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ABSTRACT

In recent years, there have been substantial efforts to design and fabricate millimeter-wave and
terahertz (THz) active and passive devices. Operation of microwave and photonic devices in THz
range is limited due to limited maximum allowable electron velocity at semiconductor materials,
and large dimensions of optical structures that prohibit their integration into nano-size packages,
respectively. In order to address these issues, the application of surface plasmons (SPs) is mostly
suggested to advance plasmonic devices and make this area comparable to photonics or
electronics.

In this research, the feasibility of implementing THz and millimeter-wave plasmonic devices
inside different material platforms including: two-dimensional electron gas (2DEG) layers of
hetero-structures, silicon wafers and graphene, are elaborated. To this end, an analytical model is
developed to describe the propagation of two-dimensional plasmons along electron gas layers of
biased hetero-structures. Using this analytical model, the existence of new plasmonic modes
along the biased electron gas is reported for the first time. For an independent verification, a
novel multi-physics simulator is developed to analyze active terahertz plasmonic structures. It is
also anticipated that the solver can offer novel ideas for guiding the SPs inside the future
plasmonic circuits.

In a different approach to design plasmonic devices in a widely used material platform, silicon,
a THz modulator is proposed. Using a full wave simulator, it is shown that plasmonic wave can
propagate along an indented n-type doped silicon wafer (which is later covered with a metallic
layer) with large attenuations. However, the signal losses can be prohibited by applying bias
voltages onto the metal as the thickness of the depletion layer between the metal and silicon

increases.



At the end, an effective method to couple incident waves onto an infinitely thin graphene
mono-layer is presented. As will be illustrated, the surface waves along a corrugated metal can

efficiently transit into graphene and successfully launch plasmons.
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l. INTRODUCTION

A. TERAHERTZ GAP

Terahertz (THz) frequency band (see Fig. 1), located between microwave and optical ranges
(300 GHz — 3 THz), is a gifted but still unknown section of electromagnetic spectrum. THz
signal has been utilized in laboratories to find its applications in security and medical areas. For
example, it has been employed to demonstrate and recognize explosive materials and weapons,
and identify cancer cells and tooth decays [1]. In spite of several unique characteristics and the
laboratory level demonstrations, practical application of THz radiation is still challenging. The
industrial usage of THz signal is majorly prohibited due to the absence of room-temperature
active and passive devices such as sources, detectors, modulators and waveguides. In recent
years, there have been considerable studies aiming to close the so called “Terahertz Gap” by
designing THz active and passive devices fabricated inside semiconductor and novel materials as
graphene [2]-[10]. Operation of semiconductor microwave devices in THz range is physically
constrained by the maximum achievable electron velocity. Therefore the design and fabrication
of transistors with operating frequencies in THz range is challenging. Traditionally, THz signal
is generated by successive multiplication of lower frequency waves obtained by using readily
available solid-state power amplifiers [10]. However, this multiplication results into a poor
efficiency and therefore a significant loss of the input power. On the other hand, approaching the
THz range from photonics is challenging because of the low photon energy (2 meV at 1 THz)
and relatively long wavelength (300 um at 1 THz) that make the nano-fabrication of the room

temperature operating photonic devices difficult.
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Fig. 1. A representation of the location of THz gap inside electromagnetic
spectrum.

B. SURFACE PLASMON AT THE DIELECTRIC/METAL INTERFACE

Surface Plasmons (SPs) are electromagnetic (EM) surface waves propagating at the interface
between a dielectric and a conductor, evanescently confined in the perpendicular direction [11].
These surface waves are resulted from the coupling of the EM waves to the electron plasma
oscillations of the metal.

The simplest geometry supporting SPs is a flat interface between a dielectric (z > 0) and an
adjacent metal (z < 0) as depicted in Fig. 2. It is assumed that the dielectric and metal are
infinitely long in the y and x axis. The dielectric is represented by a relative dielectric constant
er2. The relative permittivity of the metal is described by using Drude model as g1 = 1-0)|02/(032 —
Jw/t) where o, j, op and T are angular frequency, imaginary number, the plasma frequency and

the momentum relaxation time of the metal, respectively. The plasma frequency is estimated by
mpzw/qu [e;m”, g = 8.85x10™%(F/m) where N, m” and q are electron density, effective mass

and unit charge, respectively. Drude model for noble metals has been validated by Johnson and
Christy [12] experimentally.
A surface wave on the interface with an evanescent nature along z is described by the wave

function:

g exp( jot—yx—9,z 220
{ (Jot-yx-572) "

gexp(jot—yx+6,z) 2<0



where, y=a+jB is the propagation constant. a and B are the attenuation and the phase constants,

respectively. To confine the mode along the interface, the real parts of 6; and &, must be positive.
It is known that the SPs only exist for Transverse Magnetic (TM*) mode [13]; therefore, the

solution of this mode is only considered here.

Dielectric ¢,
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Fig. 2: A geometry showing SPs propagation along the metal/dielectric interface.

An analytical solution of Maxwell equations for the TM* mode with the wave function (1) will
provide the field distribution along the interface. Boundary conditions on the interface are the
continuity of tangential component of magnetic and electric fields which result into:

&2_ %

2

& 5
Using (2), It is understood that the real part of &1 should be negative since €, and the real part of
d, and 9, are positive. This requirement can be satisfied only if the operating frequency is lower
than the plasma frequency of the metal. Combining the wave equation (also called Helmholtz

equation) Y% + 812° + g1 o/c? = 0 and (2) yields the dispersion relation of the SPs:

. ’8 X&
C 8r1+8r2

The dispersion relations of SPs on the metal/air interface and the radiative mode counterpart
inside the air (B = w/c) are depicted in Fig. 3. As calculating the dispersion relation in Fig. 3,

4



electron scatterings inside the metal are considered negligible (o x t >> 1). In this manner, the
dispersion relation is obtained from (3) as e =1, &1 =1 — (wp/ o))2 andy=j x .
As presented in Fig. 3, SPs gain very large phase constants in the vicinity of the cut-off

frequency (oc = w,/, /1+a2 ). Therefore, the plasmons propagate with very small wavelength,

compared to the radiating mode counterpart, in these frequency ranges. More details on the
characteristics of SPs can be found in [13].
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Fig. 3. Dispersion curves of the SPs (dash line) and its radiating mode
counterpart inside the dielectric (solid line). We are interested in lower non-
radiative section of the SPs” dispersion curve ® < w,/, [1+¢, . Large momentum
mismatch between SPs and the radiative mode is observed at higher frequencies.
Application of specific techniques such as metal gratings or prism coupling is

required to excite SPs due to the momentum mismatch.

C. TWO-DIMENSIONAL PLASMONS
SPs are able to confine EM fields along the interface of a metal and a dielectric over length
scales significantly smaller than the wavelength. However, this localization occurs as long as the

field oscillates at frequencies close to the described cut-off frequency which is related to w,. The



plasma frequency is proportional to the free carrier density N which is in the order of 10% cm™.
This suggests that the plasma frequency is located in the visible range. For typical metals such as
gold and silver, SPs are not localized along the interface in THz frequencies and are extended
over several wavelengths into the dielectric space above the interface. In order to use SPs in THz
frequencies, engineering the surface of the metals by appropriate array of holes [14] or using
highly doped semiconductors instead of the metallic surfaces [13] are suggested. In
semiconductors, the plasma frequency can be easily controlled by altering the electron density
using thermal, optical and electrical gating techniques. This ability can help engineers to design
future active plasmonic devices such as modulators. However, SP propagation along doped
semiconductors faces large attenuations which is due to electron scatterings. Therefore, the
scattering is mostly avoided by employing Two Dimensional Electron Gas (2DEG) layers of
hetero-structures or graphene. It is interesting that 2D plasmons inside electron sheets can offer
very small wavelengths A,p, compared to their free space counterparts Ay (Ap < A /700) [15],
and astonishing field improvements in THz frequencies [16].

Recently, two-dimensional plasmons along 2DEG layers of High Electron Mobility Transistors
(HEMTSs) have been employed to fabricate sources and detectors [2]-[10]. These detectors are
very promising in terms of performance and integration into compact sizes compared to the other
modern ones designed by different concepts [3]. In spite of these advances in the fabrication of
THz plasmonic detectors, crystals [16], these structures are still un-matured compared to other
photonic and electronic devices and require more advanced techniques for manipulating and

amplifying surface wave signals.

D. ANALYTICAL MODELING OF TWO-DIMENSIONAL PLASMONS



In Fig. 4, two-dimensional plasmons which can propagate along the electron gas layer of the
AlGaAs/GaAs HEMT are depicted. The plasmons are excited by a -z going plane wave
illuminating the transistor. However, this excitation is possible due to the presence of the
metallic gate on the top surface of the structure. The diffracted waves from the metallic gate

obtain enough momentum (phase constant) to excite the plasmons.

Fig. 4. Two-dimensional plasmons are propagating symmetrically along x axis

out of the metallic gate. The presence of the Ohmic contacts allows us to apply

external bias voltage on the channel and therefore change the properties of the
plasmons accordingly.

The presence of two-dimensional plasmons along 2D conductors has been first theoretically
predicted and modeled in [17]. To this end, the dispersion relation of the plasmons and its
dependence on the conductivity of the conductor has been detailed. Later, similar results with
different notations and more in-depth analysis have been presented in [18]. In these analytical
formulations [17]-[18], Maxwell equations are solved after applying required boundaries. In this
manner, the properties of the plasmons propagating along the 2D conductor are calculated. Later,
the real and imaginary conductivity of a two-dimensional electron gas layer of a HEMT at

cryogenic temperatures has been measured in [19]. Moreover, a novel distributed lumped



element representation of the electron gas has been proposed in [19]. The distributed model has
been employed to describe the properties of the plasmons propagating on the electron gas [19].

In the mentioned researches, the presence of the bias electric field along the channel that can
exist as applying the bias voltage has been disregarded. However, it is critical to consider the
effects of the applied bias voltage on the properties of plasmons in order to design future
plasmonic sources and active detectors. To this end, a solution of Poisson, continuity and Euler
equations has been presented in [20]-[21] to include the effects of electron drift velocity,
accelerated by an applied bias voltage, in the modeling of modern plasmonic detector and
sources. It has been shown analytically that the steady-state dc current in a FET can lead to un-
stabilities which can result into plasma oscillations in terahertz frequency range [20]-[21].
Additionally, it has been claimed that this mechanism can lead to the design and fabrication of
terahertz and infrared plasmonic sources and detectors [20].

In [22], a small signal analysis of Euler equation (or the so called momentum conservation
equation) and continuity equations are employed to include the effects of electron average drift

velocity vq into the calculated surface conductivity (o) of 2D electron gas layers as:

2 -
— nOCl JC() ’ (4)
m . . 1
(Ja)_VOV){Jw_VOV“‘T]

m

o

where, no, g, m’, and Ty, are electron: surface density, unit charge, effective mass, and momentum
relaxation time, respectively. The detailed calculation of (4) is presented in Appendix I, section

A, as it is assumed that the plasmons follow the variations in (1).

In [23], we employed the electron velocity dependent conductivity (4) to calculate the
dispersion relation of two-dimensional plasmons along biased electron gas layers. To this end,

appropriate boundary conditions are applied and the dispersion relation is obtained as:

8



Ay +AY+ Ay +Ay+A =0 ®)

Where [23],
A=V, A=- 2;/30 ~4joV’,
A, =60V, +V—2‘;+M+ 437
T T
A, =4jv0a)3+%_2i¥ (6)
A= _:)_22_ sz-a)3 N 4a20a2)zgr

m m

As is presented in (5), four new plasmonic modes can propagate along the channel. This is in
contrary to other predictions that have assumed that the surface modes along a biased 2D
conductor don’t change even if there is an external bias electric field. One of the major
achievements in this solution is the prediction of an available growing mode along the biased 2D
conductor which can lead to the design of a plasmonic terahertz amplifier, if certain impedance
matching conditions are implemented [23]-[24].

Although the analytical method presented in [23]-[24] is able to correctly characterize wave
propagation along biased 2D conductors, it is still limited by several restrictions. For example,
the wave reflections from Ohmic contacts have been disregarded. To obtain a complete picture
of electron-wave interactions inside modern plasmonic devices, a more complex model with very
limited assumptions is required.

E. GLOBAL MODELING OF ACTIVE TERAHERTZ PLASMONIC DEVICESs

Global modeling has been previously utilized in the design and analysis of microwave
transistors [25]-[27]. Moreover, it has been recently used in the modeling of silicon conductivity
in terahertz frequency range [28]. This modeling technique is based on a self-consistent solution

of wave propagation and electronic transport equations. In [25]-[27], this is performed by a full

9



wave solution of Maxwell and moments of Boltzmann equations. In this manner, high frequency
effects of these devices are completely considered into the simulator. Similar to microwave
transistors, the characteristics of wave propagation and the motion of electrons are completely
inter-related inside active terahertz plasmonic devices. Therefore, global modeling can also be
employed in the analysis and design of modern active plasmonic devices [29].

The wave propagation in a homogenous material can be described by Maxwell equations, with

constant material properties € (permittivity) and p (permeability) throughout the medium, as:

- OE -

VxH=¢—+]

g ")
VxE=—py—

-

In (7), E and H, and J are electric and magnetic fields, and electric current density
respectively. In [29], we employed finite difference time domain technique to solve (7) with
appropriate boundary conditions inside an active terahertz plasmonic device. To estimate the

electrons’ behavior with respect to an applied external voltage, we utilized moments of

Boltzmann equation and Poisson equation. In this manner, the electric current density J can be
updated at each time step. The numerical schemes employed to solve the electronic transport
equations have been listed in Appendix Il. In order to couple these two solvers (full wave and
electronic transport simulators), physical properties should be transformed properly from one to
the other. This becomes possible by feeding the full wave solver with calculated current density
by the electronic transport simulator. Additionally, updated electric and magnetic fields are
inserted into the electronic transport solver at each time step. This concept is depicted in Fig. 5.
Using this numerical solver, the presence of periodic metallic grating of top of the device is

characterized in [29]. Moreover, we designed and simulated a novel, fast and efficient terahertz

10



plasmonic switch inside a hetero-structure in [30]. This plasmonic switch is able to operate

effectively in THz frequencies with small control voltage.

E, H

J

Fig. 5. A schematic of the basics of global modeling simulator employed in the
analysis of active plasmonic devices.

F. SILICON-BASED PLASMONIC TERAHERTZ MODULATOR

Application of modern active devices is critical in the emerging plasmonic area, since these
plasmonic components combine low optical losses with high mode confinements [13]. “Active
plasmonic” term has been coined first in a paper in 2004 [31], in which a compact active switch
has been implemented on the interface of Ga/Au. It has been shown that the propagation of
plasmonic waves along the interface can be controlled by applying heat [31]. This is due to the
changes in the electrical properties of Ga that happens as the operating temperature varies.
However, this methodology is not very promising since heat cannot be applied on a specific
surface with an acceptable level of speed. To circumvent the operating speed, other types of
modern plasmonic switches with an additional optical source have been developed [32]. In this
manner, the material properties of the plasmonic waveguide can be controlled by applying an
intense optical source. Similar ideas have been engaged in the design of plasmonic based
terahertz modulators on the surface of semiconductors in [33]-[35]. Additionally, the application
of electro-optic materials, such as nematic liquid crystals with electrically controllable properties
has been introduced in the plasmon-based modulators [36]. However, it is very challenging to

employ liquid crystals in modern compact plasmonic devices [36]. Moreover, in terms of

11



integrating electronics and photonics, it would be highly favorable to develop a plasmonic
component with the same materials as the rest of a photonic system. In this manner, existing Si
and I11-V based processing can be used in the fabrication of plasmonic devices [37].

In order to design a plasmonic modulator, there is a need to design an optimized waveguide
that can handle and localized waves in THz frequency range. As previously mentioned in section
C, surface waves are not bounded to the dielectric/metal interface, in Fig. 2, at this frequency
range. Therefore, doped-semiconductors are mostly employed as plasmonic waveguides in this
range. Recently, the application of a metallic structure with a periodic array of grooves is
proposed in [38] to guide localized plasmons in THz frequencies. In this manner, the effective
permittivity of the corrugated metallic surface can be controlled by changing the dimensions and
repetition rate of the holes. These waves along the indented surface are mostly called Spoof
Surface Plasmon Polaritons (SSPPs). SSPPs have been recently employed in terahertz lasers to
focus the generated beam efficiently [39].

The idea of changing the material properties of a semiconductor by changing the depletion
depth between the metal and semiconductor has been previously employed to control
extraordinary terahertz transmission trough a metallic sheet with sub-wavelength holes [40]. In
this manner, the enhanced THz transmission is modulated up to 52% by changing the applied
bias voltage, on the Schottky contact between 0 to 16 volts [40]. Additionally, a voltage-
controlled, a silicon-based electromagnetic meta-material operating between 75-110 GHz has
been experimentally demonstrated in [41]. Similarly, the transmittance of the meta-material can
be modulated by applying voltages onto the Schottky contact between the silicon substrate and
the deposited gold layer [41].

In [37], we employed the same guiding methodology to design a fast and compact plasmonic

12



switch. This device is designed inside a corrugated lightly-doped silicon wafer covered with
gold. In this manner, SSPPs can propagate along the corrugated structure. Moreover, the doping
density of silicon wafer can be controlled after applying appropriate control voltages onto the
gold layer and an Ohmic contact designed below the active structure. This design leads to a
compact THz switch activated by a control voltage. The effectiveness of the plasmonic switch
can be determined by considering its isolation in the OFF mode and its insertion loss in the ON
state. It is shown that the plasmonic switch with the Schottky contact can obtain insertion losses
below 5 dB and isolations above 15 dB between 260-315 GHz [37]. Finally, a more sophisticated
design that employs a PIN diode to electrically modify the doping density of the silicon substrate
is introduced in [37] which can vastly enhance the operation of the plasmonic switch. It is
envisioned that the proposed switches may be useful in future all-integrated silicon-based THz
plasmonic devices and communication systems. Specifically, the future generation of very large
scale integration (VLSI) chips will pursue the combination of electronic processing and optical
communications through fiber optic cables. In order to resolve the coupling problem between
optical and electronic components and integrate photonic components with electronic devices in
nano-scale dimensions, we proposed the application of the developed plasmonic waveguide and
modulator.
G. GRAPHENE-BASED TERAHERTZ PLASMONIC DEVICES

Graphene is a two-dimensional (2D) form of carbon in which the atoms are arranged in a
honeycomb arrangement. Since its extraction from graphite compounds [42], it has attracted
numerous researchers both in academia and industry due to its unique mechanical, thermal and
electromagnetic properties [43]-[50]. Specifically, the tunability of its electrical conductivity by

means of chemical and electrical doping has made graphene a prime candidate for applications in
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nano-electronics and nano-photonics [44]. Graphene supports plasmons at terahertz and far-
infrared frequency range (0.1-10 THz) [46]. Most importantly, graphene provides an exceptional
possibility of plasmon tunability, unlike in metals, because of the mentioned control over its
electrical properties. Therefore, graphene is widely being explored to construct future compact
on-chip optical devices and circuits.

Fig. 6 depicts a 2D representation of a monolayer graphene linear band structure with different
doping types and their related possible optical transitions. As shown in Fig. 6.(a), the Fermi
energy level is located exactly in the middle of the conductance and valance band of intrinsic
graphene (Dirac point). Moreover, the valance band is completely full of electrons while the
conductance band is empty. In the intrinsic graphene, single-photon absorption (inter-band
transition) can take place over a very wide frequency range. In Fig. 6.(b), the band structure of an

n-doped graphene is depicted. As presented, the Fermi level is above the Dirac point in this case
and photons with energy ﬁa)z > (2 x Ef) can only be absorbed by graphene since there is no

empty state below this level. The band-structure of a p-type graphene is also presented in Fig.

6.(c). As illustrated, the Fermi level is below the Dirac point in the p-type graphene. Under this
condition, graphene cannot absorb photons with energies ﬁa)z < (2 x Eg), since there is not any

electron in the valance band above Fermi energy level.
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Fig. 6. A 2D schematic of (a) intrinsic, (b) n-type, and (c) p-type monolayer
graphene band-structure and their possible optical transitions.

As mentioned, the Fermi energy level of a graphene sheet can be tuned electrically by applying
perpendicular electric fields. One method to apply the required electric field is using a back gate
as depicted in Fig. 7. To this end, graphene can be placed over an insulator such as silicon
dioxide on top of a silicon wafer. An Ohmic contact can be established by depositing a metal on
the graphene sheet and applying a bias voltage V, between the top and back metals as illustrated
Fig. 7. In this structure, the thickness and dielectric constant of the insulator are d and ¢,
respectively.

Va

Graphene

Fig. 7. A simple method to apply perpendicular electric fields on a graphene
sheet to electrically control its Fermi energy level.

As detailed in [51], the required control voltage V, to achieve a specific Fermi energy level Er
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can be calculated from:

2qgd %
VaZml.gx(F(g)—F(8+2EF))d8, ®)

where, q (= 1.60216 x 10" C), &, h (= 1.054 x 10°* J.s), and v¢ = 10° (m / s) are electron unit
charge, energy, reduced Planck constant, and graphene Fermi velocity, respectively. In (8),
Fermi-Dirac distribution function:

~ 1
~1+exp((e—Eq)/KT)

F(¢) )

is used, as k (= 1.38 x 10% m?kg.s2K™) and T are Boltzmann constant and operating
temperature, respectively. To provide an insight into the controllability of the chemical potential
of graphene by changing the applied voltage, the required perpendicular electric field for various
practical Fermi levels are calculated from (8)-(9) and depicted in Fig. 8 as T =300 (K) and &, =1
(F / m). As presented, graphene can change from a p-type material to an n-type one by altering
the perpendicular electric field. It can be seen that the Fermi energy level can be practically
tuned from —1 eV to 1 eV by applying typical values of bias electric fields as the insulator
thickness “d” is below one micrometer. The application of larger fields is possible by using
thinner insulators. It is worthy to mention that the chemical potential of doped graphene is

related to the charge density
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Fig. 8. Fermi level of graphene versus applied perpendicular electric field.

The surface electrical conductivity o of graphene can be calculated from Kubo formalism [51].
It is famous that the conductivity is affected by two major contributions, namely inter-band Ginger
and intra-band Ginya transitions (6 = oinra + Ginter). Using Kubo formalism, it can be calculated

that:

2
Glntranz_j _zq kT EF +2In exp(_E +1
7h? (- j2r) | kT kT

o Z_WT{(F (-2)-F (g))/ ((w— j2r)" -4( %—])ﬂdg

0

(10)

where, I' =1/ (2 x 1) and 7 is electron momentum relation time. As seen in (10), both inter-band
and intra-band conductivities are closely correlated with the chemical potential of graphene and
the frequency of the propagating wave. As seen in Fig. 6.(a), intra-band transitions don’t exist in
pristine graphene since there are not any electron and empty energy level in the conductance and

the valance band, respectively. Additionally, the intra-band part will only be relevant in terahertz

frequency range as 2EF>ﬁco .
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Plasmons along graphene are of described two-dimensional type. The TM* mode along a
graphene mono-layer, which is assumed to be infinite along x and y axis, and located at z = 0

plane follows the wave-function:

_{Qexp(ja)t—yx—&z) 2>0 )

- gexp(jot—yx+6z) z<0
where, vy and 6 are propagation constants along X axis and attenuation constant in z direction,
respectively. It is assumed that the graphene sheet, with surface conductivity o, is located in a
homogenous material with permittivity &, After solving Maxwell equations and satisfying
boundary conditions along the graphene layer, 2D plasmon dispersion relation can be obtained as
[23]:

}—Zz%‘g. (12)
where, € = & x g and (g = 8.85 x 10™ F / m).Using (10), (12) and Helmholtz equation, the
dispersion relation of the plasmonic mode can be calculated.

In spite of the mentioned advantages of graphene over conventional metals in THz plasmonic
devices, the challenge is how to effectively couple long-wavelength terahertz wave onto an
infinitesimally sheet of graphene. This problem specially persists due to the very large mismatch
between the wavelengths of the incident radiating waves and the surface waves on graphene. To
address this critical challenge, electrically generated surface acoustic waves have been employed
to form a diffraction grating [48]. In this manner, the plasmons along graphene are launched
without the need to use complicated optical near-field techniques such as those based on
scatterings from an atomic force microscope tip. However, this method still relies on an extra

acoustic source. In [49], an etched silicon wafer is employed to implement diffractive gratings on

which a mono-layer graphene can be later deposit. It is shown that there exists a sharp notch on
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the normal incident transmission spectra of the structure as the incident optical wave couples to
the graphene plasmonic wave [49]. However, the described methodology is only effective in a
narrow frequency bandwidth which is related to the grating period of the etched silicon wafer.
Therefore, an urgent need to effectively launch the propagating plasmonic mode along graphene
layers in a wide frequency range still exists.

Recently, we have proposed to initially excite electromagnetic wave along a more
sophisticated plasmonic structure as a periodically grooved metallic surface. Next, the graphene
sheet can be deposited onto the structured metal to transfer the electromagnetic energy to the
ultra-thin waveguide [52]. Next, the effectiveness of this method is proved [52] using a full-wave
simulation and analytical model.

H. DISSERTATION STRUCTURE

This dissertation is composed of seven previously published papers. It is an acceptable format
by the Graduate school and it is approved by the dissertation chair and the committee before
beginning the project. All requirements with regard to this type of submission are elaborated in
the official document of the graduate school “The University of Arkansas Graduate School
Guide to Preparing Doctoral Dissertations”, page 11.

In chapter two, the analytical modeling of plasmon propagation along gated and un-gated
electron gas layers is elaborated. This chapter includes three published papers as listed as
follows.

[1] M. A. Khorrami, S. EI-Ghazaly, S. Q. Yu, H. Naseem, “Analytical modeling of THz wave
propagation inside ungated two dimensional electron gas layers”, Int. IEEE Microw. Symp.,

Baltimore, Jun. 2011.
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[2] M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, H. Naseem, “THz plasmon amplification using
two-dimensional electron-gas layers”, J. Appl. Phys., vol. 111, pp.094501(1)094501-(7),

May 2012.

[3] M. A. Khorrami, S. El-Ghazaly, “2D plasmon propagation inside a two-dimensional
electron gas layer with a low loss metallic gate,” IEEE Photonic Conference (IPC 2012), pp.

895-896, San Francisco, Sep. 2012.

In [1], a summary of different analytical models, found in the literature, which describe the
surface wave propagation along un-gated electron gas layers are listed. Besides, an analytical
model is developed to characterize 2D plasmon properties along biased electron gas layers of
hetero-structure. This representation is based on the solution of Maxwell and Hydrodynamic
equations. It is shown that the application of bias voltage drastically changes the characteristics
of the surface wave and divides two symmetrical modes into four new asymmetrical ones.
Besides, the wave impedances of each mode are illustrated. At last, a simple matching network is
introduced that can be useful to effectively launch plasmons along the electron gas.

In [2] an analytical model to investigate the possibility of steering and amplifying terahertz
plasmons in gated and un-gated two dimensional electron gas layers by applying a bias electric
field is reported. The proposed representation involves a solution of Maxwell and semi-classical
electronic transport equations inside the biased structure simultaneously. In [2], the possibility of
achieving a plasmonic amplifier inside the un-gated electron gas layer is illustrated. It is shown
that certain impedance matching requirements needs to be satisfied before reaching an efficient
THz amplifier. Since the properties of the asymmetrical modes along the biased device can be
controlled via biasing, proposals of new plasmonic devices such as modulators and switches are

also elaborated in [2]. The mentioned analytical investigation is repeated for un-gated electron
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gas layers, which similarly shows the division of symmetrical modes inside unbiased device into
two asymmetrical ones as the bias electric field is applied. Unlike the un-gated electron gas
sheet, it is shown that the amplifying mode may not propagate along the gated one for different
bias electric fields.

In [3], perturbation theory is employed to analytically characterize 2D plasmon propagation
along gated two dimensional electron gas layers as the attenuations due to the presence of lossy
gate are included. In this manner, extra Ohmic losses introduced by the non-ideal metallic gate
are taken into account.

In chapter three, the details of the global modeling of active THz plasmonic devices are
presented. This chapter includes two published papers as listed as follows.

[4] M. A. Khorrami, S. El-Ghazaly, H. Naseem, S. Q. Yu, “Global modeling of active terahertz

plasmonic devices,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 1, pp. 101-109.

[5] M. A. Khorrami, S. EI-Ghazaly, H. Naseem, S. Q. Yu, “Compact terahertz surface plasmon
switch inside a two dimensional electron gas layer,” IEEE International Microwave

Symposium (IMS2012), Montreal, Canada, Jun. 2012.

In [4], global modeling is employed to characterize the wave propagation along un-gated
biased electron gas layers. In this manner, the existence of new asymmetrical plasmonic modes
presented in biased electron gas layers is proved using an independent verification. Moreover,
the properties of the plasmons in a biased electron gas beneath a periodic metallic grating are
described.

In [5], a fast and compact THz plasmonic switch is designed and simulated using global
modeling. It is shown that the switch can provide very high signal isolations with a small control

voltage.
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In chapter four, the details of the silicon-based THz plasmonic modulator is presented. This
chapter includes one published paper as listed as follows.

[6] M. A. Khorrami, S. El-Ghazaly, “Design and analysis of silicon-based terahertz plasmonic
switch,” Optics Express, vol. 21, pp. 25452-25466, Oct. 2013.

In [6], a novel THz plasmonic modulator inside a silicon wafer is designed and simulated. The
structure is implemented inside an n-type doped silicon which is periodically corrugated and
covered by a gold layer. In this manner, the attenuation of the plasmons, propagating along the
indented metallic layer can be controlled by applying control voltages onto the metal and a back-
gate that can established beneath the modulator. The application of voltage can change the width
of the depletion layer to a great extent. Therefore, THz signal can propagate without large
attenuations inside the depleted area.

In chapter five, the details of an efficient method to launch 2D plasmons along graphene is
described. This chapter includes one published paper as listed as follows.

[7]1 M. A. Khorrami and S. El-Ghazaly, “Broadband excitation and active control of terahertz
plasmons in graphene,” IEEE International Microwave Symposium, Tampa, FL, Jun. 2014.

In [7], a broadband methodology to effectively excite 2D plasmons along a graphene mono-
layer at THz frequency range is presented. For this purpose, the plasmon transition from
periodically corrugated metals to suspended graphene is investigated. It is shown that the wave
transition from one plasmonic waveguide to the next one can be successfully handled in a wide
THz frequency range. The analysis is based on a transmission line (TL) representation of two
plasmonic waveguides which are connected in series. The accuracy of the TL model is verified
by a full-wave numerical solver.

This dissertation includes two appendices. Appendix A includes the details of dispersion
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relation calculation of plasmons along un-gated 2D electron gas layers in [2]. In Appendix B, the

discretization details of electronic transport equations in [4] are presented.
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1. THZ PLASMON PROPAGATION ALONG TWO DIMENSIONAL ELECTRON-
GAS LAYERS

A. ANALYTICAL MODELING OF THZ WAVE PROPAGATION INSIDE UN-
GATED TWO DIMENSIONAL ELECTRON GAS LAYERS

Int. IEEE Microw. Symp., Baltimore, Jun. 2011.

© 2011 IEEE. Reprinted, with permission, from Mohammad Ali Khorrami, Samir EI-Ghazaly,
Shui-Qing Yu, Hameed Naseem, “Analytical modeling of THz wave propagation inside un-gated
two dimensional electron gas layers,” Int. IEEE Microw. Symp, Jun. 2011. In reference to IEEE
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permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go
to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how
to obtain a License from RightsLink.

Abstract:

Plasma wave propagation along an un-gated two Dimensional Electron Gas (2DEG) layer of a
hetero-structure is studied. It is shown that the wave can be useful in amplification of THz
signals. An analytical solution of Maxwell and Hydrodynamic equations is presented. This
method provides an insight into electromagnetic modes allowed to propagate along the 2DEG as
electrons are in motion with constant average drift velocity. Besides, wave impedances of the
modes are illustrated. Afterwards, a simple matching network design for input and output ports

of the 2DEGs is developed.
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Introduction:

Detection and generation of THz signals with the aid of plasma waves inside two Dimensional
Electron Gas (2DEG) layers of High Electron Mobility Transistors (HEMTS), have been
observed in several experiments [1]-[2]. Also, several theoretical models have been proposed to
describe these observations [3]-[5]. In [3], plasma wave and shallow water equations are
compared and a THz wave generation is predicted in a gated 2DEG layer of a HEMT with open
and short circuited drain and source, respectively. The model is used to explain the THz wave
generation and (resonant and non-resonant) detection in gated 2DEG of HEMT. Recently, a
room temperature THz source implemented in an AlGaN/GaN based HEMT, tunable with gate
voltage between 0.75 to 2.1 THz, has been reported [2]. On the other hand, plasma wave
resonances in un-gated 2DEG layers have also been proposed in [4] with the same boundary
conditions as in [3].

In [3] and [4], modeling of the plasma wave propagation is executed by solving Poisson and
Hydrodynamic equations (Euler and continuity). This solution is correct because the wavelength
of the plasma wave and the device dimensions are much smaller than transverse electromagnetic
wavelength at the same frequency [5]. However, it is not able to describe the mechanism of the
wave amplification exactly because no in depth field analysis is performed. Therefore, the
specific boundary conditions are introduced to establish the energy transfer from the bias source
to the plasma wave. Besides, a simple and direct design procedure is not viable through the
method.

In this paper, the plasma wave propagation along an un-gated 2DEG in the presence of drift
current is studied. A method based on a solution of Maxwell equations coupled with the

Hydrodynamic one is used to define the wave characteristics. To this end, the 2DEG is treated as
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a charge sheet positioned at the interface of two wide and narrow band-gap semiconductors.
Next, the coupling of the 2DEG carriers to plasma waves is simply taken into account by
introducing surface currents on the sheet as Maxwell equations are satisfied. To consider drift
motions of electrons induced by bias source, linearization of Hydrodynamic equations is used to
reflect the movement into the surface conductivity. This helps us perform an exact propagation
mode analysis and define required conditions for the wave amplification. Also, a propagation
impedance investigation is done that facilitates further design of a matching network required for
an efficient THz amplifier.

Dispersion relation calculation in the presence of drift current:

Consider a 2DEG layer placed at z =0 plane and embedded inside a semi-infinite hetero-

structure as in Fig. 1. There is also a constant motion of electrons along the 2DEG toward -+x,

characterized by the average electron drift velocity v, .

/ 2DEG

V4 [
| a % e
X Vo

Fig. 1. Schematic view of a 2DEG layer implemented in a hetero-structure (not
shown) with a constant average drift electron velocity

€

While developing the solution for the plasma wave propagation along x axis, it has been

shown that TE* mode does not exist if the 2DEG surface and the surrounding media are isotropic

[6]. Therefore, electromagnetic field equations and the related dispersion relations are presented

just for non-radiative TM* case. Here, relative permittivities of the wide and narrow band-gap
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semiconductors are assumed to be equal ¢, .
Accordingly, wave function and field formulations for z>0 part are:
w =gexp( jot—yx—517) (1)
where y =a + jpand

2
.5 W, EZ=.7—5t//, HY =-oy
joe jowe (2)

EY=H?=H*=0.

EX=-

From Helmholtz equation, it is obtained that:

2
52+72+‘9fc‘;’ -0 3)

where ¢=¢,¢ (& =8.85x10"F/m, c=3x10°m/s). Continuity of tangential component of

the electric field along the interface EXL:O is the first boundary condition. Second boundary

condition is simply acquired by relating surface current szix(HyZ:W—HyL:O_) to the

tangential electric field by J* = E” o where o is the xx component of surface conductivity

tensor. Considering the boundary conditions, it is derived that:

o 2
_9 _z 4
jo 0O )
- o nd’ . .
In [6], the surface conductivity approximation from Drude model G:ﬁ is replaced into (3)
@

and the dispersion relation of a normal mode of propagation is attained from (3) and (4) as:

2
2a

n
Where a = od _
4dem
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Here, in order to take the electron motion into consideration a new surface conductivity but not
the value from Drude model approximation is employed. To this end, the surface conductivity
model developed in [7] is used. In [7], linearization of Hydrodynamic equations (Euler and
continuity) is performed to include the carrier movement. Hydrodynamic equations are well
known to be valid as the mean-free path for electron-electron collision is smaller than the device
length and the mean-free path for scatterings from phonons and impurities [3]. Electrons in the
2DEG layers simply satisfy these two conditions. Conductivity of the 2DEG layer in the

presence of the electrons motion has been obtained with the aid of the linearization in [7] as:

2 -

n @

o= Oq* J
m

(6)
(ja’_vo7/)[ja)_vo7/+ij

where m", n,, g and = are electron effective mass, 2DEG electron density at steady state
condition, unit charge (4 =1.6x10""C) and momentum relaxation time, respectively.

In a collision-less case (yv,>> 3), by replacing (4) and (6) into (3):
T

2

1 . e
72+E(10)—v0y)“+ £ -0 @)

CZ

is derived. In the THz frequencies, (7) can be reduced to:
—4a’y? =(jco—v07/)4 (8)

and therefore, four different modes with dispersion relations of:

(a+v.w)*./a®+2av.w
_ 0 0

V12 =) 7
’ (10)
(~a+v,w)*4/a’ - 2av,0
}/3,4 = J Vz '
0
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are obtained. It means that the normal TM*mode of propagation along the surface of the 2DEG,
with the dispersion relation (5), is divided into four different modes as electrons are moving with
the constant average drift velocity. It can be shown that the collision-less condition is not a
critical one, and the four modes still can exist with slight changes as collisions are also included.
From now to the end, only the collision less case is explained and the collision effects will be

covered in a separate paper.

z

To finish the analysis, the wave impedance along the 2DEG Z* =— is also calculated for

HY

each mode as:

7, =Dkt (11)

.....

Characteristics of each mode

It is obvious (from (10)) that for frequencies lower than @, =a/2v, (named breaking
frequency afterwards) all four modes are purely propagating since their propagation constants are
imaginary. With typical value of a andv,, first two modes are propagating toward +x while the

other two are moving in the opposite direction. Also, it can be shown that the second mode has a

similar behavior to the normal mode as the electron drift is not included. For frequencies above

@, , the propagation constants of the third and fourth modes are complex numbers and have
attenuation constant (positive or negative). In other words, as a plasma wave is launched
properly along the 2DEG at frequency ranges above o, , energy is being transferred between the
bias source and the electromagnetic wave as being amplified or attenuated. It is obvious that

can be controlled by changing the 2DEG charge density and the electron drift velocity.

Obviously, the mechanism of energy transfer still needs more investigations. Perhaps, a complete
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analysis based on a time domain full wave model in conjunction with Boltzmann equations
should be performed for better understanding.

The separation of the normal mode into four new modes is very similar to what has been
proposed in travelling wave tubes [8]. A traveling wave tube is basically composed of a slow
wave structure as a helix and an electron beam. As the electron beam is passed through the helix,
the normal propagation mode is divided into three different modes of growing, attenuating and
propagating ones [8].

Discussion of a specific example

In this section, the characteristics of the four propagation modes is investigated for a 2DEG

created at the interface of InGaAs/InP with n,=0.3x10”cm™,v, =2x10" cm/s and electron
effective mass0.042m, (m, =9.1x10"kg ). Besides, relative permittivity of both InGaAs and

InP are assumed to be equal ¢, =12.6..

With these values, calculated attenuation and phase constants (« and B ) of the four modes are

shown in Fig. 2 and Fig. 3 for frequency range of 300GHz up to 3 THz. As depicted in Fig. 2, the
two first modes are propagating along the electron drift velocity +x while the two last modes are
in the opposite direction—x. As shown in Fig. 3, the first and second modes are merely

propagating ones but the third and fourth modes can have attenuation term as soon as operating

frequency is higher than a,; . From the propagation direction of each mode and the sign of the

attenuation constants, it is clear that the third mode is an attenuating mode while the fourth one is
an amplifying mode.
In Fig. 4, phase velocity of each mode normalized to the drift velocity is shown. As depicted,

the first mode is the slowest and the second one is the fastest. Also, notice that @, is the point
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which the phase velocities of the third and the fourth modes become equal to the drift velocity.

Next, magnitude of real part of wave impedances normalized to vacuum wave impedance

Z,=377Q, are illustrated in Fig. 5. As shown in Fig. 5, the real parts of the third and fourth
modes are equal at the frequencies higher than e, .
In Fig. 6, imaginary part of the wave impedances normalized to Z, are presented. As seen, the

first two modes do not have imaginary part. Additionally, last two modes have complex wave

impedance for frequencies above @, . After this point, third mode has inductive impedance while

the fourth one is highly capacitive considering that they both propagate toward —x .
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Fig. 2. Phase constants of the four modes versus frequency
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Fig. 4 Phase velocity of each mode normalized to the constant electron drift
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After considering the appropriate sign for the wave impedances, a simple matching network
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shown in Fig. 7 is proposed. Notice that to couple the wave from the signal source placed at
x = L to the plasma wave with fourth mode properties, a matching network with highly inductive
output impedance is required. The same matching network is also required for the load placed at
z = 0to handle the mismatch between the load and the wave impedance. It is obvious that further

investigations and designs are needed to be done to improve the THz wave coupling to 2DEG.

L
'R o

: Z :
Load Source T_,x L Drain

A
N

Source impedance

Fig. 7 A simple matching network placed at both portE(Bias circuit is not
included).

Conclusion
An analytic method is proposed to study plasma wave modes along 2DEG layers of hetero-
structures in the presence of carrier motion. The electrons movement causes the normal mode
separation into four new modes with one being a growing mode at THz frequency ranges.
Therefore, an amplification of plasma waves in this range is predicted and also, a need for
sophisticated matching network designs is addressed. It is pointed out that for better
understanding and more accurate designs, application of a full wave time domain method
satisfied by Boltzmann equation is inevitable.
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B. TERAHERTZ PLASMON AMPLIFICATION USING TWO-DIMENSIONAL
ELECTRON-GAS LAYERS
Reprinted with permission from Mohammad Ali Khorrami, Samir El-Ghazaly, Shui-Qing Yu,
and Hameed Naseem, Journal of Applied Physics, vol. 111, pp. 094501. Copyright 2012, AIP
Publishing LLC.
Abstract

In this study, we propose an analytical model to investigate the possibility of guiding and
amplifying terahertz (THz) plasmons in a Two Dimensional Electron Gas (2DEG) layer of a
hetero-structure by applying a bias electric field. This analytical model solves Maxwell equations
and semi-classical electronic transport equations inside the biased hetero-structure
simultaneously. It is shown that the two dimensional plasmon’s properties alter vastly as the
electrons are accelerated by the bias field. Four asymmetric plasmonic modes can propagate
inside the un-gated 2DEG layer of the biased hetero-structure. One of these modes in the un-
gated 2DEG layer is a growing mode which can be useful in the implementation of THz
amplifiers. Since the characteristics of these modes can be controlled via biasing, design of new
plasmonic devices such as modulators and switches is possible by this approach. Similar analysis
has been performed in a gated 2DEG layer that shows clear changes in the two dimensional
plasmon properties due to the biasing. Unlike the un-gated 2DEG layer, our efforts to find a
growing mode in the gated 2DEG layer have failed. These multi-physics models lead to a better
understanding of THz plasmonic sources and detectors as well as proposals on new plasmonic
devices. Besides, they provide a physical insight into the electron-wave interactions inside the

biased hetero-structure.
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Introduction

In recent years, there have been substantial efforts to close the so called “THz Gap” by
proposing all solid state devices aiming to generate and detect THz signals. Operation of
microwave devices at THz frequencies is inherently limited by the electron velocity maximum
inside semiconductors. Conversely, lower frequency edge of photonics is about 20 THz [1] and
also the integration of optical devices into dimensions that are smaller than the wavelength of the
photons in the free space, is limited by diffraction [2]. Recently, surface waves coupled to the
motion of the surface carriers (after this shortened as SWC) also called two dimensional
plasmons, have been employed increasingly to localize EM waves within nano-size distances.
This high field localization only happens when the operating frequency is close to the plasma
frequency of the carriers. Highly doped semiconductors with lower plasma frequencies offer
localized plasmon propagation in the THz frequency range [3]. SWCs inside Two Dimensional
Electron Gas (2DEG) layers with small propagation loss are very promising for THz plasmonic
applications [1]. SWCs propagate in the 2DEG layers with phase velocities even ten times higher
than the electron drift velocity maximum, while offering wavelengths that are orders of
magnitude smaller than the radiative mode counterpart. To this end, many researchers in this area
have focused on implementing THz sources and detectors using SWCs in: the inversion layer of
Metal-Oxide-Silicon (MOS) structures [4]-[6], the 2DEG layer of High Electron Mobility
Transistors (HEMTS) [7]-[12] and graphene [13]. Lately, novel plasmonic detectors inside 2DEG
layers of hetero-structures have been implemented [9]-[10] that are comparable to the other state
of the art THz detectors. Furthermore, different experiments [11]-[12] have indicated potentials
of THz wave radiation from the 2DEG layers. As an example, room temperature THz emissions

from an AlGaN/GaN based HEMT, tunable with gate voltage between 0.75 to 2.1 THz, has been
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observed [11].

Emissions of THz signals from the structures are mostly interpreted as a consequence of the
radiative decay of the SWCs thermally excited by hot electrons [5]-[6] or plasma wave
resonances due to reflections from the device boundaries [11]-[12] and [14]-[15]. In [14], a
solution of Poisson equation and Hydrodynamic (HD) equations, including continuity and Euler
equations, are employed to characterize the motion of electrons inside the gated section of the
2DEG layer of a HEMT. Afterward, specific boundary conditions (short circuit at source and
open circuit at drain) are utilized to represent the gated 2DEG as a plasmonic resonant cavity and
a gain medium which allows exponential SWC growth in THz range. Following the same
procedure, similar SWC instabilities have been predicted in an un-gated 2DEG layer [15].
Nevertheless, it should be mentioned that the models [14]-[15] are not able to describe any type
of energy transfer from the bias voltage to the SWCs or any exponential growth of the surface
waves without considering the boundary conditions.

In this paper, a complete wave characterization of the SWCs in the gated and the un-gated
2DEG layers of biased hetero-structures is presented. To this end, an analytical solution of HD
equations and Maxwell equations inside a non-degenerate electron gas is performed. In the
search of a possible plasmonic amplifier, the analysis is focused on finding surface wave modes
that can exist and grow exponentially. This mode analysis is similar to the one performed for
helix-type traveling wave tubes in [16]. Incorporating Maxwell equations into our model allows
us to perform an inclusive mode analysis compared to the other methods [14]-[15] which simply
employed Poisson equation for the field calculations. Also, this method enables us to illustrate
several interesting wave parameters such as phase velocities, wave impedances and admittances

of the SWCs. Here, the effects of the hetero-structure’s end contacts and the corresponding
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boundary conditions on the wave propagation are ignored. This assumption allows us to first
examine the ability of the 2DEG layer to handle a growing SWC mode before any resonant
cavity is assigned inside the structure. It is shown that the wave properties of the normal
symmetrical SWC modes along an un-biased 2DEG will drastically change as a bias voltage is
applied onto the2DEG ends. In the biased device, the symmetry of the right and left going SWC
of the unbiased 2DEG is completely broken. This can explain unsuccessful experiments designed
to search for resonant behaviors of the 2DEG conductance due to the SWCs inside biased
devices, while there are several reports as [4] and [8] showing the plasmon-induced resonant
characteristics in transmission spectroscopy response of un-biased 2DEG layers. In spite of
several benefits of this analytical method, a numerical solution of complete form of electronic
transport equations coupled to a full wave simulator is still required to obtain a comprehensive
picture of plasmon-electron energy interactions. A perfect candidate for this purpose is the multi-
physics numerical solver in [17] that was first introduced for the analysis of high frequency
transistors.

Analytical modeling of the SWCs propagation in a biased un-gated 2DEG layer

Fig. 1 shows the schematic diagram of the simulated structure, including an infinitely wide
(along y-axis) 2DEG sheet with equilibrium surface charge density no positioned at z = 0. It is
assumed that the 2DEG layer is confined inside two lossless semi-infinite (along z axis)
semiconductors with similar permittivities € = g X g, & = 8.85 x 1012 (F/m). The motion of the
electrons along the z-axis is quantized with a ground state wave function spread of about 10nm.
The spread is smaller than the SWCs decay length along z axis. Therefore, the 2DEG is
represented as a zero thickness sheet of electrons in our analytical model. It is assumed that

electrons are only allowed to move along x axis. An external bias electric field E, causes the
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electrons to move toward +x with an average electron drift velocity vo. The bias electric field is
applied by inserting a dc voltage onto Ohmic contacts (source and drain) located at both ends. It
IS assumed that the contacts are extremely far from each other compared to the SWCs

wavelengths so that their effects are not included.

<€ >

Fig. 1. A front view of the structure considered in the analytical model. The
infinite electron sheet is confined inside two dielectrics. Electrons are moving as a
consequence of the sum of two electric fields; the large bias electric field Eq and
the weak SWC time varying one.

As previously proved in [18]-[19], TE* mode is not permitted to propagate along the 2DEG

layers of the hetero-structures with isotropic semiconductors. Therefore, only a TM* mode
solution along the 2DEG layer is presented here. To this end, a magnetic vector potential A = Xy

(refer to [20]-[21] for the definition) with a wave function

1)

g exp(jot—yx—o6z) z>0
g, exp(jot—yx+6z) z<0

along x axis with a unit vector X is considered. Inside the wave function, a propagation constant
vy = o + jP is assumed that t, ® anda and P are time, radial frequency and attenuation and phase
constants along x axis, respectively. Also, & is the attenuation constant along z direction. The
corresponding wave equation can be written as:
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52+7/2+gra) =0 (2)

C2

wherec = ]/,/yogo and po = 41 x 107 (H/m). The TM* mode solution of Maxwell equations

provides wave components

B 1 azl// gra)z _ 1 821//
E.= ja)g( ox " 2 V) E, = joe 7/ Oxo
0

, =Y/, E,=H,=H,=0.

(3)
H =

Boundary conditions applied on the surface of the 2DEG are the continuity of tangential
component of the electric field Ey,=¢" = Ex|; = o and the presence of surface current density J,° =
Hyl.=0" - Hyl.= 0" The surface current is related to the electric field through J,’ = 6Ey|, = o where &
is the xx component of the surface conductivity tensor [19]. Using this relation, the previously
mentioned boundary conditions and the wave equation (2), it is concluded that ¢; = ¢, and

o _2

0 o (4)

In order to consider the electronic transport effects of the active plasmonic structure into the
surface conductivity component, a small signal analysis of HD equations [22] is incorporated

into our model. For this purpose, HD equations including electron continuity relation

V() =0 5)

and Euler equation (also called simplified form of momentum conservation equation)

v . = v
a\%t +V.(W)=— r: E - (6)

are linearized. In (5)-(6), n, v, m", q and 1y, are electron: density, velocity, effective mass, unit
charge (q = 1.6 x 10™°C) and momentum relaxation time, respectively. Since electrons are only

allowed to move along x direction, x component of the electron velocity v, and the total applied
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electric field E*™, = E, + E, are considered. These transport equations (5)-(6) are well known to
correctly predict the low field behaviors of electronic devices [14].

In our small signal analysis, electron velocity and charge density are vy = vo + v, x exp (jot — yx
- 8z) and n = ng + n* x exp (jot — yx - 8z), respectively. After linearizing (5)-(6) and considering
that J,° = -gnvy; the surface conductivity is obtained as:

n,q? '
=1 1 = (7)
(jw—vo7)[ja)_vo7/+z_j

m

o

Substituting (7) into (4) and using the wave equation (2); it is concluded that:

Ar' +AY+Ay +Ay+A =0. (8)
where,
3
A1=V40, =—2:_/0—4ja)V30
2 H 2
A, =60V, +_g+_6ja)v 0 1 4a°
m Tm
) )
2
A, = 4jvye + 20 20N
2-I'T\ Tm
s, o 2j0° 4dlo’e,
A=~ :
T, T, c

2

and a= % . Solving the fourth order equation (8), four SWC modes with different dispersion
Em

relations are obtained. In order to verify our solution, a specific case with small bias voltage or

negligible electron drift velocity (Vo = 0) and low scattering rate (® >> 1/t is considered. Under

these conditions, (8) simplifies into yzij\/m4+4azc028r/cz/2a which is identical to the

dispersion relations calculated in [18]-[19]. These two SWC modes inside the unbiased 2DEG

are divided into four different modes resulted from (8), as the bias voltage is applied.
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Under the conditions of small bias voltage (vo = 0) and non-negligible scattering rate, (8)

reduces to:

H 2 2 3 4a2 2
\/w“—“’—— o, Ca:e,. (10)
T T

Also, a solution of (8) can be obtained in a biased 2DEG layer with low scattering rate (© >>

1/tm) as:

(a+v,w)t./a®+2av,w
_J 0 0

71,2 - Vz
’ (11)
(~a+vyo) £4/a’ - 2av,w
Vs =) v .
0

Considering the dispersion relations of the 3" and the 4" modes in (11); it is understood that the
propagation constants of these modes are complex as o > a / 2vq. Following [23], the special
frequency fy,r = a / 4mv is named breaking frequency. A SWC mode with a complex propagation
constant (nonzero attenuation constant) can represent a growing or an attenuating mode
depending on the signs of its propagation and attenuation constants. Hence, the possibility of
finding a growing mode should be considered in each specific case. If the scattering effect is not
negligible, a numerical solution of (8) is required for the complete mode characterization.

To examine the energy interaction between the electromagnetic waves and electrons, wave

admittance of each mode along the perpendicular direction z is defined as:

;o
y __H _ Joe

: 12
1.4 Ex 5 ( )

With this definition, positive conductance is interpreted as the transfer of energy from the waves

to the electrons and negative conductance represents an opposite power exchange [16] that leads
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to the SWC amplification. It is expected that the energy of the growing mode is due to the
reduction of the total kinetic energy of the electron stream.

Another interesting parameter is the wave impedance along x axis

zY = (13)

.....

that can be useful in the design of matching networks. These networks are required to effectively
match the input and output of the 2DEG layer to other sections of a future plasmonic circuit.

Discussion of the SWCs propagation in an un-gated 2DEG layer

Here, a mode analysis of the SWCs in the un-gated 2DEG layer of an AlGaAs/GaAs hetero-
structure is performed in a broad THz frequency range using the analytical method proposed in
section I1. A 2DEG layer with equilibrium charge density ng = 10*'cm™ located inside the hetero-
structure with electron effective mass 0.0623my (mg = 9.1x10'kg) and electron momentum
relaxation time T, = 1ps is considered. It is assumed that a bias voltage has induced an electric
field along the 2DEG layer that has accelerated the electrons toward +x with the average drift
velocity vo = 10" cm/s. Also, the relative permittivities of the semiconductors confining the
2DEG are assumed to be equal g = 12.6.

In Fig. 2, the SWCs phase constants in the 2DEG layer in the biased (8) and the un-biased (10)
cases are shown. Because of the symmetry of the SWC modes in the un-biased case, one of the
SWC modes is only considered here. As depicted (see Fig. 2), there exist vast differences
between the SWCs phase constants in the biased and the unbiased cases. These changes are
related to the presence of the electron drift motion. This clearly emphasizes that the electron drift
movement must be considered into the models of active plasmonic devices. As illustrated, phase
constants of the 1% and the 4™ modes are positive and hence; these modes are allowed to

propagate toward +x. The 2" and the 3 modes propagate toward —x due to their negative phase
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constants.
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Fig. 2. Phase constants of the SWC modes in the un-gated 2DEG layer for the
biased and the un-biased cases in the frequency range 300GHz to 1.5THz.
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Fig. 4. Attenuation constants (along z axis) of the SWC modes in the un-gated
2DEG layer for the biased and the unbiased cases in the frequency range 300 GHz
to 1.5 THz.

3 04

In Fig. 3, the attenuation constants of the SWC modes in the biased and un-biased cases are
shown. In the following, the attenuation constants are reported in the unit of mega Nepers per
meter. Large modifications in the attenuation constants of the SWC modes are similarly observed
as electrons are accelerated by the bias field. The 1% and the 4™ modes are able to propagate with
small attenuations while the 2" and the 3™ modes have comparatively large attenuation constants
in the frequencies higher than f,, = 0.8THz. Considering the direction of propagation (Fig. 2) and
the sign of the attenuation constant (Fig. 3) of each mode, it is concluded that the 2" mode is a
growing mode. This means that if this mode is properly launched along the 2DEG, SWCs will
grow exponentially as they propagate. This growth can continue until the point that the presented
small signal analysis reaches its limit. This unidirectional SWC amplification can be useful in the
design of wideband THz amplifiers inside hetero-structures. As mentioned, the SWCs growth

rate is small in lower frequencies while it increases in higher frequency ranges. This frequency
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dependent behavior should be considered in the design of the THz amplifiers to reach the highest
possible gain in the interested frequency range. As shown in Fig. 2, the SWCs have large phase
constants or equivalently very small wavelengths in most part of the frequency range. This
justifies the assumption of infinitely long 2DEG layer compared to the SWCs wavelengths. As
an incident radiating THz electromagnetic field is exciting the amplifier; the application of
special coupling mechanism such as diffraction based gratings is required to compensate the
phase mismatch between the SWCs and the incident wave. As the amplifier input signal is
provided by another circuit such as a plasmonic waveguide, the wave impedance of the
waveguide should match the amplifier wave impedance (13). Similar impedance matching is also
required in the output of the amplifier to avoid any unwanted instabilities and transferring the
maximum portion of the amplified signal to the terminating circuit. Because of the unidirectional
behavior of the growing mode, implementation of a THz oscillator inside the same structure may
be challenging. However, using an external feedback circuit connected to the plasmonic
amplifier can make the implementation of a THz oscillator in the 2DEG layer achievable.

From Fig. 2 and Fig. 3, it can be concluded that the 3™ mode is facing large attenuations as
propagating. This specific mode may be employed in the design of novel electrically controlled
plasmonic switches.

In Fig. 4, the attenuation constants 6 of the SWCs along the perpendicular direction z are
illustrated. As depicted, all modes are showing relatively large attenuations in this direction in a
broad frequency range. This means that the SWCs are mostly localized around the 2DEG in
these frequencies. Considering the high field concentration along the 2DEG layer, the
assumption of infinitely thick dielectric around the 2DEG is justified. This high field attenuation

also suggests that if the grating coupler is employed to launch the SWCs, the 2DEG should be
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located close enough to the surface so that the diffracted fields can strongly excite the SWCs.
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Fig. 5. Real part of the wave admittance of the SWC modes (along z axis) in the
un-gated 2DEG layer for the biased and the un-biased cases in the frequency
range 300 GHz to 1.5 THz.

In Fig. 5, the real part of the wave admittance calculated in the perpendicular direction z (12) is
presented. With our definition of the admittance, negative conductance is interpreted as the
transfer of energy from the electron stream to the wave. As shown, all modes have positive
conductance in the frequency range except the 2™ mode that experiences large negative
conductance specifically as the operating frequency is above fy,. Since the breaking frequency is
dependent on the equilibrium charge density no and the drift velocity vy, it is clear that the gain
bandwidth of the amplifier can be controlled by changing no and vo. As depicted in Fig. 5, the 1
mode of the biased 2DEG shows comparatively negligible positive conductance in the frequency
range.

In Fig. 6, phase velocities of the SWC modes normalized to vy are illustrated. As illustrated, all

four modes have slow wave nature. It is also interesting to notice that the growth starts as soon as
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the phase velocity of the amplifying mode becomes very close to the drift velocity.
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Fig. 6. Phase velocities of the SWC modes in the un-gated 2DEG layer for the

biased and the unbiased cases in the frequency range 300GHz to 1.5THz in a

logarithmic plot.

10

Analytical modeling of the SWCs propagation in a biased gated 2DEG layer

Here, similar mode analysis of the SWCs inside a gated 2DEG layer is performed. Similarly,
the possibility of finding a growing SWC mode is investigated in this structure. Consider the
same structure in Fig. 1 but with an infinitely long (along +z) perfect electric conductor
positioned at z = d as a gate. In this case, the corresponding wave function of the TM* mode is

described as:

g exp( jot—yx+61) 7<0
w=1¢,exp(jot—yx)sins(z-d) 0<z<d. (14)
0 z>d

After solving Maxwell equation and inserting the wave function (14) into the solution (3),

wave components in the areas below the gate (z < d) are obtained as:
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-5?

E,=——y,H,=H,=E, =0
jwe

H, =

{5x¢lexp(ja)t—yx+5z) 2<0 (15)

Sx¢,exp(jot—yx)coss(z—d) 0<z<d

E, =

__75X{¢1exp(ja)t—yx+5z) 7<0

joe | ¢, exp(jot—yx)coss(z—d) 0<z<d

The wave components above the gate are equal to zero. After applying similar boundary

conditions (E,|_,. =E,|,,. and 3 =H,|_.-H,| ), itis concluded that:

{;151 =—¢,sin(5d) 5)

J, ==0x(¢,cos(5d)— g )xexp( jot—yx)
Incorporating the relation between the surface current density and the x component of the ac
electric field J° =oXE_|,_, into (16), it can be calculated that:

1+ cot(éd)=ﬁ. 17)
Joe

This result is consistent with the relation calculated in [24] for the same structure. It can be
shown that the small signal analysis of the electronic transport equations (4)-(5) inside the gated
2DEG layer also leads to the similar surface conductivity (6). By substituting (6) into (17) and

considering a tightly screened 2DEG (6 x d << 1); it is concluded that:

(v20—4ad))/2—(Vf+2ja)voj7—a)2+J7w:0. (18)

In this manner, the dispersion relations of the SWCs in the gated 2DEG layer of biased hetero-

structures are attained as:
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(VOJF 2jv0a)j4_rA
T

2(v?,—4ad) (19)

Vi =

2
A=\/V—;—16xadw2+16j“’—ad.
T T

The propagation constants calculated in (19) are complex and hence; SWC mode characteristics
should be calculated in each specific hetero-structure. We have tried several hetero-structures
with their nominal values to examine the possibility of finding a growing mode. However, the
resulting propagation constants only showed attenuating modes.

If the drift velocity and the scattering effects are ignored, famous shallow plasma wave
dispersion relation is obtained:

jo
Vi, =1 > m.

In the collision-less case (m, yvo >> 1/1), the dispersion relation (19) simplifies to y1 2 = jo / (v0 +

(20)

2Jad ) which is similar to the relation employed in [14]. In this case, the propagation constants
are purely imaginary and therefore; the amplification or the attenuation of SWC modes is not
expected.

Challenges and Summary

In this paper, we have characterized the SWC modes in 2DEG layers of biased hetero-
structures at THz frequencies to investigate the possibility of controlling and amplifying SWCs
in these structures. In this analysis, an analytical method consisting of a modal solution of
Maxwell equations and HD equations is introduced. This investigation clearly highlights several
important changes that the SWCs in both gated and un-gated structures face as the electrons are
accelerated by the bias electric field. In the un-gated 2DEG layer, a growing SWC mode can

exist which may lead to the amplification of SWCs. Several obstacles are to be overcome before
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the growing mode can be useful in the implementation of THz amplifiers. Due to the non-
radiative nature of the plasmons, a diffraction based structure such as a grating coupler is
required to excite the SWC mode. Also, it is important to only excite the growing mode along
the 2DEG to obtain an efficient amplifier. Besides, reflections of the plasmons from the coupler
and the Ohmic contacts should be considered to avoid unwanted instabilities. The electron
heating has not been addressed in this work and therefore possible hot electron effects need to be
investigated separately.

The growing mode has not been observed inside the gated 2DEG layers. However, active
control of the SWCs in the gated 2DEG layers by external bias voltages can provide new
opportunities to design and implement novel plasmonic switches and modulators.
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APPENDIX I:

A. SURFACE CONDUCTIVITY OF A BIASED TWO-DIMENSIONAL CONDUCTOR

Here, the small signal analysis of Hydrodynamic equations (momentum conservation and
continuity equations) is performed to obtain the surface conductivity of a biased electron gas. In

general, continuity equation:

V() =0 (1)

and simplified form of momentum conservation relation:

v e ~ v
av/at +V'(VV) == n?* Etotal _T_ (2)

are sufficient to represent the electron motion along a biased semiconductors as the electron
velocity is below the saturation velocity (low field behavior) [1]. In (1)-(2), n, v, m’, g, Tm and
Ewta are electron: density, velocity, effective mass, unit charge (q = 1.6 x 10™°C), momentum
relaxation time, and total electric field, respectively. Here, it is assumed that the infinitesimal 2D
conductor with surface electron density ng is located at the z = 0 plane. Additionally, the electron
sheet is infinite along y axis, and electrons are not able to move in the perpendicular direction z
due to the quantum confinement. Therefore, electric field component and electron velocity along
y direction are disregarded. Moreover, it is assumed that a biased electric field Eo externally
applied on the electrons is able to move them with an average drift velocity vy.

In our small signal analysis, it is presumed that the total electric applied on the 2D sheet (z = 0)

E*a = E, +E*, exp(jot—yx). (3)

total
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Due to direct dependency of electron density and velocity on the electric field value, they can be
considered as vy = Vo + V> X exp (jot — yx) and n = ng + n* x exp (jot — yx), respectively.
Inserting the electron density and velocity, and electric field into (1), it is obtained that:

5%t+%x(n0xvo +1ny XV, exp( jot —yx)+

(4)
Vo XN exp( jot — x)+V* xn® exp(2( jot —yx))) =0

as z > 0. After disregarding the last element of (4) with amplitude v*xn® and eliminating the

exponential terms, it is obtained that jon™ =y x(nyxV*, +v,xn*) or:

Vss :nssx Ja)_voyl (5)
Ny

X

Inserting the electron density and velocity, and electric field into (2) yields:

jov™ exp( jot - yx) + (v, + V= exp(jot - yx))x

%X(VO +vEexp( jot —yx)) =— n? X (6)

(E0 +EX exp(joot—;/x))—v0 o exp(ja)t—yx)l

Tm

Separating harmonic and non-harmonic parts of (6) leads to:

ja)VSS _j/VSSV0 — _ q* ESS _Vﬁ
m T
g " (7)
Tm
Vy =— pos E,
Additionally, surface current density of the 2D sheet J = - (0@ X n x v) and the electrical

conductivity o are related as: J = ¢ x E. Using the considered electron density and velocity, it can

be easily shown that:
OB =—q(V,n*™ +nv*). (8)

Using (5) and (7)-(8), the surface conductivity of the biased electron sheet can be calculated as:
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an J(O ) (9)

. . 1
(Jw_vo7)[1w_vo7/+z_j

m

B. TWO-DIMENSIONAL PLASMONS ALONG AN UN-GATED ELECTRON GAS
Here, the dispersion relation of 2D plasmons along a biased un-gated electron gas sheet is
calculated. As mentioned in chapter 2, the solution of Maxwell equations with appropriate

boundary conditions leads to:

2
_g .z (10)
jo O
Using (9)-(10) to define & in terms of ® and v, it can be calculated that:
—2em’ . . 1
o= -V, =V +—|. 11
i (i 07/)(1 o7 TJ (11)
2
Inserting (11) into the wave equation 52 + 2 + v (2=0, itis obtained that:
2 2
-1,. 2( . 1 w°s,
;/2=E(Ja’—vo7/) (Ja)—voy+;j e (12)

where, a=n x ¢?/ (4 x £ x m). Arranging (12) in term of y lead to the following dispersion

relation:
Ay +AY + A+ Ay+A =0 (13)

where:
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3

2 )
A=V, A=-22_ajeV,

TI’TI
2 H 2
\Y; 6 jov
A, =60V, +—3+M+4a2
m TI’TI (14)
5 BVt 2jv,m
A =40 + -
Tm Tm
o ®* Zja)3 4a2a)25r
e
T T c
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Abstract:

We have used perturbation theory to analytically characterize 2D plasmons’ propagation inside
gated two dimensional electron gas layers of hetero-structures. Using this analysis, the
attenuations due to Ohmic losses of the metallic gate are calculated.

Introduction:

Two dimensional plasmons also called surface waves coupled to surface carriers (named SWC
hereafter) have attracted a great interest in the area of microwave and terahertz (THz) devices
because of strong field confinement and promises of novel THz devices such as sources,
detectors and switches [1]-[4]. In spite of very attractive properties of SWC, their applications in
room temperature devices have been limited due to large propagation losses caused by electron

scatterings. However, the use of novel plasmonic materials such as graphene [5] and high quality
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hetero-structures [1] has provided new paths toward modern THz plasmonic circuits. Although,
the propagation losses due to limited electron mobilities of plasmonic materials have been
extensively considered in different works (see [4] and its references), the Ohmic losses of
adjacent metallic layers has always been disregarded by considering the metal as a Perfect
Electric Conductor (PEC). With the advent of the novel plasmonic materials with acceptable
level of electron scatterings, a complete investigation of the SWCs’ attenuations due to the
Ohmic losses is required.

In this paper, the effects of a low loss metal in the proximity of a two dimensional electron gas
(2DEG) layer on the propagation characteristics of the SWCs are considered.

Analytical modeling of the SWC propagation along a 2DEG layer in the proximity of a low

metallic gate:

Consider an infinitely wide (in y axis) and long (in x axis) 2DEG layer sheet with equilibrium
charge density no positioned at z = 0. It is assumed that the 2DEG layer is located inside a semi-
infinite dielectric with permittivities € = &, ¥ €o, &y = 8.85 x 10" (F/m) extending from z = d to z
= -o0. Here, SWCs’ attenuations originated from lossy dielectrics and electron scatterings of the
2DEG layer are disregarded. In this manner, the wave attenuations caused only by the Ohmic
losses are considered. To this end, a thick metallic layer with electrical conductivity op iS
considered at z = d parallel to the 2DEG layer. The metallic layer is assumed very thick
compared to the skin depth so that it is assumed that it extends to z = + oo. Considering the large
conductivity value that is normal for metals such as gold and aluminum in THz frequencies, a
TM* mode wave can propagate along the 2DEG layer. Considering negligible mode variations

from the ideal case with a PEC gate, the field values become:
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where, ®, B and & and are angular frequency, phase constant along X axis and attenuation

constant in the perpendicular direction (z axis), respectively. Applying the boundary conditions

at z =0, it is concluded that 1+Cot(8d) = -0g joe and @1 = -2 sin (8d) [4] where o is the surface

conductivity of the 2DEG layer. Substituting the surface conductivity from simple Drude model

2 *
G:_Jnoq/ ., the dispersion relation of the SWCs becomes B = mX /SH/ , . where, g and
om n,q°d

m” are electron: unit charge 1.6 x10™° (c) and effective mass. In order to calculate the attenuation

constant of the SWC due to Ohmic losses, the average power carried along x axis is first

computed:
C_ . - 1
P=[Sdz, SX:—ERe{EZxHy} )
that leads to:
P= '85

— —¢,%sin’(5d )+

B6? 1 .
o 3, [d+255|n(25d)j.

©)

Next, the Ohmic power losses induced by the wave attenuations at the surface of the low loss

metal z =d from x =0to x = | (I is an arbitrary location) is calculated as:
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where the metal surface resistance Rs = (”“%G , o = 41 x 107 (F/m). Considering the

definition of the attenuation constants due to power losses [6] «, = Rl o1p it is concluded

that:

_ oweR,
Bsin’ (§d)+ﬁ5x(d +2155in (25d )j

(21

c

(5)

Results and discussion:

Here, a wide band characterization of the SWCs’ attenuations due to Ohmic losses in a specific
structure is performed. It is assumed that a 2DEG layer with surface charge density no = 10%
(cm™) is located inside an AlGaAs/GaAs hetero-structure with dielectric constant g = 12. The
electron effective mass along the 2DEG is m = 0.063 x mg (Mo = 9.1 x 10! kg). A thick
aluminum gate with conductivity o, = 3.5 x10” (S/m) is placed above the hetero-structure with

distance d from the 2DEG layer.
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Fig. 1. SWCs’ attenuation constants due to the Ohmic losses in THz frequency
ranges.

In Fig. 1, the SWCs’ attenuation constant due to the Ohmic losses calculated by the analytical
method (5) is depicted in THz frequency ranges. As shown, the attenuation constant increases in
higher frequencies. Besides, the Ohmic loss grows by decreasing the separation of the metallic
gate and the 2DEG layer. This is clearly due to the enhanced field and metallic gate interactions.
Considering the values of the calculated attenuation constants, it can be concluded that the
Ohmic losses are negligible in the room temperature operation of recent plasmonic materials
because of the substantially larger electron scatterings. However, the Ohmic losses effects
become important in the cryogenic temperature operation of the plasmonic devices and also in
the application of novel plasmonic materials as graphene with high electron mobilities even at
room temperatures.

Conclusion:

An analytical method based on perturbation theory is presented to investigate the Ohmic losses
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inside a gated 2D plasmonic waveguide. The analysis helps us to design optimized plasmonic

circuits with acceptable level of losses in THz frequencies.
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Abstract:

In this study, a full wave numerical technique is employed to characterize the propagation
properties of 2D plasmons along Two Dimensional Electron Gas (2DEG) layers of biased
hetero-structures at terahertz frequencies. This method is based on a coupled solution of Maxwell
and hydrodynamic transport equations. In this manner, a complete description of carrier-wave
interactions inside the 2DEG layer is obtained. Particularly, this simulator is employed to
investigate the 2D plasmon variations initiated by the application of an external bias along the
hetero-structure. Substantial changes in the plasmon characteristics such as wavelength and
decay length are reported. It is also revealed that two symmetrical plasmonic modes along the
un-biased 2DEG layer split into new asymmetrical ones after applying the bias voltage. The

simulation has been performed in different structures to examine the effects of various electron
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densities and the presence of periodic metallic gratings on the plasmon properties. Moreover, the
2D plasmon reflections from boundaries terminated by Ohmic contacts are separately studied.
This research demonstrates the potentials of the 2D conductors in the design of novel active
terahertz plasmonic devices as modulators and amplifiers while proposing a new approach for
their modeling. The results of this simulation are verified independently with an analytical
model.

Introduction:

Recently, there has been a great interest among microwave and photonic research groups to
exploit nano-plasmonics both in the visible and terahertz (THz) frequency ranges [1]-[3]. While
Surface Plasmons (SPs) propagating on a dielectric-metal interface are suitable for localizing EM
waves in nano-sized dimensions at optical frequencies, they are not confined to the interface at
the lower part of the electromagnetic spectrum such as microwave and THz frequencies [4].
Therefore, the application of a highly doped semiconductor instead of the metal [4], engineering
the metal electromagnetic (EM) properties by making holes and indentations on its surface to
enhance carrier-wave interactions [5]-[6], or employing 2D conductors [7]-[10] have been
proposed. Specifically, 2D conductors have become more interesting after the advent of
graphene with very high charge mobilities even at room temperatures [11]-[12]. In 2D
conductors, smaller numbers of electrons are affected by the EM waves compared to the metal-
dielectric interface. Therefore, the collective plasma mode of the electrons gains significant
amount of kinetic energy compared to the energy of the surrounding EM fields even at
microwave and THz frequencies [13]. These plasma waves in 2D conductors are mostly called
2D plasmons or surface waves coupled to surface carries (shortened as SWC) [14]. They can

propagate with velocities far lower than what is observed in SPs. Besides, 2D plasmon
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wavelengths can be even 700 times smaller than the radiating mode wavelength in the free space
[13]. Hence, 2D plasmons can be very useful in the fabrication of nano-sized microwave and
THz devices. Specifically, 2D plasmons along the Two Dimensional Electron Gas (2DEG) layers
of hetero-structures have been vastly employed in the design and fabrication of sources [15]-
[16], resonant and non-resonant detectors [17]-[19], crystals and interferometers [13] and
switches [20].

Mostly, the analysis of passive 2D plasmonic devices is performed using EM simulators as
finite difference time domain (FDTD) [21] or distributed lumped element models [22]. These
simulators represent conductors and doped semiconductors with the aid of Drude model as
calculating field distributions and mode profiles within the devices. However, the analysis of
modern active plasmonic circuits and devices as sources and detectors is not possible by simply
using Drude model. This limitation exists since Drude approximation is a zero bias voltage
model. Therefore, variations of the EM wave characteristic originated from the moving electrons
accelerated by applied electric fields are disregarded. Besides, this model does not consider
complex electron distributions inside the devices. Therefore, it is not able to provide a complete
picture of electron-wave interactions. Non-linear effects such as electron velocity saturation due
to electron heating are also not taken into account with this approximation. Previously, several
analytical [8] and [23], and numerical [24] solutions of Poisson equation have been proposed to
describe the THz wave propagation inside the 2D conductors. However, Poisson equation is not
able to provide a fundamental insight into the electromagnetic wave propagation inside complex
modern active plasmonic devices. For instance, wave impedances and transmitted power of each
plasmonic mode is completely unknown while approximating the wave propagation using

Poisson equation.
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The rise of the active plasmonic area requires the development of a full wave simulator which
enables the designer to completely capture the underlying physics of these devices. This
simulator must provide a complete solution of coupled Maxwell and electronic transport
equations. Previously, the necessity to characterize the carrier-wave interactions inside
microwave transistors has led to the development of a similar numerical solver, mostly called
global modeling [25]-[26]. Global modeling has also been employed at THz frequencies to
characterize the electrical conductivities of silicon [27] and graphene layers [28]. In spite of the
application of this modeling method in different high frequency applications, it has not been
previously employed in the plasmonic area.

In this paper, we have employed the in-house global modeling simulator [25]-[26] to
characterize the 2D plasmon propagation inside a non-degenerate 2DEG layer of a hetero-
structure. This solver has been already validated through comparison of small-signal parameters
and output voltages of similar microwave transistors with experimental results. This simulator
solves a set of conservation equations, developed from the moments of Boltzmann transport
equation, and Maxwell equations self-consistently. Here, global modeling is employed to
investigate the possibility of guiding and amplifying THz plasmons in the 2DEG layer by
applying a bias electric field. It is shown that the plasmon properties change vastly as the
electrons are accelerated by the bias field. This type of investigation is able to provide real time
information about electron density and velocity inside the plasmonic channel. In order to verify
the results, the analytical model developed in [29]-[30] is employed. Compared to the analytical
model in [29]-[30], this full wave simulator is able to consider the finite thicknesses of electron
gas layers. Additionally, the influence of the wide band-gap semiconductor thickness on the

properties of the 2D plasmons can be investigated. Moreover, the presence of Ohmic contacts on
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the propagation characteristics of the surface waves can be examined using the global modeling
method. Furthermore, the presence of metallic gratings, mostly fabricated on the device surface
to excite a specific plasmonic mode may be taken into account using this technique.

Models and methods:

1. Electronic Transport model
Electron dynamics inside 2DEG layers of hetero-structures can be described by solving the
moments of Boltzmann transport equation [25]. These strongly coupled highly non-linear set of

partial differential equations relating volume electron density n, and electron momentum p are:

1) Complete form of Momentum Conservation:

AP L v (n, pv)+ -2 () =
ot OX (1)
an(EX +(VxB) )—ﬂ
X z—m
and
2) Continuity equations:
on
Y +V.(nVv)=0 2
v.(nY) @

where, q, Tm, T, and v are electron: unit charge, momentum relaxation time, temperature, and

velocity, respectively. Moreover, kg, B and E are Boltzmann constant, the magnetic flux and
the electric field at the electron position, respectively. Additionally, the momentum conservation

equation (1) can be similarly rewritten in other directions (y and z) too. Electronic current density

J, inside the 2DEG may be calculated at any time t as: J, (t) = -gn, (t)V(t). Furthermore, the

electron momentum and velocity are related through the electron effective mass m”™ (p = m” x v).
In general, a complete 1-D solution of the transport (continuity, momentum and energy
conservations) equations can be performed. However, energy conservation equation (not
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mentioned here) is not included in the solution presented in this paper. This does not change the
validity of our analysis since the bias voltage and the ac incident electric fields are both chosen
such that the device operates only in the linear section of the electron velocity-electric field curve
[31].
2. Electromagnetic model

Maxwell equations can accurately characterize electromagnetic field propagation. In a
uniform, isotropic and linear medium with relative permittivity &, and permeability p,, Maxwell

equations are

V><I:|:g§+jv (3)
ot
and
= oH
VXE=—pyu——o7?. 4
x 1 (4)

In (3)-(4), H:%,szgoxar(sozs.gsx 102 F / m) and p = o % s (o = 47 x 107 H/m)

are the magnetic field and the permittivity and the permeability of the corresponding medium,
respectively. FDTD is a time domain solution of Maxwell equations using a mesh where the field
components are arranged inside following Yee scheme [32]. The time and space derivatives in
(3) and (4) are estimated using central differencing with the second order accuracy.
3. Coupling the EM and the electronic transport model

The EM solver calculates the field variations due to the moving charges while the electronic
transport simulator updates charge properties altered by the applied fields. By passing physical
parameters such as the fields and the current density between the two models, an appropriate link
is established among the simulators. The initial state of the time-dependent calculation is

obtained by solving Poisson equation (V*V=-q [ N*,-n, | /& where Np" is the ionized donor
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density of the surrounding semiconductors) and electronic transport (continuity and momentum
conservation) equations. This solution provides an initial electric field value for the FDTD
simulation. At the steady state, Maxwell equations simplify to:

VxE® =0 (5)
and:

VxH® =] % (6)
Considering (6), it is suggested that the initial value of the magnetic field is introduced by the
presence of J “. Therefore, the magnetic field will be initiated properly by implementing the
steady state current density inside the FDTD code.

As the initialization process ends, an ac excitation is applied. By defining total electric

EC = E“+E* and magnetic H®" = H*+H* fields and using Maxwell equations, it is

concluded that:

— total
aEat :%(VX HaC +Jde _j'vtotal) (7)
H total 1 N
6 at — __v % Etotal (8)
M

where 3Vt°“" is calculated by the device modeler after the ac excitation is applied. Therefore, the

total electric and magnetic fields are updated at each time step by solving (8)-(9). These new
values are fed to the device simulator to update the total current density at the same time step.
Next, the updated total current density is used in the full wave solver to revise the fields at the
following time step. This process continues until the set of equations satisfy each other self-
consistently and the simulation becomes stable. A more detailed description of global modeling

can be found in [25]-[26].
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4. The simulated plasmonic structure and the simulation details

The 2-D schematic of the simulated active plasmonic structure is shown in Fig. 1. It is
consisted of a hetero-structure (AlGaAs/GaAs) of thickness hy = 7.5 um which is represented as
a dielectric with g = 12.6. Furthermore, a 2DEG layer of thickness d = 20nm is assumed at h, =
80nm underneath the surface. Ohmic contacts (named drain and source herein) at the device
terminals are approximated as Perfect Electric Conductors (PECs) with fixed charge densities
and very high electrical conductivities (= 10™ S/m). This assumption is valid in most of the
practical semiconductor devices due to very high surface recombination velocities at the contacts
with excessive doping densities ( > 10'" cm™) [33]-[36]. An ac planar magnetic current sheet My,
with a cell size thickness is considered in the top air section for the excitation. The magnetic
current is oriented along +y direction and is placed far enough away from the device, so that its
evanescent modes do not reach the device. In this manner, only a plane wave hits the dielectric
surface. The current source variations in time follow a sinusoidal shape with a single frequency f
= 1 THz. Although the reported results are only for the single frequency of the incident
sinusoidal wave, a wide band simulation can also be achieved using a Gaussian excitation pulse.
Moreover, standard Perfect Match Layers (PML) developed by Berenger [37] are applied to the
rest of the boundaries as depicted in Fig. 1. To reduce the numerical artifacts due to a finite
spatial sampling of Maxwell equations, the PML losses along the direction normal to the
boundary increase slowly from zero. To this end, PML layers with graded conductivities of a
third order polynomial profile and with the reflection error of 10® are employed [37]. It is
assumed that the size of the device along y-axis is very large in comparison to the wavelength of

the 2D plasmons. Therefore, a 2D FDTD simulation is adequate. The mesh size along x axis (Ax)

is mainly controlled by the Debye length criteria (Ax<,/skBT/nv) inside the semiconductor
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simulator and the wavelength criteria ( Ay / 10 where A, is the 2D plasmon wavelength) within
the EM solver [25]. This condition leads to Ax = 10 nm which ought to be applied inside both
simulators. Within the FDTD code, the 2DEG is represented as an electric current source with
one cell size thickness. This sets the minimum mesh size along z axis (Azmin = d). In order to
reduce the computational burden enforced by the small 2DEG thickness, a non-uniform mesh is
employed along z direction. The maximum allowable mesh size along z (Azmax) IS defined by the
wavelength of the incident field A inside the dielectric. The maximum allowable simulation time
step At is primarily defined by the Courant-Friendrichs-Lewy stability condition [37]. Taking
this constraint into account, At becomes in the order of 10™" (s). Here, a 1D solution of the
transport equation is performed. This does not affect the accuracy of our analysis since electron
movement in the z direction is restricted by the quantum confinement that exists inside the
hetero-structure.

Appropriate boundary conditions are required to solve continuity and Poisson equations. To
this end, charge densities of the 2DEG end nodes are fixed to their equilibrium value. This means
that the Ohmic contacts do not allow any charge density variations at their adjacent points. Inside
the biased structure, the node placed at the source contact is grounded while the one at the drain

is connected to the external bias voltage Vs.
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Fig. 1. The 2-D structure simulated by the global modeling technique (figure not
to scale).
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Fig. 2. The SWCs’ x component of the electric field: (a) distribution close to the
2DEG layer and (b) variations at z = -h; are illustrated. The SWCs’ attenuation
constant is approximated £29.5 (dB/um). The SWCs’ phase constants are
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estimated as +£19.6 (Rad/um).
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Fig. 3. The conduction current density variations due to the SWCs originated
from the plasmon launcher at z = -h, are shown.

In order to excite the 2D plasmons inside the 2DEG, a PEC section with one cell size thickness
is placed on the top surface of the device (z = 0) at x = L,. Its length has been chosen to be very
small compared to the wavelength of the radiating mode in the air. This PEC section represents
thin metallic gratings that are mostly placed adjacent to the 2DEG layer. The gratings are
frequently employed to excite 2D plasmons by the incident wave diffraction. Hereafter, this thin
metal is called plasmon launcher. The distance between the 2DEG and the plasmon launcher
should be chosen appropriately so that a substantial amount of the diffracted wave couples to the
2DEG layer.

Results and discussion

In this section, the described full wave simulator is employed to characterize the 2D plasmon
propagation along the detailed hetero-structure under different bias voltages at a single frequency

f = 1THz. This frequency is chosen arbitrarily and the analysis is applicable at different
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frequencies. Herein, the surface charge density of the 2DEG layer is assumed no = 10*cm™
Moreover, the length of the simulated device is L; = 4 pum (see Fig. 1). In this paper, the low
field mobility of the hetero-structure is considered by the transport parameters T, = 1 ps and m”
= 0.063mo, where mq is the electron rest mass. The corresponding electron mobility is accessible
even at 200K [38]. In order to excite the SWCs, a plasmon launcher with length L, = 100 nm is
placed in the middle of the structure (L, = 1.95 um) in the close proximity of the 2DEG layer at
the top surface of the semiconductor.

In order to separate the SWCs excited at the plasmon launcher from the other field values such
as the transmitted time varying field, two different simulations have been performed. First, the
plasmon launcher is placed on the surface of the structure and the simulation is performed until a
specific time step t;. Next, a similar simulation is executed as the plasmon launcher is removed.
Afterwards, the respective field values computed in the simulations are subtracted from each
other.

1. 2D plasmon propagation inside an unbiased hetero-structure
As previously presented in [7] and [30], 2D plasmons propagate along unbiased conductors

with propagation constants:

o' - a = ©)

where, o = 2xnf and ¢ are angular frequency and the speed of light in the vacuum, respectively. In
the calculation of the dispersion relation (9), wave function (refer to [39] for the definition) of

the plasmonic mode is considered as:

(10)

g exp(jot—yx—56z) z>0
g, exp(jot—yx+6z) z<0
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where, y is the complex propagation constant. Real (o) and imaginary (B) parts of y are called
attenuation and phase constants, respectively.

Inserting the 2DEG layer charge density and the transport parameters (including the
momentum relaxation time) into (9), it is calculated that a;, = £26.9 (dB/um), B1, = £19.5
(Rad/pum) and the 2D plasmons wavelength (Ay =2 x @/ |B12[) is 322nm.

In Fig. 2.(a), the electric field distribution of the 2D plasmons in the proximity of the 2DEG
layer calculated by the numerical solver, in the time step t; is depicted. As shown, SWCs are
excited as a result of the incident wave diffraction at the plasmon launcher. It is also observed
that the SWCs are facing large attenuations due to the electron scatterings as moving in +x
directions. In Fig. 2.(b), the x component of the electric field (at z = -h,) of the SWCs inside the
unbiased hetero-structure is depicted. As illustrated, the numerical technique has calculated the
2D plasmon propagation constant nearly equal to the values estimated by the analytical model
(9). The small deviation of the attenuation constant from the value predicted in (9) can be partly
due to the presence of the Ohmic contacts that are not considered by the analytical model. Here,
the accuracy of the attenuation constant calculation has been improved using the technique
detailed in Appendix I.

In Fig. 3, the conduction current variations (J,) at z = -h; are depicted. This physical property
can be useful in the design of plasmonic detectors with a specific responsivity. By choosing
appropriate device length, channel properties and plasmon launcher size, the design of an
efficient THz non-resonant plasmonic detector is possible. As shown in Fig. 3, the electrons are
accelerated and decelerated at specific locations that correspond to the maximum magnitudes of
the electric field.

2. 2D plasmon propagation inside a biased hetero-structure
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As previously proved analytically [30], the symmetrical 2D plasmons inside the un-biased
2DEG with the dispersion relation defined in (9) split into four asymmetrical modes. The
propagation constant of these modes are:

AY + A+ Ay + Ay + A =0 (11)
where,

3

A=V, A __ & —djov, A =60, +

z—m
Vi, Bjavi, L, Bt 2jve
—F+——=L+4a%, A =4jv0’ + -~ (12)
7'-I'Tl Tm Tm Tm
s 0 2jo’ 4ale’e,
A=0" ——- + 2
T, T, c

In (12), vy is the electron average drift velocity inside the biased hetero-structure.
Here, the bias voltage Vg = 143 (mV) is applied onto the Ohmic contacts. This voltage

establishes the electric field Eq; = 360 (V/cm) inside the device. Considering the linear relation

between the electron average velocity and the electric field (vo = th x Ep), the electron velocity
m

becomes vo ~ 107 (cm/s). Using (11)-(12), it is concluded that the plasmonic modes propagating
opposite to the electron drift stream suffer from very high attenuations compared to ones moving
parallel to it. From (11), it is calculated that the +x going plasmonic mode inside the biased
structure propagates with a'y = 14.7 (dB / um), B'; = 12 (Rad/um) and the wavelength 524 nm.
On the other hand, the mode propagating in the opposite direction (-x) yields the attenuation
constant ay' = 39.9 (dB / um). Due to the large attenuation constant of the —x going SWC, this
specific mode is not excited as will be reported in the following.

In Fig. 4.(a), the SWC electric field distribution in the proximity of the 2DEG layer inside the

biased hetero-structure at time t; is depicted. In contrast to the unbiased device (Fig. 2.a), the 2D
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plasmons are propagating only in one direction (+x). In Fig. 4.(b), the x component of the SWC
electric field at z = -h; is depicted. As illustrated, there exist a slight difference between the
phase constant of the plasmonic mode computed by the analytical method (12 Rad/um) and the
one obtained from the numerical techniques (11.6 Rad/pum). This alteration is by virtue of the
wideband-gap semiconductor thickness consideration inside the full wave simulator. As
expected, the bias field has caused large changes in the phase constant of the plasmonic mode.
Besides, the -x going plasmonic mode has not been excited due to the large attenuations.
Considering these results, it seems that the steering of the 2D plasmons can effectively become
possible by applying bias voltage along the plasmonic waveguide. In Fig. 5, the variations of the

2D plasmon conduction current at z = -h, are shown.
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Fig. 4. The SWCs’ x component of the electric field: (a) distribution next to the
2DEG layer and (b) variations at z = -h; are depicted. The SWCs’ attenuation and
phase constants are approximated as 15.9 (dB/um) and 11.6 (Rad/um),
respectively.
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Fig. 5. The SWCs’ conduction current density variations at z = -h; is illustrated.

3. 2D Plasmon reflection from Ohmic contacts inside a biased hetero-structure

To present the capabilities of the developed numerical technique compared to the analytical
model, the 2D plasmon reflections from Ohmic contacts of the biased structure is analyzed. To
this end, the plasmon launcher is considered closer to the drain contact (L, = 3 um) compared to
the previous case of study. This enables the excited surface waves to reach the contact before its
amplitude becomes almost equal to zero. Fig. 6 depicts the variations of the x component of the
electric field inside the biased hetero-structure. As expected, the + x moving surface waves are
originated from the launcher while high attenuations prevent any plasmon generation with the
opposite direction of propagation. As illustrated in Fig. 6, the phase constant of the dominant
mode along the electron gas layer has not been changed. Considering the magnitude of the
electric field component at the proximity of the drain contact, interesting changes in the field
distribution are observed. As depicted in Fig. 7., the surface wave does not follow the wave

function of the +x going mode strictly next to the contact. This is due to the excitation of higher
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order evanescent modes or possibly the —x moving plasmonic modes.
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Fig. 6. The variations of the x component of the electric field (V/cm) at z = -h; is
depicted. The location of the plasmon launcher is chosen intentionally to observe
the wave reflections from the drain. The inset portrays the field value changes
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Controlling the Wave Properties of the 2D Plasmons by Changing the Bias VVoltage:

Commonly, the charge densities of the 2DEG layers of hetero-structures are controlled by
implementing a gate above the wideband gap semiconductor (top-gate) or beneath the substrate
(back-gate). In this manner, the designer can simultaneously optimize the plasmonic circuit by
changing the gate and the drain-source voltages. Here, the dependency of the plasmon properties
on the 2DEG layer charge density is considered. To this end, the numerical simulator is
employed to simulate the described structure as the electron density of the 2DEG layers has been
increased to a new value n'g = 2 x 10* (cm™).

Using (9), it is expected that the unbiased hetero-structure can guide plasmons with a3, = £13
(dB / um) and P12 = £10 (Rad / wm). However, the plamonic modes will divide into
asymmetrical modes as the electrons are accelerated by an external bias field with an average
electron velocity vo =~ 107 (cm / s). The mode that propagates in +x direction attains o'y = 9.5 (dB
/ um) and B'1 = 7.6 (Rad / um) as the other mode which travels against the electron drift stream
has o'y =-26.9 (dB / um) and B', = -15 (Rad / um).

In the full wave simulation, the device length and the surface charge density of the 2DEG have
been increased to Ly = 6um and n'p = 2 x 10™ (cm™) as other specification are kept similar to the
previous structure. In order to accelerate the electrons with the average velocity vo = 10’ (cm/s),
the applied voltage has been augmented to Vg¢s = 215(mV).

1. Surface wave excitation using a single plasmon launcher:

Here, a metallic layer is considered in the middle of the simulated structure surface (L, =
2.95um) to excite the plasmons. Fig. 7. (a),(b) display the ac electric field distribution of the 2D
plasmons calculated by the global modeling technique. As depicted in Fig. 7.(a), the 2D

plasmons are propagating in the +x directions symmetrically. As the bias voltage is applied onto
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the contacts, asymmetric 2D plasmons are excited in the +x and -x directions (see Fig. 7.(b)).
The x component of the ac electric field at z = -h, is presented in Fig. 7. (c) as Vg = 0 and 215
(mV). As depicted, the numerical solver has calculated the propagation constants of the
plasmonic modes equal to +9 (Rad / um) as Vg = 0, and 6.3, -13.1 (Rad / um) as Vg = 215
(mV). Comparing the results attained from the analytical and the numerical techniques, it is
understood that there exists a difference (about ten percent) between the outcomes which is due
to the consideration of the wideband-gap semiconductor thickness inside the full wave simulator.
As illustrated in Fig. 7. (c), the wavelength of the +x moving 2D plasmons has been increased
about 30 percent after applying the bias field. As demonstrated, the 2D plasmonic mode that is
allowed to propagate in the -x direction has also been excited in contrast to the previous example.
Therefore, the gate control voltage has helped to excite new plasmonic modes inside the device

by doubling the electron gas charge density.
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Fig. 7. (a), (b) The distribution of the “x” component of the electric field next to
the 2DEG layer of the unbiased and the biased hetero-structure are shown,
respectively. (¢c) The x component of the electric field variations at z = -h; inside
the device under different bias conditions is shown. The approximated attenuation
constant inside the unbiased structure is 14.7 (dB/um). The +x and —x mode
attenuation constants of the plasmons inside the biased device are 9.5 and 30.4

(dB/pm), respectively.

2. Plasmon excitation using a metallic grating:

Here, the wave propagation along the 2DEG in the presence of a periodic grating is
investigated. To this end, five periods of the PEC layer with length 0.2 um employed. The
arrangement of the grating on the device top surface is detailed in Fig. 8. The period of the
grating (0.7 um) is chosen equal to the wavelength of the plasmons inside the unbiased structure.

Fig. 9.(a), (b) depict the ac electric field distributions along the electron gas layer as Vgs = 0

and 215 (mV), respectively. As presented in Fig. 9.(a), (b), the surface waves are launched along
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the hetero-structure in both conditions. In Fig. 9.(c), the variations of the electric field component
are illustrated. As described in Fig. 9.(c), the plasmonic mode with wavelength 0.7 pm is
uniformly launched along the electron gas inside the unbiased structure. However, the 2D
plasmons are weakly excited as the bias voltage is applied between the contacts. As presented,
the +x and —x moving surface waves are excited inside the biased structure due to the diffraction
of the incident wave at the periodic metallic grating. Due to the mismatch between the grating
period and the plasmonic mode wavelengths, the plasmon launcher is performing inefficiently.
Non-sinusoidal distribution of the electric field at locations between the periodic gratings is
because of the summation of the different modes excited at the edges of neighboring metals. The
field deviations from the +x moving mode wave function discussed in section Ill, part C, are also
depicted in Fig. 9.(c) at the vicinity of the drain contact (x = 6 pum).
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v Ky 0.7um  0.2um
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Source

PEC
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Fig. 8. A schematic of the simulated hetero-structure as the periodic grating is
presented on the device surface.
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Fig. 9. (a), (b) The distribution of the “x”” component of the electric field next to
the 2DEG layer with the periodic grating under different bias conditions are
shown. (c) The x components of the electric field variations at z = -h; inside the
device as Vg4s = 0 and 215 (mV) are shown.

Conclusion

A full wave simulation technique is employed to analyze novel active plasmonic devices. The
simulator solves Maxwell and the moments of Boltzmann equations numerically in a self-
consistent manner. The effectiveness of this method is presented by characterizing 2D plasmon
propagation along the two dimensional electron gas layer of a hetero-structure under different

bias conditions. Using this technique, vast variations in the plasmon properties originating from
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the biasing of the hetero-structure are reported. It is observed that the 2D plasmons propagating

against the electron drift motion face larger attenuations compared to the ones moving in the

same direction. The analysis has been performed inside 2DEG layers with different charge

densities to investigate the gating effects on the 2D plasmon characteristics. It is concluded that

new plasmonic modes can be excited by applying various bias voltages onto the device. This

idea can help the designers to fabricate novel plasmonic devices such as switches and

modulators. This numerical technique can also be useful in the modeling of available THz

plasmonic detectors and sources.
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APPENDIX I:

In order to calculate the plasmon attenuation constant a accurately, the following method is
pursued. First, the x components of the Poynting vector at each grid point of two integration lines
at an arbitrary time step t; are calculated (Ey x H;). The locations of the integration lines should
be chosen appropriately to represent a unique mode. This has been considered while choosing
the integration lines i; and i, (see Fig. 1). Afterward, numerical integrations along the lines i, and
I, on the computed power fluxes are performed. Thus, the transmitted power P(t) handled by the
specific plasmonic mode at time t; is obtained. This process is similarly repeated in the following
time steps until a period of the incident field (T =1 /f). Next, the time average transmitted power

at each integration line is estimated as:

Pt =—Zt T AtxPEE(1)]. (13)

t=t,

In this manner, the plasmon attenuation constant of each specific mode is calculated as:

P
a= Zil InKP""""iz], (14)

avg

where, Al is the distance between i; and .

APPENDIX II:
A. NUMERICAL SOLUTION OF CONTINUITY EQUATION:

To appropriately solve continuity equation, a first up-winding semi-implicit technique is
employed. To this end, the continuity equation in one dimension (x) is repeated as:

o, o) _

ot OX @)

where, n and v are volume charge density and velocity respectively. Using the up-winding

scheme, (1) can be discretized as:
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A D05
k+ k+ k k
T L W .
AX AX
() —(nv)  (nv) =(nv)
i i1, i il v>0
AX AX

In (2), time and location instances are displayed as subscripts and superscripts, respectively. As
example, electron density at time step k and location i x Ax is displayed as n. Using (2), the

charge density at i X Ax and in time step (k+1) is calculated as:

k k
An i Bn i+1 V<0
nk+1i — A, ) CB, ) , (3)
n i n i+1 >0
Cl
where, A=1+£vki, B :ﬂvkm, C :1—£vki,A' :1—£vki, B’ :ﬂvki_1 and
2AX AX 2AX 2AX AX
C'=1+£vki.
2AX

B. NUMERICAL SOLUTION OF MOMENTUM CONSERVATION EQUATION:

Momentum conservation equation along x axis can be described as:

a(m*vx) 6(m*vx) mv, 1 0 4
. T MBS g (nkeT). 4)

where, m”, 1, kg,q and T are electron: effective mass, momentum relaxation time, unit charge,
and temperature, respectively. Equation (4) can be discretized using various finite difference

schemes. Here, each part of (4) is discretized as:

101



ot At
Vx G(Z*VX) — (Vx )k+1i+0.52+ (VX )ki+0-5 X , (5)
X
K k
( X)i+0.5 At( X)i—O.S (Vx )ki+o.5 >0
K . k
). —(mv,)
(M), At( )ios (V). <0

L 0 m kT n*,,-n% ©
—X—(nkBT)z kB x NG, —nN
n ox N"ios AX

Simplifying (5) to calculate the electron velocity at the next time step and location (i+0.5) x Ax

leads to:
i Ci—Atx(C,+05xCyxv¥ 1 +C, +05xC,)
v i+0.5 = . . 1 At (7)
m +m xAtx —+—xC,
2r, 2
where,
. k . k
(m Vi )i+0.5 _(m Vi )i—O.S (V )k >0 ) )
X/ i+05 — _
C,=mV* .., C,=0E" s, C, = At ,C, = ke T o Min ni,
1+0. 1+0. . K . Kk nk AX
(m Vy )i+l.5 _(m Yy )i+0.5 (V )k <0 105
At X/ i+0.5

m
and C, =—xV', ..
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Abstract:

The possibility of realizing a terahertz (THz) switch by employing Surface Plasmons (SPs)
along a Two Dimensional Electron Gas (2DEG) layer of a hetero-structure is presented. It is
shown that SP’s properties may be easily controlled by changing the motion of the electrons
inside the 2DEG. The electron drift velocity is controlled by applying an external bias voltage at
the 2DEG’s ends. A compact and efficient THz switch with high On/OFF signal ratio is reported
using this concept. The control voltage of the switch is considerably low. A multi-physic
simulator, based on numerical solution of Maxwell’s and Boltzmann’s equations, is developed to
analyze the switch appropriately. This micro-meter size plasmonic switch demonstrates a very
promising method for navigating the sub-wavelength THz signals inside future plasmonic

circuits.
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Introduction:

Recently, many researches are aimed at THz frequency range, the less explored section of
electromagnetic spectrum located between microwave and optical ranges. Operation of
microwave devices in THz range is limited by the maximum achievable electron velocity inside
semiconductors. On the other side, lower frequency edge of photonics is about 20 THz [1].
Besides, photonic devices are very bulky and their integration into modern nano-meter size
packages is troublesome. In order to address these issues, application of Surface Plasmons (SPs)
or propagating bound oscillations of electrons and EM field at a metal surface [2], is proposed
[1]-[3]. The SPs offer wavelengths that are several orders of magnitude smaller than the radiative
mode counterpart, and phase velocities which are at least one order of absolute value larger than
the electron velocity maximum.

Mostly, researches in the plasmonic area are focused in optical ranges where noble metals such
as gold and silver are being used. However, SPs are not bound to the surface of the metals in
THz frequency ranges and hence; those desired properties are not observed anymore. In THz
frequencies, application of highly doped semiconductor [4] or noble metals with engineered
surfaces [5] are proposed. Propagation of SPs along doped semiconductors suffers from large
losses therefore; utilization of Two Dimensional Electron Gas (2DEG) layers of hetero-structures
with low SP losses is more popular [6]-[8]. Implementing THz plasmonic sources and detectors,
inside 2DEG layers of solid state devices such as High Electron Mobility Transistor (HEMT), is
very appealing. Novel plasmonic detectors inside 2DEG layers have shown comparable
performances with respect to the other state of the art THz detection techniques [7]. However,
active steering of SPs is required before the promise of a complete THz plasmonic circuit
becomes achievable.

In this paper, we present a novel method to obtain a THz plasmonic switch inside the 2DEG
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layer of a hetero-structure. Lately, it has been reported that SPs’ wave properties such as
propagation constants and phase velocities can be controlled by changing the bias voltage
applied at the 2DEG’s ends [6]. The electric field induced by the bias voltage accelerates the
electrons of the 2DEG. This motion alters how effectively electrons and wave interact with each
other and consequently; SPs’ wave properties will change vastly. In particular, two normal SP
modes along an unbiased hetero-structure will divide into four new modes as the electrons’ drift
motion is included [6]. It can be shown that the SP mode that propagates against the electron
stream is very lossy. Here, the modification of SPs’ properties, caused by the biasing, is
employed to introduce a new concept for switching SPs. In order to simulate the proposed
device, a full wave analysis method first proposed in the study of high frequency transistors, so
called global modeling [9] is employed.

In the following, a brief overview of the analytic method [6] and global modeling [9] is
presented. Also, details of the simulated structure and designed plasmonic switch are reported.

Overview of the modeling techniques and details of the simulated devices:

Consider a 2DEG sheet with surface charge density no confined inside a hetero-structure (Fig
1). The 2DEG’s length is L; while it is infinitely wide (along y axis). The hetero-structure is
represented by two lossless semiconductors with similar dielectric constants € = &g, € =
8.85x10*2 (F/m). Here, ground state spread of the 2DEG along z axis is assumed to be negligible
compared to SP decay length in this direction and therefore; only electron motion along x axis is
taken into account.

In [6], an analytical solution of Maxwell’s and Boltzmann’s equations is presented as several

assumptions are considered to make the analysis achievable. This method provides a detailed

characterization of TM* mode with time and position variations of e¥*'"™ where y=o+jp.
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Noting that v, a, pand » are propagation, attenuation, phase constants and angular frequency,

respectively. As shown in [6], two normal SP modes along the unbiased 2DEG with dispersion

relations:

iw
Vip =t (1)

divides into four new modes inside the biased 2DEG with dispersion relations:

Ay + AP+ Ay + Ay + A =0 )
where A; = vo*, Ay = -2V /tm - 4joove’, As = -602Vo? + Vo tm® + 60vei/tm + 482, Ay = djven® +
6Vow? / T — 2jVo0/tn’, As = o - 0%/tn? - 2j0°/tm, q=1.6 x 10™%(C) and a = nyg%/4em". Also, 1,
and m" are electron momentum relaxation time and electron effective mass, respectively.

Global modeling [9] provides a numerical solution of the moments of Boltzmann’s equation
(momentum and charge conservation) and Maxwell’s equations. In this manner, interactions
between EM fields and moving electrons are characterized. This numerical method eliminates
several assumptions taken in the analytical model and makes the simulation more realistic.

In order to model the plasmonic switch inside the global modeling simulator [9], the structure
in Fig. 1 is employed. A 2-D Finite Difference Time Domain (FDTD) code is developed that
calculates field values inside a portion of the semiconductor and air. For excitation, a magnetic
current sheet is placed above the structure so that evanescent modes do not reach the device and
hence; only planar waves hit the device surface. Also, perfect match layers are applied to all
boundaries except the ones at source and drain. In these two ends, a perfect electric conductor
represents Ohmic contacts. A multi-grid mesh is applied along z axis to handle the negligible
thickness of the 2DEG. The 2DEG is represented by one unit cell thick electric current source
inside the FDTD simulator. Mesh sizes along x axis and time step dtare defined to satisfy the

stability criteria of both EM and transport solvers. A 2DEG thickness d and surface charge
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density no is considered here. The 2DEG is located h, below the surface of an AlGaAs/GaAs
hetero-structure that is represented by a dielectrice with thicknessn, . It is assumed that the
2DEG is terminated by two Ohmic contacts with fixed equilibrium charge density N¢ = n¢/d. The
source contact is grounded while the drain contact is connected to a control voltage. The control
voltage switches between 0 in ON state and 40(mV) in OFF state of the plasmonic switch.
Transport parameters are: m" = 0.063xmg (Me=9.1x10"'kg) and 1, = 2ps.

Due to the intrinsic phase difference between the incident wave and the SPs, a special
technique is required to launch the SPs. In this work, a zero thickness perfect electric conductor
layer, called SP launcher, is placed on the top surface of the device next to the drain. The length
of the SP launcher L, is chosen very small compared to the wavelength of the incident field and
therefore; considerable amount of the incident wave diffracts from the edges of the SP launcher.
The diffracted wave experiences different phase constants which at least one of them will match
the allowed SP mode’s phase constant. In this manner, this specific SP propagates toward —X.
The SP launcher is placed next to the PEC modeling drain so that it only excites —x moving SPs.

Results and discussion:

Inserting the 2DEG’s properties and the transport parameters into (1), propagation constants of
SPs inside the unbiased 2DEG are concluded: y,,=+10"x(0.16+j1.95). These modes will divide
into four new modes (2) inside the biased 2DEG with propagation constants:
v;=10°%(0.03+j1.65), y;=10°x(0.44-j0.05), y;=10°%(-0.4-j0.02) and  v,=10%%(0.07+j0.11).
Considering the SPs’ phases constants along the biased 2DEG, it is concluded that the 1% and the
4™ modes are propagating toward +x while the other two modes are moving in the opposite

direction. Noticing the propagation constants of the —x moving SPs’, it is realized that the 2™

mode is a growing mode while the 3™ one faces losses as it propagates. By positioning the SP
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launcher next to drain, it is expected that both —x moving SPs become excited. However, only the
3 mode is launched inside our structure and will be employed as follows. Comparing the
magnitude of the attenuation constants in the un-biased device and the 3" mode of the biased
2DEG, it is clear that the 3" mode propagates with several orders of magnitude larger losses.
Therefore, one can switch off SPs’ propagation by controlling the bias voltage. The signal

attenuation of the switch in the ON state is approximately 13dB/pum while it is about 340dB/ pum

in the OFF state.
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Fig. 1. 2-D schematic of the simulated structure (figure not scale).
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Fig. 2 Normalized x component of electric fields inside parts of the device and
air at xz-plane a) SPs are propagating along the 2DEG as bias voltage is zero (ON
state). b) SPs are attenuated as bias is set to 40(mV) (OFF state).
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Fig. 3 Calculated x component of electric field at z = 120nm. Phase and
attenuation constants of SPs in the ON state are estimated as: p= 1.96x10’
(Rad/m) and exp(-0x320nm) = -0.21/-0.37 or a.= 0.17x10" (np/m).

Fig. 2.a shows ac electric field distribution inside the un-biased device (Vg4s = 0) at a specific

time instant of simulation t,. As calculated, SPs are propagating along the un-biased 2DEG
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toward —x. As the bias voltage changes to V¢ = 40(mV), electrons are accelerated by the bias
field and hence; the 3™ mode is launched. In Fig. 2.b, electric field distribution of SPs at time to
inside the biased device is presented. Comparing these field distributions, it is shown how
effectively this switching technique is able to disconnect the flow of SPs. In Fig. 3, the electric
field distributions along the 2DEG of both biased and unbiased structures are compared. SPs’
properties along the unbiased 2DEG clearly follow the analytical model.

Conclusion:

In this paper, an active method for controlling SP signal at THz frequencies is demonstrated. It
is shown that by changing the bias voltage across the device ends, a SP switch is viable in a very
compact dimension. However, further investigations are required before implementing the idea
proposed here. First, large attenuation in the ON state should be addressed by employing a
hetero-structure with better quality and lower electron scatterings. Also, a high efficiency
plasmon launcher should be designed. Beside, a sophisticated matching network placed at input
and output is required before employing the switch inside a plasmonic circuit. It seems that the
switching speed is mainly controlled by the time response of the circuit that drives the bias.
Therefore, the switching speed is expected to be in the order of nano second. In spite of these
challenges, the basic method reported here provides promising potentials for the design of active
THz devices with micro-meter dimensions.
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A. DESIGN AND ANALYSIS OF A SILICON-BASED TERAHERTZ PLASMONIC
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Abstract:

In this paper, a novel terahertz (THz) plasmonic switch is designed and simulated. The device
consists of a periodically corrugated n-type doped silicon wafer covered with a metallic layer.
Surface plasmon propagation along the structure is controlled by applying a control voltage onto
the metal. As will be presented, the applied voltage can effectively alter the width of the
depletion layer appeared between the deposited metal and the semiconductor. In this manner, the
conductivity of the silicon substrate can be successfully controlled due to the absence of free
electrons at the depleted sections. Afterwards, the effectiveness of the proposed plasmonic
switch is enhanced by implementing a p™*-type doped well beneath the metallic indentation
edges. Consequently, a P-Intrinsic-N diode is formed which can manipulate the plasmon
propagation by modifying the electron and hole densities inside the intrinsic area. The simulation
results are explained very concisely by the help of scattering matrix formalism. Such a
representation is essential as employing the switches in the design of complex plasmonic systems

with many interacting parts.
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Introduction:

The terahertz frequency band, located between microwave and optical ranges is considered to
be a promising section of the electromagnetic (EM) spectrum. THz radiation with uniquely
attractive characteristics has been employed in laboratory demonstrations to identify explosives,
find hidden weapons, and detect cancer cells and tooth decays [1]. In spite of these laboratory
level researches, the real world application of THz radiation has proven to be challenging. One
of the major pitfalls in the commercial application of THz radiation is the lack of room
temperature active devices as modulators, switches, sources and detectors. In recent years, there
have been considerable efforts to employ novel devices based on the collective oscillations of
electrons mostly called plasmons, in the THz frequency range [2]-[8]. Specifically, plasmonic
materials formed by the periodical texturing of metal or highly doped semiconductor surfaces
have been extensively studied and applied in microwave and THz frequency ranges [9]-[20].
These structures can support surface waves which are mostly called Spoofed Surface Plasmon
Polaritons (SSPPs), since they mimic the properties of surface plasmon polaritons at visible
frequencies. Recently, there has been an increasing interest in exploiting SSPPs because of their
unique properties as high field confinement and comparatively low propagation losses [9]-[12].

SSPPs are particularly important in the development of THz Quantum Cascade (QC) lasers to
efficiently out-couple the output power from a cavity with sub-wavelength dimensions [13]-[14].
Furthermore, the application of SSPPs inside cylindrical two-dimensional periodic surfaces has
been recommended for the design of future Cherenkov THz amplifiers [15]. Moreover, there has
been a significant interest in the design of modern active plasmonic switches and modulators
with different upcoming applications [16]-[20].

The idea of changing the wave properties of a plasmonic waveguide by heating to modulate
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plasmons was first coined in [21] and applied in the visible frequency range. Subsequently,
reversible variations in the waveguide characteristics caused by femto-second optical excitation
have been employed to develop faster and more efficient plasmonic switches and modulators
[22]. In terahertz frequency range, the optical and thermal control of the SSPP propagation along
the surfaces of indented doped semiconductors has been investigated in [16]-[17]. Recently, a
terahertz plasmonic switch implemented inside a metallic surface with a periodic array of
grooves filled with an electro-optical material is proposed in [19]-[20]. It is shown that the
incorporation of the electro-optical material such as nematic Liquid Crystal (LC), with
controllable refractive index into the plasmonic gap provides a compact and efficient THz
switch. However, the switching speed of the logic blocks developed based on the LC based gates
or the ones with the thermally controlled plasmonic waveguides are undesirably low. Besides,
the device implementation and wiring of such a gate is difficult [20]. In spite of short response
times, the modulators with optical manipulation of SSPPs require a separate high power source
for an efficient operation.

To avoid the above mentioned fabrication difficulties and to increase the switching speed of
future terahertz plasmonic active devices, the application of doped semiconductors instead of the
LCs is proposed here. As widely known, the conductivity of a semiconductor is dependent upon
the number of the free charges which can be controlled by different mechanism as light
illumination and electrical doping [23]. While photo-doping is a fast and effective approach for
many applications, the significant amount of the conductivity modulation required in active
plasmonic devices necessitates large incident optical powers which are impractical in many
applications. Alternatively, the doping level within a semiconductor can be varied via the

application of a voltage across an appropriately designed metal-semiconductor (Schottky)
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junction [23]. This is due to the variations of the depletion region width that exists along the
metal-semiconductor interface. In this manner, the conductivity of the semiconductor can be
manipulated by changing the bias voltage. The semiconductor conductivity can be regulated
more effectively by implanting different doping levels and types (p or n) in various locations
within the structure. For instance, depositing a thin layer of highly p**-type doped silicon inside
an intrinsic silicon wafer with an n**-type doped back gate can establish a PIN (P-Intrinsic-N)
diode. The existence of the PIN diode makes the manipulation of the silicon conductivity
possible with the aid of electron and holes, simultaneously.

In this paper, we propose a THz plasmonic modulator implemented inside a corrugated silicon
substrate covered with a platinum layer. By applying the bias voltage on the doped silicon-
platinum junction, the wave propagation along the waveguide is controlled. The design starts
with a finite element solution of the well-known drift-diffusion and Poisson equations to
calculate the charge distribution inside the device. Next, Drude model is employed to estimate
the doped silicon conductivity from the calculated charge densities. Afterwards, a full wave
commercial simulator [24] is used to characterize the surface wave propagation along the
structure. This simulation is repeated as the silicon conductivity is varied by applying various
bias voltages across the junction. This characterization is performed in a wide frequency range
located at terahertz regime (200 GHz- 320 GHz). However, the device is aimed to operate
efficiently at a specific frequency range (250 GHz — 320 GHz).To concisely present the results;
the scattering matrix formulation of the non-TEM plasmonic mode is developed. Finally, a more
sophisticated design is introduced that employs a PIN diode to electrically modify the doping

density of the silicon substrate.
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Fig. 1. A front view of the proposed plasmonic THz switch and input and output
plasmonic waveguides. The switch and the waveguides are respectively designed
inside the doped and un-doped sections of a silicon wafer with thickness t; = 160
um indented with periodic holes with repetition d = 30 um, in distances a = 24
pum and height h = 60 pm.

The structure of the proposed THz plasmonic switch:

As demonstrated in [9]-[12], a periodically corrugated metallic layer is able to carry EM
surface waves with TM* mode characteristics at terahertz frequency ranges. An example of this
structure is depicted in Fig. 1. It includes a silicon wafer (deliberately doped at a specific section)
with relative permittivity &, tailored with linearly spaced grooves which are filled with a metal.
The electric and magnetic field components and the wave vector of the TM* mode are also
depicted in Fig. 1. Generally, the field variations of the TM* mode at frequency “f”, follows the
exponential function exp (jot — jpx — & (y—h-t)); where, ® = 2xf, p and &, h and t, are angular
frequency, phase and attenuation constants along x and y directions, indentation height and
metallic layer thickness, respectively. As proved in [10] for the case of periodically grooved
metal surface with sharp edge indentations, the dispersion relation of the fundamental plasmonic

mode is:
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as Asi > a, d and where:

S, = \/%sinc(ﬂx%), ()

d= 11/32 -k,” and A = 21 / kq. In Eq. (1) and Eq. (2), ¢ and, ks and A are the speed of light in

vacuum (m/s) and the phase constant and wavelength of the radiating mode inside the silicon
wafer, respectively. Additionally, the TM* mode wave impedance along x is defined as Z* = B /
(o x €) [25], where the silicon permittivity is € = & x g (0 ~ 8.85 x 10™? F/m). Using Eq. 1, it
can be concluded that SSPPs (with p > k) are only allowed to propagate along the grooved

metal as tan (ksixh) > 1. Therefore, SSPPs are not bounded to the metal-semiconductor interface
atz=(-h-t)as f>f= c/(4h sr), where f, is called the resonant frequency herein. Thus, f,

sets the upper limit for the operating frequency bandwidth of the plasmonic structure. As taking
Ohmic and dielectric losses into account, the phase constant (j B) within the wave function is
substitute with y = a + j B where, a is the fundamental mode attenuation constants along x.
Moreover, the TM* wave impedance along x is re-defined as: Z* =y / (j o €) [25]. Considering

the well-known Helmholtz equation [25]:
2
}/2+52+Z)—2><gr=0, 3)
it is understood that the fundamental mode is mainly confined in the proximity of the metal
edges as Asj > A=2 x @/ PB. In addition to the fundamental mode, higher order modes excited due
to the wave diffraction at the edges also exist in the proximity of the indented surface.
Here, the active plasmonic device depicted in Fig. 1 is proposed to navigate the SPPSs using

the concept of semiconductor electrical doping by the means of a Schottky contact. The Schottky
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contact is established between the deposited metal and the n-type doped (with donor density Np;
=5 x 10* cm™) section of the silicon wafer. In order to couple EM wave to the active device,
two plasmonic waveguides are considered inside the un-doped sections of the silicon wafer. The
waveguides transfer EM wave to the plasmonic switch at the input (x = I;) and the output (x = I;
+ lq1) ports (see Fig. 1). The suggested silicon wafer (with thickness t; = 160 um) is periodically
corrugated with cubic holes. The period, the height and the distances of the holes are d = 30 um,
h = 60 um and a = 24 um, respectively. The indentations are completely filled with platinum.
Besides, the wafer top surface is covered with a t; = 20 um thick platinum layer. Platinum can be
deliberately substituted with any other popular metal in the semiconductor industry if it offers
high electrical conductivity in the interested frequency range. However, this can change the
expected threshold voltage of the Schottky junction and the wave attenuations due to the
variations of the metal-semiconductor barrier height and the electrical conductivity of the metal,
respectively. The length of the plasmonic switch considered in the first design is I5; =5 x d (see
Fig. 1). To establish an Ohmic contact beneath the structure, very high level of n**-type doping
up to Np_onmic = 2 x 10*" cm™ with a Gaussian profile is maintained at y = - (t; + t,) throughout
the active device length (from x = I; to I; + l41). The thickness of the wafer is chosen such that it
stays larger than the fundamental mode decay length in the y direction (1 / 3), throughout the
interested frequency range (260 GHz-320 GHz). In this manner, the Ohmic contact may not
disturb the SSPP field distribution.

As shown in Fig. 1, the edges of the holes located inside the wafer are considered to be
rounded with radius “r”. The width of the structures along z axis is considered to be at least an
order of magnitude larger than the desired plasmonic mode wavelength. Therefore, a 2D solution

of the electromagnetic and charge transport equations can obtain accurate results. In order to
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control the width of the Schottky contact depletion region, an external control voltage V, is
applied between the Schottky and Ohmic contacts. In this manner, the conductivity of the doped
silicon substrate is externally controlled. As the Schottky diode is under forward bias condition
(switch is in the OFF mode), SSPPs suffer from large attenuations as propagating along the
device. On the other hand, plasmons face less attenuation as the diode is reversely biased (switch
is in the ON mode). To reduce the insertion losses of the switch in the ON mode, it is favorable
to increase the width of the depleted area. However, the width is restricted to a maximum
allowable reverse voltage. This limit corresponds to the silicon breakdown condition that
happens as the total magnitude of electric field is larger than the 3x10°> V/cm. The consideration
of the rounded edges in the simulation allows us to apply higher reverse bias voltages onto the
Schottky junction compared to the right angle ones, without reaching the breakdown limit of the
silicon substrate.

The simulation details:

In order to completely capture the electron-wave interactions inside the proposed plasmonic
switch, a set of electronic transport and wave equations ought to be solved. The simulation of the
charge transport inside the semiconductor device is accomplished by solving the well-known
steady-state Drift-Diffusion equations. Moreover, Maxwell equations can completely describe
the wave propagation inside the plasmonic device. In this section, the details of the electronic
transport and the full simulations are described.

1. The charge transport model:

Mostly, the analysis of semiconductor devices starts with a solution of the Poisson equation

using the boundary condition (external voltage) to estimate the electrostatic potential ¢ inside the

device. This solution is next coupled to the steady-state Drift-Diffusion equations to accurately
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compute electron, n (cm™), and hole, p (cm™), densities inside the solution domain. Details of
this type of simulation can be found elsewhere [23]. Here, a commercial solver with
semiconductor simulation capabilities is used [26] to solve these equations.

In the developed model, Shockley-Read-Hall formulation with the electron-hole recombination
rate:

nxp-n?

R= .
rp(n+ni)+rn(p+ni)

(4)

is employed. In Eq. (4), n; = 1.45 x 10" cm™, 1, and 1, = 107 (s) are silicon intrinsic carrier
concentration, electron and hole lifetimes, respectively. The set of three differential equations
(two drift-diffusion equations for electron and hole densities and the Poisson equation) are
solved numerically as considering specific boundary conditions over the computational domain.
Here, constant values of electron “n” and hole “p” densities are considered at the location of the
Ohmic contact. This is correct as presuming infinite carrier recombination velocities at the
contact. Furthermore, the electrostatic potential of the boundaries adjacent to the Ohmic and

Schottky contacts are:

Pscnottry = Va +%In£nﬂj—¢5 and g = %In(nﬂl] (5)

respectively. In Eq. (5), T = 300 (K), q = 1.602 x 10° (C), g = 0.83 (V) and k=1.38x10% (J
/ K) are the room temperature, unit charge, Pt/Si barrier height [23] and Boltzmann constant,
respectively. The carrier densities beneath the Schottky contacts formed between the deposited
Pt layer and the wafer in Fig. 1 are n = N x exp(q ¢g / kT) and p = ni’ / n where, N = 2.82 x
10" (cm™) is effective density of states at the silicon conduction band. In the other boundaries,

vanishing normal components of electron and hole current densities, and electric field are

enforced.
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2. Details of the full wave simulation:

In this paper, a commercial EM solver [24] is utilized to numerically solve Maxwell equations
inside the computational domain. To this end, Drude model is exploited to represent the metal
frequency dependent permittivity:

2
Q)

&y =1-—"2— 6
N S (6)

inside the simulator. In Eq. (6), o, = 1.4 x 10'® (Rad/s), and y = 4 x 10'® (s™) are plasma and
scattering frequencies, respectively. In this manner, Ohmic losses of the propagating surface
wave are taken into account. Similarly, the high frequency characteristics of the silicon wafer are
included into the full wave solver. As presented in [27-28], Drude model can accurately estimate
the permittivity € (o) and the conductivity o of the silicon substrate at frequency ranges below

400 GHz as:

Gdc z-Gdc
o,=—2—, ¢(w)=¢, ——*—, 7
1+(a)r)2 (@) 1+(a)r)2 ")

In Eq. (7), T and m, and o4 are electron scattering time and effective mass, and dc conductivity,
respectively. The dc conductivity 64c = q % (Un 0 + pp p) where, p, and pp (cm?/ V s) are electron
and hole mobilities, respectively. In the following, T = 0.2 ps, m = 1.08 x mg (mp = 9.1 x 1073 kg
is electron unit mass) and & = 11.9. Furthermore, the electron and hole mobilities at the room
temperature are approximated as [29]:

0.1318
1y = —+0.0092 ®)

N,+N, )"
(1+E1017 Aj

and,
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0.042
p, = —+0.005, (©)

(1+ Ny +N, )
1.6x10"

respectively. In Eq. (8) and Eq. (9), Na is ionized acceptor density. In order to link the charge
transport and the EM solvers, the calculated electron and hole densities are first inserted into Eq.
(7) to update the silicon conductivity and relative permittivity. Next, the updated silicon
properties are included into the full wave simulator. This process is repeated as the applied
voltage is changing.
3. The definition of the scattering parameters for the plasmonic device

Recently, there has been a trend to employ scattering parameters as reporting the properties of
novel plasmonic devices [30]-[32]. Here, the definition of the characteristic impedance of a non-
TEM transmission line, as a plasmonic waveguide is reviewed. Next, the employed method for
the S-parameter calculation is detailed. As described in [33], there are many ways to determine
the voltage, current, and the characteristic impedance of a non-TEM transmission line. However,
the voltage and current waves are mostly defined for the transverse electric and magnetic fields
of a specific mode, respectively. Besides, an arbitrary characteristic impedance may be chosen to
relate +x going voltage and current [33]. As mentioned, there exist infinite numbers of plasmonic
modes inside the designed device, along the interface of the indented metal and the dielectric.
However, the fundamental mode extends furthest into the dielectric. Therefore, the characteristic
impedance Z, is selected equal to the real part of the fundamental TM* mode wave impedance
Z*, where 2 = 7%, +j Z*.

In this paper, the simulated plasmonic switches are represented as a two port network. Such a
representation of the active device is depicted in Fig. 2(a). In the developed EM model, two

plasmonic waveguides with length 1; and I, are included at the input and output ports of the
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network to transfer the waves into and out of the switch (see Fig. 2(a)). Moreover, the presence

of the waveguides allows that the excitation enforced at x = 0 (planar wave with electric field

component E™ and propagation constant ks) completely follows the fundamental mode

y
variations as it reaches the switch. In order to avoid wave attenuations inside the waveguides, the
corresponding silicon wafers and the deposited metallic layers are assumed to be loss-free. In
this manner, the waveguides can handle the TM* mode with real wave impedance Z*.. Here, the
reference planes of the reported S-parameter are located at the boundaries of the active device as

depicted in Fig. 2(a).

Plasmonic (2)
switch

Perfect

M Match

Reference plane 1 } i Reference plane 2
Fig. 2. (a) 2-port demonstration of the plasmonic device terminated with

plasmonic waveguides. (b) A schematic showing the details of the initial
simulation performed for the calibration.

In the following, the scattering matrix is formulated in terms of the fundamental TM* mode
electric field y component E’. Considering the two-port network in Fig. 2(a), the scattering

parameters are defined as:
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In Eq. (10), E*,; and E’ are incident and reflected field components (at ports 1 and 2),

Iz 2

respectively. Using Eq. (10), scattering parameters can be obtained as:

y y

I
S
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r
Sy =—1
11
E,’
1

(11)

E. Y=0

i
Here, the 2-port network is assumed to be reciprocal and symmetric (S1» = S;; and Sy, = S11). To
calculate the scattering matrix, the following procedure is adopted. First, an initial simulation is
performed using the commercial EM solver for the calibration purposes. To this end, the output
waveguide is terminated with a perfectly matched layer and the incident planar wave is applied

onto the input transmission line (see Fig. 2(b)). In this manner, the incident wave at port 2 is set

to zero (E”; = 0). In order to only compute the incident field E*, at x = Iy, the discontinuity

(plasmonic switch) is eliminated. To achieve this goal, the doped silicon section with the back
gate is substituted with an un-doped one. Moreover, the platinum layer is substituted with a
Perfect Electric Conductor (PEC). In this manner, the middle section becomes equivalent to the
plasmonic waveguide shown in Fig. 2(b), with characteristic impedance Z,, phase constant 3 and
length lg = lg:. This setup is employed to estimate the incident field E;;” at an observation point
along the reference plane 1 and the wave impedance of the dominant mode. The observation
point is chosen sufficiently far from the metal edges so that the evanescent fields that exist in the
proximity of the edges do not affect the estimated field with the dominant mode variations. Now
that the required information is available, the S-parameter calculation of the active devices is
continued. To this end, the discontinuity with the unknown scattering matrix is introduced

between the waveguides as the output transmission line is terminated with the perfect match

128



layers. Afterward, the electric field component is computed at the similar observation point along
reference plane 1. The calculated total field is equal to E”ian = Eir’ - E¥11. Knowing EjY from
the previous simulation, S;; can be computed: Si; = EY, / Ejy’. After estimating the transmitted
field EY\, at the reference plane 2, Sy, is similarly calculated as S,; = E*\» / E;f”.

Plasmonic switch with the Schottky contact

In order to present a guideline for designing the plasmonic switch in different frequency
ranges, the dispersion relation of the described structure (in Fig. 1) with different indentation
depths “h”, calculated by the analytical mode (Eq. (1) and Eq. (2)) are shown in Fig. 3. As
depicted, the resonance frequency of the plasmonic structure “f;” decreases as the depths of the
holes “h” increases. In this manner, the indentation heights “h” can be determined for a specific
design with a required maximum working frequency limit. In Fig. 3, the dispersion relation of
the radiating mode is also illustrated. Comparing the phase constants of the radiating mode and
the TM* modes along the plasmonic structure with different “h” in Fig. 3, it is understood that

the SSPPs are not bounded to the metal edges at z = (-h — t,) plane as f <200GHz . This places a

minimum operating frequency limit on the plasmonic device since the SSPPs are not restricted
inside the silicon wafer as B = K.

Figure 4 represents the fundamental mode wave impedance Z*; and dispersion relation of the
input and output waveguides calculated by the full wave simulator as h = 60 um. To this end, the
calibration simulation (detailed in Fig. 2(b)) is performed. In this manner, the phase constant f3 is
first computed for a section of the waveguide with length Iy as B = ¢ / I3 where, ¢ is the phase of
the waveguide port 1 to 2 transmission coefficient SV, (= |SVC,1| x eV ™ ?). Next, the wave
impedance of the fundamental mode is computed as Z*. = B/ ® x e&. As mentioned, the

characteristic impedances of the waveguides are chosen equal to their fundamental mode wave
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impedance Zo = Z¥.. As depicted in Fig. 4, the resonant frequency is located at 320 GHz. The
differences between the SSPP characteristics (resonant frequency and maximum achievable
phase constant) calculated by the analytical model in Eqg. (1) and Eq. (2), and the full wave
simulator are due to the consideration of the exact shape of the indentations edges inside the

numerical solver. The dispersion relation variations of a corrugated metal with curved-shape

edges compared to the one with sharp corners have been also discussed in [12].
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Fig. 3. The TM fundamental mode phase constants calculated by the analytical
model (1) and (2) versus frequency as the indentation height h is changing.
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Fig. 4. Variations of the waveguide’s fundamental mode wave impedances Z*,
and phase constant, calculated by the full wave solver versus frequency.

To show the effectiveness of the designed switch, the simulation is performed with different
applied voltages. Figure 5(a)-5(b) and Fig. 5(c)-5(d) depict the distribution of the electron
density logarithm (logso n) inside the doped silicon wafer and the magnitude of the electric field
|E| = (IEx]* + |Ey)°® at f = 300 GHz, throughout the active device as the applied voltages are 1 V
and -80 V, respectively. As presented in Fig. 5(a), the depletion layer width is almost negligible
as the Schottky diode is forward-biased (V, = 1). In this condition, the plasmons are attenuated
as they propagate along the device (see Figure 5(b)). However, the depletion layer width
increases up to 14 um as the diode is reverse-biased (see Fig. 5(c)). In this case, the switch is
operating in the ON mode and SSPPs suffers from small attenuations (see Fig. 5.(d)), if they are
concentrated inside the depleted region, with small electrical conductivity. Comparing the
distribution of the electric field magnitude shown in Fig. 5(b) and 5(d), it is concluded that the
wave concentration along the edges of the metallic indentation are kept similar at a single
frequency, as the device is operating in the ON and the OFF mode. Applying high reverse
voltages in a structure, grooved with sharp angle edges is not possible due to charge
accumulation on the corners. This high charge density results into high electric field values
which can end up to the silicon breakdown. Employing rounded metal edges allow the designer
to apply very high reverse voltages up to -80 V before reaching the breakdown condition. In the
design with curved edges, the breakdown limit will not reach unless V, becomes less than —90
V.

Figure 6 presents the transmission coefficient Sy; of the plasmonic THz switch implemented
inside the doped silicon as different bias voltages are applied onto the Schottky contact. As

illustrated, the insertion loss of the proposed device is less than 1dB in a wide frequency range.
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Moreover, the switch offers signal isolations (S,:°™ — S,:°7") up to 13 dB at 320GHz. On the
other hand, the isolation reduces down to 1.5 dB in the first portion of the simulated frequency
range. The signal isolation offered by the plasmonic switch can impose another criterion on the
minimum operating frequency of the switch. Here, at least 3 dB signal isolation is expected from
a single Schottky-diode-based switch. Therefore, it is concluded that the operating bandwidth of

the first design is 60 GHz from 260 GHz to 320 GHz.

B
Z
0 30 60 90 120 150 x (um) 0> 0 30 60 90 120 150 x (um)
17 8
16
-40
14
12 -80
10
8 -120
6
5.5 -160
logy, (n) [em?] _ [E| [V/m]
S
3
90 120 150 x(um) 0> 90 120 150 x (um)
17 18
16 16
w0 14
12
12 -80 10
8
10 6
-120 8 -120 4
6 2
-160 55  -160 0
log,, (N) [cm3] |E| [V/m]

Figure 5 (a) and (b) show the distribution of the electron density inside the doped

silicon wafer, and the magnitude of the electric field at f =300 GHzas V,=1V,

respectively. (c), (d) similarly present the variations of the charge density and the
electric field magnitude at the same frequency as the applied voltage is -80 V.
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Fig. 6.

S11 (dB)

Fig. 7.

@ 10 |
= = OFF mode (V,=1V)
& == ON mode (V,=-80 V)

-20 . . . . .
200 220 240 260 280 300 320

Freq. (GHz)
S, of the plasmonic switch versus trequency as the device is operating in
different modes at THz frequency range.

'10 1 T T T T

-15 == OFF mode (V,=1V)
== ON mode (V,=-80V)

’
S N/ \-_,lsN/\[ \\\

'35 1 1 1 1 1

A
o~ \’”‘I\_\_—'\al"~

200 220 240 260 280 300 320

Freqg. (GHz)
S11 of the plasmonic switch versus frequency as the device is operating in
different modes at THz frequency range.

133



-5
-10
-15
—~ -20
o)
T -25
& -30
-35
-40
45 |
50 | = OFF mode (Va=1V)
55 | === ONmode (V,=-80V)
-60 . . . . . . . . . .
260 265 270 275 280 285 290 295 300 305 310 315
Freq. (GHz)
Fig. 8. Sy; of the plasmonic switch with the Schottky contact as its length is
I, =20xd.

In Fig. 7, the return loss of the plasmonic THz switch is depicted. As presented, the return loss
of the device is better than -30 dB as operating in the ON mode. The small amount of the input
signal reflection is very attractive especially as connecting several components in a complex
photonic system.

In order to achieve a more appropriate plasmonic switch, it is critical to improve the signal
isolation between the ON and the OFF modes. For this purpose, several switches can be
cascaded next to each other. This can increase the wave attenuation as the switch is in the OFF
mode. However, it can also hurt the device insertion losses. To show the effectiveness of this
method, four series of the designed switches are cascaded to establish a structure with 20xd
length. Figure 8 depicts the simulated transmission coefficients of the series of the switches with
an acceptable level of signal isolation (>10 dB) in the frequency range of interest (260GHz -
320GHz). As expected, this configuration suffers from at least 5 dB attenuations throughout the

frequency range as operating in the ON mode.
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As shown, it is possible to achieve high levels of signal isolation by extending the length of the
active device. However, the large reverse voltages required to achieve an acceptable level of
insertion losses make the device application in modern compact photonic systems unfeasible. To
address this problem, an optimized plasmonic switch is proposed in the following section.

Optimization: plasmonic switch using a PIN diode:

Figure. 9 depicts a schematic of the optimized structure. In this design, a highly p**-type doped

well with the acceptor ion density N, o= 10"cm® and Gaussian profile is considered

beneath a section of the metallic layer (see Fig. 9). Moreover, the silicon wafer employed in this
design is almost intrinsic with n-type doping density Np, = 5 x 10™* (cm™). As will be presented,
the p**-type doped well and the n**-type doped Ohmic contact (with doping density Np.onmic =
10" cm™ located at y = - t; — t,) establish a PIN diode with promising properties. It is famous
that the PIN diode operates in high-level-injection mode. This means that the spilled carriers
from the p™* and n** areas fill the diode intrinsic region as it is forward-biased. The long intrinsic
layer with length (t; — h = 100 um) is beneficial in several aspects. First, it enables fast switching
of the diode compared to conventional PN diodes. Additionally, it establishes a low loss
plasmonic waveguide for the SSPP as the switch is operating in the ON mode and the diode is
reverse-biased. Furthermore, high SSPP attenuations are expected as the diode is forward-biased
and the switch is operating in the OFF mode. In accordance with the previous design, the control
voltage V, is applied between the metal and the Ohmic contact located beneath the device at y =

-1 -1
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Fig. 9. A front view of the optimized plasmonic THz switch consists an un-doped
silicon wafer indented with periodic holes (d = 30 pm, a =24 pm, h = 60 pm and
t; = 160 pm) and highly p and n type doped at specific locations.
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electric field at f = 300 GHz as: (a), (b), (¢) Va=5V and (d), (e), () Va=0V,
respectively.

O L] L] L] L] L]
5 Eommmmmee \
S -10 B oy
~ OFF mode (Va=5V) Tl S
B 45 |==OFF mode (Va=6V) RN
nmm OFF mode (Va = 6 V) .."o:\\
20 k==ON mode (V,=0V) ‘
-25 . . . . .
200 220 240 260 280 300 320
Freg. (GHz)

Fig. 11. Insertion losses of the optimized plasmonic switch versus frequency
under different bias conditions

Here, the simulation results of the optiized device with the length l;, = 5 x d are reported.
Figure 10(a) and 10(b) respectively depict the distributions of the hole and electron density
logarithm (logio p and logso n) inside the intrinsic silicon wafer as the applied voltage is 5V. As
shown in Fig. 10(a)-10(b), the PIN diode operates in the high-level-injection mode with very
high level of electron and hole densities as V, = 5 V. Figure 10(c) depicts the magnitude of the
ac electric field inside the plasmonic switch as the PIN diode is forward-biased. As expected, the
presence of the high electron and hole densities in the forward bias condition causes large wave
attenuations as the SPPs are passing through the device. In Fig. 10(d)-10(e), the distributions of
the electron and hole density logarithm inside the device with V, = 0 V are presented,
respectively. As the diode is reverse-biased, the electron and hole densities are respectively less
than or equal to 5 x 10" (cm™) and 10 (cm™). This is true throughout the silicon wafer except at
the locations of the Ohmic contacts. The small numbers of free carriers in the reverse-biased
diode guarantee negligible insertion losses as the switch is operating in the ON mode. This is

confirmed by the magnitude of the ac electric field inside the active device presented in Fig.
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10(f). Comparing the field distribution inside the plasmonic switch in the ON and OFF mode
(Fig. 10(c) and 10(f)) at a single frequency, it is concluded that the field profile is largest at the
proximity of the indentation edges and it decreases exponentially as moving to the perpendicular
direction (y axis).

Figure 11 presents the transmission coefficient S;; of the optimized plasmonic switch as
different voltages are applied between the p** and n**-type doped Ohmic contacts. The PIN
diode is forward-biased as V, rises above the threshold voltage Vi, = 5 V. As illustrated in Fig.
11, the signal isolations can be further improved by increasing the applied voltage above V.
This is due the increase of the carrier densities compared to the ones depicted in Fig. 10(a)-10(b).
As illustrated in Fig. 11, the difference between the power of the transmitted signal in the ON
(Va-on = 0 V) and the OFF (Va.orr = 7 V) modes can reach up to 14 dB at 320GHz, and the
minimum expected isolation in the frequency range is about 7 dB. The insertion loss of the
proposed device is less than 2dB in a wide frequency range.

In Fig. 12, the return losses of the THz plasmonic switch with the PIN diode under different
bias voltages are shown. As illustrated, the return loss of the switch operating in the ON mode
(Va=0V) is better than -20 dB.

O T T
— ON mode V, =0V 2”7
10 | OFF mode V, = 5V ]
-- OFF mode V, = 6V jﬁ;
= 20 | — OFF mode V, = 7V . s |
o) HHHH""‘,‘“HHH”‘_',-}\ '—'\.‘ ‘; ‘i’
\:c e “\ I:." 4
S -30 | St ;
-40 i
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200 220 240 260 280 300 320
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Fig. 12. Return losses of the optimized plasmonic switch (with the PIN diode)
versus frequency as the device is operating in THz frequency range.

139



Conclusion:

In this paper, a THz plasmonic switch inside a silicon wafer is proposed and simulated. The
results are presented using the scattering parameters of the active device. Due to the maturity of
the semiconductor device fabrication techniques, it is anticipated that the proposed design can be
implemented easily compared to the previously proposed plasmonic switches. However, the
developed device suffers from high required control voltages. To address this challenge, an
optimized design with an integrated PIN diode is suggested. As illustrated, the optimized switch
provides comparatively high signal isolations and acceptable level of insertion losses. Moreover,
it is shown that the device can operate in a wide THz frequency range. Additionally, it is
expected that this design can be further improved by incorporating a variety of doped areas
inside the device. For instance, this may be possible by increasing the number of the p**-doped
wells. Small input reflection coefficients of the designed switches suggest that they can be
cascaded to achieve high signal isolations. We envision that the proposed switches may be useful
in future all-integrated silicon-based THz plasmonic devices and communication systems.
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Abstract:

A novel broadband technique to effectively launch plasmons along a single graphene layer at
terahertz (THz) frequencies is proposed. To this end, the coupling of the electromagnetic wave
from a readily available plasmonic waveguide established by a periodically corrugated metallic
surface to the graphene sheet is proposed. As will be shown, this technique can significantly
surmount the need for efficient excitation of plasmons in graphene. For this purpose, an
analytical technique based on transmission line theory is employed to calculate the scattering
parameters of the connection of the plasmonic waveguides. In this manner, the gating effects of

the graphene waveguide on the input reflection and transmission of the junction are also
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investigated. For comparison, a full wave numerical simulator is employed.
Introduction:

Graphene is a carbon-based, two-dimensional (2D) nanomaterial revealed less than a decade
ago [1]. Afterwards, graphene has been extensively examined as a platform for future photonic
and electronic devices. This is due to its extremely high carrier mobility at room and cryogenic
temperatures (up to 230,000 cm? / Vs for suspended exfoliated graphene at T = 5 K [2]), as well
as exceptional thermal and mechanical properties [3]. Additionally, the charge density and the
surface conductivity of a graphene sheet can be effectively controlled by applying a
perpendicular electric field. Moreover, surface waves coupled to carriers, mostly called plasmons
can propagate distances up to 100 wavelengths along graphene layers with negligible
attenuations in upper section of terahertz (THz) frequency range [4]. All these unique properties
have made graphene a promising platform for future compact active plasmonic devices and
systems [4]. Plasmonic structures implemented inside two-dimensional electron gas layers of
hetero-structures [5]-[8] and graphene [9]-[10] have been vastly explored to develop compact
terahertz sources and detectors. In addition, the emergence of plasmon-based logic gates [11] has
introduced another beyond CMOS technology alternative that once combined with some of
today's best logic design paradigms and practices [12]-[13] may revolutionize the future of
computing. In spite of the numerous prospective applications of graphene-based structures, the
key remaining challenge is how to efficiently excite the plasmons in graphene using an incident
radiating mode electromagnetic wave. This problem is originated from the large phase mismatch
between the incident and the plasmonic waves.

Recently, a near field scattering setup with an atomic force microscopy tip and infrared

excitation light has been employed to launch plasmons along a graphene layer [14]. However,
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this is very inefficient technique with very negligible percentage of incident field coupled to the
surface wave [15]. Moreover, surface acoustic waves [16] and modulated graphene conductivity
[17] have been suggested to launch graphene plasmons. Subsequently, plasmon excitation along
a graphene sheet laid over a fabricated silicon diffractive grating and illuminated by an incident
radiating mode EM field has been achieved in [15]. Unfortunately, the suggested technique is
successful only in a single wave number which is related to the silicon grating period. Therefore,
the urgent need to effectively launch the propagating plasmonic mode along graphene layers in a
wide frequency range still exists.

In this paper, the possibility of launching the plasmons along a suspended graphene sheet using
another plasmonic waveguide is investigated. As will be shown, the surface wave on the
interface of a corrugated metal and a dielectric can appropriately launch plasmons along a
suspended graphene layer at terahertz frequencies. These specific surface waves traveling on the
exterior of a metal with engineered cuts and grooves are mostly called Spoof Surface Plasmon
Polaritons (SSPPs) [18]. The SSPPs can be effectively launched using a network analyzer source
or a quantum cascade laser. Here, the transmission and the input reflection of the plasmonic
wave traveling from the indented metallic structure to a suspended graphene sheet are considered
in a wide frequency range. To report and compare the results, conventional microwave theory
scattering parameter notation is used.

Simulation details:

Fig. 1.(a) depicts a metallic surface corrugated with linearly spaced grooves with period D,
distance (D - A), height H, filled with a dielectric (air) with permittivity &..sspp = 1. On the last
edge of the indented metal, a graphene layer is located (see Fig. 1.(a)). Here, the details of the

analytical and full wave simulation of the structure in Fig. 1. (a) are described.
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1. 2D plasmons along graphene
The surface conductivity of the graphene layer o4 is mostly calculated by Kubo formalism [4].

Using the computed conductivity, it can be proved that a TM* mode electromagnetic wave

(known as 2D plasmons) may propagate along a graphene sheet as |E¢| > h xe [4], where EF,

h and ® = 2 x f are graphene Fermi energy, reduced Planck constant and radial frequency,
respectively. The condition is easily satisfied in terahertz and infrared frequency range.

Furthermore, the Fermi energy can be altered by applying perpendicular electric fields Eq (see
Fig. 1 (a)). The surface wave field variations follow exp(jmt =YX - 5@1,23’), where 0g1 = d0g as 'y
>0 and 6, = - 6 if y < 0. Besides, y6 = 0g +j x Bg, ag and B¢ are the 2D plasmon propagation,
attenuation and phase constants, respectively. After solving Maxwell equations and applying

boundary conditions, the dispersion relation of the 2D plasmons is obtained:

Ao’e” e,
Ve = i\/ 2G - 27G (1)
fo C

where, £c =go * &. (€0 = 8.85 x 10" F / m) and ¢ = 3 x 10® (m/s) [15]. Moreover, the graphene
characteristic impedance is chosen similar to the TM* mode wave impedance Zg =
Vs /(ja)x &g ). Here, the measured transport parameters of the suspended graphene layer (in air

g.c = 1) with extremely high electron mobility p = 230,000 cm? V' s at T = 5K is considered

[2].
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Fig. 1. (@) Proposed mechanism to excite 2D plasmons of a graphene sheet using
SSPPs along a periodically indented metallic surface.

2. Spoof surface plasmon polaritons along a corrugated metal:

As proved in [19], the dispersion relation of the fundamental plasmonic mode (with

components E,, Ey and H,) that can propagate along an indented perfect electric conductor filled

with a dielectric (with relative permittivity € _qqpp ) iS:

2 _k2
\ Bssep o _ Szo tan (koh), (2)

Ko
where, So = [(D-A) / D]°® x sinc (Bsspp X (D - A) /2) and Ko = @&, ggp /c- I (2), Psspp IS the
phase constant of the SSPPs and ko = ® / c. As the perfect electric conductor is substituted with a
metal (gold here), the SSPP Ohmic attenuations are considered using the formulation in [19]. In

this manner, SSPP propagation constant ysspp = Osspp + j X Psspp can be obtained, where asspp iS

the attenuation constant. Similarly, the characteristic impedance of this transmission line is
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selected equal to the SSPP fundamental mode wave impedance: Zsspp = Ysgpp/ (J® X &spp )

where esspp = €0 X gr.sspp. Here, A =20 um, H =70 um, D= 60 um have been considered in the
design. The thickness of the metallic surface “t” is assumed to be larger compared to the skin
depth in the interested frequency range.
3. Details of the full-wave simulation and the analytical model:

The electromagnetic modeling of the proposed structure is performed using two different
approaches, namely a transmission line (TL) formalism and a full wave simulator [20].
The transition of the electromagnetic wave from the SSPP on the grooved metallic surface to the
2D plasmons on the graphene layer can be characterized by cascading two TLs depicted in Fig. 1
(b). To this end, a section of the indented metallic surface with length |, characteristic
impedance Zsspp and propagation constant ysspp iS considered as the first TL. The other sections
of the SSPP waveguide and the exciting field are represented as a voltage source with internal
resistance Zsspp. Furthermore, a small portion of the suspended graphene sheet adjacent to the
metallic edge, with length I, is represented as the second TL with characteristic impedance Zg
and propagation constant ys. The remaining part of the graphene layer is recognized as a load
with impedance Zg. In this manner, the scattering parameters of the equivalent circuit in Fig. 1
(@), calculated at reference planes 1 and 2, may be obtained using TL theory. This method
provides a fast solution of the mentioned problem. However, it cannot include the effects of
higher order modes which exist in the vicinity of the junction of the waveguides. These
evanescent higher order modes exist near the discontinuity because of different characteristic
impedances and propagation constants of the TLs. The evanescent modes specifically cause
higher than expected attenuations, due to impedance mismatch.

For comparison and to provide more accurate results, a complete solution of Maxwell equation
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is performed using the numerical solver [20]. The simulation domain is excited by applying a
wave port at x = 0 plane. In order to calculate scattering parameters, the methodology proposed
in [16] is followed.

Results and Discussion:

In Fig. 2, the phase constants of the SSPPs and the 2D plasmons of the graphene sheet with
various applied electric fields E, are depicted. As depicted in Fig. 2, the plasmons along both
structures obtain higher momentums compared to the radiating mode counterpart (ko), especially
as f > 500 GHz. Moreover, slight changes in the chemical potential of the graphene lead to
considerable variations in the 2D plasmon phase constants. It is also observed that there exists a
single frequency for each Fermi energy, which the properties of the 2D plasmons are exactly
similar to the ones of the SSPPs. It is expected that the transition of EM field from the SSPP to
the plasmons on graphene can be ideally occurred at this frequency. Moreover, the differences
between the phase constants of the 2D plasmons with Er = 0.18 and 0.16 eV, and the properties
of the SSPPs are not very not very deep. Therefore, it is anticipated that an acceptable level of
impedance matching between these waveguides may exist for these specific chemical potentials
of the graphene.

Fig. 3 and Fig. 4 depict the calculated transmission (S21) and input reflection (Si;) of the
plasmonic waves. As shown in Fig. 3, the EM energy is transferred from the SSPPs to 2D
plasmons with acceptable level of attenuation. Additionally, this technique is effective in a wide
frequency range. Considering the input reflection coefficient in Fig. 4, it is understood that the
matching between the transmission lines may be optimized in a certain frequency by changing
the graphene chemical potential. The frequency of the minimum reflection coefficient in Fig. 4 is

identical to the crossing point of the dispersion relations of the 2D plamsons and SSPPs.
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Fig. 2. Dispersion relation of the plasmons along the periodically corrugated
metal and a suspended graphene with different Fermi energy levels obtained by
the analytical model.
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Fig. 5, 6 presents a comparison between S;; and Sy; of the structure in Fig. 1. (a) (as EF = 0.16
eV) obtained by the analytical and numerical models. As depicted, there is a good similarity
between estimated transmission using different approaches. However, HFSS predict slightly
higher attenuations throughout the simulated frequency range which is due to the consideration
of higher order modes which are not included into the analytical model. Favorably low Si;
reported by both methods verify the usefulness of the proposed technique to launch 2D plasmons

in a wide frequency range.
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Fig. 5. A comparison between the reflection coefficients (as Er = 0.16 eV)
calculated by the TL model and numerical solver.

werS It Analytical model

......
------
------
Taay
.........
"ay
.y,
L
"y,
LN
LN
.
L
LN
"

_S21: Full wave solver |1

S,, (dB)

0855 200 500 600 700 300
Freq. (GHz)
Fig. 6. A comparison between the transmission coefficients (as Er = 0.16 eV)
calculated by the TL model and numerical solver.

Conclusion:

In this paper, a promising technique to effectively launch 2D plasmons in a suspended

graphene layer using spoof surface plasmons polaritons along a periodically indented metal is

proposed. To show the effectiveness of the suggested method, an analytical technique based on

transmission line theory is proposed. To verify the results, a full-wave commercial solver is

employed.
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VI. CONCLUSION AND FUTURE WORKS
A CONCLUSION:

In this work, the plasmon propagations along two-dimensional electron gas layers of biased
hetero-structures are analyzed both analytically and numerically. To this end, Maxwell and
electronic transport equations are being solved simultaneously. In the analytical model, several
simplifying assumptions have been taken into account to make the analysis possible. These
include disregarding Ohmic contacts on the sides of the hetero-structure and the existence of
homogenous materials surrounding the electron gas layer. In the proposed numerical simulation,
finite difference time domain technique is employed to solve Maxwell equation. Additionally,
finite difference scheme is utilized as discretizing electronic transport equations. In the multi-
physics simulator, several presumptions, considered in the analytical model, have been
eliminated. As example, the presence of Ohmic contacts and metallic grating on the top surface
of the hetero-structure are included in the numerical solver.

As presented, the conventional understanding of wave propagation along biased 2D layers is
changed by the developed model. This is due to the division of symmetrical plasmonic modes
into new asymmetrical ones in the bias device, which has not been previously reported. The
results of this research prove the possibility of steering and amplifying terahertz signals using
these plasmonic structures. As an example, a compact and fast plasmonic switch is designed and
simulated that can offer very high signal isolations in the interested frequency range.

In the second phase of this research, a silicon-based plasmonic switch is proposed and
simulated in THz frequency range. The THz plasmonic modulator is implemented inside a
corrugated n-type silicon substrate which is covered by a metal to achieve a Schottky contact. In
this manner, the propagation of the plasmons along indented structure is controlled. To optimize
the design, the employment of an intrinsic silicon substrate with a P-Intrinsic-N diode is
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proposed. As will be described, employing highly p++ and n++-type doped areas inside the
wafer leads to the formation of the P-I-N diode. The design begins with a finite element solution
of the well-known drift-diffusion and Poisson equations using a numerical solver to compute the
charge distribution in the diode. As mentioned, the electrical conductivity of the silicon can be
obtained using Drude model and with the aid of the calculated charge density. Subsequently,
plasmon propagation along the structure is characterized for each bias voltage using a full wave
numerical solver. The results are stated in the form of scattering parameters in a wide frequency
range.

In the last section of this research, an efficient methodology to launch 2D plasmons along
graphene is proposed. To this end, plasmons along periodically grooved metallic surface are
successfully coupled onto a graphene mono-layer. To analyze the proposed design, a fast and
accurate transmission line representation of the plasmonic waveguides is utilized. For
comparison, a full wave simulator is employed. It is observed that a wide band coupling of THz
signal onto graphene is achievable which make this design very desirable in modern plasmonic
systems.

B. FUTURE WORKS:
There are several future paths to continue the research in every aspect of this work.

1. Design, simulation and fabrication of plasmonic devices inside two-dimensional

conductors:

There are several challenges that need to be address before an efficient THz amplifier can be
designed and fabricated. One of these bottlenecks is the lack of an appropriate plasmonic
waveguide which can excite the growing mode inside the THz source and extract the generated

field effectively. The availability of global modeling can help engineers to employ the
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appropriate waveguides and matching networks into the design of THz plasmonic amplifiers to
transform the success of THz emission observations from biased hetero-structures into advanced
THz plasmonic amplifiers with acceptable level of voltage gain. Moreover, the presented multi-
physics analysis can open a new venue in the simulation of modern active plasmonic devices.
Therefore, it is expected that new sets of plasmonic active structures can be designed and
employed in modern compact systems.

2. Silicon-based plasmonic modulator:

It is expected that the presented switch becomes popular in THz band due to high switching
speed and ease of fabrication on the silicon platform. In the future, the number and locations of
the doped areas inside the silicon wafer can even further improve the functionality of the device.
Additionally, the design can be optimized by changing the doping densities of the employed

wafer.
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