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Abstract 

 Iron pyrite nanocrystals have been synthesized using a hot-injection method with a 

variety of amines and characterized with properties necessary for photovoltaic devices.  The iron 

pyrite nanocrystals were characterized using X-ray diffraction, scanning electron microscopy, 

transmission electron microscopy, optical absorption, micro-Raman, and micro-

Photoluminescence.  The optical absorbance spectra showed the large absorption in the visible 

and near infrared spectral range for the nanocrystals as well as to show the band gap.  The face-

centered cubic crystal structure of the iron pyrite nanocrystals was shown by matching the 

measured X-ray diffraction pattern to a face-centered cubic iron pyrite reference pattern.  Using 

Bragg’s law and Scherrer’s formula helps to calculate the grain size and lattice spacing based 

upon the X-ray diffraction pattern.  The scanning electron microscopy produces images that 

show the particle size of the nanocrystals while the transmission electron microscopy produced 

images that show the lattice spacing and grain size for the iron pyrite nanocrystals that are 

compared to the previously mentioned calculated grain size and lattice spacing.  The micro-

Raman and micro-Photoluminescence are used to compare the synthesized iron pyrite 

nanocrystals to natural-bulk iron pyrite.  The micro-Photoluminescence is also used to calculate a 

band gap and compare this band gap to the one obtain by the optical absorbance spectra. 
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1. Introduction 

 Iron pyrite (FeS2) has been a material investigated recently due to the optical properties 

and cost of the material lending itself greatly for photovoltaic devices.  The optical properties of 

the iron pyrite are promising for photovoltaic devices due to the reported indirect band gap of 

0.95 eV, direct band gap of 1.03 eV, suitable light absorption coefficient of 10�	���� for the 

band gap of 0.95 eV, high electron mobility of 230	���
	�
��

��, the minority carrier diffusion 

length of 100‒ 1000	��, and the vast availability of the material [1]-[20].  The availability of 

the material helps lower the cost of the iron pyrite to a significantly lower material extraction 

cost than a large portion of the other materials investigated for photovoltaic devices.  The 

properties and cost of iron pyrite could eventually prove to be a practical method of producing 

solar energy.  One of the main properties necessary for creating photovoltaic is the ability to 

absorb a considerable portion of the solar spectrum.  There have been different materials capable 

of performing this feat from crystalline silicon, to amorphous silicon, and also gallium arsenide 

(GaAs).  While the efficiencies of Si and GaAs have made significant strides towards 

approaching a theoretical maximum, iron pyrite has yet to exhibited 5% efficiency, despite the 

band gap of iron pyrite leads to a maximum theoretical efficiency of well over 20% [14]. 

 The low material cost of iron pyrite is due in part to the abundant and widespread nature 

of the material and because of the iron pyrite being associated with valuable minerals and 

materials, such as sphalerite, chalcopyrite, galena, and gold [8],[10].  This abundant nature and 

association with other materials has led to the perception of iron pyrite being a waste material 

that has to be separated by an expensive procedure, with some of the procedures being either 

leaching or flotation.  It has also been instrumental in causing acid rock damage that cost the 
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mining industry more than $1 million per day [8].  These factors have help lead to the material 

extraction cost of silicon being more than 20,000 times the material extraction cost for iron pyrite 

[9].  

1.1 Structure of Iron Pyrite 

 The structure of iron sulfide can exist in a variety of forms that include FeS, Fe1-xSx, and 

FeS2.  The crystal structure of FeS is of a troilite, the Fe1-xSx exhibits a pyrrhotite, and the FeS2 

can be of a marcasite or pyrite structure [21].  While all three of the forms are iron sulfides, only 

the iron pyrite exhibiting a face-centered cubic crystal structure has the desired attributes.  One 

of the reasons that FeS and Fe1-xSx is not a desired crystal structure is due to FeS having a 0.04 

eV band gap while Fe1-xSx has a 0.2 eV band gap.  Considering a desirable band gap range of 0.9 

to 1.7 eV is necessary for achieving a maximum efficiency percentage of at least 28%, the crystal 

structure of pyrrhotite and troilite would be undesirable [22].  Because of the adverse band gap 

of the FeS and Fe1-xSx highlights the need to have a material that is purely FeS2. 

 Within FeS2 there are two possible crystal structures, the pyrite and marcasite structure.  

The pyrite is a face-centered cubic crystallographic structure while the marcasite is an 

orthorhombic structure.  Marcasite is considered to be a less stable structure that has a band gap 

of 0.34 eV that is undesirable for photovoltaic devices [5],[8].  Because of the possibility of the 

marcasite structure existing within FeS2 alongside the pyrite and degrading the optical properties 

of the FeS2 leading to a poly-phase device rather than the desired phase-pure device.  The face-

centered cubic iron pyrite is one of the most common of the sulfide minerals that has a structure 

in the same vein as NaCl.  The face-centered cubic iron pyrite is structured by having the Fe 

atoms on both the corners and the center of the faces of the structure while the S2 dumbbell 
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shaped atoms are located midpoint of the edges as well as the absolute center of the cube [24].  

The aforementioned face-centered cubic structure for the iron pyrite is shown in Fig. 1.1. 

 

1.2 Optical Properties of Iron Pyrite 

The optical properties of iron pyrite have been shown to have a suitable band gap, high 

 

Fig. 1.1. Above is the crystal structure of face-centered cubic iron pyrite with one atom of iron 
(Fe) on each corner and face of the cube and the two atoms of sulfur (S2) is on each 

edge of the cube as well as in the center of the cube. 
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optical absorption coefficient, and high electron mobility that can be either an n-type or p-type 

semiconductor material [8],[23].  The band gap of iron pyrite has been widely reported with 

having an indirect band gap of 0.95 eV while also having a direct band gap of 1.03 eV [1]-[20].  

There has been a slight range in the indirect band gap that has been reported to be from 0.8 to 1.1 

eV however, the majority exhibits the 0.95 eV for the indirect band gap that has been widely 

reported [14].  An integrated absorption coefficient ranging from 104 to  3.3 × 105 cm-1 for the 

wavelength range of 300 to 750 nm has been reported that helps the iron pyrite have strong 

absorption within the visible region of the solar spectrum [10],[14],[25].  Having high electron 

mobility in the iron pyrite is beneficial due to the exciton dissociation rate depending on the 

mobility in potential photovoltaic devices [26].   

1.3 Synthesis Methods 

 To synthesize iron pyrite there have been several methods that include surfactant assisted 

hot-injection method, metal-organic chemical vapor deposition, thermal sulfidation of iron, 

chemical vapor transport, electrodeposition, and facile synthesis [5],[13],[15],[21].  Each method 

has been utilized to create a different type of iron pyrite, from creating a thin film, to 

nanocrystals, and all the way to bulk iron pyrite.  The hot-injection method, also referred to as 

the colloidal or pyrolytic method, was chosen to investigate due to the capabilities to produce 

phase-pure nanocrystals that can be scaled up to mass production levels.   

 There have been several variations of the hot-injection method, but the basic premise has 

been to create one solution, A, and to inject A into a second solution, B, at an elevated 

temperature followed by stirring for a pre-determined amount of time to create a new solution, 

AB.  This AB is then purified by a chloroform and ethanol mixture.  To separate the desired 
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nanocrystals from the rest of the solution a centrifuge with additional chloroform is used.  This 

process removes the undesired residual products as well as larger nanocrystals than preferred. 

 

1.3.1 Advantages of the Hot-Injection Method 

 Some of the advantages of the hot-injection method is the ability to have fairly quick 

nucleation, highly accurate and precise particle size control, and the high temperature can help 

lead to quality crystal structure.  There is also the added benefit of the lack of toxic or expensive 

chemicals used in the hot-injection method for the purpose of synthesizing iron pyrite 

nanocrystals.  The quick nucleation is caused because of the injection of a room temperature 

Fig. 1.2. Two X-ray beams with identical wavelength and phase approach a sample and scatter 
off of two different atoms within the sample.  The lower beam travels a distance greater 

than the upper beam by a distance of ( )θsin2d . 
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precursor into a hot liquid, normally a solvent.  After the injection into the hot liquid, there is the 

formation of nuclei and to prevent the formation of new nuclei afterwards, the solution is then 

cooled down.  For size control, the solution is heated to less than 300°C to allow for the existing 

nuclei to grow while preventing the formation of nuclei occurring.  The chosen temperature to 

heat the solution up to is one of the determining factors to the size of the resulting nanocrystals 

[27].  By controlling the formation of new nuclei, and controlling the temperature and time 

variables, the resulting nanocrystals will be of similar sizes and shapes.  This same process 

should also be able to be scaled up for larger scale production of iron pyrite nanocrystals. 

1.4 Characterization Techniques 

 Characterization of the iron pyrite nanocrystals was performed using an ultraviolet-visible 

(UV-Vis) optical spectrometer, X-ray diffraction (XRD), scanning electron microscope (SEM), 

energy-dispersive X-ray spectroscopy (EDX), and a transmission electron microscope (TEM).  A 

Varian Cary 500 UV-Vis-NIR spectrophotometer was used to measure the optical absorption, for 

the measurement of the XRD spectrum a Philips PW3040 X’Pert MRD High Resolution XRD 

was used, to produce the SEM images and the EDX spectra a FEI Nova Nanolab 200 Dual-Beam 

Focused Ion Beam with a FEG Scanning Electron Microscope was used, and a FEI Titan 80-300 

Transmission Electron Microscope produced the TEM images. 

 

( ) 







−=−=

0

loglog
I

I
TA  (1.1)

 The UV-Vis optical spectrometer has the capabilities of measuring the absorption, 

transmission, and the reflection for a given wavelength range.  For the purpose of iron pyrite the 

absorption has been measured to test the range of wavelength the material can absorb.  This has 

the benefit of also being able to deduce the band gap of the material measured based upon the 
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absorption edge characteristics.  The absorption (A) is measured based upon the transmission (T) 

of the light that passes through the material, with the transmission being equivalent to the ratio of 

the transmitted light intensity (I) to the incident light intensity (I0).  The equation for absorption 

is shown in equation (1.1) directly above this paragraph.  Measured absorption spectra are also 

useful for displaying the absorption at a given wavelength and this can help to show if the 

material is capable of absorbing light in the visible spectrum. 

 ( ) λθ nd =sin2  (1.2)

 

( )θβ

λ
τ

cos

K
=  (1.3)

 The XRD pattern is based upon Bragg’s law, also referred to as the Bragg formulation of 

X-ray diffraction and shown in equation (1.2), which was first proposed in 1913.  Where the 

wavelength for the X-ray beam (λ) is used to help determine the distance (d) between the atomic 

layers in the crystal with the angle of incidence (θ) based upon the reflection of the incoming X-

ray beam.  This basic principle helps to formulate the XRD spectrum for the individual angles 

based upon a given λ.  In Fig. 1.2 the incident of two identical X-rays with identical wavelength 

and phase is shown interacting with a sample, with the lower X-ray traveling  more 

than the upper X-ray.  Bragg’s law can also be used to take the resulting XRD spectrum and 

calculate the lattice spacing of the sample.  The Scherrer Formula is shown in equation (1.3) and 

is used to calculate the grain size of the sample based upon the XRD spectrum where K is the 

shape factor, λ is the wavelength of the X-ray, β is the full width at half maximum of a given 

peak, θ is the Bragg angle, and τ is the linear dimension of the particle [28]. 

 A SEM is a type of electron microscope that refracts and focuses an ion beam.  By 

scanning this focused ion beam across a sample and reading the interaction between the electrons 

( )θsin2d
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from the ion beam and the electrons in the sample to produce an image of the sample that 

displays information about the shape of the particles, which includes the dimensions of the 

particles.  Due to some of the limitations of the SEM it is unable to detect the individual grain 

size, and it produces images that focus more on the, relatively speaking, macro scale rather than 

the micro scale that could potentially show the individual grain size or the lattice spacing.  This 

need of a technique to show more detail leads to the inclusion of the TEM.  The resolution of the 

TEM allows the examination of fine details of a sample to the point that the visibility of single 

columns of atoms can become accessible, and with this data the information about lattice spacing 

and the individual grain size becomes apparent.  This information is useful in comparing the 

grain size to the calculated grain size obtained by the Scherrer formula using the XRD spectrum 

and the lattice spacing can be used to compare to both the calculated lattice spacing from Bragg’s 

law and reference material. 

 A HORIBA Scientific LabRAM HR was used to measure the micro-Raman spectrum and 

the micro Photoluminescence (PL) of the sample with the ability to measure with different lasers 

throughout the UV-Vis-NIR range.  The Raman spectroscopy will be able to help to identify what 

material is being examined, and whether it is a phase-pure material because it can identify the 

different peaks produced by various molecules.  This is possible because of the difference in 

molecules atomic masses and the strength of the bonds between the atoms that lead to 

identifiable peaks.  Along with XRD spectrum, this technique can confirm that the material has 

been measured to be a particular material.  The micro-PL is able to demonstrate the 

optoelectronic properties of a given material by showing the ability to absorb and re-radiate 

photons due to the excitation of electrons.  Both micro-PL and PL are routinely used to 
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characterize various semiconductor materials due to the non-destructive nature of the technique 

and the various characterizations of the material made apparent due to the PL. 

2. Experiment Setup 

 The goal of the synthesis was to grown iron pyrite that is devoid of any organic surfactant 

or multi-solvents.  This has been achieved by first synthesizing and optimizing the synthesis 

temperature conditions for iron pyrite with octylamine and dipenhyl ether to create phase-pure 

iron pyrite.  The next stage consisted of removing the dipenhyl ether ink the sulfur precursor and 

replacing it with octylamine as well as an inclusion of the organic surfactant TOPO in the iron 

precursor.  For the following stage the removal of the TOPO was necessary to try to exclude the 

usage of a surfactant due to the possibility of a surfactant being a hindrance in potential device 

efficiencies.  The last stage was to remove the octylamine in favor of oleylamine due to the 

ability of oleylamine to dissolve in different solvents. 

2.1 Synthesis Method for Iron Pyrite 

 A hot injection method was utilized to prepare the face-centered cubic iron pyrite 

nanocrystals using a variety of surfactants and solvents.  To prepare the face-centered cubic iron 

pyrite nanocrystals the equipment consisted of two different three-necked Schlenk flask, with 

one of the flask used to prepare the iron precursor and the other prepare the sulfur precursor.  The 

iron precursor was prepared by combining 10 mL of octylamine (Aldrich) with 2.5 mmol of 

FeCl2.4H2O (Alfa Aesar) in a N2 rich environment in one of the three-necked Schlenk flask.  

This mixture was mildly stirred at 115°C for 1 ½ hours to degas the mixture.  For the sulfur 

precursor, a mixture of 500 mg of Sulfur (Aldrich) was mixed in 15 mL of diphenyl ether and 

degassed in another N2 rich environment at 85°C for 1 hour.  The iron precursor is then increased 
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in temperature until it reaches a desired temperature that has been declared as the main variable 

as the following temperatures have been used, 175°C, 215°C, 230°C, 240°C, and 260°C.  With 

the iron precursor heated to the desired temperature the sulfur precursor is injected into the 

Schlenk flask containing the iron precursor where this reaction is carried out for 2 hours while 

continuously stirring vigorously.   After 2 hours have elapsed and the temperature has cooled to 

85°C, a few drops of chloroform (Aldrich) are added to prevent coagulation.  The final step is to 

wash the solution with methanol three times in a HERMLE Z300 centrifuge at 5000 rpm for 10 

minutes.  The steps involved with cooling the solution, the adding of the chloroform, and the 

cleaning with the methanol using the centrifuge is repeated as the final step regardless of the 

method used for the iron or sulfur precursor, and neither does the synthetic temperature have a 

bearing on this final step. 

 After discovering the optimal temperature for nanocrystals growth the next step is to 

adjust the chemicals used in the preparation of the sulfur precursor while the iron precursor used 

the same method.  The sulfur precursor is made by using 500 mg of Sulfur and mixing it with 15 

mL of octylamine.  This mixture is then degassed in a N2 rich environment at 85°C for 1 hour.  

The iron precursor is heated until 230°C with the sulfur precursor then injected into the iron 

precursor and vigorously stirred for 2 hours.  This is followed by the standard last step to 

produce the nanocrystals. 

 The next part of the experiment was to introduce the surfactant TOPO into the sulfur 

precursor.  This was done by first creating the sulfur precursor as normal by using 500 mg of 

Sulfur and mixing it with 15 mL of octylamine followed by being degassed in a N2 rich 

environment at 85°C for 1 hour.  This is followed by the inclusion of the surfactant TOPO by 
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adding 2.0 mmol of TOPO (Aldrich) into the sulfur precursor and stirring until the surfactant has 

been dissolved.  The iron precursor began the same by combining the 10 mL of octylamine with 

2.5 mmol of FeCl2.4H2O in a N2 rich environment that was mildly stirred for 1 ½ hours at 115°C 

to degas the mixture.  This iron precursor was then heated to 230°C; afterwards the sulfur 

precursor with TOPO was injected into the iron precursor and stirred vigorously for 2 hours.  

This is followed by the standard last step to clean and produce the nanocrystals. 

 The final part of the experiment was to remove the TOPO, octylamine, and the diphenyl 

ether in favor of using oleylamine for both the sulfur and the iron precursors.  This was 

accomplished by making the sulfur precursor by using 500 mg of Sulfur and mixing it with 15 

mL of oleylamine (Aldrich).  The mixture is then degassed in a N2 environment while being 

heated to 85°C and being continuously stirred for 1 hour.  For the iron precursor there was a 

combination of 10 mL of oleylamine with 2.5 mmol of FeCl2.4H2O in a N2 environment that was 

stirred for 1 ½ hours while at 115°C to degas the mixture.  The iron precursor was then heated to 

230°C; after this temperature has been achieved the sulfur precursor was then injected into the 

Sulfur Precursor Ingredients Iron Precursor Ingredients Synthetic Temperature 

500 mg Sulfur 
15 mL Diphenyl Ether 

10 mL Octylamine 
2.5 mmol FeCl2.4H2O 

175°C, 215°C, 230°C, 240°C, 
and 260°C 

500 mg Sulfur 
15 mL Octylamine 

10 mL Octylamine 
2.5 mmol FeCl2.4H2O 
2.0 mmol TOPO 

230°C 

500 mg Sulfur 
15 mL Octylamine 

10 mL Octylamine 
2.5 mmol FeCl2.4H2O 

230°C 

500 mg Sulfur 
15 mL Oleylamine 

10 mL Oleylamine 
2.5 mmol FeCl2.4H2O 

230°C 

Table 2.1. The first column is the ingredients in the sulfur precursor while the second column 
details the ingredients in the iron precursor.  The third column displays the synthetic 
temperature for creating the nanocrystals.  Each row details a stage in the experiment to 
synthesize the phase-pure iron pyrite nanocrystals. 

 



12 

iron precursor where it maintained this temperature while being stirred for 2 hours.  After the 

allotted 2 hours had passed, the mixture was cooled to 85°C when upon reaching this 

temperature a few drops of chloroform were added to prevent coagulation.  To clean this mixture 

it was then washed with methanol three times in a centrifuge at 5000 RPMs for 10 minutes. 

 The previously mentioned setup for the experiment has been outlined in Table 2.1 with an 

emphasis on the main changes between each stage of the experiment.  Column 1 of the table 

outlines the ingredients used for the sulfur precursor while column 2 outlines the ingredients 

used for the iron precursor.  The final column displays the temperature of the iron precursor 

before the inclusion of the sulfur precursor, as well as the temperature that is maintained during 

the nucleation process. 

2.2 Sample Preparation for Characterization 

 To prepare the nanocrystals for characterization there were two basic methodologies, the 

first one was to use the as-synthesized material, while the other was to dilute the material in a 

solvent.  The as-synthesized preparation was done for the techniques XRD, SEM, and TEM and 

was completed by simply putting an appropriate amount of the sample onto a sample holder in 

such a way that the techniques could work in optimal conditions.  Due to the fact that the 

material is a semiconductor there were no other special procedures necessary for SEM or TEM.  

Dilution of the material in a solvent was done for micro-Raman and UV-Vis-NIR spectroscopy.  

This was carried out by combining the material and a solvent, usually chloroform, and using a 

sonicator for 1 hour to ensure that the material and the solvent were completely combined.  This 

solution was then either spin-coated onto a slide or used in a <COVET> to hold the solution for 

measurement. 
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3. Results and Discussion 

 The experiment can basically be divided into four main stages, the first stage is the 

synthesis of iron pyrite nanocrystals with the sulfur precursor is 500 mg of sulfur and 15 mL of 

diphenyl ether while the iron precursor consist of 10 mL of octylamine and 2.5 mmol of 

FeCl2.4H2O and having the main variable being the variance of the synthetic temperature.  After 

the first stage the synthetic temperature of 230°C was chosen for each of the following three 

stages due to the results in the first stage.  The second stage saw the inclusion of 2.0 mmol of 

TOPO in the iron precursor, while the sulfur precursor replaced the diphenyl ether with 

octylamine.  For the third stage the sulfur precursor remained steady while the iron precursor no 

longer included the surfactant TOPO.  The fourth and final stage saw the replacement of 

octylamine for oleylamine in both the sulfur and iron precursor.  

3.1 Stage One 

 In the first stage of the experiment the sulfur precursor is made of 500 mg of sulfur and 

15 mL of diphenyl ether while the iron precursor consist of 10 mL of octylamine and 2.5 mmol 

of FeCl2.4H2O.  This stage dealt with the effect of the change of the synthetic temperature for the 

nanocrystals and that effect as how it relates to the XRD spectrum and the UV-Vis-NIR 

absorption spectrum. 

 The UV-Vis-NIR spectrum for the iron pyrite nanocrystals with the synthetic temperature 

of 175°C, 215°C, and 260°C are shown in Fig. 3.1.  The effect of the synthetic temperature is 

easily discernible on the sample where the temperature reached 260°C due to the absorption 
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spectrum of the iron pyrite drastically reduced compared to the other two spectra.  For the 

samples where the temperature was 175°C and 215°C the absorption spectra exhibited 

considerable absorption in the visible light spectrum for both the 175°C and 215°.  The spectrum 

for the 215°C exhibited a greater amount of absorption for the range of 400 to 700 nm due to the 

dip in absorption in that range by the 175°C sample.  Considering the solar spectrum there is a 

need to optimize the absorption in that particular wavelength range [25]. 

Fig. 3.1. The absorption spectra of iron pyrite nanocrystals with a varied synthetic temperature of 
175°C, 215°C, and 260°C to examine the difference in absorption of the various 
nanocrystals. 
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 Further experimentation revealed that the optimum UV-Vis-NIR absorption of the 

nanocrystals synthetic temperature was greater 215°C previously shown.  The UV-Vis-NIR 

absorption spectra in Fig. 3.2 displays an increase in the overall absorption for the 230°C sample 

when compared to the 215°C sample.  As the synthetic temperature increased beyond 230°C for 

the iron pyrite nanocrystals the absorption decreased for both the 240°C and the 260°C samples.  

As previously shown in Fig. 3.1, the absorption spectrum of the synthetic temperature of the iron 

Fig. 3.2. The absorption spectra of iron pyrite nanocrystals with a varied synthetic temperature 
from 175°C to 260°C to compare the various iron pyrite nanocrystals absorption. 

 
 



16 

pyrite nanocrystals at 260°C exhibited considerably less absorption than any of the other 

synthetic conditions.  The absorption spectrum of the 240°C sample exhibited a stronger 

absorption than the 215°C sample but less than the 230°C.  Considering the absorption spectrum 

of the 230°C sample, the sample was then annealed at 300°C with the effect on the absorption  

was mixed. Shown in Fig. 3.2 is difference in the absorption between the annealed and non-

annealed samples that held the synthetic temperature of 230°C.  For the range of 350 to 600 nm 

Fig. 3.3.  The XRD of iron pyrite nanocrystals with a varied synthetic temperature from 175°C to 
260°C to compare the various iron pyrite nanocrystals.  Only the sample at the synthetic 
temperature of 230°C matches the referenced pattern shown by the vertical lines. 
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the absorption of the annealed sample was greater than the non-annealed sample, however, at 

wavelengths greater than 600 nm the non-annealed sample exhibited greater absorption. 

 The next step required the investigation of the XRD spectrum for the various samples to 

determine if the material exhibited peaks indicative of phase-pure face-centered cubic iron pyrite 

nanocrystals.  The XRD spectrum of both the 175°C and the 215° samples showed no 

Fig. 3.4. The XRD of iron pyrite nanocrystals with a varied synthetic temperature from 175°C to 
260°C to compare the various iron pyrite nanocrystals.  Only the samples at the 
synthetic temperature of 230°C, 240°C, and 260°C matches the referenced pattern 
shown by the vertical lines. 
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identifiable peaks of iron pyrite nanocrystals or any major peaks for that matter in Fig. 3.3.   

While the 230°C sample annealed at 300°C did show some major peaks, there were not enough 

peaks, both major and minor, to readily identify the sample as iron pyrite.  The 230°C sample  

showed both major and minor peaks that exhibited face-centered cubic iron pyrite and is able to  

be indexed as such at 28.2°, 33.8°, 36.9°, 40.5°, 47.3°, 56.28°, 59.02°, 61.70°, and 64.28° to the 

following corresponding crystal phases of (111), (200), (210), (211), (220), (311), (222), (023),  

and (321), respectively.  To ascertain which temperature is the optimal synthetic temperature, the 

remaining samples were also measured using the XRD with the spectra for those samples shown 

in Fig. 3.4.  The two samples previously mentioned, 175°C and 215°C, did not show any peaks 

indicative of iron pyrite, while the other three samples, 230°C, 240°C, and 260°C, showed  

excellent peaks that exhibit face-centered cubic iron pyrite characteristics with all the indexed 

angles previously mentioned.  By applying Bragg’s law to the three samples at the angle of 33.8°  

it is calculated that the lattice spacing is 0.27 nm for the each synthetic temperatures of 230°C, 

240°C, and 260°C, which is in agreement with Wang et al. [18].  This consistency in the lattice 

spacing helps to illustrate the precision at which the synthesis method has achieved, despite a 

change in the synthetic temperature from 230°C to 260°C.  The main attribute that is apparent 

from the XRD that differs slightly between the three samples is the difference in grain size 

calculated by the Scherrer formula.  The synthetic temperature of 230°C was calculated to have a 

grain size of 8.9 nm, while both the 240°C and the 260°C samples were calculated to have a 

slightly larger grain size of 9.7 nm. 

 The SEM images in Fig. 3.5 and Fig. 3.6 show the particle structure of the iron pyrite 

with different synthetic temperatures.  For the sample with the synthetic temperature of 230°C  
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shown in Fig. 3.5 (a) and (b) there is an apparent structure for the particles with the average 

particle size is shown to be 30 nm.  At this level of magnification it is impossible to discern what 

the crystal structure of the iron pyrite is.  After annealing the 230°C sample at 300°C the iron 

pyrite no longer exhibited any uniform structure with every particle exhibiting a different shape 

and there was not a uniform size between the particles either.  The iron pyrite shown in Fig. 3.6 

(a) 
 

(b) 

(c) 
 

(d) 

Fig. 3.5. All of the above samples are the SEM image of iron pyrite at the synthetic temperature 
of 230°C.  For the images in (c) and (d) the iron pyrite is also annealed at 300°C. 
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(a) and (b) shows the slight formation of structured particles with the size ranging from 30 nm all 

the way to 150 nm.  After increasing the synthetic temperature to 245°C the previously shown 

structure of the iron pyrite in Fig. 3.5 (a) and (b) is whittled down to glimpses of both the  

previous structure and the appearance of larger non-uniform particles shown in Fig. 3.6 (c).   

When the synthetic temperature is increased to 260°C there appears to be decent structure from 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3.6. The SEM images of the as-synthesized iron pyrite nanocrystals at various synthetic 
temperatures, (a) and (b) are at 215°C, while (c) is at 245°C, and (d) is at 260°C. 
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the iron pyrite nanocrystals with the average particle size ranging from 30 to 50 nm. After 

examining the results from the XRD, UV-Vis-NIR absorption, and the SEM images from the 

previously described samples the synthetic temperature of 230°C was chosen due to the 

absorption shown, the uniformed particle structure, and the XRD spectrum.  The experimentation 

with annealing resulted in a severe detriment for the XRD spectrum and the SEM images.    

 While the synthetic temperature of both 240°C and 260°C showed the face-centered 

cubic iron pyrite according to the XRD spectrum, because the 260°C showed considerably less 

absorption that temperature was not considered.  The 240°C temperature showed decent particle 

structure, but the absorption, while acceptable, was not on par with the absorption of the 230°C 

sample.  Considering the weight of the decision fell more towards the XRD spectrum and the 

absorption spectrum the choice for 230°C synthetic temperature was fairly obvious after 

combining the two main factors, especially once the SEM images included in the decision.  

3.2 Stage Two 

 Based on the synthetic temperature 230°C, this stage and the following stage 

experimented with the effect of using the same amine for both the iron and sulfur precursor as 

well as how the addition or absence of TOPO could affect the properties of the iron pyrite 

nanocrystals.  One of the main reasons to include TOPO is because of the usage of TOPO as a 

stabilizing agent that has been reported to passivate both iron and sulfur atoms thereby 

decreasing surface decomposition [13].  With the decrease in the surface decomposition the 

longevity of the appropriate properties for photovoltaic devices is increased.  

 The iron pyrite nanocrystals with TOPO with a synthetic temperature of 230°C have been 

compared to the previous iron pyrite nanocrystals synthesized with octylamine and dipenhyl 
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ether with a synthetic temperature of 230°C.  In Fig. 3.7 the UV-Vis-NIR spectrum for three 

different iron pyrite nanocrystal samples are shown.  The blue line, referred to as with TOPO in 

the legend, is the sample made with octylamine for both the iron and sulfur precursor with the 

inclusion of the surfactant TOPO.  The green line, referred to as without TOPO is another sample 

made with octylamine for both the iron and sulfur precursor, however, it does not include TOPO.  

Fig. 3.7. The absorption spectra of iron pyrite nanocrystals where one sample is synthesized with 
TOPO, one is synthesized without TOPO, and the previous sample octylamine at the 
synthetic temperature of 230°C.  The top line is the iron pyrite nanocrystals with TOPO, 
the middle line is the octylamine at 230°C, and the bottom line is the iron pyrite 
nanocrystals without TOPO. 
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For the red line, referred to as Octylamine at 230°C, is the sample discussed in stage one, made 

from dipenhyl ether in the sulfur precursor and octylamine in the iron precursor with a synthetic 

temperature of 230°C.  When comparing the sample with TOPO to the Octylamine at 230°C 

sample there is an obvious increase in the absorption throughout the spectrum, with a particular 

increase in the absorption of the sample with TOPO in the range from 300 to 800 nm.  Another 

Fig. 3.8. The XRD spectra of iron pyrite nanocrystals where one sample is synthesized with 
TOPO, one is synthesized without TOPO, and the previous sample octylamine at the 
synthetic temperature of 230°C.  All three patterns match the vertical lines of the 
reference pattern. 
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major difference between the absorption spectra is the less pronounced dip in absorption around 

400 nm for the sample with TOPO, and thus leading to an even greater difference in the 

absorption for that sample.  

 In Fig. 3.8 the legend and corresponding line colors to samples remains the same as it was   

described for Fig. 3.7.  The XRD spectrum for both the sample with TOPO and the octylamine at 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.9. The SEM images of as-synthesized iron pyrite nanocrystals containing the surfactant 
TOPO are shown in (a), (b), and (c) all with a linear scale of 500 nm. 

 

 
(a) 

 
(b) 

Fig. 3.10.  The TEM images for the iron pyrite nanocrystals for the sample of nanocrystals with 
TOPO is shown in (a), while (b) contains the TEM image of the nanocrystals without 
TOPO. 
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230°C sample both exhibited face-centered cubic iron pyrite that were indexed at 28.2°, 33.8°,  

36.9°, 40.5°, 47.3°, 56.28°, 59.02°, 61.70°, and 64.28° to the following corresponding crystal 

phases of (111), (200), (210), (211), (220), (311), (222), (023), and (321), respectively.  A 

reference pattern (ICDD number 00-042-1340) was used to confirm the phase-pure face-centered 

cubic nature of the iron pyrite nanocrystals and is represented in the Fig. 3.8 by the black vertical 

lines.  There was also no appreciable difference between the two samples for the XRD spectra, 

including the lattice spacing that was calculated to be 0.27 nm, the same as it was calculated 

before.  The synthetic conditions used imposed a slight shift on all the peaks for each sample of 

iron pyrite nanocrystals.  

 The SEM image in Fig. 3.9 (a), (b), and (c) shows the phase-pure face-centered cubic iron 

pyrite nanocrystals with TOPO that exhibits particle sizes that range from 70 to 250 nm. Despite 

 

Fig. 3.11. The EDX of the iron pyrite nanocrystals with TOPO that shows the presence of iron 
(Fe) and sulfur (S). 

 



26 

having been measured from the XRD in Fig. 3.8 as face-centered cubic crystalline structure, at 

the particle level there is not an apparent ordered structure for the SEM images in Fig. 3.9.  To 

investigate the lattice spacing and grain size of the iron pyrite nanocrystals with TOPO it is 

necessary to look into the TEM images shown in Fig. 3.10 (a) and (b).  According to the TEM 

image in Fig. 3.10 (a) the grain size is 17.3 nm while exhibiting a lattice spacing of 0.27 nm for 

the iron pyrite nanocrystals with TOPO with this lattice spacing being confirmed with Wang et 

al. [18].  The grain size is in slight discrepancy to the calculated grain size of 13.4 nm by the 

Scherrer formula at 33.8°, but this slight discrepancy can be accounted for due to the 

agglomerated grains that can increase the difficulty of precise and consistent grain size results.  

The aforementioned lattice spacing of 0.27 nm shown in the TEM image is further confirmed by 

the same lattice spacing of 0.27 nm that was calculated using the XRD and Bragg’s law at 33.8° 

in Fig. 3.8. 

 
(a) 

 
(b) 

Fig. 3.12. The crystalline diffraction pattern of the iron pyrite nanocrystals with TOPO obtained 
from the TEM. 
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 Using the EDX in Fig. 3.11 it is easily discernible that there is a presence of iron and 

sulfur, as well as oxygen.  Due to the nature of this particular EDX testing procedures, oxygen 

will always be present due to a lack of stringent enough controls on both the testing environment 

as well as sample handling to completely prevent oxygen from appearing in the EDX test results.  

Furthering the strong crystal structure of the face-centered cubic iron pyrite nanocrystals with 

TOPO shown by the XRD in Fig. 3.8, is the TEM image in Fig. 3.12 that shows three rings in 

Fig. 3.12 (a) and four rings in Fig. 3.12 (b).  The number of rings corresponds to the strength of 

the crystal structure in that particular part of iron pyrite nanocrystals with TOPO.  

3.3 Stage Three 

 After the examination on the iron pyrite nanocrystals synthesized with TOPO the next 

step is to remove the TOPO to attempt to synthesize the iron pyrite nanocrystals with a single 

amine to act as both a surfactant and a solvent for the precursors, without the aid of TOPO.  This 

is done to try and increase the possible optical properties of the iron pyrite nanocrystals. 

 The measurement of the UV-Vis-NIR spectrum for the iron pyrite nanocrystals 

synthesized with octyalmine for both the sulfur and iron precursor without the use of TOPO is 

shown in Fig. 3.7 where it is compared to both the sample prepared with TOPO as well as the 

previously mention sample with the synthetic temperature of 230°C.  The blue line, referred to as 

with TOPO in the legend, while the green line is referred to as without TOPO.  For the red line, 

referred to as Octylamine at 230°C, is the sample discussed in stage one, made from dipenhyl 

ether in the sulfur precursor and octylamine in the iron precursor with a synthetic temperature of 

230°C.  The sample with TOPO is shown to exhibit more absorption around 1200 nm that then 

Octylamine at 230°C sample.  At less than 1100 nm the sample without TOPO shows less 
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absorption than either than sample with TOPO or the Octylamine at 230°C sample, particularly 

in the visible light spectrum where both the with TOPO and the Octylamine at 230°C exhibit an 

increase in absorption, particularly compared to the sample without TOPO. 

 For the XRD spectrum in Fig. 3.8 the legend and corresponding line colors are the same 

as it was described for Fig. 3.7.  The XRD spectra for the three samples were compared to the 

reference pattern from ICDD that numbered 00-042-1340.  While the XRD spectrum for the with 

TOPO and the Octylamine at 230°C sample both exhibited the face-centered cubic iron pyrite 

that was properly indexed as previously mentioned, the sample without TOPO showed the 

following indexes at 28.2°, 33.8°, 36.9°, 40.5°, 47.3°, 56.28°, and 64.28° to the following 

corresponding crystal phases of (111), (200), (210), (211), (220), (311), and (321) due to a lack 

of easily identifiable peaks at 59.02° and 61.70°.  Considering the weakness of the peaks at 

Fig. 3.13. The EDX of the iron pyrite nanocrystals without TOPO that shows the presence of 
iron (Fe) and sulfur (S). 
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59.02° and 61.70° from the reference pattern from ICDD it is easily discernible that iron pyrite 

nanocrystals that exhibit slightly weaker peaks throughout would not exhibit the peaks at 59.02° 

and 61.70° first.  Using the EDX in Fig. 3.13 it is apparent that there is a presence of iron and 

sulfur in the iron pyrite without TOPO.  There is also a fairly large amount of other materials, 

excluding oxygen, that were not as easily apparent in the iron pyrite with TOPO sample in Fig. 

3.11. 

3.4 Stage Four 

 After the detriment of properties for the previous sample made with octylamine for both 

the iron and sulfur precursor without the aid of TOPO, particularly with relation to the XRD 

pattern shown in Fig. 3.8 where the peaks at 59.02° and 61.70° was not as apparent as it was for 

the sample made with TOPO.  This has led to using oleylamine rather than octylamine for both 

the iron and sulfur for the purpose of having a singular amine for the sulfur and iron precursors. 

(a) (b) 

Fig. 3.14. The SEM images of as-synthesized iron pyrite nanocrystals with oleylamine is shown 
in (a) and (b) where (a) has a linear scale of 500 nm while (b) has a linear scale of 100 
nm.  
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 The SEM image for the iron pyrite nanocrystals with oleylamine for both the sulfur and 

iron precursors is shown in Fig. 3.14.  This figure displays the particle size for the iron pyrite 

nanocrystals to range from 50 to 100 nm while displaying a cubic structure for the particles.  The 

particles for an organized pattern due to the structure of each particle allowing for a somewhat 

ordered.  The SEM images for the iron pyrite nanocrystals with oleylamine are a vast 

Fig. 3.15. The UV-Vis-NIR absorption spectra of iron pyrite nanocrystals with TOPO, 
octylamine at the synthetic temperature of 230°C, and the oleylamine sample with the 
top line being the sample with TOPO, the middle line is the octylamine, and the bottom 

line is the Oleylamine. 
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improvement over the SEM images in Fig. 3.5, Fig. 3.6, and Fig. 3.9 for the previously 

mentioned iron pyrite nanocrystals.  The improvement of the SEM images for the iron pyrite 

nanocrystals with oleylamine is for both the structure of the particles, as well as the range in size 

being considerably more consistent throughout. 

 The absorption of the iron pyrite nanocrystals shown in Fig. 3.15 displays a smoother 

absorption curve of the oleylamine as compared to the octylamine at 230°C and the iron pyrite 

nanocrystals with TOPO.  For the sample with the octylamine at 230°C there is noise in the 

absorption shown in the wavelength range of 800 to 1000 nm, and during the range of 400 to 700 

nm the absorption in the octylamine sample decreases in absorption as the wavelength decreases, 

while the oleylamine sample is increasing the absorption in the same range.  When compared to 

the octylamine at 230°C the oleylamine behaves generally the same, save for as the sample 

approaches 300 nm the octylamine at 230°C shows some noise in the absorption while the 

oleylamine does not.  Based on Kubelka-Munk equation and the absorption spectrum in Fig. 3.15 

the direct band gap can be extrapolated to be approximately 1.35 to 1.4 eV. 

 The XRD for the iron pyrite nanocrystals synthesized with oleylamine is again compared 

with the previously mentioned iron pyrite nanocrystals with TOPO as well as the iron pyrite 

nanocrystals synthesized with octylamine at 230°C, respectively the blue, green, and red lines.  

As previously mentioned for Fig. 3.3, Fig. 3.4, and Fig. 3.8, the synthetic conditions upon the 

synthesis of the iron pyrite nanocrystals produced a slight shift compared to the reference pattern 

(ICDD number 00-042-1340) that is represented by a vertical black line in Fig. 3.16.  The 

oleylamine sample in Fig. 3.16 is indexed at 28.2°, 33.8°, 36.9°, 40.5°, 47.3°, 56.28°, 59.02°, 

61.70°, and 64.28° to the following corresponding crystal phases of (111), (200), (210), (211), 
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(220), (311), (222), (023), and (321), respectively in the same manner as the samples with TOPO 

and the octylamine sample at 230°C.  This has helped to confirm that the iron pyrite with 

oleylamine is phase-pure face-centered cubic iron pyrite nanocrystals.  The lattice spacing is 

again calculated to be 0.27 nm, in accordance with the previous results for the lattice spacing and 

the lattice spacing of Wang et al. [11].  The only significant difference found between the three 

Fig. 3.16. The XRD spectra of iron pyrite nanocrystals with TOPO, octylamine at the synthetic 
temperature of 230°C, and the oleylamine sample where all three spectra match the 
vertical lines of the reference pattern. 
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samples from the XRD is the difference in the calculated grain size by the Scherrer formula.  

While the octylamine at 230°C and the sample with TOPO were calculated to have grain sizes of 

8.8 and 13.4 nm, respectively, the oleylamine sample was calculated to have a larger grain size 

of 19.2 nm.  

 Micro-Raman has been used to compare the as synthesized iron pyrite nanocrystals with 

oleylamine to a natural-bulk sample of iron pyrite in Fig. 3.17, where the blue line represents the 

Fig. 3.17. The micro-Raman spectra of iron pyrite of both the natural-bulk iron pyrite as well as 
the synthesized iron pyrite nanocrystals with oleylamine. 
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synthesized iron pyrite nanocrystals while the red line represents the natural-bulk iron pyrite.  

The spectra for the iron pyrite natural-bulk and the synthesized iron pyrite exhibit two peaks for 

each sample, one at 340 cm-1 and the other is at 380 cm-1.  The main difference is the breadth of 

the peak, particularly noticeable is the difference in the peak at 340 cm-1.  For both peaks of the 

synthesized iron pyrite nanocrystals there is less intensity. 

 After using the HORIBA Scientific LabRAM HR to measure the micro-Raman it was 

then converted to measure the micro-PL with the given results shown in Fig. 3.18.  The peak of    

the spectrum for the natural-bulk iron pyrite is at 810 nm while the peak for the synthesized iron 

pyrite nanocrystals with oleylamine is at 720 nm.  This shift is likely caused by the difference in 

the nanocrystals grain size and the grain size of the natural-bulk iron pyrite.  Due to the nature of 

the PL results where smaller grain size will lead to a peak shift towards lower wavelength.  The 

other noticeable difference is the sharp edge around 700 nm caused by the limitations of the 

detector used for the measurements of the synthesized iron pyrite nanocrystals.  The PL results 

lead to an approximate band gap of 1.72 eV for the synthesized iron pyrite nanocrystals, while 

the natural-bulk iron pyrite exhibits an approximate band gap of 1.53 eV. 

 Looking at the micro-Raman and the XRD spectra shows that the synthesized iron pyrite 

nanocrystals with oleylamine are phase-pure face-centered cubic iron pyrite nanocrystals.  The 

UV-Vis-NIR absorption shows the direct band gap of the material is around 1.4 eV while the 

micro-PL showed a band gap closer to 1.72 eV.  The difference in the measured direct band gap 

of the micro-PL and the UV-Vis absorption spectra is due to the shift in the peak of the micro-PL 

that is caused by the size of the nanocrystals, in a similar vein to how the peak was shifted from 

the natural-bulk iron pyrite compared to the synthesized nanocrystals.  There is also a possibility 
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of a slight injection of oxygen as oxygen has been used to increase the band gap of iron pyrite by 

Hu et al. [17].  This slight injection of oxygen in the iron pyrite nanocrystals was shown in the 

EDX for the iron pyrite nanocrystals samples with and without TOPO in Fig. 3.11 and Fig. 3.13.   

4. Conclusion and Future Work 

 Various iron pyrite nanocrystals were synthesized under a variety of conditions and 

characterized using SEM, TEM, EDX, micro-Raman, UV-Vis-NIR, and XRD.  The iron pyrite 

nanocrystals synthesized with oleylamine as well as the nanocrystals synthesized with 

Fig. 3.18. The micro-PL spectra of iron pyrite of both the natural-bulk iron pyrite as well as the 
synthesized iron pyrite nanocrystals with oleylamine. 
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octylamine for both the iron and sulfur precursor as well as the inclusion of TOPO produced the 

nanocrystals with the results closest to bulk face-centered cubic iron pyrite nanocrystals.  The 

two samples both exhibited appropriate absorption characteristics for photovoltaic devices.  

Considering the two samples are roughly equal throughout it leads to the sample with oleylamine 

being slightly preferred because of the absence of TOPO.  This is due to the possible effect that 

TOPO could have on a photovoltaic device in lowering the efficiency of said device. 

 The iron pyrite nanocrystals with oleylamine have been shown to be phase-pure face-

centered iron pyrite nanocrystals by both XRD and micro-Raman.  The usage of micro-PL has 

further proven the optoelectronic properties of the material and the possible usage for 

photovoltaic devices.  Furthermore the larger grain size of the iron pyrite nanocrystals with 

oleylamine can help to exhibit larger carrier diffusion lengths and a smoother film that can help 

with the creation of various photovoltaic devices. With the synthesis of iron pyrite nanocrystals 

the possibility of making a photovoltaic device is possible by using a simple Schottky junction or 

a p-n junction solar cell device.   
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