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ABSTRACT 

 

In recent years, there have been substantial efforts to design and fabricate millimeter-wave and 

terahertz (THz) active and passive devices. Operation of microwave and photonic devices in THz 

range is limited due to limited maximum allowable electron velocity at semiconductor materials, 

and large dimensions of optical structures that prohibit their integration into nano-size packages, 

respectively. In order to address these issues, the application of surface plasmons (SPs) is mostly 

suggested to advance plasmonic devices and make this area comparable to photonics or 

electronics. 

In this research, the feasibility of implementing THz and millimeter-wave plasmonic devices 

inside different material platforms including: two-dimensional electron gas (2DEG) layers of 

hetero-structures, silicon wafers and graphene, are elaborated. To this end, an analytical model is 

developed to describe the propagation of two-dimensional plasmons along electron gas layers of 

biased hetero-structures. Using this analytical model, the existence of new plasmonic modes 

along the biased electron gas is reported for the first time. For an independent verification, a 

novel multi-physics simulator is developed to analyze active terahertz plasmonic structures. It is 

also anticipated that the solver can offer novel ideas for guiding the SPs inside the future 

plasmonic circuits. 

In a different approach to design plasmonic devices in a widely used material platform, silicon, 

a THz modulator is proposed. Using a full wave simulator, it is shown that plasmonic wave can 

propagate along an indented n-type doped silicon wafer (which is later covered with a metallic 

layer) with large attenuations. However, the signal losses can be prohibited by applying bias 

voltages onto the metal as the thickness of the depletion layer between the metal and silicon 

increases. 



 

 

At the end, an effective method to couple incident waves onto an infinitely thin graphene 

mono-layer is presented. As will be illustrated, the surface waves along a corrugated metal can 

efficiently transit into graphene and successfully launch plasmons.  
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I. INTRODUCTION 

A. TERAHERTZ GAP 

Terahertz (THz) frequency band (see Fig. 1), located between microwave and optical ranges 

(300 GHz – 3 THz), is a gifted but still unknown section of electromagnetic spectrum. THz 

signal has been utilized in laboratories to find its applications in security and medical areas. For 

example, it has been employed to demonstrate and recognize explosive materials and weapons, 

and identify cancer cells and tooth decays [1]. In spite of several unique characteristics and the 

laboratory level demonstrations, practical application of THz radiation is still challenging. The 

industrial usage of THz signal is majorly prohibited due to the absence of room-temperature 

active and passive devices such as sources, detectors, modulators and waveguides. In recent 

years, there have been considerable studies aiming to close the so called “Terahertz Gap” by 

designing THz active and passive devices fabricated inside semiconductor and novel materials as 

graphene [2]-[10]. Operation of semiconductor microwave devices in THz range is physically 

constrained by the maximum achievable electron velocity. Therefore the design and fabrication 

of transistors with operating frequencies in THz range is challenging. Traditionally, THz signal 

is generated by successive multiplication of lower frequency waves obtained by using readily 

available solid-state power amplifiers [10]. However, this multiplication results into a poor 

efficiency and therefore a significant loss of the input power. On the other hand, approaching the 

THz range from photonics is challenging because of the low photon energy (2 meV at 1 THz) 

and relatively long wavelength (300 μm at 1 THz) that make the nano-fabrication of the room 

temperature operating photonic devices difficult. 
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Fig. 1. A representation of the location of THz gap inside electromagnetic 

spectrum. 

B. SURFACE PLASMON AT THE DIELECTRIC/METAL INTERFACE 

Surface Plasmons (SPs) are electromagnetic (EM) surface waves propagating at the interface 

between a dielectric and a conductor, evanescently confined in the perpendicular direction [11]. 

These surface waves are resulted from the coupling of the EM waves to the electron plasma 

oscillations of the metal. 

The simplest geometry supporting SPs is a flat interface between a dielectric (z > 0) and an 

adjacent metal (z < 0) as depicted in Fig. 2. It is assumed that the dielectric and metal are 

infinitely long in the y and x axis. The dielectric is represented by a relative dielectric constant 

εr2. The relative permittivity of the metal is described by using Drude model as εr1 = 1-ωp
2
/(ω

2 
– 

jω/η) where ω, j, ωp and η are angular frequency, imaginary number, the plasma frequency and 

the momentum relaxation time of the metal, respectively. The plasma frequency is estimated by

2 *

p 0ω = Nq ε m , ε0 = 8.85×10
-12

(F/m) where N, m
*
 and q are electron density, effective mass 

and unit charge, respectively. Drude model for noble metals has been validated by Johnson and 

Christy [12] experimentally.  

A surface wave on the interface with an evanescent nature along z is described by the wave 

function: 

 

 

1 1

2 2

exp 0

exp 0

j t x z z

j t x z z

   


   

  
 

  
    (1) 

300MHz  3GHz  30GHz 300GHz  3THz   30THz  300THz

1m 10cm 1cm      1mm    100μm   10μm 1 μm UVRF

Electronics Photonics

IR    Visible

THz Gap
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where, γ=α+jβ  is the propagation constant. α and β are the attenuation and the phase constants, 

respectively. To confine the mode along the interface, the real parts of δ1 and δ2 must be positive. 

It is known that the SPs only exist for Transverse Magnetic (TM
x
) mode [13]; therefore, the 

solution of this mode is only considered here. 

 
Fig. 2: A geometry showing SPs propagation along the metal/dielectric interface. 

An analytical solution of Maxwell equations for the TM
x
 mode with the wave function (1) will 

provide the field distribution along the interface. Boundary conditions on the interface are the 

continuity of tangential component of magnetic and electric fields which result into: 

2 2

1 1

 

 
  .        (2) 

Using (2), It is understood that the real part of εr1 should be negative since εr2 and the real part of 

δ2 and δ1 are positive. This requirement can be satisfied only if the operating frequency is lower 

than the plasma frequency of the metal. Combining the wave equation (also called Helmholtz 

equation) γ
2
 + δ1,2

2
 + ω

2
εr1,2/c

2
 = 0 and (2) yields the dispersion relation of the SPs: 

1 2

1 2

.r r

r r

j
c

 


 





       (3) 

The dispersion relations of SPs on the metal/air interface and the radiative mode counterpart 

inside the air (β = ω/c) are depicted in Fig. 3. As calculating the dispersion relation in Fig. 3, 
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electron scatterings inside the metal are considered negligible (ω × η >> 1). In this manner, the 

dispersion relation is obtained from (3) as εr2 = 1, εr1 = 1 – (ωp / ω)
2
 and γ = j × β. 

As presented in Fig. 3, SPs gain very large phase constants in the vicinity of the cut-off 

frequency (ωc = 
p 2ω / 1+ε ). Therefore, the plasmons propagate with very small wavelength, 

compared to the radiating mode counterpart, in these frequency ranges. More details on the 

characteristics of SPs can be found in [13].  

 
Fig. 3.  Dispersion curves of the SPs (dash line) and its radiating mode 

counterpart inside the dielectric (solid line). We are interested in lower non-

radiative section of the SPs’ dispersion curve
p 2ω < ω / 1+ε . Large momentum 

mismatch between SPs and the radiative mode is observed at higher frequencies. 

Application of specific techniques such as metal gratings or prism coupling is 

required to excite SPs due to the momentum mismatch. 

 

C. TWO-DIMENSIONAL PLASMONS 

SPs are able to confine EM fields along the interface of a metal and a dielectric over length 

scales significantly smaller than the wavelength. However, this localization occurs as long as the 

field oscillates at frequencies close to the described cut-off frequency which is related to ωp. The 

   

  

 

 

Dispersion curve of SPs on metal/air interface

Dispersion curve of radiative wave in air
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plasma frequency is proportional to the free carrier density N which is in the order of 10
23

 cm
-3

. 

This suggests that the plasma frequency is located in the visible range. For typical metals such as 

gold and silver, SPs are not localized along the interface in THz frequencies and are extended 

over several wavelengths into the dielectric space above the interface. In order to use SPs in THz 

frequencies, engineering the surface of the metals by appropriate array of holes [14] or using 

highly doped semiconductors instead of the metallic surfaces [13] are suggested. In 

semiconductors, the plasma frequency can be easily controlled by altering the electron density 

using thermal, optical and electrical gating techniques. This ability can help engineers to design 

future active plasmonic devices such as modulators. However, SP propagation along doped 

semiconductors faces large attenuations which is due to electron scatterings. Therefore, the 

scattering is mostly avoided by employing Two Dimensional Electron Gas (2DEG) layers of 

hetero-structures or graphene. It is interesting that 2D plasmons inside electron sheets can offer 

very small wavelengths λ2D, compared to their free space counterparts λ0 (λ2D < λ0 /700) [15], 

and astonishing field improvements in THz frequencies [16]. 

Recently, two-dimensional plasmons along 2DEG layers of High Electron Mobility Transistors 

(HEMTs) have been employed to fabricate sources and detectors [2]-[10]. These detectors are 

very promising in terms of performance and integration into compact sizes compared to the other 

modern ones designed by different concepts [3]. In spite of these advances in the fabrication of 

THz plasmonic detectors, crystals [16], these structures are still un-matured compared to other 

photonic and electronic devices and require more advanced techniques for manipulating and 

amplifying surface wave signals. 

D. ANALYTICAL MODELING OF TWO-DIMENSIONAL PLASMONS 
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In Fig. 4, two-dimensional plasmons which can propagate along the electron gas layer of the 

AlGaAs/GaAs HEMT are depicted. The plasmons are excited by a –z going plane wave 

illuminating the transistor. However, this excitation is possible due to the presence of the 

metallic gate on the top surface of the structure. The diffracted waves from the metallic gate 

obtain enough momentum (phase constant) to excite the plasmons. 

 
Fig. 4.  Two-dimensional plasmons are propagating symmetrically along x axis 

out of the metallic gate. The presence of the Ohmic contacts allows us to apply 

external bias voltage on the channel and therefore change the properties of the 

plasmons accordingly. 

The presence of two-dimensional plasmons along 2D conductors has been first theoretically 

predicted and modeled in [17]. To this end, the dispersion relation of the plasmons and its 

dependence on the conductivity of the conductor has been detailed. Later, similar results with 

different notations and more in-depth analysis have been presented in [18]. In these analytical 

formulations [17]-[18], Maxwell equations are solved after applying required boundaries. In this 

manner, the properties of the plasmons propagating along the 2D conductor are calculated. Later, 

the real and imaginary conductivity of a two-dimensional electron gas layer of a HEMT at 

cryogenic temperatures has been measured in [19]. Moreover, a novel distributed lumped 
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element representation of the electron gas has been proposed in [19]. The distributed model has 

been employed to describe the properties of the plasmons propagating on the electron gas [19]. 

In the mentioned researches, the presence of the bias electric field along the channel that can 

exist as applying the bias voltage has been disregarded. However, it is critical to consider the 

effects of the applied bias voltage on the properties of plasmons in order to design future 

plasmonic sources and active detectors. To this end, a solution of Poisson, continuity and Euler 

equations has been presented in [20]-[21] to include the effects of electron drift velocity, 

accelerated by an applied bias voltage, in the modeling of modern plasmonic detector and 

sources. It has been shown analytically that the steady-state dc current in a FET can lead to un-

stabilities which can result into plasma oscillations in terahertz frequency range [20]-[21]. 

Additionally, it has been claimed that this mechanism can lead to the design and fabrication of 

terahertz and infrared plasmonic sources and detectors [20]. 

In [22], a small signal analysis of Euler equation (or the so called momentum conservation 

equation) and continuity equations are employed to include the effects of electron average drift 

velocity v0 into the calculated surface conductivity (ζ) of 2D electron gas layers as: 

 

2

0

*

0 0

1

m

n q j

m
j v j v




   



 

   
 

,    (4) 

where, n0, q, m
*
, and ηm are electron: surface density, unit charge, effective mass, and momentum 

relaxation time, respectively. The detailed calculation of (4) is presented in Appendix I, section 

A, as it is assumed that the plasmons follow the variations in (1). 

In [23], we employed the electron velocity dependent conductivity (4) to calculate the 

dispersion relation of two-dimensional plasmons along biased electron gas layers. To this end, 

appropriate boundary conditions are applied and the dispersion relation is obtained as: 
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4 3 2

1 2 3 4 5 0A A A A A              (5) 

Where [23], 

3
4 30

1 0 2 0

2 2
2 2 20 0

3 0 2

2
3 0 0

4 0 2

2 22 3
4

5 2 2

2
, 4

6
6 4

6 2
4

42

m

m m

m m

r

m m

v
A v A j v

v j v
A v a

v jv
A jv

aj
A

c







 

 


 

  


 

   

    

  

   

.     (6) 

As is presented in (5), four new plasmonic modes can propagate along the channel. This is in 

contrary to other predictions that have assumed that the surface modes along a biased 2D 

conductor don’t change even if there is an external bias electric field. One of the major 

achievements in this solution is the prediction of an available growing mode along the biased 2D 

conductor which can lead to the design of a plasmonic terahertz amplifier, if certain impedance 

matching conditions are implemented [23]-[24]. 

Although the analytical method presented in [23]-[24] is able to correctly characterize wave 

propagation along biased 2D conductors, it is still limited by several restrictions. For example, 

the wave reflections from Ohmic contacts have been disregarded. To obtain a complete picture 

of electron-wave interactions inside modern plasmonic devices, a more complex model with very 

limited assumptions is required. 

E. GLOBAL MODELING OF ACTIVE TERAHERTZ PLASMONIC DEVICESs 

Global modeling has been previously utilized in the design and analysis of microwave 

transistors [25]-[27]. Moreover, it has been recently used in the modeling of silicon conductivity 

in terahertz frequency range [28]. This modeling technique is based on a self-consistent solution 

of wave propagation and electronic transport equations. In [25]-[27], this is performed by a full 
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wave solution of Maxwell and moments of Boltzmann equations. In this manner, high frequency 

effects of these devices are completely considered into the simulator. Similar to microwave 

transistors, the characteristics of wave propagation and the motion of electrons are completely 

inter-related inside active terahertz plasmonic devices. Therefore, global modeling can also be 

employed in the analysis and design of modern active plasmonic devices [29]. 

The wave propagation in a homogenous material can be described by Maxwell equations, with 

constant material properties ε (permittivity) and μ (permeability) throughout the medium, as: 

E
H J

t

H
E

t






  




  



.       (7) 

In (7), E  and H , and J  are electric and magnetic fields, and electric current density 

respectively. In [29], we employed finite difference time domain technique to solve (7) with 

appropriate boundary conditions inside an active terahertz plasmonic device. To estimate the 

electrons’ behavior with respect to an applied external voltage, we utilized moments of 

Boltzmann equation and Poisson equation. In this manner, the electric current density J  can be 

updated at each time step. The numerical schemes employed to solve the electronic transport 

equations have been listed in Appendix II. In order to couple these two solvers (full wave and 

electronic transport simulators), physical properties should be transformed properly from one to 

the other. This becomes possible by feeding the full wave solver with calculated current density 

by the electronic transport simulator. Additionally, updated electric and magnetic fields are 

inserted into the electronic transport solver at each time step. This concept is depicted in Fig. 5. 

Using this numerical solver, the presence of periodic metallic grating of top of the device is 

characterized in [29]. Moreover, we designed and simulated a novel, fast and efficient terahertz 
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plasmonic switch inside a hetero-structure in [30]. This plasmonic switch is able to operate 

effectively in THz frequencies with small control voltage.  

 
Fig. 5.  A schematic of the basics of global modeling simulator employed in the 

analysis of active plasmonic devices. 

F. SILICON-BASED PLASMONIC TERAHERTZ MODULATOR 

Application of modern active devices is critical in the emerging plasmonic area, since these 

plasmonic components combine low optical losses with high mode confinements [13]. “Active 

plasmonic” term has been coined first in a paper in 2004 [31], in which a compact active switch 

has been implemented on the interface of Ga/Au. It has been shown that the propagation of 

plasmonic waves along the interface can be controlled by applying heat [31]. This is due to the 

changes in the electrical properties of Ga that happens as the operating temperature varies. 

However, this methodology is not very promising since heat cannot be applied on a specific 

surface with an acceptable level of speed. To circumvent the operating speed, other types of 

modern plasmonic switches with an additional optical source have been developed [32]. In this 

manner, the material properties of the plasmonic waveguide can be controlled by applying an 

intense optical source. Similar ideas have been engaged in the design of plasmonic based 

terahertz modulators on the surface of semiconductors in [33]-[35]. Additionally, the application 

of electro-optic materials, such as nematic liquid crystals with electrically controllable properties 

has been introduced in the plasmon-based modulators [36]. However, it is very challenging to 

employ liquid crystals in modern compact plasmonic devices [36]. Moreover, in terms of 
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integrating electronics and photonics, it would be highly favorable to develop a plasmonic 

component with the same materials as the rest of a photonic system. In this manner, existing Si 

and III-V based processing can be used in the fabrication of plasmonic devices [37].  

In order to design a plasmonic modulator, there is a need to design an optimized waveguide 

that can handle and localized waves in THz frequency range. As previously mentioned in section 

C, surface waves are not bounded to the dielectric/metal interface, in Fig. 2, at this frequency 

range. Therefore, doped-semiconductors are mostly employed as plasmonic waveguides in this 

range. Recently, the application of a metallic structure with a periodic array of grooves is 

proposed in [38] to guide localized plasmons in THz frequencies. In this manner, the effective 

permittivity of the corrugated metallic surface can be controlled by changing the dimensions and 

repetition rate of the holes. These waves along the indented surface are mostly called Spoof 

Surface Plasmon Polaritons (SSPPs). SSPPs have been recently employed in terahertz lasers to 

focus the generated beam efficiently [39]. 

The idea of changing the material properties of a semiconductor by changing the depletion 

depth between the metal and semiconductor has been previously employed to control 

extraordinary terahertz transmission trough a metallic sheet with sub-wavelength holes [40]. In 

this manner, the enhanced THz transmission is modulated up to 52% by changing the applied 

bias voltage, on the Schottky contact between 0 to 16 volts [40]. Additionally, a voltage-

controlled, a silicon-based electromagnetic meta-material operating between 75-110 GHz has 

been experimentally demonstrated in [41]. Similarly, the transmittance of the meta-material can 

be modulated by applying voltages onto the Schottky contact between the silicon substrate and 

the deposited gold layer [41].  

In [37], we employed the same guiding methodology to design a fast and compact plasmonic 
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switch. This device is designed inside a corrugated lightly-doped silicon wafer covered with 

gold. In this manner, SSPPs can propagate along the corrugated structure. Moreover, the doping 

density of silicon wafer can be controlled after applying appropriate control voltages onto the 

gold layer and an Ohmic contact designed below the active structure. This design leads to a 

compact THz switch activated by a control voltage. The effectiveness of the plasmonic switch 

can be determined by considering its isolation in the OFF mode and its insertion loss in the ON 

state. It is shown that the plasmonic switch with the Schottky contact can obtain insertion losses 

below 5 dB and isolations above 15 dB between 260-315 GHz [37]. Finally, a more sophisticated 

design that employs a PIN diode to electrically modify the doping density of the silicon substrate 

is introduced in [37] which can vastly enhance the operation of the plasmonic switch. It is 

envisioned that the proposed switches may be useful in future all-integrated silicon-based THz 

plasmonic devices and communication systems. Specifically, the future generation of very large 

scale integration (VLSI) chips will pursue the combination of electronic processing and optical 

communications through fiber optic cables. In order to resolve the coupling problem between 

optical and electronic components and integrate photonic components with electronic devices in 

nano-scale dimensions, we proposed the application of the developed plasmonic waveguide and 

modulator. 

G. GRAPHENE-BASED TERAHERTZ PLASMONIC DEVICES 

Graphene is a two-dimensional (2D) form of carbon in which the atoms are arranged in a 

honeycomb arrangement. Since its extraction from graphite compounds [42], it has attracted 

numerous researchers both in academia and industry due to its unique mechanical, thermal and 

electromagnetic properties [43]-[50]. Specifically, the tunability of its electrical conductivity by 

means of chemical and electrical doping has made graphene a prime candidate for applications in 
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nano-electronics and nano-photonics [44]. Graphene supports plasmons at terahertz and far-

infrared frequency range (0.1-10 THz) [46]. Most importantly, graphene provides an exceptional 

possibility of plasmon tunability, unlike in metals, because of the mentioned control over its 

electrical properties. Therefore, graphene is widely being explored to construct future compact 

on-chip optical devices and circuits. 

Fig. 6 depicts a 2D representation of a monolayer graphene linear band structure with different 

doping types and their related possible optical transitions. As shown in Fig. 6.(a), the Fermi 

energy level is located exactly in the middle of the conductance and valance band of intrinsic 

graphene (Dirac point). Moreover, the valance band is completely full of electrons while the 

conductance band is empty. In the intrinsic graphene, single-photon absorption (inter-band 

transition) can take place over a very wide frequency range. In Fig. 6.(b), the band structure of an 

n-doped graphene is depicted. As presented, the Fermi level is above the Dirac point in this case 

and photons with energy 2h  > (2 × EF) can only be absorbed by graphene since there is no 

empty state below this level. The band-structure of a p-type graphene is also presented in Fig. 

6.(c). As illustrated, the Fermi level is below the Dirac point in the p-type graphene. Under this 

condition, graphene cannot absorb photons with energies 2h  < (2 × EF), since there is not any 

electron in the valance band above Fermi energy level.  
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Fig. 6.  A 2D schematic of (a) intrinsic, (b) n-type, and (c) p-type monolayer 

graphene band-structure and their possible optical transitions. 

As mentioned, the Fermi energy level of a graphene sheet can be tuned electrically by applying 

perpendicular electric fields. One method to apply the required electric field is using a back gate 

as depicted in Fig. 7. To this end, graphene can be placed over an insulator such as silicon 

dioxide on top of a silicon wafer. An Ohmic contact can be established by depositing a metal on 

the graphene sheet and applying a bias voltage Va between the top and back metals as illustrated 

Fig. 7. In this structure, the thickness and dielectric constant of the insulator are d and εr, 

respectively.  

 
Fig. 7.  A simple method to apply perpendicular electric fields on a graphene 

sheet to electrically control its Fermi energy level. 

As detailed in [51], the required control voltage Va to achieve a specific Fermi energy level EF 
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can be calculated from: 
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where, q (= 1.60216 × 10
-19

 C), ε, h  (= 1.054 × 10
-34

 J.s), and vF = 10
6
 (m / s) are electron unit 

charge, energy, reduced Planck constant, and graphene Fermi velocity, respectively. In (8), 

Fermi-Dirac distribution function: 
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is used, as k (= 1.38 × 10
-23

 m
2
.kg.s

-2
.K

-1
) and T are Boltzmann constant and operating 

temperature, respectively. To provide an insight into the controllability of the chemical potential 

of graphene by changing the applied voltage, the required perpendicular electric field for various 

practical Fermi levels are calculated from (8)-(9) and depicted in Fig. 8 as T = 300 (K) and εr = 1 

(F / m). As presented, graphene can change from a p-type material to an n-type one by altering 

the perpendicular electric field. It can be seen that the Fermi energy level can be practically 

tuned from –1 eV to 1 eV by applying typical values of bias electric fields as the insulator 

thickness “d” is below one micrometer. The application of larger fields is possible by using 

thinner insulators. It is worthy to mention that the chemical potential of doped graphene is 

related to the charge density  
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Fig. 8.  Fermi level of graphene versus applied perpendicular electric field. 

The surface electrical conductivity ζ of graphene can be calculated from Kubo formalism [51]. 

It is famous that the conductivity is affected by two major contributions, namely inter-band ζinter 

and intra-band ζintra transitions (ζ = ζintra + ζinter). Using Kubo formalism, it can be calculated 

that: 
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where, Γ = 1 / (2 × η) and η is electron momentum relation time. As seen in (10), both inter-band 

and intra-band conductivities are closely correlated with the chemical potential of graphene and 

the frequency of the propagating wave. As seen in Fig. 6.(a), intra-band transitions don’t exist in 

pristine graphene since there are not any electron and empty energy level in the conductance and 

the valance band, respectively. Additionally, the intra-band part will only be relevant in terahertz 

frequency range as F2E > hω . 
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Plasmons along graphene are of described two-dimensional type. The TM
x
 mode along a 

graphene mono-layer, which is assumed to be infinite along x and y axis, and located at z = 0 

plane follows the wave-function: 

 

 

1

1

exp 0

exp 0

j t x z z

j t x z z

   


   

  
 

  
    (11) 

where, γ and δ are propagation constants along x axis and attenuation constant in z direction, 

respectively. It is assumed that the graphene sheet, with surface conductivity ζ, is located in a 

homogenous material with permittivity εr. After solving Maxwell equations and satisfying 

boundary conditions along the graphene layer, 2D plasmon dispersion relation can be obtained as 

[23]: 

2

j

 

 


 .        (12) 

where, ε = εr × ε0 and (ε0 = 8.85 × 10
-12

 F / m).Using (10), (12) and Helmholtz equation, the 

dispersion relation of the plasmonic mode can be calculated.  

In spite of the mentioned advantages of graphene over conventional metals in THz plasmonic 

devices, the challenge is how to effectively couple long-wavelength terahertz wave onto an 

infinitesimally sheet of graphene. This problem specially persists due to the very large mismatch 

between the wavelengths of the incident radiating waves and the surface waves on graphene. To 

address this critical challenge, electrically generated surface acoustic waves have been employed 

to form a diffraction grating [48]. In this manner, the plasmons along graphene are launched 

without the need to use complicated optical near-field techniques such as those based on 

scatterings from an atomic force microscope tip. However, this method still relies on an extra 

acoustic source. In [49], an etched silicon wafer is employed to implement diffractive gratings on 

which a mono-layer graphene can be later deposit. It is shown that there exists a sharp notch on 
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the normal incident transmission spectra of the structure as the incident optical wave couples to 

the graphene plasmonic wave [49]. However, the described methodology is only effective in a 

narrow frequency bandwidth which is related to the grating period of the etched silicon wafer. 

Therefore, an urgent need to effectively launch the propagating plasmonic mode along graphene 

layers in a wide frequency range still exists. 

Recently, we have proposed to initially excite electromagnetic wave along a more 

sophisticated plasmonic structure as a periodically grooved metallic surface. Next, the graphene 

sheet can be deposited onto the structured metal to transfer the electromagnetic energy to the 

ultra-thin waveguide [52]. Next, the effectiveness of this method is proved [52] using a full-wave 

simulation and analytical model. 

H. DISSERTATION STRUCTURE 

This dissertation is composed of seven previously published papers. It is an acceptable format 

by the Graduate school and it is approved by the dissertation chair and the committee before 

beginning the project. All requirements with regard to this type of submission are elaborated in 

the official document of the graduate school “The University of Arkansas Graduate School 

Guide to Preparing Doctoral Dissertations”, page 11. 

In chapter two, the analytical modeling of plasmon propagation along gated and un-gated 

electron gas layers is elaborated. This chapter includes three published papers as listed as 

follows. 

[1] M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, H. Naseem, “Analytical modeling of THz wave 

propagation inside ungated two dimensional electron gas layers”, Int. IEEE Microw. Symp., 

Baltimore, Jun. 2011. 



20 
 

[2] M. A. Khorrami, S. El-Ghazaly, S. Q. Yu, H. Naseem, “THz plasmon amplification using 

two-dimensional electron-gas layers”, J. Appl. Phys., vol. 111, pp.094501(1)094501-(7), 

May 2012. 

[3] M. A. Khorrami, S. El-Ghazaly, “2D plasmon propagation inside a two-dimensional 

electron gas layer with a low loss metallic gate,” IEEE Photonic Conference (IPC 2012), pp. 

895-896, San Francisco, Sep. 2012. 

In [1], a summary of different analytical models, found in the literature, which describe the 

surface wave propagation along un-gated electron gas layers are listed. Besides, an analytical 

model is developed to characterize 2D plasmon properties along biased electron gas layers of 

hetero-structure. This representation is based on the solution of Maxwell and Hydrodynamic 

equations. It is shown that the application of bias voltage drastically changes the characteristics 

of the surface wave and divides two symmetrical modes into four new asymmetrical ones. 

Besides, the wave impedances of each mode are illustrated. At last, a simple matching network is 

introduced that can be useful to effectively launch plasmons along the electron gas. 

In [2] an analytical model to investigate the possibility of steering and amplifying terahertz 

plasmons in gated and un-gated two dimensional electron gas layers by applying a bias electric 

field is reported. The proposed representation involves a solution of Maxwell and semi-classical 

electronic transport equations inside the biased structure simultaneously. In [2], the possibility of 

achieving a plasmonic amplifier inside the un-gated electron gas layer is illustrated. It is shown 

that certain impedance matching requirements needs to be satisfied before reaching an efficient 

THz amplifier. Since the properties of the asymmetrical modes along the biased device can be 

controlled via biasing, proposals of new plasmonic devices such as modulators and switches are 

also elaborated in [2]. The mentioned analytical investigation is repeated for un-gated electron 
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gas layers, which similarly shows the division of symmetrical modes inside unbiased device into 

two asymmetrical ones as the bias electric field is applied. Unlike the un-gated electron gas 

sheet, it is shown that the amplifying mode may not propagate along the gated one for different 

bias electric fields. 

In [3], perturbation theory is employed to analytically characterize 2D plasmon propagation 

along gated two dimensional electron gas layers as the attenuations due to the presence of lossy 

gate are included. In this manner, extra Ohmic losses introduced by the non-ideal metallic gate 

are taken into account. 

In chapter three, the details of the global modeling of active THz plasmonic devices are 

presented. This chapter includes two published papers as listed as follows. 

[4] M. A. Khorrami, S. El-Ghazaly, H. Naseem, S. Q. Yu, “Global modeling of active terahertz 

plasmonic devices,” IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 1, pp. 101-109. 

[5] M. A. Khorrami, S. El-Ghazaly, H. Naseem, S. Q. Yu, “Compact terahertz surface plasmon 

switch inside a two dimensional electron gas layer,” IEEE International Microwave 

Symposium (IMS2012), Montreal, Canada, Jun. 2012. 

In [4], global modeling is employed to characterize the wave propagation along un-gated 

biased electron gas layers. In this manner, the existence of new asymmetrical plasmonic modes 

presented in biased electron gas layers is proved using an independent verification. Moreover, 

the properties of the plasmons in a biased electron gas beneath a periodic metallic grating are 

described. 

In [5], a fast and compact THz plasmonic switch is designed and simulated using global 

modeling. It is shown that the switch can provide very high signal isolations with a small control 

voltage. 
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In chapter four, the details of the silicon-based THz plasmonic modulator is presented. This 

chapter includes one published paper as listed as follows. 

[6] M. A. Khorrami, S. El-Ghazaly, “Design and analysis of silicon-based terahertz plasmonic 

switch,” Optics Express, vol. 21, pp. 25452-25466, Oct. 2013. 

In [6], a novel THz plasmonic modulator inside a silicon wafer is designed and simulated. The 

structure is implemented inside an n-type doped silicon which is periodically corrugated and 

covered by a gold layer. In this manner, the attenuation of the plasmons, propagating along the 

indented metallic layer can be controlled by applying control voltages onto the metal and a back-

gate that can established beneath the modulator. The application of voltage can change the width 

of the depletion layer to a great extent. Therefore, THz signal can propagate without large 

attenuations inside the depleted area. 

In chapter five, the details of an efficient method to launch 2D plasmons along graphene is 

described. This chapter includes one published paper as listed as follows. 

[7] M. A. Khorrami and S. El-Ghazaly, “Broadband excitation and active control of terahertz 

plasmons in graphene,” IEEE International Microwave Symposium, Tampa, FL, Jun. 2014. 

In [7], a broadband methodology to effectively excite 2D plasmons along a graphene mono-

layer at THz frequency range is presented. For this purpose, the plasmon transition from 

periodically corrugated metals to suspended graphene is investigated. It is shown that the wave 

transition from one plasmonic waveguide to the next one can be successfully handled in a wide 

THz frequency range. The analysis is based on a transmission line (TL) representation of two 

plasmonic waveguides which are connected in series. The accuracy of the TL model is verified 

by a full-wave numerical solver.  

This dissertation includes two appendices. Appendix A includes the details of dispersion 
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relation calculation of plasmons along un-gated 2D electron gas layers in [2]. In Appendix B, the 

discretization details of electronic transport equations in [4] are presented. 
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II. THZ PLASMON PROPAGATION ALONG TWO DIMENSIONAL ELECTRON-

GAS LAYERS 
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GATED TWO DIMENSIONAL ELECTRON GAS LAYERS 
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Abstract: 

Plasma wave propagation along an un-gated two Dimensional Electron Gas (2DEG) layer of a 

hetero-structure is studied. It is shown that the wave can be useful in amplification of THz 

signals. An analytical solution of Maxwell and Hydrodynamic equations is presented. This 

method provides an insight into electromagnetic modes allowed to propagate along the 2DEG as 

electrons are in motion with constant average drift velocity. Besides, wave impedances of the 

modes are illustrated. Afterwards, a simple matching network design for input and output ports 

of the 2DEGs is developed. 
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Introduction: 

Detection and generation of THz signals with the aid of plasma waves inside two Dimensional 

Electron Gas (2DEG) layers of High Electron Mobility Transistors (HEMTs), have been 

observed in several experiments [1]-[2]. Also, several theoretical models have been proposed to 

describe these observations [3]-[5]. In [3], plasma wave and shallow water equations are 

compared and a THz wave generation is predicted in a gated 2DEG layer of a HEMT with open 

and short circuited drain and source, respectively. The model is used to explain the THz wave 

generation and (resonant and non-resonant) detection in gated 2DEG of HEMT. Recently, a 

room temperature THz source implemented in an AlGaN/GaN based HEMT, tunable with gate 

voltage between 0.75 to 2.1 THz, has been reported [2]. On the other hand, plasma wave 

resonances in un-gated 2DEG layers have also been proposed in [4] with the same boundary 

conditions as in [3]. 

In [3] and [4], modeling of the plasma wave propagation is executed by solving Poisson and 

Hydrodynamic equations (Euler and continuity). This solution is correct because the wavelength 

of the plasma wave and the device dimensions are much smaller than transverse electromagnetic 

wavelength at the same frequency [5]. However, it is not able to describe the mechanism of the 

wave amplification exactly because no in depth field analysis is performed. Therefore, the 

specific boundary conditions are introduced to establish the energy transfer from the bias source 

to the plasma wave. Besides, a simple and direct design procedure is not viable through the 

method. 

In this paper, the plasma wave propagation along an un-gated 2DEG in the presence of drift 

current is studied. A method based on a solution of Maxwell equations coupled with the 

Hydrodynamic one is used to define the wave characteristics. To this end, the 2DEG is treated as 
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a charge sheet positioned at the interface of two wide and narrow band-gap semiconductors. 

Next, the coupling of the 2DEG carriers to plasma waves is simply taken into account by 

introducing surface currents on the sheet as Maxwell equations are satisfied. To consider drift 

motions of electrons induced by bias source, linearization of Hydrodynamic equations is used to 

reflect the movement into the surface conductivity. This helps us perform an exact propagation 

mode analysis and define required conditions for the wave amplification. Also, a propagation 

impedance investigation is done that facilitates further design of a matching network required for 

an efficient THz amplifier. 

Dispersion relation calculation in the presence of drift current: 

Consider a 2DEG layer placed at 0z   plane and embedded inside a semi-infinite hetero-

structure as in Fig. 1. There is also a constant motion of electrons along the 2DEG toward x , 

characterized by the average electron drift velocity 0v . 

 
Fig. 1. Schematic view of a 2DEG layer implemented in a hetero-structure (not 

shown) with a constant average drift electron velocity 

While developing the solution for the plasma wave propagation along x  axis, it has been 

shown that 
xTE  mode does not exist if the 2DEG surface and the surrounding media are isotropic 

[6]. Therefore, electromagnetic field equations and the related dispersion relations are presented 

just for non-radiative xTM case. Here, relative permittivities of the wide and narrow band-gap 
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semiconductors are assumed to be equal
r
 . 

Accordingly, wave function and field formulations for 0z   part are: 

 exp j t x z             (1) 

where j    and 

2

, ,

0.

x z y

y z x

E E H
j j

E H H

 
  
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  

    (2) 

From Helmholtz equation, it is obtained that: 

2
2 2

2
0r

c

 
           (3) 

where 
0 r

    (
12 8

0
8.85 10 , 3 10 /F m c m s     ). Continuity of tangential component of 

the electric field along the interface 
0

x

z
E


is the first boundary condition. Second boundary 

condition is simply acquired by relating surface current  
0 0

ˆx y y

z z
J z H H

  
    to the 

tangential electric field by
0

x x

z
J E


 , where   is the xx  component of surface conductivity 

tensor. Considering the boundary conditions, it is derived that: 
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In [6], the surface conductivity approximation from Drude model 

2

0n q

j m


 
 is replaced into (3) 

and the dispersion relation of a normal mode of propagation is attained from (3) and (4) as: 
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Here, in order to take the electron motion into consideration a new surface conductivity but not 

the value from Drude model approximation is employed. To this end, the surface conductivity 

model developed in [7] is used. In [7], linearization of Hydrodynamic equations (Euler and 

continuity) is performed to include the carrier movement. Hydrodynamic equations are well 

known to be valid as the mean-free path for electron-electron collision is smaller than the device 

length and the mean-free path for scatterings from phonons and impurities [3]. Electrons in the 

2DEG layers simply satisfy these two conditions. Conductivity of the 2DEG layer in the 

presence of the electrons motion has been obtained with the aid of the linearization in [7] as: 

 

2

0

*

0 0

1

n q j

m
j v j v




   



 

   
 

     (6) 

where *m , 0n , q  and   are electron effective mass, 2DEG electron density at steady state 

condition, unit charge (
191.6 10q C  ) and momentum relaxation time, respectively. 

In a collision-less case (
0

v >> 
1


), by replacing (4) and (6) into (3): 
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is derived. In the THz frequencies, (7) can be reduced to: 
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and therefore, four different modes with dispersion relations of: 
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are obtained. It means that the normal x
TM mode of propagation along the surface of the 2DEG, 

with the dispersion relation (5), is divided into four different modes as electrons are moving with 

the constant average drift velocity. It can be shown that the collision-less condition is not a 

critical one, and the four modes still can exist with slight changes as collisions are also included. 

From now to the end, only the collision less case is explained and the collision effects will be 

covered in a separate paper. 

To finish the analysis, the wave impedance along the 2DEG 

z
x

y

E
Z

H
   is also calculated for 

each mode as: 

1,...,4

1,...,4 .xZ
j




         (11) 

Characteristics of each mode 

It is obvious (from (10)) that for frequencies lower than 02bf a v   (named breaking 

frequency afterwards) all four modes are purely propagating since their propagation constants are 

imaginary. With typical value of a  and 0v , first two modes are propagating toward x  while the 

other two are moving in the opposite direction. Also, it can be shown that the second mode has a 

similar behavior to the normal mode as the electron drift is not included. For frequencies above

bf , the propagation constants of the third and fourth modes are complex numbers and have 

attenuation constant (positive or negative). In other words, as a plasma wave is launched 

properly along the 2DEG at frequency ranges above bf , energy is being transferred between the 

bias source and the electromagnetic wave as being amplified or attenuated. It is obvious that bf  

can be controlled by changing the 2DEG charge density and the electron drift velocity. 

Obviously, the mechanism of energy transfer still needs more investigations. Perhaps, a complete 
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analysis based on a time domain full wave model in conjunction with Boltzmann equations 

should be performed for better understanding. 

The separation of the normal mode into four new modes is very similar to what has been 

proposed in travelling wave tubes [8]. A traveling wave tube is basically composed of a slow 

wave structure as a helix and an electron beam. As the electron beam is passed through the helix, 

the normal propagation mode is divided into three different modes of growing, attenuating and 

propagating ones [8]. 

Discussion of a specific example 

In this section, the characteristics of the four propagation modes is investigated for a 2DEG 

created at the interface of InGaAs/InP with 
12 2 7

0 00.3 10 , 2 10n cm v cm s     and electron 

effective mass
0

0.042m  31

0
9.1 10m kg  . Besides, relative permittivity of both InGaAs and 

InP are assumed to be equal 12.6r  . 

With these values, calculated attenuation and phase constants ( and  ) of the four modes are 

shown in Fig. 2 and Fig. 3 for frequency range of 300GHz up to 3 THz. As depicted in Fig. 2, the 

two first modes are propagating along the electron drift velocity x  while the two last modes are 

in the opposite direction x . As shown in Fig. 3, the first and second modes are merely 

propagating ones but the third and fourth modes can have attenuation term as soon as operating 

frequency is higher than bf . From the propagation direction of each mode and the sign of the 

attenuation constants, it is clear that the third mode is an attenuating mode while the fourth one is 

an amplifying mode. 

In Fig. 4, phase velocity of each mode normalized to the drift velocity is shown. As depicted, 

the first mode is the slowest and the second one is the fastest. Also, notice that bf  is the point 
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which the phase velocities of the third and the fourth modes become equal to the drift velocity. 

Next, magnitude of real part of wave impedances normalized to vacuum wave impedance

0 377Z   , are illustrated in Fig. 5. As shown in Fig. 5, the real parts of the third and fourth 

modes are equal at the frequencies higher than bf . 

In Fig. 6, imaginary part of the wave impedances normalized to 0Z  are presented. As seen, the 

first two modes do not have imaginary part. Additionally, last two modes have complex wave 

impedance for frequencies above bp . After this point, third mode has inductive impedance while 

the fourth one is highly capacitive considering that they both propagate toward x . 

 
Fig. 2. Phase constants of the four modes versus frequency  
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Fig. 3. Attenuation constant of each mode versus frequency  

 
Fig. 4 Phase velocity of each mode normalized to the constant electron drift 

velocity versus frequency in a logarithmic plot 
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Fig. 5 Real part of each mode’s wave impedance normalized to wave impedance 

in vacuum in a logarithmic plot 

 
Fig. 6 Imaginary part of wave impedance normalized to wave impedance in 

vacuum 

After considering the appropriate sign for the wave impedances, a simple matching network 
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shown in Fig. 7 is proposed. Notice that to couple the wave from the signal source placed at 

x L  to the plasma wave with fourth mode properties, a matching network with highly inductive 

output impedance is required. The same matching network is also required for the load placed at 

0z  to handle the mismatch between the load and the wave impedance. It is obvious that further 

investigations and designs are needed to be done to improve the THz wave coupling to 2DEG. 

 
Fig. 7 A simple matching network placed at both ports (Bias circuit is not 

included). 

Conclusion 

An analytic method is proposed to study plasma wave modes along 2DEG layers of hetero-

structures in the presence of carrier motion. The electrons movement causes the normal mode 

separation into four new modes with one being a growing mode at THz frequency ranges. 

Therefore, an amplification of plasma waves in this range is predicted and also, a need for 

sophisticated matching network designs is addressed. It is pointed out that for better 

understanding and more accurate designs, application of a full wave time domain method 

satisfied by Boltzmann equation is inevitable. 
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B. TERAHERTZ PLASMON AMPLIFICATION USING TWO-DIMENSIONAL 

ELECTRON-GAS LAYERS 

Reprinted with permission from Mohammad Ali Khorrami, Samir El-Ghazaly, Shui-Qing Yu, 

and Hameed Naseem, Journal of Applied Physics, vol. 111, pp. 094501. Copyright 2012, AIP 

Publishing LLC. 

Abstract 

In this study, we propose an analytical model to investigate the possibility of guiding and 

amplifying terahertz (THz) plasmons in a Two Dimensional Electron Gas (2DEG) layer of a 

hetero-structure by applying a bias electric field. This analytical model solves Maxwell equations 

and semi-classical electronic transport equations inside the biased hetero-structure 

simultaneously. It is shown that the two dimensional plasmon’s properties alter vastly as the 

electrons are accelerated by the bias field. Four asymmetric plasmonic modes can propagate 

inside the un-gated 2DEG layer of the biased hetero-structure. One of these modes in the un-

gated 2DEG layer is a growing mode which can be useful in the implementation of THz 

amplifiers. Since the characteristics of these modes can be controlled via biasing, design of new 

plasmonic devices such as modulators and switches is possible by this approach. Similar analysis 

has been performed in a gated 2DEG layer that shows clear changes in the two dimensional 

plasmon properties due to the biasing. Unlike the un-gated 2DEG layer, our efforts to find a 

growing mode in the gated 2DEG layer have failed. These multi-physics models lead to a better 

understanding of THz plasmonic sources and detectors as well as proposals on new plasmonic 

devices. Besides, they provide a physical insight into the electron-wave interactions inside the 

biased hetero-structure. 
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Introduction 

In recent years, there have been substantial efforts to close the so called “THz Gap” by 

proposing all solid state devices aiming to generate and detect THz signals. Operation of 

microwave devices at THz frequencies is inherently limited by the electron velocity maximum 

inside semiconductors. Conversely, lower frequency edge of photonics is about 20 THz [1] and 

also the integration of optical devices into dimensions that are smaller than the wavelength of the 

photons in the free space, is limited by diffraction [2]. Recently, surface waves coupled to the 

motion of the surface carriers (after this shortened as SWC) also called two dimensional 

plasmons, have been employed increasingly to localize EM waves within nano-size distances. 

This high field localization only happens when the operating frequency is close to the plasma 

frequency of the carriers. Highly doped semiconductors with lower plasma frequencies offer 

localized plasmon propagation in the THz frequency range [3]. SWCs inside Two Dimensional 

Electron Gas (2DEG) layers with small propagation loss are very promising for THz plasmonic 

applications [1]. SWCs propagate in the 2DEG layers with phase velocities even ten times higher 

than the electron drift velocity maximum, while offering wavelengths that are orders of 

magnitude smaller than the radiative mode counterpart. To this end, many researchers in this area 

have focused on implementing THz sources and detectors using SWCs in: the inversion layer of 

Metal-Oxide-Silicon (MOS) structures [4]-[6], the 2DEG layer of High Electron Mobility 

Transistors (HEMTs) [7]-[12] and graphene [13]. Lately, novel plasmonic detectors inside 2DEG 

layers of hetero-structures have been implemented [9]-[10] that are comparable to the other state 

of the art THz detectors. Furthermore, different experiments [11]-[12] have indicated potentials 

of THz wave radiation from the 2DEG layers. As an example, room temperature THz emissions 

from an AlGaN/GaN based HEMT, tunable with gate voltage between 0.75 to 2.1 THz, has been 
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observed [11]. 

Emissions of THz signals from the structures are mostly interpreted as a consequence of the 

radiative decay of the SWCs thermally excited by hot electrons [5]-[6] or plasma wave 

resonances due to reflections from the device boundaries [11]-[12] and [14]-[15]. In [14], a 

solution of Poisson equation and Hydrodynamic (HD) equations, including continuity and Euler 

equations, are employed to characterize the motion of electrons inside the gated section of the 

2DEG layer of a HEMT. Afterward, specific boundary conditions (short circuit at source and 

open circuit at drain) are utilized to represent the gated 2DEG as a plasmonic resonant cavity and 

a gain medium which allows exponential SWC growth in THz range. Following the same 

procedure, similar SWC instabilities have been predicted in an un-gated 2DEG layer [15]. 

Nevertheless, it should be mentioned that the models [14]-[15] are not able to describe any type 

of energy transfer from the bias voltage to the SWCs or any exponential growth of the surface 

waves without considering the boundary conditions. 

In this paper, a complete wave characterization of the SWCs in the gated and the un-gated 

2DEG layers of biased hetero-structures is presented. To this end, an analytical solution of HD 

equations and Maxwell equations inside a non-degenerate electron gas is performed. In the 

search of a possible plasmonic amplifier, the analysis is focused on finding surface wave modes 

that can exist and grow exponentially. This mode analysis is similar to the one performed for 

helix-type traveling wave tubes in [16]. Incorporating Maxwell equations into our model allows 

us to perform an inclusive mode analysis compared to the other methods [14]-[15] which simply 

employed Poisson equation for the field calculations. Also, this method enables us to illustrate 

several interesting wave parameters such as phase velocities, wave impedances and admittances 

of the SWCs. Here, the effects of the hetero-structure’s end contacts and the corresponding 
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boundary conditions on the wave propagation are ignored. This assumption allows us to first 

examine the ability of the 2DEG layer to handle a growing SWC mode before any resonant 

cavity is assigned inside the structure. It is shown that the wave properties of the normal 

symmetrical SWC modes along an un-biased 2DEG will drastically change as a bias voltage is 

applied onto the2DEG ends. In the biased device, the symmetry of the right and left going SWC 

of the unbiased 2DEG is completely broken. This can explain unsuccessful experiments designed 

to search for resonant behaviors of the 2DEG conductance due to the SWCs inside biased 

devices, while there are several reports as [4] and [8] showing the plasmon-induced resonant 

characteristics in transmission spectroscopy response of un-biased 2DEG layers. In spite of 

several benefits of this analytical method, a numerical solution of complete form of electronic 

transport equations coupled to a full wave simulator is still required to obtain a comprehensive 

picture of plasmon-electron energy interactions. A perfect candidate for this purpose is the multi-

physics numerical solver in [17] that was first introduced for the analysis of high frequency 

transistors. 

Analytical modeling of the SWCs propagation in a biased un-gated 2DEG layer 

Fig. 1 shows the schematic diagram of the simulated structure, including an infinitely wide 

(along y-axis) 2DEG sheet with equilibrium surface charge density n0 positioned at z = 0. It is 

assumed that the 2DEG layer is confined inside two lossless semi-infinite (along z axis) 

semiconductors with similar permittivities ε = εr × ε0, ε0 = 8.85 × 10
-12

 (F/m). The motion of the 

electrons along the z-axis is quantized with a ground state wave function spread of about 10nm. 

The spread is smaller than the SWCs decay length along z axis. Therefore, the 2DEG is 

represented as a zero thickness sheet of electrons in our analytical model. It is assumed that 

electrons are only allowed to move along x axis. An external bias electric field E0 causes the 



46 
 

electrons to move toward +x with an average electron drift velocity v0. The bias electric field is 

applied by inserting a dc voltage onto Ohmic contacts (source and drain) located at both ends. It 

is assumed that the contacts are extremely far from each other compared to the SWCs 

wavelengths so that their effects are not included. 

 
Fig. 1.  A front view of the structure considered in the analytical model. The 

infinite electron sheet is confined inside two dielectrics. Electrons are moving as a 

consequence of the sum of two electric fields; the large bias electric field E0 and 

the weak SWC time varying one. 

As previously proved in [18]-[19], TE
x
 mode is not permitted to propagate along the 2DEG 

layers of the hetero-structures with isotropic semiconductors. Therefore, only a TM
x 

mode 

solution along the 2DEG layer is presented here. To this end, a magnetic vector potential ˆA = xψ

(refer to [20]-[21] for the definition) with a wave function 

 

 

1

2

exp 0

exp 0

j t x z z

j t x z z

   


   

  
 

  

      (1) 

along x axis with a unit vector x̂  is considered. Inside the wave function, a propagation constant 

γ = α + jβ is assumed that t, ω andα and β are time, radial frequency and attenuation and phase 

constants along x axis, respectively. Also, δ is the attenuation constant along z direction. The 

corresponding wave equation can be written as: 

x
z

2DEG: 0n

Source Drain

ε

ε

v0

E0
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2
2 2

2
0r

c

 
            (2) 

where
0 0c = 1    and μ0 = 4π × 10

-7
 (H/m). The TM

x
 mode solution of Maxwell equations 

provides wave components 

22 2

2 2

1 1
,

, 0.

r
x z

y y z x

E E
x zxj c j

H E H H
z

  
 



  
      


   



    (3) 

Boundary conditions applied on the surface of the 2DEG are the continuity of tangential 

component of the electric field Ex|z = 0
+
 = Ex|z = 0

-
 and the presence of surface current density Jx

s
 = 

Hy|z = 0
+
 - Hy|z = 0

-
. The surface current is related to the electric field through Jx

s
 = ζEx|z = 0 where ζ 

is the xx component of the surface conductivity tensor [19]. Using this relation, the previously 

mentioned boundary conditions and the wave equation (2), it is concluded that θ1 = θ2 and 

2
.

j

 

 
          (4) 

In order to consider the electronic transport effects of the active plasmonic structure into the 

surface conductivity component, a small signal analysis of HD equations [22] is incorporated 

into our model. For this purpose, HD equations including electron continuity relation 

 . 0n nv
t

  


       (5) 

and Euler equation (also called simplified form of momentum conservation equation) 

 
*

. total

m

q vv v v E
t m 

     


     (6) 

are linearized. In (5)-(6), n, v, m
*
, q and ηm are electron: density, velocity, effective mass, unit 

charge (q = 1.6 × 10
-19

C) and momentum relaxation time, respectively. Since electrons are only 

allowed to move along x direction, x component of the electron velocity vx and the total applied 
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electric field E
total

x = E0 + Ex are considered. These transport equations (5)-(6) are well known to 

correctly predict the low field behaviors of electronic devices [14]. 

In our small signal analysis, electron velocity and charge density are vx = v0 + vx
ss

 × exp (jωt – γx 

- δz) and n = n0 + n
ss

 × exp (jωt – γx - δz), respectively. After linearizing (5)-(6) and considering 

that Jx
s
 = -qnvx; the surface conductivity is obtained as: 
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    (7) 

Substituting (7) into (4) and using the wave equation (2); it is concluded that: 

4 3 2

1 2 3 4 5 0A A A A A        .      (8) 
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     (9) 

and 
2

0

*

n q
a =

4εm
. Solving the fourth order equation (8), four SWC modes with different dispersion 

relations are obtained. In order to verify our solution, a specific case with small bias voltage or 

negligible electron drift velocity (v0 ≈ 0) and low scattering rate (ω >> 1/ηm) is considered. Under 

these conditions, (8) simplifies into 4 2 2 2

rγ = ±j ω + 4a ω ε c / 2a  which is identical to the 

dispersion relations calculated in [18]-[19]. These two SWC modes inside the unbiased 2DEG 

are divided into four different modes resulted from (8), as the bias voltage is applied. 
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Under the conditions of small bias voltage (v0 ≈ 0) and non-negligible scattering rate, (8) 

reduces to: 

2 22 3
4

2 2

42
.

2

r

m m

aj j

a c

  
 

 
         (10) 

Also, a solution of (8) can be obtained in a biased 2DEG layer with low scattering rate (ω >> 

1/ηm) as: 

 

 

2

0 0

1,2 2

0

2

0 0

3,4 2

0

2

2
.

a v a av
j

v

a v a av
j

v

 


 


  


   


     (11) 

Considering the dispersion relations of the 3
rd

 and the 4
th

 modes in (11); it is understood that the 

propagation constants of these modes are complex as ω ≥ a / 2v0. Following [23], the special 

frequency fbr = a / 4πv0 is named breaking frequency. A SWC mode with a complex propagation 

constant (nonzero attenuation constant) can represent a growing or an attenuating mode 

depending on the signs of its propagation and attenuation constants. Hence, the possibility of 

finding a growing mode should be considered in each specific case. If the scattering effect is not 

negligible, a numerical solution of (8) is required for the complete mode characterization. 

To examine the energy interaction between the electromagnetic waves and electrons, wave 

admittance of each mode along the perpendicular direction z is defined as: 

1,...,4 .
y

z

x

H j
Y

E




          (12) 

With this definition, positive conductance is interpreted as the transfer of energy from the waves 

to the electrons and negative conductance represents an opposite power exchange [16] that leads 
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to the SWC amplification. It is expected that the energy of the growing mode is due to the 

reduction of the total kinetic energy of the electron stream. 

Another interesting parameter is the wave impedance along x axis 

1,...,4

1,...,4 ,xZ
j




        (13) 

that can be useful in the design of matching networks. These networks are required to effectively 

match the input and output of the 2DEG layer to other sections of a future plasmonic circuit. 

Discussion of the SWCs propagation in an un-gated 2DEG layer 

Here, a mode analysis of the SWCs in the un-gated 2DEG layer of an AlGaAs/GaAs hetero-

structure is performed in a broad THz frequency range using the analytical method proposed in 

section II. A 2DEG layer with equilibrium charge density n0 = 10
11

cm
-2

 located inside the hetero-

structure with electron effective mass 0.0623m0 (m0 = 9.1×10
-31

kg) and electron momentum 

relaxation time ηm = 1ps is considered. It is assumed that a bias voltage has induced an electric 

field along the 2DEG layer that has accelerated the electrons toward +x with the average drift 

velocity v0 = 10
7
 cm/s. Also, the relative permittivities of the semiconductors confining the 

2DEG are assumed to be equal εr = 12.6. 

In Fig. 2, the SWCs phase constants in the 2DEG layer in the biased (8) and the un-biased (10) 

cases are shown. Because of the symmetry of the SWC modes in the un-biased case, one of the 

SWC modes is only considered here. As depicted (see Fig. 2), there exist vast differences 

between the SWCs phase constants in the biased and the unbiased cases. These changes are 

related to the presence of the electron drift motion. This clearly emphasizes that the electron drift 

movement must be considered into the models of active plasmonic devices. As illustrated, phase 

constants of the 1
st
 and the 4

th
 modes are positive and hence; these modes are allowed to 

propagate toward +x. The 2
nd

 and the 3
rd

 modes propagate toward –x due to their negative phase 
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constants. 

 
Fig. 2.  Phase constants of the SWC modes in the un-gated 2DEG layer for the 

biased and the un-biased cases in the frequency range 300GHz to 1.5THz. 

 

Fig. 3.  Attenuation constants (along x axis) of the SWC modes in the un-gated 

2DEG layer for the biased and the un-biased cases in the frequency range 

300GHz to 1.5THz. 
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Fig. 4.  Attenuation constants (along z axis) of the SWC modes in the un-gated 

2DEG layer for the biased and the unbiased cases in the frequency range 300 GHz 

to 1.5 THz. 

In Fig. 3, the attenuation constants of the SWC modes in the biased and un-biased cases are 

shown. In the following, the attenuation constants are reported in the unit of mega Nepers per 

meter. Large modifications in the attenuation constants of the SWC modes are similarly observed 

as electrons are accelerated by the bias field. The 1
st
 and the 4

th
 modes are able to propagate with 

small attenuations while the 2
nd

 and the 3
rd

 modes have comparatively large attenuation constants 

in the frequencies higher than fbr = 0.8THz. Considering the direction of propagation (Fig. 2) and 

the sign of the attenuation constant (Fig. 3) of each mode, it is concluded that the 2
nd

 mode is a 

growing mode. This means that if this mode is properly launched along the 2DEG, SWCs will 

grow exponentially as they propagate. This growth can continue until the point that the presented 

small signal analysis reaches its limit. This unidirectional SWC amplification can be useful in the 

design of wideband THz amplifiers inside hetero-structures. As mentioned, the SWCs growth 

rate is small in lower frequencies while it increases in higher frequency ranges. This frequency 
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dependent behavior should be considered in the design of the THz amplifiers to reach the highest 

possible gain in the interested frequency range. As shown in Fig. 2, the SWCs have large phase 

constants or equivalently very small wavelengths in most part of the frequency range. This 

justifies the assumption of infinitely long 2DEG layer compared to the SWCs wavelengths. As 

an incident radiating THz electromagnetic field is exciting the amplifier; the application of 

special coupling mechanism such as diffraction based gratings is required to compensate the 

phase mismatch between the SWCs and the incident wave. As the amplifier input signal is 

provided by another circuit such as a plasmonic waveguide, the wave impedance of the 

waveguide should match the amplifier wave impedance (13). Similar impedance matching is also 

required in the output of the amplifier to avoid any unwanted instabilities and transferring the 

maximum portion of the amplified signal to the terminating circuit. Because of the unidirectional 

behavior of the growing mode, implementation of a THz oscillator inside the same structure may 

be challenging. However, using an external feedback circuit connected to the plasmonic 

amplifier can make the implementation of a THz oscillator in the 2DEG layer achievable. 

From Fig. 2 and Fig. 3, it can be concluded that the 3
rd

 mode is facing large attenuations as 

propagating. This specific mode may be employed in the design of novel electrically controlled 

plasmonic switches. 

In Fig. 4, the attenuation constants δ of the SWCs along the perpendicular direction z are 

illustrated. As depicted, all modes are showing relatively large attenuations in this direction in a 

broad frequency range. This means that the SWCs are mostly localized around the 2DEG in 

these frequencies. Considering the high field concentration along the 2DEG layer, the 

assumption of infinitely thick dielectric around the 2DEG is justified. This high field attenuation 

also suggests that if the grating coupler is employed to launch the SWCs, the 2DEG should be 
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located close enough to the surface so that the diffracted fields can strongly excite the SWCs. 

 
Fig. 5.  Real part of the wave admittance of the SWC modes (along z axis) in the 

un-gated 2DEG layer for the biased and the un-biased cases in the frequency 

range 300 GHz to 1.5 THz. 

In Fig. 5, the real part of the wave admittance calculated in the perpendicular direction z (12) is 

presented. With our definition of the admittance, negative conductance is interpreted as the 
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nd

 mode that experiences large negative 

conductance specifically as the operating frequency is above fbr. Since the breaking frequency is 

dependent on the equilibrium charge density n0 and the drift velocity v0, it is clear that the gain 

bandwidth of the amplifier can be controlled by changing n0 and v0. As depicted in Fig. 5, the 1
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mode of the biased 2DEG shows comparatively negligible positive conductance in the frequency 
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the phase velocity of the amplifying mode becomes very close to the drift velocity. 

 
Fig. 6.  Phase velocities of the SWC modes in the un-gated 2DEG layer for the 

biased and the unbiased cases in the frequency range 300GHz to 1.5THz in a 

logarithmic plot. 

Analytical modeling of the SWCs propagation in a biased gated 2DEG layer 

Here, similar mode analysis of the SWCs inside a gated 2DEG layer is performed. Similarly, 

the possibility of finding a growing SWC mode is investigated in this structure. Consider the 

same structure in Fig. 1 but with an infinitely long (along +z) perfect electric conductor 

positioned at z = d as a gate. In this case, the corresponding wave function of the TM
x
 mode is 

described as: 
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    (14) 

After solving Maxwell equation and inserting the wave function (14) into the solution (3), 

wave components in the areas below the gate (z < d) are obtained as: 
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    (15) 

The wave components above the gate are equal to zero. After applying similar boundary 

conditions  + - + -

s

x x x y yz=0 z=0 z=0 z=0
E | =E | and J = H | -H | , it is concluded that: 
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    (16) 

Incorporating the relation between the surface current density and the x component of the ac 

electric field 
s

x x z=0J = ζ×E |  into (16), it can be calculated that: 

 1 cot .d
j







          (17) 

This result is consistent with the relation calculated in [24] for the same structure. It can be 

shown that the small signal analysis of the electronic transport equations (4)-(5) inside the gated 

2DEG layer also leads to the similar surface conductivity (6). By substituting (6) into (17) and 

considering a tightly screened 2DEG (δ × d << 1); it is concluded that: 

 2 2 20
0 04 2 0.

v j
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In this manner, the dispersion relations of the SWCs in the gated 2DEG layer of biased hetero-

structures are attained as: 
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      (19) 

The propagation constants calculated in (19) are complex and hence; SWC mode characteristics 

should be calculated in each specific hetero-structure. We have tried several hetero-structures 

with their nominal values to examine the possibility of finding a growing mode. However, the 

resulting propagation constants only showed attenuating modes. 

If the drift velocity and the scattering effects are ignored, famous shallow plasma wave 

dispersion relation is obtained: 

1,2 .
2

j

ad


           (20) 

In the collision-less case (ω, γv0 >> 1/η), the dispersion relation (19) simplifies to γ1,2 = jω / (v0 ± 

2 ad ) which is similar to the relation employed in [14]. In this case, the propagation constants 

are purely imaginary and therefore; the amplification or the attenuation of SWC modes is not 

expected. 

Challenges and Summary 

In this paper, we have characterized the SWC modes in 2DEG layers of biased hetero-

structures at THz frequencies to investigate the possibility of controlling and amplifying SWCs 

in these structures. In this analysis, an analytical method consisting of a modal solution of 

Maxwell equations and HD equations is introduced. This investigation clearly highlights several 

important changes that the SWCs in both gated and un-gated structures face as the electrons are 

accelerated by the bias electric field. In the un-gated 2DEG layer, a growing SWC mode can 

exist which may lead to the amplification of SWCs. Several obstacles are to be overcome before 
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the growing mode can be useful in the implementation of THz amplifiers. Due to the non-

radiative nature of the plasmons, a diffraction based structure such as a grating coupler is 

required to excite the SWC mode. Also, it is important to only excite the growing mode along 

the 2DEG to obtain an efficient amplifier. Besides, reflections of the plasmons from the coupler 

and the Ohmic contacts should be considered to avoid unwanted instabilities. The electron 

heating has not been addressed in this work and therefore possible hot electron effects need to be 

investigated separately. 

The growing mode has not been observed inside the gated 2DEG layers. However, active 

control of the SWCs in the gated 2DEG layers by external bias voltages can provide new 

opportunities to design and implement novel plasmonic switches and modulators. 
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APPENDIX I: 

A. SURFACE CONDUCTIVITY OF A BIASED TWO-DIMENSIONAL CONDUCTOR 

Here, the small signal analysis of Hydrodynamic equations (momentum conservation and 

continuity equations) is performed to obtain the surface conductivity of a biased electron gas. In 

general, continuity equation:  

 . 0n nv
t

  


       (1) 

and simplified form of momentum conservation relation: 

 
*

. total

m

q vv v v E
t m 

     


     (2) 

are sufficient to represent the electron motion along a biased semiconductors as the electron 

velocity is below the saturation velocity (low field behavior) [1]. In (1)-(2), n, v, m
*
, q, ηm and 

Etotal are electron: density, velocity, effective mass, unit charge (q = 1.6 × 10
-19

C), momentum 

relaxation time, and total electric field, respectively. Here, it is assumed that the infinitesimal 2D 

conductor with surface electron density n0 is located at the z = 0 plane. Additionally, the electron 

sheet is infinite along y axis, and electrons are not able to move in the perpendicular direction z 

due to the quantum confinement. Therefore, electric field component and electron velocity along 

y direction are disregarded. Moreover, it is assumed that a biased electric field E0 externally 

applied on the electrons is able to move them with an average drift velocity v0.  

In our small signal analysis, it is presumed that the total electric applied on the 2D sheet (z = 0) 

is: 

 0
expx x

total ss
E E E j t x    .     (3) 
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Due to direct dependency of electron density and velocity on the electric field value, they can be 

considered as vx = v0 + vx
ss

 × exp (jωt – γx) and n = n0 + n
ss

 × exp (jωt – γx), respectively. 

Inserting the electron density and velocity, and electric field into (1), it is obtained that: 

 

    

0 0 0

0

exp

exp exp 2 0

ss

x

ss ss ss

n n v n v j t x
t x

v n j t x v n j t x

 

   

      
 

     
  (4) 

as z > 0. After disregarding the last element of (4) with amplitude v
ss

×n
ss

 and eliminating the 

exponential terms, it is obtained that  0 0

ss ss ss

xj n n v v n       or: 

0

0

ss ss

x

j v
v n

n

 




  .       (5) 

Inserting the electron density and velocity, and electric field into (2) yields:  

    

  

  
 

0

0 *

0

0

exp exp

exp

exp
exp .

ss ss

ss

ss

x

ss

m

j v j t x v v j t x

q
v v j t x

x m

v v j t x
E E j t x

    

 

 
 



    

     


 
  

   (6) 

Separating harmonic and non-harmonic parts of (6) leads to: 

0 *

0 0*

.

ss ss ss ss

m

m

vq
j v v v E

m

q
v E

m

 





   


  


     (7) 

Additionally, surface current density of the 2D sheet J = - (q × n × v) and the electrical 

conductivity ζ are related as: J = ζ × E. Using the considered electron density and velocity, it can 

be easily shown that: 

 0 0 .ss ss ssE q v n n v          (8) 

Using (5) and (7)-(8), the surface conductivity of the biased electron sheet can be calculated as: 
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 

2

0

*

0 0

.
1

m

n q j

m
j v j v




   



 

   
 

    (9) 

B. TWO-DIMENSIONAL PLASMONS ALONG AN UN-GATED ELECTRON GAS 

Here, the dispersion relation of 2D plasmons along a biased un-gated electron gas sheet is 

calculated. As mentioned in chapter 2, the solution of Maxwell equations with appropriate 

boundary conditions leads to: 

2
.

j

 

 
          (10) 

Using (9)-(10) to define δ in terms of ω and γ, it can be calculated that: 

 
*

0 02

0

2 1
.

m
j v j v

n q


    



  
    

 
    (11) 

Inserting (11) into the wave equation
2

2 2
2 0r

c

 
    , it is obtained that:  

 
2 2

22

0 02 2

1 1
,

4

rj v j v
a c

 
    



  
     

 
   (12) 

where, a = n × q
2
 / (4 × ε × m). Arranging (12) in term of γ lead to the following dispersion 

relation: 

4 3 2

1 2 3 4 5 0A A A A A             (13) 

where: 
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C. 2D PLASMON PROPAGATION INSIDE A TWO-DIMENSIONAL ELECTRON 

GAS LAYER WITH A LOW LOSS METALLIC GATE  

IEEE Photonic Conference, pp. 895-896, San Francisco, Sep. 2012. 
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Abstract:  

We have used perturbation theory to analytically characterize 2D plasmons’ propagation inside 

gated two dimensional electron gas layers of hetero-structures. Using this analysis, the 

attenuations due to Ohmic losses of the metallic gate are calculated. 

Introduction: 

Two dimensional plasmons also called surface waves coupled to surface carriers (named SWC 

hereafter) have attracted a great interest in the area of microwave and terahertz (THz) devices 

because of strong field confinement and promises of novel THz devices such as sources, 

detectors and switches [1]-[4]. In spite of very attractive properties of SWC, their applications in 

room temperature devices have been limited due to large propagation losses caused by electron 

scatterings. However, the use of novel plasmonic materials such as graphene [5] and high quality 
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hetero-structures [1] has provided new paths toward modern THz plasmonic circuits. Although, 

the propagation losses due to limited electron mobilities of plasmonic materials have been 

extensively considered in different works (see [4] and its references), the Ohmic losses of 

adjacent metallic layers has always been disregarded by considering the metal as a Perfect 

Electric Conductor (PEC). With the advent of the novel plasmonic materials with acceptable 

level of electron scatterings, a complete investigation of the SWCs’ attenuations due to the 

Ohmic losses is required. 

In this paper, the effects of a low loss metal in the proximity of a two dimensional electron gas 

(2DEG) layer on the propagation characteristics of the SWCs are considered. 

Analytical modeling of the SWC propagation along a 2DEG layer in the proximity of a low 

metallic gate: 

Consider an infinitely wide (in y axis) and long (in x axis) 2DEG layer sheet with equilibrium 

charge density n0 positioned at z = 0. It is assumed that the 2DEG layer is located inside a semi-

infinite dielectric with permittivities ε = εr × ε0, ε0 = 8.85 × 10
-12

 (F/m) extending from z = d to z 

= - . Here, SWCs’ attenuations originated from lossy dielectrics and electron scatterings of the 

2DEG layer are disregarded. In this manner, the wave attenuations caused only by the Ohmic 

losses are considered. To this end, a thick metallic layer with electrical conductivity ζm is 

considered at z = d parallel to the 2DEG layer. The metallic layer is assumed very thick 

compared to the skin depth so that it is assumed that it extends to z = + . Considering the large 

conductivity value that is normal for metals such as gold and aluminum in THz frequencies, a 

TM
x
 mode wave can propagate along the 2DEG layer. Considering negligible mode variations 

from the ideal case with a PEC gate, the field values become: 
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   (1) 

where, ω, β and δ and are angular frequency, phase constant along x axis and attenuation 

constant in the perpendicular direction (z axis), respectively. Applying the boundary conditions 

at z = 0, it is concluded that   -δζ1+cot δd =
jωε

 and θ1 = -θ2 sin (δd) [4] where ζ is the surface 

conductivity of the 2DEG layer. Substituting the surface conductivity from simple Drude model 

2

0
*

jn q
ζ = -

ωm
, the dispersion relation of the SWCs becomes 

*

2

0

εmβ = ±ω×
n q d

where, q and 

m
*
 are electron: unit charge 1.6 ×10

-19
 (c) and effective mass. In order to calculate the attenuation 

constant of the SWC due to Ohmic losses, the average power carried along x axis is first 

computed: 

 *1
, Re

2

d

x x z yP S dz S E H


         (2) 

that leads to: 

 

 

2 2

2

2
2

2
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4 2
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d d
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 

 

 

 
  
 

     (3) 

Next, the Ohmic power losses induced by the wave attenuations at the surface of the low loss 

metal z = d from x = 0 to x = l (l is an arbitrary location) is calculated as:  
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*

0

ˆ| . , |
2

l

s
c x l s s s z d

R
P J J dx J n H         (4) 

where the metal surface resistance Rs = 0

m

ωμ
2ζ

, μ0 = 4π × 10
-7

 (F/m). Considering the 

definition of the attenuation constants due to power losses [6] 
|

2
c x l

c

P
lP

  , it is concluded 

that: 

   2

.
1

sin sin 2
2

s
c

R

d d d



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


 

   
 

    (5) 

Results and discussion: 

Here, a wide band characterization of the SWCs’ attenuations due to Ohmic losses in a specific 

structure is performed. It is assumed that a 2DEG layer with surface charge density n0 = 10
12

 

(cm
-2

) is located inside an AlGaAs/GaAs hetero-structure with dielectric constant εr = 12. The 

electron effective mass along the 2DEG is m = 0.063 × m0 (m0 = 9.1 × 10
-31

 kg). A thick 

aluminum gate with conductivity ζm = 3.5 ×10
7
 (S/m) is placed above the hetero-structure with 

distance d from the 2DEG layer. 
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Fig. 1.  SWCs’ attenuation constants due to the Ohmic losses in THz frequency 

ranges. 

In Fig. 1, the SWCs’ attenuation constant due to the Ohmic losses calculated by the analytical 

method (5) is depicted in THz frequency ranges. As shown, the attenuation constant increases in 

higher frequencies. Besides, the Ohmic loss grows by decreasing the separation of the metallic 

gate and the 2DEG layer. This is clearly due to the enhanced field and metallic gate interactions. 

Considering the values of the calculated attenuation constants, it can be concluded that the 

Ohmic losses are negligible in the room temperature operation of recent plasmonic materials 

because of the substantially larger electron scatterings. However, the Ohmic losses effects 

become important in the cryogenic temperature operation of the plasmonic devices and also in 

the application of novel plasmonic materials as graphene with high electron mobilities even at 

room temperatures. 

Conclusion: 

An analytical method based on perturbation theory is presented to investigate the Ohmic losses 
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inside a gated 2D plasmonic waveguide. The analysis helps us to design optimized plasmonic 

circuits with acceptable level of losses in THz frequencies. 
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Abstract: 

In this study, a full wave numerical technique is employed to characterize the propagation 

properties of 2D plasmons along Two Dimensional Electron Gas (2DEG) layers of biased 

hetero-structures at terahertz frequencies. This method is based on a coupled solution of Maxwell 

and hydrodynamic transport equations. In this manner, a complete description of carrier-wave 

interactions inside the 2DEG layer is obtained. Particularly, this simulator is employed to 

investigate the 2D plasmon variations initiated by the application of an external bias along the 

hetero-structure. Substantial changes in the plasmon characteristics such as wavelength and 

decay length are reported. It is also revealed that two symmetrical plasmonic modes along the 

un-biased 2DEG layer split into new asymmetrical ones after applying the bias voltage. The 

simulation has been performed in different structures to examine the effects of various electron 
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densities and the presence of periodic metallic gratings on the plasmon properties. Moreover, the 

2D plasmon reflections from boundaries terminated by Ohmic contacts are separately studied. 

This research demonstrates the potentials of the 2D conductors in the design of novel active 

terahertz plasmonic devices as modulators and amplifiers while proposing a new approach for 

their modeling. The results of this simulation are verified independently with an analytical 

model. 

Introduction: 

Recently, there has been a great interest among microwave and photonic research groups to 

exploit nano-plasmonics both in the visible and terahertz (THz) frequency ranges [1]-[3]. While 

Surface Plasmons (SPs) propagating on a dielectric-metal interface are suitable for localizing EM 

waves in nano-sized dimensions at optical frequencies, they are not confined to the interface at 

the lower part of the electromagnetic spectrum such as microwave and THz frequencies [4]. 

Therefore, the application of a highly doped semiconductor instead of the metal [4], engineering 

the metal electromagnetic (EM) properties by making holes and indentations on its surface to 

enhance carrier-wave interactions [5]-[6], or employing 2D conductors [7]-[10] have been 

proposed. Specifically, 2D conductors have become more interesting after the advent of 

graphene with very high charge mobilities even at room temperatures [11]-[12]. In 2D 

conductors, smaller numbers of electrons are affected by the EM waves compared to the metal-

dielectric interface. Therefore, the collective plasma mode of the electrons gains significant 

amount of kinetic energy compared to the energy of the surrounding EM fields even at 

microwave and THz frequencies [13]. These plasma waves in 2D conductors are mostly called 

2D plasmons or surface waves coupled to surface carries (shortened as SWC) [14]. They can 

propagate with velocities far lower than what is observed in SPs. Besides, 2D plasmon 
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wavelengths can be even 700 times smaller than the radiating mode wavelength in the free space 

[13]. Hence, 2D plasmons can be very useful in the fabrication of nano-sized microwave and 

THz devices. Specifically, 2D plasmons along the Two Dimensional Electron Gas (2DEG) layers 

of hetero-structures have been vastly employed in the design and fabrication of sources [15]-

[16], resonant and non-resonant detectors [17]-[19], crystals and interferometers [13] and 

switches [20]. 

Mostly, the analysis of passive 2D plasmonic devices is performed using EM simulators as 

finite difference time domain (FDTD) [21] or distributed lumped element models [22]. These 

simulators represent conductors and doped semiconductors with the aid of Drude model as 

calculating field distributions and mode profiles within the devices. However, the analysis of 

modern active plasmonic circuits and devices as sources and detectors is not possible by simply 

using Drude model. This limitation exists since Drude approximation is a zero bias voltage 

model. Therefore, variations of the EM wave characteristic originated from the moving electrons 

accelerated by applied electric fields are disregarded. Besides, this model does not consider 

complex electron distributions inside the devices. Therefore, it is not able to provide a complete 

picture of electron-wave interactions. Non-linear effects such as electron velocity saturation due 

to electron heating are also not taken into account with this approximation. Previously, several 

analytical [8] and [23], and numerical [24] solutions of Poisson equation have been proposed to 

describe the THz wave propagation inside the 2D conductors. However, Poisson equation is not 

able to provide a fundamental insight into the electromagnetic wave propagation inside complex 

modern active plasmonic devices. For instance, wave impedances and transmitted power of each 

plasmonic mode is completely unknown while approximating the wave propagation using 

Poisson equation.  
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The rise of the active plasmonic area requires the development of a full wave simulator which 

enables the designer to completely capture the underlying physics of these devices. This 

simulator must provide a complete solution of coupled Maxwell and electronic transport 

equations. Previously, the necessity to characterize the carrier-wave interactions inside 

microwave transistors has led to the development of a similar numerical solver, mostly called 

global modeling [25]-[26]. Global modeling has also been employed at THz frequencies to 

characterize the electrical conductivities of silicon [27] and graphene layers [28]. In spite of the 

application of this modeling method in different high frequency applications, it has not been 

previously employed in the plasmonic area.  

In this paper, we have employed the in-house global modeling simulator [25]-[26] to 

characterize the 2D plasmon propagation inside a non-degenerate 2DEG layer of a hetero-

structure. This solver has been already validated through comparison of small-signal parameters 

and output voltages of similar microwave transistors with experimental results. This simulator 

solves a set of conservation equations, developed from the moments of Boltzmann transport 

equation, and Maxwell equations self-consistently. Here, global modeling is employed to 

investigate the possibility of guiding and amplifying THz plasmons in the 2DEG layer by 

applying a bias electric field. It is shown that the plasmon properties change vastly as the 

electrons are accelerated by the bias field. This type of investigation is able to provide real time 

information about electron density and velocity inside the plasmonic channel. In order to verify 

the results, the analytical model developed in [29]-[30] is employed. Compared to the analytical 

model in [29]-[30], this full wave simulator is able to consider the finite thicknesses of electron 

gas layers. Additionally, the influence of the wide band-gap semiconductor thickness on the 

properties of the 2D plasmons can be investigated. Moreover, the presence of Ohmic contacts on 
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the propagation characteristics of the surface waves can be examined using the global modeling 

method. Furthermore, the presence of metallic gratings, mostly fabricated on the device surface 

to excite a specific plasmonic mode may be taken into account using this technique. 

Models and methods: 

1. Electronic Transport model 

Electron dynamics inside 2DEG layers of hetero-structures can be described by solving the 

moments of Boltzmann transport equation [25]. These strongly coupled highly non-linear set of 

partial differential equations relating volume electron density nv and electron momentum p  are: 

1) Complete form of Momentum Conservation: 

 
   

  

.
v x

v x v B

v x
v x

x
m

n p
n p v n k T

t x

n p
qn E v B



 
  

 

  

     (1) 

and  

2) Continuity equations: 

 . 0v
v

n
n v

t


 


       (2) 

where, q, ηm, T, and v  are electron: unit charge, momentum relaxation time, temperature, and 

velocity, respectively. Moreover, kB, B  and E  are Boltzmann constant, the magnetic flux and 

the electric field at the electron position, respectively. Additionally, the momentum conservation 

equation (1) can be similarly rewritten in other directions (y and z) too. Electronic current density 

vJ  inside the 2DEG may be calculated at any time t as:      v vJ t = -qn t v t . Furthermore, the 

electron momentum and velocity are related through the electron effective mass m
*
 (p = m

*
 × v). 

In general, a complete 1-D solution of the transport (continuity, momentum and energy 

conservations) equations can be performed. However, energy conservation equation (not 
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mentioned here) is not included in the solution presented in this paper. This does not change the 

validity of our analysis since the bias voltage and the ac incident electric fields are both chosen 

such that the device operates only in the linear section of the electron velocity-electric field curve 

[31]. 

2. Electromagnetic model 

Maxwell equations can accurately characterize electromagnetic field propagation. In a 

uniform, isotropic and linear medium with relative permittivity εr and permeability µr, Maxwell 

equations are 

v

E
H J

t



  


       (3) 

and 

H
E

t



  


.       (4) 

In (3)-(4), BH =
μ

, ε = ε0 × εr (ε0 ≈ 8.85 × 10
-12

 F / m) and μ = μ0 × μr (μ0 ≈ 4π × 10
-7

 H / m ) 

are the magnetic field and the permittivity and the permeability of the corresponding medium, 

respectively. FDTD is a time domain solution of Maxwell equations using a mesh where the field 

components are arranged inside following Yee scheme [32]. The time and space derivatives in 

(3) and (4) are estimated using central differencing with the second order accuracy. 

3. Coupling the EM and the electronic transport model 

The EM solver calculates the field variations due to the moving charges while the electronic 

transport simulator updates charge properties altered by the applied fields. By passing physical 

parameters such as the fields and the current density between the two models, an appropriate link 

is established among the simulators. The initial state of the time-dependent calculation is 

obtained by solving Poisson equation ( 2 +

D vV=-q N -n ε   
 where ND

+
 is the ionized donor 
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density of the surrounding semiconductors) and electronic transport (continuity and momentum 

conservation) equations. This solution provides an initial electric field value for the FDTD 

simulation. At the steady state, Maxwell equations simplify to: 

0dcE          (5) 

and: 

.dc dc

vH J         (6) 

Considering (6), it is suggested that the initial value of the magnetic field is introduced by the 

presence of dc

vJ . Therefore, the magnetic field will be initiated properly by implementing the 

steady state current density inside the FDTD code. 

As the initialization process ends, an ac excitation is applied. By defining total electric 

total dc acE = E +E  and magnetic 
total dc acH = H +H  fields and using Maxwell equations, it is 

concluded that: 

 
1total

ac dc total

v v

E
H J J

t 


   


     (7) 

1total
totalH

E
t 


  


      (8) 

where total

vJ  is calculated by the device modeler after the ac excitation is applied. Therefore, the 

total electric and magnetic fields are updated at each time step by solving (8)-(9). These new 

values are fed to the device simulator to update the total current density at the same time step. 

Next, the updated total current density is used in the full wave solver to revise the fields at the 

following time step. This process continues until the set of equations satisfy each other self-

consistently and the simulation becomes stable. A more detailed description of global modeling 

can be found in [25]-[26]. 
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4. The simulated plasmonic structure and the simulation details 

The 2-D schematic of the simulated active plasmonic structure is shown in Fig. 1. It is 

consisted of a hetero-structure (AlGaAs/GaAs) of thickness h1 = 7.5 µm which is represented as 

a dielectric with εr = 12.6. Furthermore, a 2DEG layer of thickness d = 20nm is assumed at h2 = 

80nm underneath the surface. Ohmic contacts (named drain and source herein) at the device 

terminals are approximated as Perfect Electric Conductors (PECs) with fixed charge densities 

and very high electrical conductivities (≈ 10
10

 S/m). This assumption is valid in most of the 

practical semiconductor devices due to very high surface recombination velocities at the contacts 

with excessive doping densities ( > 10
17

 cm
-3

) [33]-[36]. An ac planar magnetic current sheet My, 

with a cell size thickness is considered in the top air section for the excitation. The magnetic 

current is oriented along +y direction and is placed far enough away from the device, so that its 

evanescent modes do not reach the device. In this manner, only a plane wave hits the dielectric 

surface. The current source variations in time follow a sinusoidal shape with a single frequency f 

= 1 THz. Although the reported results are only for the single frequency of the incident 

sinusoidal wave, a wide band simulation can also be achieved using a Gaussian excitation pulse. 

Moreover, standard Perfect Match Layers (PML) developed by Berenger [37] are applied to the 

rest of the boundaries as depicted in Fig. 1. To reduce the numerical artifacts due to a finite 

spatial sampling of Maxwell equations, the PML losses along the direction normal to the 

boundary increase slowly from zero. To this end, PML layers with graded conductivities of a 

third order polynomial profile and with the reflection error of 10
-8

 are employed [37]. It is 

assumed that the size of the device along y-axis is very large in comparison to the wavelength of 

the 2D plasmons. Therefore, a 2D FDTD simulation is adequate. The mesh size along x axis (Δx) 

is mainly controlled by the Debye length criteria  B vΔx < εk T n  inside the semiconductor 
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simulator and the wavelength criteria ( λp / 10 where λp is the 2D plasmon wavelength) within 

the EM solver [25]. This condition leads to Δx ≈ 10 nm which ought to be applied inside both 

simulators. Within the FDTD code, the 2DEG is represented as an electric current source with 

one cell size thickness. This sets the minimum mesh size along z axis (Δzmin = d). In order to 

reduce the computational burden enforced by the small 2DEG thickness, a non-uniform mesh is 

employed along z direction. The maximum allowable mesh size along z (Δzmax) is defined by the 

wavelength of the incident field λ inside the dielectric. The maximum allowable simulation time 

step Δt is primarily defined by the Courant-Friendrichs-Lewy stability condition [37]. Taking 

this constraint into account, Δt becomes in the order of 10
-17

 (s). Here, a 1D solution of the 

transport equation is performed. This does not affect the accuracy of our analysis since electron 

movement in the z direction is restricted by the quantum confinement that exists inside the 

hetero-structure. 

Appropriate boundary conditions are required to solve continuity and Poisson equations. To 

this end, charge densities of the 2DEG end nodes are fixed to their equilibrium value. This means 

that the Ohmic contacts do not allow any charge density variations at their adjacent points. Inside 

the biased structure, the node placed at the source contact is grounded while the one at the drain 

is connected to the external bias voltage Vds. 
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Fig. 1.  The 2-D structure simulated by the global modeling technique (figure not 

to scale). 

 
Fig. 2.  The SWCs’ x component of the electric field: (a) distribution close to the 

2DEG layer and (b) variations at z = -h2 are illustrated. The SWCs’ attenuation 

constant is approximated ±29.5 (dB/μm). The SWCs’ phase constants are 
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estimated as ±19.6 (Rad/μm). 

 
Fig. 3.  The conduction current density variations due to the SWCs originated 

from the plasmon launcher at z = -h2 are shown. 

In order to excite the 2D plasmons inside the 2DEG, a PEC section with one cell size thickness 

is placed on the top surface of the device (z = 0) at x = L2. Its length has been chosen to be very 

small compared to the wavelength of the radiating mode in the air. This PEC section represents 

thin metallic gratings that are mostly placed adjacent to the 2DEG layer. The gratings are 

frequently employed to excite 2D plasmons by the incident wave diffraction. Hereafter, this thin 

metal is called plasmon launcher. The distance between the 2DEG and the plasmon launcher 

should be chosen appropriately so that a substantial amount of the diffracted wave couples to the 

2DEG layer. 

Results and discussion 

In this section, the described full wave simulator is employed to characterize the 2D plasmon 

propagation along the detailed hetero-structure under different bias voltages at a single frequency 
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frequencies. Herein, the surface charge density of the 2DEG layer is assumed n0 = 10
11

cm
-2

. 

Moreover, the length of the simulated device is L1 = 4 µm (see Fig. 1). In this paper, the low 

field mobility of the hetero-structure is considered by the transport parameters ηm = 1 ps and m
*
 

= 0.063m0, where m0 is the electron rest mass. The corresponding electron mobility is accessible 

even at 200K [38]. In order to excite the SWCs, a plasmon launcher with length Lp = 100 nm is 

placed in the middle of the structure (L2 = 1.95 μm) in the close proximity of the 2DEG layer at 

the top surface of the semiconductor. 

In order to separate the SWCs excited at the plasmon launcher from the other field values such 

as the transmitted time varying field, two different simulations have been performed. First, the 

plasmon launcher is placed on the surface of the structure and the simulation is performed until a 

specific time step t1. Next, a similar simulation is executed as the plasmon launcher is removed. 

Afterwards, the respective field values computed in the simulations are subtracted from each 

other. 

1. 2D plasmon propagation inside an unbiased hetero-structure 

As previously presented in [7] and [30], 2D plasmons propagate along unbiased conductors 

with propagation constants: 
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where, ω = 2πf and c are angular frequency and the speed of light in the vacuum, respectively. In 

the calculation of the dispersion relation (9), wave function (refer to [39] for the definition) of 

the plasmonic mode is considered as:  
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where, γ is the complex propagation constant. Real (α) and imaginary (β) parts of γ are called 

attenuation and phase constants, respectively. 

Inserting the 2DEG layer charge density and the transport parameters (including the 

momentum relaxation time) into (9), it is calculated that α1,2 = ±26.9 (dB/μm), β1,2 = ±19.5 

(Rad/μm) and the 2D plasmons wavelength (λp = 2 × π / |β1,2|) is 322nm. 

In Fig. 2.(a), the electric field distribution of the 2D plasmons in the proximity of the 2DEG 

layer calculated by the numerical solver, in the time step t1 is depicted. As shown, SWCs are 

excited as a result of the incident wave diffraction at the plasmon launcher. It is also observed 

that the SWCs are facing large attenuations due to the electron scatterings as moving in ±x 

directions. In Fig. 2.(b), the x component of the electric field (at z = -h2) of the SWCs inside the 

unbiased hetero-structure is depicted. As illustrated, the numerical technique has calculated the 

2D plasmon propagation constant nearly equal to the values estimated by the analytical model 

(9). The small deviation of the attenuation constant from the value predicted in (9) can be partly 

due to the presence of the Ohmic contacts that are not considered by the analytical model. Here, 

the accuracy of the attenuation constant calculation has been improved using the technique 

detailed in Appendix I. 

In Fig. 3, the conduction current variations (Jv) at z = -h2 are depicted. This physical property 

can be useful in the design of plasmonic detectors with a specific responsivity. By choosing 

appropriate device length, channel properties and plasmon launcher size, the design of an 

efficient THz non-resonant plasmonic detector is possible. As shown in Fig. 3, the electrons are 

accelerated and decelerated at specific locations that correspond to the maximum magnitudes of 

the electric field. 

2. 2D plasmon propagation inside a biased hetero-structure 
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As previously proved analytically [30], the symmetrical 2D plasmons inside the un-biased 

2DEG with the dispersion relation defined in (9) split into four asymmetrical modes. The 

propagation constant of these modes are:  

4 3 2

1 2 3 4 5 0A A A A A             (11) 
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In (12), v0 is the electron average drift velocity inside the biased hetero-structure.  

Here, the bias voltage Vds = 143 (mV) is applied onto the Ohmic contacts. This voltage 

establishes the electric field E0 = 360 (V/cm) inside the device. Considering the linear relation 

between the electron average velocity and the electric field (v0 = m

*

qη

m
 × E0), the electron velocity 

becomes v0 ≈ 10
7
 (cm/s). Using (11)-(12), it is concluded that the plasmonic modes propagating 

opposite to the electron drift stream suffer from very high attenuations compared to ones moving 

parallel to it. From (11), it is calculated that the +x going plasmonic mode inside the biased 

structure propagates with α'1 = 14.7 (dB / μm), β'1 = 12 (Rad/μm) and the wavelength 524 nm. 

On the other hand, the mode propagating in the opposite direction (-x) yields the attenuation 

constant α2' = 39.9 (dB / μm). Due to the large attenuation constant of the x  going SWC, this 

specific mode is not excited as will be reported in the following. 

In Fig. 4.(a), the SWC electric field distribution in the proximity of the 2DEG layer inside the 

biased hetero-structure at time t1 is depicted. In contrast to the unbiased device (Fig. 2.a), the 2D 
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plasmons are propagating only in one direction (+x). In Fig. 4.(b), the x component of the SWC 

electric field at z = -h2 is depicted. As illustrated, there exist a slight difference between the 

phase constant of the plasmonic mode computed by the analytical method (12 Rad/μm) and the 

one obtained from the numerical techniques (11.6 Rad/μm). This alteration is by virtue of the 

wideband-gap semiconductor thickness consideration inside the full wave simulator. As 

expected, the bias field has caused large changes in the phase constant of the plasmonic mode. 

Besides, the -x going plasmonic mode has not been excited due to the large attenuations. 

Considering these results, it seems that the steering of the 2D plasmons can effectively become 

possible by applying bias voltage along the plasmonic waveguide. In Fig. 5, the variations of the 

2D plasmon conduction current at z = -h2 are shown.  

 
Fig. 4.  The SWCs’ x component of the electric field: (a) distribution next to the 

2DEG layer and (b) variations at z = -h2 are depicted. The SWCs’ attenuation and 

phase constants are approximated as 15.9 (dB/μm) and 11.6 (Rad/μm), 

respectively. 
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Fig. 5.  The SWCs’ conduction current density variations at z = -h2 is illustrated. 

3. 2D Plasmon reflection from Ohmic contacts inside a biased hetero-structure 

To present the capabilities of the developed numerical technique compared to the analytical 

model, the 2D plasmon reflections from Ohmic contacts of the biased structure is analyzed. To 

this end, the plasmon launcher is considered closer to the drain contact (L2 = 3 μm) compared to 

the previous case of study. This enables the excited surface waves to reach the contact before its 

amplitude becomes almost equal to zero. Fig. 6 depicts the variations of the x component of the 

electric field inside the biased hetero-structure. As expected, the + x moving surface waves are 

originated from the launcher while high attenuations prevent any plasmon generation with the 

opposite direction of propagation. As illustrated in Fig. 6, the phase constant of the dominant 

mode along the electron gas layer has not been changed. Considering the magnitude of the 

electric field component at the proximity of the drain contact, interesting changes in the field 

distribution are observed. As depicted in Fig. 7., the surface wave does not follow the wave 

function of the +x going mode strictly next to the contact. This is due to the excitation of higher 
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order evanescent modes or possibly the –x moving plasmonic modes. 

 
Fig. 6.  The variations of the x component of the electric field (V/cm) at z = -h2 is 

depicted. The location of the plasmon launcher is chosen intentionally to observe 

the wave reflections from the drain. The inset portrays the field value changes 

next to the drain contact at x = 4 µm. 

 
Fig. 7.  The field value changes next to the drain contact at x = 4 µm. 
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Controlling the Wave Properties of the 2D Plasmons by Changing the Bias Voltage: 

Commonly, the charge densities of the 2DEG layers of hetero-structures are controlled by 

implementing a gate above the wideband gap semiconductor (top-gate) or beneath the substrate 

(back-gate). In this manner, the designer can simultaneously optimize the plasmonic circuit by 

changing the gate and the drain-source voltages. Here, the dependency of the plasmon properties 

on the 2DEG layer charge density is considered. To this end, the numerical simulator is 

employed to simulate the described structure as the electron density of the 2DEG layers has been 

increased to a new value n'0 = 2 × 10
11

 (cm
-2

). 

Using (9), it is expected that the unbiased hetero-structure can guide plasmons with α1,2 = ±13 

(dB / μm) and β1,2 = ±10 (Rad / μm). However, the plamonic modes will divide into 

asymmetrical modes as the electrons are accelerated by an external bias field with an average 

electron velocity v0 ≈ 10
7
 (cm / s). The mode that propagates in +x direction attains α'1 = 9.5 (dB 

/ μm) and β'1 = 7.6 (Rad / μm) as the other mode which travels against the electron drift stream 

has α'2 = -26.9 (dB / μm) and β'2 = -15 (Rad / μm). 

In the full wave simulation, the device length and the surface charge density of the 2DEG have 

been increased to L1 = 6μm and n'0 = 2 × 10
11

 (cm
-2

) as other specification are kept similar to the 

previous structure. In order to accelerate the electrons with the average velocity v0 = 10
7
 (cm / s), 

the applied voltage has been augmented to Vds = 215(mV). 

1. Surface wave excitation using a single plasmon launcher:  

Here, a metallic layer is considered in the middle of the simulated structure surface (L2 = 

2.95μm) to excite the plasmons. Fig. 7. (a),(b) display the ac electric field distribution of the 2D 

plasmons calculated by the global modeling technique. As depicted in Fig. 7.(a), the 2D 

plasmons are propagating in the ±x directions symmetrically. As the bias voltage is applied onto 
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the contacts, asymmetric 2D plasmons are excited in the +x and -x directions (see Fig. 7.(b)). 

The x component of the ac electric field at z = -h2 is presented in Fig. 7. (c) as Vds = 0 and 215 

(mV). As depicted, the numerical solver has calculated the propagation constants of the 

plasmonic modes equal to ±9 (Rad / μm) as Vds = 0, and 6.3, -13.1 (Rad / μm) as Vds = 215 

(mV). Comparing the results attained from the analytical and the numerical techniques, it is 

understood that there exists a difference (about ten percent) between the outcomes which is due 

to the consideration of the wideband-gap semiconductor thickness inside the full wave simulator. 

As illustrated in Fig. 7. (c), the wavelength of the +x moving 2D plasmons has been increased 

about 30 percent after applying the bias field. As demonstrated, the 2D plasmonic mode that is 

allowed to propagate in the -x direction has also been excited in contrast to the previous example. 

Therefore, the gate control voltage has helped to excite new plasmonic modes inside the device 

by doubling the electron gas charge density. 
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Fig. 7. (a), (b) The distribution of the “x” component of the electric field next to 

the 2DEG layer of the unbiased and the biased hetero-structure are shown, 

respectively. (c) The x component of the electric field variations at z = -h2 inside 

the device under different bias conditions is shown. The approximated attenuation 

constant inside the unbiased structure is 14.7 (dB/μm). The +x and –x mode 

attenuation constants of the plasmons inside the biased device are 9.5 and 30.4 

(dB/μm), respectively. 

2. Plasmon excitation using a metallic grating: 

Here, the wave propagation along the 2DEG in the presence of a periodic grating is 

investigated. To this end, five periods of the PEC layer with length 0.2 µm employed. The 

arrangement of the grating on the device top surface is detailed in Fig. 8. The period of the 

grating (0.7 µm) is chosen equal to the wavelength of the plasmons inside the unbiased structure.  

Fig. 9.(a), (b) depict the ac electric field distributions along the electron gas layer as Vds = 0 

and 215 (mV), respectively. As presented in Fig. 9.(a), (b), the surface waves are launched along 
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the hetero-structure in both conditions. In Fig. 9.(c), the variations of the electric field component 

are illustrated. As described in Fig. 9.(c), the plasmonic mode with wavelength 0.7 µm is 

uniformly launched along the electron gas inside the unbiased structure. However, the 2D 

plasmons are weakly excited as the bias voltage is applied between the contacts. As presented, 

the +x and –x moving surface waves are excited inside the biased structure due to the diffraction 

of the incident wave at the periodic metallic grating. Due to the mismatch between the grating 

period and the plasmonic mode wavelengths, the plasmon launcher is performing inefficiently. 

Non-sinusoidal distribution of the electric field at locations between the periodic gratings is 

because of the summation of the different modes excited at the edges of neighboring metals. The 

field deviations from the +x moving mode wave function discussed in section III, part C, are also 

depicted in Fig. 9.(c) at the vicinity of the drain contact (x = 6 µm). 

 
Fig. 8.  A schematic of the simulated hetero-structure as the periodic grating is 

presented on the device surface. 
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Fig. 9.  (a), (b) The distribution of the “x” component of the electric field next to 

the 2DEG layer with the periodic grating under different bias conditions are 

shown. (c) The x components of the electric field variations at z = -h2 inside the 

device as Vds = 0 and 215 (mV) are shown. 

Conclusion 

A full wave simulation technique is employed to analyze novel active plasmonic devices. The 

simulator solves Maxwell and the moments of Boltzmann equations numerically in a self-

consistent manner. The effectiveness of this method is presented by characterizing 2D plasmon 

propagation along the two dimensional electron gas layer of a hetero-structure under different 
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the biasing of the hetero-structure are reported. It is observed that the 2D plasmons propagating 

against the electron drift motion face larger attenuations compared to the ones moving in the 

same direction. The analysis has been performed inside 2DEG layers with different charge 

densities to investigate the gating effects on the 2D plasmon characteristics. It is concluded that 

new plasmonic modes can be excited by applying various bias voltages onto the device. This 

idea can help the designers to fabricate novel plasmonic devices such as switches and 

modulators. This numerical technique can also be useful in the modeling of available THz 

plasmonic detectors and sources. 
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APPENDIX I: 

In order to calculate the plasmon attenuation constant α accurately, the following method is 

pursued. First, the x components of the Poynting vector at each grid point of two integration lines 

at an arbitrary time step t1 are calculated (Ey × Hz). The locations of the integration lines should 

be chosen appropriately to represent a unique mode. This has been considered while choosing 

the integration lines i1 and i2 (see Fig. 1). Afterward, numerical integrations along the lines i1 and 

i2 on the computed power fluxes are performed. Thus, the transmitted power P(t) handled by the 

specific plasmonic mode at time t1 is obtained. This process is similarly repeated in the following 

time steps until a period of the incident field (T = 1 / f). Next, the time average transmitted power 

at each integration line is estimated as: 

 11 2 1 2

1

, ,1
.

t t Ti i i i

avg t t
P t P t

T

 


           (13) 

In this manner, the plasmon attenuation constant of each specific mode is calculated as:  
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where, Δl is the distance between i1 and i2. 

 

APPENDIX II: 

A. NUMERICAL SOLUTION OF CONTINUITY EQUATION: 

To appropriately solve continuity equation, a first up-winding semi-implicit technique is 

employed. To this end, the continuity equation in one dimension (x) is repeated as: 

 
0

nvn

t x


 

 
       (1) 

where, n and v are volume charge density and velocity respectively. Using the up-winding 

scheme, (1) can be discretized as: 



101 
 

       

       

1

1 1

1 1

1 1

1 1

0.5

0

0

k k

i i

k k k k

i i i i

k k k k

i i i i

n n

t

nv nv nv nv
v

x x

nv nv nv nv
v

x x



 

 

 

 


  



  
  
  


 
 

 

.   (2) 

In (2), time and location instances are displayed as subscripts and superscripts, respectively. As 

example, electron density at time step k and location i × ∆x is displayed as n
k
i. Using (2), the 

charge density at i × ∆x and in time step (k+1) is calculated as:  
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B. NUMERICAL SOLUTION OF MOMENTUM CONSERVATION EQUATION: 

Momentum conservation equation along x axis can be described as: 

   
 

* *

1
.

x x x
x v B

m

m v m v mv
v qE n k T

t x n x

  
     

  
  (4) 

where, m
*
, ηm, kB,q and T are electron: effective mass, momentum relaxation time, unit charge, 

and temperature, respectively. Equation (4) can be discretized using various finite difference 

schemes. Here, each part of (4) is discretized as: 
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Simplifying (5) to calculate the electron velocity at the next time step and location (i+0.5) × ∆x 

leads to: 
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to obtain a License from RightsLink. 

Abstract:  

The possibility of realizing a terahertz (THz) switch by employing Surface Plasmons (SPs) 

along a Two Dimensional Electron Gas (2DEG) layer of a hetero-structure is presented. It is 

shown that SP’s properties may be easily controlled by changing the motion of the electrons 

inside the 2DEG. The electron drift velocity is controlled by applying an external bias voltage at 

the 2DEG’s ends. A compact and efficient THz switch with high On/OFF signal ratio is reported 

using this concept. The control voltage of the switch is considerably low. A multi-physic 

simulator, based on numerical solution of Maxwell’s and Boltzmann’s equations, is developed to 

analyze the switch appropriately. This micro-meter size plasmonic switch demonstrates a very 

promising method for navigating the sub-wavelength THz signals inside future plasmonic 

circuits. 



106 
 

Introduction: 

Recently, many researches are aimed at THz frequency range, the less explored section of 

electromagnetic spectrum located between microwave and optical ranges. Operation of 

microwave devices in THz range is limited by the maximum achievable electron velocity inside 

semiconductors. On the other side, lower frequency edge of photonics is about 20 THz [1]. 

Besides, photonic devices are very bulky and their integration into modern nano-meter size 

packages is troublesome. In order to address these issues, application of Surface Plasmons (SPs) 

or propagating bound oscillations of electrons and EM field at a metal surface [2], is proposed 

[1]-[3]. The SPs offer wavelengths that are several orders of magnitude smaller than the radiative 

mode counterpart, and phase velocities which are at least one order of absolute value larger than 

the electron velocity maximum. 

Mostly, researches in the plasmonic area are focused in optical ranges where noble metals such 

as gold and silver are being used. However, SPs are not bound to the surface of the metals in 

THz frequency ranges and hence; those desired properties are not observed anymore. In THz 

frequencies, application of highly doped semiconductor [4] or noble metals with engineered 

surfaces [5] are proposed. Propagation of SPs along doped semiconductors suffers from large 

losses therefore; utilization of Two Dimensional Electron Gas (2DEG) layers of hetero-structures 

with low SP losses is more popular [6]-[8]. Implementing THz plasmonic sources and detectors, 

inside 2DEG layers of solid state devices such as High Electron Mobility Transistor (HEMT), is 

very appealing. Novel plasmonic detectors inside 2DEG layers have shown comparable 

performances with respect to the other state of the art THz detection techniques [7]. However, 

active steering of SPs is required before the promise of a complete THz plasmonic circuit 

becomes achievable. 

In this paper, we present a novel method to obtain a THz plasmonic switch inside the 2DEG 
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layer of a hetero-structure. Lately, it has been reported that SPs’ wave properties such as 

propagation constants and phase velocities can be controlled by changing the bias voltage 

applied at the 2DEG’s ends [6]. The electric field induced by the bias voltage accelerates the 

electrons of the 2DEG. This motion alters how effectively electrons and wave interact with each 

other and consequently; SPs’ wave properties will change vastly. In particular, two normal SP 

modes along an unbiased hetero-structure will divide into four new modes as the electrons’ drift 

motion is included [6]. It can be shown that the SP mode that propagates against the electron 

stream is very lossy. Here, the modification of SPs’ properties, caused by the biasing, is 

employed to introduce a new concept for switching SPs. In order to simulate the proposed 

device, a full wave analysis method first proposed in the study of high frequency transistors, so 

called global modeling [9] is employed. 

In the following, a brief overview of the analytic method [6] and global modeling [9] is 

presented. Also, details of the simulated structure and designed plasmonic switch are reported.  

Overview of the modeling techniques and details of the simulated devices: 

Consider a 2DEG sheet with surface charge density n0 confined inside a hetero-structure (Fig 

1). The 2DEG’s length is L1 while it is infinitely wide (along y axis). The hetero-structure is 

represented by two lossless semiconductors with similar dielectric constants ε = ε0εr, ε0 = 

8.85×10
-12

 (F/m). Here, ground state spread of the 2DEG along z axis is assumed to be negligible 

compared to SP decay length in this direction and therefore; only electron motion along x axis is 

taken into account.  

In [6], an analytical solution of Maxwell’s and Boltzmann’s equations is presented as several 

assumptions are considered to make the analysis achievable. This method provides a detailed 

characterization of xTM   mode with time and position variations of 
jωt - γxe , where γ=α + jβ . 
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Noting that γ, α, β and  are propagation, attenuation, phase constants and angular frequency, 

respectively. As shown in [6], two normal SP modes along the unbiased 2DEG with dispersion 

relations: 

2

1,2
2

j

a


           (1) 

divides into four new modes inside the biased 2DEG with dispersion relations: 

4 3 2

1 2 3 4 5 0A A A A A                (2) 

where A1 = v0
4
, A2 = -2v0

3
/ηm - 4jωv0

3
, A3 = -6ω

2
v0

2
 + v0

2
/ηm

2
 + 6ωv0

2
/ηm + 4a

2
, A4 = 4jv0ω

3
 + 

6v0ω
2 

/ ηm – 2jv0ω/ηm
2
, A5 = ω

4
 - ω

2
/ηm

2
 - 2jω

3
/ηm, q=1.6 × 10

-19
(C) and a = n0q

2
/4εm

*
. Also, 

m
η

and *
m  are electron momentum relaxation time and electron effective mass, respectively. 

Global modeling [9] provides a numerical solution of the moments of Boltzmann’s equation 

(momentum and charge conservation) and Maxwell’s equations. In this manner, interactions 

between EM fields and moving electrons are characterized. This numerical method eliminates 

several assumptions taken in the analytical model and makes the simulation more realistic. 

In order to model the plasmonic switch inside the global modeling simulator [9], the structure 

in Fig. 1 is employed. A 2-D Finite Difference Time Domain (FDTD) code is developed that 

calculates field values inside a portion of the semiconductor and air. For excitation, a magnetic 

current sheet is placed above the structure so that evanescent modes do not reach the device and 

hence; only planar waves hit the device surface. Also, perfect match layers are applied to all 

boundaries except the ones at source and drain. In these two ends, a perfect electric conductor 

represents Ohmic contacts. A multi-grid mesh is applied along z axis to handle the negligible 

thickness of the 2DEG. The 2DEG is represented by one unit cell thick electric current source 

inside the FDTD simulator. Mesh sizes along x axis and time step dt are defined to satisfy the 

stability criteria of both EM and transport solvers. A 2DEG thickness d and surface charge 
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density n0 is considered here. The 2DEG is located h2 below the surface of an AlGaAs/GaAs 

hetero-structure that is represented by a dielectric
r

ε with thickness
1

h . It is assumed that the 

2DEG is terminated by two Ohmic contacts with fixed equilibrium charge density Nc = n0/d. The 

source contact is grounded while the drain contact is connected to a control voltage. The control 

voltage switches between 0 in ON state and 40(mV) in OFF state of the plasmonic switch. 

Transport parameters are: m
*
 = 0.063×m0 (m0=9.1×10

-31
kg) and ηm = 2ps. 

Due to the intrinsic phase difference between the incident wave and the SPs, a special 

technique is required to launch the SPs. In this work, a zero thickness perfect electric conductor 

layer, called SP launcher, is placed on the top surface of the device next to the drain. The length 

of the SP launcher Lp is chosen very small compared to the wavelength of the incident field and 

therefore; considerable amount of the incident wave diffracts from the edges of the SP launcher. 

The diffracted wave experiences different phase constants which at least one of them will match 

the allowed SP mode’s phase constant. In this manner, this specific SP propagates toward –x. 

The SP launcher is placed next to the PEC modeling drain so that it only excites –x moving SPs. 

Results and discussion: 

Inserting the 2DEG’s properties and the transport parameters into (1), propagation constants of 

SPs inside the unbiased 2DEG are concluded:  7

1,2γ =±10 × 0.16+j1.95 . These modes will divide 

into four new modes (2) inside the biased 2DEG with propagation constants:

 8

1γ =10 × 0.03+j1.65 ,  8

2γ =10 × 0.44-j0.05 ,  8

3γ =10 × -0.4-j0.02 and  8

4γ =10 × 0.07+j0.11 . 

Considering the SPs’ phases constants along the biased 2DEG, it is concluded that the 1
st
 and the 

4
th

 modes are propagating toward +x while the other two modes are moving in the opposite 

direction. Noticing the propagation constants of the –x moving SPs’, it is realized that the 2
nd

 

mode is a growing mode while the 3
rd

 one faces losses as it propagates. By positioning the SP 
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launcher next to drain, it is expected that both –x moving SPs become excited. However, only the 

3
rd

 mode is launched inside our structure and will be employed as follows. Comparing the 

magnitude of the attenuation constants in the un-biased device and the 3
rd

 mode of the biased 

2DEG, it is clear that the 3
rd

 mode propagates with several orders of magnitude larger losses. 

Therefore, one can switch off SPs’ propagation by controlling the bias voltage. The signal 

attenuation of the switch in the ON state is approximately 13dB/µm while it is about 340dB/ µm 

in the OFF state. 

 
Fig. 1. 2-D schematic of the simulated structure (figure not scale). 
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Fig. 2 Normalized x component of electric fields inside parts of the device and 

air at xz-plane a) SPs are propagating along the 2DEG as bias voltage is zero (ON 

state). b) SPs are attenuated as bias is set to 40(mV) (OFF state). 

 
Fig. 3 Calculated x component of electric field at z = 120nm. Phase and 

attenuation constants of SPs in the ON state are estimated as: β= 1.96×10
7
 

(Rad/m) and exp(-α×320nm) = -0.21/-0.37 or α = 0.17×10
7
 (np/m). 

Fig. 2.a shows ac electric field distribution inside the un-biased device (Vds = 0) at a specific 

time instant of simulation t0. As calculated, SPs are propagating along the un-biased 2DEG 
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toward –x. As the bias voltage changes to Vds = 40(mV), electrons are accelerated by the bias 

field and hence; the 3
rd

 mode is launched. In Fig. 2.b, electric field distribution of SPs at time t0 

inside the biased device is presented. Comparing these field distributions, it is shown how 

effectively this switching technique is able to disconnect the flow of SPs. In Fig. 3, the electric 

field distributions along the 2DEG of both biased and unbiased structures are compared. SPs’ 

properties along the unbiased 2DEG clearly follow the analytical model. 

Conclusion: 

In this paper, an active method for controlling SP signal at THz frequencies is demonstrated. It 

is shown that by changing the bias voltage across the device ends, a SP switch is viable in a very 

compact dimension. However, further investigations are required before implementing the idea 

proposed here. First, large attenuation in the ON state should be addressed by employing a 

hetero-structure with better quality and lower electron scatterings. Also, a high efficiency 

plasmon launcher should be designed. Beside, a sophisticated matching network placed at input 

and output is required before employing the switch inside a plasmonic circuit. It seems that the 

switching speed is mainly controlled by the time response of the circuit that drives the bias. 

Therefore, the switching speed is expected to be in the order of nano second. In spite of these 

challenges, the basic method reported here provides promising potentials for the design of active 

THz devices with micro-meter dimensions.  
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IV. DESIGN AND ANALYSIS OF A SILICON-BASED TERAHERTZ PLASMONIC 

SWITCH 

A. DESIGN AND ANALYSIS OF A SILICON-BASED TERAHERTZ PLASMONIC 

SWITCH 

M. A. Khorrami, S. El-Ghazaly, Optics Express, vol. 21, pp. 25452-25466, Oct. 2013.  

This paper was published in Optics Express and is made available as an electronic reprint with 

the permission of OSA. The paper can be found at the following URL on the OSA website: 

http://0-www.opticsinfobase.org.library.uark.edu/oe/abstract.cfm?uri=oe-21-21-25452. 

Systematic or multiple reproduction or distribution to multiple locations via electronic or other 

means is prohibited and is subject to penalties under law. 

Abstract: 

In this paper, a novel terahertz (THz) plasmonic switch is designed and simulated. The device 

consists of a periodically corrugated n-type doped silicon wafer covered with a metallic layer. 

Surface plasmon propagation along the structure is controlled by applying a control voltage onto 

the metal. As will be presented, the applied voltage can effectively alter the width of the 

depletion layer appeared between the deposited metal and the semiconductor. In this manner, the 

conductivity of the silicon substrate can be successfully controlled due to the absence of free 

electrons at the depleted sections. Afterwards, the effectiveness of the proposed plasmonic 

switch is enhanced by implementing a p
++

-type doped well beneath the metallic indentation 

edges. Consequently, a P-Intrinsic-N diode is formed which can manipulate the plasmon 

propagation by modifying the electron and hole densities inside the intrinsic area. The simulation 

results are explained very concisely by the help of scattering matrix formalism. Such a 

representation is essential as employing the switches in the design of complex plasmonic systems 

with many interacting parts. 

http://0-www.opticsinfobase.org.library.uark.edu/oe/abstract.cfm?uri=oe-21-21-25452
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Introduction: 

The terahertz frequency band, located between microwave and optical ranges is considered to 

be a promising section of the electromagnetic (EM) spectrum. THz radiation with uniquely 

attractive characteristics has been employed in laboratory demonstrations to identify explosives, 

find hidden weapons, and detect cancer cells and tooth decays [1]. In spite of these laboratory 

level researches, the real world application of THz radiation has proven to be challenging. One 

of the major pitfalls in the commercial application of THz radiation is the lack of room 

temperature active devices as modulators, switches, sources and detectors. In recent years, there 

have been considerable efforts to employ novel devices based on the collective oscillations of 

electrons mostly called plasmons, in the THz frequency range [2]-[8]. Specifically, plasmonic 

materials formed by the periodical texturing of metal or highly doped semiconductor surfaces 

have been extensively studied and applied in microwave and THz frequency ranges [9]-[20]. 

These structures can support surface waves which are mostly called Spoofed Surface Plasmon 

Polaritons (SSPPs), since they mimic the properties of surface plasmon polaritons at visible 

frequencies. Recently, there has been an increasing interest in exploiting SSPPs because of their 

unique properties as high field confinement and comparatively low propagation losses [9]-[12].  

SSPPs are particularly important in the development of THz Quantum Cascade (QC) lasers to 

efficiently out-couple the output power from a cavity with sub-wavelength dimensions [13]-[14]. 

Furthermore, the application of SSPPs inside cylindrical two-dimensional periodic surfaces has 

been recommended for the design of future Cherenkov THz amplifiers [15]. Moreover, there has 

been a significant interest in the design of modern active plasmonic switches and modulators 

with different upcoming applications [16]-[20]. 

The idea of changing the wave properties of a plasmonic waveguide by heating to modulate 
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plasmons was first coined in [21] and applied in the visible frequency range. Subsequently, 

reversible variations in the waveguide characteristics caused by femto-second optical excitation 

have been employed to develop faster and more efficient plasmonic switches and modulators 

[22]. In terahertz frequency range, the optical and thermal control of the SSPP propagation along 

the surfaces of indented doped semiconductors has been investigated in [16]-[17]. Recently, a 

terahertz plasmonic switch implemented inside a metallic surface with a periodic array of 

grooves filled with an electro-optical material is proposed in [19]-[20]. It is shown that the 

incorporation of the electro-optical material such as nematic Liquid Crystal (LC), with 

controllable refractive index into the plasmonic gap provides a compact and efficient THz 

switch. However, the switching speed of the logic blocks developed based on the LC based gates 

or the ones with the thermally controlled plasmonic waveguides are undesirably low. Besides, 

the device implementation and wiring of such a gate is difficult [20]. In spite of short response 

times, the modulators with optical manipulation of SSPPs require a separate high power source 

for an efficient operation.  

To avoid the above mentioned fabrication difficulties and to increase the switching speed of 

future terahertz plasmonic active devices, the application of doped semiconductors instead of the 

LCs is proposed here. As widely known, the conductivity of a semiconductor is dependent upon 

the number of the free charges which can be controlled by different mechanism as light 

illumination and electrical doping [23]. While photo-doping is a fast and effective approach for 

many applications, the significant amount of the conductivity modulation required in active 

plasmonic devices necessitates large incident optical powers which are impractical in many 

applications. Alternatively, the doping level within a semiconductor can be varied via the 

application of a voltage across an appropriately designed metal-semiconductor (Schottky) 
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junction [23]. This is due to the variations of the depletion region width that exists along the 

metal-semiconductor interface. In this manner, the conductivity of the semiconductor can be 

manipulated by changing the bias voltage. The semiconductor conductivity can be regulated 

more effectively by implanting different doping levels and types (p or n) in various locations 

within the structure. For instance, depositing a thin layer of highly p
++

-type doped silicon inside 

an intrinsic silicon wafer with an n
++

-type doped back gate can establish a PIN (P-Intrinsic-N) 

diode. The existence of the PIN diode makes the manipulation of the silicon conductivity 

possible with the aid of electron and holes, simultaneously. 

In this paper, we propose a THz plasmonic modulator implemented inside a corrugated silicon 

substrate covered with a platinum layer. By applying the bias voltage on the doped silicon-

platinum junction, the wave propagation along the waveguide is controlled. The design starts 

with a finite element solution of the well-known drift-diffusion and Poisson equations to 

calculate the charge distribution inside the device. Next, Drude model is employed to estimate 

the doped silicon conductivity from the calculated charge densities. Afterwards, a full wave 

commercial simulator [24] is used to characterize the surface wave propagation along the 

structure. This simulation is repeated as the silicon conductivity is varied by applying various 

bias voltages across the junction. This characterization is performed in a wide frequency range 

located at terahertz regime (200 GHz- 320 GHz). However, the device is aimed to operate 

efficiently at a specific frequency range (250 GHz – 320 GHz).To concisely present the results; 

the scattering matrix formulation of the non-TEM plasmonic mode is developed. Finally, a more 

sophisticated design is introduced that employs a PIN diode to electrically modify the doping 

density of the silicon substrate.  
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Fig. 1.  A front view of the proposed plasmonic THz switch and input and output 

plasmonic waveguides. The switch and the waveguides are respectively designed 

inside the doped and un-doped sections of a silicon wafer with thickness t1 = 160 

µm indented with periodic holes with repetition d = 30 µm, in distances a = 24 

µm and height h = 60 µm. 

The structure of the proposed THz plasmonic switch: 

As demonstrated in [9]-[12], a periodically corrugated metallic layer is able to carry EM 

surface waves with TM
x
 mode characteristics at terahertz frequency ranges. An example of this 

structure is depicted in Fig. 1. It includes a silicon wafer (deliberately doped at a specific section) 

with relative permittivity εr, tailored with linearly spaced grooves which are filled with a metal. 

The electric and magnetic field components and the wave vector of the TM
x
 mode are also 

depicted in Fig. 1. Generally, the field variations of the TM
x
 mode at frequency “f”, follows the 

exponential function exp (jωt – jβx – δ (y–h–t2)); where, ω = 2πf, β and δ, h and t2 are angular 

frequency, phase and attenuation constants along x and y directions, indentation height and 

metallic layer thickness, respectively. As proved in [10] for the case of periodically grooved 

metal surface with sharp edge indentations, the dispersion relation of the fundamental plasmonic 

mode is: 
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as λsi  a, d and where:  

 0 sinc
2

aaS
d

 
 ,      (2) 

2 2

siδ = ± β -k and λsi = 2π / ksi. In Eq. (1) and Eq. (2), c and, ksi and λsi are the speed of light in 

vacuum (m/s) and the phase constant and wavelength of the radiating mode inside the silicon 

wafer, respectively. Additionally, the TM
x
 mode wave impedance along x is defined as Z

x
 = β / 

(ω × ε) [25], where the silicon permittivity is ε = εr × ε0 (ε0 ≈ 8.85 × 10
-12

 F/m). Using Eq. 1, it 

can be concluded that SSPPs (with β ≥ ksi) are only allowed to propagate along the grooved 

metal as tan (ksi×h) > 1. Therefore, SSPPs are not bounded to the metal-semiconductor interface 

at z = (-h – t2) as  r rf > f = c 4h ε , where fr is called the resonant frequency herein. Thus, fr 

sets the upper limit for the operating frequency bandwidth of the plasmonic structure. As taking 

Ohmic and dielectric losses into account, the phase constant (j β) within the wave function is 

substitute with γ = α + j β where, α is the fundamental mode attenuation constants along x. 

Moreover, the TM
x
 wave impedance along x is re-defined as: Z

x
 = γ / (j ω ε) [25]. Considering 

the well-known Helmholtz equation [25]: 

2
2 2

2
0r

c


      ,       (3) 

it is understood that the fundamental mode is mainly confined in the proximity of the metal 

edges as λsi  λ= 2 × π / β. In addition to the fundamental mode, higher order modes excited due 

to the wave diffraction at the edges also exist in the proximity of the indented surface. 

Here, the active plasmonic device depicted in Fig. 1 is proposed to navigate the SPPSs using 

the concept of semiconductor electrical doping by the means of a Schottky contact. The Schottky 
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contact is established between the deposited metal and the n-type doped (with donor density ND1 

= 5 × 10
14

 cm
-3

) section of the silicon wafer. In order to couple EM wave to the active device, 

two plasmonic waveguides are considered inside the un-doped sections of the silicon wafer. The 

waveguides transfer EM wave to the plasmonic switch at the input (x = l1) and the output (x = l1 

+ ld1) ports (see Fig. 1). The suggested silicon wafer (with thickness t1 = 160 µm) is periodically 

corrugated with cubic holes. The period, the height and the distances of the holes are d = 30 µm, 

h = 60 µm and a = 24 µm, respectively. The indentations are completely filled with platinum. 

Besides, the wafer top surface is covered with a t2 = 20 µm thick platinum layer. Platinum can be 

deliberately substituted with any other popular metal in the semiconductor industry if it offers 

high electrical conductivity in the interested frequency range. However, this can change the 

expected threshold voltage of the Schottky junction and the wave attenuations due to the 

variations of the metal-semiconductor barrier height and the electrical conductivity of the metal, 

respectively. The length of the plasmonic switch considered in the first design is ld1 = 5 × d (see 

Fig. 1). To establish an Ohmic contact beneath the structure, very high level of n
++

-type doping 

up to ND_Ohmic = 2 × 10
17

 cm
-3

 with a Gaussian profile is maintained at y = - (t1 + t2) throughout 

the active device length (from x = l1 to l1 + ld1). The thickness of the wafer is chosen such that it 

stays larger than the fundamental mode decay length in the y direction (1 / δ), throughout the 

interested frequency range (260 GHz-320 GHz). In this manner, the Ohmic contact may not 

disturb the SSPP field distribution. 

As shown in Fig. 1, the edges of the holes located inside the wafer are considered to be 

rounded with radius “r”. The width of the structures along z axis is considered to be at least an 

order of magnitude larger than the desired plasmonic mode wavelength. Therefore, a 2D solution 

of the electromagnetic and charge transport equations can obtain accurate results. In order to 
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control the width of the Schottky contact depletion region, an external control voltage Va is 

applied between the Schottky and Ohmic contacts. In this manner, the conductivity of the doped 

silicon substrate is externally controlled. As the Schottky diode is under forward bias condition 

(switch is in the OFF mode), SSPPs suffer from large attenuations as propagating along the 

device. On the other hand, plasmons face less attenuation as the diode is reversely biased (switch 

is in the ON mode). To reduce the insertion losses of the switch in the ON mode, it is favorable 

to increase the width of the depleted area. However, the width is restricted to a maximum 

allowable reverse voltage. This limit corresponds to the silicon breakdown condition that 

happens as the total magnitude of electric field is larger than the 53 10  V/cm. The consideration 

of the rounded edges in the simulation allows us to apply higher reverse bias voltages onto the 

Schottky junction compared to the right angle ones, without reaching the breakdown limit of the 

silicon substrate. 

The simulation details: 

In order to completely capture the electron-wave interactions inside the proposed plasmonic 

switch, a set of electronic transport and wave equations ought to be solved. The simulation of the 

charge transport inside the semiconductor device is accomplished by solving the well-known 

steady-state Drift-Diffusion equations. Moreover, Maxwell equations can completely describe 

the wave propagation inside the plasmonic device. In this section, the details of the electronic 

transport and the full simulations are described.  

1. The charge transport model: 

Mostly, the analysis of semiconductor devices starts with a solution of the Poisson equation 

using the boundary condition (external voltage) to estimate the electrostatic potential θ inside the 

device. This solution is next coupled to the steady-state Drift-Diffusion equations to accurately 
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compute electron, n (cm
-3

), and hole, p (cm
-3

), densities inside the solution domain. Details of 

this type of simulation can be found elsewhere [23]. Here, a commercial solver with 

semiconductor simulation capabilities is used [26] to solve these equations. 

In the developed model, Shockley-Read-Hall formulation with the electron-hole recombination 

rate: 

   

2

.i

p i n i

n p n
R

n n p n 

 


  
      (4) 

is employed. In Eq. (4), ni = 1.45 × 10
10

 cm
-3

, ηn and ηp = 10
-7

 (s) are silicon intrinsic carrier 

concentration, electron and hole lifetimes, respectively. The set of three differential equations 

(two drift-diffusion equations for electron and hole densities and the Poisson equation) are 

solved numerically as considering specific boundary conditions over the computational domain. 

Here, constant values of electron “n” and hole “p” densities are considered at the location of the 

Ohmic contact. This is correct as presuming infinite carrier recombination velocities at the 

contact. Furthermore, the electrostatic potential of the boundaries adjacent to the Ohmic and 

Schottky contacts are: 

ln and lnSchottky a B Ohmic

i i

kT n kT n
V

q n q n
  

   
      

   
,  (5) 

respectively. In Eq. (5), T = 300 (K), q = 1.602 × 10
-19

 (C), θB = 0.83 (eV) and -23k =1.38×10  (J 

/ K) are the room temperature, unit charge, Pt/Si barrier height [23] and Boltzmann constant, 

respectively. The carrier densities beneath the Schottky contacts formed between the deposited 

Pt layer and the wafer in Fig. 1 are n = Nc × exp(q θB / kT) and p = ni
2
 / n where, Nc = 2.82 × 

10
19

 (cm
-3

) is effective density of states at the silicon conduction band. In the other boundaries, 

vanishing normal components of electron and hole current densities, and electric field are 

enforced. 
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2. Details of the full wave simulation: 

In this paper, a commercial EM solver [24] is utilized to numerically solve Maxwell equations 

inside the computational domain. To this end, Drude model is exploited to represent the metal 

frequency dependent permittivity: 

2

2
1

p

M
j




 
 


       (6) 

inside the simulator. In Eq. (6), ωp = 1.4 × 10
16

 (Rad/s), and γ = 4 × 10
16

 (s
-1

) are plasma and 

scattering frequencies, respectively. In this manner, Ohmic losses of the propagating surface 

wave are taken into account. Similarly, the high frequency characteristics of the silicon wafer are 

included into the full wave solver. As presented in [27-28], Drude model can accurately estimate 

the permittivity ε (ω) and the conductivity ζsi of the silicon substrate at frequency ranges below 

400 GHz as: 

 
 

 
2 2

, ,
1 1

dc dc
si r

 
   

 
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 
    (7) 

In Eq. (7), η and m, and ζdc are electron scattering time and effective mass, and dc conductivity, 

respectively. The dc conductivity ζdc = q × (μn n + μp p) where, μn and μp (cm
2
 / V s) are electron 

and hole mobilities, respectively. In the following, η = 0.2 ps, m = 1.08 × m0 (m0 = 9.1 × 10
-31

 kg 

is electron unit mass) and εr = 11.9. Furthermore, the electron and hole mobilities at the room 

temperature are approximated as [29]: 

0.85
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0.1318
0.0092

1
10

n

D AN N
  

 
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 

     (8) 

and,  
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,     (9) 

respectively. In Eq. (8) and Eq. (9), NA is ionized acceptor density. In order to link the charge 

transport and the EM solvers, the calculated electron and hole densities are first inserted into Eq. 

(7) to update the silicon conductivity and relative permittivity. Next, the updated silicon 

properties are included into the full wave simulator. This process is repeated as the applied 

voltage is changing. 

3. The definition of the scattering parameters for the plasmonic device 

Recently, there has been a trend to employ scattering parameters as reporting the properties of 

novel plasmonic devices [30]-[32]. Here, the definition of the characteristic impedance of a non-

TEM transmission line, as a plasmonic waveguide is reviewed. Next, the employed method for 

the S-parameter calculation is detailed. As described in [33], there are many ways to determine 

the voltage, current, and the characteristic impedance of a non-TEM transmission line. However, 

the voltage and current waves are mostly defined for the transverse electric and magnetic fields 

of a specific mode, respectively. Besides, an arbitrary characteristic impedance may be chosen to 

relate ±x going voltage and current [33]. As mentioned, there exist infinite numbers of plasmonic 

modes inside the designed device, along the interface of the indented metal and the dielectric. 

However, the fundamental mode extends furthest into the dielectric. Therefore, the characteristic 

impedance Z0 is selected equal to the real part of the fundamental TM
x
 mode wave impedance 

Z
x
r where Z

x
 = Z

x
r + j Z

x
i. 

In this paper, the simulated plasmonic switches are represented as a two port network. Such a 

representation of the active device is depicted in Fig. 2(a). In the developed EM model, two 

plasmonic waveguides with length l1 and l2, are included at the input and output ports of the 
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network to transfer the waves into and out of the switch (see Fig. 2(a)). Moreover, the presence 

of the waveguides allows that the excitation enforced at x = 0 (planar wave with electric field 

component inc

yE  and propagation constant ksi) completely follows the fundamental mode 

variations as it reaches the switch. In order to avoid wave attenuations inside the waveguides, the 

corresponding silicon wafers and the deposited metallic layers are assumed to be loss-free. In 

this manner, the waveguides can handle the TM
x
 mode with real wave impedance Z

x
r. Here, the 

reference planes of the reported S-parameter are located at the boundaries of the active device as 

depicted in Fig. 2(a). 

 
Fig. 2.  (a) 2-port demonstration of the plasmonic device terminated with 

plasmonic waveguides. (b) A schematic showing the details of the initial 

simulation performed for the calibration. 

In the following, the scattering matrix is formulated in terms of the fundamental TM
x
 mode 

electric field y component E
y
. Considering the two-port network in Fig. 2(a), the scattering 

parameters are defined as: 



128 
 

1 1

2 2

11 12

21 22

y y

r i

y y

r i

E ES S

S SE E

    
            

.      (10) 

In Eq. (10), 
1 2i ,i

yE  and 
1 2r ,r

yE  are incident and reflected field components (at ports 1 and 2), 

respectively. Using Eq. (10), scattering parameters can be obtained as: 
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Here, the 2-port network is assumed to be reciprocal and symmetric (S12 = S21 and S22 = S11). To 

calculate the scattering matrix, the following procedure is adopted. First, an initial simulation is 

performed using the commercial EM solver for the calibration purposes. To this end, the output 

waveguide is terminated with a perfectly matched layer and the incident planar wave is applied 

onto the input transmission line (see Fig. 2(b)). In this manner, the incident wave at port 2 is set 

to zero (
2

y

iE = 0). In order to only compute the incident field 
1

y

iE  at x = l1, the discontinuity 

(plasmonic switch) is eliminated. To achieve this goal, the doped silicon section with the back 

gate is substituted with an un-doped one. Moreover, the platinum layer is substituted with a 

Perfect Electric Conductor (PEC). In this manner, the middle section becomes equivalent to the 

plasmonic waveguide shown in Fig. 2(b), with characteristic impedance Z0, phase constant β and 

length ld = ld1. This setup is employed to estimate the incident field Ei1
y
 at an observation point 

along the reference plane 1 and the wave impedance of the dominant mode. The observation 

point is chosen sufficiently far from the metal edges so that the evanescent fields that exist in the 

proximity of the edges do not affect the estimated field with the dominant mode variations. Now 

that the required information is available, the S-parameter calculation of the active devices is 

continued. To this end, the discontinuity with the unknown scattering matrix is introduced 

between the waveguides as the output transmission line is terminated with the perfect match 
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layers. Afterward, the electric field component is computed at the similar observation point along 

reference plane 1. The calculated total field is equal to E
y
total1 = Ei1

y 
 - E

y
r1. Knowing Ei1

y
 from 

the previous simulation, S11 can be computed: S11 = E
y
r1 / Ei1

y
. After estimating the transmitted 

field E
y
r2 at the reference plane 2, S21 is similarly calculated as S21 = E

y
r2 / Ei1

y
. 

Plasmonic switch with the Schottky contact 

In order to present a guideline for designing the plasmonic switch in different frequency 

ranges, the dispersion relation of the described structure (in Fig. 1) with different indentation 

depths “h”, calculated by the analytical mode (Eq. (1) and Eq. (2)) are shown in Fig. 3. As 

depicted, the resonance frequency of the plasmonic structure “fr” decreases as the depths of the 

holes “h” increases. In this manner, the indentation heights “h” can be determined for a specific 

design with a required maximum working frequency limit. In Fig. 3, the dispersion relation of 

the radiating mode is also illustrated. Comparing the phase constants of the radiating mode and 

the TM
x
 modes along the plasmonic structure with different “h” in Fig. 3, it is understood that 

the SSPPs are not bounded to the metal edges at z = (-h – t2) plane as f < 200GHz . This places a 

minimum operating frequency limit on the plasmonic device since the SSPPs are not restricted 

inside the silicon wafer as β  ksi.  

Figure 4 represents the fundamental mode wave impedance Z
x
r and dispersion relation of the 

input and output waveguides calculated by the full wave simulator as h = 60 µm. To this end, the 

calibration simulation (detailed in Fig. 2(b)) is performed. In this manner, the phase constant β is 

first computed for a section of the waveguide with length ld as β = θ / ld where, θ is the phase of 

the waveguide port 1 to 2 transmission coefficient S
WG

21 (= |S
WG

21| × e
(j × θ)

). Next, the wave 

impedance of the fundamental mode is computed as Z
x
r = β/ ω × ε. As mentioned, the 

characteristic impedances of the waveguides are chosen equal to their fundamental mode wave 
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impedance Z0 = Z
x
r. As depicted in Fig. 4, the resonant frequency is located at 320 GHz. The 

differences between the SSPP characteristics (resonant frequency and maximum achievable 

phase constant) calculated by the analytical model in Eq. (1) and Eq. (2), and the full wave 

simulator are due to the consideration of the exact shape of the indentations edges inside the 

numerical solver. The dispersion relation variations of a corrugated metal with curved-shape 

edges compared to the one with sharp corners have been also discussed in [12].  

 
Fig. 3.  The TM fundamental mode phase constants calculated by the analytical 

model (1) and (2) versus frequency as the indentation height h is changing. 
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Fig. 4.  Variations of the waveguide’s fundamental mode wave impedances Z
x
r 

and phase constant, calculated by the full wave solver versus frequency. 

To show the effectiveness of the designed switch, the simulation is performed with different 

applied voltages. Figure 5(a)-5(b) and Fig. 5(c)-5(d) depict the distribution of the electron 

density logarithm (log10 n) inside the doped silicon wafer and the magnitude of the electric field 

|E| = (|Ex|
2
 + |Ey|

2
)
0.5

 at f = 300 GHz, throughout the active device as the applied voltages are 1 V 

and -80 V, respectively. As presented in Fig. 5(a), the depletion layer width is almost negligible 

as the Schottky diode is forward-biased (Va = 1). In this condition, the plasmons are attenuated 

as they propagate along the device (see Figure 5(b)). However, the depletion layer width 

increases up to 14 µm as the diode is reverse-biased (see Fig. 5(c)). In this case, the switch is 

operating in the ON mode and SSPPs suffers from small attenuations (see Fig. 5.(d)), if they are 

concentrated inside the depleted region, with small electrical conductivity. Comparing the 

distribution of the electric field magnitude shown in Fig. 5(b) and 5(d), it is concluded that the 

wave concentration along the edges of the metallic indentation are kept similar at a single 

frequency, as the device is operating in the ON and the OFF mode. Applying high reverse 

voltages in a structure, grooved with sharp angle edges is not possible due to charge 

accumulation on the corners. This high charge density results into high electric field values 

which can end up to the silicon breakdown. Employing rounded metal edges allow the designer 

to apply very high reverse voltages up to -80 V before reaching the breakdown condition. In the 

design with curved edges, the breakdown limit will not reach unless Va becomes less than 90  

V. 

Figure 6 presents the transmission coefficient S21 of the plasmonic THz switch implemented 

inside the doped silicon as different bias voltages are applied onto the Schottky contact. As 

illustrated, the insertion loss of the proposed device is less than 1dB in a wide frequency range. 
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Moreover, the switch offers signal isolations (S21
ON

 – S21
OFF

) up to 13 dB at 320GHz. On the 

other hand, the isolation reduces down to 1.5 dB in the first portion of the simulated frequency 

range. The signal isolation offered by the plasmonic switch can impose another criterion on the 

minimum operating frequency of the switch. Here, at least 3 dB signal isolation is expected from 

a single Schottky-diode-based switch. Therefore, it is concluded that the operating bandwidth of 

the first design is 60 GHz from 260 GHz to 320 GHz. 

 
Figure 5 (a) and (b) show the distribution of the electron density inside the doped 

silicon wafer, and the magnitude of the electric field at f = 300 GHz as Va = 1 V, 

respectively. (c), (d) similarly present the variations of the charge density and the 

electric field magnitude at the same frequency as the applied voltage is -80 V. 
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Fig. 6.  S21 of the plasmonic switch versus frequency as the device is operating in 

different modes at THz frequency range. 

 

Fig. 7.  S11 of the plasmonic switch versus frequency as the device is operating in 

different modes at THz frequency range. 
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Fig. 8.  S21 of the plasmonic switch with the Schottky contact as its length is 

d1l =20×d . 

In Fig. 7, the return loss of the plasmonic THz switch is depicted. As presented, the return loss 

of the device is better than -30 dB as operating in the ON mode. The small amount of the input 

signal reflection is very attractive especially as connecting several components in a complex 

photonic system. 

In order to achieve a more appropriate plasmonic switch, it is critical to improve the signal 

isolation between the ON and the OFF modes. For this purpose, several switches can be 

cascaded next to each other. This can increase the wave attenuation as the switch is in the OFF 

mode. However, it can also hurt the device insertion losses. To show the effectiveness of this 

method, four series of the designed switches are cascaded to establish a structure with 20×d  

length. Figure 8 depicts the simulated transmission coefficients of the series of the switches with 

an acceptable level of signal isolation (>10 dB) in the frequency range of interest (260GHz - 

320GHz). As expected, this configuration suffers from at least 5 dB attenuations throughout the 

frequency range as operating in the ON mode.  
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As shown, it is possible to achieve high levels of signal isolation by extending the length of the 

active device. However, the large reverse voltages required to achieve an acceptable level of 

insertion losses make the device application in modern compact photonic systems unfeasible. To 

address this problem, an optimized plasmonic switch is proposed in the following section. 

Optimization: plasmonic switch using a PIN diode:  

Figure. 9 depicts a schematic of the optimized structure. In this design, a highly p
++

-type doped 

well with the acceptor ion density 17 -3
A_OhmicN = 10 cm  and Gaussian profile is considered 

beneath a section of the metallic layer (see Fig. 9). Moreover, the silicon wafer employed in this 

design is almost intrinsic with n-type doping density ND2 = 5 × 10
13

 (cm
-3

). As will be presented, 

the p
++

-type doped well and the n
++

-type doped Ohmic contact (with doping density ND-Ohmic = 

10
17

 cm
-3 

located at y = - t1 – t2) establish a PIN diode with promising properties. It is famous 

that the PIN diode operates in high-level-injection mode. This means that the spilled carriers 

from the p
++

 and n
++

 areas fill the diode intrinsic region as it is forward-biased. The long intrinsic 

layer with length (t1 – h = 100 µm) is beneficial in several aspects. First, it enables fast switching 

of the diode compared to conventional PN diodes. Additionally, it establishes a low loss 

plasmonic waveguide for the SSPP as the switch is operating in the ON mode and the diode is 

reverse-biased. Furthermore, high SSPP attenuations are expected as the diode is forward-biased 

and the switch is operating in the OFF mode. In accordance with the previous design, the control 

voltage Va is applied between the metal and the Ohmic contact located beneath the device at y = 

- t1 – t2.  



136 
 

 
Fig. 9.  A front view of the optimized plasmonic THz switch consists an un-doped 

silicon wafer indented with periodic holes (d = 30 μm, a = 24 μm, h = 60 μm and 

t1 = 160 μm) and highly p and n type doped at specific locations. 
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Fig. 10.  The hole and electron density distributions, and the magnitude of the 
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electric field at f = 300 GHz as: (a), (b), (c) Va = 5 V and (d), (e), (f) Va = 0 V, 

respectively. 

 

Fig. 11.  Insertion losses of the optimized plasmonic switch versus frequency 

under different bias conditions 

Here, the simulation results of the optiized device with the length ld2 = 5 × d are reported. 

Figure 10(a) and 10(b) respectively depict the distributions of the hole and electron density 

logarithm (log10 p and log10 n) inside the intrinsic silicon wafer as the applied voltage is 5V. As 

shown in Fig. 10(a)-10(b), the PIN diode operates in the high-level-injection mode with very 

high level of electron and hole densities as Va = 5 V. Figure 10(c) depicts the magnitude of the 

ac electric field inside the plasmonic switch as the PIN diode is forward-biased. As expected, the 

presence of the high electron and hole densities in the forward bias condition causes large wave 

attenuations as the SPPs are passing through the device. In Fig. 10(d)-10(e), the distributions of 

the electron and hole density logarithm inside the device with Va = 0 V are presented, 

respectively. As the diode is reverse-biased, the electron and hole densities are respectively less 

than or equal to 5 × 10
13

 (cm
-3

) and 10
7
 (cm

-3
). This is true throughout the silicon wafer except at 

the locations of the Ohmic contacts. The small numbers of free carriers in the reverse-biased 

diode guarantee negligible insertion losses as the switch is operating in the ON mode. This is 

confirmed by the magnitude of the ac electric field inside the active device presented in Fig. 
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10(f). Comparing the field distribution inside the plasmonic switch in the ON and OFF mode 

(Fig. 10(c) and 10(f)) at a single frequency, it is concluded that the field profile is largest at the 

proximity of the indentation edges and it decreases exponentially as moving to the perpendicular 

direction (y axis). 

Figure 11 presents the transmission coefficient S21 of the optimized plasmonic switch as 

different voltages are applied between the p
++

 and n
++

-type doped Ohmic contacts. The PIN 

diode is forward-biased as Va rises above the threshold voltage Vth = 5 V. As illustrated in Fig. 

11, the signal isolations can be further improved by increasing the applied voltage above Vth. 

This is due the increase of the carrier densities compared to the ones depicted in Fig. 10(a)-10(b). 

As illustrated in Fig. 11, the difference between the power of the transmitted signal in the ON 

(Va-ON = 0 V) and the OFF (Va-OFF = 7 V) modes can reach up to 14 dB at 320GHz, and the 

minimum expected isolation in the frequency range is about 7 dB. The insertion loss of the 

proposed device is less than 2dB in a wide frequency range.  

In Fig. 12, the return losses of the THz plasmonic switch with the PIN diode under different 

bias voltages are shown. As illustrated, the return loss of the switch operating in the ON mode 

(Va = 0 V) is better than -20 dB. 

 

Fig. 12.  Return losses of the optimized plasmonic switch (with the PIN diode) 

versus frequency as the device is operating in THz frequency range. 

200 220 240 260 280 300 320320
-50

-40

-30

-20

-10

0

Freq. (GHz)

S
1

1
 (

d
B

)

 

 

ON mode Va = 0V

OFF mode Va = 5V

OFF mode Va = 6V

OFF mode Va = 7V

200          220         240           260           280           300          320 

0 
 

-10 
 
 

-20 

 

-30 

 

-40 
 

-50 

Freq. (GHz) 

S
1
1
 (

d
B

) 

ON mode Va = 0V 

OFF mode Va = 5V 

OFF mode Va = 6V 

OFF mode Va = 7V 



140 
 

Conclusion: 

In this paper, a THz plasmonic switch inside a silicon wafer is proposed and simulated. The 

results are presented using the scattering parameters of the active device. Due to the maturity of 

the semiconductor device fabrication techniques, it is anticipated that the proposed design can be 

implemented easily compared to the previously proposed plasmonic switches. However, the 

developed device suffers from high required control voltages. To address this challenge, an 

optimized design with an integrated PIN diode is suggested. As illustrated, the optimized switch 

provides comparatively high signal isolations and acceptable level of insertion losses. Moreover, 

it is shown that the device can operate in a wide THz frequency range. Additionally, it is 

expected that this design can be further improved by incorporating a variety of doped areas 

inside the device. For instance, this may be possible by increasing the number of the p
++

-doped 

wells. Small input reflection coefficients of the designed switches suggest that they can be 

cascaded to achieve high signal isolations. We envision that the proposed switches may be useful 

in future all-integrated silicon-based THz plasmonic devices and communication systems. 
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V. BROADBAND EXCITATION AND ACTIVE CONTROL OF TERAHERTZ 

PLASMONS IN GRAPHENE 
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creating new collective works for resale or redistribution, please go to 

http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to 

obtain a License from RightsLink. 

Abstract: 

A novel broadband technique to effectively launch plasmons along a single graphene layer at 

terahertz (THz) frequencies is proposed. To this end, the coupling of the electromagnetic wave 

from a readily available plasmonic waveguide established by a periodically corrugated metallic 

surface to the graphene sheet is proposed. As will be shown, this technique can significantly 

surmount the need for efficient excitation of plasmons in graphene. For this purpose, an 

analytical technique based on transmission line theory is employed to calculate the scattering 

parameters of the connection of the plasmonic waveguides. In this manner, the gating effects of 

the graphene waveguide on the input reflection and transmission of the junction are also 
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investigated. For comparison, a full wave numerical simulator is employed. 

Introduction: 

Graphene is a carbon-based, two-dimensional (2D) nanomaterial revealed less than a decade 

ago [1]. Afterwards, graphene has been extensively examined as a platform for future photonic 

and electronic devices. This is due to its extremely high carrier mobility at room and cryogenic 

temperatures (up to 230,000 cm
2
 / Vs for suspended exfoliated graphene at T = 5 K [2]), as well 

as exceptional thermal and mechanical properties [3]. Additionally, the charge density and the 

surface conductivity of a graphene sheet can be effectively controlled by applying a 

perpendicular electric field. Moreover, surface waves coupled to carriers, mostly called plasmons 

can propagate distances up to 100 wavelengths along graphene layers with negligible 

attenuations in upper section of terahertz (THz) frequency range [4]. All these unique properties 

have made graphene a promising platform for future compact active plasmonic devices and 

systems [4]. Plasmonic structures implemented inside two-dimensional electron gas layers of 

hetero-structures [5]-[8] and graphene [9]-[10] have been vastly explored to develop compact 

terahertz sources and detectors. In addition, the emergence of plasmon-based logic gates [11] has 

introduced another beyond CMOS technology alternative that once combined with some of 

today's best logic design paradigms and practices [12]-[13] may revolutionize the future of 

computing. In spite of the numerous prospective applications of graphene-based structures, the 

key remaining challenge is how to efficiently excite the plasmons in graphene using an incident 

radiating mode electromagnetic wave. This problem is originated from the large phase mismatch 

between the incident and the plasmonic waves. 

Recently, a near field scattering setup with an atomic force microscopy tip and infrared 

excitation light has been employed to launch plasmons along a graphene layer [14]. However, 
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this is very inefficient technique with very negligible percentage of incident field coupled to the 

surface wave [15]. Moreover, surface acoustic waves [16] and modulated graphene conductivity 

[17] have been suggested to launch graphene plasmons. Subsequently, plasmon excitation along 

a graphene sheet laid over a fabricated silicon diffractive grating and illuminated by an incident 

radiating mode EM field has been achieved in [15]. Unfortunately, the suggested technique is 

successful only in a single wave number which is related to the silicon grating period. Therefore, 

the urgent need to effectively launch the propagating plasmonic mode along graphene layers in a 

wide frequency range still exists. 

In this paper, the possibility of launching the plasmons along a suspended graphene sheet using 

another plasmonic waveguide is investigated. As will be shown, the surface wave on the 

interface of a corrugated metal and a dielectric can appropriately launch plasmons along a 

suspended graphene layer at terahertz frequencies. These specific surface waves traveling on the 

exterior of a metal with engineered cuts and grooves are mostly called Spoof Surface Plasmon 

Polaritons (SSPPs) [18]. The SSPPs can be effectively launched using a network analyzer source 

or a quantum cascade laser. Here, the transmission and the input reflection of the plasmonic 

wave traveling from the indented metallic structure to a suspended graphene sheet are considered 

in a wide frequency range. To report and compare the results, conventional microwave theory 

scattering parameter notation is used. 

Simulation details: 

Fig. 1.(a) depicts a metallic surface corrugated with linearly spaced grooves with period D, 

distance (D - A), height H, filled with a dielectric (air) with permittivity εr-SSPP = 1. On the last 

edge of the indented metal, a graphene layer is located (see Fig. 1.(a)). Here, the details of the 

analytical and full wave simulation of the structure in Fig. 1. (a) are described. 
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1. 2D plasmons along graphene 

The surface conductivity of the graphene layer ζg is mostly calculated by Kubo formalism [4]. 

Using the computed conductivity, it can be proved that a TM
x
 mode electromagnetic wave 

(known as 2D plasmons) may propagate along a graphene sheet as |EF| > h  × ω [4], where EF, 

h  and ω = 2π × f are graphene Fermi energy, reduced Planck constant and radial frequency, 

respectively. The condition is easily satisfied in terahertz and infrared frequency range. 

Furthermore, the Fermi energy can be altered by applying perpendicular electric fields E0 (see 

Fig. 1 (a)). The surface wave field variations follow  G G1, 2exp jωt - γ x - δ y , where δG1 = δG as y 

≥ 0 and δG2 = - δG if y < 0. Besides, γG = αG + j × βG, αG and βG are the 2D plasmon propagation, 

attenuation and phase constants, respectively. After solving Maxwell equations and applying 

boundary conditions, the dispersion relation of the 2D plasmons is obtained: 

2 2 2

2 2

4 G r G
G

G c

   



         (1) 

where, εG =ε0 × εr-G (ε0 = 8.85 × 10
-12

 F / m) and c = 3 × 10
8
  m s  [15]. Moreover, the graphene 

characteristic impedance is chosen similar to the TM
x
 mode wave impedance ZG = 

 .G Gj    Here, the measured transport parameters of the suspended graphene layer (in air 

εr-G = 1) with extremely high electron mobility μ = 230,000 cm
2
 V

-1
 s

-1
 at T = 5K is considered 

[2]. 
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Fig. 1. (a) Proposed mechanism to excite 2D plasmons of a graphene sheet using 

SSPPs along a periodically indented metallic surface. 

2. Spoof surface plasmon polaritons along a corrugated metal: 

As proved in [19], the dispersion relation of the fundamental plasmonic mode (with 

components Ex, Ey and Hz) that can propagate along an indented perfect electric conductor filled 

with a dielectric (with relative permittivity r-SSPPε ) is: 
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where, S0 = [(D-A) / D]
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 × sinc (βSSPP × (D - A) / 2) and k0 = 
r-SSPPω ε c . In (2), SSPPβ  is the 

phase constant of the SSPPs and k0 = ω / c. As the perfect electric conductor is substituted with a 

metal (gold here), the SSPP Ohmic attenuations are considered using the formulation in [19]. In 

this manner, SSPP propagation constant γSSPP = αSSPP + j × βSSPP can be obtained, where αSSPP is 

the attenuation constant. Similarly, the characteristic impedance of this transmission line is 
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selected equal to the SSPP fundamental mode wave impedance: ZSSPP =  SSPP SSPPγ jω × ε  

where εSSPP = ε0 × εr-SSPP. Here, A = 20 μm, H = 70 μm, D= 60 μm have been considered in the 

design. The thickness of the metallic surface “t” is assumed to be larger compared to the skin 

depth in the interested frequency range. 

3. Details of the full-wave simulation and the analytical model: 

The electromagnetic modeling of the proposed structure is performed using two different 

approaches, namely a transmission line (TL) formalism and a full wave simulator [20].  

The transition of the electromagnetic wave from the SSPP on the grooved metallic surface to the 

2D plasmons on the graphene layer can be characterized by cascading two TLs depicted in Fig. 1 

(b). To this end, a section of the indented metallic surface with length l1, characteristic 

impedance ZSSPP and propagation constant γSSPP is considered as the first TL. The other sections 

of the SSPP waveguide and the exciting field are represented as a voltage source with internal 

resistance ZSSPP. Furthermore, a small portion of the suspended graphene sheet adjacent to the 

metallic edge, with length l2 is represented as the second TL with characteristic impedance ZG 

and propagation constant γG. The remaining part of the graphene layer is recognized as a load 

with impedance ZG. In this manner, the scattering parameters of the equivalent circuit in Fig. 1 

(a), calculated at reference planes 1 and 2, may be obtained using TL theory. This method 

provides a fast solution of the mentioned problem. However, it cannot include the effects of 

higher order modes which exist in the vicinity of the junction of the waveguides. These 

evanescent higher order modes exist near the discontinuity because of different characteristic 

impedances and propagation constants of the TLs. The evanescent modes specifically cause 

higher than expected attenuations, due to impedance mismatch. 

For comparison and to provide more accurate results, a complete solution of Maxwell equation 
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is performed using the numerical solver [20]. The simulation domain is excited by applying a 

wave port at x = 0 plane. In order to calculate scattering parameters, the methodology proposed 

in [16] is followed. 

Results and Discussion: 

In Fig. 2, the phase constants of the SSPPs and the 2D plasmons of the graphene sheet with 

various applied electric fields E0 are depicted. As depicted in Fig. 2, the plasmons along both 

structures obtain higher momentums compared to the radiating mode counterpart (k0), especially 

as f > 500 GHz. Moreover, slight changes in the chemical potential of the graphene lead to 

considerable variations in the 2D plasmon phase constants. It is also observed that there exists a 

single frequency for each Fermi energy, which the properties of the 2D plasmons are exactly 

similar to the ones of the SSPPs. It is expected that the transition of EM field from the SSPP to 

the plasmons on graphene can be ideally occurred at this frequency. Moreover, the differences 

between the phase constants of the 2D plasmons with EF = 0.18 and 0.16 eV, and the properties 

of the SSPPs are not very not very deep. Therefore, it is anticipated that an acceptable level of 

impedance matching between these waveguides may exist for these specific chemical potentials 

of the graphene. 

Fig. 3 and Fig. 4 depict the calculated transmission (S21) and input reflection (S11) of the 

plasmonic waves. As shown in Fig. 3, the EM energy is transferred from the SSPPs to 2D 

plasmons with acceptable level of attenuation. Additionally, this technique is effective in a wide 

frequency range. Considering the input reflection coefficient in Fig. 4, it is understood that the 

matching between the transmission lines may be optimized in a certain frequency by changing 

the graphene chemical potential. The frequency of the minimum reflection coefficient in Fig. 4 is 

identical to the crossing point of the dispersion relations of the 2D plamsons and SSPPs. 
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Fig. 2. Dispersion relation of the plasmons along the periodically corrugated 

metal and a suspended graphene with different Fermi energy levels obtained by 

the analytical model. 

 
Fig. 3. Wave transmission from the corrogated metal to the suspended graphene 

with different Fermi energy levels. 
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Fig. 4. Input wave reflection as transiting from the metallic surface to the 

graphene sheet with different Fermi energy levels. 

Fig. 5, 6 presents a comparison between S11 and S21 of the structure in Fig. 1. (a) (as EF = 0.16 

eV) obtained by the analytical and numerical models. As depicted, there is a good similarity 

between estimated transmission using different approaches. However, HFSS predict slightly 

higher attenuations throughout the simulated frequency range which is due to the consideration 

of higher order modes which are not included into the analytical model. Favorably low S11 

reported by both methods verify the usefulness of the proposed technique to launch 2D plasmons 

in a wide frequency range. 
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Fig. 5.  A comparison between the reflection coefficients (as EF = 0.16 eV) 

calculated by the TL model and numerical solver. 

 
Fig. 6.  A comparison between the transmission coefficients (as EF = 0.16 eV) 

calculated by the TL model and numerical solver. 

Conclusion: 

In this paper, a promising technique to effectively launch 2D plasmons in a suspended 

graphene layer using spoof surface plasmons polaritons along a periodically indented metal is 

proposed. To show the effectiveness of the suggested method, an analytical technique based on 

transmission line theory is proposed. To verify the results, a full-wave commercial solver is 

employed. 
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VI. CONCLUSION AND FUTURE WORKS 

A. CONCLUSION: 

In this work, the plasmon propagations along two-dimensional electron gas layers of biased 

hetero-structures are analyzed both analytically and numerically. To this end, Maxwell and 

electronic transport equations are being solved simultaneously. In the analytical model, several 

simplifying assumptions have been taken into account to make the analysis possible. These 

include disregarding Ohmic contacts on the sides of the hetero-structure and the existence of 

homogenous materials surrounding the electron gas layer. In the proposed numerical simulation, 

finite difference time domain technique is employed to solve Maxwell equation. Additionally, 

finite difference scheme is utilized as discretizing electronic transport equations. In the multi-

physics simulator, several presumptions, considered in the analytical model, have been 

eliminated. As example, the presence of Ohmic contacts and metallic grating on the top surface 

of the hetero-structure are included in the numerical solver.  

As presented, the conventional understanding of wave propagation along biased 2D layers is 

changed by the developed model. This is due to the division of symmetrical plasmonic modes 

into new asymmetrical ones in the bias device, which has not been previously reported. The 

results of this research prove the possibility of steering and amplifying terahertz signals using 

these plasmonic structures. As an example, a compact and fast plasmonic switch is designed and 

simulated that can offer very high signal isolations in the interested frequency range.  

In the second phase of this research, a silicon-based plasmonic switch is proposed and 

simulated in THz frequency range. The THz plasmonic modulator is implemented inside a 

corrugated n-type silicon substrate which is covered by a metal to achieve a Schottky contact. In 

this manner, the propagation of the plasmons along indented structure is controlled. To optimize 

the design, the employment of an intrinsic silicon substrate with a P-Intrinsic-N diode is 
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proposed. As will be described, employing highly p++ and n++-type doped areas inside the 

wafer leads to the formation of the P-I-N diode. The design begins with a finite element solution 

of the well-known drift-diffusion and Poisson equations using a numerical solver to compute the 

charge distribution in the diode. As mentioned, the electrical conductivity of the silicon can be 

obtained using Drude model and with the aid of the calculated charge density. Subsequently, 

plasmon propagation along the structure is characterized for each bias voltage using a full wave 

numerical solver. The results are stated in the form of scattering parameters in a wide frequency 

range. 

In the last section of this research, an efficient methodology to launch 2D plasmons along 

graphene is proposed. To this end, plasmons along periodically grooved metallic surface are 

successfully coupled onto a graphene mono-layer. To analyze the proposed design, a fast and 

accurate transmission line representation of the plasmonic waveguides is utilized. For 

comparison, a full wave simulator is employed. It is observed that a wide band coupling of THz 

signal onto graphene is achievable which make this design very desirable in modern plasmonic 

systems. 

B. FUTURE WORKS: 

There are several future paths to continue the research in every aspect of this work. 

1. Design, simulation and fabrication of plasmonic devices inside two-dimensional 

conductors:  

There are several challenges that need to be address before an efficient THz amplifier can be 

designed and fabricated. One of these bottlenecks is the lack of an appropriate plasmonic 

waveguide which can excite the growing mode inside the THz source and extract the generated 

field effectively. The availability of global modeling can help engineers to employ the 
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appropriate waveguides and matching networks into the design of THz plasmonic amplifiers to 

transform the success of THz emission observations from biased hetero-structures into advanced 

THz plasmonic amplifiers with acceptable level of voltage gain. Moreover, the presented multi-

physics analysis can open a new venue in the simulation of modern active plasmonic devices. 

Therefore, it is expected that new sets of plasmonic active structures can be designed and 

employed in modern compact systems.  

2. Silicon-based plasmonic modulator: 

It is expected that the presented switch becomes popular in THz band due to high switching 

speed and ease of fabrication on the silicon platform. In the future, the number and locations of 

the doped areas inside the silicon wafer can even further improve the functionality of the device. 

Additionally, the design can be optimized by changing the doping densities of the employed 

wafer. 
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