
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

12-2014

Integration of Energy Storage into a Future Energy
System with a High Penetration of Distributed
Photovoltaic Generation
Arthur K. Barnes
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Power and Energy Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Barnes, Arthur K., "Integration of Energy Storage into a Future Energy System with a High Penetration of Distributed Photovoltaic
Generation" (2014). Theses and Dissertations. 2081.
http://scholarworks.uark.edu/etd/2081

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=scholarworks.uark.edu%2Fetd%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/2081?utm_source=scholarworks.uark.edu%2Fetd%2F2081&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integration of Energy Storage into a Future Energy System with a High Penetration of 

Distributed Photovoltaic Generation 

  



Integration of Energy Storage into a Future Energy System with a High Penetration of 

Distributed Photovoltaic Generation 

 

 

A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy in Electrical Engineering 

 

 

by 

 

 

Arthur Barnes 

University of Florida 

Master of Science in Electrical Engineering, 2007 

University of Colorado 

Bachelor of Science in Electrical and Computer Engineering, 2003 

 

 

December 2014 

University of Arkansas 

 

 

This dissertation is approved for recommendation to the Graduate Council. 

 

 

____________________________________  

Dr. Juan Carlos Balda 

Dissertation Director     

 

 

____________________________________ ____________________________________ 

Dr. Simon Ang     Dr. Christophe Bobda 

Committee Member    Committee Member 

 

 

____________________________________ ____________________________________ 

Dr. H. Alan Mantooth    Dr. Roy A. McCann 

Committee Member:    Committee Member 

 



 

 

ABSTRACT 

 Energy storage units (ESU) are increasingly used in electrical distribution systems because 

they can perform many functions compared with traditional equipment. These include peak 

shaving, voltage regulation, frequency regulation, provision of spinning reserve, and aiding 

integration of renewable generation by mitigating the effects of intermittency.  

As is the case with other equipment on electric distribution systems, it is necessary to follow 

appropriate methodologies in order to ensure that ESU are installed in a cost-effective manner 

and their benefits are realized. However, the necessary methodologies for integration of ESU 

have not kept pace with developments in both ESU and distribution systems. This work develops 

methodologies to integrate ESU into distribution systems by selecting the necessary storage 

technologies, energy capacities, power ratings, converter topologies, control strategies, and 

design lifetimes of ESU. In doing so, the impact of new technologies and issues such as volt-

VAR optimization (VVO), intermittency of photovoltaic (PV) inverters, and the “smart” PV 

inverter proposed by EPRI are considered.  

The salient contributions of this dissertation follow. A unified methodology is developed for 

storage technology selection, storage capacity selection, and scheduling of an ESU used for 

energy arbitrage. The methodology is applied to make technology recommendations and to 

reveal that there exists a cost-optimal design lifetime for such an ESU. A methodology is 

developed for capacity selection of an ESU providing both energy arbitrage and ancillary 

services under a stochastic pricing structure. The ESU designed is evaluated using ridge 

regression for price forecasting; Ridge regression applied to overcome numerical stability and 

overfitting issues associated with the large number of highly correlated predictors. Heuristics are 

developed to speed convergence of simulated annealing for placement of distributed ESU. 

Scaling and clustering methods are also applied to reduce computation time for placement of 



 

 

ESU (or any other shunt-connected device) on a distribution system. A probabilistic model for 

cloud-induced photovoltaic (PV) intermittency of a single PV installation is developed and 

applied to the design of ESU. 
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CHAPTER ONE 

INTRODUCTION AND CONTRIBUTIONS 

I. INTRODUCTION 

  The United States currently depends on fossil fuels for about 67% of its electrical energy 

production [1].  Moreover, by the year 2040, the energy demand in the United States is expected 

to increase by 29% from 2012 values [2]. It is essential to reduce this over-reliance on fossil 

fuels in meeting this growing demand for energy. Doing so will avoid the detrimental 

environmental impacts of greenhouse gases and/or other pollutants, and reduce the dependence 

on foreign energy supplies. Thus, moving power generation away from fossil fuels and towards 

clean renewable energy sources, primarily solar and wind electric power, will greatly decelerate 

the adverse environmental impacts of fossil-fuel generation, while still meeting the increasing 

energy demand of our technology-driven society. The issues caused by proliferation of solar and 

wind energy sources are compounded by the projected retirements of coal and nuclear bulk 

power plants, which together currently make up 58% of US electrical energy production, as 

illustrated in Fig. 1 [1], [2].  

In conjunction with adding more renewable energy sources, electric power generation and 

delivery can be improved further by using the electric grid more efficiently to reduce energy 

wasted in existing generation, transmission and distribution systems [3], and if possible, to 

minimize the need for adding more central power stations burning fossil fuels. The traditional 

power system is giving way to future energy systems as a result of this optimization. This system 

is characterized by large-scale bulk generation, unidirectional power flows, and sparsely 

distributed control. By contrast, future energy systems are characterized by distributed 



2 

 

generation, bidirectional power flows, and a high number of networked, dispersed 

control/sensing points. It is envisioned that future energy systems will take an integrated 

approach to both reduce energy consumption and improve reliability, while empowering 

consumers to be active participants in the grid, rather than passive users of energy. This 

integrated approach depends on a number of enabling technologies, including combined heat-

and-power, distributed generation, solar photovoltaic (PV) generation, wind generation, energy 

storage units (ESU), microgrids, conservation voltage reduction (CVR) and “smart” grid 

communications as illustrated in Fig. 2. This dissertation focuses on ESU by developing 

ologyologies to integrate them into future energy systems in a cost-effective manner, and to 

analyze their benefits. The remainder of the Section will address four technology spaces where 

advances are important to optimize future energy systems. Section I.A elaborates on the benefits 

of future energy systems. Sections I.B–I.D discuss the roles of microgrids, CVR, and ESU in 

future energy systems, respectively. Section I.E summarizes the issues inherent in allocating 

ESU into future energy systems. Last, Section I.F reviews existing software packages for 

distribution system analysis and their relevance to the ESU allocation problem. 

 

 

Fig. 1. Comparison of US primary electrical energy sources by type [1]. 
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Fig. 2. Conceptual diagram of a future energy system, highlighting the bidirectional flow of information and power, used with 

permission of Andrés Escobar Mejía and Juan Carlos Balda [4]. 
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I.A. Operation and Benefits of Future Energy Systems 

In future energy systems, it is envisioned that a regional or area dispatcher coordinates the 

operation of several distribution systems in response to a wide area network optimization. On the 

policy side, flexibility is introduced by providing regulatory incentives such as time-of-use and 

peak load shaving rebates [5], [6]. Both future distribution systems and the so-called microgrids 

served by on those distribution systems will  be operated in an optimal manner in response to 

(price) signals emanating from a regional transmission operator (RTO) [7].  These incentives are 

made possible by “smart” meters and “smart” grid communications, as illustrated in Fig. 3. 

This collection of physical equipment (distributed generation, ESU, sensors, etc.), 

communication systems, and regulatory structures produces tangible benefits for both consumers 

and utilities. These include: decreasing the energy needed from (traditional) generation plants, 

reducing transmission and distribution power losses, recovering waste heat, and improving 

 

Fig. 3. A wireless mesh networked energy monitoring unit displays current 

pricing information for a residential consumer under the Southern California 

Edison electrical system. “Traffic light” style indicators on the side indicate the 

current pricing tier. 
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reliability indices. 

I.B. The Role of Microgrids in Future Energy Systems 

One of the enabling technologies, the microgrid, deserves special mention for its promise to 

transform the operation of the electrical grid. Microgrids are standalone electrical grids or 

portions of a larger utility grid that can operate in a self-sustaining islanded mode if necessary. 

Microgrids typically include an aggregate of enabling technologies: local generation, ESU, and 

controllable loads with coordinated control, as depicted in Fig. 4 [8]. Microgrids that interact 

with a larger grid use the local generation, ESU and controllable loads to appear as a single 

generator or controllable load.   While connected, they can provide services to the larger grid 

such as energy arbitrage, demand management, or reactive power compensation. These 

capabilities provide for reduced power consumption from the larger grid while improving 

reliability and power quality to the customers within the microgrid. As examples, a college 

campus or military base could benefit from microgrids. For a microgrid with intermittent 

renewable generation such as PV, it is necessary to make the intermittent generation dispatchable 

by coordinating it with the ESU and local fossil-fuel generation [9]; this is a requirement for a 

standalone microgrid to establish power balance. It is also necessary to make intermittent 

 

Fig. 4. Simplified schematic representation of a microgrid. 
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generation dispatchable for a microgrid reducing demand from (or supplying power to) a larger 

grid. This dispatchability requirement ensures that the microgrid can provide scheduled load 

reduction (or supplied power). The requirement holds true not only for PV installations within 

microgrids, but also for large PV installations that are permanently grid connected, either utility- 

or customer-owned. 

I.C. The Role of CVR in Future Energy Systems 

CVR is another important enabling technology in future energy systems. It is a useful tool for 

demand management that does not require the addition of a communications infrastructure  or 

controllable loads, and is a key component of volt-VAR optimization (VVO), which is discussed 

later in Section II. Instead of employing controllable loads, it exploits tap changers on substation 

transformers and in-line voltage regulators to reduce the overall voltage on a distribution system. 

On the average, customer loads on a distribution system will draw less power if the line voltage 

is reduced. Currently this still applies, even with power electronic loads. For example, a typical 

compact fluorescent lamp (CFL) will consume less power as line voltage decreases [10].  This is 

because low-cost power electronic converters use a diode front-end without power factor 

correction (PFC), so the dc-link voltage is tied to the line voltage. The typical  CFL will apply a 

square-wave ac voltage across the tube with a half-bridge inverter, and is unable to regulate 

current [11]. However, it is likely that the anticipated proliferation of PFC front-ends will result 

in constant-power and nearly unity power factor operation of a majority of loads; this is 

illustrated by the adoption of  PFC in LED lighting technology [12]. Despite this trend, it will 

probably take years for the necessary cost reductions to take place, so CVR will continue to 

provide value in the near future. For a typical distribution system, a 1V drop below nominal will 

decrease the load by about 1%, with approximately a 3% maximum reduction in total load 
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possible [14]. The linearized relationship Δ�����/Δ|	����| between the change in load power and 

change in load voltage magnitude is referred to as the CVR factor, which will be used later in 

this dissertation. The disadvantage of CVR is that a flatter load profile is required because the 

voltage drop on a feeder increases at peak load, when CVR is likely to be applied. This makes 

the feeder more susceptible to under-voltage conditions, such as when PV output power drops. 

I.D. The Role of ESU in Future Energy Systems 

ESU bring a host of benefits to future energy systems, such as load shifting, voltage 

regulation, and frequency regulation [13]. These benefits can be categorized in two major 

groups: reducing cost/maximizing profit, and improving power quality/security. The individual 

applications are summarized below. 

Economic applications of ESU include participating on energy and ancillary service spot 

markets. The act of an ESU participating in an energy market or responding to a time-varying 

electricity price structure is referred to as energy arbitrage. An ESU performing energy arbitrage 

will charge (purchase power) during periods when the cost of energy is low and discharge (sell 

power) during periods when the cost is high [13], [14]. There are two mechanisms that result in 

high electricity prices, periods of high demand, and unexpected shortage of supply. Using ESU 

to supply power during periods of high demand is related to load leveling [15]–[17]; this 

displaces peaking generation. Because peaking generation operates for a fraction the time that 

baseload generation does, it is economic to construct peaking generation with low initial cost, 

such as single-cycle gas turbines. However, the demands of lower construction cost and also the 

higher ramp-rate requirements of peaking generation mean that by nature it is less efficient. Both 

arbitrage and load-leveling are energy-constrained and require the ESU to  be sized to provide 

hours of discharge duration. ESU can also participate in ancillary service markets, either 
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spinning reserve, frequency regulation, or reactive power [18], [19]. Other applications which 

lead to economic benefits include avoidance of transmission congestion costs, deferring 

upgrades, and reducing distribution system losses [20]–[22].  

Within the context of microgrids, ESU provide the ability to perform unit dispatch more 

efficiently. Reciprocating engines will consume a fixed amount of fuel even when load is 

negligible [9]. Additionally, such engines operating at low load (and operating temperature) can 

suffer carbon build-up within the engine [23]. ESU allow the microgrid to operate more 

efficiently at low loads by using charge/discharge scheduling [24]. A generator under 

charge/discharge scheduling operates as close to full power as possible (its most efficient 

operating condition) for a fraction of the time to both supply load and charge the ESU. The 

remaining fraction of the time, the ESU and any renewable generation will supply loads.    

Power quality/security applications of ESU on distribution systems include providing 

uninterruptible power supply (UPS) functionality, compensating for voltage sags, improving the 

feeder voltage profile, providing black start capability, compensating for voltage flicker, and 

relieving overloaded network components [25]–[27]. Within the context of microgrids, the ESU 

provide power balance during transient events. These events include the transition to islanding 

mode, or sudden changes in power during operation in islanded mode (for example, when a 

motor load starts or local PV generation is suddenly clouded). This is critical because 

dispatchable generation in microgrids may have slow response times (as is the case with 

microturbines and fuel cells) or may require several seconds to turn on.  

Last, ESU are useful for integrating intermittent renewable generation such as PV or wind 

into the electrical grid. For integration of PV, ESU provide a number of functions. These include 
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reducing voltage and frequency fluctuations caused by cloud-induced intermittency of PV output 

power, and improving dispatchability by reducing forecast errors [28]–[31].  

I.E. Integration of ESU into Future Energy Systems 

Integration of ESU into a distribution system is achieved by selecting the storage capacities, 

the storage technologies to use, the locations of each ESU, the power rating of the individual 

ESU, the power electronic interface (PEI) topology of the ESU, and the scheme to coordinate the 

ESU with other resources, such as PV [32]. This activity is made more challenging because the 

component tasks are interdependent. For example, the best storage technology depends on the 

charge/discharge profile [20]. 

Many different storage technologies are available for delivering power for a few seconds to 

several hours. The most common forms of storage technologies are batteries, compressed-air, 

electric double-layer capacitors, energy storage, pumped-hydro energy storage, vanadium redox 

flow batteries, and flywheels [33]. Examples of battery technologies are lithium-ion (Li-ion) or 

nickel-metal hydride (NiMH), though several other technologies exist [34]. The battery chemical 

compositions considered are presented in Fig. 5. Prices and figures-of-merit are based on 2011 

values [35].  

Of particular interest among these other technologies are electric double-layer capacitors, 

commonly known as ultracapacitors (UC). UC can be coordinated with batteries for providing 

frequency regulation and integration of intermittent renewable generation, as illustrated in Fig. 6.  

The methodology used for storage capacity selection must be able to deliver recommendations 

about which storage technology or combination of technologies to use.  
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Another important consideration is that ESU will interact with other pieces of equipment and 

methodologies for achieving either power balance, load reduction or voltage regulation. These 

include demand management  through controllable customer loads or through VVO, and 

distributed energy resources (DER) such as PV inverters. To control the ESU efficiently in 

conjunction with PV inverters it is necessary to model the power variability inherent to PV 

generation.  

 

Fig. 5. Comparison of the merits of 5 common battery chemical compositions. 

 

 

Fig. 6. Example of a hybrid battery-UC ESU applied to smooth a PV installation. 
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However, the “smart” PV inverter can mitigate some of the effects of this variability by 

either curtailing power output or absorbing/injecting reactive power to regulate voltage.  

Current grid codes do not permit DER to provide voltage regulation, but there is considerable 

motivation to allow this [36]–[38]. ESU must be coordinated with these DER, and the 

coordination must be considered when determining placement, power ratings and control of 

ESU. These resources will be supervised through a network as components of microgrids or 

future energy systems as mentioned above. Therefore, individual components will not operate 

independently and the predicted operation of the ESU and other equipment must be considered 

when determining placement and power ratings.  

A PEI is necessary in order to interface the ESU storage to the electric grid. Several different 

topologies are available [3], [39]–[42]. The best PEI topology in terms of overall efficiency 

depends on the operating conditions of the storage in terms of net power flow and input/output 

voltages. This work demonstrates the selection of the best topologies for both battery- and UC-

based ESU, which is considered separately from the storage capacity and technology selection 

problem. The selected topology for battery-based ESU is illustrated in Fig. 7.  

I.F. Tools for Integration of ESU 

Software tools are used by utility planners to determine shunt capacitor bank sizes and 

locations. These tools establish an economic tradeoff between distribution and transmission 

system losses versus the installation costs of capacitor banks. Commonly used  commercial 

software applications include Cyme, Windmil, Synergee, and Distribution Engineering 

Workstation (DEW) [43]–[46]. In addition to models for shunt capacitors, commercial 

applications typically include or have add-on tools available for performing capacitor placement 

automatically.  
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Open-source tools are also available, notably Gridlab-D from Pacific Northwest National 

Laboratories (PNNL) and OpenDSS from the Electric Power Research Institute (EPRI). These 

have more flexible analysis capabilities, including quasi-dynamic load flow, harmonic load flow, 

openly documented model formats, support for interprocess communication, scripting, and the 

ability to create custom equipment types [47], [48].  

However, support for ESU in both classes of software is in its infancy. Some include models 

for ESU but with limited control sophistication, restricted to either following a pre-set schedule, 

maintaining power flow at a setpoint, or charging/discharging when a measured quantity exceeds 

a threshold [46], [49], [50]. Others include a battery model, but rely on the user to generate 

control signals [51]. None include tools for placement or power rating selection. The absence of 

tools exists because the required methodologies are still in their developmental stages. These 

tools must be developed to aid the efficient use of ESU. A number of issues are unique to ESU, 

and must be taken into account when designing such tools. 

 
Fig. 7. A single-stage PEI (inverter with no intermediate dc-dc converter) 

connecting a DER to the utility grid. 
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II. MAIN MOTIVATION FOR THIS DISSERTATION 

 The main motivation for this dissertation is to solve three main problems related to 

integration of ESU into future energy systems: 

1.  ESU storage capacity, storage technology selection, and scheduling,  

2.  placement, power rating selection, and coordination of individual ESU with PV inverters, 

and 

3.  PEI topology selection. 

In solving these problems effectively, several important deficiencies in the existing 

methodologies for design and analysis of ESU must be addressed. First, at the time the relevant 

work was performed, there was a dearth of  methodologies for storage technology selection of 

ESU or on how to coordinate a combination of different storage technologies for utility 

applications [35]. 

Second, the state-of-the-art of DER placement had not kept pace with technical innovations 

currently making their way into distribution systems. The first of these innovations is the concept 

of VVO, in which equipment for voltage regulation and reactive power compensation on a 

distribution system are coordinated to reduce power consumption. The concept of VVO won 

success with utilities, allowing them to reduce power consumption with their existing equipment. 

Both major utility equipment manufacturers and upstarts have responded with their own systems, 

including Cooper Power Systems, PCS Utilidata, ABB, and S&C [52]. The second of these 

innovations is the “smart” inverter, proposed by EPRI [37], [53]. Such inverters include sensing, 

control, and communication functionality. These capabilities allow inverters to eliminate PV-

induced overvoltage by curtailing real power injection, or by absorbing reactive power. These 

inverters can also inject reactive power for the purposes of up-regulating voltage or line loss 
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reduction. Rather than being a problem for distribution engineers to mitigate, PV could be an 

asset that can be exploited within the context of a VVO framework [54]. At the time the relevant 

work was completed, the existing state-of-the art in DER and ESU placement addressed 

distribution systems operating with traditional equipment and control methodologies [16]-[18].  

A third problem is the choice of the PEI impacts the overall efficiency of ESU. Although the 

necessary analysis was carried out in previous work [55], no “best-practice” topology 

recommendations existed for grid-connected ESU that considered typical battery/UC 

configurations, grid voltages, and operating conditions (battery/UC voltages and currents).  

Last, there is a deficiency in work characterizing and modeling intermittency of PV 

generation, particularly when compared to wind generation. This characterization and modeling 

is necessary for forecasting, evaluating any deleterious effects on utility equipment, designing 

ESU to mitigate such effects, and scheduling PV with a combination of other generation sources, 

ESU, dispatchable loads, and critical loads  [56].  

III. CASE STUDIES FOR INTEGRATING ESU 

The research presented here focuses primarily on distribution systems with a high penetration 

of DER, notably PV generation, that make use of ESU to reduce the RTO’s need for scheduling 

inefficient peaking generation, as well as to reduce the amount of excess generation capacity 

needed for load following and reserve (spinning) capacity [19]. It is assumed the distribution 

systems are owned by single, large commercial or institutional customers participating in a real-

time pricing program, but are still intended to be representative of a range of radial electrical 

systems [12]. The primary purpose of the ESU is to perform energy arbitrage in response to the 

cost of electricity.  
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However, the ESU could also be used for ancillary services such as spinning reserve, 

frequency regulation, voltage regulation, and reactive power compensation. The last two 

capabilities are assisted with the ability of the PV inverters to provide reactive power. Voltage 

regulation is particularly helpful if CVR is also used for demand management.  

Several distribution systems are selected in order to assess the efficacy of the methodologies 

proposed across a range of representative systems. These include:  

1. a 17-bus radial system from rural Italy [57], 

2. an 11-bus radial system from rural Arkansas [58], 

3. an 18-bus radial system [32], [59], 

4. a 41-bus radial system from southern California [54], and 

5. a large radial system with 1699 customers [60]. 

Note that not all proposed methodologies are tested across all systems. For example, the last 

distribution system listed serves to validate the scalability of the methodologies on a large system 

model. 

IV. SUMMARY OF WORK PERFORMED 

The work performed in this dissertation was divided into four main areas: (1) calculating 

storage capacity and scheduling of an individual ESU connected to the grid, (2) determining 

placement and power ratings of multiple ESU on a distribution system, (3) topology selection for 

the PEI connecting an ESU to the grid, and (4) modeling of PV clouding applied to the design 

and control of ESU. The remainder of this section describes these areas in more detail. 
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IV.A. Storage Capacity Selection and Scheduling of ESU 

For the case of storage capacity selection and scheduling of individual ESU, the case of a 

customer-owned ESU operating under a TOU pricing model is considered. Both two-level and 

three-level TOU pricing models are analyzed [35]. Multiple battery chemical compositions are 

studied: lead-acid, NiCd, NiMH, Li-ion and NaS. The cycle life of the battery is taken into 

account as a constraint. The ESU is evaluated over a range of possible lifetimes, and the optimal 

size, schedule, and mixture of battery technologies are calculated.  

To reflect projected changes in how electrical energy is billed, the analysis is extended to the 

case of an ESU that operates under a pricing structure linked to the day-ahead electricity market. 

The ESU provides not only energy, but also ancillary services in the form of regulation and 

spinning reserve. This scenario could also correspond to an ESU operating as a price taker on the 

day-ahead electricity market. In the analysis, it is assumed that a Li-ion battery is selected, based 

on the results of previous work [33]. The battery is sized using linear programming and a set of 

historical pricing data [61]. Because the pricing structure is not deterministic, it is required to 

validate that the battery design meets lifetime requirements. Additionally, the validation verifies 

if the actual profitability matches the projected profitability using perfect information. To 

perform validation, it is necessary to design a forecaster for the price of providing energy, 

regulation, and spinning reserve services. A linear forecaster with ridge regression is selected for 

this purpose [62], [63]. To account for lifetime issues, the conditions under which the optimal 

scheduling will charge and discharge are analyzed. The  lifetime constraints are added indirectly 

to the validation scheduler for the ESU by including upper/lower thresholds for 

charging/discharging the ESU, respectively.  The predicted prices are then used to schedule the 
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ESU over a one-week lookahead interval over every hour. This is done over four three-week 

periods during each season of one year to calculate the actual profitability of the ESU. 

IV.B. Placement and Power Rating of ESU 

For the case of placement and power rating selection of multiple ESU on a distribution 

system, the economic value of placing the ESU is determined along with the solution for ESU 

allocation. The problem is formulated in terms of a positive-sequence representation of a radial 

distribution system in which customers on the system are billed according to a three-level time-

of-use (TOU) pricing structure that varies depending on season. The feeder also includes “smart” 

PV inverters, which are able to inject reactive power under either local or coordinated control to 

reduce losses and regulate voltage [37]. The allocation of these inverters is included as part of 

the ESU allocation problem. The allocation problem considers a 20-year design lifetime, 

balance-of-system costs, maintenance costs, battery costs, and the cost of electricity consumed.  

Placement and power rating selections are performed using simulated annealing to select the 

individual buses for placement [58], [64]. An inner optimal power flow (OPF) solver calculates 

the necessary power ratings of the individual ESU [65]. For the placement objective, only the 

peak loading of the feeder is considered. The placement is validated by calculating the optimal 

economic dispatch of the ESU considering only the TOU pricing structure. It is then verified that 

under all loading conditions, the ESU can both charge and discharge at the locations specified 

without violating voltage constraints.  

The analysis with simulated annealing revealed that the OPF selects candidate buses for ESU 

placement in sets of discrete, well-spaced groups. Within groups, the candidate locations tend to 

be placed at adjacent or nearly adjacent buses. This observation motivated a follow-up analysis 

which developed a heuristic methodology to speed placement of ESU and “smart” PV [66]. In 
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the follow-up analysis, ESU candidate locations are also selected via an OPF under peak load 

conditions. The actual ESU locations are then selected with a clustering algorithm that groups 

nearby candidate locations into a single ESU.  To allow the use of clustering, multidimensional 

scaling (MDS) is employed to convert the matrix of impedances between different buses into 

points in a space [67]. The performance of the methodology is compared against an existing 

genetic algorithm (GA) approach, both in terms of speed of computation and quality of the 

solution [32]. To validate the final ESU placement, a set of worst-case feeder load and ESU 

charge/discharge conditions were selected, rather than a daily charge/discharge profile. Based on 

the worst-case conditions, the maximum flicker from the ESU providing frequency regulation is 

calculated.  Additionally, it is verified that the ESU will not introduce steady-state over- or 

under-voltage conditions. 

Based on the verification that “smart” PV inverters proved helpful in regulating voltage, an 

additional follow-up study evaluates the benefit of ESU also providing reactive power 

specifically in terms of power savings. The key question to be answered is whether an ESU with 

a practical (lossy) PEI can still provide advantages in terms of reducing losses and energy 

consumption on a distribution system, particularly one that already has an economic deployment 

of shunt capacitor banks. Also of interest is whether the CVR factor will impact the power 

savings gained by ESU deployment. Based on this focus, the study omits the “smart” PV 

inverters and economic analysis, instead focusing exclusively on the use of ESU for reducing 

feeder energy consumption. Again, an OPF is used to select candidate locations for ESU 

placement, but an inverter loss model is added [68]. As with the previous study, with the ESU 

allocated, the ability of the ESU to operate under worst-case loading and charge/discharge 

conditions is validated. Additionally, the flicker introduced by the ESU providing regulation 
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services is quantified. In this analysis, two new feeders are studied. Moreover, the impacts of 

inverter efficiency and CVR factor on feeder power reduction are analyzed. 

IV.C. PEI Topology Selection 

The study of PEI topology selection for an ESU is motivated by the observation that the most 

efficient topology for interfacing DER to the grid depends on the operating conditions. The 

analysis only considers the single- and double stage inverter topologies, as it was observed that 

practical battery and UC string voltages are on the order of 300 V to 1 kV, negating the 

motivation for multilevel topologies that provide voltage sharing capability [56].  Being able to 

draw power from individual cells (as is the case with cascade topologies) is not deemed 

necessary, as the UPS industry demonstrates that cell balancing can be accomplished with good 

battery lifetimes by periodic overcharging [70].  The key observation, however, is that under 

certain design parameters for the same DER, either a single-stage or double-stage topology can 

be more efficient. Therefore, the preferred topology could depend on the distribution of 

operating conditions over time. The existing analytical models of inverter and boost converter 

losses are employed to compare their overall performance across a parameter sweep in terms of 

input voltage / power [55].  

IV.D. Modeling of Cloud-Induced PV Intermittency 

The last area of work applies probabilistic modeling of cloud-induced PV intermittency to 

the design and control of ESU. The methodology is applicable to large, centralized PV 

installations. The decision to study intermittency of centralized PV is motivated by the 

observation that PV intermittency at short time-scales decreases sharply with geographical 

separation [71], [72]. Therefore, the case of interest when addressing PV intermittency is that of 
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the large, centralized installations for which this methodology is applicable. To develop the PV 

modeling methodology, solar irradiance data is collected at a high time resolution (1s sampling 

period). The irradiance data is then classified in terms of clear sky or shaded conditions by the 

following steps. The clear sky irradiance profile is predicted with a polynomial curve fit [56]. 

The normalized error between the actual and predicted irradiance profiles is then clustered to 

classify the data. Given the classified data, the durations of clear and shaded periods are then 

inferred. The distributions of the clear and shaded durations provide sufficient information to 

characterize the intermittency of the PV. A generalized Pareto distribution is empirically shown 

to fit the data. In order to make use of the distributions, they are discretized and employed as 

hold times for a semi-Markov discrete-time random process model (SMDTRP) [73]. Several 

useful properties of the model are demonstrated, including the ability to generate simulated 

clouding data, perform short-term probabilistic forecasting, and calculate the expectation of ESU 

controller performance for mitigating PV intermittency. This last property is applied to the case 

of an ESU smoothing PV output power in order to reduce the number of operations for the tap-

charger regulating voltage on the feeder that the PV serves.  

A follow-on study replaces the clustering-based classification with a traditional Bayes 

classifier that is easier to analyze [68]. Another property of the model is demonstrated, the ability 

to calculate the distribution of PV power over a time interval consisting of several sample 

periods. An analytical expression for the cumulative distribution function (CDF) of the clear-sky 

state occupancy distribution is derived to do so. The CDF is then used to create a quantized five-

level approximation of the distribution of PV energy in 1 hour. This approximation is employed 

as an input to a microgrid scheduling algorithm with dynamic programming [68], [74]. The 

algorithm operates in 1-hour intervals over a week, coordinating a PV inverter, diesel generator, 
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and battery-based ESU. The PV power can be curtailed, but the load power cannot be controlled. 

The dynamic programming algorithm requires that the battery state-of-charge also be quantized 

in six levels. To overcome this quantization issue and to ensure efficient operation of the diesel 

generator, the dynamic programming selects between either a load-following or cycle-charging 

coordination algorithm at each time step. By selecting between two coordination algorithms, the 

dynamic programming ensures the diesel generator operates at its most efficient loading. 

V. CONTRIBUTIONS OF THIS DISSERTATION 

This dissertation has the following novel contributions: 

V.A. Storage Capacity Selection and Scheduling of ESU 

Two methodologies were developed. The first methodology uses linear programming to 

select storage technologies, capacities, and charge/discharge schedule in an integrated manner 

when operating under a deterministic electricity pricing structure [35].  

 The methodology was applied to produce the following novel conclusions: 

1. Under plausible pricing conditions, the Li-ion battery is most cost-effective because it has 

the highest efficiency of the technologies compared, allowing the ESU to produce a profit 

even during small differences between peak and off-peak pricing.  

2. The cost of Li-ion in terms of lifetime energy throughput (measured in cumulative kWh 

output  from the battery) is competitive with cheaper technologies such as lead-acid.  

3. The overall profitability of the ESU is sensitive to the design lifetime. This is a 

particularly relevant observation, as there are incentives to design ESU to last 20 years 

[75]. The motivation for this lifetime is so that the time to failure of ESU will match that 

of other distribution system equipment. Unfortunately, such long design lifetimes do not 
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result in using the batteries in the most cost-effective manner possible. This is because a 

long lifetime requires oversizing the battery and/or restricting the number of times it 

discharges. When accounting for the time value of money, oversizing the battery is a poor 

choice. A lifetime on the order of 10 years is shown to be more reasonable. 

 The second methodology calculates battery size and profitability for a Li-ion-based ESU 

providing both energy arbitrage and ancillary services. The ESU operates under a dynamic 

pricing scheme linked to the day-ahead electricity market (though the same problem formulation 

could also correspond to it operating as a price-taker on a day-ahead electricity market). The 

lifetime limitations of the battery are included as constraints [61].  The methodology is based on 

linear programming for scheduling and employs forecasting to handle pricing uncertainty. It has 

the novel characteristic of applying  ridge regression for price forecasting, which overcomes 

numerical issues caused by the high degree of correlation between the predictor variables. It was 

applied to reach the novel conclusion that the scheduling of ESU is relatively insensitive to 

forecasting error. This is because the most cost-effective use of the ESU is to provide frequency 

and regulation services throughout most of the day, and to charge during off-peak nighttime 

hours. During these nighttime hours, the pricing variability is lower, so it is easy to predict when 

to charge accurately. 

V.B. Placement and Power Rating of ESU 

 Two methodologies were developed. The first one applies simulated annealing to place the 

ESU on a future distribution system with PV in order to minimize power consumption through 

the use of VVO/CVR [58].  

 The first methodology has the following novel characteristics: 
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1. It accounts for the projected proliferation of VVO in conjunction with “smart” PV 

inverters.  

2. It applies heuristics to speed convergence of simulated annealing by weighting certain 

buses to encourage ESU placement at those buses. The weights are based on the bus 

voltage, real power draw, and reactive power draw. 

 The methodology was applied to reach the following novel conclusions: 

1. The presence of “smart” PV inverters actually reduces the amount of energy storage 

required to decrease the voltage regulation on the feeder (necessary to perform CVR). 

2.  Placing the ESU to assist with CVR does not negatively impact their use for energy 

arbitrage, as peak feeder load and electricity prices are highly correlated. 

 The second methodology is a heuristic for ESU placement using MDS and clustering [66]. 

The methodology employs a nonlinear constrained optimization engine to solve an initial OPF in 

order to select candidate ESU buses. 

 The methodology has the following novel characteristics: 

1. Buses are mapped into points on a continuous-valued space with MDS.  

2. Clustering is applied to aggregate candidate buses for ESU into ESU locations 

 While the placement problem remains combinatorial in the new space, it can now be solved 

using clustering, a well-developed subset of machine learning. Highly efficient implementations 

of the well-known k-means algorithm exist, which can then be applied [76].  

 Additionally, the following novel analysis was performed: 

1. It is shown that a set of points in the MDS space can accurately represent the system in 

terms of its connectivity and positive sequence impedances. 
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2. The reduction in ESU benefits resulting from clustering is quantified. 

The methodology was applied to reach the following novel conclusions: 

1. The heuristic significantly reduces computation time over a GA approach while 

producing a solution with only a small reduction in benefits.  

2. The methodology quantifies the impact of the converter losses affect upon the benefits 

yielded by dispersing ESU across a distribution system (as opposed to placing them 

adjacent to the substation). With current converter efficiencies it shows that reactive 

power injection gained by oversizing the ESU PEI can still reduce overall feeder power 

consumption. 

3. The methodology quantifies the effect on benefits of distributed ESU by the projected 

migration to constant-power power electronic loads (and the resulting decrease in CVR 

factor to 0). It is shown that benefits sharply decrease (but remain positive) as the CVR 

factor approaches 0.  

V.C. PEI Topology Selection for ESU 

A methodology was developed to select the PEI topology for ESU based on a typical battery 

configuration, operating voltage range, and operating current range. The analysis is based on 

existing analytical formulas  for PEI losses [77]. The methodology is applied to reach the 

following novel conclusions: A single-stage PEI topology is the most efficient under all 

operating conditions for a battery-ESU, while a double-stage PEI topology is the most efficient 

under all operating conditions for a UC-ESU. 
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V.D. Modeling of Cloud-Induced PV Intermittency 

 A novel methodology was designed to classify measured irradiance (or PV power) data 

according to whether or not the sensor (or PV array) is obscured by clouds. The data produced by 

this classifier is applied to produce a model for cloud-induced PV intermittency. It is shown the 

model can be used in forecasting, simulation,  controller design, and scheduling problems [56].  

 The methodology has the following novel characteristics: 

1. It applies clustering to classify irradiance (or PV power measurements) according to 

whether or not the sensor (or PV array) is shaded. 

2. The methodology employs a SMDTRP model whose hold times are based on a 

discretized general Pareto distribution to modeling PV clouding.  

3. The methodology applies the SMDTRP state occupancy distribution to a microgrid 

scheduler based on dynamic programming. The scheduler chooses between load-

following and cycle-charging operation at each stage. 

 The methodology was applied to reach the following novel conclusions: 

1. The model is well-suited for generating simulated PV clouding data for simulation 

studies.  

2. The model can perform short-term probabilistic forecasting without any additional 

sensors. 

3. The model can be applied to design an optimal rule-based controller for grid equipment 

interacting with PV (e.g., ESU, generators, tap changers, shunt capacitors)  by using it to 

calculate the expectation of a cost function (e.g., total battery output energy, generator 

fuel use, number of switching events) over a performance period.   
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4. The model can be used within stochastic scheduling methodologies for either grid-

connected or standalone equipment (e.g., ESU, generators, dispatchable loads). 

VI. ORGANIZATION OF THIS DISSERTATION 

This dissertation is organized as follows: First, Chapter 2 presents the case of storage 

capacity and technology selection of an ESU under a deterministic, cyclical TOU pricing 

structure. Chapter 3 extends the methodologies of Chapter 2 to the case of a stochastic real-time 

pricing structure with multiple services provided by the ESU. Chapter 4 illustrates the use of 

randomized search for the placement of ESU on a distribution system. Chapters 5 and 6 

demonstrate how heuristics are used to speed up the placement while still finding a good sub-

optimal solution. Chapter 7 addresses the selection of the PEI  topology. Chapters 8 and 9 study 

the modeling of cloud-induced PV intermittency and its application to ESU. Chapter 10 presents 

conclusions and recommendations for future work. 
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CHAPTER TWO 

OPTIMAL BATTERY CHEMISTRY, CAPACITY SELECTION, 

CHARGE/DISCHARGE SCHEDULE, AND LIFETIME OF ENERGY STORAGE 

UNDER TIME-OF-USE PRICING 

Arthur Barnes, Juan Carlos Balda, Scott O. Geurin, and Andrés Escobar-Mejía  

A.K. Barnes, J.C. Balda, S.O. Geurin, and A. Escobar Mejía, “Optimal battery chemistry, 

capacity selection, charge/discharge schedule, and lifetime of energy storage under time-of-use 

pricing,” in IEEE PES Innovative Smart Grid Technologies Europe  (ISGT-EU), 2011, pp. 1–7. 

Abstract — Energy storage units (ESU) can reduce the cost of purchased electricity when 

used in conjunction with time-of-use (TOU) pricing. To maximize the cost reduction, the 

chemistries, capacities, and charge/discharge schedules of the batteries used in the ESU 

must be selected appropriately. The batteries must have sufficient capacities to supply the 

energy demanded by the charge/discharge profiles and to meet the project lifetime. The 

ESU responds to a TOU price structure. The ESU output power is limited by the rating of 

the power electronic interface. The cost of the ESU is assumed to increase linearly with 

battery capacity. A method using linear optimization is developed that determines the 

battery chemistries, capacities, and charge/discharge schedules simultaneously. The 

method shows that the Li-Ion battery chemistry is the most cost effective technology due to 

its high efficiency and that an 11-year project lifetime is most profitable. 

Index Terms — Distributed energy storage, battery energy storage, battery chemistries, 

power systems economics 
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I.  INTRODUCTION 

 Energy Storage (ES) is a technology becoming increasingly important because it allows for a 

number of benefits to both electric utilities and customers alike. These include load shifting, 

voltage regulation, frequency regulation, energy arbitrage, and UPS capability among others [1], 

[2]. ES offers benefits over traditional generation, including ability to provide or change output 

power on a moment’s notice and the lack of emissions restrictions such as those faced by diesel 

generators [3], [4]. This work focuses on the application of ES for energy arbitrage. The 

application of ES considered is a commercial customer that purchases electricity using a TOU 

pricing. The customer uses the ES in order to reduce its cost of electricity or generate profit in 

conjunction with TOU pricing.  

 In order to maximize profit however, it is necessary to select the chemistries, capacities, 

charge/discharge schedules of the batteries; these quantities are interrelated. For example, the 

best type of ES technology depends on the charge/discharge schedule [5], [6]. It is important to 



36 

 

select these values well in order to ensure that the batteries will last for the desired project 

lifetime, and that a suitable tradeoff is made between battery efficiency lifetime, and cost. Most 

ES work treats the problems of sizing and scheduling separately. One approach calculates 

schedules with given sizing [7–9]. Another approach determines the optimal size given a 

schedule [10], [11]. To date, relatively little work has been done on ES chemistry selection or 

coordination of different battery chemistries for utility applications. Current work on this topic 

focuses on coordination of ES technologies with high power density and high energy density 

[10], [12]. By contrast, the proposed method coordinates and allocates multiple battery 

chemistries using linear optimization. 

This paper is organized as follows: Section II presents the optimization methodology; Section 

III addresses the setup of the linear optimization problem; Section IV describes the numerical 

results; and Section V provides the conclusions. 

II.  LINEAR OPTIMIZATION METHODOLOGY 

 The objective of the proposed method is to determine the optimal capacities and schedules 

for an ESU, given a set of battery chemistries and pricing structure. Revenue from ancillary 

services is not considered, the constant-Ah battery lifetime model is used [13], and the cost of 

electricity increases at a fixed rate during the project lifetime. The distribution and transmission 

system connecting the customer and ESU have sufficient capacity to handle peak loads, so the 

ESU or load power need not be curtailed, and scheduling is performed based on purely economic 

criteria. Furthermore, the method makes the assumptions addressed below. 
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II.A. Assumptions 

The ESU uses a double-stage converter topology, which consists of an inverter and a 

bidirectional dc-dc converter, shown in Fig. 1 [14]. A common dc bus is used with a single 

output inverter. Each battery string connects to the dc bus through its own dc-dc converter and 

can use different battery chemistry. The sign of the current for each battery string is always the 

same, so that no battery will be used to charge any other battery. Therefore, the efficiencies of 

the inverter and dc-dc converter can be lumped together.  

The constant-Ah model specifies that the lifetime of a battery, in terms of Ah or Wh 

throughput, is roughly independent of the depth-of-discharge [13]. This is accomplished by 

considering a battery with energy capacity ��. At each measured depth of discharge � and cycle 

life ��, the  lifetime energy throughput is given by 

 

Fig. 1. ESU converter topology. 

 

. 

. 

. 
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 �� = ��� . 
(1)

The lifetime energy throughput �� measured at each depth of discharge � is approximately 

constant. Dividing �� by �� gives the normalized energy throughput ���  

 ��� = ��/�� . 
(2)

Fig. 2 illustrates the constant-Ah model applied for the case of the East Penn 8G8D lead-acid 

battery [15]. Throughout the range of �, �� varies by only a small amount. 

II.B. Optimization Objective 

Net present value (�
�) is a method for measuring the value of a project that takes into 

account the time value of money [16]. It is useful for comparing the benefit of pursuing different 

project options. The project is assumed to last � years. The cash flow from the project at each 

year 
 is ��. The minimum acceptable return rate (MARR) is �.  

 
Fig. 2.  Cycle life and energy throughput vs. depth of  

discharge for the East Penn 8G8D lead-acid battery. 
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The �
� of the project is then given by 

 �
� = � ��
�1 + ���

�

���
. 

(3)

The cost of electricity increases at rate � each year, thus  

 �� = �1 + �������
������ , 

(4)

where ��
������

is the revenue generated by the ESU at the end of the first year. Additionally, the 

denominator of the summation for year 0 is 1. Therefore, the NPV can be broken up for either 

the case of fixed rate or increasing rate into two terms �� and �� 

 �
� = �� + �� , 
(5)

where �� =  �, the initial cost of the ESU, and 

 �� = �  !" + �1 + �������
������

�1 + ���

�

���
, 

(6)

where  !" is the yearly operation and maintenance (O&M) cost of the ESU.  Separating terms 

and substituting yields 

 �
� = − � + )���
������ − )* !", where 

(7)

 )� = � �1 + �����

�1 + ���

�

���
 

(8)

 )* = � 1
�1 + ��� .

�

���
 

(9)

This is used to construct the following cost function for the optimization problem 

  =  � + )���
������ − )* !" 

(10)
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  � =  *!+, +  -./.+0 + �  +1 �+�
2

+��
. 

(11)

Here,  *!+,  is the converter cost and  -./.+0 is the siting cost. This case considers � different 

battery chemistries, so  +1  is the cost per unit energy of chemistry 3 and �+� is the rated capacity 

allocated of that chemistry. Different pricing structures are considered depending on the season 

). In this case, there are 4 = 2 different seasons, one for winter and one for summer pricing. 

Each season has 67 different time periods for each day. The daily profit for season ) is 

 �7
8�.�� = � 9 . +  7,"���*:

;<

"��
Δ=7,">7,", 

(12)

where  . is the value in $/kWh of a feed-in tariff. For each time period ? and season ),  7,"���* is 

the cost of electricity, Δ=7," is the length of the time  period, and >7," is the ESU output power. 

The yearly profit is then 

 ��
������ = � @7�7

8�.��
A

7��
, 

(13)

where @7 is the number of days per year that the particular pricing structure applies. For the 

purpose of the optimization, the output power is broken up into the discharge power and 

charging power, respectively, so >7," = >7,"8 − >7,"* . The discharging and charging powers for 

each chemistry 3 are 

 >7,"8 = � >+,7,"8
2

+��
 

(14)

 >7,"* = � >+,7,"* .
2

+��
 

(15)
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II.C. Method Constraints 

 Taking into account the round-trip efficiency of the battery chemistry B+, the state of charge 

(SoC) of each battery is [7] 

 �+,7,"C� = �+,7," + Δ=7,"9B+>+,7,"* − >+,7,"8 :. 
(16)

At each time step, the battery SoC �+,7," is constrained to be less that the rated capacity of the 

battery, so 

 0 ≤ �+,7," ≤ �+��/�8. 
(17)

Last, the lifetime of the battery must not be violated 

 � � @7 � Δ=7,">+,7,"8 ≤ �+
���+��/�8.

;

"��

A

7��
 

(18)

Here, for battery chemistry 3, �+
��

 and �+��/�8 are the normalized energy throughput and 

rated capacity, respectively. This can be set up as a linear optimization problem [16]. 

III. LINEAR OPTIMIZATION PROBLEM SETUP 

This section illustrates the design of an ESU using the method described above. The first 

design step is to select the battery chemistries under consideration. Battery chemistries can be 

characterized by a number of different qualities [17–19], including: 

1. Cost per unit energy 

2. Cost per unit power  

3. Round trip efficiency 

4. Mass per unit energy  

5. Mass per unit power  

6. Standby losses 
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7. Cycle life  

8. Operating temperature range.  

For stationary, grid-connected applications, only cost per unit energy, round-trip efficiency, 

and cycle life are considered. This is justified as follows: 

For utility applications, neither volume nor mass are typically a priority. However, for certain 

applications this could be a consideration, such as distributed energy storage for residential 

applications. An example is AEP’s community energy storage, which needs to fit within a pad-

mount transformer enclosure in order to meet consumer acceptance [20]. For cases such as these, 

volumetric density could be added as a constraint. Standby losses are measured in terms of 

percent of SoC lost per month. Given that the system is designed to cycle on a daily basis, this 

does not significantly affect the efficiency of the system. Cost per unit power is not considered 

for this application. This is because energy, rather than power is the constraining quantity. 

Typically, the ratio of energy in kWh to power in kW demanded for energy arbitrage is about 7:1 

[5]. By contrast, the power to energy ratio for most battery technologies ranges from about 2.6 to 

5 [18]; thus, energy is by far the limiting factor. Last, the energy storage unit is assumed to be 

installed within a substation enclosure, so temperature range is not a consideration.   

A large number of battery chemistries and other technologies for energy storage exist either 

on the market or in various stages of development. A small subset of these technologies is 

selected for this study based on their estimated technology readiness level and availability of 

data. The considered battery chemistries are: Li-Ion, NiMH, Lead-acid, NaS, and NiCd. These 

are shown in Fig. 3, where lifetime is measured in terms of normalized throughput [1], [17], [18], 

[21–24].  
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Fig. 3. Comparison of battery chemistry figures of merit. 

 

TABLE 1. CHEMISTRY FIGURES OF MERIT 

Chemistry Efficiency (%) Cost ($/kWh) Cycle Life at D (cycles/%) 

Lead-Acid 80 80 1000/50 

NiCd 70 600 3500/80 

NiMH 80 350 3500/80 

Li-Ion 92 315 4500/80 

NaS 80 230 4500/90 

 

The TOU pricing used in this work is employed by the Independent Electricity System 

Operator (IESO)  [25]. Note that since the work described in this document was performed, the 

pricing structure has changed, and the parameters described here no longer match the published 

rate. It is a “castle structure”, which has separate rates for nighttime, morning/evening, and 

midday periods. The costs of electricity are shown in Table 2 and Table 3. The summer and 

winter pricing structures are significantly different. This is because the summer and winter 

demand curves are significantly different, as noted in [6].  For the rate used, weekends are off-

peak.  Therefore, it is assumed that the ESU does not operate on weekends. The winter rate 

0

20

40

60

80

100

Lead-Acid NiCd NiMH Li-Ion NaS

Efficiency (%)

Cost/10 ($/kWh)

Lifetime/50 (unitless)



44 

 

applies from November 1 to April 30, 184 days in total, where the summer rate applies from 

May 1 to October 31, 181 days in total. 

As a number of utilities also use a simpler two-level pricing structure, this is also considered 

[26].  

In order that the results for the three-level and two-level rate structures are compared fairly, a 

two-level pricing structure is created that results in the same average cost in ¢/kWh given the 

Ontario load profile [27]. This modified pricing structure is shown in Table 4 and Table 5. 

The problem parameters are shown in Table 6 [5], [24], [28]. The efficiencies of the dc-dc 

converters and inverter are assumed constant across their operating range [14], [29]. However, 

the same is not true for batteries, as efficiency decreases with respect to current [30]. This is 

overcome by noting that the scheduled charge and discharge powers in Section IV are relatively 

constant, so a fixed efficiency is justified. 

TABLE 2. THREE-LEVEL TOU RATE FOR WINTER. 

Time Period Cost (¢/kWh) 

7 am to 11 am On-peak 9.9 

11 am to 5 pm Mid-peak 8.1 

5 pm to 9 pm On-peak 9.9 

9 pm to 7 am Off-peak 5.1 

 

TABLE 3. THREE-LEVEL TOU RATE FOR SUMMER. 

Time Period Cost (¢/kWh) 

7 am to 11 am Mid-peak 8.1 

11 am to 5 pm On-peak 9.9 

5 pm to 9 pm Mid-peak 8.1 

9 pm to 7 am Off-peak 5.1 
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TABLE 4. TWO-LEVEL TOU RATE FOR WINTER. 

Time Period Cost (¢/kWh) 

7 am to 9 pm On-peak 9.0 

9 pm to 7 am Off-peak 5.1 

 
TABLE 5. TWO-LEVEL TOU RATE FOR SUMMER. 

Time Period Cost (¢/kWh) 

7 am to 7 pm On-peak 8.9 

7 pm to 7 am Off-peak 5.1 

 

TABLE 6. PARAMETERS FOR THE PROBLEM SETUP  

Parameter Value 

Converter power rating 2.5 MW 

Converter cost $150/kW 

Siting $100/kW 

Subsidization of initial cost 30% 

O&M 1% 

Converter efficiency 97 % 

Project lifetime 20 years 

MARR 8 %  

Price increase rate 2.8%/year 

 

 

Fig. 4. Scheduled power for NaS with 8¢/kWh incentive and yearly O&M cost of 1%. 
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Fig. 5. Scheduled SoC and capacity for NaS with 8¢/kWh incentive and yearly O&M cost of 

1%. 

 

 

 
Fig. 6. Scheduled power for Li-Ion with 50¢/kWh incentive and yearly O&M cost of 1%. 
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Fig. 7. Scheduled SoC and capacity for Li-Ion with 50¢/kWh incentive and yearly O&M 

cost of 1%. 

 

 

 

Fig.  8. Scheduled power for NaS using two-level price structure with 8/kWh incentive 

and yearly O&M cost of 1%. 
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Fig.  9. Scheduled SoC and capacity for NaS using two-level price structure with 8¢/kWh 

incentive and yearly O&M cost of 1%. 

The O&M cost is defined in terms of a percentage of  �. The initial cost is reduced by a 

government subsidy. Last, a feed-in tariff in terms of discharged energy serves as an additional 

incentive. 

 Table 7 to Table 9 summarize the results. For the Li-Ion ESU, the higher efficiency allows 

for profit at lower price differences, resulting in higher discharge power during mid-peak in 

summer. The NaS ESU is predicted to have a higher operation and maintenance cost because it is 

required to operate at high temperatures. Four scenarios were carried out in order to see what 

effect this had on profitability, shown in Table 7. The O&M cost used for NaS determines 

whether it is the more cost-effective chemistry or not.    

 Table 8 compares the profitability of the different storage technologies under the same 

pricing structures. Both three-and two-level structures are considered. This reveals that only the 

Li-Ion and NaS technologies are profitable. 
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Fig. 10 shows how the return-on-investment (FGH� varies as function of the project lifetime 

using a Li-Ion ESU. The FGH is defined as in [31]: 

 FGH = �
�
 �

⋅ 100%. 
(19)

The highest FGH is obtained at 11 years, when the size of the battery very closely matches the 

daily energy demand resulting from the inverter processing rated power during peak and off-

peak periods. For longer lifetimes, the battery will be oversized, resulting in a higher initial 

expenditure and O&M costs compared with revenue, reducing NPV and ROI. For shorter 

lifetimes, the battery will be also discharged during the mid-peak region, increasing daily profit 

but consuming the battery lifetime less wisely. This is an important consideration to take into 

account when designing or evaluating an ESU to maximize profitability. Table 9 shows how the 

sensitivity of the results to changes in the cost of batteries for Li-Ion and NaS. Given the higher 

efficiency and lower O&M cost of Li-Ion, it is more profitable and favored by the method even 

at higher costs per kWh than NaS. The infeasible region shown in red represents the point at 

which neither technology is profitable. 

 

TABLE 7. SUMMARY OF RESULTS FOR ALL CHEMISTRIES CONSIDERED, 1% O&M FOR NAS 

Feed-in Tariff (¢/kWh) NaS O&M (%) Capacities (MWh) ROI (%) 

8 1 27.8 NaS 6.39 

50 1 40.1 Li-Ion 221 

2 5 0 N/A 

13 5 40.1Li-Ion 2.42 

  

  



50 

 

TABLE 8. SUMMARY OF RESULTS FOR SINGLE TECHNOLOGY ONLY, 5% O&M FOR NAS, WITH 10-

YEAR LIFETIME, 15 CENTS/KWH FEED-IN TARIFF 

Battery 

Chemistry 

Capacities 

(MWh) 

ROI (%) 

Price 

Structure 3-level 

2-

level 

3-

level 

2-

level 

Lead-acid 0 50 N/A N/A 

NiCd 0 0 N/A N/A 

NiMH 0 0 N/A N/A 

Li-Ion 20.5 20.5 32.9 15.2 

NaS 16.9 16.9 49.6 20.9 

 

 

Fig. 10. ROI vs. project lifetime for Li-Ion with 15¢/kWh. 

 

TABLE 9. SENSITIVITY OF RESULTS TO BATTERY COSTS, 5% O&M FOR NAS, WITH 10-YEAR 

LIFETIME, 15 CENTS/KWH FEED-IN TARIFF 

  
NaS Price ($/kWh) 

L
i-

Io
n

 P
ri

ce
 (

$
/k

W
h

) 

 
50 100 150 200 250 300 

50 363 363 363 363 363 363 

100 175 175 175 175 175 175 

150 316 91.5 91.5 91.5 91.5 91.5 

200 316 141 46.2 46.2 46.2 46.2 

250 316 141 61.5 17.6 17.6 17.6 

300 316 141 61.5 17.6 Infeasible Region 
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IV. CONCLUSIONS 

A method is developed to select battery chemistries, capacities and schedules for an ESU 

under TOU pricing. The outcome of this method showed that for the case of TOU pricing, a 

hybrid ESU with multiple chemistries was not justified. With regard to lifetime, the most cost-

effective battery capacity is one that will last for exactly the design lifetime. Alternately, 

assuming the labor and other additional costs of replacing batteries to be negligible, the best 

lifetime is one where the battery capacity is exactly that of the energy supplied daily. It is shown 

that the best battery chemistries were not necessarily the cheapest, but those that provided the 

best tradeoff between cycle life and efficiency vs. cost. The determination of the best battery is 

particularly sensitive to O&M costs. 
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 CHAPTER THREE 

SIZING AND ECONOMIC ASSESSMENT OF ENERGY STORAGE WITH REAL-

TIME PRICING AND ANCILLARY SERVICES 

Arthur Barnes, and Juan Carlos Balda 

A.K. Barnes and J.C. Balda, “Sizing and economic assessment of energy storage with real-time 

pricing and ancillary services,” in IEEE International Symposium on Power Electronics for 

Distributed Generation Systems (PEDG), Fayetteville, AR, 2013, pp. 1–7. 

Abstract – Energy storage units (ESU) can generate profit through providing multiple 

services. In order to maximize profit while meeting battery lifetime constraints, it is 

necessary to select the capacity and charge/discharge schedule of the battery. This paper 

proposes a methodology to calculate the necessary ESU battery capacity for a given power 

rating and the lifetime profitability of the ESU. Because the price of electricity is not known 

more than 24 hours in advance, forecasting is necessary when scheduling the ESU. The 

reduction in profitability of the ESU because of forecasting errors must be taken into 

account. The methodology applies ridge regression for price forecasting to overcome the 

problem of having many highly correlated inputs, which lead to poor performance of the 

forecaster. The methodology demonstrates the encouraging result that the profitability of 

an ESU is not highly sensitive to forecaster error, as the scheduler is insensitive to the types 

of errors introduced by the forecaster. This is because of the nature of the variance in 

electricity market price.  

Index Terms – Energy storage sizing, scheduling, linear programming, receding-horizon 
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control, electricity price forecasting, regularization, ridge regression.  

I. INTRODUCTION 

Energy Storage (ES) generates profit through the provision of energy, regulation and reserve 

services via a real-time pricing structure. In order to maximize the profit while meeting lifetime 

constraints, it is necessary to select the capacity and charge/discharge schedule of the batteries; 

these quantities are interrelated in that the charge/discharge schedule is constrained by the 

capacity of the battery, while the lifetime of the battery is affected by the charge/discharge 

schedule. Most ES work treats the problems of sizing and scheduling separately. One approach 

calculates schedules with a given battery capacity [1], [2], [3]. Another approach determines the 

optimal battery capacity given a schedule [4], [5]. By contrast, this paper proposes a method to 

allocate the batteries, considering lifetime while creating a predicted schedule using linear 

optimization. Because a real-time pricing structure is used, the price of services provided is not 

known beyond 24 hours in advance, so forecasting is necessary beyond this period. To account 

for the corresponding reduction in profit caused by imperfect forecasting, the results using 

forecasted pricing data are compared with those using perfect information. Separate forecasters 

are necessary for each service [6]. 

This paper is organized as follows. First, section II presents the optimization methodology 

for the sizing. Second, section III presents the scheduling problem that is used to evaluate the 

performance of the ESU designed in section II, how forecasting is performed to solve the 

scheduling problem, and how price thresholding is used in order to limit the amount of cycles 

that the battery is subjected to. Section IV introduces the problem that is used to test the 

proposed methods. Section V presents the results of the methodology on the test problem in 
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terms of battery capacity and schedule for the cases of both perfect knowledge and forecasting.  

Last, section VI discusses the conclusions. 

II. OPTIMIZATION-BASED SIZING 

The problem framework allows the scheduling of ES to be treated as a linear optimization 

problem [2], [3], [7], [8], [9]. Receding horizon control (RHC)  is used for control. In RHC the 

optimal series of control inputs is calculated for a window of fixed size into the future, based on 

the estimated future state of the plant and inputs [2], [7], [10], [11], [12]. Linear optimization 

methods can be extended or modified in order to size the ES  [13], [14]. This paper considers an 

energy storage unit (ESU) owned by a large consumer of power. The consumer purchases power 

through a real-time pricing structure that is indexed to the day-ahead electricity market. The real-

time pricing structure includes compensation for provision of ancillary services. The services 

provided are spinning reserve and regulation. A constraint is that the batteries must last for a 

specified project lifetime. The Li-ion chemistry is selected a priori, based on earlier studies 

performed [15], [16]. The lifetime must be accounted for by implementing an aging model [17]. 

This battery technology is demonstrated in other work for use individually in the services 

performed, including frequency regulation [18]. 

The outcome of the proposed method is the optimal battery capacity. Revenue from ancillary 

services is considered, the constant-Ah battery lifetime model is used [19], and the cost of 

electricity increases at a fixed rate during the project lifetime. The distribution and transmission 

system connecting the customer and ESU have sufficient capacity to handle peak loads, so the 

ESU or load power need not be curtailed, and scheduling is performed based on purely economic 

criteria.  
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II.A. Assumptions 

The constant-Ah model specifies that the lifetime of a battery, in terms of Ah throughput, is 

roughly independent of the depth-of-discharge (DoD) [19]. For the case of a Li-Ion battery 

where the battery voltage only varies by a small amount [20], the concept can be extended to a 

constant-Wh model. This is accomplished by considering a battery with energy capacity ������. 

At each measured DoD � and cycle life �	, the  lifetime energy throughput �	 is given by 

 �	 = ��	 . (1)

Dividing �	 by ������ gives the normalized energy throughput  

 �	� = �	/������. (2)

Fig. 1 illustrates the relationship of � vs. �	 [21]. Unlike the case of a lead-acid battery, 

which has approximately an inverse relationship between �	 and � [14], the Li-ion battery has a 

�	 vs. � relationship of  

 �	 = 30���.��. (3)

The above expression is derived empirically by assuming a power-law relationship of the 

form 

 � = ��� . (4)

 This is linear when plotted on a log-log scale   

 log � = log ��� (5)

                 = log � + � log �. (6)

The coefficients can then be extrapolated by means of a least-squares fit [22]. It is observed 

that the corresponding relationship between �	 and � is approximately inverse: 

 �	 = � ⋅ 30���.�� (7)
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 = 30���.��. (8)

This result indicates that Li-ion is a good option for applications that require a large number 

of small charge/discharge cycles, such as frequency regulation. The downside is that lifetime 

calculation is more complicated, as unlike the case of the lead-acid battery, the constant-Wh 

model is not valid across a wide range of �. This difficulty is overcome by counting throughput 

due to frequency regulation separately from large cycles that occur on a daily basis and reflect 

the battery charging during periods of low demand and low electricity prices. 

II.B. Optimization Objective 

The objective is to maximize the net present value (���), a method for measuring the value 

of a project that takes into account the time value of money [14]. It is useful for comparing the 

benefits of pursuing different project options. The project is assumed to last � years. The cash 

flow from the project at each year � is  !. The depreciation rate, also referred to as the minimum 

acceptable return rate (MARR) is ". The ��� of the project is then given by  

 ��� = #  !
$1 + "&!

'

!(�
. 

(9)

The cost of electricity increases at rate ) each year, thus  

  ! = $1 + )&!��*�
!���+! . (10)

The denominator of the NPV after 0 years have passed is 1. This quantity represents the 

initial cost of the project. Therefore, the NPV can be broken up for either the case of fixed rate or 

increasing rate into three terms  �,  �,, and  	 such that 

 ��� = − � +  � −  , −  	 . (11)
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Fig.  1. Normalized lifetime throughput (unitless) vs. DoD. 

 

In the above,  � = .�, the cost of purchasing and installing the ESU. This is expressed in terms 

of the cost of the power electronic converter, siting, and battery 

 .� = 1.,2345 + .67�7385 9������ + 11 − :6;�67�!9.5������. (12)

In the above, the converter and siting costs are proportional to the ESU power rating ������ by 

the factors .,2345  and .67�7385 , respectively. The battery cost is proportional to the ESU energy 

rating ����738 by the factors .5 and $1 − :6;�67�!&, where .5 is the cost per kWh of the batteries 

and $1 − :6;�67�!& represents a government subsidy of the battery cost. 

The second term  � is the revenue gained by operating the ESU, while  , is the operation 

and maintenance cost of the ES. The last term  	 is the net revenue from decommissioning the 

ESU at the end of the design lifetime. These terms are defined as follows: 

  � = # $1 + )&!��*�
!���+!

$1 + "&!

'

!(�
 (13)
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  , = # .�
!���+!

$1 + "&!

'

!(�
 (14)

  	 = .	
$1 + "&'. (15)

The quantity *�
!���+!

 is the revenue produced by the ESU at the end of year one, while 

.�
!���+!

 is the operation and maintenance costs accrued at the one of year one. The net cost .	 

from decommissioning the ESU is the disposal cost of the batteries.  The operation and 

maintenance cost is defined as follows 

 .�
!���+! = .	7<�� + = >

24 ⋅ 365C .D . (16)

This includes a fixed portion that is proportional to the energy capacity of the ESU 

 .	7<�� = ������.	7<��5  (17)

as well as a variable portion .D that increases with the usage of the ESU 

 .D = .4��′
ΔE # F��

D

�(�
, (18)

where .4�� is the incremental maintenance cost of providing a kWh of energy, ΔE is the time step 

considered in the analysis, F�� is the discharge power at time period E, and > is the number of 

time periods.  A remaining cost is the end of life disposal cost of the batteries. For the case of Li-

Ion, the cost of recycling is reported as $2.25/lb [23]. Given that the energy density of Li-Ion is 

approximately 100 W/kg [24], [25], the cost of recycling is approximately 

.	5 = H���� IJ
� KIJ L H � K8

��� IJL H�.� +�
� K8 L H$�.�N

� +� L = $49.5/kWh. Although this figure sounds high, because 

it occurs at end-of life, the discount factor is also high, so it does not impact the profitability of 

the ESU significantly. The disposal cost is then 
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 .	 = .	′������. (19)

The factors in (13)–(15) can be re-expressed as scaling factors 

 ��� = −.� + :�*�
!���+! − :,.�

!���+! − :	.	 , where (20)

 :� = # $1 + )&!��

$1 + "&!

'

!(�
 (21)

 :, = # 1
$1 + "&!

'

!(�
 (22)

 :	 = 1
$1 + "&'. (23)

This is used to construct the following cost function for the optimization problem 

 . = .� − :�*�
!���+! + :,.�

!���+! + :	.	 . (24)

The yearly revenue is defined in terms of the revenue *D over the test data 

 *�
!���+! = =24 ⋅ 365

> C *D . (25)

The revenue over the test data is  

*D = ΔE # .��
D

�(�
1F�� − F�, + Q6F�69 + .��F�� + .�6F�6.  (26)

In the above, the quantity .�� is the cost of electricity at time period E, while  .�� is the 

compensation for providing regulation, and .�6 is the compensation for providing spinning 

reserve. The output power F� is broken up into the discharge power F�� and charging power F�,, 

so F� = F�� − F�,. This is necessary because of the solution method employed. The  quantity F�6 

represents the power commited to spinning reserve, and F�� represents the power commited to 
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regulation. An important consideration is that the objective will result in the scheduler attempting 

to maximize profit by setting the initial State-of-Charge (SoC) to fully charged and the terminal 

SoC to fully discharged. If the number of periods > is small, this skews results, making the ES 

appear more profitable than it really is. Additionally, reliable conclusions cannot be drawn about 

what time periods are best to charge and discharge. To overcome this, existing work places the 

constraint that the initial and final SoC must be equal for each scheduling period [2], [7], [10]. 

This constraint is employed in here. However, the constraint instead can make ES appear less 

profitable than it should. For example if the cost of electricity at the end of a scheduling window 

is unusually high, it may be desirable to end the window at a lower overall state of charge. To 

allow this, a sufficiently long window of three weeks is used so that overall the endpoint 

constraints do not result in significant error. 

II.C. Constraints 

The constraints on the sizing/scheduling of the battery fall into three categories: power 

constraints, SoC constraints, and lifetime constraints. The power constraints  follow: 

 F�6 + F�� − F�, ≤ ������ (27)

 F�� + F�� + F�, ≤ ������. (28)

The SoC constraints take into account the round-trip efficiency of the battery chemistry S3, the 

SoC of the battery, the discharge power, charging power, and the power reserved for ancillary 

services [7]. This resulting equality is 

 ��T� = �� + ΔE1SF�, − F��9 + ΔE$S − 1&Q�F�� − ΔEQ6F�6 (29)

At each time step, the battery SoC �� is constrained to be less that the rated capacity of the 

battery, as well as greater than a minimum SoC 
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 �U73 ≤ �� ≤ ������. 
(30)

Additionally, the battery must be able to provide UPS capability or reserve power for a 

minimum time duration >6 without falling below a minimum power level so 

 �� + >61SF�, − F�� − F�69 ≥ �U73. 
(31)

Last, the lifetime of the battery must not be violated: 

 ��!���+! ≤ �	������� 
(32)

 �!���+! = = >
24 ⋅ 365C �D 

(33)

 �D = #ΔE1F�� + Q�WF�� + Q6F�69
D

�(�
. 

(34)

This can be set up as a linear optimization problem [26]. The scaling factor Q�W presents a 

solution to the issue of the nonlinear �	 vs. � curve. This factor incorporates two components. 

The first component is the increased amount of lifetime energy throughput that the battery can 

withstand at very small �. The ratio of the amount of lifetime energy throughput in Wh 

consumed per Wh of discharge around a typical regulation cycle compared to the nominal 80% 

DoD discharge is Q�W [18]. The second component accounts for the fact that the actual energy 

throughput experienced by the battery is significantly less than the Wh of regulation capacity it is 

scheduled to provide. In [18], a 5 MW ESU provides regulation based on the actual grid 

frequency. This results in the battery being subjected to 20.4 MWh of throughput each week. The 

corresponding fraction of lifetime reduction that occurs each hour is 9.943 ⋅ 10�X. This is 

converted to units of lifetime MWh per MWh of regulation service provided as follows, 

assuming that the relationship between fraction of battery lifetime MWh consumed is related 
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approximately linearly to the battery capacity and battery power rating. The second component is 

therefore  

Q�W  HYIJ
YIJL = $9.943 ⋅ 10�X& $N YI&

$Z⋅�X J&  $1 ℎ& = 2.959 ⋅ 10�N HYIJ
YIJL. 

III. SCHEDULING AN ESU WITH RHC 

For the case of a practical ESU scheduler, the actual price of electricity is not perfectly 

known. Several methods have been devised to account for this. These include RHC [2], [7], [11], 

stochastic programming [27], stochastic dynamic programming, and rule-based methods [28]. 

 RHC makes use of a forecasted state of the system for a window extending a fixed number 

of intervals into the future. This forecast and the optimal control inputs are recalculated at each 

time step. Both forecasting and scheduling can use one of any number of methods. Methods 

commonly employed for forecasting include linear regression, time-series, Kalman filters, and 

neural networks [29]. Methods commonly employed for scheduling include dynamic 

programming, convex programming, linear programming, and mixed-integer programming [30]. 

III.A.   Forecasting 

Linear programming is used for scheduling. Because a one-week window is used, forecasting 

of future prices is necessary. Several methods, including artificial neural networks (ANN), 

decision trees [31], and linear regression [22] were investigated for the forecasting. Ridge 

regression, a form of linear regression was selected. Decision trees were an appealing option 

because they naturally allow for extrapolation of rules such as those an expert human operator 

would use. Additionally, they naturally integrate both numerical (eg. system load in MW) or 

categorical (eg. Is today a holiday or working day?) variables. However, the data is nonstationary 

across seasons. For example, both the shape and magnitude of the daily load profile is different 
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depending on if it is summer or winter. Therefore, only a small training interval consisting of the 

two previous month’s data is used for training the forecaster. This corresponds to the problem 

“large \, small ],” where the number of training samples is small compared to the 

dimensionality of the predictor variables. With insufficient samples compared to predictor 

variables, the forecaster will be overfit, modeling random noise as well as the general trends in 

the data. The results in the forecaster modeling the training data well, but performing poorly on 

other data [31]. However, the predictor variables are highly correlated. Ridge regression is a type 

of linear regression that includes a penalty term in the cost function, forcing the weights to have 

similar values, thereby preventing overfitting. An additional benefit of the penalty term is that it 

improves numerical stability when the predictor matrix is close to singular, as is frequently the 

case when the variables are correlated [32]. 

The form of classical linear regression is  

 �7 = ^ ⋅ �7. (35)

In the above, the forecasted value for the "�J sample �7 is a linear function of the "�J predictor 

variable �7. Generally both the weight ^ and predictor variable �7 are F × 1 vectors. Commonly, 

the predictor variable is augmented so that �7
�;8 = [1, �75]′,  allowing the forecaster to take into 

account a fixed offset between the predictor and predicted variables. The cost function for linear 

regression is typically the sum of squared errors 

 b = ‖� − d^‖�. (36)

In the above, d is a ] × F matrix of [��5 , ��5 , … , �35 ]5 and � is a ] × 1 vector of [��, �� … , �3]5. 

This formulation allows for the weight ^ corresponding to minimum cost to be calculated 

analytically using 
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 ^ = $d5d&��d5�. (37)

However, if d′d is close to singular, the method suffers from numerical accuracy issues. For the 

case of ridge regression, the cost function is augmented with a penalty term 

 b = ‖� − d^‖� + f‖^‖�. (38)

The new minimum cost corresponds to  

 ^ = $d5d + fg&��d5�. (39)

The additional term fg helps make the inverse more robust. However, it comes at a cost in the 

form of a bias in the estimation of ^. To reduce this issue, it is necessary to select a small value 

of ^ using either cross- validation [31] or a ridge trace [32]. In a ridge trace, the optimal weights 

are plotted with respect to f. The value of f corresponding to the point when the weights begin 

to stabilize is selected, in this case 2.5.  

For each sample, a window of one week is used. For hourly pricing data, this corresponds to 

168 samples. Separate predictors are trained for each lookahead interval, however the same 

feature vector is used for every lookahead interval. Only lagged and averaged previous price 

values are used for forecasting. Adding historical prices and temperature forecasts were 

considered, but these did not yield improved performance. For predictor variables where the 

lookahead interval exceeds the lag of the previous price values (meaning that the predictor would 

be given future data as inputs) the corresponding lagged prices are censored by setting them 

equal to zero. The predictor variables used are illustrated in Table I. The variables are scaled so 

that they fall within the range ±10. 
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TABLE I. PREDICTOR VARIABLES USED FOR RIDGE REGRESSION. 

Feature Lags Scaling 

Working day 

indicator {0,1} 
0 1 

Day of week 

{1,2,…7} 

Previous day, same 

hour price 
1 

Hour 

{0,1,2…23} 
0 1/10 

Electricity price 

1,2,3 

22,23,…26 

166,167,…170 

190,191,…194 

1/10 

Weekly average 

electricity price 
168 

1/1000 

 

 

III.B. Calculation of Price Thresholds 

Because the scheduler only operates on one week at a time, battery lifetime constraints 

cannot be included directly in the scheduling. Instead, they are addressed  by setting a minimum 

price threshold for discharging and a maximum price threshold for charging.  

These thresholds limit the amount of energy throughput experienced by the battery. The 

thresholds are determined by observation of the output power vs. price of the optimal schedule 

using perfect information.  Based on the data, the thresholds are set at i − 2, where i is the 

mean electricity price, approximately $36/MWh. 

IV. CASE STUDY 

The New York Independent System Operator (NYISO) market and load data for the Buffalo, 

NY region from July 2009 to July 2010 is used, illustrated in Fig. 2, along with the problem 

parameters in Table II [33]. Seventeen sets of training/testing data are used. For each set, a three-

week period is used for testing, and the previous two months of data is used for training. 
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Fig.  2. Pricing data for January 7-28, 2010. 

 

TABLE II. PROBLEM SETUP PARAMETER VALUES 

Parameter Value 

Converter power rating 2.5 MW 

Converter cost $150/kW 

Siting $100/kW 

Subsidization of battery  cost 30% 

Fixed yearly O&M cost .	7<��5  5% of battery cost 

Variable yearly O&M cost $0/kWh 

Battery cost $315/kWh 

Battery lifetime 4500  cycles at 80% DoD 

Battery round-trip efficiency 92% 

Converter efficiency 97 % 

Project lifetime 10 years 

Project  start year 
2021 

(10 years from present) 

MARR 8 %  

Price increase rate 2.8%/year 
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V. NUMERICAL RESULTS AND DISCUSSION  

Based on the scheduler with perfect information, the necessary battery capacity is 5.8 MWh. 

Fig. 3 shows forecasting results. Table III lists performance results for both the scheduler using 

perfect information and the RHC scheduler using a one-week forecast. Fig. 4 illustrates the 

accuracy of forecasting during 2009-2010 using ridge regressors trained on data from two 

months ahead. 

 
Fig.  3. Energy market forecasting results for 168 hours ahead during the course of one 

week. 

 

TABLE III. COMPARISON OF PERFORMANCE WITH PERFECT KNOWLEDGE AND FORECASTING 

 
Perfect 

Knowledge 
Forecasting 

Weekly 

Revenue 
$8489.04 $7782.60 

Throughput 37.5 MWh 36.7 MWh 

Lifetime 10 years 10.99 years 
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Fig.  4. Forecasting accuracy for the data from September 2009 to September 2010. 

Although the forecasting results are actually discrete-time signals (sampled at one-hour intervals) 

for visual clarity they are plotted as lines. The RHC scheduler obtains 91% of the weekly profits 

of the scheduler using perfect information. Two factors make the RHC scheduler obtain a high 

fraction of the ideal profit: First, in scheduling the ESU, it is the relative price difference between 

low and high periods during the day that determines when the ESU charges and discharges rather 

than the absolute value of the price. Thus, the high mean absolute percent error (MAPE) that 

occurs when performing medium-term forecasting (lookahead intervals in excess of one day) 

caused by steadily increasing error in the mean daily prices does not significantly affect the ideal 

schedule. Second, most of the ES profits come from providing frequency regulation and spinning 

reserve services. Because the energy requirements from delivering these services are low, the 

ESU is scheduled to provide them most of the time, except during periods of low daily prices, 

when it is scheduled to charge. The price volatility during these charging times is low, so the 

ESU is very likely to charge at or near the lowest price period each day. Fig. 5 illustrates how 

both in the case of perfect knowledge and forecasting charging occurs during the early morning 
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hours, while Fig 6 and Fig. 7. show how the ESU provides regulation and reserve services 

throughout most of the day. 

VI. CONCLUSIONS  

This paper illustrates the allocation and scheduling of ES for the purposes of generating 

profit via a real-time pricing structure.  Even with imperfect knowledge it is possible to size an 

ESU using historical data from the NYISO system and schedule it using a linear forecaster. It is 

demonstrated that a sparsity-promoting predictor gives good performance by exploiting 

redundancy in the predictor variables. Taking into account lifetime constraints when designing 

and scheduling the ESU is a computationally difficult problem, but which can be solved 

heuristically by linearizing the ESU lifetime Wh vs. DoD curves at two different points; the first 

reflecting daily SoC variations and the second representing small SoC variations from frequency 

regulation. The issue of accounting for lifetime constraints when scheduling is handled more 

simply by using a threshold for the maximum price allowable to charge the ESU. The ESU 

derives most of its revenue through the reserve and regulation services. The scheduler finds it 

economical to schedule the ESU to provide both of these services throughput most of the day. 

Only during the period of the day with the lowest overall prices (the prices for energy, reserve, 

and regulation services are well correlated) does the ESU not provide these services, and charges 

in order to  account for discharge when called upon for reserve, and losses incurred in providing 

regulation services. Because electricity price volatility increases as the price increases, the 

forecast of low price periods is more accurate than high price periods. This results in the real-

world performance of the forecaster with the ESU to be much better than the simple MAPE 

performance criterion indicates. The resulting loss in ESU profitability resulting from forecasting 

error compared with perfect knowledge is small, under 10%.  
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Fig. 5. Scheduled charging power. 

 
Fig. 6. Scheduled regulation power. 
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Fig. 7. Scheduled reserve power. 
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CHAPTER FOUR 

PLACEMENT OF ENERGY STORAGE COORDINATED WITH SMART PV 

INVERTERS 

Arthur Barnes, Juan Carlos Balda, Scott O. Geurin, and Andrés Escobar-Mejía 

A.K. Barnes, J.C. Balda, A. Escobar Mejía, and S.O. Geurin, “Placement of energy storage 

coordinated with smart PV inverters,” in IEEE PES Innovative Smart Grid Technologies (ISGT), 

2012, pp. 1–7. 

Abstract — Energy storage (ES) is increasing used in electrical transmission and 

distribution systems because it can perform many functions. These include peak shaving, 

voltage regulation, frequency regulation, spinning reserve, and aiding integration of 

renewable generation by mitigating the effects of intermittency. This work focuses on the 

usage of energy storage for peak shaving and voltage regulation on a distribution system 

having a high penetration of photovoltaic (PV) generation. The PV stations considered 

make use of smart PV inverters as proposed by the Electric Power Research Institute 

(EPRI). These inverters assist the energy storage with voltage regulation. Additionally, the 

proposed method includes support for varying energy storage unit (ESU) sizes, non-radial 

distribution systems, and reverse power flow, both real and reactive. The method is applied 

to the worst-case voltage regulation scenario. The impact of the placement and voltage 

regulation on the profitability of energy storage is assessed. This is accomplished by adding 

voltage regulation as a constraint to the problem scheduling energy storage in order to 

maximize profit. Applying the method shows that the best place to put an ESU is near the 
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end of a feeder. Validation of the method shows that it does not impact the ability of ES to 

be scheduled in order to maximize economic benefits with time-of-use pricing. 

Index Terms — Energy storage, power system optimization, distribution system planning, 

simulated annealing 
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I. NOMENCLATURE 

I.A. Placement 

� Number of busses in the system 

�  Bus index 

�  Total cost of placing energy storage in $ 

��  Variable component of ESU cost in $/kW 

��  Fixed component of ESU cost in $ 
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��  Binary indicator variable for ESU placement at bus � 

��	
�  Rated power of the ESU at bus � in kVA 

��	
� Real power output of the ESU at bus � in kW 


�	
� Reactive power output of the ESU at bus � in kVAr 

��
��

 Rated power of the PV inverter at bus � in kVA 

��
��

 Real power output the PV inverter at bus � in kW 


�
��

 Reactive power output the PV inverter at bus � in kVAr 

�� Weighting used to place ESU at bus � 

�� Voltage magnitude at bus � 

� Uncertainty factor 

�� Probability of selecting bus � for a move 

� Iteration number 

�� Temperature at iteration � 

� Learning rate 

I.B. Scheduling 

����	� Rated energy capacity of battery in kWh 

� Depth of discharge (ranges from 0 to 1) 

�� Battery cycles to failure at � 

�� Battery energy throughput to failure in kWh 

��� Battery normalized energy throughput to failure 

��� Net present value 

� Project lifetime in years 
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  Year 

! Minimum acceptable return rate 

� Rate of electricity cost increase per year 

�( ) Project cash flow at year   in $ 

$� Initial cash flow in $ 

�� Initial cost of ESU in $ 

$� Revenue and maintenance of ESU 

�%& Yearly operation & maintenance cost of ESU in $ 

�'%�� Cost of power conversion system in $/kW 

�
(�(�) Siting cost in $/kW 

*+
,	��-,

 Revenue produced by the ESU at the end of year 1 in $ 

� Yearly cost of operating the ESU in $ 

�� Cost of batteries per kWh in $ 

. Number of seasons considered 

� Season index 

/� Number of time periods in rate structure during season � 

0 Time period 

Δ2�,& Duration of time period 0 during season � 

��,&	-	' Cost of electricity at time period 0 during season � in $/kWh 

�( Value of feed-in tariff in $/kWh 

4� Number of days in season � 

5�,& Net power output of ESU at time period 0 during season � in kW 
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5�,&�  Discharge power of ESU at time period 0 during season � in KW 

5�,&'  Charge power of ESU at time period 0 during season � in kW 

5�,&�  Net power required to provide voltage regulation 

*�
��(-,

 Daily revenue of ESU during season � in $ 

��,& SoC of ESU at time period 0 during season � in kWh 

6 Round-trip efficiency of ESU 

II. INTRODUCTION 

Energy storage can perform many different functions on both electrical transmission and 

distribution systems. These include peak shaving, voltage regulation, frequency regulation, 

spinning reserve, and aiding integration of renewable generation by mitigating the effects of 

intermittency [1], [2]. Among these functions, this work focuses on the usage of energy storage 

to provide voltage regulation on a distribution system. The distribution system has a high 

penetration of PV generation, which has been shown to cause local voltage regulation issues [3-

6]. The PV stations make use of smart PV inverters as proposed by EPRI [7]. This allows them 

to be coordinated in order to help regulate voltage on distribution systems [8], [9]. Based on 

knowledge from shunt capacitor placement and distributed generation placement, in order to 

provide voltage regulation in the most cost-effective manner, energy storage must be placed 

appropriately in the distribution system. When the energy storage is placed and used to provide 

voltage regulation, this places a constraint on when it can be charged and discharged. This 

constraint must be taken into account when scheduling the energy storage. Additionally, failure 

to properly place the energy storage will hinder its ability to assist with voltage regulation.  
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Most existing work with both energy storage, distributed generation, and shunt capacitor  

placement focuses mainly on reduction of conductor losses [10-14]. Currently little work exists 

on placement of energy storage devices. The work of Celli et al and Geth et al focuses on 

placement of energy storage on a distribution system [15], [16]. The former supports non-radial 

distribution systems, but does not consider voltage regulation. The latter takes into account 

voltage regulation, but does not handle non-radial distribution systems. Because of the general 

and difficult problem formulation, both authors resort to using a genetic algorithms approach to 

solve the problem. This has the disadvantage that the ESU sizes are constrained to a discrete 

range of values. The proposed method places energy storage in order to meet voltage regulation 

requirements in conjunction with smart PV inverters. The method used is simulated annealing to 

determine placement of energy storage units, with an inner optimal power flow (OPF) 

determining the necessary power ratings of each ESU for each placement considered. The 

method has several appealing properties – it does not have the limitations of analytical or 

dynamic programming methods. These include: the cost function used can include both a fixed 

and variable component, negative real and reactive power flows are supported, the full, nonlinear 

set of electrical network equations is supported, and non-radial distribution systems are 

supported. A disadvantage of the OPF method used is that it works only at a single time step – it 

is not possible to consider state-of-charge balance in this case. However, for the voltage 

regulation problem considered this is not necessary, as it is only needed to verify that the battery 

used has enough capacity to maintain voltage regulation during peak loading conditions.  

This paper is divided into the following sections: section II describes the method used. Section 

III describes the problem considered – an actual feeder. Section IV presents an analysis of the 

results obtained, and verifies that the placement solution will maintain voltage regulation within 
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limits during discharging, charging, and standby conditions, as well as satisfying the energy 

capacity limitations of the battery. 

III. PLACEMENT OF THE ENERGY STORAGE UNITS 

The placement problem consists of placing a small number of energy storage units at 

particular busses in a distribution system. Because there is a fixed cost to placing an ESU, similar 

to shunt capacitors, a smaller number of units is favored [10]. By contrast, a large number of 

nodes will have smart PV inverters, reflecting the proliferation of rooftop and pole-mounted PV 

systems. The objective of the placement problem is to minimize the cost of installing the energy 

storage while meeting voltage regulation constraints. The cost of installing the energy storage is 

as follows: 

 � = 8(����	
� + ����).
;

�<+
 

(1)

The cost of installing each ESU at bus � consists of a fixed installation cost �� plus a 

component that depends on the capacity of the energy storage unit ��.  The effect of this 

piecewise linear cost function is that it is more cost-effective to have a smaller number of larger 

energy storage units, as a lesser number of fixed installation costs are incurred. The problem is 

subject to the following constraints: 

 (��	
�)= + (
�	
�)= ≤ (��	
�)=, (2)

 0.95����	� ≤ �� ≤ 1.05����	�. (3)

The first, an inequality constraint, represents  the maximum power rating of the ESU power 

conversion system. Because this is a nonlinear constraint, it is difficult to work with. Observing 
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that the analysis only takes place during peak load conditions when the energy storage is 

outputting only real power, this constraint con be eliminated so that 

 ��	
� = ��	
�, (4)

 
�	
� = 0. (5)

The new cost function is now of the form: 

 � = 8(����	
� + ����)
C

�<+
, (6)

This work uses simulated annealing in conjunction with a set of rule-based placement 

heuristics that speed up convergence by favoring moves that are better based on knowledge of 

the system. The simulated annealing approach makes use of the following moves: 

(1) Add: Add an ESU at a particular bus; 

(2) Delete: Delete an ESU from a particular bus; and 

(3) Swap: Move an ESU to a different bus. 

Each type of move is selected based on a probability. Given that there are a small number of 

energy storage units on the distribution system, the swap move is favored with a probability of 

70%, versus 15% each for the add and delete moves. Which busses to use for the moves are 

selected randomly, but with a bias based on rules. These rules make use of prior knowledge of 

the system, such as how an expert human operator would use when approaching the problem by 

hand. These rules include: 

(1) Place the energy storage at the busses with the lowest voltages 

(2) Place the energy storage at busses that are far from the substation (in terms of impedance) 

(3) Place the energy storage at busses that are near loads (in terms of impedance). 
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The placement rules take into account rules 1 and 2 by weighting the busses in terms of three 

criteria. The  particular criterion used for the move is chosen randomly and uniformly. These  

criteria include: 

 (1) Bus voltage; 

 (2) Bus real power demand; and 

 (3) Bus reactive power demand 

The probabilities are selected as follows: First, the weighting �� for each bus � is selected 

based on the criteria used for weighting and whether or not an ESU is present at the bus under 

consideration, illustrated in Table 1. An uncertainty factor � is then added to the weighting and it 

is normalized to produce a probability: 

 �� = (�� + �)
|�� + �| . (7)

 

Depending on the move, a bus is selected randomly from the set of empty busses, the set of 

busses with an ESU present, or both. The trial solution produced by the move is then used as the 

input to an OPF to see if it is feasible in terms of voltage regulation and what is the resulting cost 

of placing energy storage. If the solution is not feasible, it is never accepted. 

TABLE 1. WEIGHTING SELECTION FOR ESU PLACEMENT 

Criteria No ESU at bus E ESU at bus E 

Voltage ��F� = (max � − ��)
(min � − ��) ��F+ = (max � − ��)

(min � − ��) 

Real Power ��M� = (�� − min �)
(max � − ��) ��M+ = (�� − min �)

(max � − ��) 

Reactive Power ��
N� = (
� − min 
)

(max 
 − 
�) ��
N+ = (
� − min 
)

(max 
 − 
�) 
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 Otherwise, the solution is always accepted if it results in a lower cost than the current best cost. 

If the solution is feasible but the cost is equal to or greater than the current best cost, the solution 

is accepted with probability 

 �OP'/RS , (8)

where Δ� = �∗ − ��, the difference between the trial solution and current solution. This serves to 

allow the algorithm to recover from local minima. At each iteration the temperature is reduced 

according to the cooling rate so 

 ��U+ = ���. (9)

The algorithm stops when the cost function has converged or the maximum number of iterations 

has been exceeded.  

IV. SCHEDULING AND IMPACT ON PROFITABILITY 

With the placement of the energy storage units selected, the next step is to evaluate if the use 

of energy storage for voltage regulation is feasible, and if so, what its impact on the profitability 

of the energy storage is. The main use of the energy storage is for energy arbitrage. The 

application of energy storage considered is a commercial customer that purchases electricity 

using a time-of-use rate. The customer uses the ESU in order to reduce its cost of electricity or 

generate profit in conjunction with TOU pricing. In order to maximize profit however, it is 

needed to select the necessary battery capacity, and the charge/discharge schedule. The power 

rating of the inverter for each ESU is determined in section II. A linear optimization method  is 

used for this. 

The objective of the linear optimization method is to determine the optimal capacities and 

charge/discharge schedule for an ESU, given a battery chemistry and pricing structure. Revenue 
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from ancillary services is not considered, the constant-Ah battery lifetime model is used [11], 

and the cost of electricity increases at a fixed rate during the project lifetime. Furthermore, the 

method makes the assumptions addressed below: 

The constant-Ah model specifies that the lifetime of a battery, in terms of Ah or Wh 

throughput, is roughly independent of the depth-of-discharge [11]. This is accomplished by 

considering a battery with rated energy capacity ����	�. At each measured depth of discharge the 

battery has the following energy throughput to failure 

 �� = ��� . (10)

For each depth of discharge the throughput to failure is approximately constant. Dividing �� by 

����	� gives the normalized energy throughput to failure 

 ��� = ���(-��	/����	�. (11)

Fig. 1 illustrates the constant-Ah model applied for the case of the East Penn 8G8D lead-acid 

battery [13]. Throughout the range of �, �� varies by only a small amount. 

IV.A. Optimization Objective 

Net present value (���) is a method for measuring the value of pursuing a project that takes 

into account the time value of money [14]. It is useful for comparing the benefit of pursuing 

different project options. The project is assumed to last � years. The ��� of the project is then 

given by 

 ��� = 8 $( )
(1 + !),

V

,<�
. 

(12)
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Fig. 1.  Cycle life and energy throughput vs. depth of  

discharge for the East Penn 8G8D lead-acid battery. 

Because the rate structure does not change over the project life, if the rate structure increases at 

rate �,  

 $( ) = (1 + �),O+*+
,	��-, . (13)

Additionally, the denominator of the summation for year 0 is 1. Therefore, the NPV can be 

broken up for either the case of fixed rate or increasing rate into two terms 

 ��� = $� + $� , (14)

where $� = ��, the initial cost of the ESU, and 

 $� = 8 �%& + (1 + �),O+*+
,	��-,

(1 + !),

V

,<+
, (15)
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where �%& is the yearly operation and maintenance (O&M) cost of the ESU, and *+
,	��-,

 is the 

revenue produced by the ESU at the end of year one.  Separating terms and substituting, 

 ��� = −�� + ��*+
,	��-, − �'�%& (16)

 �� = 8 (1 + �),O+

(1 + !),

V

,<+
 (17)

 �' = 8 1
(1 + !), .

V

,<+
 (18)

This is used to obtain the following cost function for the optimization problem 

 � = �� + ��*+ − �'�%& (19)

 �� = �'%�� + �
(�(�) + ������	� . (20)

Different rate structures are considered depending on the season. In this case, there are . = 2 

different seasons, one for winter and one for summer pricing. Each price structure has /� 

different time periods. The daily profit and variable operating cost for season � is 

 *�
��(-, = 8 Y�( + ��,&	-	'Z

CS

&<+
Δ2�,&5�,&. (21)

The yearly profit is then 

 *+
,	��-, = 8 4�*�

��(-,
[

�<+
. (22)

For the purpose of the optimization, the output power is broken up into the discharge power and 

charging power, respectively, so 5�,& = 5�,&� − 5�,&' . The charging and discharging powers for 

each chemistry � are 
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 5�,&� = 8 5�,&� ,
;

�<+
 

(23)

 5�,&' = 8 5�,&' .
;

�<+
 

(24)

IV.B. Method Constraints 

 Taking into account the round-trip efficiency of the battery chemistry using a discrete-time 

formulation [7], the state of charge (SoC) of each battery is  

��,&U+ = ��,&U+ + Δ2�,&Y65�,&' − 5�,&� Z. (25)

At each time step, the battery SoC ��,& is constrained to be less than the rated capacity of the 

battery, so 

 0 ≤ ��,& ≤ ����	�. (26)

The lifetime of the battery must not be violated 

� 8 4� 8 Δ2�,&5�,&� ≤ �������	�.
C

&<+

[

�<+
 (27)

The last constraint depends on the requirement for voltage regulation 

 5�,& ≥ 5�,&� , (28)

Representing the power demanded of the energy storage unit to maintain voltage regulation 

within limits during the current load condition. This can be set up as a linear optimization 

problem [15]. 



98 

 

V. PROBLEM SETUP 

The problem considered is an eleven-node distribution feeder in central Arkansas with feeder 

parameters given below in Table 2 and Table 3. This is illustrated in Fig. 2. The method is 

validated using the dataset of Celli in order to verify that the method is applicable to non-radial 

systems, illustrated in Fig. 3 [16]. This dataset uses a trunk feeder which is fed by two 

substations. In order to make the dataset applicable to the voltage regulation problem here, 

impedances are increased by a factor of 10. The total voltage difference on the Arkansas feeder 

is within ±5%, so voltage regulation can be handled using a tap changer. However, if 

conservative voltage reduction (CVR) is to be used, the requirements for voltage regulation are 

more stringent [17]. Using energy storage to assist with voltage regulation during CVR is an 

appealing option, as this occurs during peak load (and therefore peak price) conditions when the 

energy storage would likely be operating anyways if purely economic scheduling were to be 

used, as in [18]. 

 

TABLE 2. FEEDER BRANCH PROPERTIES 

From Branch To Branch Resistance (Ω) Reactance (Ω) 

3 4 0.29 0.62 

4 5 0.17 0.35 

5 6 0.09 0.19 

6 7 0.42 0.90 

7 8 0.22 0.47 

8 9 0.96 0.78 

9 10 0.63 0.51 

10 11 0.90 0.73 
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TABLE 3. FEEDER BUS PROPERTIES 

Bus Real Power (kW) Reactive Power (kVAr) 

3 350 200 

4 450 200 

5 400 250 

6 1700 1100 

7 2000 1000 

8 800 400 

9 400 300 

10 100 100 

11 100 50 

 

 

Fig. 2. Eleven-node distribution feeder under study. 

 

The customer uses a three-level time-of-use profile as shown in Fig. 4. This uses separate 

rates for summer  and winter seasons, shown in Table 4 and Table 5, taken from [19]. Fig. 5 

shows the optimal charge/discharge schedule of the energy storage without power constraints 

stemming from voltage regulation. Noting that the ES is discharged during the peak period, CVR 

is also applied during that time.  

 

 

V0 V1 V2 V10

Sd1 Sd2 Sd10

Z1 Z2

Sg10Sg1

S1 S2 S10

Substation
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Fig. 3. Distribution system of Celli at al [16]. 

 

 

 

 

Fig. 4. TOU pricing structure for winter and summer. 
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TABLE 4. TOU RATE FOR WINTER 

Time Period Cost (¢/kWh) 

7 am to 11 am On-peak 9.9 

11 am to 5 pm Mid-peak 8.1 

5 pm to 9 pm On-peak 9.9 

9 pm to 7 am Off-peak 5.1 

 

 

TABLE 5. TOU RATE FOR SUMMER 

Time Period Cost (¢/kWh) 

7 am to 11 am Mid-peak 8.1 

11 am to 5 pm On-peak 9.9 

5 pm to 9 pm Mid-peak 8.1 

9 pm to 7 am Off-peak 5.1 

 

 

 

Fig. 5. Optimal economic schedule for energy storage. 
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TABLE 6. PARAMETERS FOR THE PROBLEM SETUP 

Parameter Value 

Converter power 

rating 

2.5 MW 

Converter cost $150/kW  

Siting $100/kW  

Subsidization of 

initial cost 

30% 

O&M 1%  

Converter efficiency 97 %   

Design lifetime 20 years  

MARR 8 %  

VI. NUMERICAL RESULTS AND ANALYSIS 

The outcome of the method is to place a single ESU at bus 10 with rated power of 730 kW 

(with no PV 1.3 MW of ES at bus 9 is needed). Fig. 6 shows how the method improves the 

voltage profile on the feeder during the worst-case conditions – in this case peak load with CVR 

applied and no real power output from the PV, lowering the voltage at the beginning of the 

feeder to 1.02 pu. During standby and charging periods, the voltage at the beginning of the 

feeder is raised to 1.05 pu. For charging, the ESU can charge up to 1.22 MW without violating 

voltage constraints. This means that the same ESU schedule can be used as when not considering 

the provision of voltage regulation. For the case of Celli et al’s system, the energy storage units 

are placed at busses 12 and 16, one less than Celli et al. The required power ratings are about 

50% greater than those determined by Celli et al. 
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Fig. 6. Improvement of the feeder voltage profile. 

 

VII. CONCLUSIONS  

Energy storage in conjunction with smart PV inverters is shown to aid in demand 

management by allowing increased use of CVR through improving the voltage profile on a 

feeder. To maintain good voltage regulation on the feeder, busses near the end of the feeder as 

opposed to busses near load centers are favored for placement of the energy storage. 

Encouraging for the use of energy storage, using it to maintain a voltage profile on a feeder 

during peak loading conditions does not require it to deviate from the optimum schedule for 

economic self-scheduling. Additionally, allowing the use of smart PV inverters reduces the 

amount of energy storage required in order to maintain voltage regulation on the feeder.  
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CHAPTER FIVE 

PLACEMENT OF DISTRIBUTED ENERGY STORAGE VIA MULTIDIMENSIONAL 

SCALING AND CLUSTERING 

Arthur Barnes and Juan Carlos Balda 

A.K. Barnes and J.C. Balda, “Placement of distributed energy storage via multidimensional scaling and 

clustering,” in International Conference on Renewable Energy Research and Applications (ICRERA), 

Milwaukee, WI, 2014. 

Abstract — Energy storage has long been proposed at the distribution level, where it can 

provide additional benefits via ancillary services. This work studies how to place energy 

storage units (ESU) on a distribution feeder in the most cost-effective manner while still 

meeting voltage regulation requirements. The feeder also has photovoltaic (PV) generation, 

and the PV ability to supply reactive power is considered. The placement of the ESU is 

performed via a fast heuristic, in which multidimensional scaling (MDS) is used to 

transform the combinatorial placement problem into a continuous-valued problem by 

mapping buses to points in a space. In the new space, clustering algorithms can be applied 

to determine the ESU locations from a set of candidate locations. The method reduces 

computation time by an order of magnitude, allowing for various distribution feeder 

configurations to be quickly compared. 

Keywords—Energy storage, photovoltaic systems, renewable energy sources, optimization, 

clustering methods 
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I. INTRODUCTION 

This paper focuses on ESU used principally for providing frequency regulation, but also for 

supplying reserve power during periods of high demand. The case addressed is a distribution 

system operator (DSO) that has made the purchase of a fixed amount of energy storage in terms 

of MWh capacity and “smart” PV inverters. The DSO seeks to determine the best solution in 

terms of numbers of ESU and “smart” PV units, their power ratings and placements on the 

system.  

The “smart” PV inverter is a concept proposed by EPRI [1] that has the ability to draw or 

inject reactive power based on a power vs. voltage curve, allowing it to assist with voltage 

regulation. Because of the “smart” PV functions, it is desirable to integrate them with the ESU at 

the same time. When determining placement, the scenario of ESU and “smart” PV providing 

reserve power during peak load conditions is examined. The total load on the distribution feeder 

as viewed from the distribution substation can be lowered by appropriately placing the ESU and 

PV to flatten the voltage profile on the feeder, thereby allowing for conservation voltage 

reduction (CVR) to be applied [2]. CVR refers to lowering the overall voltage on the system, 

(usually by the substation transformer tap settings), in order to reduce overall load demand by 

taking advantage of the increasing power vs. voltage curve of the system load. However, 

dispersing the ESU on a distribution feeder as opposed to placing them at the substation will 

impact their ability to provide frequency regulation services. 

 This placement problem is closely related to that of placing distributed generation and shunt 

capacitors. The existing methods for placing these devices are categorized as: analytical, 
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numerical optimization, heuristic search, and randomized search. The most common approach is 

genetic algorithms (GA), a form of randomized search which comes in both pure and hybrid 

optimal power flow (OPF) forms [3].  In the latter, the GA only selects the ESU locations, while 

an inner OPF selects their required power ratings, reducing the size of the GA search space and 

improving convergence time.  

The placement method proposed in this work is a heuristic search that takes advantage of the 

observation that the number of ESU to be placed is small when compared to the total number of 

buses in the distribution feeder. The placement problem is then converted from a combinatorial 

problem to a continuous-valued problem by transforming the ESU bus locations into points in a 

continuous space with MDS. The ESU positions are then calculated with a clustering algorithm 

in the new space. By contrast, it is assumed that the power ratings of the “smart” PV installations 

are low as is the case with rooftop installations, and many of them can be placed on the feeder. 

Although hierarchical clustering algorithms exist that can operate over a pairwise distance 

matrix, they suffer from sensitivity to initial conditions. The MDS algorithm allows classical k-

means type algorithms to be applied, which are much less sensitive [4]. Additionally, it comes at 

a low cost in terms of both computational and programming burden, as it can be implemented in 

two lines in a high-level language with a set of matrix multiplications and eigenvector 

decomposition.  

Clustering for placement reduces computational complexity over both pure and hybrid GA 

approaches, because it only runs a computationally intensive OPF twice, as opposed to the 10s to 

100s of OPF necessary for GA [5]. This enables a distribution feeder designer to quickly 

evaluate several different ESU/“smart” PV configurations in a hypothetical software application 

by clicking a toolbar button.  
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The remaining sections of this paper describe how the method operates, illustrate its 

application to place ESU on a distribution feeder, evaluate the benefits of the ESU, and compare 

its performance against an existing GA approach. 

II. CALCULATING CANDIDATE LOCATIONS AND POWER INJECTIONS 

USING AN OPF 

The ESU inject power to increase frequency towards 60 Hz (referred to here as up-regulating) 

or supply power during critical peaks. They also draw power to help reduce frequency towards 

60 Hz (referred to here as down-regulating) and charge during off-peak times to account for 

losses. Thus, while it is desirable to place ESU where they make a large impact on the voltage 

regulation and power drawn by the feeder during critical peak load reduction and up-regulation, 

this placement is a hindrance when the ESU are to down-regulate or charge.   

The problem objective is to minimize the cost of power delivered from the substation bus 

during periods of high demand, expressed as 

 min. � ���	�


�

� 
 	
, (1)

 

where � is the index of the current load/ESU/PV scenario, �� is the number of scenarios, �	� is 

the power supplied by the substation bus (bus 1) during the current scenario, and �� is the 

relative cost of electricity supplied during the current scenario.  

The problem is subject to several constraints, which are discussed in the remainder of this 

section. It is assumed that the ratio of the total power rating to the total energy capacity of the 

ESU is fixed at approximately 1:1 [6]. This means that the total energy capacity in MWh of 

energy storage purchased is equal to the total power rating of all ESU in MVA. Thus,  
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 � ����� ≤ �������,



�
	
 (2)

 

where � is the number of buses, ����� is the rated power of the ESU at bus �,  and ������� is the 

total rated power of all the ESU in pu. For an optimal solution, the two terms in (2) will be equal. 

Similarly, 

 � ��
�� ≤ ����

�� ,



�
	
 (3)

 

where ��
��

 is the rated power of the PV inverter at bus � and ����
��

 is the total rated power of all 

the PV inverters in MVA.  

The apparent power scaling is a vector whose length is the number of scenarios included in 

the problem, where each element ����� represents the fraction of rated power that each ESU 

operates at during the corresponding scenario. An equivalent element ��
��

 applies for the PV.  

The power scalings for ESU and PV are not included as decision variables because these 

quantities are typically determined by a scheduler independent of network constraints; this 

assumption represents current practice [7]. Similarly, power factors for ESU and PV are also not 

included.  

Rather than having these quantities as decision variables, they are used as inputs to the 

problem. The power factors are not represented directly, but instead as the angle between voltage 

and current. For the ESU and PV, these are represented as ������ and ���
��

, respectively. The real 

and reactive powers for the ESU and PV are given by  

������ = ���������� cos ����� (4)
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!����� = ���������� sin ����� (5)

 ���
�� = ��

����
�� cos ��

��
 (6)

 !����� = ��
����

�� sin ��
�� . (7)

The cost of installing the ESU is 

 " = �#"$����� + "&'�(,



�
	
 (8)

 

where " is the total cost of placing the ESU in U.S. dollars, "$ is the incremental cost of placing 

an ESU in dollars per pu, "& is the fixed installation cost of placing an ESU, and '� is a binary 

variable indicating if an ESU is placed at bus �. 

These quantities are not used again, except to highlight that the cost of installing each ESU at 

bus � consists of a fixed installation cost ("&) plus a component that depends on the capacity of 

the ESU ("$).  The effect of this piecewise linear cost function is that it is more cost-effective to 

have a smaller number of larger ESU, as less fixed installation cost is incurred. In this study, the 

PV does not have any such fixed cost, and there is no incentive to aggregate PV installations.   

Including a nonlinear cost makes the problem considerably harder, since it now has a mixed-

integer nonlinear formulation [3]. In order to circumvent this issue, the OPF formulation is only 

used to select candidate buses for ESU placement. The placement is solved as a separate 

problem, using the candidate buses and the necessary power injections as inputs to a clustering 

algorithm which determines the actual ESU power ratings and locations. The clustering 

algorithm requires that the number of ESU be selected beforehand. However, as this number is 

small, it is reasonable to determine its optimal value by an exhaustive iteration over a fixed range 

from 0 to a maximum number of  ESU �)*+��� .  
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Using a static load model, which is discussed later in more detail, the power injections into 

each bus are represented as  

 ��� = ������ + ���
�� − ���-  (9)

 !�� = !����� + !��
�� − !��-  (10)

 ���- = ��-��-&|/��|01 (11)

 !��- = ��-!�-&|/��|02 . (12)

In the above, ��� and !�� are the real and reactive powers supplied by bus � during scenario �. 

���-  and !��-  are the load real and reactive powers for bus �.  ��-& and !�-& are the rated load real 

and reactive power demands for bus �. ��- is the feeder loading during the current scenario �. /�� 

is the voltage at bus � during scenario �. The exponents 3� and 34 represent the relationship 

between voltage and load power, discussed in more detail later. The power flow constraints are 

represented as 

��� = 5������ + ���
�� − ���- 6 

− � |/��||/)�|7)� cos#8)� − 9)� − 9��(



)
	
 

(13)

!�� = 5������ + ���
�� − ���- 6 

− � |/��||/)�|7)� sin#8)� − 9)� − 9��(



)
	
 

(14)

����� ≤ �)*+���  (15)

/):� ≤ |/��| ≤ /)*+  (16)

/)*+ = 1.05/>*�� (17)

/):� = 0.95/>*��. (18)
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In the above, 7)� is the magnitude of complex impedance matrix @, while 8)� is the phase of 

the impedance between buses A and �. The variable 9�� is the phase of the voltage at bus � 

during scenario �. /):� and /)*+ are the minimum and maximum allowable voltage magnitudes 

on the feeder respectively, while />*�� is the base voltage. 

For this OPF, this exponential load model is used 

 ���- = ��-��-&|/��|01 

 !��- = ��-!�-&|/��|02 . 

In the above, ���-  and !��-  are the load real and reactive power demands. The term |/��| is the 

voltage magnitude in pu seen by the load.  The terms 3� = 1.38 and 34 = 3.32 [8]. Again, ���-& 

and !��-& are the rated real and reactive power demands of the load at a voltage of 1 pu, while ��- 

is the feeder loading during the current scenario �. In order to calculate the required amount of 

power injection at each candidate bus, a nonlinear constrained optimizer is used on the problem, 

in this case fmincon() from the MATLAB™ optimization toolbox.  

III.  SELECTION OF THE ESU LOCATIONS 

In this particular problem, the key idea is that it is not desirable to place ESU at buses that are 

very “close” to one another, which in this context means that the impedance between them is 

low. To determine how to best combine the candidate locations into a smaller number of well-

spaced ESU, the candidate locations are mapped into a continuous space that is easier to work 

with than the original discrete locations. To accomplish this, dimensionality scaling methods are 

employed [9], [10]. However, even with the candidate locations mapped into a continuous space, 

the problem is still combinatorial in nature. Fortunately, the new problem space allows for the 

use of clustering methods, which represent a “good” suboptimal solution to the problem [4].  
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III.A. Multidimensional Scaling 

 The candidate buses are mapped to points in a E-dimensional space using MDS, a 

dimensionality reduction technique that is commonly used in the social sciences. It works by first 

calculating pairwise distances between each object (in this case, a bus) in a set (in this case, the 

F ESU candidate locations). The objects are then mapped to arbitrarily placed points in the E-

dimensional space. The classical MDS (CMDS) algorithm is employed. It maps the objects using 

their pairwise distances onto a E-dimensional space. It does this by applying a pair of 

transformation matrices in order to convert the pairwise distance matrix G into a positive 

semidefinite matrix B of rank E. The matrix B is then used to produce matrix W, whose columns 

are the position vectors H	, HI, … , HK.  

The method is illustrated as follows:  

First, the distance matrix G is transformed 

 L = #MK − FN	OKOKP (Q#MK − FN	OKOKP (. (19)

In the above expression, 

 R�) = 1
2 S�) (20)

 OK = T1 1 ⋯ 1VP , (21)

where R�) and S�) denote the elements of in the �WX row and AWX column of the matrices Q and 

G, respectively. The term MK is a F × F identity matrix. The E eigenvectors Z� corresponding to 

the nonzero eigenvalues [� of L are selected, i.e. those corresponding to 

 LZ� = [�Z�, [� ≠ 0. (22)

These are concatenated into a new matrix 
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 ] = ^Z	, ZI, … , Z4_P . (23)

 Each column H�  of W represents a point in the new space.    

The essence of the method is that if each element of Q, R�) is proportional to a distance 

metric S�) calculated between objects � and A, then the Euclidean distance between columns 

H� and H) of ] is also S)�. Thus, by the definition of an Euclidean distance, 

 S�) = ‖H� − H)‖I . (24)

It is important to realize however, that the distances, S�), do not necessarily correspond to 

the distances between two points in an original space, as is the case with both similarity scores 

on questionnaires and the impedance between two buses in a distribution feeder.  

III.B. Clustering Algorithm 

The goal of the clustering algorithm is to group together buses that are candidate locations. 

To perform the clustering, a number of clusters � (corresponding to the number of ESU to be 

placed) is selected as an input to the clustering algorithm. The requirements of the clustering 

algorithm are to assign each bus to a particular ESU and to select the bus that the units will be 

placed at. Hence, the objective of the clustering algorithm is to minimize the intra-cluster 

variance  

 a = � ‖H� − bc‖I
�∈ef

 (25)

where H� is a point in cluster g, bc is the centroid (or center of mass) of cluster g, and ec is the 

set of points belonging to cluster g. A last issue is that the amount of ESU power injection at 

each bus is not identical. This could result in erroneous results if there is a bus with only a small 

amount of power injection and another bus with a large amount. To account for this, the k-means 
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algorithm is used [4], but the centroid calculation is modified to use the amount of power 

injection at each bus as a weight. In the original k-means algorithm, the centroids are calculated 

as 

 bc = 1
�c

� H�
�∈ef

, (26)

where �c is the number of points in cluster g. By contrast, in the modified algorithm, the 

centroids are calculated as  

 bc = � h�H�,
�∈ef

 
(27)

where the weighting h� is equal to 

 h: = �����

∑ ������∈ef
⋅ (28)

To perform placement, the ESU are allocated to the bus nearest to their corresponding centroid. 

The power injections of each ESU candidate are then assigned to their corresponding ESU, as 

illustrated in Fig. 1.  

IV. CASE STUDY AND NUMERICAL RESULTS 

The proposed method is tested on the radial Italian rural distribution feeder given in [11] and 

illustrated in Fig. 2. There are two substations at buses 1 and 2, the load profile is shown in Fig. 

3, and the parameters are listed in Tables I and II. 

The total power rating of all the ESU to be placed is set at 1/10
th

 the total feeder real power 

demand, while the total power rating of the “smart” PV to be placed is 1/40
th

 the total feeder real 

power demand. Based on the results in [11], the number of ESU to be placed is 2. This is 

presented in Table III, along with other relevant inputs to the placement problem. 
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Five different scenarios were analyzed in placement. In addition to the base case without 

ESU or PV, a peak evening condition was selected for the objective. The ESU and PV are placed 

to minimize power demand from the feeder under this condition. As an evening case is used, the 

PV injects reactive power only. In addition, three other cases are included, which verify if the 

ESU is able to provide frequency regulation without causing flicker issues, as well as its ability 

to charge and discharge without violating voltage constraints. These scenarios are presented in 

Tables IV and V. 

 

Fig. 1. Flowchart for the CMDS/clustering algorithm. 
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Fig. 2.  Configuration of the feeder case study. 

 

 

Fig. 3. Feeder average load and PV profile over one day. 
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TABLE I. BRANCH CONNECTIVITY AND IMPEDANCES 

From To R X 

1 10 0.00169 0.00073 

10 14 0.00676 0.00291 

14 15 0.00024 0.00010 

15 16 0.00507 0.00218 

15 17 0.00566 0.00268 

10 9 0.00338 0.00146 

9 8 0.00217 0.00094 

8 7 0.00048 0.00021 

7 6 0.00435 0.00187 

6 5 0.00483 0.00208 

5 4 0.00580 0.00250 

4 3 0.00386 0.00166 

3 2 0.00531 0.00229 

6 11 0.00435 0.00187 

11 12 0.00435 0.00187 

12 13 0.00966 0.00416 

 

TABLE II. LOAD POWER AT EACH BUS 

Bus Number Power (kW)   Power Factor  

1             0.00 0.00 

2 0.00 0.00 

3 90.00 0.90 

4 100.00 0.90 

5 320.00 0.90 

6 90.00 0.90 

7 83.67 0.90 

8 420.00 0.90 

9 60.00 0.90 

10 90.00 0.90 

11 0.00 0.00 

12 600.00 0.88 

13 50.00 0.71 

14 550.00 0.71 

15 500.00 0.90 

16 400.00 0.90 

17 0.00 0.00 

 

  



123 

 

TABLE III. CASE STUDY PARAMETERS 

Parameter Expression Value 

Base Voltage />*�� 20 kV 

Base Power �>*�� 2 MW 

Substation 2 power �I�, !I� 
��-

6 � ��-&



�
	
, 1
6 � !�-&




�
	
 

Number of ESU � 2 

Total ESU Power ������� 
1

10 � ��-&



�
	
 

Total PV Power ����
��

 
1

40 � ��-&



�
	
 

Minimum Voltage /):� 0.95 pu 

Maximum Voltage /):� 1.05 pu 

Cost �� 
1, � = 1

0.1, otherwise 

 

TABLE IV. DESCRIPTION OF EVALUATED SCENARIOS 

Scenario Load State PV State ESU State 

0 (base) Peak Off Off 

1 (objective) Peak Inject Q Discharge 

2 (up-regulating) Peak Off Discharge 

3 (down-regulating) Peak Off Charge 

4 (up-regulating) Off-Peak Off Discharge 
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TABLE V. LOAD, ESU AND PV PARAMETERS FOR EACH SCENARIO 

Scenario rst rsuvw xsuvw rs
yZ

 xs
yZ

 

0 (base) 1.000 0.0 0 0 0.00 

1 (objective) 1.000 1.0 0 1 z/2 

2 (up-regulating) 1.000 1.0 0 0 0.00 

3 (down-regulating) 1.000 1.0 z 0 0.00 

4 (up-regulating) 0.454 1.0 0 0 0.00 

 

Although the average feeder load does not reach 1.0 pu, a 1.0 pu peak load is selected as a 

worst case. To evaluate whether flicker is an issue, the maximum change in voltage  

 Δ/ = max� #|/�I| − |/��|( (29)

at any bus is measured between scenarios 2 (up-regulating) and 3 (down-regulating). Assuming a 

4-s period in the regulation signal, any change lower than 1% is considered tolerable according 

to the worst case for the IEC-868 flicker curve [12], [13]. To evaluate if voltage regulation 

problems are caused during charging and discharging, scenarios 3 (peak load, up-regulating) and 

4 (off-peak load, down-regulating) are studied. 

 To evaluate the performance improvement against competing methods, the placement 

problem is also performed with genetic algorithms, following the approach of the original 

analysis [11]. To more fairly compare against the proposed method, the chromosome encoding is 

changed so that the number of ESU to be placed is fixed, as illustrated in Fig. 4. Rather than 

encoding the ESU placement as a binary vector whose number of elements is the number of 

buses �, it is now encoded as an integer vector whose number of elements is the number of ESU 

to be placed �. Additionally, the parameters listed in Table VI are applied.  

Tables VII-IX present placement results. The genetic algorithm was able to find the optimal 

placement after the first generation because of the small search space. However, the clustering-

based placement is able to complete in under 2 s, over an order of magnitude less than a single 
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iteration of the genetic algorithm. The results for the different scenarios indicate that the optimal 

placement of the ESU for reducing peak power does not cause voltage violations under other 

conditions. However, the ability of the ESU to provide regulation services is impeded, as the 

worst-case voltage variation will be noticeable. 

 
Fig. 4. Chromosome encoding for the genetic algorithm. 

 

TABLE VI. GENETIC ALGORITHM PARAMETERS 

Parameter Value 

Fitness function rank 

Selection function remainder selection 

Population 

replacement 
generational 

Elite individuals 

1
20 minTmax#10�, 40(,100V 

(2-5 depending on sample size) 

Mutation function uniform 

Mutation rate 0.01 

Crossover type scattered 

Crossover fraction 0.8 

Population size max#�, 30( 

Convergence 

iterations 
100 

Maximum  iterations 200 

 

TABLE VII. CLUSTERING PLACEMENT RESULTS 

Parameter Value 

ESU buses 13, 16 

ESU power ratings (kW) 127.8, 207.6 

PV total power rating (kW) 83.84 

Feeder demand without PV and ESU (MW) 3.174 

Feeder demand with PV and ESU (MW) 2.898 

Reduction in feeder demand (kW) 611.1 

Max Δ/ between charge and discharge (%) 1.333 

Clustering time to complete (s) 2.073 
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TABLE VIII. GA PLACEMENT RESULTS 

Parameter Value 

ESU buses 12, 16 

ESU power ratings (kW) 175.3, 160.1 

PV total power rating (kW) 83.84 

Feeder demand with PV and 

ESU (MW) 
2.985 

Reduction in feeder demand 

(kW) 
614.7 

Generations to convergence 1 

Time to complete 35 s / iteration 

 

TABLE IX. OPF RESULTS FOR CLUSTERING PLACEMENT 

Scenario Feeder Power Min. Voltage Max. Voltage 

0 (base) 3.1741 0.9500 0.9976 

1 (objective) 2.8984 0.9500 0.9928 

2 (up-regulating) 2.8027 0.9500 0.9912 

3 (down-regulating) 3.5534 0.9500 1.0046 

4 (up-regulating) 1.0096 0.9500 0.9639 

V. CONCLUSIONS 

A placement method for distributed ESU that considers the addition of “smart” PV inverters 

was proposed. It demonstrated the utility of ESU in reducing peak load, while quantifying the 

amount of unwanted flicker introduced by performing frequency regulation with the placed ESU. 

The method employed a novel heuristic involving MDS and clustering that reduced computation 

time compared to the genetic algorithm methods commonly applied to this class of problems.  

This reduced computational time makes the method appealing for use in interactive software 

packages such as distribution analysis applications. 
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CHAPTER SIX 

VALUE ASSESSMENT OF DISTRIBUTED ENERGY STORAGE VIA 

MULTIDIMENSIONAL SCALING 

Arthur Barnes, Luciano A. Garcia R. and Juan Carlos Balda 

A.K. Barnes, L.A. Garcia R., and J.C. Balda, “Value assessment of distributed energy storage via 

multidimensional scaling,” IEEE Transactions on Power Systems (to be submitted), December 

2014. 

Abstract — The concept of distributed energy storage units (ESU) places ESU at points 

dispersed on distribution systems, where they can provide additional benefits via ancillary 

services. In particular, ESU are able to reduce both distribution system line losses and 

overall load power consumption by injecting both real and reactive power. This work 

studies cost-effective placement of a fixed amount of ESU in terms of total apparent power 

rating.   

Selecting the dispersed points on a practical feeder with thousands of buses could be 

time consuming when using common randomized search methods such as genetic 

algorithms (GA), requiring hours or days to complete. A fast heuristic search for placing 

ESU is proposed, in which multidimensional scaling (MDS) is used to transform the 

combinatorial placement problem into a continuous-valued space. Then, the convex 

DistFlow formulation is extended to take into account voltage-dependent loads and power 

electronic interface (PEI) losses. Lastly, static voltage regulation constraints are examined 
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when ESU economic dispatch does not correlate with feeder load, and flicker constraints 

are examined when the ESU are providing frequency regulation.  

 The results demonstrate that although distributed ESU are limited in their ability to 

provide frequency regulation, they can reduce overall load power consumption and line 

losses on a distribution system. ESU can complement shunt capacitors deployed in an 

economic fashion to reduce system power consumption even with a conservative estimate of 

PEI efficiencies. However, this reduction is low. Additionally, it is envisioned that the 

ability of ESU to reduce system power consumption will decrease in the future. This 

decrease is caused by the proliferation of PEI with power factor correction (PFC) 

functionality in loads. Such PEI make loads operate at constant-power with near-unity 

power factor. However, technologies such as silicon carbide (SiC) and gallium nitride 

(GaN) will enable higher PEI efficiencies for ESU. These higher efficiencies enable ESU to 

still reduce system power consumption even under low reactive power draw and a large 

number of constant-power loads. 

Keywords—Energy storage, photovoltaic systems, renewable energy sources, optimization, 

clustering methods 

The authors are grateful for the financial assistance by the industry members of Grid-

Connected Advanced Power Electronics Systems, an NSF I/UCRC. 

I. INTRODUCTION 

Electrical energy is unique amongst all commodities in that (in traditional markets) it cannot 

be stored, instead it must immediately be consumed. This results in inefficiencies as power 
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generation must always be matched to load. The current most cost-effective solution is to 

construct peaker electricity plants to meet the highest demand during the peak hours of the day. 

These plants are typically single-cycle gas turbines or natural gas fed internal combustion 

engines [1]. Because their utilization is low, it is cost-effective to use these for peak generation 

even though their efficiencies are less than other generation technologies. While this is an 

economically sound solution with low natural gas prices and plant utilization, expected volatility 

and price increases in natural gas calls this approach into question [2]. Furthermore, an increased 

demand is expected for peaking and load-following capabilities brought on by the proliferation 

of renewable generation. ESU are proposed as an energy-efficient solution to these inherently 

wasteful generation sources [3], [4].  

ESU form an integral part of the concept of future energy systems, an integrated approach to 

reduce the environmental impacts of supplying energy to a community. Such future energy 

systems use several enabling technologies, including combined heat-and-power, distributed 

generation, and renewable energy sources. These are combined with increased sensing, increased 

communication, and new pricing structures. Future energy systems both empower and provide 

economic incentives for customers to take part in demand management activities [5]. The 

presence of distributed generation and energy storage also improves reliability in the case of grid 

failure via the microgrid concept [6]. These capabilities lead to tangible benefits, such as 

reducing consumption of and emissions from carbon-based fuels, long-term cost savings for both 

utilities and customers, and improving system reliability indices. 

 Because batteries are inherently created of small cells and do not produce either noise or 

emissions like generators, ESU do not need to be located in large bulk installations. Instead, ESU 

can be located near loads, which allows for them to provide ancillary services that have been 
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extensively documented in the literature, such as powering critical customer loads during power 

outages [7]–[9].  For the purposes of peak shaving, it can be shown that cumulative line losses 

are minimized by placing the ESU as close to loads as possible (and losses are maximized by 

placing the ESU as close to generation as possible).  This is demonstrated in Appendix A. 

Placing ESU near customer loads also allows for them to provide reactive power compensation 

with any surplus power processing capability in the PEI not used to handle real power [10].  

 This paper takes a slightly different approach than existing work in the topic, which generally 

focuses on economic assessment of ESU, typically in the context of a net present value analysis 

[11]. Instead, this work focuses on the benefits and limitations of distributed ESU vs. ESU 

connected directly to transmission (e.g. at the high-voltage bus of a power substation). To 

perform this comparison, rather than carrying out an economic analysis, this work implements an 

engineering study in terms of (i) the total power consumed and (ii) the line losses on the 

distribution system. While total power consumed by a distribution system is a useful 

measurement, it is not always the most appropriate one, as not all public utility commissions will 

allow utilities to receive economic remuneration from reducing customer energy consumption. 

Typically, distribution system operators are only accountable for their own losses. This analysis 

makes certain effects clear, notably the impact of voltage-dependent loads and PEI efficiencies 

on the benefits of distributed ESU. 

 In order to perform the analysis described above, the case addressed is a distribution system 

operator (DSO) that has made the purchase of a fixed amount of energy storage in terms of total 

apparent power rating. The DSO seeks to determine the best solution – how many ESU should 

be placed, their power ratings, and where they should be placed on the system.  
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 When determining placement, the scenario of the ESU providing peak shaving is examined. 

The total load on the distribution system can be lowered by appropriately placing the ESU and 

PV to flatten the voltage profile on the feeder, thereby allowing for conservation voltage 

reduction (CVR) to be applied [12]. CVR refers to lowering the overall voltage on the system 

(usually by the substation transformer tap settings) in order to reduce overall load demand by 

taking advantage of the increasing power vs. voltage curve of the system load. CVR is intrinsic 

to volt/VAR optimization (VVO), a control strategy in which equipment for voltage regulation 

and reactive power compensation on a distribution system are coordinated to reduce power 

consumption. The concept of VVO won success with utilities, allowing them to reduce power 

consumption with their existing equipment. Both major utility equipment manufacturers and 

upstarts have responded by developing their own VVO systems, including Cooper Power 

Systems, PCS Utilidata, ABB, and S&C [13]. 

 This placement problem is closely related to that of placing distributed generation and shunt 

capacitors. The existing methods for placing these devices are categorized as: analytical [14], 

[15], numerical optimization (either linear , nonlinear, or mixed-integer nonlinear [16]), heuristic 

search [17], and randomized search [18], [19].  

Recently convex optimization  methods have been applied  in distribution system engineering 

[20]–[23]. Convex optimization methods provide a guarantee that the achieve solution �∗ will be 

a global optimum, so that for an objective function �(�) and any feasible solution �, then 

�(�∗) ≤ �(�) [24]. Additionally, convex optimization problems can be formulated using a 

disciplined convex  programming (DCP) ruleset that provides building blocks of legal operations 

which can be combined to formulate a convex optimization problem in a legible fashion [25]. It 

can be shown that under certain conditions an ac optimal power flow can be described as a 
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convex problem. These conditions include if the distribution system is radial or if phase-shifters 

have been installed on any loops present in the system. The methodology is well established for 

positive-sequence representations of radial systems, where it has been proved that the convex 

relation is tight [23].  

 This paper elaborates on earlier work that proposes a heuristic placement method [26]. Here, 

certain properties of the method are analyzed. It is shown that for positive-sequence 

representations of a distribution system, the transformed representation closely approximates the 

original one. The reduction in benefits resulting from aggregating ESU via the clustering 

methodology is quantified to first-order. The method is extended to include PEI loss models and 

applied to two new distribution systems. The results are interpreted to derive conclusions about 

the benefits of reactive power injection when considering non-ideal, lossy PEIs. Last, the 

scalability of the methodology is demonstrated by applying it to a large, 2998-bus distribution 

system model [27]. 

The proposed placement method falls under the category of heuristic search methods, in that 

it solves a simpler problem, whose solution is highly correlated with the optimal solution of the 

original problem. The methodology converts the placement problem from a combinatorial 

problem to a continuous-valued one by transforming the ESU bus locations into a continuous 

space with multidimensional scaling (MDS). The ESU positions are calculated with a clustering 

algorithm in the new space. Clustering for placement reduces computational complexity over 

both pure and hybrid genetic algorithm (GA) approaches, as it only runs a computationally 

intensive optimal power flow (OPF) twice, as oCh6pposed to the hundreds or thousands of OPF 

necessary for randomized search. The resulting long execution time is a hindrance for a 

distribution system engineer who wants to evaluate several different options for constructing or 
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upgrading a feeder. By contrast, the proposed method enables the engineer to quickly evaluate 

several different ESU configurations in a hypothetical software application by clicking a toolbar 

button. 

 This paper is arranged as follows. Section II describes the OPF used to select candidate buses 

to consider for ESU placement. Section III describes the scaling and clustering methods used for 

selecting ESU locations among the candidate buses. Additionally, it also provides some 

analytical results on performance of the methodologies. Section IV describes the GA 

methodology used as a performance benchmark. Section V describes the three case study 

systems. Section VI presents numerical results from applying both the proposed and benchmark 

methodologies. Last, section VII discusses conclusions about the benefits and potential 

applications of the proposed methodology. 

II. CALCULATING CANDIDATE LOCATIONS AND POWERS WITH AN OPF 

The high-level goal of the placement problem is to install a fixed amount of energy storage 

and to minimize power consumed by a distribution system under peak load while meeting 

voltage regulation constraints. The ESU inject power to increase frequency towards 60 Hz 

(referred to here as up-regulating) or supply power during critical peaks, but also draw power to 

help reduce frequency towards 60 Hz (referred to here as down-regulating) and charge during 

off-peak times to account for losses. Thus, while it is desirable to place ESU where they make 

the largest impact on voltage regulation and power consumed by the distribution system during 

peak load conditions and up-regulating, this property is a hindrance when the ESU are to down-

regulate or charge. This analysis assumes that the ESU are always able to charge during off-peak 

times, so state-of-charge constraints are not included in the analysis. 
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II.A. Raw Problem Formulation 

The distribution system is modeled using the DistFlow formulation, which allows a purely 

radial distribution system to be represented as a series of real-valued equations in terms of 

voltage magnitude squared and power [28], [29]. This formulation eliminates the requirements 

for a distribution system solver or optimal power flow (OPF) to handle complex numbers or 

invert large matrices. Fig. 1 illustrates the key variables for a branch � linking the sending bus � 
and receiving bus 	. In this formulation, the voltages are represented as magnitudes squared, so 

that given the phasor voltage 
�, then �� = ‖
� ‖�. The expression �� + ��� is the complex 

power entering branch �, where script � denotes the imaginary number. The expression �� +
��� is the positive-sequence complex impedance of branch �. At bus 	, the expression ������ +
������� is the complex power drawn by the load, while ����� + ������ is the complex power 

injected by the ESU and ��� �!
 is the complex power injected by the shunt capacitor. The term 

"� represents the set of child branches that connect to the receiving bus 	 of branch �. In Fig. 1, # 

such branches are depicted. For the $%&child branch, �"'( + ��"'( is the power flowing into its 

sending end. All quantities listed are in per-unit. The problem objective is to minimize the power 

delivered from the substation, bus 1, during peak demand periods; that is 

minimize ���. = / �� + �0���� − �0���.
�∈"4

 (1)

The problem is subject to several constraints, which are discussed in the remainder of this 

section. As this work focuses only on demand reduction rather than economic aspects of the 

ESU, the total apparent power rating of the ESU is fixed so that 
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Fig. 1. Illustration of two buses in the DistFlow representation of a distribution system. 

 

/ 5���� ≤ 56�6���,8

�90
 (2)

where : is the number of buses, 5���� is the rated power of the ESU at bus �,  and 56�6��� is the total 

rated power of all the ESU in pu. The ESU PEI at bus � is oversized by a fixed amount given by 

 ; = 5����
�����. (3)

  

This value ; is the same for each ESU. Similarly, for each ESU 

 ����� = <����� (4)

  

and 

 < = =;� − 1. (5)

  

The ESU PEI has the following loss function in terms of the fractional loss (1 − ?) 

 ������ = (1 − ?)5���� = (1 − ?);�����, (6)

  

where ? is the fractional efficiency of the PEI at unity power factor. The power flow constraints 

for branch � are represented as 
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 �� = �� (��� + ���)�� + ������ − ����� + ������ + / ��
�∈"@

 (7)

  

 �� = �� (��� + ���)�� + ������ − ����� − �� �! + / ��
�∈"@

 (8)

  

 �� = �� − 2(���� + ����) + (��� + ���)(��� + ���)��  (9)

  

 BC�D� ≤ �� ≤ BC�E�  . (10)

  

In the above, BC�D and BC�E are the minimum and maximum allowable voltages in pu, 

respectively.  

 A static load model is employed such that 

 ������ = ������F(1 + GΔ��) (11)

  

 ������ = ������F(1 + IΔ��). (12)

  

In (11) and (12), Δ�� = �� − 1 is the deviation of the squared voltage magnitudes from 1 

pu. Note that the above equations are linear in ��, but are quadratic in ‖
J‖. As ‖
J‖ remains 

near 1 pu, this is a reasonable approximation. The terms ������ and ������ are nominal real and 

reactive powers drawn by the load at bus �, respectively. The terms G and I represent the change 

in real and reactive power drawn by the load with respect to the voltage at the load bus, 

respectively. Similar to the case of the load, the capacitors also have voltage dependence so that 

the injected power is  

 �� �! = �� �!F��, (13)

  

where �� �!F
 is the nominal reactive power of the capacitor in pu. 
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The cost of placing an ESU on the distribution system is assumed to have both a fixed 

installation cost in addition to a portion of the cost that is proportional to the apparent power 

rating of the ESU, as illustrated in Fig. 2. The effect of this piecewise linear cost is that it is more 

cost-effective to have a smaller number of larger ESU, as less fixed installation cost is incurred. 

However, including this in the cost makes the problem considerably more difficult from a 

computational perspective, as it now a mixed-integer nonlinear problem [29]. In order to 

circumvent this issue, the OPF formulation is only used to select candidate buses for ESU 

placement. The placement is solved as a separate problem, using the candidate buses and the 

necessary power injections as inputs to a clustering algorithm which determines the actual ESU 

power ratings and locations. The clustering algorithm requires that the number of ESU be 

selected beforehand. However, as this number is small, it is reasonable to determine its optimal 

value by an exhaustive iteration over a fixed range from 0 to a maximum number of  ESU KC�E.  

 

Fig. 2. Nonlinear cost of placing ESU. 

 

0
0
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II.B. Convex Placement Formulation 

For the purposes of solving the optimal power flow (OPF) problem, the CVX package for 

Matlab is employed, which provides guaranteed convergence provided that the problem can be 

formulated in terms of disciplined convex programming [25].  

In the systems analyzed, there is only one branch originating from the substation bus. Loads 

at the substation bus are not accounted for when placing ESU (though they are included when 

calculating the final distribution system power demand). Therefore, the DCP formulation for the 

problem is 

subject to 

minimize �0 (14)

 / ����� ≤ �6�6���
8

�90
 

(15)

 ������ = (1 − ?);����� (16)

 �� = ��L� + ������ − ����� + / ��
�∈"@

 (17)

 �� = ��L� + ������ − <����� − �� �! + / ��
�∈"@

 (18)

 �� = �� − 2(���� + ����) + (��� + ���)L� (19)

 L� ≥ ����� + �����  (20)

 BC�D� ≤ �� ≤ BC�E�  (21)

 ����� ≤ [1 − ;(1 − ?)]�����F (22)
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 ������ ≥ ������F(1 + GΔ��) (23)

 ������ ≥ ������F(1 + IΔ��) (24)

 �� �! ≤ � �!F��. (25)

In (20), L� is a helper variable necessary for the convex relaxation, while �����F is the desired 

ESU output real power without losses [30]. 

II.C. Scoring and Convex Validation Formulation  

To score the reduction in distribution system power consumption gained by applying ESU, it 

is necessary to consider the total feeder energy consumed over the course of a day. For this 

analysis, it is assumed that the ESU charge and discharge times are short compared to the daily 

load variations. Based on this assumption, these calculations are performed using only on- and 

off-peak load values. All scenarios considered are compared with a base scenario in which the 

ESU is placed at the substation and used for peak shaving (but not reduction of distribution 

system losses). The base case accounts for losses within the ESU. The daily energy consumed 

for the base scenario is  

 P.��� = Q���R���.!�,.��� − �6�6,������ S + Q TU(���.�!,.��� − �6�6, TU��� ) (26)

  

 ?Q TU = Q���. (27)

  

In (26), P.��� is the daily energy consumed, while Q��� and Q TU are the ESU discharge and 

charge times, respectively. Additionally, ���.!�,.���
 and ���.�!,.���

 are powers demanded by the 

substation during peak and off-peak times, respectively (not including the ESU power). 

Similarly, �6�6,������  and �6�6, TU���  are the total powers of the ESU during the discharge and charge 

periods, respectively. The discharge period corresponds exactly with the peak period, while the 
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charge period corresponds exactly with the off-peak period. For the case of ESU placed, the 

daily energy consumption is then 

 P = Q������.!� + Q TU���.�! . (28)

  

In (28), ���.!�
 and ���.�!

 are the substation peak and off-peak powers assuming that ESU have been 

placed on the feeder. Again, it is assumed that the ESU will discharge during the peak period and 

charge during the off-peak period. The reduction in distribution system energy consumption is 

then P.��� − P, which could be negative if the ESU are not operated in an effective manner. 

For the purpose of validation, the OPF is run again with the ESU placed at the buses � ∈ ℰ 

under a number of scenarios. It is assumed the ESU charge at night during off-peak periods and 

there is always sufficient time to do so. For this reason, the state-of-charge is not included in the 

validation formulation. Instead, the validation verifies whether or not the ESU will: 

1.  violate steady-state voltage constraints when charging or discharging, and/or 

2.  violate flicker limits when providing frequency regulation.  

 For the purpose of checking steady-state voltage constraints, the distribution system voltage 

profiles during the scenarios of peak load / ESU discharging and off-peak load / ESU charging 

are examined. For the case of ESU charging, the problem formulation must be changed slightly 

so that (22) becomes 

 ����� ≤ −[1 + (1 − ?)]�����F. (29)

  

In (29), it is assumed that the ESU always operates at unity power factor while charging. 

For the case of flicker, the voltage profiles while the ESU is down-regulating frequency 

(charging) and up-regulating frequency (discharging) are compared during peak feeder load. The 
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substation output voltage is calculated during the down-regulating scenario, and held fixed at the 

same value during the up-regulating scenario. 

III. SELECTION OF THE ESU LOCATIONS 

In this particular problem, the key idea is that it is not desirable to place ESU at buses that are 

very “close” to one another, which in this context means that there is a low impedance or voltage 

drop between them. To determine how to best combine the candidate locations into a smaller 

number of well-spaced ESU, the candidate ESU locations are mapped into a continuous space 

that is easier to work with than the original discrete space. To accomplish this, dimensionality 

scaling methodologies are employed [31]–[33]. However, even with the candidate locations 

mapped into a continuous space, the problem is still combinatorial in nature. Fortunately, the 

new problem space allows for the use of clustering methods, which represent a “good” 

suboptimal solution to the problem, in that they will produce a solution having an objective 

function value only slightly larger than the one produced by exhaustive search [34].  

Although hierarchical clustering algorithms exist that can operate over a pairwise distance 

matrix, they suffer from sensitivity to initial conditions. The MDS algorithm allows classical k-

means type algorithms to be applied, which are much less sensitive [34]. Additionally, MDS 

comes at a low cost in terms of both computational and programming burden, as it can be 

implemented in two lines of a high-level language with a set of matrix multiplications and 

eigenvector decomposition.  

III.A. Multidimensional Scaling 

 The candidate buses are mapped to points in a W-dimensional space using MDS, a 

dimensionality reduction technique that is commonly used in the social sciences for visualizing 
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results from survey data [31]. This methodology works by first calculating pairwise distances 

between each object (in this case, a bus) in a set (in this case, all the : buses in the distribution 

system model). The objects are then mapped to arbitrarily placed points in the W-dimensional 

space. The classical MDS (CMDS) algorithm is employed. CMDS maps the objects using their 

pairwise distances onto the W-dimensional space by applying a pair of transformation matrices to 

convert the pairwise : × : distance matrix Y into a positive semidefinite matrix B of rank W. B 

is then used to produce matrix Z, whose columns are the position vectors [0, [�, … , [8.  

The method is illustrated as follows. First, the distance matrix Y is transformed 

 ] = 12 (^8 − _)Y(^8 − _), (30)

  

where `8 is a : × : identity matrix and _ is another : × : matrix in which each element 

O�� = :b0. The W eigenvectors c� corresponding to the nonzero eigenvalues d� of ] are selected, 

therefore 

 ]c� = d�c� , d� ≠ 0. (31)

  
These are concatenated into a new matrix 

 Z = gc0, c�, … , chij. (32)

  

 Each column [�  of Y represents a point in the new space.    

The salient property of the method is that if each element of D corresponds to an Euclidean 

distance k�� calculated between objects � and 	, then the Euclidean distance between columns [� 
and [� of Z is also 

 k�� = l[� − [�l� . (33)
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It is important to realize however, that the distances k�� do not necessarily correspond to the 

distances between two points in an original space, as is the case with both similarity scores on 

questionnaires and the impedance between two buses in a distribution system. Additionally, if 

k�� does not correspond to a Euclidean distance, then the two sides in (33) will become only 

approximately equal. 

There exists another form of MDS, the nonmetric MDS algorithm, that calculates the [� 
using an iterative algorithm. This algorithm attempts to minimize the difference between the 

original distances and the distances between the [�. The nonmetric algorithm typically yields 

superior performance when it is desired to map the distances into a low-dimensional space. In the 

CMDS algorithm, the dimensionality of the resulting space is restricted by discarding the 

dimensions corresponding to the smallest eigenvalues, but this typically results in lower accuracy 

than the nonmetric MDS algorithm [31]. Both forms are used in this paper, with the nonmetric 

form applied to small datasets (less than 100 buses) and the classical form applied to large 

datasets (more than 100 buses). 

The set of pairwise distances Y used as an input for MDS has certain applicable 

mathematical properties itself. It can be shown via the bus impedance (Z-bus) matrix method that 

the set of pairwise distances completely describes the positive-sequence representation of an 

electrical distribution system. This is demonstrated with the following 4 buses from a radial 

distribution system illustrated in Fig. 3. The substation bus is indicated by 1, and corresponds to 

the reference bus in the m-bus formulation [1]. 
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Fig. 3. Four buses from a radial distribution system and the corresponding distances 

between them. 

For a radial system, each element in the (symmetric) m-bus matrix is defined as follows 

 m�� = B�
�̀ n .

o@pF,  o4,…,oq9F
 (34)

  

From Fig. 3, it can be shown that 

 k0� = m�� (35)

  

 k0� = m��  (36)

  

 m�� = m��. (37)

  

Therefore 

 m�� = k0� (38)

  

 2k0� = k0� + k0� − k�� (39)

  

 2m�� = m0� + m0� − m�� (40)

  

   m�� = 12 Rk0� + k0� − k��S. (41)
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Although the distance matrix is defined as a real matrix by definition, the above holds true if 

the notion  of distance is somewhat abused and a complex “distance” matrix is created by adding 

the distance matrices corresponding the real and imaginary portions of the positive-sequence 

impedance. Therefore, the full Z-bus matrix is defined uniquely in terms of the distance matrix 

 m�� = r k�0, � = 	
 12 Rk0� + k0� − k��S, � ≠ 	. (42)

  

 

It is further shown that (assuming the distances in CMDS space match closely with the 

distances in the original space) an ESU placement on the line segment connecting two directly 

connected buses in CMDS space will correspond to placing the ESU on the physical line 

connecting the two buses � and 	 in the distribution system, as illustrated in Fig. 4. This is 

demonstrated in the following expressions. First, given that point [� is on the line segment 

between points [� and [�, it can be described as a convex relationship of the two points 

 [� = s[� + (1 − s)[�. (43)

  

Now let the distances between [� and its neighboring points be 

 k�� = l[� − s[� − (1 − s)[�l (44)

  

 k�� = l[� − s[� − (1 − s)[�l. (45)

  

The distance between points [� and [� can therefore be expressed as 

k�� + k�� = l[� − s[� − (1 − s)[�l + l[� − s[� − (1 − s)[�l. (46)

 

Rearranging terms, 
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k�� + k�� = l(1 − s)[� − (1 − s)[�l + ls[� − s[�l. (47)

 

By the absolute homogeneity property of a norm, and observing that both s and 1 − s are 

nonegative 

k�� + k�� = (1 − s)l[� − [�l + sl[� − [�l. (48)

 

Finally, 

 k�� + k�� = l[� − [�l = k��. (49)

  

For [� not located between [� and [� the triangle inequality holds, so 

 k�� + k�� ≥ k��. (50)

  

 For the practical case of an ESU location (cluster centroid) that is not placed on any line 

segment corresponding to a physical line, it can be shown that assigning it to the nearest 

neighbor bus will result in a quality solution under certain conditions. These conditions occur 

when the sum of the distances in the cluster is much smaller than the distance from the center of 

the cluster to the tree root (substation). This can be expressed as follows (to first order, 

neglecting the incremental change in losses or voltage regulation caused by nonlinearities in the 

distribution system). Consider a single cluster with centroid t, and let the nearest neighbor bus 

with respect to t be u, at location [..  

 
Fig. 4. Relationship of point placement in the CMDS space and position on the physical 

feeder. 
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Let � ∈ v be the set of buses in that cluster, with locations [�. For all the ESU candidate buses 

{[�|� ∈ v} in that centroid, the benefit of installing storage is  

 z = / {�k0�,
 �∈v

 (51)

  

where {� is a weight proportional to the real power injection of that ESU determined by the 

convex OPF. The {� are normalized so their sum in that cluster is one. Assume once again there 

is a bus � at the endpoint of the shared path from all buses in the cluster.  Neglecting k�. an 

upper bound on the reduced benefit incurred by clustering can therefore be expressed as  

 Δz = / {�k0�
 �∈v

− k0�. (52)

  

Assuming | buses in the cluster, this can be re-expressed in terms of the Z-bus matrix and 

expanding 

 Δz = / {�k0�
 �∈v

− / m.�
 �∈v

 (53)

  

 Δz = / {�k0�
 �∈v

− / 12 (k0� + k0� − k��)
 �∈v

 
(54)

  

 Δz = / {�k0�
 �∈v

− 12 / k0�
 �∈v

− 12 / k0.
 �∈v

+ 12 / k.�
 �∈v

 (55)

  

 Δz = / {�k0�
 �∈v

− 12 / k0�
 �∈v

− |2 k0. + 12 / k.�
 �∈v

. (56)

  

From the above, it is apparent that when k0. ≫ 0
~ ∑ k.� �∈v , the benefit reduction Δz will be 

small. Therefore, when the cluster size is small compared to the distance of the cluster from the 

substation, then clustering will not significantly affect the solution quality. 
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III.B. Derivation of Placement Rules 

In order to validate the scalability of the placement algorithm, it is necessary to run it on a 

large (1000+ bus) unbalanced distribution system model. Unfortunately, this precludes the use of 

the convex OPF formulation described in Section II, as (i) the convex OPF relaxation has only 

been shown to be tight for a balanced system, and (ii) existing literature has only scaled the OPF 

up to distribution system models in the low 100s of buses. To circumvent this issue, a simple ad-

hoc single-class classifier is designed to select the ESU buses. Because the test systems 

employed for the OPF (described later in Section IV) are only on the order of the low 10s of 

buses, insufficient training data exists to design a statistical classifier [34]. To overcome this 

second issue, a single feature was selected manually, and used as the input for a threshold-based 

classifier, which selects buses whose feature value is in the top 10
th

 percentile. Three features are 

considered: 

1. the  sum of resistive power losses along the path from the substation to each bus 

(quadratically related to the current at each branch), 

2. the sum of voltage drops along the path from the substation to each bus (linearly related 

to the current at each branch), and 

3. the sum of impedance magnitudes along the path from the substation to each bus 

(independent of the current at each branch). 

 These features are illustrated in Fig. 5 and Fig. 6, which demonstrate that buses selected for 

ESU candidates can be predicted with either resistive power losses or voltage drop. In this study, 

the voltage drop was selected as it is easily extracted from the results from a distribution system 

analysis tool without additional post-processing. 
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Fig. 5. Plot of voltage drop and resistive loss along the path from the substation to each bus 

on a 42-bus feeder. Candidate buses for ESU placement (those in the top 10
th

 percentile in 

terms of injected power) are circled. 

 

 

 
Fig. 6. Plot of voltage drop and impedance magnitude along the path from the substation to 

each bus on a 42-bus feeder. Candidate buses for ESU placement (those in the top 10
th

 

percentile in terms of injected power) are circled. 
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III.C. Clustering Algorithm 

The goal of the clustering algorithm is to group together buses that are candidate locations 

for placing ESU. A number of clusters K (corresponding to the number of ESU to be placed) is 

selected as an input to the algorithm. The requirements of the clustering algorithm are to assign 

each bus to a particular ESU and to select the buses that the ESU will be placed at.  

Hence, the objective of the algorithm is to minimize the intra-cluster variance 

  minimize z = / ‖[� − t�‖�,
�∈v'

 (57)

  

where [� is a point in cluster �, t� is the centroid (or center of mass) of cluster �, and v� is the 

set of points belonging to cluster �. Although it is possible for the first criterion to be handled 

directly in the clustering itself, it is taken into account indirectly by selection of the number of 

clusters instead. A last issue is that the amount of ESU power injection at each bus is not 

identical. This could cause skewed results for the case of a bus with only a small amount of 

power injection counting as much as a bus with a large amount. To account for this, the weighted 

k-means algorithm is used [34], in which the centroid calculation is modified to use the amount 

of power injection at each bus as a weight. In the original k-means algorithm, the centroids are 

calculated as 

 t� = 1:� / [� ,
�∈v'

 (58)

  

where :� is the number of points in cluster �. By contrast, in the weighted algorithm, the 

centroids are calculated as  
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 t� = / {�[�,
�∈v'

 (59)

  

where the weighting {� is equal to 

 {� = �����
∑ ������∈v'

. (60)

  

To perform placement, the ESU are allocated to the bus closest to their centroid. The power 

injections of each ESU candidate are then assigned to their corresponding ESU, shown in Fig. 7. 

 

Fig. 7. Flowchart for the CMDS/clustering algorithm. 
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IV. VALIDATION AGAINST GA 

 Although a variety of methods have been investigated for placement of ESU, distributed 

generation, and shunt capacitors, GA and similar randomized search methods are very commonly 

employed [35], [36]. To provide a benchmark against which the proposed methodology can be 

compared, the GA approach described in [19] is also implemented.  

The problem formulation is somewhat different here, however. The placement OPF in this 

study is a convex problem taken over a single time interval, compared to the quadratic multi-step 

problem taken in [19]. Furthermore, in this study the total number of ESU and total power rating 

of the ESU are both fixed inputs to the problem. To account for this, the GA parameters are 

changed, as described in Table I. In this work the function ga() from the Matlab™ optimization 

toolbox is used.  

 

 

 

TABLE I. GA PARAMETERS 

Parameter Value 

Fitness function rank 

Selection function Remainder selection 

Population replacement generational 

Elite individuals 

120 min[max(10 ⋅ :, 40),100] 
(2…5 indivduals depending on sample size) 

Mutation function uniform 

Mutation rate 0.01 

Crossover type scattered 

Crossover fraction 0.8 

Population size max(:, 30) 

Convergence iterations 100 

Maximum  iterations 200 
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To summarize:  

    1)  Encoding 

The GA uses the encoding in Fig. 8, in which each chromosome is composed of K alleles. 

Each allele is a positive integer than can take on the values 1, … , :. If the number of ESU to be 

placed K is small compared to the total number of buses, then the total search space is 

significantly reduced: :�  ≪ 28, and the valid search space �:K� is even further reduced, 

eliminating many OPF evaluations.  

    2)  Population 

The algorithm operates with a constant population size. The number of individuals in the 

population is the maximum of either the number of buses : or 30, whichever is larger. Based on 

empirical studies, 30 individuals is the minimum number necessary to ensure sufficient 

population diversity, increasing the likelihood that the search space is sufficiently explored [37]. 

    3)  Fitness function 

The rank fitness function is used, in which each individual is ranked according  to its cost 

function. The individual with the �%& lowest cost function is accorded the fitness value 1/√�. 

    4)  Selection function 

The algorithm uses the remainder selection method to choose which individuals will produce 

children for the next generation. In the remainder selection method, the number of times each 

individual is selected for reproduction depends on its fitness. First, the individual is selected a 

deterministic number of times based on the integer part of its fitness. The remainder of the 

individuals selected for reproduction is done randomly, in which the likelihood of their selection 

is weighted by the fractional portion of their fitness. 
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Fig. 8. Chromosome encoding for the GA. 

 

    5)  Population replacement method 

The algorithm uses the generational replacement method, in which all individuals are 

replaced after the elite, mutation, and crossover operations are performed. 

    6)  Elite reproduction 

A small number of individuals with high fitness are likely to yield solutions whose cost is 

either the global optimum or only slightly greater. These individuals are cloned in addition to 

producing children through the mutation and crossover operations. The exact number of 

individuals selected is 
0

�F min[max(10 ⋅ :, 40),100], which amounts to 2-5 individuals, 

depending on the number of buses in the distribution system. 

    7)  Crossover reproduction and crossover fraction 

The scattered crossover function is employed. In this method, a uniform random binary 

vector of length K is generated for each child produced by crossover. The child alleles with a “0” 

in their position receive alleles from the first parent, while those with a “1” in their position 

receive alleles from the second parent.  The number of children produced by crossover is 80% of 

the population of the next generation (excluding those produced by the elite operation). 

    8)  Mutation function and rate 

The uniform mutation function with rate of 0.01 is selected. The uniform mutation function 

operates on the remaining 20% of the next generation (excluding those produced by the elite 

operation). It works by altering the chromosomes in the next generation by randomly selecting 

1% of the alleles, then randomly assigning those alleles a number in the range 1, … , :. 
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    9)  Maximum generations and termination generations 

The GA terminates if the highest fitness in the population does not improve after 100 

generations have passed, or if 200 generations have passed, regardless of any change in the 

fitness functions of the population. 

V. CASE STUDIES 

The proposed method is tested on three test cases. These are: a 17-bus positive-sequence 

distribution system model (TC17) [38], a 42-bus positive-sequence distribution system model 

(TC42)  [30], and a 2998-bus unbalanced three-phase distribution system model (TC2998) [27]. 

The latter system is produced by the Electric Power Research Institute (EPRI), and referred to as 

ckt5 in its literature.  

V.A. Parameters for Calculating Performance Improvement and Validation 

In TC17 and TC42, the total real power rating of the ESU to be placed is 12.5% of the total 

feeder real power demand (excepting loads placed directly at the substation bus). For TC2998, 

the total power rating of the ESU is equal to the sum of load powers at the load buses in the 

bottom 10
th

 percentile. Additionally, TC2998 is not used to measure power reduction on the 

distribution system gained by the placement of ESU; it serves only to demonstrate the scalability 

of the algorithm. Table II describes the parameters used for the cases employed in both scoring 

and validation. Cases BP, BO, DP and CO are used for scoring. Cases R+O and R−P are the 

scenarios when validating that the ESU will not violate steady-state voltage regulation limits, 

though all scenarios analyzed are also included.  
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TABLE II. DESCRIPTION OF SCORING AND VALIDATION CASES 

Scenario Load  ESU  Regulator  

BP (Base Peak) Peak Off Optimum  

BO (Base Off-peak) Off-Peak Off Optimum 

DP (Objective; Discharge Peak) Peak Discharge Optimum  

CO (Objective; Charge Off-peak) Off-Peak Charge Optimum 

R+O (Up-regulating) Off-Peak Discharge Optimum 

R+P (Up-regulating) Peak Discharge Optimum  

R−P (Down-regulating) Peak Charge Same as (3) 

TABLE III. CASE STUDY PARAMETERS FOR TC17 AND TC42 

Parameter Symbol Value 

Number of ESU K 2 

Total ESU Real Power �6�6��� 
18 / �D�F

8

D90
 

ESU Oversizing for Nominal Reactive Power 

Injection 
�0 15% 

Nominal ESU Losses �0 3.68% 

Nominal Real Power 

CVR Factor 
G0 0.7 

Nominal Reactive Power CVR Factor I0 2.0 

Minimum Voltage BC�D 0.95 pu 

Maximum Voltage BC�E 1.05 pu 

 

TABLE IV. CASE STUDY PARAMETERS FOR TC2998 

Parameter Symbol Value 

Number of ESU K 2 

Buses Selected for ESU 

Candidates 
ℰ 

Buses with voltage in the bottom 10
th

 

percentile 

ESU Candidate Bus Power ����� ������ 

 

Unless otherwise specified, the parameters in Table III are used for both TC17 and TC42. 

For TC2998, the relevant parameters are listed in Table IV, but the EPRI feeder model is not 

modified. 
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V.B. Parameters for TC17 

The feeder TC17 is a 12.5 kV system originally used in a voltage harmonic mitigation study 

[38]. It is presented here with some modifications. A one-line diagram of the distribution system 

is presented in Fig. 9. Table V – Table VIII list general, line, and load parameters for the system, 

respectively. 

 
Fig. 9. One-line diagram of TC17. Substation is located at bus 1. 

 

TABLE V. GENERAL PARAMETERS FOR TC17 

Parameter Symbol Value 

Base Voltage B. 12.5 kV 

Base Power 5. 10 MVA 

 

TABLE VI. LINE PARAMETERS FOR TC17 

From 

Bus 

To 

Bus 

R 

(pu) 

X 

(pu) 

From 

Bus 

To 

Bus 

R 

(pu) 

X 

(pu) 

1 2 0.00810 0.07107 3 10 0.01706 0.02209 

2 3 0.00431 0.01204 2 11 0.02910 0.03768 

3 4 0.00610 0.01677 11 12 0.02222 0.02888 

4 5 0.00316 0.00882 12 13 0.04803 0.06218 

5 6 0.00896 0.02502 12 14 0.03985 0.05160 

6 7 0.00295 0.00824 14 15 0.02910 0.03768 

7 8 0.01720 0.02120 14 16 0.03727 0.04593 

8 9 0.04070 0.03053 16 17 0.02208 0.02720 

 

12345678

9 10 11

12 13

14

15

1617
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TABLE VII. LOAD PARAMETERS FOR TC17 

Bus No. P (pu) Q (pu) Bus No. P (pu) Q (pu) 

1 0.00 0.00 10 0.05 0.031 

2 0.00 0.00 11 0.10 0.062 

3 0.02 0.012 12 0.03 0.019 

4 0.04 0.025 13 0.02 0.012 

5 0.15 0.093 14 0.08 0.05 

6 0.30 0.226 15 0.05 0.031 

7 0.08 0.050 16 0.10 0.062 

8 0.02 0.012 17 0.02 0.012 

9 0.10 0.062    

 

TABLE VIII. SHUNT CAPACITOR BANK PARAMETERS FOR TC17 

Bus No. Nameplate Capacity (kVAR) 

5 3150 

14 1350 

 

V.C. Parameters for TC42 

The feeder TC42 is a 12.35 kV system originally used in a study on centralized control for 

loss reduction and voltage rise mitigation with “smart” PV [30]. A one-line diagram of the 

distribution system is presented in Fig. 10. Table IX - Table XII list general, line, and load 

parameters for the system, respectively. 

 

Fig. 10. One-line diagram of TC42. Substation is located at bus 1. 

12
345

67
8

9

10

1112

13

1415

16

17

18 19

20
2122

23
24 25

26
27

28 29

30 31

3233

34
35

36

3738
39

40

41

42



163 

 

TABLE IX. GENERAL PARAMETERS FOR TC42 

Parameter Symbol Value 

Base Voltage B. 12.35 kV 

Base Power 5. 45 MVA 

TABLE X. LINE PARAMETERS FOR TC42 

From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

 From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

1 2 0.259 0.808  9 10 0.015 0.015 

2 3 0.031 0.031  9 42 0.153 0.046 

3 4 0.046 0.092  10 11 0.107 0.076 

3 14 0.092 0.031  11 12 0.076 0.046 

3 15 0.214 0.046  15 18 0.046 0.015 

4 20 0.336 0.061  15 16 0.107 0.015 

4 5 0.107 0.183  20 21 0.122 0.092 

5 26 0.061 0.015  20 25 0.214 0.046 

5 6 0.015 0.031  21 22 0.198 0.046 

6 27 0.168 0.061  27 31 0.046 0.015 

6 7 0.031 0.046  27 28 0.107 0.031 

7 32 0.076 0.015  28 29 0.107 0.031 

7 8 0.015 0.015  29 30 0.061 0.015 

8 40 0.046 0.015  32 33 0.046 0.015 

8 39 0.244 0.046  33 34 0.031 0.000 

8 41 0.107 0.031  35 36 0.076 0.015 

8 35 0.076 0.015  35 37 0.076 0.046 

8 9 0.031 0.031  35 38 0.107 0.015 

TABLE XI. LOAD PARAMETERS FOR TC42 

Bus No. Peak MVA  Bus No. Peak MVA 

1 30.0  31 0.07 

11 0.67  32 0.13 

12 0.45  33 0.27 

14 0.89  34 0.20 

16 0.07  36 0.27 

18 0.67  38 0.45 

21 0.45  39 1.34 

22 2.23  40 0.13 

25 0.45  41 0.67 

26 0.20  42 0.13 

28 0.13  44 0.45 

29 0.13  45 0.20 

30 0.20  46 0.45 
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 TABLE XII. SHUNT CAPACITOR BANK PARAMETERS FOR TC42 

Bus No. Nameplate Capacity (kVAR) 

1 6000 

3 1200 

37 1800 

47 1800 

 

 

 

 

V.D. Parameters for TC2998 

The feeder TC2998 is a 12.35 kV system model developed by EPRI for distribution system 

studies [27]. The model is too large to include in this document, but EPRI makes it freely 

available for download. The model was developed in EPRI’s open-source software package for 

distribution system analysis, OpenDSS [39]. For this study, only phase A of the system is 

analyzed. A heat map of the voltage magnitudes on the system is visualized in Fig. 11. 

 
Fig. 11. Bus voltages for phase A of ckt5. Substation is designated with a white square. 

Voltage magnitudes range from 0.9716 pu (dark blue) to 1.0165 pu (dark red). 
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VI. NUMERICAL RESULTS 

For TC42, the mapping of the nonmetric MDS is illustrated. For both TC17 and TC42, the 

performance of ESU placement using nonmetric MDS is presented, and compared with the 

placement using GA. For TC2998, a placement using CMDS is presented along with the 

computation time to produce that placement. 

VI.A. Results for Performance Improvement and Validation on TC17 and TC42 

The mapping of TC42 in the CMDS space is presented in Fig. 12 and Fig. 13. It is important 

to note that these figures do not merely scale the length of the lines proportionately to their 

impedances. Instead, the straight-line distance between any two buses approximates the 

impedance along the physical lines joining them. 

 
Fig. 12. Representation of TC42 in the MDS space. Substation is denoted by white square, 

ESU candidates by red circles with power injection proportional to the area, cluster centers 

by ×’s, and ESU locations by black circles. 
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Fig. 13. Voronoi diagram of a portion of TC42 illustrating the region of the MDS space 

closest to each bus. 

 

 Fig. 13 illustrates a Voronoi diagram of a close-up of the feeder representation [34]. In a 

Voronoi diagram, the space is divided into regions consisting of all points that are closer to one 

seed (in this case, a bus) than any other. The figure demonstrates how the final bus to place an 

ESU is selected, by choosing the bus that falls within the same space as the cluster centroid 

corresponding to that ESU.  

Fig. 14 and Fig. 15 illustrate the relationship between the all unique distances between buses 

in the feeders and in the nonlinear MDS approximations. In both case studies, the original and 

approximated distances are highly correlated, using Pearson’s correlation coefficient, as  Table 

XIII confirms [40].  

Table XIV presents the energy savings gained by using the ESU. With a CVR factor 

representative of current distribution feeders, oversizing the ESU to inject reactive power will 

yield modest energy savings, even when considering PEI losses.  
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Fig. 14. Best-fit plot between original and predicted distances for TC17. 

 

Fig. 15. Best-fit plot between original and predicted distances for TC42. 

TABLE XIII. VERIFICATION OF MDS PERFORMANCE, STEADY-STATE VOLTAGE REGULATION AND 

FLICKER CONSTRAINTS  

Test Case 

Correlation 

Cofficient 

Min. 

Voltage (pu) 

Max. 

Voltage (pu) 

Max. 

Flicker (%) 

TC17 0.9896 0.9000 0.9555 2.1414 

TC42 0.9693 0.9000 0.9236  0.8126 
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TABLE XIV. CHANGE IN FEEDER POWER UNDER CONSIDERED SCENARIOS  

Real Power 

CVR Factor � 

Reactive 

Power CVR 

Factor � 

ESU 

Oversizing � (%) 

ESU 

Loss � (%) Change in Power (%) 

    
TC17 TC42 G0 I0 �0 �0 −0.4561 −1.4418 G0 I0 0 �0 −0.3139 −1.3547 

0 0 �0 �0 +1.7380 +0.4370 G0 I0 �0 �F +1.0442 +0.0286 

 

However, if loads become constant power (caused by the move to loads with more PEI) then 

injecting reactive power via the ESU will actually increase losses. Similarly, if a PEI with 

sufficiently high losses is used for the ESU, then they will also increase losses when used to 

inject reactive power. 

Table XV and Fig. 16 compare performance for both the MDS and GA placement methods. 

The table indicated that there was not a significant difference in performance between the two 

classes of methods for the case studies with the parameters listed in Table III. It is likely that the 

GA placement time could be reduced by an order of magnitude by reducing the number of 

generations required to establish convergence from 100 to 10. However, even with this reduction 

in time, the GA would still require about two orders of magnitude more time to complete than 

the MDS/clustering methodology. Fig. 16. compares the solution quality (in terms of peak feeder 

substation demand) for MDS, GA, and ESU placed at the beginning of the feeder adjacent to the 

substation (bus 2). In the figure, the ESU penetration is increased relative to the other analyses 

such that the total real power rating of the ESU is 50% of the total feeder real power demand 

(excepting loads connected directly to the substation). Although the installation cost of such a 

large amount of storage is prohibitive, this serves to increase the reduction in feeder power 

caused by ESU placement, making the difference in performance between the placement 
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methods more noticeable. The figure illustrates that although the GA method produces a higher 

quality solution, the difference in performance is low compared to the baseline placement near 

the substation. It is further worth noting that distribution feeder parameters are typically not 

known exactly. In particular, customer loads are estimated based on distribution transformer 

power ratings, substation power measurements, and historical metering data [41]. 

VI.B. Results for Verifying Scalability on TC2998 

 The projection of the CMDS transformation of TC2998 into two dimensions is illustrated in 

Fig. 17. Buses that appear to be adjacent (in the first two dimensions) on the three major arms of 

the feeder are actually well separated in the other dimensions not visualized. As described in 

Section III, the bottom 10
th

 percentile of buses (in terms of voltage magnitude) are selected as 

candidates for ESU placement. Given that this corresponds to only 302 points, the number of 

dimensions for each point must be restricted to ensure that the clusters remain well-separated. 

For this feeder, the ten dimensions corresponding to the ten largest eigenvalues were selected, 

which is sufficient to achieve a correlation coefficient of 0.9067. 

TABLE XV. COMPARISON OF CMDS/CLUSTERING AND GA RESULTS 

 TC17 TC42 

MDS/Clustering Time To 

Complete (s) 
5.4585 11.2086 

GA Time to Complete (s) 
4410.48 

(1.2251 h) 

14442.7 

(4.0119 h) 

MDS/Clustering ESU Buses {9, 16} {19, 37} 

GA ESU Buses {9, 16} {12, 19} 

MDS/Clustering Objective 

(MW) 
9.7616 37.3589 

GA Objective (MW) 9.7616 37.3591 
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Fig. 16. Comparison of peak feeder demand for MDS, GA, and substation ESU placement 

on TC42. 

 
Fig. 17. ESU candidate locations (red), centroids (black x’s), and final ESU buses (black 

circles) in the CMDS space for TC2998. 

 

  Fig. 18 illustrates the relationship between the original and CMDS distances for 500 
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visualization purposes; plotting all �29982 � combinations would not permit individual points to 

be distinguished. The candidate buses and selected buses for ESU placement (illustrated in the 

CMDS space in Fig. 17) are visualized in physical coordinates in Fig. 19. Without including the 

time to build the pairwise distance matrix, the placement takes 51.35 s on a system with an Intel 

Core i3 Processor and 8 GB RAM. Building the pairwise distance matrix takes significantly 

longer, though the implementation for doing so is not optimized and requires dynamically 

building shortest paths from the substation to each bus. A more efficient implementation that 

statically allocates memory would reduce this bottleneck significantly. The results of the 

placement are summarized in Table XVI. 

 
Fig. 18. Best-fit plot between original and predicted distances for TC2998. 
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VII. CONCLUSIONS 

A placement method is described for ESU on a distribution system that reduces computation 

time compared to an existing GA approach while still providing a high quality solution. The 

method employs a novel heuristic search involving MDS and clustering.   

 
Fig. 19. ESU candidate locations (red) and final buses (black circles) for TC2998. Marker 

area is proportional to ESU power injection. 

 

 

 

TABLE XVI. SUMMARY OF RESULTS FOR TC2998 

Parameter Value 

Number of ESU Candidate 

Buses 
302 

Correlation Between Original 

and CMDS Pairwise Distances 
0.9067 

MDS/Clustering Time To 

Complete Without Building 

Pairwise Distance Matrix 

51.35 s 
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The method is applied to reach certain qualitative conclusions about the utility of dispersed ESU 

on a distribution system, while producing a solution with computation time on the order of 

seconds, compared to several hours required for GA. This faster solution time is of value to the 

distribution engineer who needs to quickly compare several different project options. 

Furthermore, given that distribution system loads are not known exactly, it is not guaranteed that 

the GA solution will indeed be of higher quality on the physical system. 

Distributed ESU employed for peak shaving can indeed reduce distribution system power 

consumption, though distributed ESU may be limited in their ability to provide frequency 

regulation. Additionally, the capability of such ESU to reduce power consumption will decrease 

as loads move to having a constant-power characteristic. It is predicted that this decrease will 

occur as loads increasingly adopt PEI with PFC. This decrease will likely reduce the incentive 

for ESU to provide reactive power injection. However, increased efficiency of the PEI in ESU 

brought on by new semiconductor technologies such as SiC or GaN could enable ESU to still 

provide benefit. It is envisioned that future work could extend the method to placement of other 

types of shunt-connected distribution system equipment (such as distributed generation and shunt 

capacitors) and add support for unbalanced power flow. This would expand the applicability of 

the method to both current and future distribution systems. 

REFERENCES 

[1] D.P. Kothari and I.J. Nagrath, Modern Power System Analysis. New Delhi: Tata McGraw-

Hill, 2003. 

[2] Z. Li, “Natural gas for generation: a solution or a problem?,” IEEE Power and Energy 

Magazine, vol. 3, no. 4, pp. 16–21, July 2005. 

[3] S. Tewari and N. Mohan, “Value of NAS energy storage toward integrating wind: Results 

from the wind to battery project,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 

532–541, 2013. 



174 

 

[4] H. Daneshi and A. Srivastava, “Security-constrained unit commitment with wind 

generation and compressed air energy storage,” IET Generation, Transmission Distribution, 

vol. 6, no. 2, pp. 167–175, February 2012. 

[5] M. Rahimiyan, L. Baringo, and A. Conejo, “Energy management of a cluster of 

interconnected price-responsive demands,” IEEE Transactions on Power Systems, vol. 29, 

no. 2, pp. 645–655, March 2014. 

[6] X. Xu, J. Mitra, T. Wang, and L. Mu, “Evaluation of operational reliability of a microgrid 

using a short-term outage model,” IEEE Transactions on Power Systems, vol. 29, no. 5, pp. 

2238–2247, September 2014. 

[7] L. Mears, H. Gotschall, and H. Kamath, “EPRI-DOE handbook of energy storage for 

transmission and distribution applications,” EPRI, Tech. Rep. 1001834, December 2003. 

[8] S.O. Geurin, A.K. Barnes, and J.C. Balda, “Smart grid applications of selected energy 

storage technologies,” in IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, pp. 

1–8. 

[9] J. Eyer and G. Corey, “Energy storage for the electricity grid: Benefits and market potential 

assessment guide,” Sandia National Laboratories, Tech. Rep. SAND2010-0815, 2010. 

[10] S. Gill, I. Kockar, and G.W. Ault, “Dynamic optimal power flow for active distribution 

networks,” IEEE Transactions on Power Systems, vol. 29, no. 1, pp. 121–131, January 

2014. 

[11] G. Carpinelli, G. Celli, S. Mocci, F. Mottola, F. Pilo, and D. Proto, “Optimal integration of 

distributed energy storage devices in smart grids,” IEEE Transactions on Smart Grid, vol. 

4, no. 2, pp. 985–995, June 2013. 

[12] C.A. McCarthy and J. Josken, “Applying capacitors to maximize benefits of conservation 

voltage reduction,” in Rural Electric Power Conference, 2003, pp. C4–1– C4–5. 

[13] K.P. Schneider and T.F. Weaver, “A method for evaluating volt-VAR optimization field 

demonstrations,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1696–1703, July 

2014. 

[14] Caisheng Wang and M.H. Nehrir, “Analytical approaches for optimal placement of 

distributed generation sources in power systems,” IEEE Transactions on Power Systems, 

vol. 19, no. 4, pp. 2068– 2076, November 2004. 

[15] S. Elsaiah, M. Benidris, and J. Mitra, “Analytical approach for placement and sizing of 

distributed generation on distribution systems,” IET Generation, Transmission Distribution, 

vol. 8, no. 6, pp. 1039–1049, June 2014. 

[16] R.S.A. Abri, E.F. El-Saadany, and Y.M. Atwa, “Distributed generation placement and 

sizing method to improve the voltage stability margin in a distribution system,” in 



175 

 

International Conference on Electric Power and Energy Conversion Systems (EPECS), 

2011, pp. 1–7. 

[17] P.S. Georgilakis and N.D. Hatziargyriou, “Optimal distributed generation placement in 

power distribution networks: models, methods, and future research,” IEEE Transactions on 

Power Systems, vol. 28, no. 3, pp. 3420–3428, August 2013. 

[18] M.F. Shaaban, Y.M. Atwa, and E.F. El-Saadany, “DG allocation for benefit maximization 

in distribution networks,” IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 639–

649, May 2013. 

[19] G. Carpinelli, G. Celli, S. Mocci, F. Mottola, F. Pilo, and D. Proto, “Optimal Integration of 

Distributed Energy Storage Devices in Smart Grids,” IEEE Transactions on Smart Grid, 

vol. 4, no. 2, pp. 985–995, June 2013. 

[20] M. Farivar and S.H. Low, “Branch flow model: Relaxations and convexification; Part I,” 

IEEE Transactions on Power Systems, vol. Early Access Online, 2013. 

[21] M. Farivar and S.H. Low, “Branch flow model: Relaxations and convexification; Part II,” 

IEEE Transactions on Power Systems, vol. Early Access Online, 2013. 

[22] E. Dall’Anese, H. Zhu, and G.B. Giannakis, “Distributed optimal power flow for smart 

microgrids,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1464–1475, September 

2013. 

[23] J. Lavaei, D. Tse, and B. Zhang, “Geometry of power flows and optimization in distribution 

networks,” IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 572–583, March 2014. 

[24] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2009. 

[25] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex 

programming,” 2008. [Online]. Available: http://cvxr.com/cvx/download/. [Accessed: 19-

Sep-2014]. 

[26] A.K. Barnes and J.C. Balda, “Placement of distributed energy storage via multidimensional 

scaling and clustering,” in International Conference on Renewable Energy Research and 

Applications (ICRERA), Milwaukee, WI, 2014. 

[27] EPRI, “Summary of EPRI test circuits.” [Online]. Available: 

http://svn.code.sf.net/p/electricdss/code/trunk/Distrib/EPRITestCircuits/. [Accessed: 10-

Nov-2013]. 

[28] M. Baran and F.F. Wu, “Optimal sizing of capacitors placed on a radial distribution 

system,” IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 735–743, January 1989. 

[29] M.E. Baran and F.F. Wu, “Optimal capacitor placement on radial distribution systems,” 

IEEE Transactions on Power Delivery, vol. 4, no. 1, pp. 725–734, January 1989. 



176 

 

[30] M. Farivar, C.R. Clarke, S.H. Low, and K.M. Chandy, “Inverter VAR control for 

distribution systems with renewables,” in SmartGridComm, 2011, pp. 457–462. 

[31] G.A.F. Seber, Multivariate observations. Wiley, 1984. 

[32] F. Belmudes, D. Ernst, and L. Wehenkel, “Pseudo-geographical representations of power 

system buses by multidimensional scaling,” in International Conference on Intelligent 

System Applications to Power Systems, 2009, pp. 1–6. 

[33] G. Yesuratnam and D. Thukaram, “Congestion management in open access based on 

relative electrical distances using voltage stability criteria,” Electric Power Systems 

Research, vol. 77, no. 12, pp. 1608–1618, October 2007. 

[34] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. Wiley, 2001. 

[35] J.C. Carlisle, A.A. El-Keib, D. Boyd, and K. Nolan, “A review of capacitor placement 

techniques on distribution feeders,” in Southeastern Symposium on System Theory, 1997, 

pp. 359–365. 

[36] K. Abookazemi, M.Y. Hassan, and M.S. Majid, “A review on optimal placement methods 

of distribution generation sources,” in IEEE International Conference on Power and 

Energy (PECon), 2010, pp. 712–716. 

[37] A.D. Alarcón-Rodríguez, “A multi-objective planning framework for analysing the 

integration of distributed energy resources,” M.S. Thesis, University of Strathclyde, 

Glasgow, 2009. 

[38] W.M. Grady, M.J. Samotyj, and A.H. Noyola, “The application of network objective 

functions for actively minimizing the impact of voltage harmonics in power systems,” IEEE 

Transactions on Power Delivery, vol. 7, no. 3, pp. 1379–1386, July 1992. 

[39] R.C. Dugan, “Reference Guide: The Open Distribution System Simulator (OpenDSS),” 

Jun-2013. [Online]. Available: 

http://svn.code.sf.net/p/electricdss/code/trunk/Distrib/Doc/OpenDSSManual.pdf. 

[Accessed: 11-Sep-2014]. 

[40] G. Casella and R.L. Berger, Statistical Inference, 2nd edition. Australia ; Pacific Grove, 

CA: Cengage Learning, 2001. 

[41] H.L. Willis, Power Distribution Planning Reference Book. CRC Press, 2004. 

  



177 

 

Appendix A: Certification of First Author 

I hereby certify that Arthur K. Barnes is first author of the article this chapter is based on and 

has completed at least 51% of the work described in the article. 

 

Juan Carlos Balda 

 

Signature ___________________________ 

  

Date  ___________________________ 

  



178 

 

APPENDIX. A: OPTIMALITY OF ESU AT LOAD 

 It is shown via a simplified case as follows that the optimal location for an ESU performing 

peak shaving is at the load. In this case a three-bus dc system is considered, shown in Fig. A1, 

and voltage drop is assumed to be negligible. A load is connected to a generator along a line 

whose total resistance is �. During peak times, the load draws current `!, and during off-peak 

times, it draws current `�.  

An ESU is connected to the line at a fraction s of the distance from the generator to the load. 

The ESU charges  and discharges with current magnitude `.. It is assumed that the variation of 

the load current during periods of ESU charging and discharging is negligible. This is illustrated 

in Fig. A2. 

Neglecting the periods when the ESU is not operating, the energy losses L due to resistive 

losses and ESU losses are 

L = s�Q�R`! − `.S� + s�?b0Q�(`� + `.)� + Q�(1 − ?)`. 

+(1 − s)�Q�`! + (1 − s)�?b0Q�`� 

(A1)

 

 

 

Fig. A1. Simplified case for calculation of optimal ESU location. 
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Fig. A2. Two-level load profile for calculation of the optimal ESU location. 

 

In the above, Q� is the ESU discharge duration and ? is the ESU efficiency. The optimal battery 

current `. is solved for by taking the derivative of L, setting it equal to 0, and solving for `. 

�L�`. = −2s�Q�R`! − `.S + 2s�?b0Q�(`� + `.) + Q�(1 − ?). (A2)

It is verified that this is indeed an optimum by checking that the second derivative is positive 

��L�`.� = 2s�Q� + 2s�?b0Q�. (A3)

The optimal `.∗ is 

`.∗ = `! − ?b0`� − (1 − ?)/(2s�)?b0 + 1 . (A4)

 

As the efficiency ? approaches 1, `.∗ approaches half the difference between `! and `�. This 

has the effect of smoothing out the overall current over the course of a day as much as possible. 

To locate the optimal location s of the ESU, the derivative of the ESU losses with respect to s 

are taken 

��
�o� = ��Q�R`! − `.∗S� + �?b0Q�(`� + `.∗)�� − g�Q�`! + �?b0Q�`�i. (A5)
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In the above, it is apparent that this derivative is the difference between the losses for optimal 

`. (`.∗) and zero `. (0). By the definition of an optimum, the derivative is less than or equal to 

zero. Additionally, it is noted that the derivative is constant. For functions with a constant 

derivative, the minimum will occur at an constraint boundary, in this case, the value s = 1. 

Therefore, it follows that for an ESU performing arbitrage, the optimal location to reduce losses 

is at the load bus. 
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CHAPTER SEVEN 

SELECTION OF CONVERTER TOPOLOGIES FOR DISTRIBUTED ENERGY 

RESOURCES 

Arthur Barnes, Juan Carlos Balda and Corris M. Stewart 

A.K. Barnes, J.C. Balda, and C.M. Stewart, “Selection of converter topologies for distributed energy 

resources,” in IEEE Applied Power Electronics Conference and Exposition (APEC), 2012, pp. 1418–

1423. 

Abstract — Distributed energy resources (DER) are becoming increasingly common on the 

electrical grid. Depending on the operating conditions of the DER, which depend on the 

application, different topologies need to be selected in order to achieve the maximum 

efficiency of each DER. Complicating the selection is the fact that operating conditions vary 

over time. For example, the voltage and current drawn from a PV panel varies over the 

course of a day. To calculate the overall efficiency, the efficiency of a topology at each 

operating point and the amount of time spent at that operating point must be considered. 

This work extends existing analytical methods for loss calculations by taking this into 

account. The specific DER applications considered are a three-phase ultracapacitor energy 

storage unit (UC-ESU), battery energy storage unit (B-ESU), and photovoltaic array (PV). 

This work determines for each application if an inverter-only (single-stage) or an inverter 

plus boost converter (double-stage) topology is more efficient. The results show that a 

single-stage topology is better for the B-ESU and PV, while the double-stage topology is 

better for the UC-ESU. The method is applicable to other DER types, including wind 

turbines, micro-hydro generators, variable-speed gensets, and microturbines. 
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I. NOMENCLATURE 

�  Real power injected by ESU into grid  

�  Real power injected by ESU into grid 

������ Rated ESU power  

	

  Inverter output line-line voltage magnitude 

�  Inverter output voltage phase 

�

  Grid line-line voltage magnitude 


  Equivalent impedance of output filter 

���  Equivalent impedance of output filter 

���  Switching frequency 

�
��� Total converter losses 

I.A. Inverter Loss Calculations 

��  Inverter modulation index 

��  Inverter power factor 

��  Inverter output current 

���� Inverter conduction losses for a single IGBT 

���� Inverter conduction losses for a single diode 

����� Inverter switching losses for a single IGBT 

����� Inverter switching losses for a single diode (negligible, not used) 

�
���,��� Total inverter power losses 

I.B. Boost Converter Loss Calculations 

���  Boost converter input voltage 

�  Boost converter inductance 
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�  Boost converter duty cycle 

�   Boost converter inductor current 

Δ�   Boost converter inductor current ripple 

���� Boost converter IGBT turn-on current 

���"" Boost converter IGBT turn-off current 

���� Boost converter IGBT average current 

���#� Boost converter IGBT rms current 

���� Boost converter diode average current 

���#� Boost converter diode rms current 

����,�� Boost converter conduction losses for a single IGBT 

����,�� Boost converter conduction losses for a single diode 

�����,�� Boost converter switching losses for a single IGBT 

�����,�� Boost converter switching losses for a single diode (negligible, not used) 

�
���,�� Total converter losses 

I.C. Device Parameters 

���$ IGBT zero-current voltage drop 

%�  IGBT on-state resistance 

��$  Diode zero-current forward voltage drop 

%�  Diode on-state forward resistance 

�����# IGBT dc-bus voltage under nominal conditions 

����# IGBT conduction current under nominal conditions 

	�� IGBT turn-on switching loss under nominal conditions 
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	�"" IGBT turn-off switching loss under nominal conditions 

I.D. Ultracapacitor Calculations 

&  Ultracapacitor capacitance 

��  Ultracapacitor voltage 

'  Ultracapacitor energy 

II. INTRODUCTION 

Distributed generation and energy storage, collectively referred to as DER, are two enabling 

technologies for future distribution systems. These allow for both increased penetration of 

renewable sources as well as the relocation of generation assets closer to load centers, reducing 

energy consumption, system losses, and enhancing system reliability in the presence of 

contingencies [1], [2]. Many DER are dc in nature. These include: batteries, ultracapacitors, 

photovoltaic cells, and permanent magnet generators (dc link). The latter see applications in 

wind turbines, micro hydro generators, and small fossil-fuel generators based on reciprocating 

engines and microturbines [1], [3–5]. Permanent magnet generators are used because of their 

high efficiencies [6]. Additionally, by using a converter the prime mover speed is independent of 

the output electrical frequency. This allows for increased efficiency under a wide range of 

operating conditions [7]. 

Many different converter topologies have been developed to connect DER to the grid [8–11], 

though most converters use the single and double-stage inverter topologies [12], [13]. The 

former connects a three-phase inverter directly to the DER, while the latter connects it via a 

boost converter. These are depicted in Fig.  1.  
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Goals when selecting a topology include: increasing efficiency, reducing output current and 

voltage harmonics, decreasing size, and reducing cost [10], [11], [14]. Although the two 

topologies have the same harmonic content and similar size, which one is more efficient varies 

depending on the operating conditions [12]. 

 

(a) Single-stage inverter. 

 

` 

(b) Double-stage inverter. 

 

Fig.  1. Single and double-stage inverter topologies. 
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The work in [15] compares dc-dc converter topologies for connecting an ultracapacitor bank 

to the dc-bus of a hybrid electric vehicle. Similarly, [12] compares the efficiency of single vs. 

double-stage topologies at different dc input voltages. More recently, [14], [16] compare dc-dc 

converter and transformer-less inverter topologies for PV, respectively. Their method uses 

datasheet parameters for the switching devices as inputs to analytical expressions for converter 

losses. The work of [17] compares the two topologies for the case of PV connecting to single-

phase ac considering the effect of 120 Hz voltage ripple on the MPPT efficiency of a PV array. 

However, converter efficiencies are approximated as constant, and experimental results are 

limited to several points over a single day. This work extends the method of [12], [14], [16] to 

calculate the overall efficiencies of the two topologies for three-phase DER with varying 

operating conditions, in this case B-ESU, UC-ESU, and PV.  

Section II describes the selection of the parameters of the distributed energy resources, based 

on the desired output power and voltage, the analytical methods used to calculate losses, and the 

extension to sources with varying input voltages. Section III shows efficiency curves for varying 

input voltages, and lists overall efficiencies. Section IV presents conclusions about the proposed 

method guiding the selection of a particular topology for a particular application. 

III. BACKGROUND AND EVALUATION METHOD 

In order to calculate the converter efficiency, the required dc-bus voltage of the converter is 

first selected based on the ac grid voltage, the impedance of the inverter output filter, and the 

desired reactive power output. This work focuses on a DER that interfaces to either a low-

voltage or medium-voltage three-phase ac grid through a transformer. The filter impedance is 

approximated as a series inductance that is a fixed percentage of the inverter base impedance 

[18]. The DER is designed to assist with local voltage regulation or reactive power 
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compensation. This is accomplished through the injection of reactive power by the inverter. It is 

assumed that the operating range of the inverter is a circle in the PQ-space as shown in Fig.  2.   

III.A. Output Voltage Selection 

The dc-bus voltage must be high enough for it to accomplish this task. The DER is modeled 

as a voltage source in series with an inductor, as shown in Fig.  3.  From [1] the real and reactive 

powers through an inductor are approximately  

 � ≈ 	

�



 � (1) 

 � ≈ �



 )	

 − �

+, (2) 

where � and � are the real and reactive powers, respectively, 	

 and �

 are the inverter and grid 

voltages, respectively, and � is the phase of the inverter voltage. For the case of the double-stage 

topology, appropriate values for the dc-bus voltage and transformer turns are selected so it is able 

to inject rated reactive power into the grid. For the case of the single-stage topology, a sufficient 

transformer turns ratio is selected so the DER can inject rated reactive power when the input 

voltage is at its minimum. 

Analytical expressions are used to calculate the losses at each operating point for the three-

phase inverter and boost converter. The operating point is defined by the dc voltage and current 

of the DER and the power factor of the inverter. Depending on the type of DER, either a 

parameter sweep is used to plot efficiency over the range of operating conditions, or the overall 

efficiency is calculated using recorded data over time for the DER.  
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Fig.  2. Operating area of a grid- connected inverter in PQ-space. 

 

 

Fig.  3. Inverter model. 

 

III.B. Loss Calculations 

The method described in [19] is used to calculate the losses for three-phase inverter and dc-

dc converter. The losses are divided into IGBT conduction losses, freewheeling diode conduction 

losses, and IGBT switching losses. The diode switching losses are assumed to be small and 

neglected. The formulas used are 

 ���� = ���$�� - 1
20 + ����

8 3 + %���4 -1
8 + ����

30 3 (3) 

 ���� = ��$�� - 1
20 − ����

8 3 + %���4 -1
8 − ����

30 3 (4) 

φ∠E o0∠V
jX

QP,
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����� = ���
0 6	�� + 	�""7 ⋅ - ���

����#
⋅ ��

����#
3 (5) 

for the losses in each device in the inverter. It is assumed that switching losses are linearly 

related to the conduction current, so that the switching losses can be calculated using the average 

switch current over a half cycle. Additionally, it is assumed that the switching losses are linearly 

related to the dc-link voltage. The total inverter losses are 

 �
���,��� = 6)���� + ���� + �����+. (6) 

The operating parameters for the dc-dc converter are 

 � = �
3���

 (7) 

 � = 1 − ���
���

 (8) 

 Δ� = �
� ⋅ ���

���
 (9) 

 ���� = � − Δ� /2 (10) 

 ���"" = � + Δ� /2 (11) 

 ���� = ��  (12) 

 ���#�4 = �� 4 (13) 

 ���� = )1 − �+�  (14) 

 ���#�4 = )1 − �+� 4. (15) 

Note that for the purpose of calculating the dc-dc converter losses, the inverter losses are 

neglected, so the input power of the dc-dc converter is set equal to the output power.  The losses 

for each switch of the dc-dc converter are 
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����,�� = ���$���� + %����#�4  
(16) 

����,�� = ��$���� + %����#�4  
(17) 

�����,�� = ��� -	�� ⋅ ����
����#

+ 	�"" ⋅ ���""
����#

3 ⋅ ���
�����#

. (18) 

Because the dc-dc converter uses a three-phase interleaved design, the total losses for the dc-

dc converter are 

 �
���,� = 36����,�� + ����,�� + �����,��7. (19) 

In order to calculate overall losses, several steps are performed: First, a minimum input 

voltage is selected, and the DER output transformer is designed based on this. Second, the 

efficiency with respect to input voltage is plotted for each DER/topology combination. If the 

efficiencies for the two types do not cross as illustrated in Fig.  4, then one topology is always 

more efficient and no further analysis need be performed.  

 

Fig.  4. Efficiency of generic DER with 340 V minimum input and power factor of 0.8. 
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This is the case for the UC-ESU and B-ESU, as illustrated in Section IV.  The case of the PV is 

more difficult because there is not a natural input voltage range as with the other two types. 

Instead, there is a tradeoff in selecting the minimum input voltage, which in this case is the 

minimum maximum-power-point-tracking (MPPT) voltage. For the case of the single-stage 

converter, decreasing the MPPT voltage results in more energy extracted from the photovoltaic 

panels, but a less efficient converter design. The best configuration represents an optimal 

tradeoff between the two criteria. 

IV. PROBLEM SETUP 

The devices used for the experiment are the ABB 5SNS 0300U120100 1200 V/300 A three-

phase IGBT integrated power modules (IPM) [20]. Two modules are used; one for the output 

inverter and one for the three-phase interleaved dc-dc converter. The on-resistances are estimated 

from the plot of collector-emitter voltage vs. collector current using the manufacturer’s 

recommended gate-emitter voltage. These and other parameters are illustrated in Table I. 

For this case, it is assumed that the BESS uses a 100 kVA inverter and connects to 208Vac 

line-line. The module uses an LCL filter that can be modeled as a series reactance of 

approximately 10% [18].  

TABLE I. SEMICONDUCTOR DEVICE PARAMETERS USED FOR ABB 5SNS 0300U120100 1200 

V/300 A IPM 

Parameter Symbol Value 

IGBT zero-current voltage drop ���$ 1.34 V 
IGBT on-state resistance ?�� 1.217 mΩ 

IGBT conduction current under nominal conditions ����# 300 A 

IGBT dc-bus voltage under nominal conditions �����# 600 V 
IGBT turn-on switching loss under nominal conditions 	�� 28 mJ 
IGBT turn-off switching loss under nominal conditions 	�"" 34 mJ 

Diode zero-current forward voltage drop ��$ 1.5 V 
Diode on-state forward resistance ?� 1.429 mΩ 
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The exact value of the reactance is 43 mΩ. Using the expression for reactive power, the 10% 

reactance can be substituted into (2). For a 208Vac grid this yields a required inverter output 

voltage of 230 V, or 1.1�

. 

The methods used in the previous section yield efficiencies for several different inverter 

configurations. The double-stage inverter uses a 500 V dc bus and is connected to 208Vac. For 

the case of the single-stage transformer the output ac voltage is selected using (2), the minimum 

dc-bus voltage the inverter will operate at, and the relationship for line-line output voltage vs. dc-

bus voltage 

 	

 = 0.612����� . (20) 

Based on the results of Subsection (A), for the case of the maximum output voltage where 

�� = 1 at the minimum dc-bus voltage ���,#��, 

 �

 ≤ 0.612
1.1 ���,#��. (21) 

 If the condition of (21) is met, then the inverter will always be able to supply rated reactive 

power. This is used to find the required output ac voltage based on the minimum input voltage 

from the energy source. 

For the case of the UC-ESU, it is assumed that the ultracapacitor is discharged at 25% state-

of-charge, or half of rated voltage. This is taken from the formula for energy in a capacitor.  

 ' = 1
2 &��4. (22) 

It is assumed that the UC-ESU uses 4 125 V modules in a series configuration, for a total 

rated voltage of 500 V [21]. 
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For the case of the B-ESU, the maximum battery voltage is the voltage at the end of 

charging, which is also set at 500 V. The nominal battery voltage is 440 V. The minimum battery 

voltage is the voltage during discharge, at which point the state-of-charge has fallen to 80%. This 

minimum voltage is 370 V. These battery voltages are calculated based on the standby voltages 

and terminal voltages recorded during charge/discharge curves for individual Li-Ion cells during 

a series of battery characterization experiments [22]. 

V. NUMERICAL RESULTS FOR EFFICIENCY CURVES 

Fig.  4 compares the efficiency of the single and double-stage converters when the voltage 

for a generic DER is in the range of 330–500 V. In this case the more efficient topology depends 

on if the input voltage is greater than 440 V. However, for DER with a minimum input voltage 

higher than approximately 340 V, the single-stage topology is always more efficient, and for 

DER with a minimum voltage lower than approximately 340 V, the double-stage topology is 

always more efficient. Fig.  5 shows that the double-stage topology is always more efficient for 

the UC-ESU, which has a minimum input voltage of 250 V. Fig.  6 and Fig.  7 illustrate that the 

single-stage topology is always more efficient for the B-ESU, though only by a small fraction.  

The case of PV is more complicated. Fig.  8 shows PV data taken at the Florida Solar Energy 

Center over one week [23]. Input current is roughly proportional to the output power, while input 

voltage remains fairly constant except at low power levels. During operation, current is 

uniformly distributed between 0–175 A, while voltage is normally distributed around 450 V. The 

tight voltage range suggests that the single-stage topology is more efficient.  

Fig.  9 compares the average output power of the two topologies on the dataset using 

different minimum MPPT voltages. As expected, the single-stage is slightly more efficient given 

an appropriate choice of the minimum MPPT voltage. 
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Fig.  5. Efficiency of UC-ESU injecting rated real power. 

 

 

Fig.  6. Efficiency of B-ESU injecting rated real power. 
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Fig.  7. Efficiency of B-ESU injecting rated reactive power. 

 

 
Fig.  8. Measured PV power, voltage, and current over a week. 
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Fig. 9. PV average power output of single vs. double-stage inverters. 

VI. CONCLUSIONS 

 Previous work shows that a double-stage topology has higher efficiency than a single-

stage one if the input voltage is low. However, the case of a varying input voltage has not been 

previously addressed. Here, the method is applied for DER with varying input voltages: UC-

ESU, B-ESU, and PV. For the UC-ESU, the double-stage is more efficient. Conversely, for the 

B-ESU the single-stage is slightly more efficient. Given that the amount of devices used for 

single-stage B-ESU is reduced and the control complexity remains unchanged compared to the 

double-stage, it is the preferred choice for this application. However, the results show that for 

applications where it is desirable to add battery energy storage to another DER type, for example 

a hybrid PV inverter or microturbine, there is only a small efficiency penalty incurred by using 
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yielding better efficiency. Given suitable assumptions or recorded data, the method can be 

applied to other DER, such as wind turbines, micro-hydro, variable-speed gensets, and 

microturbines. 
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CHAPTER EIGHT 

MODELLING PV CLOUDING EFFECTS USING A SEMI-MARKOV PROCESS WITH 

APPLICATION TO ENERGY STORAGE 

Arthur Barnes, Juan Carlos Balda and Jonathan K. Hayes 

NOTICE: this is the author’s version of a work that was accepted for publication in 19th IFAC 

World Congress, August 24-29, 2014, Cape Town, South Africa. Changes resulting from the 

publishing process,  such as peer  review,  editing,  corrections,  structural  formatting,  and other  

quality  control  mechanisms  may not  be reflected  in this document. Changes may have been 

made to this work since it was submitted for publication. The definitive version was published 

in:  

A.K. Barnes, , “Modeling PV clouding effects using a semi-Markov process with application to 

energy storage,” in International Federation of Automatic Control World Congress (IFAC), 

Cape Town, South Africa, 2014. 

Abstract — Cloud-induced intermittency of photovoltaic (PV) generation forces equipment 

on the electrical grid to cycle excessively, preventing PV from being considered as a reliable 

or dispatchable source of power.  Energy storage units (ESU) are proposed to turn PV 

power dispatchable. In order to use an ESU most effectively, it must be controlled 

appropriately by considering cloud-induced effects. To this end, the cloud structure is 

modeled as a random sequence inferred from clouding data. The proposed model is valid 

for centralized PV installations and serves to develop not only a control methodology to 

coordinate an ESU with existing grid equipment but also as a sizing criterion for an ESU. 
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The above methodology is demonstrated on both clouding data collected from a rooftop PV 

installation that includes a pyranometer. 

I. INTRODUCTION 

 Improvements in the manufacturing process of PV generation are lowering costs and leading 

to increased grid penetration. However, the power output of PV inverters varies sharply because 

of changing cloud cover that may cause transitions from rated power to less than half of rated 

power within minutes [1]. This may cause over- or under-voltages on distribution systems [2], 

[3] in addition to reducing the maintenance interval of voltage regulating equipment such as 

substation load tap-changers (LTC) or in-line voltage regulators [4]. 

 Energy storage has long been proposed as a solution; however, it is necessary to either model 

or predict cloud-induced intermittency to develop a more-efficient ESU control strategy [5]–[8]. 

Frequency-domain methods have been previously applied to characterize PV power [9]. 

Unfortunately, the resulting frequency-domain signal has units without physical significance 

[10].  Despite these methods being useful for observing qualitative features of PV power 

intermittency, they not suitable for sizing ESU which requires knowledge of the peak energy 

amount charged to or discharged from a battery.  

  Methods for control of the ESU include deterministic scheduling, stochastic scheduling, rule-

based control, feedback control, and feedforward control [4]–[7], [11], with deterministic 

scheduling employed most commonly. Prediction of PV power is necessary for ESU control 

methods based on deterministic scheduling  [11], and has received significant attention in recent 

years. Current methods are divided into two major groups [12]. The first group consists of those 

methods using numerical weather prediction to estimate hourly averaged power with look-ahead 

intervals on the order of one or more days [13]. The second group of methods uses sky imagers, 
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geographically distributed sensor arrays, or satellite imagery to track cloud position over time 

[14]–[16]. This yields power predictions on the order of a few hours ahead [17].  The time 

resolution for both methods are too coarse for predicting cloud-induced power variations, which 

occurs in seconds [15].   

 The contributions of this work are a random-sequence model for cloud-induced intermittency 

in a single PV installation, and its application to develop an efficient rule-based ESU control 

strategy. The model is applicable to large, central PV installations that form 38% of installed PV 

generation [18]. Unlike frequency-domain methods, the model outputs have physical units. The 

control strategy requires neither sky imaging data nor remote irradiance measurements, unlike 

existing methods. Additionally, both the model and rule-based controller operate over time scales 

on the order of seconds, suitable for modelling and mitigating the effects of cloud-induced 

intermittency. The model is also useful for generating simulated test data, similar to the case of 

wind generation, where either the Weibull distribution or time-series models are used.  

 This paper is organized as follows: the PV data collection is described in Section II; the data 

processing is explained in Section III; the data analysis and development of statistical 

distributions are addressed in Section IV; the reward process used to develop a control policy is 

described in Section V; the results of the methodology applied to a case study are presented in 

Section VI; and lastly, the conclusions on the work performed as well as directions for future 

work are given in Section VII. 

II. PV DATA ACQUISITION 

 Irradiance is captured with an irradiance sensor (Apogee SP-125 5V amplified pyronameter 

[19] in conjunction with a LabVIEW-based data acquisition system (National Instruments USB-

6259) using a custom program. The pyranometer is installed at the University of Arkansas (UA) 
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in Fayetteville (AR) on the top of the John A. White Engineering Hall roof next to a pair of 225 

W PV panels as shown in Fig. 1. It was installed on the same plane as the panels, facing South 

with tilt angle of 66º from horizontal. The PV data are available on the web at 

http://energy.uark.edu/pv. 

 An unanswered question for PV generation systems is that of sample rate selection. Notably, 

very wide ranges of sample rates abound, including 3 seconds [20] to 1 hour [20]. The authors 

sought to select a sample rate that preserved the salient characteristics of cloud-induced 

intermittency. The system supports sample rates of up to 25 Hz with the sample rate selected on 

the theoretical frequency content of the irradiance sensor output voltage and inspection of 

recorded data.  

 

Fig. 1. Experimental setup at UA. 
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  The 25 Hz maximum sample rate of the data acquisition system was determined to be 

sufficient, and data was initially collected at this rate. However, this sample rate results in 

prohibitively large amounts of data over long periods of time.  

 Moreover, it is only necessary in this application to detect the presence of large changes in 

irradiance, those where the irradiance changes by 70% of the maximum irradiance value or more 

[21]. Visual inspection revealed that the time duration between peaks in the irradiance profile 

meeting this criteria was usually 2.5 s or more. Hence, the selected final sample rate selection is 

1 Hz. 

III. PV DATA PROCESSING 

 Erroneous values corrupted by noise and nonlinear effects in the sensor are unfortunately 

captured by the data acquisition system. Hence, the data must be processed to remove these 

erroneous values that occur at low irradianceas well as to capture statistics on clouding. This 

processing classifies data as clear or shaded, using the algorithm described in Fig 2.  

 Convergence is established within 3 iterations, so a convergence check was not implemented. 

The algorithm works by alternately estimating the clear-sky irradiance profile using a second-

order curve fit and classifying the data as clear or shaded. Note that for PV systems with 

tracking, the irradiance profile will be flattened near mid-day [22], so a higher-order curve fit 

will be necessary. Each value is divided by the clear-sky irradiance profile at the corresponding 

time. The resulting values are clustered using k-means clustering with two centroids [23]. Each 

subsequent clustering results in a more refined estimate of the clear-sky irradiance profile. Fig. 3 

shows the classification results. 

 The processing accomplishes two goals: First, the data are classified as either clear or 

shaded, allowing for statistics to be taken on cloud cover. 
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Fig. 2. Flowchart for the classification algorithm. 

Second, it mitigates corrupted data by removing erroneous samples and interpolating between 

the remaining good data. For the case of the pyranometer, two factors were observed to corrupt 

data. First, accuracy at high solar angles of incidence is poor as the output drops off. Second, 

oscillation is present at those high angles of incidence, illustrated around 6 am and 7 pm (19 h) in 

Fig. 3, which compares the measured and corrected data To overcome these issues, the corrupted 

samples are removed and a weighted sum of the predicted and measured irradiance is used to 

estimate the true irradiance. 
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Fig. 3. Classified irradiance data for a partly cloudy day (Aug 27, 2011). The original 

irradiance profile and predicted clear-sky irradiance profile are in the top graphs, while 

the classification results (whether or not it is clear or shaded) are in the bottom graph.  

IV. EXPLORATORY DATA ANALYSIS AND STATISTICAL INFERENCE OF 

CLOUD DURATIONS 

 In order to characterize and forecast the PV output, it is assumed that the clear and shaded 

durations follow statistical distributions.  Based on existing work in climate science [24], 

cumulus clouds have a fractal structure, so the distribution of the cloud size �, and thus the 

duration of shading �, follow a power law distribution  

 ���� = ��� , (1)

 

where � and 
 are distribution parameters. Through exploratory data analysis, it is inferred that 

the clear and shaded distributions follow a generalized Pareto distribution of the form 
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 ���|�, 
, �� = 1

 �1 + � �� − ��


 �
�����, (2)

where k, σ, θ are parameters of the distribution. Although the duration of clear conditions is 

truncated based on the length of a day, the effect of truncation is neglected. Two separate 

distributions are inferred for the duration of clear and shaded events, respectively. Quantile-

quantile (QQ) plots are used to evaluate how the fitted distributions handle outliers, illustrated in 

Fig. 4. In these figures, the inverse cumulative distribution functions (CDF) of the inferred 

distributions are plotted against the observed values for clear and shaded durations. The better 

the inferred distribution fits the data, the more the plotted points fall on the line � = �. The 

inferred distributions fit the data well with the exception that the distribution of shaded durations 

is more long-tailed than the observed data, and quantization occurs at small time scales. 

V. APPLICABILITY OF CLOUDING DISTRIBUTIONS TO ESU 

  The characterization of the distribution of the clear and shaded durations, as well as the 

likelihood that the PV installation will be clear or shaded at a given time in the future are 

necessary to develop an ESU control strategy or sizing criterion.  
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Fig. 4. QQ plots of shaded durations comparing the distribution against data. 

 

 The state of the PV installation is modelled as a time series ��, ��, … ��, where each at sample 

�, the state �� is either 1, denoting clear, or 2, denoting shaded. Section 4 revealed that �� is 

dependent not just on ����, but also on the total duration that the sensor has been clear or 

shaded, thereby violating the Markov property [23]. This is apparent because the distributions of 

the clear and shaded events are not exponential, which is required for the Markov property to 

hold [23]. Next, it is shown that the distributions of clear and shaded times can still be used to 

model the shading as a discrete-time semi-Markov process [25]. 

V.A. Semi-Markov Discrete-Time Process Model 

 A Markov process has a set of states and a state-transition probability matrix indicating the 

likelihood ��  of transitioning from state ! to state " at sample � [26]–[28]. The semi-Markov 

discrete-time process (SMDTP) is a generalization of the Markov process that waits for a random 

hold time before each transition. Therefore, each element ��  of the SMDTP state-transition 

probability matrix has a corresponding hold time distribution #� �$�. When a SMDTP has 
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transitioned to state !, it randomly selects the next state " based on the �� . In the discrete-time 

case addressed here, the selection is based on #� �$�,  the number of samples $ to wait before 

transitioning to state ".  

 Irradiance is modelled by a two-state model in which virtual state transitions are forbidden 

(that is, transitions from a state to itself), illustrated in Fig. 5. This results in a simpler 

representation of the system, as the state-transition probability matrix is simply a two-by-two 

identity matrix. The SMDTP can be executed via the algorithm described in Fig. 6 in order to 

generate simulated data. 

 
Fig. 5. Graphical illustration of the SMDTP model. 
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Fig. 6. Simulation of the SMDTP. 

 For forecasting, the quantities of interest are the interval transition probabilities, giving the 

likelihood that the PV is clear or shaded at sample � given that it transitioned to be clear or 

shaded at sample 0. The interval transition probability %� ��� is the probability that the process 

is in state ! at sample �, given that it entered state " at sample 0; in particular 

%����� = ' ' #���$�%���� − $�
�

()�

�

�)*
. (3)

  

%����� = ' ' #���$�%���� − $�
�

()�

�

�)*
. (4)

Again, the term #� �$� is the probability that the process will transition into state ! at sample $ 

given that it entered state " at sample 0.  Because these calculations rely on a series of multiply-
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accumulate operations which are performed quickly by modern computers, they are easily 

computed numerically using the following initial conditions  

 ,�0� = -1 00 1. (5)

 

and the definition of a probability mass function 

 %����� + %����� = 1 (6)

  

 %����� + %����� = 1, (7)

 

where (5) reflects the fact that at sample 0 the state of the process is known as it has just been 

observed. 

 The interval transition probabilities allow for performing forecasting by taking the state with 

the highest likelihood. For example, if a process transitioned from clear to shaded at sample 0, it 

will most likely remain shaded for 50 seconds until %����� exceeds 0.5, as illustrated by Fig. 7. 

This figure illustrates the evolution of the interval transition probabilities over time assuming 

that the system started in clear (state 1, red lines), or shaded (state 2, black lines). 

 
Fig. 7. Interval transition probabilities /01�2� converging to the steady-state probabilities 

/0. The probabilities /3 + /4 = 3. 
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 As time increases, the uncertainty in the interval transition probabilities increases and they 

converge to their steady-state values, the marginal likelihood of the system being either clear or 

shaded. 

V.B. Voltage Variations Caused by PV Intermittency 

The variations in voltage caused by intermittency of PV generation on the feeder are 

calculated as follows. It is assumed that the feeder can be modelled as a voltage source behind an 

equivalent series impedance [2], illustrated in Fig. 8. Using the notation in [29], the voltage 

magnitude as  function of real and reactive power injections is 

 567� = 58� + 2�:; + <=� − >�
567�

�;� + =�� (8)

  

 ; = ;67 + ;?@A − ;BCDE (9)

  

 = = −=BCDE. (10)

 

In  Fig 8., : and < are the resistive and reactive portions of the line impedance while ; and = are 

the real and reactive powers flowing into the PV bus at the end of the line. The real power is 

broken up into the PV real power injection ;67, ESU real power injection ;?@A, and load real 

power draw ;BCDE.  

 

Fig. 8. Equivalent feeder model with transformer LTC, PV generation and ESU. 
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The reactive power consists only of the load reactive power draw =BCDE. For notational 

convenience, 58, 567 and > are defined as the magnitudes of the infinite bus voltage, PV 

installation bus voltage, and equivalent series impedance.  

The change in voltage magnitude with respect to real power injection is 

 F = G567G; = −2567� + 2>�;
4567� + �2:; − 258��567. (11)

  

 It is assumed that the substation LTC has I taps allowing for a total variation of ±Δ5 V from 

nominal. Assuming voltage sensing at the PV bus, the amount of voltage variation required for 

the LTC to cycle is therefore ±2Δ5/I V. This corresponds to a change in power of  

 ;MD6 = ±2Δ5/�IF�. (12)

 

V.C. Real-Time ESU Control Strategy  

 The high-level ESU control strategy is illustrated in Fig. 9. This strategy is  implemented in a 

high-level controller that forms a portion of the controller hierarchy illustrated in Fig. 10. Details 

of the concept of a control hierarchy for grid-connected power electronic converters are  

provided in [30]. The high-level rule-based controller will provide power setpoints to an open-

loop controller, which calculates the necessary currents in direct-quadrature (d-q) space to 

produce the desired real and reactive power setpoints. This in turn is passed to a closed-loop 

current controller, which calculates the necessary inverter voltage references in d-q space to 

produce the desired real and reactive current setpoints. Last, a pulse-width modulation (PWM) 

block converts the voltage references into a set of PWM signals that are output to  the gate 

drivers for the power stage. 
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 The ESU includes a classifier operating in real time that detects when the PV generation it is 

smoothing is in in  a clear or shaded state. If the PV is in a clear state, then the ESU will follow 

the power setpoint mandated by an economic self-scheduler, as illustrated in Fig. 10. When the 

PV transitions to a shaded state, the effect of the controller to produce a power reference to the 

ESU, such that the aggregate output power of the PV/ESU combination will track the clear-sky 

predicted power for a time period N. After this time, the rule-based controller will timeout, and 

the ESU high-level control will revert back to economic self-scheduling. 

 Although the classification of the PV as clear or shaded and the ESU rule-based controller 

will operate in real-time, it must be noted that the distribution properties of the clear and shaded 

states will not. It is envisioned that these will be updated in a batch fashion at night, when the 

ESU has reverted to pure economic self-scheduling. 
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Fig. 9. Proposed rule-based controller for an ESU smoothing PV. O�⋅�  denotes the unit step function, Q is the current time, and 

R is the maximum shading duration over which the ESU will supply power. 
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Fig. 10. Location of the proposed rule-based controller in the controller hierarchy. STUTV denotes cost of electricity. WXYQ and 

ZXYQ denote  measured battery voltage and current, respectively. [\] denotes measured PV power. [∗denotes ESU real power 

reference. Select is {0,1}  digital signal selecting desired input of an analog multiplexer (mux). ZR∗  and Z_∗  denote ESU PEI direct 

and quadrature reference currents, respectively. WR∗  and W_∗  denote ESU direct and quadrature voltages, respectively. 
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V.D. Reward Model 

 Two reward processes are used to calculate both the number of LTC tap-changes and the 

ESU battery throughput. These two quantities are considered the rewards to be determined, 

though they are actually costs. Similar to the case of the interval transition probabilities, the 

reward processes are calculated recursively as follows 

`���� = �����a + b���� + ' #�����
�

()�
`��� − $� (13)

 

`���� = �����a + b���� + ' #�����
�

()�
`��� − $� (14)

 

 �����a = ����, 1� ' #���$�
8

()�c�
 (15)

  

 �����a = ����, 1� ' #���$�
8

()�c�
 (16)

  

 b���� = ' #�����
�

()�
����, 1� (17)

  

 b���� = ' #�����
�

()�
����, 1� 

(18)
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 ���$, 1� = ' ��,d�e�
(��

B)*
 (19)

  

 ��,Mf�e� = g1, e = �@h0, i�#jbk!�j (20)

  

 ��,?@A�e� = glm?@A, ! = 2 o�N e ≤ �@h0, i�#jbk!�j  (21)

 

 These assume zero initial rewards, so `��0� = 0. The significances of the terms are as 

follows: `���� is the expected reward of the process at sample � given that the process entered 

state ! at sample 0. The term �����a  is the expected reward conditioned on the event that the 

process transitions to another state after sample �. The term b���� is the expected reward that the 

process earns in state !, conditioned on the event that the process transitions to another state 

before sample �. The last terms in (13) and (14) are the expected rewards earned over samples 

� − $ to � conditioned on the event that the process transitions to another state before sample �. 
The term ���$, 1� represents the cumulative reward accrued over $ samples. The term ��,d�e� is 

the reward rate at e samples after having transitioned into state !. In this case the reward is 

actually a cost. Two reward rates are considered. The rate, ��,Mf�e� is the number of tap-changes 

that occur, while ��,?@A�e� is the battery throughput (measured in MWh).  These assume that a 

tap-change will occur when a timeout period equal to �@h samples has elapsed after the process 

has changed states. During those �@h samples, the ESU will either supply or draw a fixed 

amount of power to regulate voltage. Battery throughput in can be applied to predict the lifetime 

of ESU under a given usage scenario. This is valid if the battery usage characteristics allow the 
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assumption of battery degradation that is linear with respect to throughput [31]. Only discharge 

power is considered in calculating battery throughput, so this quantity is independent of battery 

efficiency. The two costs are used to select the timeout period that minimizes the ESU 

throughput while maintaining the expected number of tap-changes per day within the allowable 

maximum.  

VI. METHODOLOGY RESULTS 

 The objective is to assess the necessary amount of energy storage and develop a control 

strategy to avoid excessive cycling of a LTC. The selected strategy is for the ESU to fill in dips 

in power until a timeout counter expires. The SMDTP is used to select the timeout parameter. 

For this analysis, one-minute data taken on May 1, 2013 from the 15 kW Fayetteville (AR) 

Public Library PV installation is studied. The inferred parameters for the clear and shaded 

durations are illustrated in Table I. These parameters are applied to study the 2 MW PV 

installation illustrated in Fig. 8. It is envisioned that this case study corresponds to a large 

industrial building such as a factory or warehouse with rooftop PV. Typical of large industrial 

installations, the building will operate with three shifts, so daily load variations are negligible 

and do not contribute to operating of the LTC [32]. 

 This analysis uses the feeder parameters from [2] and the additional parameters specified in 

Table II. Both the ESU and PV are approximated as ideal ac current sources (assuming only 

small changes in 567 in Fig. 8. Based on the desired lifetime of the transformer/LTC, the ESU 

control strategy must limit the number of tap changes per day to  

 qEDr = sB�t?365 × yB�t? = 3 × 10z
365 × 40 = 20. (22)
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Given the feeder parameters, a load-flow analysis indicates a 1.27% voltage rise per MW. For an 

LTC with the parameters in Table II, the power change for a tap-change is ;MD6 = �2Δ5�/
�IF� = �2 ⋅ 0.01�/�32 ⋅ 0.0127� = 489 kW. Based on previous work in cloud intermittency, a 

typical cloud will result in the power output decreasing to 30% of clear-sky conditions [21]. 

Thus, the minimum necessary clear-sky output power in kW need for the PV to induce a tap-

change during clouding is   

 ;�67 = ;MD6/� = 489/0.7 = 689. (23)

 Based on the collected data, the duration during the studied day that the 2 MW PV generation 

can cause a tap-change �̌67  and the average change in PV power during clouding Δ;�67 are 

calculated and given in Table III. These figures are used to calculate the battery capacity. 

 By sweeping the ESU timeout, the corresponding ESU throughput at 20 tap-changes per day 

is 2.625 MWh, using a zero-order approximation of ESU power (ESU power is approximated by 

the average power in the reward calculations). However, the actual discharge durations are at 

most equal to the selected ESU timeout corresponding to 20 minutes. Fig. 11 illustrates the 

number of tap-changes and the battery throughput over the course of a day with the selected 

control parameters. Fig. 12 shows a snapshot of the ESU charge/discharge schedule as the ESU 

compensates for cloud-induced intermittency. 
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TABLE I. DISTRIBUTIONS OF CLEAR AND SHADED DURATIONS 

  � � � 

Irradiance 

Sensor 

Clear 1.798 3.808 × 10�� 10�� 

shaded 1.206 3.452 × 10�� 10�� 

PV Power 
Clear 0.367 0.231 10�� 

shaded 0.056 0.0631 10�� 

 

TABLE II. STUDY PARAMETERS 

Component Parameter Expression Value 

PV  Rated power ;�67 2 MW 
Transformer Desired lifetime  yB�t? 40 years 

 Lifetime operations qB�t? 3 × 10z 

LTC Regulation range ΔV 10% 

 LTC steps I 32 

PV Cloud-induced power reduction � 70% 

 

 

TABLE III. STUDY RESULTS 

Component Parameter Expression Value 

Feeder 
Change in net power required to induce 

a tap-change 
;MD6 489 kW 

 
Minimum PV output power for a tap-

change to occur during clouding 
;�67 698 kW 

PV Time during studied day that ;67 ≥ ;�67 �̌67 11.6 h 

 Average PV power while ;67 ≥ ;�67 ;�67 1.5 MW 

 
Average change in power during 

clouding while ;67 ≥ ;�67 
Δ;�67 1.05 MW 

 ESU timeout �@h 20 minutes 

ESU 
Average ESU output power while ;67 ≥ ;�67 

;�?@A 525 kW 

 Daily ESU energy throughput mEDr 2.625 MWh 
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Fig. 11. Expected number of tap-changing operations and ESU throughput vs. time. 

 

 

    

Fig. 12. Irradiance vs. time and ESU state vs. time.  A value of +1 indicates discharging, –1 

indicates charging, and 0 indicates standby. 

VII. CONCLUSIONS  

 A SMDTP model was proposed to fit observed clouding data. The model was most useful for 

selecting a control strategy offline because the conditional probabilities of clear and shaded 

future states converge to their steady-state values rapidly, though conditioning on weather data 

offers the potential for improved performance. It was applied to calculate the expected number of 

tap-changes and battery throughput for an ESU coordinated with a transformer LTC in order to 
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select a control strategy and battery capacity. The results demonstrate how the proposed method 

allows for LTC maintenance intervals to be met while minimizing battery utilization in an ESU. 
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CHAPTER NINE 

A SEMI-MARKOV MODEL FOR CONTROL OF ENERGY STORAGE IN UTILITY 

GRIDS AND MICROGRIDS WITH PV GENERATION 

Arthur Barnes and Juan Carlos Balda 

A.K. Barnes and J.C. Balda, “A semi-Markov model for control of energy storage in utility grids 

and microgrids with PV generation,” IEEE Transactions on Sustainable Energy (in review), 

August 2014. 

Abstract — Photovoltaic (PV) penetration levels in the power grid have significantly 

increased during the last years. However, issues such as cloud-induced intermittency in PV 

generation forces equipment on the electrical grid to cycle excessively, preventing PV from 

being considered as a reliable or dispatchable source of power, particularly by utilities.  

In this paper a model of PV clouding is proposed for a centralized PV generation 

installation. The cloud structure is modeled as a random sequence inferred from measured 

solar data. Unlike existing models of PV power, the proposed model has a wide range of 

applications across both small and large timescales. These applications include simulating 

PV power, short-term forecasting of PV power, design of rule-based controllers for energy 

storage units (ESU), and stochastic scheduling of ESU in conjunction with other resources. 

The model is applied to study two cases of coordinating ESU with PV generation. In the 

first case, the model serves to design a coordination scheme for a hybrid battery-

ultracapacitor (UC) ESU where the UC serves to extend the lifetime of a lead-acid battery. 
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In the second case, the model allows probabilistic scheduling in a standalone 

PV/diesel/battery ESU microgrid. 

Index Terms — Coordinated control, energy storage sizing, high penetration PV, 

microgrids, power distribution, statistical modeling, semi-Markov process, smart grids, 

solar intermittency, solar radiation. 

 INTRODUCTION I.  

 Advances in the manufacturing process of solar panels are lowering costs and leading to 

increased grid penetrations. However, the power output of PV inverters varies sharply because of 

changing cloud cover that may cause transitions from rated power to less than half of rated 

power within minutes [1]. This may cause over- or under-voltages on distribution systems [2], 

[3] in addition to reducing the maintenance interval of voltage regulating equipment such as 

substation load tap-changers (LTC) or in-line voltage regulators [4]. These adverse issues raise 

concern among electric utility operation personnel. 

 At the same time, the concept of the microgrid is gaining traction. Microgrids are standalone 

electrical grids or portions of a larger utility grid that can operate in a self-sustaining islanded 

mode. They typically include local generation, ESU and controllable loads with coordinated 

control [5].
 
 Microgrids that interact with a larger grid use the local generation, ESU and 

controllable loads to appear as a single controllable load or generator. While connected, they can 

provide services to the larger grid such as energy arbitrage, demand management, or reactive 

power compensation. These capabilities provide for reduced power consumption from the larger 

grid while improving reliability and power quality to the customers within the microgrid. 

Examples of microgrids include a college campus or military base. For a microgrid with 
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renewable generation such as PV, it is necessary to make it dispatchable by coordinating it with 

the ESU and local fossil-fuel generation [6]. This is a requirement for a standalone microgrid to 

establish power balance, or for a microgrid reducing demand (or supplying power) to a larger 

grid to be able to guarantee that scheduled load reduction (or supplied power) is provided. This 

latter requirement holds true not only for PV installations within microgrids, but also for large 

PV installations that are permanently grid connected, either utility- or customer-owned. 

 Energy storage has long been proposed as a solution to compensate for power fluctuations 

commonly found in renewable resources such solar and wind; however, it is necessary to either 

model or predict cloud-induced intermittency to develop a more-efficient ESU control strategy 

for mitigating PV intermittency [7]–[10]. Frequency-domain methods have been previously 

applied to characterize PV power [11]. Unfortunately, the resulting frequency-domain signal has 

units without physical significance [12]. Despite these methods being useful for observing 

qualitative features of PV power intermittency, they are not suitable for designing ESU which 

requires knowledge of the peak energy amount charged to or discharged from a battery.  

 Methods for controlling an ESU can be broadly classified into deterministic scheduling, 

stochastic scheduling, rule-based control, feedback control, and feedforward control [7]–[9], 

[13], [14], with deterministic scheduling most commonly employed.  Prediction of PV power is 

necessary for ESU control methods based on deterministic scheduling [14], and has received 

significant attention in recent years. Current methods are divided into two major groups [15]. 

The first group consists of those methods using numerical weather prediction to estimate hourly 

averaged power with look-ahead intervals on the order of one or more days [16]. The second 

group of methods uses sky imagers, geographically distributed sensor arrays, or satellite imagery 

to track cloud position over time [17]–[19]. This yields power predictions on the order of a few 
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hours ahead [20]. The time resolution for both methods are too coarse for predicting cloud-

induced power variations, which occur in seconds [18].   

 This paper extends work on a semi-Markov discrete-time random process model (SMDTRP) 

for PV clouding [21]. The SMDTRP is proposed for generating simulated PV power data, short-

term forecasting of PV power, and parameter selection for rule-based controllers to coordinate 

ESU and tap-changers for mitigating PV-induced voltage variability. This paper introduces how 

to calculate the probability mass function (PMF) and cumulative distribution function (CDF) of 

the energy produced by PV over a time interval. Two new applications of the SMDTRP are 

presented: controller parameter selection for a hybrid battery-UC ESU, and stochastic scheduling 

in standalone PV/diesel/battery-ESU microgrids. The latter makes use of the CDF calculations 

presented in the scheduling algorithm. 

 The hybrid battery-UC ESU was first proposed for automotive applications, where the UC 

served to supply peak powers that would otherwise require a larger battery pack than energy 

demand alone dictated [22]. It has since been studied for grid-connected applications [1]. 

However, in the case of grid-connected ESU applied to smooth PV output power to make it 

dispatchable, the UC is instead applied to reduce battery cycling. This enables the use of cheaper 

technologies (e.g. lead-acid instead of lithium-ion) with lower cycle life, while still having the 

ESU meet battery lifetime requirements in terms of years. The SMDTRP is applied in this case 

to calculate the expected battery lifetime for a given parameter value in a rule-based ESU 

controller. 

 In the case of hybrid standalone microgrids, stochastic scheduling allows for uncertainty to 

be taken into account, reducing fuel consumption vs. deterministic methods [24]. This paper 

illustrates how knowledge of the CDF of PV energy over a time interval allows stochastic 
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scheduling methods to be applied, thereby accounting for uncertainty in the PV energy [25]. A 

rule-based controller is applied to calculate average generator and battery power over each 

scheduling interval, which allows stochastic dynamic programming to be applied by overcoming 

the limitation of a quantized state space. 

The paper is organized as follows: the PV data collection is described in section II; the data 

processing and classification is explained in section III; the development of statistical 

distributions are addressed in section IV; the semi-Markov process is described in section V; 

case studies of the SMDTRP’s utility are presented in section VI; and lastly, the conclusions on 

the work performed are given in section VII. 

 PV DATA ACQUISITION II.  

 Irradiance is captured with an irradiance sensor (Apogee SP-125 5V amplified pyranometer) 

[26] in conjunction with a LabVIEW-based data acquisition system (National Instruments USB-

6259) using a custom program. The pyranometer is installed at the University of Arkansas (UA) 

in Fayetteville (AR) on the top of the John A. White Engineering Hall roof next to a pair of 

225W PV panels as shown in Fig. 1. It was installed on the same plane as the panels, facing 

South with tilt angle of 66º from horizontal. For the analysis, 10 days of data with a sample rate 

of 1 Hz are captured during August and September 2011, which are available on the web [27]. 

 PROCESSING AND CLASSIFICATION OF PV DATA III.  

 Erroneous values corrupted by noise and nonlinear effects in the sensor are unfortunately 

captured by the data acquisition system. Hence, the data must be processed to remove these 

erroneous values that occur at low irradiance as well as to capture statistics on clouding. This 

processing classifies data as clear or shaded, based on the clear-sky irradiance profile and a 
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model of clouding effects. The estimated clear-sky irradiance ����� at sample � is calculated 

using a graphical tool developed in Matlab
TM

, illustrated
 
in Fig. 2. Given a set of time values 

���� ∈ �0, 23
 h  and irradiance values ���� W/m�, the tool lets the user select the peak 

irradiance �� and time of sunrise ��� for each day �. This is applied to normalize the irradiance 

���� to calculate the normalized irradiance �����. Given the set of   ��  samples corresponding 

to day �, the normalized irradiance and time values are 

 ����� = 1�� ���� � ∈ �� (1)

 ����� = ���� − ���. (2)

  

A set of normalized points are selected with the tool corresponding to periods of clear sky. A 

second-order �����curve fits ����� based on the coefficients ��, ��, ��. To account for nighttime 

it is saturated at 0: 

 ����� = min�������� + ������ + ��, 0
. (3)

 

In removing the deterministic component of irradiance related to the clear-sky irradiance profile, 

the probabilistic SMDTRP is free to only model clouding effects, reducing the chance for 

overfitting [28]. 

 As illustrated in Fig. 3, the error distribution can be modeled by the weighted sum of a pair of 

normal distributions, each distribution corresponding to either clear or shaded states. To classify 

the points as clear or shaded, a Bayes classifier is applied to the normalized error �����, which 

is calculated as 

 ����� = ����� − ���������� . (4)
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For each data point �����, the probability of it belonging to state # is given by the weighted 

normal distribution 

 $%������
 = &% 1'%√2) *+��,���+-.�/�0./ . (5)

 

In the above, &% is the prior probability of either the clear or shaded state, 1% is the mean error of 

each state, and '% is the standard deviation for the error of each state. In this case, the standard 

deviation is assumed to be the same for both states so that '% = '. This assumption helps ensure 

convergence of the expectation-maximization algorithm used for parameter inference. The 

inferred parameters for the data analyzed are presented in Table I. 

 Note that for PV installations with tracking, the irradiance profile will be flattened near mid-

day [29], so a higher-order curve fit will be necessary. The classification results and how the 

curve is saturated at 0 to account for nighttime are illustrated in Fig. 4. The processing 

accomplishes two goals: First, the data are classified as either clear or shaded, allowing for 

statistics to be taken on cloud cover. Second, it mitigates corrupted data by removing erroneous 

samples and interpolating between the remaining good data. For the case of the pyranometer, two 

factors were observed to corrupt data. First, accuracy at high solar angles of incidence is poor as 

the output drops off. Second, oscillation is present at those high angles of incidence, illustrated 

around 6 am and 7 pm (19 h) in Fig. 4, which compares the measured and corrected data. To 

overcome these issues, the corrupted samples are removed and a weighted sum of the predicted 

and measured irradiance is used to estimate the true irradiance.  
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Fig. 1. Close-up of the sensor location adjacent to rooftop PV panels at UA. 

 

 

Fig. 2. Screenshot of the Matlab™  tool for fitting the clear-sky irradiance profile from 

measured data. 
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(a) 

 
(b) 

Fig. 3. Histogram of normalized error (a) and inferred probability distribution of mixture-

of-Gaussian model (b). 

 

 

TABLE I. PARAMETERS FOR ERROR DISTRIBUTION 

Parameter Var. Value 

Prior probability of clear state &� 0.7032 
Prior probability of shaded state &� 0.2968 

Mean of clear state 1� −0.0201 

Mean of shaded state 1� −0.6398 

Variance σ� 0.0141 
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Fig. 4. Classified irradiance data for a partly cloudy day (Aug 27, 2011). The original 

irradiance profile and predicted clear-sky irradiance profile are in the top graphs, while 

the classification results (whether or not it is clear or shaded) are in the bottom. 

 STATISTICAL INFERENCE OF CLOUD DURATIONS IV.  

 In order to characterize and forecast the PV output, it is assumed that the clear and shaded 

durations follow statistical distributions.  Based on existing work in climate science [30], 

cumulus clouds have a fractal structure, so the distribution of the cloud and thus the duration of 

shading, roughly follow a power law distribution. Through exploratory data analysis, it is 

inferred that distribution of the clear and shaded durations 3 follow a generalized Pareto 

distribution of the form 

 453678, '8, 98: = 1'8 ;1 + 7 5� − 98:'8 <+�+ �=>
 (6)
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where 78, '8, 98 are parameters of the distribution [31]. Although the duration of clear 

conditions is truncated based on the length of a day, the effect of truncation is neglected. Two 

separate distributions are inferred for the duration of clear and shaded events, respectively. 

 To validate the inferred parameters, they are compared against data recorded over 4 years 

from a 15 kW PV array located at the Fayetteville, AR public library. The data consists of the 

power injected into the ac grid sampled at 1 min intervals. The data are divided into 4 weather 

classes – sunny, partly cloudy, cloudy, and overcast. Individual days can be divided into multiple 

weather classes. The weather classes are selected via a Matlab™ GUI by visual inspection, 

illustrated in Fig. 5. Sunny conditions contain only a few periods of clouding. Partly cloudy 

conditions include frequent clouding, but the clear-sky envelope is readily visible. During cloudy 

conditions, the power is above 30% of rated, but the envelope is not visible. Overcast conditions 

are those when the power falls below 30% for most of the period. The clear-sky irradiance 

profile is based on a quadratic fit of manually selected points. The relative frequency of weather 

classes is illustrated in Fig. 6, while Fig. 7 illustrates the statistical variation in the average 

energy (in W-min) per region. The number of regions for each weather class is selected based on 

making an accurate estimation of the mean irradiance for that type. The number of required 

samples is calculated for each weather class. The initial estimate �? of the number of samples is 

calculated based on the z-value @A/� for a confidence level 1 − B given the variance estimate 'C 

and confidence interval half-width DE. The t-value �A/� given �′ and B is used to produce a 

refined estimate �. For this case, the confidence interval is ±5% of the sample mean with a 90% 

confidence level. The calculations follow: 

 �? = J@A/�'CDE K�
 (7)
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 � = L�A/�'CDE M�. (8)

 

The number of samples calculated and the actual number of samples �N are listed Table II. The 

actual number of samples used exceeds the calculated number because the granularity for 

selecting data is in units of days, not regions. 

 

 

 

 
Fig. 5. Illustration of selecting partly cloudy regions (green) and cloudy regions (blue), 

user-selected points for curve fit (magenta), and curve fit (blue line). Black PV profile is 

current day, cyan PV profile is a reference day used to assist with selecting points. 
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Fig. 6. Relative frequency of weather classes. 

 
Fig. 7. Box plot of weather classes. 

 

 

TABLE II. REQUIRED NUMBER OF SAMPLES FOR THE DESIRED CONFIDENCE INTERVALS AND LEVEL 

Sunny 

Partly 

Cloudy Cloudy Overcast �? 59.0433 78.6652 201.414 712.606 � 61 81 204 715 �N 117 169 235 305 
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 The inferred distribution parameters for the irradiance sensor are presented in Table III. Fig. 

8. Illustrates that the quantiles of the inferred distribution with these parameters closely matches 

those of the data. Additionally, in Table IV the inferred distribution parameters are compared 

with those for the Fayetteville public library. The main difference lies in the scale parameter, '8, 

which measures how quickly the distribution decays. Depending on the weather type, the 

expected duration of clear periods will vary, in addition to the expected duration of the shaded 

periods themselves. Days of the sunny weather class will have long clear periods, but the 

average durations of these periods decreases with cloudier weather. 

 

 

 

TABLE III. DISTRIBUTIONS OF CLEAR AND SHADED DURATIONS FOR THE IRRADIANCE SENSOR 

State Parameter Var. Value 

Clear 

Pareto 

parameters 

O8 1.798 '8 3.808 × 10+T 98 0 

Steady-state interval transition 

probability 
U% 0.59 

Shaded 

Pareto 

parameters 

O8 1.206 '8 3.452 × 10+T 98 0 
Steady-state interval transition 

probability 
U% 0.41 
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(a) (b) 

Fig. 8. Quantile-quantile plots comparing the actual and inferred distributions for (a) clear 

durations and (b) shaded durations. 

 

 

TABLE IV. DISTRIBUTIONS OF CLEAR AND SHADED DURATIONS FOR THE FAYETTEVILLE PUBLIC 

LIBRARY 

  O8 O8 '8 '8 

  Clear Shaded Clear Shaded 

Sunny 0.5438 0.2471 77.2261 2.3671 

Partly Cloudy 0.4219 0.1490 6.1137 1.8031 

Cloudy 0.5780 0.7733 4.0321 3.1630 

Overcast 0.8142 2.4682 5.0093 6.0078 

Downsampled 

Irradiance 

0.9575 

 

1.3545 2.7097 

 

2.0609 

 

 MODELING AS A SEMI-MARKOV PROCESS V.  

 Although knowing the distribution of the clear and shaded durations is not useful in itself, it 

is applied to create a random process model that has broad applications. The state of the PV 

installation is modelled as a time series X�0�, X�1�, … , X�Z − 1�, where at each sample �, the 

state X��� is either 1, denoting clear, or 2, denoting shaded. Section IV revealed that X��� is 

dependent not just on X�� − 1�, but also on the total duration that the sensor has been clear or 
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shaded, thereby violating the Markov property [28]. This is apparent because the distributions of 

the clear and shaded durations are not geometric, which is required for the Markov property to 

hold [28]. However, it is shown next that the distributions of clear and shaded times can still be 

used to model the shading as a discrete-time semi-Markov process [32]. 

 A Markov process has a set of states and a state-transition probability matrix indicating the 

likelihood $%[ of transitioning from state # to state \ at sample � [33]–[35]. The semi-Markov 

discrete-time process (SMDTRP) is a generalization of the Markov process that waits for a 

random hold time before each transition. Therefore, each element $%[ of the SMDTRP state-

transition probability matrix has a corresponding hold-time distribution ℎ%[�^�, the probability 

that the process will transition into state \ at sample ^ given that it entered state # at sample 0.    

 Irradiance is modelled by a two-state model in which virtual state transitions are forbidden 

(that is, transitions from a state to itself), illustrated in Fig. 9. This results in a simpler 

representation of the system, as the state-transition probability matrix is simply a two-by-two 

identity matrix. In order to generate simulated data, the SMDTRP is executed via the algorithm 

described in Fig. 10. 

V.A.   Interval Transition Probabilities 

 For forecasting, the quantities of interest are the interval transition probabilities, giving the 

likelihood that the PV is clear or shaded at sample � given that it transitioned to be clear or 

shaded at sample 0. The interval transition probability U%[��� is the probability that the process 

is in state # at sample �, given that it entered state \ at sample 0; in particular 

U����� = _ _ ℎ���^�U���� − ^��
`a�

b
�a�  (9)
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U����� = _ _ ℎ���^�U���� − ^��
`a�

b
�a� . 

Because these calculations rely on a series of multiply-accumulate operations which are 

performed quickly by modern computers [12], they are easily computed numerically using the 

following initial conditions 

 

 

 

Fig. 9. Graphical illustration of the SMDTRP model states and transitions. 

 

 

Fig. 10. Flow chart for generating simulated clouding data with the SMDTRP. 
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 Φ�0� = d1 00 1e (10)

and the definition of a PMF 

 U����� + U����� = 1 

(11)
 U����� + U����� = 1, 

 

where (8) reflects the fact that at sample 0 the state of the process is known with no uncertainty. 

 The interval transition probabilities allow for performing forecasting by taking the state with 

the highest likelihood. For example, if a process transitioned from clear to shaded at sample 0, it 

will most likely remain shaded for 50 seconds until U����� exceeds 0.5, as illustrated by Fig. 11. 

This figure illustrates the evolution of the interval transition probabilities over time assuming 

that the system started in clear (state 1, red lines), or shaded (state 2, black lines). As time 

increases, the uncertainty in the interval transition probabilities increases and they converge to 

their steady-state values U� and U�, the marginal likelihoods of the system being either clear or 

shaded. These values are defined as 

 U% = f%f% + f[ . (12)

In the above, f% is the expected hold time for state # calculated as 

 f% = _ ^ℎ%[�^�.�
`a�  (13)

V.B.   Reward Model 

 The SMDTRP can be employed to calculate the expected performance or cost of a rule-based 

controller applied to a system with PV via reward processes (where the rewards could also be 

costs). Similar to the case of the interval transition probabilities, the reward processes are 

calculated recursively as follows 
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g���� = h����i + ����� + _ ℎ������
`a� g��� − ^� 

(14)g���� = h����i + ����� + _ ℎ������
`a� g��� − ^� 

 h����i = h���, 1� _ ℎ���^�j
`a�k�  

(15)

 h����i = h���, 1� _ ℎ���^�j
`a�k�  

 ����� = _ ℎ������
`a� h���, 1� 

(16)

 ����� = _ ℎ������
`a� h���, 1� 

 h%�^, 1� = _ h%�l�`+�
ma� . (17)

 

These assume zero initial rewards, so g%�0� = 0. The significances of the terms are as follows: 

g%��� is the expected reward of the process at sample � given that the process entered state # at 

sample 0. The term h%���i  is the reward contribution when the process transitions to another 

state after sample �. The term �%��� is the expected reward contribution when the process 

transitions to another state before sample �. The last terms in (12) are the expected rewards 

earned over samples � − ^ to � conditioned on the event that the process transitions to another 

state before sample �. The term h%�^, 1� represents the cumulative reward accrued over ^ 

samples. The term h%�l� is the reward rate at l samples after having transitioned into state #.  
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Fig. 11. Interval transition probabilities nop�q� converging to the steady-state values no. 

The probabilities nr + ns = r. 

 

 

 

V.C.   State Occupancy Distributions 

 The SMDTRP is also helpful for calculating the distribution of state occupancies in a given 

time interval. This is useful in order to derive the PMF of energy produced by a PV installation 

over the course of multiple samples. Given that the process entered state # at sample 0, the 

probability of 7 occurences of state \ in the interval 0,1,2, … , � is t%[�7|��.  

 For the process modeled here, the discrete probability distributions are as follows 

t���7|�� = _ ℎ���^�w���7|� − ^��
`a� + w�7� t����i  

(18)t���7|�� = _ ℎ���^�w���7 − ^|� − ^� + w�7� t����i�
`a�  

t���7|�� = _ ℎ���^�w���7 − ^|� − ^��
`a� + w�7� t����i  (19)
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t���7|�� = _ ℎ���^�w���7|� − ^��
`a� + w�7� t����i . 

In the above w�7� is the Kroneker delta function, and 

 t%���i = _ ℎ%[�^�j
`a�k� . (20)

 

 The state occupancy probability distributions are used to derive the CDF of the state 

occupancies, E%[�7|��. Only the CDF of the clear states need be calculated, which follow 

 E���7|�� = x _ ℎ���^�W���7|� − ^��
`a� , 7 y � + 1

1, 7 z � + 1 

(21)

 E���7|�� = x _ ℎ���^�W���7|� − ^��
`a� , 7 y �

1, 7 z �. 
 APPLICABILITY TO ENERGY STORAGE VI.  

 Two case studies are presented to demonstrate applications of the reward processes and 

state occupancies. These make use of the distribution parameters listed in Table III. 

VI.A.   Battery–UC Coordination in a Hybrid ESU 

 Consider a distribution grid with a PV installation and a hybrid ESU having lead-acid 

batteries and UC as illustrated in Fig. 12. Other battery chemistries could have been considered. 

The main control objective is to provide constant power out of the combination PV 

installation/ESU into the grid source while maximizing the lifetime of the battery. The equivalent 

grid source is representing the aggregation of the distribution system loads and the infinite bus. 

The hybrid battery-UC ESU operates by filling in power dips from cloud shading.  
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Fig. 12. One-line diagram of the hybrid battery UC ESU for smoothing PV. 

 

The UC is used to extend the lifetime of the ESU’s lead-acid battery by filling in small gaps up 

until a timeout ��, after which the battery will fill in the power. This case only covers the 

selection of the timeout period, as the decision of when to charge batteries or start additional 

generation depends on other factors besides the PV generation. It is assumed that the lifetime of 

the lead-acid battery is fixed in terms of Wh throughput [36].  The lifetime of the lead-acid 

battery in terms of total Wh throughput is  

 {| = {}~Z|�~�. (22)

The average power over the course of the day is  

 &�� = 2) &}�. (23)

 

 Therefore, when the ESU supplies power the change in energy per sample is  

�{ = &��3600 s. (24)

The reward (cost) is 

h%�l� = ��{, # = 2 ��� l > ��0, ��ℎ*�t#X*.  (25)

The battery lifetime is therefore 

� = 124 ⋅ 365 ⋅ {|U�g����� + U�g�����. (26)
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The desired lifetime for the lead-acid battery is 2 years. Table V presents the parameters used in 

the analysis. Table VI presents the results from the parameter selection, showing how the UC 

allows the battery to meet the design lifetime, while Fig. 13 illustrates the tradeoff between 

battery lifetime and UC capacity. 

VI.B.   Scheduling in a Standalone Hybrid Microgrid 

 The CDF of the state occupancies is applied to a standalone microgrid consisting of a diesel 

generator, PV generator, battery-ESU and loads, shown in Fig. 14. The surplus PV power can be 

curtailed, but the load power cannot be controlled. Using a given clear-sky PV power profile in 

conjunction with the PV clouding model, stochastic dynamic programming [37] is applied to 

schedule the generator and battery  at each hour over the course of one week with the parameters 

listed in Table VII. The random variable in this case is the PV energy produced during one 

period, which is linearly related to the number of clear state occupancies during that hour. The 

distribution of PV energy during one hour is therefore the same as clear state occupancy 

distribution over the 3600 samples in that hour. 

 Because the computational complexity of dynamic programming increases quadratically with 

the number of states, the number of possible energy levels of the battery is quantized. The levels 

are indexed by �� = 0, … , �� − 1. Similarly, the number of clear state occupancies is 

approximated with �� unique values, and state occupancy index �� = 0, … , �� − 1. the number 

of occupancies is ��� where � is a positive integer. 

 The total number of states is then ����, while the state index is  

 � = ���� + �� . (27)

  The actual values the battery energy can take are 
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TABLE V. PARAMETERS FOR THE HYBRID BATTERY-UC ESU 

Component Parameter Var. Value 

PV Rated power &}� 500 kW 
 Rated energy {} 250 kWh 

Battery Depth of discharge ~ 0.5 

 Number of cycles Z|�~� 1000 

 

TABLE VI. RESULTS FOR THE HYBRID BATTERY-UC ESU 

Parameter Var. Value 

Timeout period  �� 300 s 
Lifetime  � 2.17 years 

 

 
Fig. 13. Tradeoff between lead-acid battery life and required UC capacity. 

 

 
Fig. 14. One-line diagram of the standalone PV/diesel/battery-ESU microgrid. 
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TABLE VII. MICROGRID PARAMETERS 

Component Parameter Var. Value 

PV Rated power &�`N� 10 kW 
Load Maximum power &�`N� 10 kW 

 Rated power &�`N� 15 kW 
Generator Standby fuel use 4�� 0.08 liters/kW rated 

 Variable fuel use 4�� 0.25 liters/kW 

 Rated power &�`N� 10 kW 

 Maximum energy {`N� 12 kWh 

Battery Minimum energy {`%� 6 kWh 

 Initial energy {� 8 kWh 

 Efficiency � 0.85 

Scheduler 

Number of samples Z 168 
Number of battery 

energy states 
��   5 

Number of clear 

occupancy states  
�� 5 

 

 {��� = {} ��/����� − 1, (28)

 

where �⋅� denotes the floor operator. Similarly, the fraction of samples occupied by a particular 

state is 

 ���� = � mod ���� − 1 , (29)

 

where mod is the modulus operator. The quantized state occupancy distributions over an interval 

of 3600 s (1 h) are 

 4������ = � W������|��, � = 1E�����|�� − E������ − 1�|��, � > 1 

(30)
 4������ = � W������|��, � = 1E������|�� − E������� − 1�|��, � > 1. 
 

 The likelihood of each quantized state is 

 &���� = U�4���� mod ��� + U�4���� mod ���. (31)
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 The algorithm requires knowing the average battery power at each time step, given the 

battery energy at the current and next time step. The change in stored energy in the battery 

between any two states �� and �� is  

 Δ{���, ��� = {���� − {����. (32)

 

 Given the round-trip efficiency for the battery �, the power flowing out of the battery is 

 &����, ��� = � −Δ{���, ���, Δ{���, ��� ≤ 0− Δ{���, ���� , Δ{���, ��� > 0 (33)

 

 The battery energy and power are applied to calculate the cost of each possible decision at 

each time step. At a particular time step, given the actual load power $� and average available 

PV output power $�, the average diesel generator power $� is  

 $�  = max�$� −  $������ −  &����, ���, 0
. (34)

Implicit in (32) is the assumption that the PV output power can be curtailed to overcome a power 

surplus.  

 Depending on the net load, it may be more efficient to operate the generator and battery in 

either a load-following or cycle-charging strategy at each time step [38]. In a load-following 

strategy, the battery stored energy changes only monotonically, either storing surplus PV energy 

or releasing the stored PV energy to supply load. The generator serves to balance power. Cycle-

charging exploits the property that a generator is most efficient when it operates at full power. In 

this strategy, the generator is at full power for the beginning fraction � of the time step Δ3 to 

both charge the battery and supply load. During the remainder of the time step, the generator 

turns off and the load is supplied exclusively by the battery and PV. An example profile and the 

relevant quantities are illustrated in Fig. 15. 
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 The particular generator and PV power setpoints $�, $��, $�� are determined via a rule-based 

controller. The rules are derived by exploiting knowledge that the fuel consumption is a 

monotonic function of the generator duty cycle �, and therefore the optimal setpoints occur when 

constraints such as generator power rating or power balance are exactly met. 

 At each time step, the fuel use of the generator when operating in load-following or cycle-

charging mode is compared, and the more efficient strategy is selected.  

 The power setpoints for the load-following strategy follow. 

 The corresponding fuel use is 4N, which is a function of the generator’s power setpoint and 

fuel use coefficients 4��, 4�� 

 $�� = $��  = &����, ��� (35)

 $�  = max�$���, 0
 (36)

 4N = 4�� + 4��$��. (37)

 The cycle-charging strategy is more complex. Let 

$�� = $� −  $������. (38)

 

Which setpoints are selected depends on the case the particular scheduling point falls under. 

These follow: 

 
Fig. 15. Example of generator and battery powers for the cycle-charging case. 
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1) Positive load ( ¡¢ z £) 

 The charging power $¤ and discharge (supplied) power $¥ for the battery are 

$¤ = &�`N� − $�� (39)

 $¥ = $�� (40)

 

while the duty cycle � is 

� = max ¦Δ3$¥  + Δ{���, ���Δ3$¥  + �Δ3$¤ , 0§. (41)

 

The setpoints are therefore 

$�� = −$¤ ,  $�� = $� (42)

 $� = &�`N�. (43)

 

2) Negative load ( ¡¢ y £ and −¨© ¡¢ ≤ ¨ª�«r, «s�) 

 

 Under both portions of the time step the battery is charging, while the generator only runs 

during the first portion 

        $�  = min�&�`N�, &�`N�  −  $��� (44)

 

� = Δ{���, ���  + �Δ3$���Δ3$�  (45)

 $�� = $� − $��, $�� = −$��. (46)

 

3) Negative load ( ¡¢ y £ but −¨© ¡¢ > ¨ª�«r, «s�� 

 Under both portions of the time step the battery is charging. The generator is not run and the 

PV power  is curtailed 

        $�  = min�&�`N�, &�`N�  −  $��� (47)
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 (48)� = 0 

 

$�� = $�/ = − Δ{���, ����Δ3 . (49)

 

The fuel use for cycle-charging is 

 4� = ��4�� + 4��$��. (50)

 

The ultimate cost of a decision is  

 �?��, 7�, 7�� = min�4N, 4��. (51)

 

 Certain elements of the raw decision cost matrix �′ are set to infinity to prohibit certain 

decisions from being taken. The following restricts the battery power to the range 

�−&�`N�, +&�`N�
, and the starting/ending battery stored energies to the initial energy {� 

 ���, ��, ��� = ¬­
® |&����, ���| > &�`N�∞, � = 1 ��� {���� ≠ {�� = Z ��� {���� ≠ {��′��, ��, ���, ��ℎ*�t#X*.  (52)

  

 

 The last step of the scheduling algorithm is to apply value iteration to calculate the 

cumulative minimum cost ±��, �� for each sample � and state � along the backwards path from 

the terminal states. The cumulative minimum costs at the final sample Z − 1 are 

 ±�Z − 1, ��� = min�/ &�������Z, ��, ���. (53)

 The cumulative minimum costs at other sample are  

 ±��, ��� = min�/ &����� ¦ ��Z, ��, ���+±�� + 1, ���§ . (54)
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 The decision ~��, �� matrix specifies the next state to progress to at each sample �, given the 

current state �. It is calculated as follows 

 ~′��, ��� = arg min�/ &��7�����, ��, ��� (55)

  

 ~��, ��� = ³~?��, ��� ~?��, ��� y ∞0 ��ℎ*�t#X*.  (56)

 

The resulting states as a function of time ���� and stored energy as a function of time {���� can 

be extracted via 

��1� = {�: {��� = {�} (57)

 ���� = ~�� − 1, ��� − 1��.  (58)

 {��1� = {� (59)

 {���� = {5����:.  (60)

 

By applying (39)-(54) and averaging over &� ���, the battery and generator powers can be 

recovered.   

 To evaluate the performance of the performance of the method, it is compared against the 

baseline of a rule-based scheduler. The rule-based scheduler is roughly based on the scheduler 

employed in the HOMER software, with the main distinction being that the security constraints 

for generation dispatch were relaxed to make its results more comparable to those produced by 

dynamic programming.  

 The algorithm for the rule-based scheduler is illustrated in Fig. 16. The rule-based scheduler 

operates in a hysteresis fashion. If there is a surplus of energy from the PV, it will charge the 

ESU while shutting down the diesel generator. If the PV cannot supply the load power, but the 
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ESU has sufficient energy to do so, the scheduler will discharge the ESU while still shutting 

down the diesel generator. If PV cannot supply the load nor does the ESU have sufficient energy 

to do so, the diesel generator is run to both supply load and charge the ESU.  

 Unlike the dynamic programming scheduler, the rule-based scheduler will not calculate the 

expected fuel usage. To overcome this, a set of simulations were run to estimate the expected 

fuel usage. The number of simulations �¥%` was set to 10,000  in order to achieve an estimate 4N̅ 

within an interval E of 0.25 liters for 99% confidence. The interval is calculated as follows 

given that the fuel usage for each simulation is 4N= and the variance estimate is 'C.  

4N̅ = 1�¥%` _ 4N=
�¸.¹
=a�  (61)

 

'C = 1�¥%` − 1 º _ 54N= − 4N̅:��¸.¹
=a� »

��
 (62)

 

E = L4N̅ + �A/�'C¼�¥%`M − L4N̅ + �A/�'C¼�¥%`M = 2�A/�'C¼�¥%` .  (63)
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Fig. 16. Flowchart for the rule-based scheduler. 
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Given the method described and the component parameters listed in Table VII, the schedule is 

calculated. Examples of random schedules for the dynamic programming and rule-based 

schedulers are listed in Fig. 17 and Fig. 18. The expectation of the total fuel consumption of the 

microgrid over the time period studied is  147.4 liters with dynamic programming, while the 

estimated expected fuel consumption with rule-based scheduling is 156.3 liters. 

 

 

 

 

Fig. 17. Scheduled powers and energy for the hybrid standalone microgrid under a random 

scenario with the stochastic dynamic programming scheduler. 
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Fig. 18. Scheduled powers and energy for the hybrid standalone microgrid under a random 

scenario with the rule-based scheduler. 

 CONCLUSIONS AND FUTURE WORK VII.  

 A SMDTRP model to fit observed clouding data was proposed in this paper. Previously 

proposed models based on frequency-domain analysis are only suitable for qualitative study, 

while the proposed model yields results with physical significance.  

 Moreover, the same model can be applied to solve a wide variety of problems, including: 

generating simulated PV data, short-term forecasting of PV power in the absence of sky imaging 

data, day-ahead forecasting of PV energy, parameter selection for rule-based controllers 

operating over short time scales, and day-ahead stochastic scheduling for PV hybrid systems. 

Future work will explore generalizing the model to multiple spatially dispersed PV installations, 
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multiple weather conditions (e.g. clear, partially cloudy, overcast) or seasons, and the effect of 

spatial smoothing present on a single large PV installation that covers a large contiguous area. 
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CHAPTER TEN 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

I. INTRODUCTION 

This chapter wraps up the study of integration of energy storage units (ESU) in future energy 

systems. First, a summary of the conclusions drawn throughout this dissertation is presented.  

Second, suggestions for future work based on either the methodologies or problem formulations 

used in this work are listed. Last, final remarks are given on the development of tools for 

integration of distributed ESU. 

II. CONCLUSIONS 

Conclusions are presented in terms of area of work.  

II.A. Storage Capacity Selection and Scheduling of ESU 

An 11-year design lifetime provided the highest net present value (NPV) for an ESU 

performing energy arbitrage under a time-of-use (TOU) pricing structure, as illustrated in 

Chapter 2, Fig. 10 [1]. The analysis of Chapter 2 showed that the optimal lifetime occurs because 

it is necessary to oversize the battery (in terms of storage capacity) in order to meet battery 

lifetime requirements. The increased initial cost due to oversizing reduced the NPV of the ESU, 

making it less profitable. The 11-year lifetime resulted in only a small amount of oversizing 

required.  

The same analysis also showed that the battery technology yielding the highest NPV was not 

necessarily the cheapest in terms of cost per unit of energy capacity. The methodology selected 

the lithium-ion (Li-ion) battery technology, which is costly in terms of energy capacity. 

However, the NPV of the ESU was not as sensitive to cost per unit of energy capacity as it was 
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to round-trip efficiency and cost per total lifetime energy output. As Li-ion is competitive in 

terms of these metrics, it was recommended for this application. 

The energy capacity required for an ESU providing ancillary services is far less than an ESU 

providing arbitrage. An ESU need supply only 1 hour of output at rated power when providing 

ancillary services. In contrast, it would need to supply 6 to 8 hours of output at rated power when 

providing arbitrage [2], [3]. This makes ancillary services a much more appealing use for ESU. 

Additionally, allowing for an ESU to participate in both regulation and spinning reserve markets 

(without significant penalties for the ESU running out of power when called upon to provide 

either regulation or reserve services) increases its value significantly. In Chapter 3 it was 

demonstrated how lifetime constraints for a Li-ion battery can be taken into account when 

providing ancillary services by linearizing  its lifetime curve at two different points, one for 

discharge periods of an hour or more, and another for short discharges less than one hour [4].  

Chapter 3 also introduced the use of ridge regression for price prediction of ancillary 

services. It demonstrated that this form of regression can overcome issues related to the price 

predictor variables being highly correlated. Additionally, it was shown as follows that 

profitability of an ESU was relatively insensitive to forecaster accuracy. First, it was only 

necessary to predict the change in price within a period of about one day accurately. Price 

prediction errors that are roughly constant over the course of a week do not impact the 

scheduling of the ESU. Second, the ESU was applied mostly to provide spinning reserve and 

regulation services throughout most of the day, charging during nighttime periods of low price. 

The ESU was rarely called upon to provide power in the energy market. The periods of low price 

during which the ESU charges had low variability, and were therefore easily predicted. 
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II.B. Placement and Power Rating of ESU 

The ESU placement problem is computationally difficult because it has a nonconvex, mixed-

integer formulation. However, it was still possible to produce desirable suboptimal solutions with 

low computation time (but whose solution cost was not significantly higher than the global 

optimum). Both a randomized and a heuristic methodology were investigated for ESU 

placement. 

In Chapter 4, the results of the randomized methodology (simulated annealing) illustrated 

that for a small system it was possible to produce a desirable solution in reasonable time by using 

certain heuristics [5]. These heuristics  sped up the search process by favoring certain buses for 

ESU placement that were more likely to be desirable based on a priori knowledge of the 

problem. The methodology demonstrated that for applications where ESU assisted CVR, 

locations near the end of the feeder were favored for placement, rather than near load centers. 

The results of the methodology showed that “smart” PV inverters with appropriate control could 

assist ESU in maintaining a desired voltage profile and reducing losses, rather than increasing 

voltage variation on a distribution system. Last, the methodology verified that employing ESU to 

assist with voltage regulation during CVR would not interfere with optimal economic scheduling 

of ESU used for energy arbitrage. 

The heuristic methodology of Chapter 4 exploited the property that candidate buses for ESU 

placement tend to be in well-separated groups. An alternative representation of the problem 

(obtained by applying multidimensional scaling (MDS)) was used in Chapter 5. In the alternative 

problem representation, the methodology combined candidate buses (via k-means clustering) for 

ESU placement that were close to each other (in terms of impedance between the two buses) [6]. 

The motivation behind this heuristic was related to the observation that there was a fixed 

component in the cost of placing each ESU. Furthermore, if one large ESU was placed instead of 
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multiple small units, the decrease in benefit for loss reduction or voltage regulation was low. 

Therefore, it was economically favorable to aggregate candidate buses for ESU placement into a 

small number of large ESU. This heuristic methodology was shown to reduce computation time 

by an order of magnitude when compared with genetic algorithms, a popular type of optimizer 

for this class of problem. Moreover, the methodology was also shown to be easy to implement, 

requiring only a set of matrix multiplications, eigenvector decomposition, and k-means 

clustering, all of which are common numerical methods.  

The methodology of Chapter 5 was applied to demonstrate the feasibility of distributed ESU 

by verifying that the ESU were able to assist with CVR and peak loss reduction on the feeder. 

Furthermore, it confirmed the ability of the ESU to charge and discharge under worst-case 

conditions without violating steady-state voltage constraints on the feeder. However, the 

methodology also showed that the ESU exceeded tolerable limits for flicker when providing 

frequency regulation on the grid. This observation suggested that the substation might be the 

most appropriate location to place ESU used primarily for frequency regulation. However, this 

choice would not allow them to be used for CVR and loss reduction. 

A follow-up study described in Chapter 6 investigated properties of the MDS and clustering 

[7], demonstrating that MDS provided the ability to completely represent a positive-sequence 

model of a distribution system without data loss. Additionally, the reduction in ESU benefits 

resulting from clustering were quantified to first-order. The scalability of the MDS/clustering 

was demonstrated by applying it to a large (1699 customer) feeder, selecting candidate buses via 

a classifier [8]. The MDS/clustering methodology was applied to investigate additional 

properties related to distributed power electronics, in this case, studying the use of an oversized 

power electronic interface (PEI) for the ESU to inject reactive power. The results demonstrated 
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that for practical CVR factors and inverter losses, the ESU could indeed reduce feeder power 

consumption via reactive power injection. However, the amount of savings was sensitive to both 

the amount of inverter losses and the CVR factor. The savings would become negative as loads 

approached constant-power or as the inverter losses increased beyond a certain threshold. 

II.C. PEI Topology Selection 

Chapter 7 addressed the PEI topology selection problem. It demonstrated that if the dc-bus 

voltage of a battery was fairly constant, better efficiency was obtained by using a single-stage 

topology. This is illustrated in Chapter 7, Fig. 6. For the case of a battery-ESU, the input 

(battery) voltage did not vary by a large amount. For a Li-ion battery this would be about ±15% 

from nominal voltage [9].  Based on this limited input voltage range, the single-stage topology 

was recommended. However, the performance penalty incurred by the addition of a dc-dc 

converter (in the double-stage topology) was small. Additionally, the double-stage topology was 

more efficient for ultracapacitor-based ESU, as illustrated in Chapter 7, Fig. 5. Moreover, for 

ESU integrated with distributed generation, hybrid ESU with multiple storage technologies, or 

battery-ESU with multiple battery strings, the total parts count was reduced with a double stage 

topology (as opposed to multiple single-stage converters for each power source, storage 

technology, or battery string). In these aforementioned applications, the double-stage PEI could 

be the preferred topology. 

II.D. Modeling of Cloud-Induced PV Intermittency 

Chapter 8 demonstrated that the SMDTRP model was an effective alternative to statistical, 

frequency-domain, and wavelet-based approaches for characterizing and modeling cloud-

induced PV intermittency [10]. It was shown that the methodology could be applied to produce 

results whose values were in terms of physical units, a notable advantage over frequency-domain 
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methodologies, whose utility mainly lied in qualitative analysis. It was further demonstrated that 

the methodology allowed for a single model to be applied to a wide class of problems across a 

wide range of time scales. These problem classes included: short term simulation of cloud-

induced PV intermittency, short-term forecasting of PV intermittency, optimal probabilistic ESU 

controller design, and probabilistic microgrid scheduling. The methodology demonstrated how to 

control an ESU to reduce cycling of a tap-changer, allowing it to reach a 20-year lifetime. 

Additionally, it demonstrated how to control the UC in a hybrid battery-UC ESU, allowing a 

lead-acid battery to reach a 2-year design lifetime. Last, scheduling for a microgrid was 

demonstrated and applied to calculate the expectation of the microgrid fuel usage [11]. 

III. RECOMMENDATIONS FOR FUTURE WORK 

This section presents possible follow-up work related to the research presented in this 

dissertation. 

III.A. Storage Capacity Selection and Scheduling of ESU 

The first suggestion for future work is the consideration of providing emergency power in the 

time-of-use (TOU) sizing problem. Given that the ESU will be placed at a customer site, a 

possible primary use for it is provision of uninterruptible power supply (UPS) capability. In 

conjunction with this capability, supplying power during periods of very high load is also 

important. This could either be accomplished through critical peak pricing or direct dispatch via 

the electric utility. However, calling upon the ESU to provide critical peak loads must not 

interfere with its ability to provide UPS functionality. 

Several improvements are possible when using ESU with real-time pricing. The first is to 

improve the accuracy of forecasting ancillary service prices. Several solutions are available that 

could assist this. The first is to obtain a more detailed model of how the ancillary service market 
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structure works and use this to design a more parsimonious forecaster. The second is to include 

energy price as a forecaster input. From the plots of the prices, it is apparent that there is a 

nonlinear relationship between the price of energy and the price of ancillary services [4]. When 

the price of energy is high, the price of ancillary services is also high. However, when the price 

of energy is very low, the price of ancillary services will still rise. This is because during these 

periods the demand and price for energy will incentivize peaking and load-following plants to go 

offline. The increasing price of ancillary services during this period incentivizes such plants to 

remain online in order to meet grid stability margins [12]. Because this is a nonlinear 

relationship, either a transformation of the predictor variables or a nonlinear predictor is 

required.  

Another area of work relates to the observation that distributed ESU would likely be owned 

by electric utilities. Given that major benefits of distributed ESU include providing continuously 

variable active and reactive powers for either frequency regulation or volt-VAR optimization 

(VVO), it is desirable that ESU be operated by electric utilities. It is suggested that the ESU 

provide system services, and hence are paid for by all customers in a system[13]. Thus, these 

utilities would charge customers for UPS services provided by the ESU, while primarily using 

the ESU for frequency regulation or VVO. This observation also suggests that the value of ESU 

be evaluated by considering them in the context of a generation scheduling problem, such as 

those carried out by power pools when evaluating bids for generation or consumption of electric 

energy. It is also important to consider the increasing trend in electrical energy management to 

deal with the problem in a stochastic formulation, thereby allowing for uncertainty to be taken 

into account. This formulation is possible for either the pricing-based or generation scheduling-

based problem formulations, and offers the promise of a higher-quality solution. 
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III.B. Placement and Power Rating of ESU 

The application of convex optimization methods to power system analysis is a fertile area for 

research related to the placement of ESU [14], [15]. Currently, the state-of-the art in distribution 

system analysis applies convex optimization to systems whose size is on the low hundreds of 

buses. There has recently been work to demonstrate that the scalability of the problem can be 

improved by decomposing it into a set of parallel subproblems, allowing the use of distributed 

grid computing [16].  

Another relevant issue is that of unbalanced distribution system analysis. Current research 

has only shown that the convex relaxation is tight for a positive sequence representation of a 

balanced distribution system [14], [17]. Further work is necessary to show that such relaxations 

will be tight for an unbalanced system, or to develop a set of reasonable approximations or 

conditions necessary to do so. A last area of research is to apply more sophisticated 

methodologies than clustering for determining the ESU locations. The method applied, k-means 

clustering, lacks mathematical rigor, and it is difficult to make generalized statements about the 

quality of the solution it produces [18]. Future work could explore other clustering methods, or 

alternatives to clustering.  

III.C. PEI Topology Selection for ESU 

Follow-up work in power electronic interface (PEI) topology selection could take into 

account additional real-world constraints. One such constraint is that medium-frequency ac 

transformers are only commonly available with certain turns ratios. Other turns ratios will 

require custom-built transformers at additional costs and lead times.  Future analysis could verify 

whether these constraints will cause practical battery-ESU implementations to favor a two-stage 

topology over a single-stage one. Other future studies could address experimental validation of 
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the results. This would require the construction of a pair of three-phase inverters, one for the 

inverter front-end, and one to act as the three-phase interleaved boost converter. In order to 

operate at a range of power factors it would be necessary for the inverter to operate grid-

paralleled. A controllable, bidirectional dc power supply could be used in order to vary the input 

dc voltage. 

III.D.  Modeling Of Cloud-Induced PV Intermittency 

 Several follow-up topics could be explored in the modeling of cloud-induced photovoltaic 

(PV) intermittency. A first topic is the inclusion of a more detailed clear-sky irradiance model, 

which may improve classification accuracy, particularly near sunrise and sunset. Such a model 

requires estimating parameters of transcendental functions. Moreover, it may require additional 

measurements such as: 

1. the global horizontal irradiance (GHI), measured with a horizontally oriented 

pyranometer of solar reference cell, 

2. the diffuse horizontal irradiance (DNI), measured with a pyrheliometer on a sun tracker, 

and 

3. the diffuse horizontal irradiance (DHI), measured with a pyranometer and shadow 

ball/ring on a sun tracker [19], [20]. 

A second topic to address is the effects of spatial smoothing on cloud-induced intermittency. 

The analyses in this dissertation focused on point irradiance measurements and power 

measurements from a small (15 kW) PV array. Larger arrays will have more spatial smoothing; 

the analyses presented will therefore establish an upper bound on the amount of intermittency. 

Other studies have investigated how spatial smoothing affects intermittency in terms of statistics 

that measure intermittency across a range of time scales [21], [22]. It is desirable to establish a 
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relationship between array size and variation in parameters of the generalized Pareto distribution 

used for modeling intermittency.  

Another possibility to address spatial smoothing is to increase the number of states in the 

semi-Markov discrete-time random process (SMDTRP) model to account for multiple PV 

installations. This new model would represent the correlation between shading events at different 

installations via the hold times. However, this could pose a problem for parameter inference, as 

the number of states increases exponentially with the number of PV installations. 

A third possibility for future work is to include support for multiple weather conditions, for 

example, inferring separate model parameters for clear, partly cloudy, and overcast days. 

Existing work has followed this approach for other models of PV power [23], [24]. This 

approach will require additional data collection in order to ensure (i) that there is sufficient data 

to estimate the probabilities of each class of weather condition, and (ii) that there are enough 

days recorded of each weather condition to accurately estimate the hold time parameters. 

 A last possibility is physical implementation of some of the case studies for the SMDTRP 

model. Fig. 1 and Fig. 2 illustrate a proposed rule-based controller for an ESU smoothing PV 

power based on the hierarchical control structure described in [25]. In Fig. 1, �(⋅) denotes the 

unit step function, � is the current time, and � is the maximum shading duration over which the 

ESU will supply power. In Fig. 2, ��	�
 is the cost of electricity. The terms ��
� and ��
� are the 

measured battery voltage and current, respectively. The term ��� is the measured PV power and 

�∗ is the ESU real power reference. Select is a {0,1}  digital signal that selects the desired input 

of an analog multiplexer (mux). The terms ��
∗  and ��

∗ are the ESU PEI direct and quadrature 

reference currents, respectively. The terms ��
∗ and ��

∗ are the ESU direct and quadrature 

voltages, respectively. 
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 Fig. 3 illustrates a proposed implementation of a microgrid control architecture for 

scheduling PV with other energy resources. The proposed architecture uses an industrial or 

rackmount PC with an Intel Core i5 or Core i7 processor, and running either Windows Server or 

Linux. The microgrid scheduler is implemented in a compiled language such as C, C++ or C#, 

and acts as a server to which client programs (representing devices on the microgrid) will 

communicate with over TCP/IP on a wired Ethernet network. The client programs will run on 

embedded ARM-based Linux single-board computers (SBC). Examples of commercially 

available units are the BeagleBone and Raspberry Pi. Higher-level control functionality is 

implemented on the SBC. The SBC in turn communicate with lower-level control, implemented 

on a digital signal processor (DSP) or microcontroller such as the TI TMS320F28335 Delfino. 

This communication takes place over a logic-level serial communications interface (SCI). 

 Other communications architectures are available that avoid the need for the Linux SBC and 

would therefore reduce cost. An example of another architecture implements the scheduler in 

LabVIEW. The scheduler would communicate with microgrid resources via dedicated analog 

and digital lines on a data acquisition card. An intermediate architecture option could omit the 

SBC and have the central controller communicate directly with the DSP via a controller area 

network (CAN) bus. However, these approaches lose flexibility on both the software and 

hardware sides. For example, in the latter case, the scheduling software needs to interact with 

other resources over a low-level CAN interface as opposed to a high-level TCP/IP interface. 

Additionally, the microgrid resources will no longer have the ability to perform local control or 

data logging via the SBC. 
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Fig. 1. Proposed rule-based controller for an ESU smoothing PV. 
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Fig. 2. Location of the proposed rule-based controller in the controller hierarchy. 
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Fig. 3. Proposed hardware implementation of probabilistic microgrid scheduling [26]–[30]. 
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IV. FINAL REMARKS 

 Energy storage is becoming a tool in the toolbox of the electrical system designer, and will 

be used by both electric utilities and their customers alike. ESU offer capabilities making them 

valuable both in the context of transmission and distribution systems. In transmission systems 

this includes peak load shaving, frequency regulation, and provision of spinning reserve, in 

addition to other services. In distribution systems, this includes assistance with CVR/VVO and 

reactive power compensation, in addition to other capabilities. ESU also offer functionality in the 

context of renewables integration, such as reducing intermittency issues caused by installing a 

large PV plant on a weak grid. This could include making the PV dispatchable in the context of 

generation scheduling, or providing power smoothing to reduce power/voltage fluctuations. ESU 

are most helpful in conjunction with renewable generation when installed in a microgrid. In this 

case, ESU achieve power balance when operating in standalone mode.  

 ESU have a number of properties making them different from conventional equipment on 

distribution systems. This requires the development of new methodologies for analysis and 

design of distribution systems including ESU. The unique characteristics of energy storage that 

must be included are: energy constraints, bidirectional power flow, and lifetime constraints.  

 This dissertation developed methodologies for integration of ESU that are suitable for 

inclusion in interactive distribution analysis software tools. It is hoped that the contributions here 

will help pave the way to more sophisticated software tools that offer the distribution system 

engineer greater degrees of automation, speed, and robustness. 
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