t-

channel’ configuration as well), we need only adapt the result in (3.79)-(3.80) by

making the replacements ∆2 ↔ ∆3 and x2 ↔ x3. (This prescription is obvious

upon comparing (3.76) with (3.83).) This leads to

Qpn DT∆ = C13∆C24∆G∆(u′) + P1(13)G∆C
(u′) + P1(24)G∆D

(u′) (3.120)

where the OPE coefficients-squared are obtained by making the replacements in

(3.79)-(3.80) as described above, ∆C ,∆D are defined in (3.87) and

Qpn u′ =

∣∣∣∣x13x24

x12x34

∣∣∣∣ =
1

u
. (3.121)

As expected in the direct channel, in addition to the double-trace operators,

the single-trace operator exchanged in the intermediate channel appears in the

conformal block decomposition. Now crossing symmetry requires that the ex-

pressions in the direct and crossed channels agree. The crucial point is that we

required the boundary points xi to admit both an ‘s-channel’ as well a ‘t-channel’

configuration. As we remarked at the end of section 3.1, this forces u = 1/u′ = 1

(and v remains fixed at v = 1). Plugging this in the expressions and compar-

ing (3.84)-(3.86) with (3.120), we find they agree exactly as required by crossing

symmetry.
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3.C Cubic derivative interactions

In this appendix we briefly discuss bulk cubic couplings with derivatives. We

have shown in section 3.2.1 that a φ1φ2φ3 bulk coupling results in a three-point

amplitude for the dual operator given by

Qpn A ≡ 1

V (xi)

∑
a∈Tpn

3∏
i

K̂∆i
(xi, a) = f123 , (3.122)

where fijk is given in (3.23) and

V (xi) =
1

|x12|∆1+∆2−∆3|x23|∆2+∆3−∆1|x13|∆3+∆1−∆2
. (3.123)

The corresponding amplitude in Rn is [77]

Rn A ≡ 1

V (xi)

∫
dn+1y

yn+1
0

3∏
i

K̂∆i
(y0, ~y − ~xi) =

1

2
f123 . (3.124)

We now describe what a derivative cubic coupling, schematically of the form

φ(∇φ)2, looks like on the Bruhat–Tits tree. Mimicking Rn, where such a coupling

arises from a φ1g
µν∂µφ2∂νφ3 interaction vertex, we posit an obvious candidate

vertex on the Bruhat–Tits tree,

Qpn
S ⊃

∑
〈ab〉

φ1a (φ2a − φ2b) (φ3a − φ3b) , (3.125)

where φi has scaling dimension ∆i and a, b label vertices on the tree. The symbol∑
〈ab〉 stands for summing over all pairs of nearest neighbors. It is apparent from

the structure of (3.125) that it involves nearest-neighbor interactions of the form

φaφaφb, where a and b are adjacent vertices on the tree. Thus introducing deriva-

tive bulk couplings is tantamount to introducing nearest-neighbor interactions on

the tree. (More generally, for higher derivative couplings, one should introduce

(next)k-to-nearest neighbor interactions on the tree.) Computing the amplitude
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arising from (3.125), we obtain

Qpn

A∂ ≡
1

V

∑
〈ab〉

K̂∆1(x1, a)(K̂∆2(x2, a)− K̂∆2(x2, b))(K̂∆3(x3, a)− K̂∆3(x3, b))

=
1

2

(
m2

∆1
−m2

∆2
−m2

∆3

)
A ,

(3.126)

where A is given by (3.122). The final expression in (3.126) follows from a

straightforward computation on the Bruhat–Tits tree. The corresponding ampli-

tude in Rn is [77]

Rn

A∂ ≡
1

V

∫
dn+1y

yn+1
0

K̂∆1(y0, ~y − ~x1)∂µK̂∆2(y0, ~y − ~x2)y2
0∂

µK̂∆3(y0, ~y − ~x3)

=
1

2

(
m2

∆1
−m2

∆2
−m2

∆3

)
A ,

(3.127)

where A is given by (3.124). The identical form of the amplitudes in (3.126) and

(3.127) supports the claim that (3.125) is indeed a derivative coupling on the

tree.

3.D Direct computation of geodesic bulk dia-

grams

Using variants of (3.63) and (3.65) repeatedly, we can convert the four-point

amplitudes (such as those in (3.32), (3.76) and (3.83)) into a sum of several

terms of the form given in (3.56) and (3.81), repeated below for convenience:

WS
∆ =

∑
b1∈γ12
b2∈γ34

(x1b1)∆1(x2b1)∆2(b1b2)∆(x3b2)∆3(x4b2)∆4

WT
∆ =

∑
b1∈γ13
b2∈γ24

(x1b1)∆1(x3b1)∆3(b1b2)∆(x2b2)∆2(x4b2)∆4

WU
∆ =

∑
b1∈γ14
b2∈γ23

(x1b1)∆1(x4b1)∆4(b1b2)∆(x2b2)∆2(x3b2)∆3 .

(3.128)
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(One such computation was detailed in section 3.3.3.) Here we write (ab)∆ instead

of Ĝ∆(b, a) or K̂∆(b, a) for brevity. The symbol γij denotes a geodesic joining

boundary points xi and xj. From here on we will denote geodesic paths by

(xi : xj). If paths from boundary points x1, x2, and x3 meet at a bulk point c,

then we have

Qpn (x1c)
∆ =

∣∣∣∣ x23

x12x13

∣∣∣∣∆ . (3.129)

We restrict attention to configurations of the xi such that u ≤ 1 and v = 1, where

u and v are defined in (3.30). We can do this without loss of generality because

upto relabelling of xi, we can always arrange u ≤ 1 and v = 1. In these sorts of

configurations, paths from x1 and x2 converge at a bulk point c1, which connects

to a bulk point c2 where paths from x3 and x4 converge (see, for example, figure

3.1). An important identity is

Qpn u =

∣∣∣∣x12x34

x13x24

∣∣∣∣ = (c1c2) = p−d(c1,c2) . (3.130)

If u = 1 then c1 and c2 coincide.

In the main text, we noted without proof that the sums in (3.128), which are

referred to as geodesic bulk diagrams, are related to p-adic conformal blocks via

the identities in (3.57) and (3.82). The goal of this appendix is to prove these

identities by direct computation.

We can conveniently factor out most of the xi dependence from any of the

geodesic bulk diagrams we consider by dividing out by the trivial conformal

partial wave W0(xi), given in (3.36). A more convenient form for W0 follows from

(3.33),

Qpn W0(xi) = (x1c1)∆1(x2c1)∆2(x3c2)∆3(x4c2)∆4 . (3.131)

Then for any of the geodesic bulk diagrams W we consider, W/W0(xi) is a func-
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tion of the xi only through dependence on the cross-ratio u. An easy case is

Qpn

WS
∆

W0

=

 ∑
b1∈(x1:c1]

(x1b1)∆1(x2b1)∆2(b1c1)∆

(x1c1)∆1(x2c1)∆2
+
∑

b1∈(c1:x2)

(x1b1)∆1(x2b1)∆2(b1c1)∆

(x1c1)∆1(x2c1)∆2

u∆

×

 ∑
b2∈(x3:c2]

(x3b2)∆3(x4b2)∆4(b2c2)∆

(x3c2)∆3(x4c2)∆4
+
∑

b2∈(c2:x4)

(x3b2)∆3(x4b2)∆4(b2c2)∆

(x3c2)∆3(x4c2)∆4

 .
(3.132)

What makes this case relatively easy is that b1 and b2 cannot belong to (c1 : c2),

because the paths (x1 : x2) and (x3 : x4) do not have any points in common with

(c1 : c2). In the first sum inside square brackets in (3.132), we have (x1c1) =

(x1b1)(b1c1) and (x2b1) = (x1c1)(b1c1). In subsequent sums, similar equalities

apply, and using them we simplify (3.132) to

Qpn

WS
∆

W0

= u∆

 ∑
b1∈(x1:c1]

(b1c1)∆−∆12 +
∑

b1∈(c1:x2)

(b1c1)∆+∆12


×

 ∑
b2∈(x3:c2]

(b2c2)∆−∆34 +
∑

b2∈(c2:x4)

(b2c2)∆+∆34


= β(∆+∆12,∆−∆12)β(∆+∆34,∆−∆34) ,

(3.133)

where β(s,t) is defined in (3.6). This proves (3.57). A graphical method of ob-

taining (3.133) is shown in figure 3.4. It is worth noting that the sums in (3.133)

converge iff the four quantities ∆±∆12 and ∆±∆34 are all positive. If any one

of them goes to 0, then we have a logarithmic divergence.

WT
∆ is more complicated thanWS

∆ because the paths (x1 : x3) and (x2 : x4) are

longer than (x1 : x2) and (x3 : x4), and there are more distinct ways to position
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x1

x2

x3

x4

c1 c2

b2b1

x1

x2

x3

x4

c1 c2

b2b1

c1 c2

b2b1

Δ-Δ12 Δ-Δ34u
Δ

x1

x2

x3

x4

c1 c2

= =

Figure 3.4: A graphical method of representing terms in (3.132)-(3.133). Here
and in figure 3.5, a solid line means that the amplitude should include a factor of
the propagator between the endpoints of that line, whereas a dashed line means
that we are dividing by that propagator. When a combination of solid and dashed
lines is labeled with a power δ, like ∆−∆12, it means that each step along this
combinations of lines is weighted by a factor of p−δ. To improve readability we
use uδ instead of δ to label combined lines between c1 and c2.

c1 c2

b2

b1

Δ-Δ13

Δ-Δ24

u
Δ3+Δ4

c1 c2

b2

b1

c1 c2

b2

b1Δ+Δ13

Δ-Δ24

u
Δ3+Δ4

c1 c2

b2

b1

Δ+Δ13

Δ-Δ24

u
Δ +Δ1+Δ4

c1 c2b2

b1

c1 c2

b2b1

-Δ+Δ13 -Δ-Δ24

u
Δ +Δ2+Δ3

=

=

1© 2©

3© 4©

Figure 3.5: Subway diagrams leading to summands in (3.134).
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b1 and b2 along these paths. The full list of possibilities can be enumerated as

follows:

# b1 ∈ b2 ∈ summand

1: (x1 : c1) (x2 : c1) u∆B(b1c1)∆−∆13(b2c1)∆−∆24

1̃ : (x3 : c2) (x4 : c2) u∆A(b1c2)∆−∆13(b2c2)∆+∆24

2: [c1 : c2] (x2 : c1) u∆B(b1c1)∆+∆13(b2c1)∆−∆24

2̃ : [c1 : c2] (x4 : c2) u∆A(b1c2)∆−∆13(b2c2)∆+∆24

2: (x1 : c1) [c1 : c2] u∆B(b1c1)∆+∆24(b2c1)∆−∆13

2̃ : (x3 : c2) [c1 : c2] u∆A(b1c2)∆−∆24(b2c2)∆+∆13

3: (x3 : c2) (x2 : c1) u∆+∆E(b1c2)∆+∆13(b2c2)∆−∆24

3̃ : (x2 : c1) (x4 : c2) u∆+∆F (b1c1)∆−∆13(b2c1)∆+∆24

4: [c1 : c2] [b1 : c2] u∆+∆F (b1c1)−∆+∆13(b2c2)−∆−∆24

4̃ : (c1 : c2] [c1 : b1) u∆+∆E(b1c2)−∆−∆13(b2c1)−∆+∆24

(3.134)

where ∆A,∆B,∆E and ∆F are defined in footnote 16. The summands can be

written down by inspection of the relevant subway diagrams, a representative

sampling of which is shown in figure 3.5.

Of the ten rows of (3.134), only the following five need to be computed ex-

plicitly:

V1 ≡ u∆B

∑
b1∈(x1:c1)
b2∈(x2:c1)

(b1c1)∆−∆13(b2c1)∆−∆24

= u∆B

[
∞∑

m1=1

p−m1(∆−∆13)

][
∞∑

m2=1

p−m2(∆−∆24)

] (3.135)

V2 ≡ u∆B

∑
b1∈[c1:c2]
b2∈(x2:c1)

(b1c1)∆+∆13(b2c1)∆−∆24

= u∆B

[
d∑

m1=0

p−m1(∆+∆13)

][
∞∑

m2=1

p−m2(∆−∆24)

] (3.136)
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V3 ≡ u∆+∆E

∑
b1∈(x3:c2)
b2∈(x2:c1)

(b1c2)∆+∆13(b2c2)∆−∆24

= u∆+∆E

[
∞∑

m1=1

p−m1(∆+∆13)

][
∞∑

m2=1

p−m2(∆−∆24)

] (3.137)

V4 ≡ u∆+∆F

∑
b1∈[c1:c2]
b2∈[b1:c2]

(b1c1)−∆+∆13(b2c2)−∆−∆24

= u∆+∆F

d∑
m1=0

p−m1(−∆+∆13)

d−m1∑
m2=0

p−m2(−∆−∆24)

(3.138)

V4̃ ≡ u∆+∆E

∑
b1∈(c1:c2]
b2∈[c1:b1)

(b1c2)−∆−∆13(b2c1)−∆+∆24

= u∆+∆E

d−1∑
m1=0

p−m1(−∆−∆13)

d−1−m1∑
m2=0

p−m2(−∆+∆24) ,

(3.139)

where d = d(c1, c2) = − logp u. Using obvious relations like

Qpn

∞∑
m=0

p−ma = ζ(a)
∞∑
m=1

p−ma = −ζ(−a)

d∑
m=0

p−ma = ζ(a) + uaζ(−a)

ζ(a)ζ(b) + ζ(a+ b)ζ(−b)− ζ(a+ b)ζ(a) = 0 ,

(3.140)
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we can simplify (3.135)-(3.139) to

Qpn

V1 = u∆3+∆4ζ(−∆ + ∆13)ζ(−∆ + ∆24)

V2 = −u∆3+∆4ζ(∆ + ∆13)ζ(−∆ + ∆24)

− u∆+∆1+∆4ζ(−∆−∆13)ζ(−∆ + ∆24)

V3 = u∆+∆1+∆4ζ(−∆−∆13)ζ(−∆ + ∆24)

V4 = u∆1+∆2ζ(∆−∆13)ζ(−∆13 −∆24)

+ u∆3+∆4ζ(∆ + ∆24)ζ(∆13 + ∆24)

+ u∆+∆2+∆3ζ(−∆ + ∆13)ζ(−∆−∆24)

V4̃ = −u∆1+∆2ζ(−∆ + ∆24)ζ(−∆13 −∆24)

− u∆3+∆4ζ(−∆−∆13)ζ(∆13 + ∆24)

+ u∆+∆1+∆4ζ(−∆−∆13)ζ(−∆ + ∆24) .

(3.141)

To obtain the remaining five amplitudes explicitly, we can either swap 1 ↔ 3

and 2 ↔ 4 (e.g. to go from 2 to 2̃) or 1 ↔ 2 and 3 ↔ 4 (to go from 2 to 2). In

summary,

Qpn

V1̃ = u∆1+∆2ζ(−∆−∆13)ζ(−∆−∆24)

V2̃ = −u∆1+∆2ζ(∆−∆13)ζ(−∆−∆24)

− u∆+∆2+∆3ζ(−∆ + ∆13)ζ(−∆−∆24)

V2 = −u∆3+∆4ζ(−∆ + ∆13)ζ(∆ + ∆24)

− u∆+∆2+∆3ζ(−∆ + ∆13)ζ(−∆−∆24)

V2̃ = −u∆1+∆2ζ(−∆−∆13)ζ(∆−∆24)

− u∆+∆1+∆4ζ(−∆−∆13)ζ(−∆ + ∆24)

V3̃ = u∆+∆2+∆3ζ(−∆ + ∆13)ζ(∆−∆24) .

(3.142)
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Our eventual goal is to add all ten Va together. As a step in that direction,

let’s call u∆1+∆2 and u∆3+∆4 “compliant” powers of u, whereas any power of

u involving ∆ is “non-compliant.” Then we notice that non-compliant powers

cancel in the following partial sums:

Qpn

V2 + V3 = −u∆3+∆4ζ(∆ + ∆13)ζ(−∆ + ∆24)

V2̃ + V3̃ = −u∆1+∆2ζ(∆−∆13)ζ(−∆−∆24)

V2 + V4 = u∆1+∆2ζ(∆−∆13)ζ(−∆13 −∆24)

+ u∆3+∆4ζ(∆−∆13)ζ(∆13 + ∆24)

V2̃ + V4̃ = −u∆1+∆2ζ(−∆−∆13)ζ(−∆13 −∆24)

− u∆3+∆4ζ(−∆−∆13)ζ(∆13 + ∆24) .

(3.143)

Finally, we can assemble the full exchange amplitude in the (13)(24)-channel

Qpn

WT
∆

W0

= V1 + V2 + V3 + V1̃ + V2̃ + V3̃ + V2 + V4 + V2̃ + V4̃

= β(∆+∆13,∆−∆13)β(−∆13−∆24,∆+∆24)u∆1+∆2

+ β(∆+∆13,∆−∆13)β(∆13+∆24,∆−∆24)u∆3+∆4 .

(3.144)

This proves (3.82). Despite appearances,WT
∆ is symmetric under 1↔ 3, 2↔ 4 as

well as 1↔ 2, 3↔ 4. The amplitude with the exchange in the (14)(23)-channel

is obtained by swapping 3↔ 4 in WT
∆:

Qpn

WU
∆

W0

= β(∆+∆14,∆−∆14)β(−∆14−∆23,∆+∆23)u∆1+∆2

+ β(∆+∆14,∆−∆14)β(∆14+∆23,∆−∆23)u∆3+∆4 .

(3.145)



Chapter 4

p-adic field theories

This chapter is based on a lightly edited version of a paper with Steven S. Gub-

ser, Christian Jepsen and Brian Trundy [105]. We thank Przemek Witaszczyk

for collaborations on the early stages of this project. We have benefited from

discussions with Curt Callan, David Huse, Shivaji Sondhi, Bogdan Stoica, and

Grigory Tarnopolsky.

4.1 Introduction and summary

Having studied bulk theories on the Bruhat–Tits tree in the previous two chap-

ters, we now turn to p-adic field theories. Our primary focus will be on the φ4

O(N) vector model defined on a p-adic spacetime (which we’ll simply refer to as

the p-adic O(N) model).

The precursor to p-adic field theories was the Dyson hierarchical model [113].

It describes a discrete lattice model of spin variables interacting via long-range

power law interactions. These interactions have a hierarchical structure — with

the spin variables grouped in pairs, and then the pairs paired themselves, and

so on — reminiscent of the tree structure of the Bruhat–Tits tree for p = 2. In
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the continuum limit, this gives rise to a φ4 scalar field theory on Q2, whereas if

p spins are grouped together at each step one obtains in an appropriate limit a

field theory over Qp [114]. The spin variables defined on lattice sites become a

real valued field defined on the p-adic numbers. One can similarly treat theories

where Qp is replaced by a field extension Qpn , which in part means working with

a vector space Qn
p . 1

Around the time when the hierarchical model was first introduced, early work

on the renormalization group flow in continuum field theories [115, 116, 117] built

on Kadanoff’s spin-blocking methods [118], to obtain finite-step recursion rela-

tions which served as an approximation to the flow in continuum systems. In

fact it was noted in Wilson’s earlier works that the recursion relations become

exact when used on the Dyson hierarchical model, while when applied to ordi-

nary φ4 field theory on Rn they can be used to extract scaling dimensions at

the Wilson-Fisher fixed point that are correct through order ε, where ε = 4− n.

Subsequent work, including [119, 120] and reviewed in [121], established rigor-

ous results on the solvability and fixed points of the renormalization group for

hierarchical models as realized by the finite-step recursion relations.

Renormalization in the continuum limit, corresponding to a p-adic φ4 theory,

was studied in [114], and its O(N) generalization was explored in [122, 123, 124]

at the Wilson-Fisher fixed point in an (appropriate analog of the) ε-expansion,

leading to expressions for the critical exponents. We review this in section 4.2

where we carry out standard diagrammatic perturbation theory in a small pa-

rameter, similar to ε = 4−n in the Archimedean case.2 Starting with the action

1The spirit of this construction does not seem to require that q = pn is a power of a
prime. However, if it is not, “Qq” is not a field, nor even an integral domain, and it is harder
to understand either the q-adic norm which enters into correlators or the q-adic conformal
symmetry that arises near a critical point. We therefore leave the interesting point of general
composite q to future work.

2Although we do not pursue holographic calculations in the current work, it is natural to
hope that the p-adic O(N) model for large N is dual to some appropriate modification of
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given in (4.5)-(4.6) defined over Qpn , we implement Wilsonian renormalization

for the two- and four-point functions to one loop order, by integrating out hard

momenta shells, one shell at a time. The momentum shell integration is very

simply and naturally realized in Qpn , owing to the ultrametric nature of momen-

tum space. Ultrametricity leads to a significantly simpler renormalization group

flow, with no wave-function renormalization and no generation of new derivative

couplings! We exhibit the discrete transformations that implement the Wilsonian

renormalization group, and use them to analyze the Wilson-Fisher fixed point in

an ε-expansion, where ε = 2s−n is the dimension of the relevant coupling in the

Gaussian theory, and s is the spectral parameter appearing in the kinetic term.

A key feature of ultrametric theories is that their kinetic terms are non-local.

In momentum space, they are expressed as
∫
dk 1

2
φ(−k)|k|sφ(k), where the spec-

tral parameter s is a real number which we must usually choose between 0 and n.

This makes ultrametric theories similar to bilocal field theories on Rn as studied

in [126, 127] and more recently, for example, in [128, 91]. In these bilocal theories,

similar kinetic terms are considered, with |k|s as their momentum space kernel.

A special feature of field theories on Rn is that when s is a positive even integer,

the kinetic term becomes local in position space. In section 4.3, we mostly focus

on the case s = 2 when we examine field theories on Rn. In section 4.4, we argue

that s = 4 and higher even integers are also interesting: these values give rise

to higher derivative O(N) models, and they seem to be free of pathologies as

long as they are regarded as Euclidean path integral field theories. Indeed, we

seem to recover a four-dimensional non-linear sigma-model originally proposed

in the seventies [129]. The four derivative theories have also been considered in

the condensed matter literature [130], where they have been used to investigate

spatially modulated phases [131] along the lines of the Landau-Brazovskii model

Vasiliev theory defined on the Bruhat-Tits tree, along the lines of [39, 125, 47, 59, 32]. See also
section 3.4 of chapter 3.
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[132]. Commonly called Lifshitz points, these four derivative theories have con-

nections with the next-to-nearest neighbor Ising model, as reviewed in [133].3

We will recall the basics of these approaches in section 4.4.

In section 4.3, we adapt methods of [134, 135] to the p-adics to obtain self-

consistent results for the critical exponents of the non-Gaussian fixed point that

are exact in ε and valid through the first non-trivial order in large N . Let us

briefly summarise the results here. We start with the action

S =

∫
dx

[
1

2
φi(x)Dsφi(x) +

λ

4!

(
φi(x)φi(x)

)2
]

(4.1)

for Euclidean quantum field theory defined over some n-dimensional vector space

V , where V can be either Rn or the vector space associated with Qpn . The

integration measure is over this n-dimensional vector space V . Ds is an s-th

order derivative operator, which in Fourier space is implemented by multiplying

φ by |k|s. As alluded to above, this a bilocal term in position space for generic

values of s. The kinetic terms becomes a local term for positive integral values

of s when V = Rn. (For instance, for s = 2, the kinetic term in (4.1) reduces

to the familiar φi�φi.) The sums over i run from 1 to N , which we take to

be large. It is reasonable to suppose that in fairly generic circumstances, the

theory (4.1) flows to a Wilson-Fisher fixed point — assuming we appropriately

tune away relevant operators, in particular the mass deformation. We employ the

large-N methods with a Hubbard-Stratonovich field σ, whose equation of motion

sets σ = φiφi up to a factor. Working to the leading non-trivial order in N , we

obtain the anomalous dimensions

γφ ≡ ∆φ −
n− s

2
= Res

δ
gφ(δ) +O(1/N2)

γσ ≡ ∆σ − s = Res
δ
gσ(δ) +O(1/N2) ,

(4.2)

3The main focus of many of the condensed matter applications is anisotropic models, in
which one direction is singled out and may exhibit different scaling behavior. In this chapter,
we are instead interested in the isotropic case.
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where Resδ g(δ) means the residue of a meromorphic function g(δ) at δ = 0. The

meromorphic functions are found to be

gφ(δ) =
1

N

B(n− s,−s+ δ)

B(n− s, n− s)

gσ(δ) = − 2

N

B(n− s,−s+ δ)

B(n− s, n− s) +
1

N

(
−1 + 2

B(n− s, n− 2s)

B(n− s, n− s)

)
B(δ, δ)

B(n− s, n− s) ,
(4.3)

where B is a variant of the Euler Beta function which will be defined in (4.4).

An important point is that gφ(δ) has no pole at δ = 0 for Qpn , and so γφ = 0

in this case. For Rn, gφ(δ) does have a pole, and one easily recovers standard

results [134, 135] for γφ upon setting s = 2. On the other hand, gσ(δ) generically

has a pole both for Rn and for Qpn . We have checked that its residue gives γσ

in accord with the standard results for the case of Rn, and in accord with results

from the Wilsonian approach of section 4.2 for Qpn . In section 4.4, we also check

our results against the literature on higher derivative theories corresponding to

s = 4.

A reminder about the non-standard notation introduced in the previous chap-

ter: ζ(t) in this chapter will not be the usual Riemann zeta function, nor will Γ(t)

and B(t1, t2) refer to usual Gamma or Beta functions. Instead ζ(t) is the “local”

zeta function defined either for R or for Qp, while Γ(t) and B(t1, t2) are defined

in reference either to Rn or the unramified extension Qpn of the p-adic numbers

of degree n. All these functions take complex arguments and are meromorphic.

The point of defining ζ, Γ, and B anew every time we pass to a new field or vector

space is that physical quantities like scaling dimensions tend to have a universal

form when expressed in terms of the appropriate functions. Even well-known

results in Rn assume pleasingly simple forms in terms of suitably defined ΓRn(t)

and BRn(t1, t2).

Formulas applicable only to Rn or only to Qpn will be suitably marked. For
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example, the local zeta functions are defined in (3.4)-(3.5) in the previous chapter.

Note that the volume of Sn−1 is 2/ζR(n), whereas 1/ζQp(n) is the volume of the set

of units in Qpn , which is the set of elements ξ ∈ Qpn with |ξ| = 1. It is tempting

to define ζRn(t) ≡ ζR(nt) and ζQpn (t) ≡ ζQp(nt), along the lines of [136, 67], but

for our current purposes it is clearer not to do so, and instead always to construe

ζ(t) as ζR(t) or ζQp(t), as defined in (3.4)-(3.5).

Formulas which apply equally to Rn and Qpn will be left unmarked, just like

in chapter 3. For example,4

Γ(t) ≡ ζ(t)

ζ(n− t) B(t1, t2) ≡ Γ(t1)Γ(t2)

Γ(t1 + t2)
. (4.4)

In the same spirit as Γ and B implicitly refer either to Rn or to Qpn , we also use

|x| to denote the absolute value in either Rn or Qpn . In the former case, |x| =√∑n
i=1 x

2
i , which is an Archimedean norm. In the latter case, |x| is ultrametric

and takes values which are integer powers of p; formally, |x| is defined as the p-adic

norm of the field norm of x with respect to the extension relation Qpn : Qp.

4.2 p-adic Wilsonian renormalization

Let φi be a map from Qpn to RN , where n and N are positive integers and

p is a prime number. (If n = 1 then the domain of φi is the p-adic numbers

themselves). Our reason for focusing on the unramified extension Qpn is that it

is an n-dimensional vector space over Qp with a natural ultrametric norm taking

the same values as the norm on Qp, similar to the way Rn is an n-dimensional

vector space over R with a natural Archimedean norm (namely the usual L2

norm). It is likely that the discussion to follow could be generalized to somewhat

more general ultrametric spaces, but we do not pursue this.

4Gamma-functions defined this way satisfy the functional equation Γ(t)Γ(n − t) = 1. This
results in the following useful identity for the Beta function: B(t1, t2) = B(t1, n − t1 − t2) =
B(t2, n− t1 − t2).
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4.2.1 Action

Following [114], we consider the action

Qpn

S =

∫
dk

1

2
φi(−k)(|k|s + r)φi(k)

+

∫
dk1dk2dk3dk4 δ(k1 + k2 + k3 + k4)

λ

4!
Ti1i2i3i4φ

i1(k1)φi2(k2)φi3(k3)φi3(k4) ,

(4.5)

where summation over repeated indices is implied, and following [137] we set

Qpn Ti1i2i3i4 =
1

3
(δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3) . (4.6)

Fourier transforms are defined by

Qpn φi(x) =

∫
dk χ(kx)φi(k) , (4.7)

where χ(ξ) = e2πi{ξ} is an additive character on Qpn . All integrals in (4.5) and

(4.7) are by default over all of Qpn ; however, we may impose a hard momentum

cutoff |k| ≤ Λ where Λ is an integer power of p and |k| is the standard norm on

Qpn , whose values are integer powers of p.

The O(N) model on Qpn comes with three real parameters, r (a mass-squared

parameter), λ, and a spectral parameter s which tells us in the free theory that

the dimension of φ is n−s
2

. Unlike in ordinary local field theories on Rn, s is an

adjustable parameter in a p-adic context.

4.2.2 One-loop amplitudes

To renormalize φ4 theory we typically need to handle divergences in the two-

point and four-point functions. To one loop order, these Green’s functions take
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the following forms:

Qpn

G
(2)
ij (k) =

δij
|k|s + r

+
δij

(|k|s + r)2

1

2
(−λ)

N + 2

3
I2 =

δij

|k|s + r + λN+2
6
I2

G
(4)
i1i2i3i4

(ki) = −λTi1i2i3i4 +
1

2
(−λ)2N + 8

9
(I

(s)
4 + I

(t)
4 + I

(u)
4 )Ti1i2i3i4 ,

(4.8)

In (4.8) and below, we omit the momentum-conserving delta functions from the

Green’s functions. The loop integrals are

Qpn I2 =

∫
d`

|`|s + r
I

(S)
4 =

∫
d`

(|`|s + r)(|`+ k1 + k2|s + r)
. (4.9)

I
(T )
4 and I

(U)
4 are defined like I

(S)
4 , but with k1 +k2 replaced by k1 +k3 for I

(T )
4 and

by k1+k4 for I
(U)
4 . A diagrammatic account of the formulas (4.8) is summarized in

figure 4.1. The standard challenge of perturbative renormalization group analysis

is to tame divergences at large |`| (the ultraviolet) arising in the integrals (4.9).

= +

= + + +

1

Figure 4.1: Diagrammatic representation of the two- and four-point functions to
one loop order.

4.2.3 Wilsonian renormalization

In a Wilsonian approach, we integrate out a shell of hard momenta, so we want

the internal momenta, denoted ` in (4.8)-(4.9), to be hard, while the external

momenta ki are soft. A key property of Qpn is that it organizes into momentum

shells whose magnitudes are integer powers of p, and we can integrate out one such
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momentum shell at a time. Momentum shell integration is easy to do because

the integrands are constant over each momentum shell. Explicitly,

Qpn

I2 =

∫
|`|=Λ

d`

Λs + r
=

1

ζ(n)

Λn

Λs + r

I4 =

∫
|`|=Λ

d`

(Λs + r)2
=

1

ζ(n)

Λn

(Λs + r)2
.

(4.10)

The result for I4 is the same for all three channels (so we dropped the channel

label), and it relies on the fact that |`+k| = |`| when ` is hard and k is soft. This

equality is an exact statement which follows directly from |k| < |`| together with

the ultrametric property of the norm on Qpn . The situation contrasts strongly

with the Archimedean case, where we have the weaker condition |` + k| ≈ |`|
when |k| � |`|.

To extract the recursion relations that define the renormalization group for the

p-adicO(N) model, we require thatG
(2)
ij (k) as computed in (4.8) through one-loop

order, with the loop momentum required to satisfy |`| = Λ, should coincide with

the tree level Green’s function G
(2)
soft,ij(k) =

δij
|k|s+rsoft

of an effective soft theory with

a hard momentum cutoff at Λ/p instead of Λ. Likewise, we seek to have G
(4)
i1i2i3i4

as computed in (4.8) coincide with the tree-level G
(4)
soft,i1i2i3i4

= −λsoftTi1i2i3i4 ,

and this is possible because G
(4)
i1i2i3i4

has no momentum dependence (beyond the

momentum-conserving delta function which we have suppressed). Altogether, we

find

Qpn

rsoft = r + λ
N + 2

6

1

ζ(n)

Λn

Λs + r

λsoft = λ− λ2N + 8

6

1

ζ(n)

Λn

(Λs + r)2
.

(4.11)

The relations (4.11) are more simply expressed in terms of analogs of “dimen-



164

sionless couplings”

Qpn

r̄ =
r

Λ[r]
r̄soft =

rsoft

(Λ/p)[r]

λ̄ =
λ

Λ[λ]
λ̄soft =

λsoft

(Λ/p)[λ]
,

(4.12)

where

Qpn [r] = s [λ] = ε ≡ 2s− n . (4.13)

In general, [X] is the dimension of a quantity X for the Gaussian fixed point

at λ = 0. Thus for example [|k|] = 1, [dk] = n, [|x|] = −1, and [φ(x)] = n−s
2

.

Holding n fixed and increasing s is analogous to holding s fixed and lowering n,

and the analog of the upper critical dimension, at which φ4 becomes marginal, is

s = n/2.5 Thus [λ] itself is the analog of the parameter ε = 4−n in ordinary φ4

theory, and in some formulas we emphasize this by writing quantities in terms of

ε.

Having defined dimensionless couplings in (4.12), we can now recast (4.11) as

Qpn

r̄soft = ps
[
r̄ + λ̄

N + 2

6

1

ζ(n)

1

1 + r̄

]
λ̄soft = pε

[
λ̄− λ̄2N + 8

6

1

ζ(n)

1

(1 + r̄)2

]
.

(4.14)

These are the recursion relations which define the renormalization of the p-adic

O(N) model through one loop.

4.2.4 A non-renormalization theorem

Note that we didn’t have to worry about wave-function renormalization when

working out the recursion relations (4.14). Absence of wave-function renormal-

ization is a trivial observation at this loop order, since there is no way to get mo-

mentum dependence in the one-loop correction to G
(2)
ij (k) even in an Archimedean

5The analog of the lower critical dimension is s = n, so IR critical behavior occurs for
n/2 < s < n, or equivalently s < n < 2s which is the analog of 2 < n < 4 in φ4 theory in Rn.
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theory. A striking point about the p-adic O(N) model is that (at least in a per-

turbative Wilsonian approach), no wave-function renormalization ever occurs.

Better yet, no diagrammatic loop correction ever exhibits momentum depen-

dence, even in higher point amplitudes. That is, the effective action is always

schematically of the form6

Qpn S =

∫
dk

1

2
~φ(−k)|k|s · ~φ(k) +

∫
dx Veff(~φ(x)) , (4.15)

where Veff(~φ(x)) undergoes renormalization group flow but the “kinetic term”

φ(−k)|k|sφ(k) is never renormalized, nor are any other k-dependent terms gen-

erated as they are for theories on Rn. In other words, the renormalization group

acts strictly on the purely non-derivative, local part of the action which depends

on ~φ(x) at one point only. This feature of the renormalization group seems to

have been appreciated already for the hierarchical model [121]. It hinges on ul-

trametricity, as we can see by examining the first diagram whose momentum

dependence would ordinarily contribute to wave-function renormalization in φ4

theory, namely the underground diagram shown in figure 4.2. The loop integral

is

Qpn I2′ =

∫
|`1|=Λ

d`1

∫
|`2|=Λ

d`2

∫
|`3|=Λ

d`3
δ(`1 + `2 + `3 − k)

(Λs + r)3
. (4.16)

To see that I2′ is actually independent of k, we use the u-substitution ˜̀
3 = `3−k.

Ultrametricity guarantees that the map `3 → ˜̀
3 is a bijection from the momentum

shell |`3| = Λ to itself, provided |k| < Λ. Similar arguments can be applied to

general Feynman diagrams [114].

6By
∫
dxVeff(~φ(x)) we really mean a sum of powers of ~φ(x), suitably contracted with O(N)-

covariant tensors and multiplied by running couplings like r and λ, and expressed in momentum
space as integrals against momentum-conserving delta functions.
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0

x1

x2

x

k l2

l3

l1

1

Figure 4.2: The underground diagram, the lowest order diagram that contributes
to wave–function renormalization in Archimedean φ4 theory.

4.2.5 Fixed point and anomalous dimensions

Finding a fixed point of the discrete RG equations (4.14) now amounts to setting

r̄soft = r̄ and λ̄soft = λ̄. This happens, to leading order in small ε, at the p-adic

Wilson-Fisher fixed point,

Qpn r̄∗ = −ζ(n/2)
N + 2

N + 8
ε log p λ̄∗ =

6ζ(n)

N + 8
ε log p . (4.17)

To analyze anomalous dimensions at the fixed point, we consider perturbations

Qpn r̄ = r̄∗ + δr̄ λ̄ = λ̄∗ + δλ̄ . (4.18)

To linear order in δr̄ and δλ̄, the discrete RG equations become

Qpn

δr̄soft

δλ̄soft

 = M

δr̄
δλ̄

 . (4.19)

The explicit form of M can be worked out easily starting from (4.14) but is

unenlightening. Eigenvalues of M take the form pn−∆ where ∆ is the dimension

of a primary operator O in the fixed point theory. To see this, note that if ρ is

the coupling dual to O, then ρ has dimension n − ∆, and we naturally define

ρ̄ = ρ/Λn−∆, while ρ̄soft = ρ/(Λ/p)n−∆ = pn−∆ρ̄. By straightforward calculation,

we see that the dimensions from (4.19) to leading order in small ε take the form

Qpn ∆irr = n+ ε ∆rel = s− 6

N + 8
ε . (4.20)
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For higher order expansions in ε, we refer the reader to [122, 123]. We may

naturally suppose that ∆irr controls the approach of a discrete flow from the free

O(N) model to the p-adic Wilson-Fisher fixed point, while ∆rel is the dimension

of a mass-like operator which generically drives trajectories away from the fixed

point.

4.3 Large N methods

Methods based on the Hubbard-Stratonovich transformation have been devel-

oped, notably in [134, 135], which resum an infinite set of diagrams of the O(N)

model at fixed order in large N and allow a determination of critical exponents at

the Wilson-Fisher fixed point which are known exactly as functions of ε and to a

few orders in large N . Whereas Wilsonian methods are significantly different for

field theories defined over Qpn than for field theories defined over Rn, the large

N methods work nearly identically in the two cases. We will illustrate this by

working out the leading non-trivial results for anomalous dimensions in φ4 theory.

4.3.1 Action

We start with an informal introduction to the methods of [134, 135]. We are

interested in a conformally invariant theory, and so we will naively turn off the

relevant mass deformation while keeping the φ4 interaction. The action (4.5)

becomes

S =

∫
dx

[
1

2
φi(x)Dsφi(x) +

λ

4!

(
φi(x)φi(x)

)2
]
. (4.21)

Here and below, integrals are over all of Qpn , or all of Rn, unless indicated oth-

erwise, and φi takes values in RN .

Acting with Ds in position space is, by definition, the same as multiplying by
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|k|s in momentum space:∫
dxχ(kx)∗Dsφi(x) ≡ |k|sφi(k) . (4.22)

A Fourier integral of fundamental importance is∫
dk χ(kx)|k|s =

1/Γ(−s)
|x|n+s

+ contact terms . (4.23)

We have previously defined Fourier transforms over Qpn in (4.7). For Rn, we set

χ(kx) = e2πi~k·~x. Thus, relative to standard conventions in quantum field theory,

our wave numbers ~k always include an extra factor of 1/2π.7

In the case of p-adic numbers, a sufficient prescription for the contact terms is

for them to be just a delta function, so that we recover the Vladimirov derivative:

Qpn Dsφi(x) ≡ 1

Γ(−s)

∫
dy

φi(y)− φi(x)

|y − x|n+s
. (4.24)

Some of the good properties of the Vladimirov derivative are explained, for in-

stance, in Appendix B of [32]. The Vladimirov derivative should be understood

to act on functions which can be approximated as piecewise constant functions

with compact support.

In the case of Rn, the contact terms have in general a more complicated

structure, including both delta functions and derivatives of delta functions. At

a formal level, we can let s remain a continuously variable parameter in the

real case. The theories so obtained have bilocal terms in position space, as in

[126, 127]. When s is a positive even integer, we recover locality:

Rn
Dsφi(x) = �s/2 φi(x) for s = 2, 4, 6, . . . , (4.25)

where

Rn � ≡ − 1

(2π)2

n∑
j=1

∂2
j . (4.26)

7Restoring dimensions by writing a plane wave as ei~p·~x/~, where now ~p is the momentum,
the current conventions can be understood as arising from setting h ≡ 2π~ = 1 rather than
following the usual practice of setting ~ = 1.
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The general expression (4.22) is consistent with (4.25) because 1/ΓRn(−s) has ze-

ros at s = 2, 4, 6, . . . . (Actually, (4.25) is equally valid at s = 0, where 1/ΓRn(−s)
also has a zero, but this is not an interesting case because then the “kinetic” term

is identical to the mass term.)8

The Hubbard-Stratonovich trick is to replace

λ

4!
(φiφi)2 → λ

4!
(φiφi)2 − 3

2λN

(
σ − λ

√
N

6
φiφi

)2

=
1

2
√
N
σφiφi − 3σ2

2λN
(4.27)

in the action. This is permitted because we can eliminate σ by its equation of

motion and recover the original action. At the level of path integration the same

manipulation is still permitted, but σ must run over imaginary rather than real

values in order to have a convergent integral in the σ direction. Next we assume

that λN runs to large values, so that the σ2/λN term in (4.27) may be neglected.

Thus we arrive at the modified action

S =

∫
dx

[
1

2
φi(x)Dsφi(x) +

1

2
√
N
σφiφi

]
. (4.28)

We may alternatively understand (4.28) as arising from a non-linear sigma model

where for each x, φi(x) is constrained to lie on a sphere SN−1 of fixed radius; then

σ is the Lagrange multiplier that enforces the constraint, and there is an extra

term linear in σ whose role is to fix the radius of the SN−1—or in diagrammatic

terms, to eliminate any tadpole for σ.

8The explicit factors of 2π in (4.26) imply a normalization of the kinetic term that is different
from the one normally used in field theory: For Rn with s = 2, our kinetic term is Skin =∫
Rn dx

1
8π2 (∂φi)2 instead of the more standard Skin =

∫
Rn dx

1
2 (∂φi)2. This means that our

field φi includes an extra factor of 2π compared with standard conventions, and as a result,
powers of 2π will show up in all our position space Green’s functions that do not match the
literature. More precisely: explicit factors of 2π altogether disappear from Green’s functions
when we follow our conventions faithfully, including the use of ΓRn (defined in (4.4)) rather
than ΓEuler.
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4.3.2 Leading order propagators

A two-point function for φi can be read off from (4.28) at tree level:

Γ
(0)
φφ(k) = |k|s G

(0)
φφ(k) =

1

|k|s G
(0)
φφ(x) =

1/Γ(s)

|x|n−s . (4.29)

All these two-point functions include a factor of δij which we suppress. All posi-

tion space correlators should be understood as subject to correction by contact

terms. The 1PI two-point amplitude for σ gets its first contribution at one loop

as shown in figure 4.3:

Γ(1)
σσ(x) = − 1/Γ(s)2

2|x|2n−2s
. (4.30)

The explicit sign in (4.30) comes from the convention that field configurations

0

x1

x2

x

0 x

0 x

k l2

l3

l1

1

Figure 4.3: The vacuum polarization diagram for the σ field. Dashed lines cor-
respond to the σ field, and solid lines correspond to the φ field.

are weighted by e−Γ. The 1/2 is a symmetry factor, and the rest of the amplitude

is the square of G
(0)
φφ(x). A factor of N for the sum over indices in the φi loop

is offset by two factors of 1/
√
N , one from each vertex. Straightforward Fourier

transforms lead to

G(1)
σσ(k) = − 2

B(n− s, n− s) |k|
2s−n G(1)

σσ(x) = −2
Γ(2s)

B(n− s, n− s)
1

|x|2s .

(4.31)

From G
(0)
φφ(x) ∝ 1/|x|n−s we conclude ∆φ = n−s

2
+ O(1/N), which for Qpn

trivially agrees with the conclusion of the non-renormalization theorem of sec-

tion 4.2.4, which indicates that ∆φ receives no corrections from its free field value.
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This agreement is trivial because we’re only looking at tree-level contributions to

Gφφ(x) thus far.

From G
(0)
σσ(x) ∝ 1/|x|2s we conclude ∆σ = s+O(1/N). We identify σ itself as

the relevant deformation, so from (4.20) we see that we already have agreement

between ∆rel and ∆σ to leading order in small ε and large N . Our computations

in section 4.3.5 will extend this agreement to the next order: that is, we will find

∆σ = s− 6

N
ε+O(1/N2) +O(ε2) . (4.32)

First, however, we will show that ∆φ receives no correction through O(1/N).

4.3.3 Self-energy diagram I: Momentum space methods

The self-energy correction to the 1PI two-point function for φi is given by the

diagram in figure 4.4, whose amplitude is

Γ
(2)
φφ(k) = − 1

N

∫
d`G

(0)
φφ(`)G(1)

σσ(k − `) =
2/N

B(n− s, n− s)

∫
d` |`|−s|k − `|2s−n .

(4.33)

0

x1

x2

x

0 x

k l

k − l

k l2

l3

l1

1

Figure 4.4: The self energy diagram for the φ field.

Evidently we must investigate the divergence properties of the integral. It

helps to introduce functions

πt(k) ≡ |k|t−n (4.34)



172

for any complex number t. These functions are multiplicative characters on Qpn ,9

but are also of course well defined on Rn despite there being no obvious no-

tion of multiplicative characters there (unless n = 1 or 2, where we have R

or C respectively, both of which are fields). The Fourier transform of πt(k) is

π̂t(x) ≡ Γ(t)|x|−t up to contact terms, so the obvious identity π̂t1(x)π̂t2(x) =

B(t1, t2)π̂t1+t2(x) becomes in Fourier space

(πt1 ∗ πt2)(k) ≡
∫
d` |`|t1−n|k − `|t2−n = B(t1, t2)πt1+t2(k) = B(t1, t2)|k|t1+t2−n ,

(4.35)

The integral in (4.35) converges provided t1 > 0, t2 > 0, and t1 + t2 < n. Outside

this triangular region, we need to consider some regularization.

Suppose t1 > 0, t2 > 0, but t1 + t2 > n, so that the integral in (4.35) has an

ultraviolet divergence. In Qpn , imposing a hard momentum cutoff leads to

Qpn

∫
|`|≤Λ

d` |`|t1−n|k − `|t2−n = B(t1, t2)|k|t1+t2−n +
ζ(t1 + t2 − n)

ζ(n)
Λt1+t2−n ,

(4.36)

provided |k| < Λ. To obtain (4.36), the simplest method is to split the integral

into regions where |`| and |k − `| are constant, and then the integral becomes

a discrete sum which can be performed exactly. What is notable about (4.36)

is that the result is the sum of two terms: the expression |k|t1+t2−nB(t1, t2) that

we got through formal manipulations in (4.35), plus the k = 0 result. Applying

(4.36) to (4.33), we now find for Qpn the result

Qpn Γ
(2)
φφ(k) =

2/N

B(n− s, n− s)

[
|k|sB(n− s, 2s) +

ζ(s)

ζ(n)
Λs

]
. (4.37)

The divergent piece can be canceled by a counterterm Sct ∝
∫
dxΛsφiφi. The ab-

sence of wave-function renormalization is due to the fact that the divergent part

of Γ
(2)
φφ(k) has no k-dependence. In particular, we don’t see an anomalous dimen-

sion for φi (at this level) because there is no term proportional to |k|s log(Λ/|k|).
9Given a field K, a multiplicative character π : K× → C× satisfies π(xy) = π(x)π(y).
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There is only a finite renormalization of the two-point function for φ:

Qpn Γ
(0)
φφ(k) + Γ

(2)
φφ(k) =

[
1 +

2

N

B(n− s, 2s)
B(n− s, n− s)

]
|k|s . (4.38)

The case of Rn is harder because there is no such exact formula as (4.36),

owing to the possibility of subleading divergences. Focusing on the case where

the leading divergence is quadratic,

Rn

∫
|`|≤Λ

d` |`|t1−n|k − `|2−t1 =
2

ζ(n)

[
Λ2

2
− (t1 − n)(2− t1)

2n
k2 log

Λ

|k| + (finite)

]
=

(t1 − n)(2− t1)

nζ(n)
k2 log |k|+ (non-universal) ,

(4.39)

where k2 = |k|2 =
∑n

i=1 k
2
i and we restrict 0 < t1 < n + 2 to avoid infrared

divergences. In (4.39), “finite” means terms which remain finite as Λ → ∞
with k held fixed. The precise way in which we impose the cutoff doesn’t affect

the terms shown; for instance, we could have integrated instead over the region

|k− `| ≤ Λ. The logarithmic term is particularly robust, in that even a rescaling

of Λ does not affect it. This is the familiar scheme independence of leading

logarithmic terms, which we emphasize in the second line by picking out the

k2 log |k| behavior explicitly and folding the k2 log Λ term along with the Λ2 term

into the “non-universal” part. These divergent terms can be canceled by local

counterterms. Of course, all this is textbook renormalization procedure, worthy

of note here only as a segue into a more formal method to extract the same

leading logarithmic term which will generalize conveniently to the p-adic context

in section 4.3.5. This more formal method is to “regularize” by shifting one of

the exponents of the integral and then treating that shift as small:

Rn

∫
d` |`|t1−n|k − `|2−t1−δ = B(t1, n+ 2− t1 − δ)|k|2−δ = B(t1,−2 + δ)|k|2−δ

=
(t1 − n)(2− t1)

nζ(n)

[
−1

δ
+ log |k|

]
k2 + (finite) .

(4.40)
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The first line of (4.40) is rigorously valid when t1 − n − 2 < δ < −2. To reach

the second line of (4.40), we analytically continue in δ past the singularity of

B(t1,−2 + δ) at δ = −2 to the next singularity, at δ = 0. Evidently, the k2 log |k|
term matches what was found in (4.39). In applications of (4.40) and related

analytic continuations to diagrammatic amplitudes, we must be careful to shift

dimensions at the level of the Feynman rules. Our choice is to shift exponents

associated with the σ propagator.

The contrast between Rn and Qpn is clear from the position of poles in the

Beta function. If we tried the same manipulation as (4.40) for the p-adics, we

would get a finite result and no log |k| term because there is no singularity in

BQpn (t1,−2+δ) at δ = 0; but BRn(t1,−2+δ) does have such a pole on account of

the infinite sequence of poles in ΓRn(t).10 If, on the other hand, we were consid-

ering an integral like
∫
d` |`|t1−n|k− `|−t1 which is logarithmically divergent, then

a log |k| term would come out of any sensible regularization procedure regardless

of whether the integral is over Rn or Qpn . In the approach where we shift one

exponent, the log |k| term would be associated with a pole in B(t1, δ) at δ = 0,

which is present equally for BRn and BQpn .

With (4.39) or (4.40) in hand, we can calculate the anomalous dimension for

φi in the standard setup of a local field theory on Rn: Setting s = 2 and keeping

only the universal leading logarithmic term, we have

Rn Γ
(0)
φφ(k) + Γ

(2)
φφ(k) = k2 − 4/N

B(n− 2, n− 2)

4− n
nζ(n)

k2 log |k| = |k|n−2∆φ ,

(4.41)

10It is intriguing to note that the same contrast between analytic properties of ΓR and ΓQp

is responsible for the presence of infinitely many states in the Archimedean string spectrum,
whereas the standard p-adic string construction gives only a tachyon. We will return to this
line of thought further in section 4.5.
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where

Rn ∆φ =
n− 2

2
+

2/N

B(n− 2, n− 2)

4− n
nζ(n)

+O(1/N2) . (4.42)

This result is exact in ε = 4 − n, but if we wish to compare with standard

perturbation theory we can expand in small ε:

Rn
∆φ =

n− 2

2
+

ε2

4N
+O(ε3) +O(1/N2) . (4.43)

It is possible to unify our perspective somewhat by writing a formula for ∆φ

which is valid equally for Rn and Qpn :

∆φ =
n− s

2
+

1

N
Res
δ

B(n− s,−s+ δ)

B(n− s, n− s) +O(1/N2) , (4.44)

where we understand Resz as picking out the residue at a pole at z = 0 of a

meromorphic function of z:

Res
z
f(z) ≡

∮
0

dz

2πi
f(z) . (4.45)

This unified perspective suggests in Rn that s = 2 may not be as special as

we normally think—and that in particular, any positive even s will give rise

to constructions similar to the Wilson-Fisher fixed point, obtained (one might

assume) from local Gaussian theories by adding a φ4 term. We follow up this

idea in section 4.4. When applied to Qpn (assuming s > 0), (4.45) tells us

correctly that the anomalous dimension vanishes since B(n− s,−s + δ) is finite

at δ = 0. Although the expression (4.44) appears to be merely a repackaging

of previous results, it does highlight the origin of the anomalous dimension and

suggests the possibility of extending to more general base fields and/or more

interesting multiplicative characters.

4.3.4 Self-energy diagram II: Position space methods

The evaluation of the 1PI self-energy diagram is trivial in position space:

Γ
(2)
φφ(x) = − 1

N
G

(0)
φφ(x)G(1)

σσ(x) =
2

N

Γ(2s)/Γ(s)

B(n− s, n− s)
1

|x|n+s
. (4.46)
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In Qpn we can straightforwardly combine Γ
(2)
φφ(x) with Γ

(0)
φφ(x) = 1/Γ(−s)

|x|n+s to obtain

the finite renormalization factor appearing already in (4.38). In Rn this fails be-

cause Γ
(0)
φφ(x) = � δ(x). A more effective method is to investigate the contribution

of the self-energy graph to the connected two-point function:

G
(2)
φφ(x) = − 2/N

Γ(s)B(s, s)B(n− s, n− s)I3(x) , (4.47)

where we define

I3(x) ≡
∫
dx1dx2

1

|x1|n−s|x12|n+s−δ|x− x2|n−s
, (4.48)

where x12 = x1−x2. Anticipating possible divergences, we’ve already introduced

as a regulator a shift δ in one of the exponents. We have coordinated the nor-

malization of δ in (4.48) with the normalization we used in (4.40): in both cases,

we’re effectively sending ∆σ → ∆σ − δ/2 while holding all other quantities fixed.

Because I3(x) is the convolution of three power laws, it is easily evaluated

using (4.35). (We don’t mean to pass to Fourier space; we mean to apply (4.35)

as is with k variables replaced with x variables.) The result is

I3(x) =
B(s, s)B(2s,−s+ δ)

|x|n−s−δ
δ
=

B(s, s)B(n− s,−s+ δ)

|x|n−s−δ (4.49)

In the second step,
δ
= means that the last expression differs from the first only by

terms which are finite as δ → 0. In the current case, this delta-equality is true

provided s avoids special values such as 0, n, and n/2. Thus we arrive at

G
(0)
φφ(x) +G

(2)
φφ(x)

δ
=

1/Γ(s)

|x|n−s
[
1− 2

N

B(n− s,−s+ δ)

B(n− s, n− s) |x|
δ

]
δ
=

1/Γ(s)

|x|n−s
[
1− 2

N

(
Res
δ

B(n− s,−s+ δ)

B(n− s, n− s)

)(
1

δ
+ log |x|

)]
.

(4.50)

As before, we drop the divergent 1/δ piece, understanding that its effects can

be offset by a local counterterm. Comparing (4.50) with the expected power law
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Gφφ(x) ∝ 1/|x|2∆φ , we arrive at

γφ ≡ ∆φ −
n− s

2
=

1

N
Res
δ

B(n− s,−s+ δ)

B(n− s, n− s) +O(1/N2) . (4.51)

This is easily seen to agree with (4.44) provided we stipulate s > 0. For Rn (and

s = 2 as we always stipulate for the Archimedean case) it also agrees with the

standard result [134, 135]

Rn γφ =
n− 4

N

2n−3

π3/2

ΓEuler

(
n−1

2

)
ΓEuler

(
n
2

+ 1
) sin

πn

2
+O(1/N2) . (4.52)

4.3.5 Corrections to the σ propagator

In order to arrive at (4.32), we need to find contributions to Γσσ(x) at order

1/N .11 There are three diagrams which contribute: D1, D2, and D3 as shown

in figure 4.5. The first is easy because the only logarithmic divergence arises

from the self-energy subdiagram, and it can be tracked by replacing the two-

loop diagram with the one-loop diagram in figure 4.3, only with the tree-level

propagators G
(0)
φφ(x) replaced by

G
(0)
φφ(x) +G

(2)
φφ(x)

δ
=

1/Γ(s)

|x|n−s
[
1− 2γφ

(
1

δ
+ log |x|

)]
, (4.53)

where we have rewritten (4.50) in compact form. We remember that γφ isO(1/N)

and vanishes for Qpn . Thus, following through the manipulations of section 4.3.2,

we find

Γ(1)
σσ(x) + Γ(D1)

σσ (x)
δ
= − 1/Γ(s)2

2|x|2n−2s

[
1− 4γφ

(
1

δ
+ log |x|

)]
, (4.54)

implying that diagram D1 contributes γ
(D1)
σ = −2γφ to the anomalous dimension

γσ ≡ ∆σ − s . (4.55)

11After the discussion of section 4.3.4 one might expect that carrying through to Gσσ(x) is
necessary in order to avoid comparing power laws to contact terms in the case of Rn. This is

not a problem because in Γ
(1)
σσ,Rn(x) ∝ 1/|x|2n−4 we allow ourselves to analytically continue in

n—and the only points of concern are the upper and lower critical dimensions, n = 4 and 2.
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0
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x 0
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x4

x
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k − l

k l2

l3

l1
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Figure 4.5: The three position space diagrams that contribute to 1/N corrections
to the anomalous dimension of the σ field.

To get the contributions to γσ from D2 and D3 we need only isolate their leading

logarithmic terms and add those terms to (4.54).

The second diagram contributes

Γ(D2)
σσ (x) = − 1

2N

(
1

Γ(s)

)4(
−2

Γ(2s)

B(n− s, n− s)

)
ID2(x) . (4.56)

The leading sign is the usual one for 1PI diagrams; the 1/2 is a symmetry factor;

1/N comes from index summation together with four σφφ vertices; the remain-

ing prefactors come from the four G
(0)
φφ propagators and the one internal G

(1)
σσ

propagator; and

ID2(x) =

∫
dx1dx2

1

|x1|n−s|x1 − x|n−s|x12|2s−δ|x2|n−s|x2 − x|n−s
δ
= B(s, s)B(δ, δ)|x|2s−2n+δ .

(4.57)

The second equality in (4.57) takes a little work to justify, and we postpone a

derivation to section 4.3.7. Combining (4.56) and (4.57) we see that

Γ(D2)
σσ (x)

δ
=

1

N

B(δ, δ)

Γ(s)2B(n− s, n− s) |x|
2s−2n+δ

δ
=

1/N

Γ(s)2
|x|2s−2n

(
Res
δ

B(δ, δ)

B(n− s, n− s)

)[
1

δ
+ log |x|

]
,

(4.58)

from which we deduce in turn the contribution to the anomalous dimension

γ(D2)
σ = − 1

N
Res
δ

B(δ, δ)

B(n− s, n− s) . (4.59)
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The third diagram contributes

Γ(D3)
σσ (x) = − 1

2N

(
1

Γ(s)

)6(
−2

Γ(2s)

B(n− s, n− s)

)2

ID3(x) (4.60)

where

ID3(x) =

∫
dx1dx2dx3dx4

1

|x1|n−s|x2|n−s|x12|n−s
× 1

|x13|2s−δ/2|x24|2s−δ/2

× 1

|x3 − x|n−s|x4 − x|n−s|x34|n−s
δ
= B(s, s)2B(n− s, n− 2s)B(δ, δ)|x|2s−2n+δ .

(4.61)

The first and third factors in the integrand of (4.61) come from the G
(0)
φφ propa-

gators running around the triangular loops. The second factor comes from the

internal G
(1)
σσ propagators.12

Γ(D3)
σσ (x)

δ
= − 2/N

Γ(s)2

B(n− s, n− 2s)B(δ, δ)

B(n− s, n− s)2
|x|2s−2n+δ

δ
= − 2/N

Γ(s)2
|x|2s−2n

(
Res
δ

B(n− s, n− 2s)B(δ, δ)

B(n− s, n− s)2

)[
1

δ
+ log |x|

]
,

(4.62)

from which we deduce in turn

γ(D3)
σ =

2

N
Res
δ

B(n− s, n− 2s)B(δ, δ)

B(n− s, n− s)2
. (4.63)

Putting the contributions from D1, D2, and D3 together, we arrive at the anoma-

lous dimension

γσ = γ(D1)
σ + γ(D2)

σ + γ(D3)
σ +O(1/N)2

=
1

N
Res
δ

[
−2

B(n− s,−s+ δ)

B(n− s, n− s) +

(
−1 + 2

B(n− s, n− 2s)

B(n− s, n− s)

)
B(δ, δ)

B(n− s, n− s)

]
+O(1/N2) .

(4.64)

12The alert reader may be surprised that we chose ∆σ → ∆σ − δ/4 as a regulator in the G
(1)
σσ

propagators in (4.61), in contrast to our previous strategy ∆σ → ∆σ − δ/2. We made this new

choice because there are two G
(1)
σσ propagators, and we wanted the added x dependence arising

from the regulator to be |x|δ rather than |x|2δ. Our new choice does not affect the leading
logarithmic term: The leading terms in a small δ expansion involve a factor 1

δ +log |x|, whereas
if we had stuck with ∆σ → ∆σ − δ/2 we would have found 1

2δ + log |x|.
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The first term in square brackets comes from D1 and vanishes for Qpn . For

Rn and s = 2 we recover from (4.64) the result of [134, 135]:

Rn γσ = 4
(n− 1)(n− 2)

n− 4
γφ +O(1/N2) . (4.65)

If we pass to the limit of small ε, (4.64) becomes

γσ = − 6

N
ε+O(1/N2) +O(ε2) . (4.66)

The result (4.66) is valid equally for Rn and Qpn , and for Qpn we see that it agrees

with (4.32). If one further expands (4.64) to third order in ε for Qpn , the result

is found to agree with the ε expansion in [122, 123]. If instead we expand about

the lower critical dimension and define ε̃ = n− s, then equation (4.64) says that

γσ = O(ε̃2) . (4.67)

This result is also valid equally for Rn and Qpn , though the agreement is non-

trivial: different terms in (4.64) cancel to make the term linear in ε̃ vanish.

4.3.6 Position space integrals I: The star-triangle identity

Two useful tools for evaluating position space diagrams are the convolution inte-

gral (4.35), which we rewrite here:∫
dy |x|t1−n|y − x|t2−n = B(t1, t2)|x|t1+t2−n , (4.68)

and the star-triangle identity of [138],13 which can be written compactly as∫
dx

3∏
i=1

|x− xi|ti−n = B(t1, t2)
3∏
i=1

|yi|−ti if
3∑
i=1

ti = n , (4.69)

13Originally in [138] the star-triangle identity was stated for R3 as∫
d3t |t−x|a|t−y|b|t−z|c = π3/2 ΓEuler(

a+3
2 )ΓEuler(

b+3
2 )ΓEuler(

c+3
2 )

ΓEuler(−a/2)ΓEuler(−b/2)ΓEuler(−c/2)
|x−y|−3−c|y−z|−3−a|z−x|−3−b

provided a+ b+ c = −6. The somewhat complicated prefactor is precisely BR3(a+ 3, b+ 3).
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where we define

y1 ≡ x23 y2 ≡ x31 y3 ≡ x12 . (4.70)

The formulas (4.68)-(4.69) are valid equally for Rn or Qpn . Note that it does not

matter which two of t1, t2, and t3 we supply as arguments to B in (4.69). The

integrals (4.68) and (4.69) are rigorously valid only when the integrals converge.

Provided we set t3 = n − t1 − t2, the region of convergence for the integrals

both in (4.68) and (4.69) can be characterized by the constraints ti > 0 for all

i. Outside this region, we must be prepared to shift exponents (while preserving

the constraint
∑3

i=1 ti = n) and cancel divergences against local counterterms, as

seen in detail in sections 4.3.3 and 4.3.4 for the self-energy diagram.

In Qpn , it is possible to evaluate the integral in (4.69) explicitly even when∑3
i=1 ti 6= n. Due to the “tall isosceles” property of ultrametric spaces, for any

three non-coincident points x1, x2 and x3, the linear combinations yi defined in

(4.70) form the sides of a triangle, such that up to relabeling yi, we always have

|y1| = |y2| ≥ |y3|. With this choice of yis, the integral in (4.69) can be worked

out in general to give

Qpn

∫
dx

3∏
i=1

|x− xi|ti−n = B(t1, t2)|y2|t3−n|y3|t1+t2−n

+ B(t3, t1 + t2 − n)|y2|t1+t2+t3−2n.

(4.71)

The integral converges provided ti > 0 for all i, and t1 + t2 + t3 < 2n. From the

right hand side of (4.71), we observe that the integral has poles at ti = 0 for all

i, at t1 + t2 + t3 = 2n, and at t1 + t2 = n. Remarkably in Rn, numerics reveal

(4.71) (more precisely the Rn version constructed from BRn) holds approximately

as long as the L2 norms satisfy |y1| ≈ |y2| > |y3|, although it is no longer an exact

identity like it is in Qpn .
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4.3.7 Position space integrals II: Symmetric deformations

In order to find the anomalous dimension of the σ field by evaluating Feynman

diagrams, it is necessary to introduce a regulator to the scaling of the position

space σ propagator. But when introducing this regulator, the condition
∑3

i=1 ti =

n in equation (4.69) is no longer satisfied, and so the star-triangle identity cannot

immediately be applied to equations (4.57) and (4.61). 14 There is, however, a

way around this obstacle [139]. Essentially the idea consists in considering instead

of the integrals ID2(x) and ID3(x) other integrals that differ from them only by

terms that are finite in the δ → 0 limit, but to which the star-triangle identity

can be applied. Suppose, in (4.57), that we introduce yet another regulator η

and consider the following integral:

ID2(x, η) =

∫
dx1dx2

1

|x1|n−s−η|x1 − x|n−s−η|x12|2s−δ|x2|n−s+η|x2 − x|n−s+η
.

(4.72)

The deformation is depicted diagrammatically in figure 4.6. Because of the sym-

metrical manner in which η has been introduced, it is clear that ID2(x, η) is

invariant under the transformation η → −η. For this reason, and because this

Feynman diagram has at most single poles in the regulators, the Taylor expansion

of ID2(x, η) in η must assume the following form,

ID2(x, η) = ID2(x) + f2(x)η2 + f4(x)η4 + ... (4.73)

where fi(x) are some functions that have at most single poles in δ. It is clear

then, that if we set η = δ
2
, then ID2(x, η) will only differ from ID2(x) by terms

that tend to zero as δ → 0. But ID2(x, δ
2
) can be evaluated exactly via equations

14The more general identity written in (4.71) can still be employed—we present an alternate
derivation of (4.57) using this identity in the next section.
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(4.69) and (4.68).

ID2(x)
δ
= ID2,δ(x) =

∫
dx1

|x1|n−s−
δ
2 |x1 − x|n−s−

δ
2

dx2

|x12|2s−δ|x2|n−s+
δ
2 |x2 − x|n−s+

δ
2

δ
= B(s, s)|x|2s−n−δ

∫
dx1

|x1|n−δ|x1 − x|n−δ
= B(s, s)B(δ, δ)|x|2s−2n+δ.

(4.74)

ID2 0

−η

+η

−δ

x1

x2

x

−η

+η

ID3 0

+η

−η

x1

x2

x3

x4

x

+η

−η

− δ
2

− δ
2

0 2s− δ

2n− 3s+ η

s− η

x2

x3

x

s+ η

2n− 3s− η

1

Figure 4.6: The symmetric deformation of ID2 that allows the integral to be
exactly evaluated without disturbing the leading behavior in δ. η is eventually
set to δ/2.

This method of finding the leading order behavior of a Feynman diagram by

symmetrically changing the scaling of internal propagators and invoking equa-

tions (4.69) and (4.68) can also be used to derive equation (4.61) in the following

manner, represented diagrammatically in figure 4.7:

ID3(x)
δ
=

∫
dx2 dx3

|x2|n−s−
δ
2 |x3 − x|n−s−

δ
2

∫
dx1

|x1|n−s+
δ
2 |x12|n−s|x13|2s−

δ
2

×
∫

dx4

|x24|2s−
δ
2 |x34|n−s|x4 − x|n−s+

δ
2

δ
= B(s, s)2

∫
dx2 dx3

|x2|2n−3s|x2 − x|s|x23|2s−δ|x3|s|x3 − x|2n−3s

δ
= B(s, s)2

∫
dx3

|x3|s−
δ
2 |x3 − x|2n−3s− δ

2

dx2

|x2|2n−3s+ δ
2 |x23|2s−δ|x2 − x|s+

δ
2

δ
= B(s, s)2B(n− s, n− 2s)|x|2s−n−δ

∫
dx3

|x3|n−δ|x3 − x|n−δ

= B(s, s)2B(n− s, n− 2s)B(δ, δ)|x|2s−2n+δ .

(4.75)

After the second step we recognize the remaining integral as similar to ID2 , but

with different (and slightly less constrained) exponents. We represent this di-
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agrammatically on the right side of figure 4.7 by showing a diagram with the

topology of D2 but with the exponents taken from the second line of (4.75). The

third step, then, is to shift these exponents again in imitation of how we evalu-

ated ID2 . It may not be entirely evident that the scaling dimensions are altered

in a symmetrical manner in the third step in (4.75), but changing variables by

letting x2 → −x̃2 and x̃3 → x3 + x clearly shows that this is indeed the case.

ID2 0

−η

+η

−δ

x1

x2

x

−η

+η

ID3 0

+η

−η

x1

x2

x3

x4

x

+η

−η

− δ
2

− δ
2

0 2s− δ

2n− 3s+ η

s− η

x2

x3

x

s+ η

2n− 3s− η

1

Figure 4.7: The symmetric deformations that allow ID3 to be exactly evaluated
without disturbing the leading behavior in δ. η is set to δ/2 in both cases.

4.3.8 Position space integrals III: Direct evaluation in Qpn

We now present an alternate derivation of (4.57) which is applicable in Qpn and

relies on a direct application of the identity in (4.71). Using the identity to

perform the integral over x1 in (4.57), we obtain

Qpn ID2(x) =

∫
dx2

1

|x2|n−s|x− x2|n−s
f(|x|, |x2|, |x− x2|) , (4.76)

where

Qpn f(|x|, |x2|, |x− x2|) =



B(s, s)

|x2|2s−δ|x|n−2s
+

B(2s− n, n− δ)
|x2|n−δ

if |x2| > |x|

B(s, s− δ)
|x|n−s|x2|s−δ

+
B(s, δ − s)
|x|n−δ if |x2| < |x|

B(s, s− δ)
|x|n−s|x− x2|s−δ

+
B(s, δ − s)
|x|n−δ if |x2| = |x| .

(4.77)
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Splitting into the three cases displayed in (4.77), the x2 integral in (4.76) is seen

to reduce to the following three simple kinds of integrals (with the convergence

condition on the exponent shown in parenthesis):

Qpn

∫
|y|>|z|

dy |y|t−n = |z|t 1

p−t − 1

(
1− 1

pn

)
(t < 0)

∫
|y|<|z|

dy |y|t−n = |z|t 1

pt − 1

(
1− 1

pn

)
(t > 0)

∫
|y|=|z|

dy |y − z|t−n = |z|t
(
− 1

pn
+

1

1− p−t
(

1− 1

pn

))
(t > 0) .

(4.78)

Plugging (4.77) in (4.76) and using (4.78) to evaluate the x2 integrals, we end up

with the final result

Qpn ID2(x)
δ
= B(s, s)B(δ, δ)|x|2s−2n+δ , (4.79)

where as usual,
δ
= means equality up to terms which are finite in the limit δ → 0.

Though the computation is more cumbersome, the above procedure can also be

used to directly evaluate ID3(x) as well as any other Feynman diagram over the

p-adics since the integrals always reduce to sums of geometric series.

4.4 Higher derivative O(N) models on Rn

So far, in order to compare with standard results in the literature, we have gen-

erally set s = 2 when considering the O(N) model on Rn. One could reasonably

ask, what happens if we lift this restriction? The large N results, summarised in

section 4.1 in equations (4.1) and (4.2)-(4.3) remain valid. For generic s, gφ(δ)

has no pole at δ = 0. As for Qpn , this is associated with having only a finite renor-

malization of Gφφ rather than an anomalous dimension. For Qpn we understand

this as a consequence of the non-renormalization argument of [114], following
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quite generally from ultrametricity. In Rn a non-local kinetic term is not ex-

pected to be renormalized [140] due to the fact that Wilsonian renormalization

leads to correction terms polynomial in momenta—in other words local derivative

couplings in position space which do not affect the non-local kinetic piece. (This

reasoning is equally valid in Qpn , but due to the ultrametricity of the p-adic norm

a stronger version holds: As discussed in section 4.2.4, no derivative couplings

are ever generated.) Theories with a non-local kinetic term in Rn were already

studied in [126, 127]. Fisher, Ma and Nickel [126] considered precisely the theory

described by (4.1) in Rn and computed critical exponents in the ε expansion and

at large N , in the range n/2 < s < 2. The large N results presented in (4.2)-(4.3)

find perfect agreement with the anomalous dimensions γφ and γσ extracted from

the critical exponents:

Rn

η = 2− s+ 2γφ = 2− s+O(1/N2)

1

γ
=

(
s− 2γφ

n− s− γσ

)−1

= 1− 2s− n
s
− 8

N

ΓEuler(
s
2
)2ΓEuler(n− s)

sΓEuler(s− n
2
)ΓEuler(

n
2
)ΓEuler(

n−s
2

)2

×
[

ΓEuler(
s
2
)ΓEuler(n− s)ΓEuler(

n
2
− s)ΓEuler(

3s−n
2

)

ΓEuler(s)ΓEuler(n− 3s
2

)ΓEuler(s− n
2
)ΓEuler(

n−s
2

)
− 1

2

]
+O(1/N2).

(4.80)

In (4.80), η and γ are critical exponents computed in [126], while γφ and γσ are

obtained from (4.2)-(4.3). Generically for s ≥ 2, the local kinetic term ∼ (∂φ)2,

generated from Wilsonian considerations, becomes more relevant and dominates

the non-local kinetic piece, resulting in a non-vanishing anomalous dimension for

φ found by setting s = 2 in (4.2)-(4.3). The discontinuity in γφ at s = 2 can be

removed by accounting for the competition between the local kinetic term induced

from renormalization and the non-local kinetic piece, with the local kinetic term

argued to become more relevant at s = s? < 2 in such a way that γφ is continuous

along s [127, 140] (see also [141, 142, 143, 91]). In this chapter, however, we have

concerned ourselves with a (φiφi)2 deformation as shown in (4.1) with all other
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n 5 6 7

Nγφ
48

35π2 0 − 128
315π2

Nγσ − 1408
105π2 −14

3
− 15872

315π2

Table 4.1: Anomalous dimension predictions for s = 4.

relevant deformations appropriately tuned away, and the results presented in

(4.2)-(4.3) are valid as long as that continues to hold.

Perhaps a more interesting question is what happens when s = 4, or 6, or

some larger even number. At precisely these values, the original model (4.1)

recovers locality. It is then a higher derivative version of the O(N) model. Let’s

consider the case s = 4 for the sake of a focused discussion. Then

Rn S =

∫
dx

[
1

2
(�φi)2 +

λ

4!
(φiφi)2

]
, (4.81)

from which it follows that

Rn [φi] =
n− 4

2
[λ] = 8− n , (4.82)

and so we see that the upper critical dimension is n = 8, while the lower critical

dimension is n = 4. Between the upper and lower critical dimension, the inter-

action term (φiφi)2 is relevant, so it triggers a renormalization group flow which

we may suspect leads to a new critical theory in the infrared—provided relevant

deformations are appropriately tuned away. Precisely this sort of flow was con-

sidered in 8− ε dimensions in [130], and the infrared critical theory was referred

to as a Lifshitz point. Setting s = 4 in (4.2)-(4.3) leads to the predictions for

the anomalous dimensions at Lifshitz points shown in table 4.1, up to O(1/N2)

corrections to both γφ and γσ in each case.

These results were anticipated in [144]; in fact, results were given there for
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fixed s = 4 and arbitrary n ∈ (4, 8) in the form

Rn

η`4 = 4− s+ 2γφ

∣∣∣
s=4

=
1

N

(8− n)

n(n+ 2)

3× 2n−2

π3/2

ΓEuler(
n−3

2
)

ΓEuler(
n
2
)

sin
πn

2
+O(1/N2)

γ` =
s− 2γφ

n− s− γσ

∣∣∣∣∣
s=4

=
(n

4
− 1
)−1

− 1

N

ΓEuler(n− 4)

ΓEuler(
n
2
)ΓEuler(

n
2
− 2)2ΓEuler(4− n

2
)

×
(n

4
− 1
)−2

[
1 +

(10− n)(n− 5)

3
+

3(n− 6)(n− 8)

4(n+ 2)

]
+O(1/N2).

(4.83)

In (4.83), η`4 and γ` are quantities defined and computed in [144]. Explicit

expression in terms of ΓEuler can be derived for γφ and γσ starting from (4.2)-

(4.3) with s set equal to 4, and when this is done, perfect agreement with (4.83)

is found.

The expressions for γφ and γσ that we gave in (4.2)-(4.3) go smoothly to zero

at both the upper and lower critical dimensions. At the upper critical dimen-

sion, the natural expectation is that the only fixed point is the Gaussian theory,

and turning on λ causes us to run logarithmically away from it. At the lower

critical dimension (namely four), the physics may be richer, and we recover the

four-dimensional sigma-model considered in [129], where the value given for the

anomalous dimension of φ in an ε-expansion matches the s = 4 case of the 1/N

result (4.2)-(4.3). We comment further on the lower critical dimension at the end

of section 4.4.2.

4.4.1 A bound on the higher derivative action

To properly understand the field theory (4.81), we should list the relevant defor-

mations: for n ≥ 6,

Rn Srel =

∫
dx
[w

2
φi�φi +

r

2
φiφi

]
, (4.84)
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where [w] = 2 and [r] = 4. (Of course, φi�φi = −(∂φi)2/(2π)2 up to a total

derivative which we can discard.) With these extra terms added, the action

may no longer be everywhere nonnegative, and one might wonder about runaway

instabilities. The aim of this section is to provide an estimate which shows that

by adding a suitable constant term to the lagrangian, we can make it once again

nonnegative. This is the sense in which the action is bounded below. While

the estimates we give are fairly trivial, they are worthwhile to see given the

prevalence of instabilities and ghosts in higher derivative theories after passing

to a Hamiltonian or Lorentzian setting.

For n < 6, O(N) singlet operators schematically of the form φ2(∂φ)2 become

relevant as well, and we can proceed to φ4(∂φ)2 operators when we have n < 5.

Such a large assortment of terms would complicate the story too much for us to

give simple estimates, so let’s stipulate n ≥ 6 in this section.

We may bring the action into a form considered for example in [145, 146] by

trading w and r for two mass parameters, m1 and m2:

Rn S + Srel =

∫
dx

[
1

2
φiq(�)φi +

λ

4!
(φiφi)2

]
(4.85)

where

Rn
q(�) = (�+m2

1)(�+m2
2) . (4.86)

We can assume m2
1 < m2

2 without loss of generality, but we cannot necessarily

assume that the m2
i are positive. Aficionados of Pauli-Villars regulators will im-

mediately recognize (4.86) and the consequent tree-level momentum space prop-

agator:

Rn G
(0)
φφ(k) =

1

(k2 +m2
1)(k2 +m2

2)
=

1

m2
2 −m2

1

(
1

k2 +m2
1

− 1

k2 +m2
2

)
.

(4.87)
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The Pauli-Villars strategy is to let the 1/k4 behavior of this propagator improve

UV behavior, and then at the end of a computation take m2 large while m1

remains finite. (Normally in a Pauli-Villars context one would rescale φ by a

power of m2
2 −m2

1 to get rid of the 1/(m2
2 −m2

1) prefactor in the last expression

in (4.87).) The minus sign on the 1/(k2 +m2
2) term in (4.87) is understood as an

indication of ghosts (i.e. negative norm states in the Hilbert space) in a canonical

quantization approach. Indeed, pathological features of higher derivative scalar

field theories have been explored extensively: see for example [145, 147, 146, 148]

and references therein. Typical pathologies hinge on a Hamiltonian construction

in which one sees an instability along the lines of Ostrogradsky’s theorem [149],

and/or failures of reflection positivity [145] that lead to negative norm states in

a canonical quantization approach. In a Euclidean quantum field theory setting,

these pathologies may prove less significant as long as we do not attempt canonical

quantization. Instead, we should form a Euclidean path integral

Rn Z =

∫
Dφ e−S[φ]−Srel[φ] , (4.88)

and then what matters is that the total action should be bounded below and

that it should not have flat or nearly flat directions that prevent convergence.

Boundedness can be demonstrated explicitly, as follows.

Rn

∣∣∣∣∫ dx
1

2
(m2

1 +m2
2)φi�φi

∣∣∣∣ ≤ (∫ dx
1

4ξ
(m2

1 +m2
2)2φiφi

)1/2(∫
dx ξ(�φi)2

)1/2

≤
∫
dx

[
ξ

2
(�φi)2 +

1

8ξ
(m2

1 +m2
2)2φiφi

]
,

(4.89)

where the first inequality is Cauchy-Schwarz and the second is the arithmetic-

geometric mean inequality, and ξ is any positive real number. Plugging (4.89)
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into (4.85), we arrive at

Rn

S + Srel ≥
∫
dx

[
1− ξ

2
(�φi)2 − 1

8

(
1− ξ
ξ

(m2
1 +m2

2)2 + (m2
1 −m2

2)2

)
φiφi

+
λ

4!
(φiφi)2

]
.

(4.90)

We must choose ξ ∈ (0, 1) in order to get the derivative term on the right hand

side of (4.90) to be positive definite, so as to make the lower bound strong when

the φi are highly oscillatory. Choosing ξ ∈ (0, 1) makes the mass term on the right

hand side of (4.90) negative, which seems like the beginning of an instability; but

as long as λ > 0 the overall value of the lagrangian density is bounded below.

We could adjust the lagrangian density by a constant term (which is after all a

relevant deformation) to achieve an action which can be shown to be nonnegative

through the approach outlined in (4.89)-(4.90). In short, the situation is no worse

than the case of the usual O(N) model on Rn with negative mass squared. It

should be borne in mind that the inequalities might be far from sharp. So the

actual behavior of S+Srel could be somewhat better than we have demonstrated.

4.4.2 Qualitative features of renormalization group flows

Starting from the free massless higher derivative theory S0 =
∫
dx 1

2
(�φi)2, let’s

consider what renormalization group flows there must be, indicating in each case

what the likeliest outcome is in the infrared. For simplicity we avoid consideration

of deformations which lead to soft or spontaneous breaking of translational or

rotational symmetry on Rn. We assume that n > 4 so that the dimension of φi

is positive, and we assume n < 8 so that we have relevant deformations, namely

φ2, (∂φ)2, or φ4, where we omit O(N) indices for brevity. Let’s consider in turn

the deformations with respect to each:
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• Deforming only by φ2 with a positive coefficient looks boring in the sense

that it can only lead to a theory in which there are no light degrees of

freedom. We exclude the case of adding −φ2 to the action because then

there really would be a runaway instability.

• Deforming only by (∂φ)2—where again to avoid instability we must insist on

a positive coefficient—leads trivially to the massless two-derivative Gaus-

sian theory, with action (proportional to)
∫
dx 1

2
(∂φ)2. We say “trivially”

because there are no loop diagrams. All we are doing is setting m2 6= 0

in (4.86) while keeping m2
1 = 0. The only non-trivial Green’s function is

the two-point function Gφφ(k) ∝ 1
k2 − 1

k2+m2
2
, the same as for a free mass-

less scalar plus a Pauli-Villars regulator. Passing to the regime |k| � m2

amounts to excising the Pauli-Villars part of the propagator.

• Deforming by (∂φ)2 and φ4, with positive coefficients for each, while tuning

the coefficient of φ2, should enable us to again reach massless two-derivative

Gaussian theory. The key point is that (∂φ)2 is more relevant than the

original (�φ)2 term, so the latter drops out; and in the new dimension

counting based on (∂φ)2, the interaction term φ4 is irrelevant, so it too

should attenuate away as we proceed toward the infrared. In the process,

φ2 terms are generated, so to wind up at the free massless Gaussian theory

rather than a massive theory we must tune φ2.

We could also take the Pauli-Villars point of view and reason that our

deformed theory in this case is a Pauli-Villars regularization of the usual

two-derivativeO(N) model. Since we are above the upper critical dimension

of this two-derivative theory, the transition from the disordered state to the

ordered state must be described by mean field theory, i.e. the massless two-

derivative Gaussian theory.
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• Deforming by φ4 with a positive coefficient while tuning both (∂φ)2 and φ2

should enable us to reach new conformal theories whose anomalous dimen-

sions for integer n are listed in table (4.1). Deforming only by φ4 doesn’t

make sense because loop effects will presumably generate (∂φ)2 and φ2. If

we don’t tune the φ2 term, we’ll wind up with a massive theory, while if

we don’t tune the (∂φ)2 term we could wind up with the two-derivative

Gaussian theory.

Below n = 6, new relevant O(N) singlets appear: the aforementioned

φ2(∂φ)2 operators. Their coefficients might also need to be tuned in or-

der to arrive at the new conformal field theories whose existence we are

hypothesizing. Relevant operators of this type may be relatively harm-

less since their dimensions are always higher than the operator φ4 which is

driving the flow.

Altogether, four-derivative φ4 theory should augment the space of fixed points

of the O(N) model as indicated in figure 4.8. If this picture is accepted, the next

natural question is what happens at the lower critical dimension. In the case of

two-derivative theories, the key point for N > 1 is that non-linear sigma models

(NLσM) on SN−1 become renormalizable in n = 2—though for N > 2 they are

asymptotically free rather than conformal. In the case of N = 1, the symmetry

group is Z2, and we obtain the c = 1/2 minimal model as the continuum limit

of 2d Ising. In other words, the NLσMs (or, for N = 1, the c = 1/2 minimal

model) are at the terminus of the line of Wilson-Fisher fixed points as we proceed

downward in dimension.

Proceeding by analogy, we might expect in n = 4 some new way of realizing

O(N) symmetry in a renormalizable field theory. The obvious candidate is a

NLσM on SN−1, where the kinetic term is (�φi)2 with φiφi constrained to be

equal to 1. Exactly such a theory is considered in [129], and the Beta function



194

n = 8

n = 4

n = 2

RG

RG

RG

add ϕ4

tune (∂ϕ)2

tune ϕ2

add (∂ϕ)2

add ϕ4

tune ϕ2

add ϕ4

tune ϕ2

S = ∫dnx
1
2
(ϕ)2 S = ∫dnx

1
2
(∂ϕ)2

Li
fs
hi
tz

W
ilson-Fisher

M
assless

G
aussian

T
heory

M
assless

G
aussian

T
heory

Figure 4.8: The four-derivative extension of the space of fixed points of φ4 theory.

computed there accords with the natural expectation that for N large enough

(larger than 2) the theory is asymptotically free in the ultraviolet and confining

in the infrared. Since the NLσM construction is unavailable for N = 1, we

are thrown back on the more abstract proposal that there could be some four-

dimensional Euclidean conformal field theory whose natural degrees of freedom

we don’t know but which realizes a global Z2 symmetry.

It is of course tempting not to stop with φ4 theory; as in two-derivative theories

one can consider higher powers of φ, leading to new branches of fixed points that

fork off the Gaussian theory at dimensions that are successively closer to n = 4

as one raises the power of φ. Such fixed points are called multicritical in the

two-derivative context because one has to tune several relevant operators to hit

the infrared fixed point. They are thought to connect to minimal models in the

lower critical dimension [150]. Multicriticality will be even more pronounced for
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four-derivative theories, because the list of relevant operators proliferates quickly

as we head toward n = 4 and includes an assortment of two-derivative operators.

Let us nonetheless conjecture that multicritical versions of Lifshitz fixed points

above n = 4 exist for the O(N) model, and that for N = 1 they are continuously

connected with new conformal field theories in n = 4 which are analogs of unitary

minimal models. These new theories, both in n = 4 and in higher dimensions,

may be amenable to treatment via the conformal bootstrap, similar to [151]. If all

this is true, then one might hope that other classic field theory constructions in

n = 2 generalize to higher derivative theories in n = 4; in such a case, we clearly

have a lot of work to do to understand what the full picture of four-dimensional

Euclidean field theories really comprises!

One also need not stop with four-derivative theories. The next case to consider

is φ�3 φ theory. The upper critical dimension (where φ4 becomes marginal)

is 12, and the lower critical dimension is 6. It is easy to read off from (4.2)-

(4.3) the anomalous dimensions of φ and φ2 at conjectural fixed points anywhere

between n = 6 and 12. The list of relevant deformations will be even more

extensive than in the four-derivative case, and correspondingly one must expect

quite a complex picture of possible renormalization group flows. Problems with

canonical quantization and Ostrogradsky instabilities are likely to be ubiquitous

in all the higher derivative theories we are considering, but as Euclidean path

integral field theories they are probably well defined due to bounds along the lines

of section 4.4.1. In fact, by studying the analytical structure of the conformal

blocks of generalized free CFTs (unitary and non-unitary) and nearby Wilson-

Fisher critical points, the authors in [152, 153] derive expressions for the first

terms of the anomalous dimensions of classes of scalar operators in an ε-expansion,

and their results for γφ and γφ2 in theories with (in our notation) s = d/2 exactly

matches (4.2)-(4.3) in arbitrary dimension.
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4.4.3 A lattice implementation

Just as ordinary two-derivative φ4 theory (with real-valued φ, i.e. N = 1) is real-

ized as a continuum limit of the Ising model with nearest neighbor interactions,

we might expect four-derivative φ4 theory to be realized as a continuum limit of an

Ising model with next-to-nearest neighbor interactions. We have in mind partic-

ularly a lattice action along the lines of the anisotropic next-to-nearest neighbor

Ising model (ANNNI for short) [154, 155], but as isotropic as the underlying

lattice allows:

S = K
∑
~x∈Zn

(�σ~x)
2 + J

∑
~x∈Zn

∑
~y∼~x

(σ~x − σ~y)2 , (4.91)

where we define a lattice laplacian

�σ~x =
∑
~y∼~x

(σ~x − σ~y) . (4.92)

The notation
∑

~y∼~x means that we hold ~x fixed and sum over all ~y which are

nearest neighbors of ~x, which is to say 2n nearest neighbors when we work on the

lattice Zn. With the action (4.91) in hand, we can define a partition function

Z =
∑
σ

e−S , (4.93)

where the sum is over all possible spin configurations. If we set K = 0, then

according to standard reasoning, there is a phase transition between ordered and

disordered phases that occurs at a special value of J , and it will have mean field

theory critical exponents when n > 4 because n = 4 is the upper critical di-

mension of two-derivative φ4 theory. But if 4 ≤ n < 8, we should be able to

find a critical point not described by mean field theory by tuning both K and

J . Instead, the critical point should be described by the endpoint of a renormal-

ization group flow from the massless four-derivative Gaussian theory, triggered

by φ4 deformation and with the relevant operators φ2 and (∂φ)2 appropriately

tuned—the Lifshitz point of [130]. A caveat, as previously noted, is that as one
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gets close to the lower critical dimension, additional relevant operators appear,

so it is conceivable that more lattice quantities must be tuned than just K and

J . For n ≥ 6 this should not be a problem.

Similar lattice constructions can obviously be given for N > 1 theories. We

could even construct next-to-next-to-nearest neighbor models which should give

Lifshitz-like critical points in dimensions between 6 and 12—but the computa-

tional difficulties associated with lattices in such large dimensions, not to mention

the number of tunings required to suppress relevant directions, seem likely to

make anything beyond next-to-nearest neighbor models impractical. The recent

work [156] indicates that n = 5 lattice simulations of the Ising model on a large

enough lattice to see scaling behavior are accessible with modern computational

methods. So it should be possible to do a direct search on the lattice for non-

mean-field critical behavior in (4.91) in n = 4, 5, and maybe 6. It would also be

interesting to study finite-range Ising models on the Bethe lattice, whose recursive

structure often leads to exactly solvable models and whose exponential growth

mimics infinite dimension [157, 158]. Such studies might eventually lead us back

to the p-adics through the holographic relation of the Bethe lattice (also called

the Bruhat–Tits tree) with coordination number p+ 1 to the p-adic numbers Qp

on the boundary.

4.5 Discussion

The main technical result of the chapter, summarized in (4.2)-(4.3), is the ex-

pression of anomalous dimensions γφ and γσ as residues of meromorphic functions

which are simple rational combinations of the “local” Beta function, gφ(δ) and

gσ(δ) of a quantity δ at δ = 0, where δ is understood as a shift in the dimen-

sion of the Hubbard-Stratonovich field σ that we impose as a regulator and then
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remove at the end of the calculation. These meromorphic functions come from

diagrammatic amplitudes of the form

IV,m(za) =

∫
dV x

(
m∏
a=1

V∏
i=1

1

|xi − za|δia

)(∏
i 6=j

1

|xij|δij

)
(4.94)

where xij = xi − xj. V is the number of internal vertices, each at a spatial

location xi. The notation
∫
dV x means that we are integrating xi over all space;

and “space” here could be Rn or Qpn . The number of external vertices is m,

each at a spatial location za. Based on the Feynman rules for the particular

theory under consideration (the O(N) model in our case), we are able to assign

values to the exponents δij and δia which are linear functions of the regulator δ.

Then IV,m(za) becomes a meromorphic function of δ, and a linear combination

of several such functions, each deriving from a different diagram, gives us the

meromorphic functions gφ(δ) and gσ(δ) that we are eventually interested in.

In general, such integrals give complicated answers. However, there are par-

ticular cases where the answer simplifies. If m = 2 and V = 1, then IV,m is just

a convolution, so the answer is expressed naturally in terms of the appropriate

variant of the Beta function together with a power of z12. If m = 3 and V = 1,

then the same thing happens again provided the exponents obey a sum rule: This

is the star-triangle identity (4.69). The striking point about O(N) model calcu-

lations, at least to the order we have exhibited here, is that all the amplitudes of

interest for the computation of anomalous dimensions are expressible as products

of the local Beta function times power-law functions of the za, in both Rn and

Qpn .15

There is an interesting connection between the amplitudes IV,m and string

15Final expressions for the functions gφ(δ) and gσ(δ) involve factors of B(n− s, n− s) in the
denominator for a special reason: this particular Beta function appears in the leading order
propagator for σ. In other words, negative powers of B(n−s, n−s) appear in the meromorphic
functions only because they appear in the coefficients we must use to combine the IV,m(za) into
1PI amplitudes.
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scattering amplitudes. The Beta function appears in the star-triangle identity

precisely as it appears in four-point scattering amplitudes of tachyons, i.e. the

Veneziano or Virasoro-Shapiro amplitude.16 The star-triangle identity is in fact

a generalization of the way one obtains the Veneziano amplitude by integration

over the position of one vertex operator over the boundary of the string. The

sum rule on the exponents is understood in this context as related to momentum

conservation plus the on-shell condition for external string states. Generalizations

of the Veneziano amplitude to integrations over all of Rn were considered in [159],

while generalizations to integrations over Qp are the foundation of p-adic string

theory [65, 66, 48]. If we add more internal vertices, then in the string theory

context, instead of a four-point scattering amplitude, we would be considering a

higher point amplitude—still at tree level. Might we understand the expression

of the IV,m integrals we need for anomalous dimensions in the O(N) models in

terms of products of Beta functions as a consequence of a factorization property

of string amplitudes?

The analogy between diagrammatic amplitudes in scalar field theory and

string scattering helps our intuition in understanding why the anomalous di-

mension γφ vanishes for the O(N) model defined over Qpn , but not for the usual

O(N) model defined over Rn. We saw in section 4.3.3 that after canceling a

quadratic divergence with local counterterms, the amplitude in the p-adic case

had no further divergences, but in the Archimedean case a logarithm appeared

that gave rise to the anomalous dimension. From the point of view of meromor-

phic functions, we wound up with an integral ID that located us at a pole in

the Archimedean case which would be understood in string scattering terms as

16We should bear in mind that our BR(t1, t2) is not the same as BEuler(t1, t2); rather, BR(t1, t2)
is a crossing-symmetric combination of Euler Beta functions. Thus when we refer to the
Veneziano amplitude, we really mean the crossing-symmetric combination without Chan-Paton
factors. See, for example, equation (2.4) in chapter 2 where we referred to BR as B∞.
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an infinitely sharp resonance due to the exchange of a first-excited string state

(where tachyons are counted as the unexcited state). The absence of a pole in

the p-adic case implies the vanishing of γφ and corresponds to the fact that the

p-adic string has only one state in its spectrum, namely the tachyon. In general

we would like to associate divergences in field theory with on-shell divergences in

string scattering amplitudes.

Once we express diagrammatic amplitudes in the form (4.94), it is natural to

consider a large generalization, in which we replace Rn or Qpn with some homoge-

neous space—not necessarily Archimedean. The propagators 1/|x|2∆ would then

naturally be replaced by representations of a group which fixes a point in the

homogeneous space.17 For Rn equipped only with conformal structure rather

than full metrical structure, this group would consist of dilations and rotations

around the origin, so on top of 1/|x|2∆ we could get a factor depending only on

the direction of x and providing a unitary representation of the rotation group.

In common parlance, we could consider operators with spin. For Qpn , the natural

notion replacing spin hinges on multiplicative characters, as remarked in [59]; so

in place of 1/|x|2∆ we would have θ(x̂)/|x|2∆ where x̂ ≡ x|x| is a unit in Qpn and

θ is a unitary multiplicative character of the group of units. It seems likely that

there are significant generalizations of the Beta functions we have used, related

to convolving generalized propagators. Star-triangle identities and more general

diagrammatic amplitudes may be similarly capable of generalization, and the im-

portant question becomes what kind of meromorphic functions appear and how

their poles translate into anomalous dimensions, or appropriate generalizations

17The group of interest is generally not the full group preserving a point. For instance,
in the case of Rn equipped only with conformal structure, special conformal transformations
are excluded even though they preserve the origin. If G admits an Iwasawa decomposition
G = KAN , and M is the subgroup of K comprising elements which commute with all of A,
then on the homogeneous space G/MAN the generalized propagators would be representations
of M and A. See the related discussion in [160].
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thereof. It would be fascinating to try to extend standard quantum field theoretic

notions of locality and renormalizability to this more general setting.



Chapter 5

Conclusion and outlook

In this thesis we developed a non-Archimedean version of the (Euclidean) AdS/CFT

correspondence (chapter 2), pointed out striking connections with the usual

Archimedean AdS/CFT, and described simple bulk theories (chapters 2-3) and

boundary theories (chapters 3-4) in some detail. The version of the correspon-

dence we focussed on involved a bulk which had the fixed geometry of the Bruhat–

Tits tree (an infinite regular graph without cycles of fixed coordination number

pn + 1, and the isometry group PGL(2,Qpn)) and a boundary manifold con-

structed from Qpn , the unramified field extension of the p-adic numbers. Chapters

2 and 3 provided a proof of principle for the non-Archimedean correspondence

by exhibiting one of the touchstones of holography: Bulk Feynman diagrams on

the Bruhat–Tits tree compute correlators which have the transformation prop-

erties of correlators in a conformal field theory with the global conformal group

PGL(2,Qpn). A natural question to ask is: How does the Lorentzian version

of the non-Archimedean AdS/CFT work? The causal structure of a Lorentzian

space-time is not entirely obvious in the non-Archimedean setting because norms

on a field are Euclidean (in particular, |x| = 0 ⇔ x = 0). Thus one can’t have,

for example, light-like directions. Perhaps one can look outside field norms, but

202
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then does the Bruhat–Tits tree need to be replaced with some other construction,

and do we still have p-adic numbers on the boundary?

It was clear throughout this dissertation, that the discreteness of the bulk,

and the ultrametric nature of the boundary manifold resulted in a calculation-

ally accessible framework for probing the (Euclidean) AdS/CFT correspondence.

Recent interest in tensor network realizations of AdS/CFT has stemmed from de-

veloping a sufficiently simple framework for understanding how holography works

in practice, i.e. how exactly is the bulk encoded in the boundary theory. Thus

recent progress in relating the p-adic AdS/CFT framework to tensor network con-

structions [59, 60] provides a promising venue for furthering our understanding

of holography.

A surprising property of the three-point function we found in chapters 2-3

may be summarized as the following remarkable adelic product. Setting n = 1 in

(2.144), and for xi ∈ Q,∏
v=p,∞

〈O(x1)O(x2)O(x3)〉v
(−ηvg3)

=
ζA(∆)3ζA(3∆− 1)

2ζA(2∆− 1)3
, (5.1)

where the adelic zeta function ζA is defined in (1.47). A more general adelic prod-

uct for three-point correlators of scalar operators of arbitrary scaling dimensions

may be obtained from (3.12) with the structure constants given by (3.22)-(3.24).

The surprising observation that all coordinate dependence drops out of the adelic

product is true only for n = 1, because we could employ the adelic product iden-

tity (1.44). Despite the fact that the adelic product in (5.1) doesn’t work for

n 6= 1, it is clear from the expressions for the structure constants that they have

identical functional forms (for general n) when expressed in terms of local zeta

functions. We demonstrate further evidence in this direction at the level of the

four-point function in chapter 3. This suggests a deep connection between the

Archimedean and non-Archimedean formulations which we do not fully under-
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stand, but which offers a new vantage point into the workings of AdS/CFT.

To make the product in (5.1) work for general n, we would need a product rule

like the one in (1.44) which works with multi-dimensional coordinates. One pos-

sible way out is to start with an algebraic number field K of degree n, and then

complete it at its finite (non-Archimedean) and infinite (Archimedean) places.

The local fields so constructed are no longer Qp and R. The Archimedean com-

pletion is some embedding of K in C, while the non-Archimedean completions

are p-adic numbers, where p is a prime ideal in the ring of integers of K (see,

for example [161, 162, 163] for expository accounts). It would be very interesting

to develop a p-adic AdS/CFT correspondence based on the non-Archimedean

completion of general algebraic number fields, such that the three-point function

admits an adelic identity similar to (5.1), but for any n. Could such a construc-

tion be more similar to higher dimensional AdSn+1/CFTn correspondence, than

the one developed in this thesis?

We saw in chapters 2 and 3 that p-adic AdS/CFT shares several features

of a low dimensional AdS/CFT correspondence, such as the structure of the

isometry group. However, it seems to lack a key feature of low dimensional

CFTs: local conformal invariance and the infinite dimensional Virasoro algebra.

A p-adic field theory may be defined on a space which is an n-dimensional vector

space over the p-adics Qp, by for example, considering the unramified extension

Qpn . Unlike the Archimedean case, nothing special happens at low values of n.

In the Archimedean case, the boundary space has a field structure only when

n = 1 or n = 2 (corresponding to the field of R and C, respectively). No

further field extensions of R are possible. The dimensions n = 1 and n = 2

are also the dimensions when conformal symmetry in the Archimedean case is

enhanced to the full Virasoro symmetry. In the p-adics, the ability to construct

field extensions of Qp doesn’t terminate at n = 2; one can consider field extensions
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of any higher degree as well. Is this a hint that a (non-Archimedean) version of

Virasoro symmetry is present at all values of n [72]? Or none? An important

related question is what, if any, are the Virasoro generators in a p-adic CFT.

Considerable simplifications occur in p-adic CFTs due to the lack of deriva-

tives in the operator product expansions, as discussed in chapter 3. This leads, for

example, to a very simple closed-form expression for the four-point functions, due

to the fact that the conformal block decomposition does not involve derivatives of

primary operators, or any descendants in the intermediate channels. Moreover,

as discussed in chapter 3, there are only finitely many single poles present in the

intermediate channels of the conformal block decomposition, as opposed to in-

finitely many of them in the Archimedean case. However, a comparison between

the precise coefficients accompanying the poles reveals remarkable adelic similar-

ities. This is a hint that perhaps a simpler adelic story exists for the four-point

function before one sums over all the poles. Thus developing a p-adic version of

the Mellin amplitudes story [164, 165], where at least all poles associated with

the multi-trace exchanges are factored out, may be a desirable next step.

In chapter 3, we also took the first steps towards identifying a dual pair of the-

ories. We constructed a minimal bulk action which reproduced the two-, three-

and four-point functions of scalar operators of the free O(N) model. We tuned

various couplings in the bulk theory to force a match between the bulk and bound-

ary calculations for the normalizations of the two- and three-point functions. We

had one final tunable parameter available to force a match between the bulk and

the boundary for the functional form of the four-point function. With no ad-

ditional parameter available to be tuned, it wasn’t guaranteed that the overall

coefficient of the holographically obtained four-point function, which depended

on the already tuned bulk couplings, would agree with the normalization of the

four-point function obtained via field theoretic methods on the boundary. That
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the coefficients were found to agree can be seen as the first example of a duality

test in the non-Archimedean AdS/CFT correspondence. Owing to the simplis-

tic nature of non-Archimedean AdS/CFT, further tests which constrain the bulk

action should be within reach. For example, it would be interesting to extend

the match to higher point correlators. However, an understanding of symmetry

principles which guide the construction of the bulk is missing.

The story in the Archimedean case also differs significantly. The bulk dual

of the free O(N) model is a Vasiliev higher spin theory, as discussed in chapter

1. In this dissertation, we have restricted ourselves to just scalar fields in the

bulk, and scalar operators on the boundary. The construction of local conserved

currents in a p-adic field theory, for example the analog of the infinitely many

higher spin conserved currents in the free Archimedean O(N) model, is lacking.

Correspondingly, the description of gauge fields in the bulk is lacking as well.

More generally, it would be highly desirable to learn how to describe spinning de-

grees of freedom in the bulk and the boundary theories. At least in the boundary

theory, this will likely involve the inclusion of more general multiplicative charac-

ters as suggested in section 4.5 (see also discussions in [68, 166, 167, 59]). With

this in hand, one would be able study many more rich and interesting theories

such as the non-Archimedean versions of various gauge theories.

A connected, but seemingly hard task is the bulk description of spin fields. Re-

cently in [32], some progress was made towards extending the bulk constructions

of this thesis to include fluctuating gravity. The key idea involves considering

fluctuations in the lengths of edges on the Bruhat–Tits tree, as the graviton de-

gree of freedom, and also involves a graph-theoretic notion for the Ricci scalar

(which does not depend on defining holonomies on a lattice). The operator dual

to the edge-length fluctuations was found to share some properties with the stress-

tensor, but lacked many others, such as a notion of spin. However, multiplicative
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characters were not included in the analysis, which perhaps explains why a spin

structure is lacking. Nevertheless, a discrete version of Einstein equations could

be written, whose exact solutions included, other than the Bruhat–Tits tree it-

self, certain discrete graphs with cycles (the simplest example being a tree with

one cycle). Roughly, a tree with a single cycle is understood as the quotient of

the Bruhat–Tits tree with a Schottky subgroup (see [59] and references therein),

and corresponds to a negatively curved bulk geometry with a black hole. These

results seem to be suggest we are headed in the right direction but are missing

one or two key ideas to arrive at a satisfactory (non-Archimedean) description of

fluctuating geometry.

Moving on to field theory, in chapter 4 we studied the renormalization group

flows of an interacting p-adic quantum field theory, and computed the anomalous

dimensions of low lying operators in the ε-expansion as well as the 1/N expansion

in large N , at the interacting fixed point. The large N methods admitted mostly a

simultaneous treatment of Archimedean and non-Archimedean theories, and this

was apparent in the expressions obtained for the anomalous dimensions, which

had a universal form, independent of the choice of the local field.

Anomalous dimensions are related to critical exponents which can be mea-

sured in experimental systems and checked against predictions from a CFT which

lies in the same universality class. If a non-Archimedean version of the CFT exists

as well, then we have an infinite number of anomalous dimensions (one for every

prime p, and one for the place at infinity) associated with some operator. Pre-

sumably, the one measured experimentally is associated with the Archimedean

anomalous dimension, but we know the non-Archimedean anomalous dimensions

are related to the Archimedean one via a universal formula in terms of residues

of meromorphic functions constructed out of local zeta functions. This begs the

question: Do non-Archimedean anomalous dimensions have any physical inter-
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pretation, i.e. can they be measured directly in experiments?

This leads to a philosophical question about the non-Archimedean framework

advanced in this thesis. Is it just a convenient mathematical construction, or

does it have a physical significance of its own? We have shown in this thesis hints

of connections between Archimedean and non-Archimedean theories via some

adelic relations, but so far it is not clear if we can build purely adelic theories

(perhaps even those that describe our Nature) where no norm (Archimedean or

non-Archimedean) is preferred over another.
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