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ABSTRACT 

Room temperature operation is considered one of the essential restrictions in the design 

of electronic devices. Photodetectors are unable to detect light efficiently at room temperature 

due to high dark currents.  Semiconductor nanocrystals possess unique optical and electrical 

properties which make them ideal for fabricating uncooled photodetectors.  In this project, 

nanocrystals were synthesized and implemented in devices that detect light at room temperature. 

 Nanocrystalline I-III-VI2 and II-VI semiconductors (CuInS2 and CdSe) were grown by a 

wet chemical method, and characterized using: optical absorption, photoluminescence, Raman 

scattering, and x-ray diffraction.  The optical absorption and photoluminescence spectra of the 

nanocrystals were recorded at different growth reaction times, and showed an increase in the size 

of the nanocrystals with longer reaction times.  The structural properties of CuInS2 nanocrystals 

were investigated using Raman spectroscopy and x-ray diffraction. 

 Photodetectors were fabricated by depositing CdSe nanocrystals on interdigitated 

electrodes with spacing of 5 and 50 µm. The current-voltage curves of the devices showed a low 

dark current (< 1 nA), and photocurrent higher than the dark current by several orders of 

magnitude.  The room temperature detectivity for the device with 5 µm spacing was extracted 

from the current-voltage curve and found to be on the order of 3.5x1010 cmHz1/2W-1 at 5 V bias 

voltage.  The onset of the spectral response was positioned at 710 nm, which coincide with the 

photoluminescence of the nanocrystals. Another type of photodetector was fabricated from semi-

insulating GaAs using interdigitated gold electrodes with different spacing (5, 10, 20, and 50 

μm).  Significant enhancement in the spectral response was observed as the electrode spacing 



 
 

was reduced from 50 to 5 µm.  The spectral response of smaller spacing devices (5 and 10 µm) 

showed dependence on the polarization of incident light. 

The integration of nanocrystals with interdigital metallization simplified the device 

structure, and improved on its performance by reducing the dark current.  Furthermore, the 

interaction between incident light and gold electrodes produced a plasmonic effect.  This 

plasmonic effect is responsible for the enhancement seen in the spectral response spectra.   
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I. INTRODUCTION 

 Materials and devices at the nano-scale had witnessed great development in the past 

decades, and became applicable in various fields of science including electronics, biology, and 

chemistry.  Nanomaterial semiconductors, such as, quantum wells, wires, and dots, possess 

unique optical and electrical properties over bulk semiconductors due to the carrier confinement. 

[1] Several efforts were made to utilize these properties and enhance the performance of 

optoelectronic devices.  Yet, the field has not reached the expected potentials and still in progress 

to be further explored. 

 Semiconductor nanocrystals were intensively investigated and applied in a wide range of 

optoelectronic devices, such as, solar cells, light-emitting diodes, lasers, and photodetectors.  

Quantum size effect is one of the unique properties that enables tuning the absorption and 

emission spectra of the nanocrystals over a wide range.  Nanocrystals synthesized via wet 

chemical method can be dispersed and processed in a solvent, therefore they are suitable for cost 

effective mass production.  Another property owned by the nanocrystals is the quantum 

tunneling effect that can be implemented in many applications.  Recently, researchers were 

successful in synthesizing high quality nanocrystals with various bandgaps that cover a wide 

range of the spectral region. 

    Photodetectors gained huge attentions due to numerous applications, such as, military 

and defense, space science, and chemical analysis. Nanocrystals arose as a possible candidate to 

replace quantum wells in the near and mid-infrared detection. They exhibit potentials in 

detecting normal incident light, low dark currents, room temperature operation, and high 

photoconductive gain. [2]    
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Chapter 1 will discuss the basic theory behind colloidal nanocrystals, and their use in 

detecting light.  Chapter 2 is dedicated to the process of growing the nanocrystals, and the 

fabrication techniques used in building the devices.  Chapter 3 will discuss the characterization 

methods used to characterize both the materials and the devices. Chapter 4 analyses the major 

results obtained from characterizing the materials and devices. Finally, in chapter 5 the project is 

concluded and future work is proposed.   

A. COLLOIDAL NANOCRYSTALS 

Overview 

 Inorganic semiconductor nanocrystals are classified into three main groups: binary, 

ternary, and quarternary, depending on the number of elements in each group.  These 

nanocrystals were under intensive study to explore new synthetic routes able to produce 

nanocrystals with high quality. [6-9] Binary compound nanocrystals are formed from elements 

belonging to II-VI and IV-VI groups, such as, CdSe, CdTe, and PbS.  Several studies were 

conducted to control the size and shape of these nanocrystals. [10] Although they have excellent 

optical properties, but the presence of heavy metals (Cd and Pb) is considered extremely 

dangerous.  InAs and InP nanocrystals belonging to III-V Group were used to replace the heavy 

metals.  

 Ternary compounds nanocrystals members of I-III-VI2 group were also investigated, and 

they are represented by CuInS2 and CuInSe2. In this group, the heavy metals are replaced by the 

two cations: Cu+1 and In+3. Quaternary compound nanocrystals like CZTS have attracted the 

attentions recently. [11] They are more environmental friendly and less expansive compared to 

CuInS2, since the indium is replaced by cheaper and more abundant elements: zinc and tin.  
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  Wet chemical method also referred to colloidal growth is one of the efficient approaches 

that are used to synthesize the nanocrystals.  There are two common methods to perform the wet 

chemical growth: one pot synthesis, and hot injection method.  The shape and the size of the 

nanocrystals can be easily controlled following this approach. [12] Also, the synthesized 

nanocrystals are dispersed in a solvent, allowing the formation of thin films by non-vacuum 

deposition techniques, such as drop casting, spray coating, ink-jet printing, dip coating, 

electrophoretic deposition, and spin coating.  These deposition techniques may reduce both the 

complexity and the cost of the fabricated devices.  On the other hand, complicated vacuum 

methods can be used to grow the nanocrystals’ thin films including: sputtering, chemical vapor 

deposition, and molecular beam epitaxy.  Although high quality films can be achieved by these 

techniques, but they require slower deposition rates, higher cost, and high operating 

temperatures.[13]   

 Nanocrystals grown by wet chemical method are usually capped with organic ligands, 

that are used during the synthesis to control the nucleation and growth of the nanocrystals, and to 

provide chemical passivation. Such passivation is important to prevent the nanocrystals from 

aggregation, and subsequently prevent them from being dispersed in solvents. [14] However, 

these long insulating ligands surrounding the nanocrystals will hamper the transfer of carriers 

between the nanocrystals. And will affect negatively on the carrier mobility in the formed films. 

[13] Therefore, long organic ligands are exchanged with shorter and more conducting ones like 

pyridine, and butylamine. [15] The ligand exchange is performed after the synthesis process, 

while the nanocrystals are in the liquid phase. 

 



4 
 

CdSe Nanocrystals 

 Cadmium selenide (CdSe) nanocrystals have received considerable attentions in the past 

decades, due to their distinctive optical properties.  The absorbance spectra of the nanocrystals 

can be tuned within the visible spectral region in the wavelength range between 475 and 670 nm.  

Moreover, high photoluminescence quantum yield was achieved by CdSe nanocrystals. [16] 

These optical properties made CdSe nanocrystals applicable in different optoelectronic devices, 

such as, solar cells, [17] photodetectors, [18] and light emitting diodes. [19]   

 In addition to the size dependent luminescence wavelength, CdSe nanocrystals can exist 

in two crystalline structures: hexagonal wurtzite, and cubic zincblende that depend on the growth 

conditions. [20] In the zincblende structure the stacking sequence is repeated every three layers 

in the <111> direction, while in the wurtzite structure the stacking sequence is repeated every 

two layers in the <0001> direction. [21] The unit cells of the cubic zincblende and hexagonal 

wurtzite are shown in figure 1.1 (a) and (b), respectively. 

CuInS2 Nanocrystals 

 Copper indium disulfide nanocrystals are considered as the most promising materials for 

photovoltaic applications because of their interesting optical properties.  First, CuInS2 

nanocrystals have a size dependent absorption and photoluminescence spectra, which can be 

tuned in the visible and near-infrared spectral regions. [22] Second, it has a direct bandgap of 1.5 

eV (827 nm) in the bulk material, that matches the incident solar spectrum. [23] Furthermore, 

their optical absorption coefficient is in the order of 10-5 cm-1. This is ten times greater than the 

absorption coefficient of CdTe nanocrystals. [24] This high absorption coefficient enables 

absorbing the light within lower thickness of the deposited film.   
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 Cadmium-free nanocrystals were implemented in light energy harvesting systems, [25] 

and photodetectors. [26] Copper indium disulfide nanocrystals have chalcopyrite lattice 

structure. This is formed by doubling the zincblende structure along the z-axis and consequently 

obtaining a tetragonal unit cell with height of c, and a square base with side of a. The ratio c/a is 

close to two as shown in figure 1.1 (c). [27] The copper to indium ratio will determine the type 

of the semiconductor, excess copper is always p-type. [23]              

 

Figure 1.1 (a) Cubic zincblende unit cell. [21] (b) Hexagonal wurtzite unit cell. [21] (c) The unit 

cell of chalcopyrite lattice structure. [27] 

Quantum Confinement in Nanocrystals 

 Nanocrystals have three dimensions carrier confinement and their structures consist of 

discretized energy levels. [3] This 3D carrier confinement resembles an electron trapped inside a 

box.  The optical and electrical properties of the nanocrystals are determined by their size and 

shape. For example, the optical properties of the nanocrystals undergo massive changes as their 

size decreases.  When the size of the nanocrystals reduces, the separation between energy levels 

becomes larger, and fewer electronic transitions can be obtained. [4] The bandgap of the 

nanocrystals can be described according to the following equation: [5] 
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where   is the reduced Planck constant, ω is the angular frequency, Eg is the bandgap of bulk 

materials, x is the reduced photon energy, 
*

rm  is  the reduced effective mass, ao is the diameter of 

the nanocrystals. As shown in equation 1.1, the bandgap of the nanocrystals is inversely 

proportional to the square of the diameter of nanocrystals.  As a result, the onset of the optical 

absorption spectrum can be controlled by the varying the size of the nanocrystals. 

B. NANOCRYSTALS FOR PHOTODETECTION 

Overview  

 Photodetectors operating in the ultra-violet, visible region, and near-infrared were 

fabricated using nanocrystals with suitable bandgap.  Ultra-violet photodetectors were fabricated 

using wide bandgap nanocrystals like ZnO, and TiO2. [28,29] These photodetectors can be used 

in many applications like: flame sensing, missile launch detection, and optical communication. 

Other photodetectors operating in the visible region were fabricated using smaller size PbS 

nanocrystals, and were used in image sensors. [30] Detection of light in the near-infrared region 

is possible using nanocrystals with narrow bandgap, such as, InAs and PbSe. 

 Cadmium selenide nanocrystals with a bandgap of 1.7 eV (730 nm) were implemented in 

devices that operate in the visible spectral region 475 – 650 nm. [31] It is well known that 

increasing the size of the synthesized nanocrystals will decrease the bandgap.  Therefore, it is 

possible to detect low energy light up to 730 nm using CdSe nanocrystals. [18]   Photodetectors 

operating in the near-infrared region were fabricated using InAs quantum dots grown by 
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molecular beam epitaxy. [32] However, the fabricated devices exhibit reduction in the detectivity 

as the temperature increases, due to the increase in the dark current.   

Different configurations of device structure were investigated including p-n 

hetrojunctions, [33] Schottky contacts with vertical sandwich-like geometry, [31] and planar 

interdigital metallization. [34] Photodetectors can be fabricated by depositing the dispersed 

nanocrystals on interdigitated electrodes.  This approach will simplify the device structure, and 

improve the performance by reducing the dark current, due to the formation of Schottky barriers 

at the interface between metal and semiconductor. 

Basics of photoconductors 

The operation mechanism of nanocrystals based photodetectors depends mainly on 

interband transitions that occur within the structure of the nanocrystals.  Photons with an energy 

(hv) larger than or equal to the bandgap energy (Eg) are absorbed by electrons. The photo-excited 

electrons jump from the valence band to the conduction band (interband transition).  The 

conduction band of the nanocrystals consists of quantized energy sub-bands.  The excitation of 

electrons in the conduction band from bound energy levels to continuum states will contribute in 

the generation of electrical current, as shown in Figure 1.2. [35] This type of photodetectors is 

called photoconductors.  The conductivity of photoconductors increases upon illumination with 

sufficient energy, due to the generation of excess carriers.  As a result, photoconductors can be 

used in detecting light, since they absorb photons and generate electrons.    
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Figure 1.2 Schematic of interband transitions.  

 Photoconductors consist of single film of nanocrystals, and two metal contacts to provide 

electrical connections to the external circuit. Photoconductors require external bias voltage in 

order to collect the photo-excited carriers.  Unlike photoconductors, photodiodes have junction 

and built-in electric field that helps in separating the photo-excited carriers without applying a 

bias voltage. Photoconductors offer photoconductive gain larger than unity, which can be defined 

as the number of circulated carriers per absorbed photons. Photoconductive gain is given by the 

ratio of the carrier life time to the carrier transit time. 

 Photoconductive gain can be increased by adding shallow trap states that capture one of 

the carriers while the other remains circulating. This will prolong the carrier life time since the 

recombination between carries is reduced. [36] High photocurrent (the current measured under 

photo-illumination) can be achieved by increasing the photoconductive gain.  In ohmic system 

the photocurrent is given by the following equation: 

 

Interband 
Transition 

Intersubband 
Transition 

Bound-continuum 

Valence band 

Conduction band 

Bound-bound 

 
hv ≥ E

g
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      Jph=GenμnE                                                            (1.2) 

where Jph is the photocurrent density, G is the photoconductive gain, e is the electron charge, n is 

the volume charge density, μn is the carrier mobility, and E is the applied electric field. The 

photocurrent is directly proportional to the photoconductive gain, as shown in equation 1.2. 

 The structure of photodiodes is more complicated compared to photoconductors. They 

require the formation of junction from two different semiconductors (heterojunction), same 

semiconductors (homojunction), or non-ohmic metal contacts (Schottky junctions). [36]  

Photodetectors that have metal-semiconductor-metal structure, can be fabricated using 

interdigitated electrodes.  This structure consists of two back-to-back Schottky contacts. 

Furthermore, the height of the Schottky barrier junction is reduced after illumination, and 

therefore more carriers can cross the barriers giving rise to the photocurrent. [29]   

Figures of Merit 

 Dark current is considered one of the important factors that are used to characterize the 

photodetectors.  For high sensitivity applications, the dark current needs to be reduced to the 

minimum level, since it is considered as the source of noise.  The sensitivity is defined as the 

minimum detectable amplitude of optical signal incident on the photodetector. [37] In other 

words, the photodetector needs to distinguish between the noise and optical signals.  There are 

several sources of noise in photodetectors: Johnson noise (thermal), shot noise, and generation-

recombination.  Signal to noise ratio (SNR) is one of the figures of merits that are used to 

quantify the optical signal level. The signal level should be greater than the noise level in order 

to be detected.  SNR is given by the following equation: [36] 

n
i

RP
SNR                                                                 (1.3) 
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where R is the responsivity (A/W), P is the incident optical power (W), and in is the noise 

current.   

 Specific detectivity (D*) is one of the common parameters that are used to characterize 

the performance of the detectors.  It enables comparing photodetectors with different geometries 

in terms of the photoconductive material,[36] and it is calculated according to the following 

equation: [37]  

DeI

AR
D

2

*                                                              (1.4) 

where A is the device active area, and ID is the dark current. The unit of D* is cmHz1/2W-1.  In 

equation 1.4 the dominant source of noise is assumed to be shot noise that is caused by the flow 

of discrete charges.  The detectivity is a function of different parameters, such as, the applied 

bias voltage, operation temperature, and incident wavelength.  

C. POLARIZATION OF LIGHT 

 Unpolarized light is generated by electrons moving in random directions.  Linear 

polarizer is used to produce a polarized light with single known polarization.  In which only 

electric field parallel to the polarizer’s transmission axes passes through.  The mechanism of 

light polarization through liner polarizer is shown in figure 1.3 (a).  As the light passes through 

the polarizer its intensity reduces according to Malus’ law.  The intensity of light transmitted 

through the polarizer is directly proportional to cos2θ, where θ is shown in figure 1.3 (a) and 

defined as the angle between incident polarization and the transmission axis of the polarizer.   

 Wire grid polarizer is made from array of wires parallel to each other. Components of 

electric fields parallel to the wires are absorbed by converting them into waves propagating 

through the wires, and therefore their energy will be lost.  On the other hand, electric fields 
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perpendicular to the wires are transmitted through the polarizer without losing their energy. [38]  

Figure 1.3 (b) shows the mechanism of light polarization through the wire grid polarizer, where 

Ev and Eh are the vertical and horizontal components of the electric field with respect to the 

wires, respectively.   

 

Figure 1.3 Mechanism of light polarization through: (a) linear polarizer (b) wire grid polarizer. 

D. PLASMONIC EFFECT 

 Surface plasmons (SP) play a major rule in enhancing the optical near-field, they are 

collective charge density oscillations (electrons oscillating in synchronous) on metals surfaces 

coupled with incident light.  The surface plasmons are considered as electromagnetic waves 

propagating along the interface between dielectric and metal, and decay evanescently in the 

direction perpendicular to the interface, as shown in figure 1.4.  The interaction between the 

charge density fluctuations and the incident photons will result in great enhancement in the local 

optical field compared to the original incident radiations. [39]  
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Figure 1.4 Surface charge oscillations at the interface between metal and dielectric material. 

  Plasmons were first observed by Wood in 1902.  Another interesting form of plasmons 

present in the metallic particles called localized surface plasmons resonance (LSPR), which is 

responsible for the intense signals observed in surface-enhanced Raman scattering (SERS). [40] 

The SP wave can be described according to the following equation: 

).exp(|)|.exp( tixikzkEE spiz 


                                     (1.5) 

where i=m (metal) for z<0 and i=d (dielectric) for z>0, kzi is the wave vector along the z-axis, 

and ksp is the wave vector of the SP wave and it given by the following equation:   
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where ω is the angular frequency, c is the speed of light, εd is the permittivity of the dielectric 

material, and εm is permittivity of metal.  While the value of kzi can be calculated from the wave 

equation (d2E(z)/dz2-kzi2E(z)=0), and found to be kzi
2 = ksp

2-εi(ω/c)2, where εi= εd for z>0, and 

εi=εm for z<0. From equation (1.6), the momentum of SP wave ( spk ) is larger than the 

momentum in free space ( ok , where ko = ω/c). Therefore, the surface plasmon wave is confined 
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to the interface, as it will decay if it propagates through both mediums (metal and dielectric).  

The mismatch in the wave vectors should be overcome in order to excite the SP waves. The 

wave vector of the incident photons can be increased by prism couplers or diffraction gratings.  

 Figure 1.5 is a plot of electric field given by equation 1.5 at the interface between free 

space (z>0) and gold (z<0).  For this calculation the wavelength is 400 nm, and the 

corresponding permittivity of metal is -1.75. The decay of the electric field through the metal is 

higher than the decay through the dielectric, which is determined by the penetration depth. 

 

Figure 1.5 Plot of the electric field intensity for surface plasmon propagating along the interface 

(in the direction of x-axis) between free space (z>0) and gold (z<0).  
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II. MATERIAL GROWTH AND DEVICE FABRICATION 

A. INTRODUCTION 

 In this project, semiconductor nanocrystals are synthesized and used in fabricating 

photodetectors. This chapter discusses the techniques of growing the nanocrystals and fabricating 

the devices.  The nanocrystals were synthesized using wet chemical method, and the templates 

(interdigital metallization used to fabricate the devices) were prepared using standard optical 

photolithography.  Section A will discuss the procedures to synthesize CuInS2 and CdSe 

nanocrystals.  While section B will deal with the preparation of the templates.  Finally, section C 

will discuss the fabrication of the photodetectors. 

B. SYNTHESIS OF NANOCRYSTALS 

As mentioned previously the nanocrystals were synthesized using wet chemical method.  

This involves mixing the metals’ precursors with an organic solvent in a three neck flask using 

magnetic stirrer bar.  The synthesis was performed under the flow of N2 gas.  High temperature 

(>200 oC) was achieved using heating mantle, the setup of the synthesis is shown in figure 2.1.  

 

Figure 2.1 Synthesis setup, photo taken by the author in 6/1/2013. 
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CuInS2 Nanocrystals 

 List of the chemicals used in the synthesis: copper(I) iodide (CuI), indium(III) acetates 

(In(OAc)3) , 1-dodecanethiol (DDT), and 1-octadecene (ODE).  

 The nanocrystals were synthesized using one pot reaction, and according to previous 

reports with modifications, [41,42] which include the synthesis temperature, precursors amounts, 

and the reaction time. First, 1 mmol (190 mg) of copper(I) iodide and 1 mmol (292 mg) of 

indium(III) acetate are placed inside 50 ml three neck flask.  Second, 5 ml of 1-dodecanethiol 

and 30 ml of 1-octadecene are added to Cu and In precursors. The thiols (DDT) are used as 

sulfur source and stabilizing ligands to control the reactivity of copper.  Third, the three neck 

flask was placed under the fume hood while the middle neck is connected to the gas condenser. 

Then the flask was purged with nitrogen for 30 minutes to remove oxygen and other gases. The 

degasing step was performed by connecting the output of the condenser to a vacuum pump. This 

helped in speeding up the degasing process.   

 Afterwards, the mixture was vigorously stirred with a magnetic stirrer bar and preheated 

to 120 oC until a clear yellow solution was obtained.  At this stage the solution is ready to start 

the nucleation by increasing the reaction temperature. Thus the mixture was heated rapidly to 

230 oC within 3 minutes.  This rapid increase in the temperature was achieved by using a heating 

mantle set at 230 oC, and wrapping fiber around the flask to maintain the heat and reduce the 

thermal loss to the surrounding atmosphere.  When the nucleation starts the color of the solution 

gradually changes from yellow, to orange, to red, to brown, and finally it settles at dark brown, 

as shown in figure 2.2.  The temperature of the reaction was maintained at 230 oC for 30 

minutes.  Finally, the reaction solution was quenched by cooling the flask in a water bath.   
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Figure 2.2 Color transitions of the reaction solution vs. reaction time, photo taken by the author 

in 6/1/2013. 

 In figure 2.3, the synthesis and purification procedures for CuInS2 nanocrystals are 

summarized in a simple flow chart.   

 

Figure 2.3 Flow chart of the synthesis and purification procedure for CuInS2. 
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 Following the synthesis process, purification of nanocrystals is important to remove the 

byproducts, such as, unreacted components, and excess thiols.  This involves performing 

multiple cycles of precipitation on the dispersed nanocrystals.  First, the nanocrystals in the 

original reaction solution are precipitated by adding excess acetone and centrifuging at 6000 rpm 

for 10 minutes.  The supernatant (top part) was discarded and the precipitate containing the 

nanocrystals was collected and re-dispersed in 2 ml of hexane. Then the nanocystals were 

precipitated again by adding excess acetone and centrifuging.  The addition of hexane is 

important to provide solubility for the nanocrystals, so the ligands between them will be 

protected from acetone.  The process of precipitation and re-dispersion was repeated at least 

three times.  The final product of purification process was collected and dispersed in hexane 

using ultra-sonication. 

 The contributions of this project was to find the optimal conditions for synthesizing high 

quality CuInS2 nanocrystals applicable for fabricating optoelectronics devices. The previous 

reports on the synthesis of CuInS2 nanocrystals hided lots of details related to the synthesis 

procedure.  Rapid increase in the reaction temperature was one of the important steps for a 

successful synthesis, and helped in reducing the size distribution of the nanocrystals.  Moreover, 

degasing step using vacuum pump was another contribution, which helped in removing oxygen 

and other gases.  Another contribution for a successful synthesis, was preheating the mixture at 

temperature above 100 oC to ensure the evaporation of all the water contents from the reaction 

mixture.  Finally, the use of hexane in the purification of nanocrystals was essential to prevent 

the nanocrystals from aggregation due the break of ligands, and to provide solubility for them.    
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 CdSe Nanocrystals 

 List of chemicals used in the synthesis: cadmium oxide (CdO), elemental selenium (Se), 

1-octadecence (ODE), n-trioctylphosphine (TOPO), and oleic acid. 

 The synthesis of CdSe nanocrystals was performed using hot injection method, and at 

high temperature according to previous reports with slight modifications, [43,44] which include 

the synthesis temperature, precursors amounts, and the reaction time.  First, the selenium 

precursor was prepared by dissolving 4 mmol of selenium powder in 3 ml of n-trioctylphosphine 

at temperature of 60 oC for one hour.  Second, the cadmium precursor was prepared by mixing   

2 mmol of cadmium oxide with 1.5 ml of oleic acid and 7 ml of 1-octadecene at 100 oC in a 

separate 50 ml three neck flask using magnetic stirrer bar.  Once the cadmium oxide was 

dissolved and became colorless, the selenium mixture was injected rapidly to the cadmium 

precursor at temperature of 270 oC.  After that the nanocrystals were left to grow at 300 oC for 

one hour.   

 The synthesized CdSe nanocrystals were purified at least three times by following the 

same procedure adopted for CuInS2 nanocrystals. But methanol was used instead of acetone and 

chloroform was used instead of hexane.  In order to get rid of the long organic ligands, treatment 

with pyridine was performed for CdSe nanocrystals. [44] The nanocrystals were vigorously 

stirred in an excess of pyridine and under nitrogen gas atmosphere at temperature of 70 °C for 10 

hours, then dried under vacuum overnight to remove excess solvents.  Following the treatment 

with pyridine, the nanocrystals were finally dispersed in chloroform using ultra-sonication.  

Figure 2.4 summarizes the synthesis, purification, and treatment procedures of CdSe 

nanocrystals.  
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Figure 2.4 Flow chart of the synthesis, purification, and treatment for CdSe. 
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C. PREPARATION OF TEMPLATES 

 The templates consist of interdigitated metallic electrodes deposited on glass substrates, 

with a channel that acts as a space between the two electrodes, as shown in figure 2.5.  The 

electrodes were deposited on glass substrate to avoid short circuiting them.  Templates with 

different electrode spacing (5, 10, 20, and 50 µm) were prepared.  In the design of the templates, 

the aspect ratio between the channel width and the electrode width was 1:2.  The nanocrystals 

will be deposited inside the channel, therefore the width of the channel will determine the 

characteristics of the fabricated device.  The interdigital pattern helps in increasing the length of 

the channel without the need to increase the dimensions of the substrate.  For example, the 

template with electrode spacing of 5 µm has a channel length of 600 mm, while the dimensions 

of the template are 3 x 7 mm.  The total active area for the devices with electrode spacing of 5 

and 50 μm are 0.03 and 0.05 cm2, respectively. 

 

Figure 2.5 Sketch of the template with a magnified image of the channel. 

 The preparation of the templates was performed inside class 100 clean room using optical 

photolithography and according to the following steps:  
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Sample Cleaning 

 The glass substrate was cleaned by first soaking it in acetone for 3 minutes, then in 

methanol for 3 minutes.  Next, the substrate was dried by blowing it with nitrogen, and cleaned 

with isopropanol and DI water.  Finally, the glass substrate was dried by heating it at 150 oC for 

5 minutes, to evaporate all the solvents’ residuals that will affect the optical photolithography 

process. 

Optical Photolithograph 

 Optical photolithograph was used to create perfect interdigital patterns with critical 

dimensions in micrometer range.  This was achieved by designing a mask that has patterns with 

different dimensions, as shown in figure 2.6.  The mask consists of dark lines of chrome 

deposited on a transparent glass substrate.  Photolithography was performed using the following 

materials and equipment: positive photoresist (AZP 4330), developer (AZ 400K), spin coater, 

hot plate, and mask aligner with UV light source.  

 

Figure 2.6 Image of the mask used in photolithograph, photo taken by the author in 6/1/2013. 
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 First, the photoresist was deposited on the cleaned glass substrate using spin coating at 

speed of 7000 rpm for 1 minute.  This will create a uniform film of photoresist with a thickness 

of 2.5 µm.  Second, the photoresist film was baked at 110 oC for 3 minutes.  Third, the sample 

was placed on the mask aligner, and exposed through the mask to UV light with intensity of 25 

mW/cm2.  The exposed part of photoresist will be decomposed and can be removed by the 

developer. While part of the photoresist that falls below the dark lines of the mask will be 

protected from the light exposure.  Fourth, the sample was developed in order to remove the 

exposed part of the photoresist.  Finally, the sample was examined using microscope to ensure 

that the interdigital shape is perfect and does not have any breaks. 

 The exposer time is inversely proportional to the developing time, which means higher 

exposer time requires lower developing time.  Also, the exposer time is directly proportional to 

the thickness of the photoresist film.  The required exposer time for AZ 400K developer can be 

estimated by the following equation: 

I

D
T




45
                                                            (2.1) 

where T is the exposer time, D is the thickness of the photoresist (µm), and I is the intensity of 

the UV light (mW/cm2).  By using equation 2.1 the required exposer time is 4.5 seconds.  The 

actual exposer time used in the experiments was 5 seconds.  The optimal developing time was 

determined experimentally. The minimum developing time for a successful templates was found 

to be 25 seconds.  Higher developing time is preferred since it will help in the lift-off process. 

However, excessive developing will destroy the patterns, since the developer starts attacking the 

unexposed portion of the photoresist.  The previously mentioned procedure is summarized in 

figure 2.7. 
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Figure 2.7 Flow chart summarizes the photolithography procedure. 
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Lift-off 

 After the metal was deposited on the sample, the undeveloped portion of the photoresist 

was lifted using acetone.  The sample was immersed in acetone and gently agitated either by a 

stream of acetone bubblies, or using ultra-sonication.  After this process, the photoresist and the 

metal on top of it were removed, creating the channel and the interdigitated electrodes.  The 

sample was examined using microscope to ensure that there are no residuals of photoresist.  

Open circuit test was performed on the electrodes using multi-meter, to ensure the electrodes are 

totally separated.  Figure 2.8 shows images of the templates with different channel width after 

performing lift-off.    

         

 

Figure 2.8 Image of the templates with channel width of (a) 5 µm (b) 10 µm (c) 50 µm 
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D. FABRICATION OF PHOTODETECTORS 

 The photodetector devices were fabricated by depositing the dispersed nanocrystals on 

the templates using spin coating.  Following the deposition of the nanocrystals, the template was 

placed on a sampler holder that is made from copper plate and two gold plated connecters, as 

shown in figure 2.9.  The electrodes of the template were coupled to the connecters of the sample 

holder using gold wire bonder.   

 

 

Figure 2.9 Sketches of the device. 
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III. CHARACTERIZATION TECHNIQUES 

A. INTRODUCTION 

 This chapter will describe the characterization techniques used in the project.  The 

material and device characterization techniques are divided into three main groups: optical, 

structural, and electrical.  Section B will discuss the optical characterization techniques 

including: absorbance, photoluminescence, Raman scattering, and spectral response. While 

section C will discuss the structural characterization technique represented by x-ray diffraction.  

Finally, section D will discuss the electrical characterization technique.   

B. OPTICAL CHARACTERIZATION  

Optical Absorbance 

 The absorbance spectra of the nanocrystals in the ultra-violet, visible, and near-infrared 

spectral regions were measured using Cary 500 UV-Vis-NIR spectrophotometer. The 

wavelength scan of the spectrometer is in the range between 175 to 3300 nm.  The nanocrystals 

were dispersed in a solvent, and placed inside quartz cuvette during the absorbance 

measurement.   

 As light travels through a medium, part of its energy is lost due to the absorbance or 

reflectance of the incident light.  Absorbance can be expressed according to the following 

equation: 

)log()
1

log( o

I

I

T
A                                                 (3.1) 
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where A is the absorbance, T is the transmittance, I is the transmitted light intensity, and Io is the 

incident light intensity.  In Carry 500 UV-VIS-NIR spectrophotometer the intensities of the 

incident and transmitted light are recorded at different wavelengths. When the energy of the 

incident photons is less than the bandgap of the nanocrystals, the photons are not absorbed and 

they are either reflected or transmitted.  However, when the wavelength of the incident photons 

reduces their energy increases, once the energy becomes higher than the bandgap the photons are 

absorbed by the electrons.  The excited electrons jump from the conduction band to the valence 

band (interband transition).  The spectrophotometer uses double monochromator to produce 

single wavelength light (monochromatic light), and therefore the beam splitter is not needed. 

Photoluminescence 

 Photoluminescence (PL) is a reversed process compared to the optical absorbance, and it 

involves the emission of photons as the excited electrons decay from the conduction band to the 

valence band.  The PL spectra of the nanocrystals were measured by using a Horiba LabRAM 

spectrometer in conjunction with a 473 nm laser diode.  The PL measurement was carried while 

the nanocrystals were placed on a glass slide and after the evaporation of the solvent 

(hexane/chloroform).   

 The laser was used as an excitation source.  The emission from the nanocrystals, due to 

the decay of electrons from the conduction band to the valence band, is scattered back and 

detected by the spectroscopy.  The PL intensity (arbitrary unit) was plotted against the 

wavelength (nm), and from the PL spectrum different information can be extracted like: the 

energy of band-to-band transitions, the size distribution of the nanocrystals, and the defects.  
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Raman Scattering 

 Semiconductor crystals consist of atoms that are bonded to each other.  The quanta of   

the atom vibrations are called phonons, and they propagate through the crystal as waves. The 

traveling waves could be acoustical or optical.  Two phonon modes exist depending on the 

direction of wave propagation with respect to the displacement, which is parallel in the 

longitudinal mode and perpendicular in the transverse mode.   

  There are two types of scattering: Rayleigh (elastic) and Raman (inelastic).  Raman 

scattering is an inelastic scattering of light, which involves the excitation or absorption of 

vibrational modes.  The shift between incident and scattered energies is called Raman shift.  

Usually Raman shift is expressed in terms of wavenumbers k (k=2π/λ) with a unit of cm-1.   

Raman shift has two types: Stokes or anti-Stokes.  Let us assume that an incident laser 

beam with energy of ћωi, where ћ is the reduced Plank’s constant and ωi is the incident angular 

frequency, was scattered by the crystal.  If the scattered energy was ћωi + ћω, then it is called 

Stokes shift.  On the other hand, the scattered energy of anti-Stokes shift is ћωi – ћω.  On either 

case ω is independent ωi, and it depends on the characteristics of the material.  

Raman Scattering was measured using Horiba LabRAM spectrometer and under the 

excitation of laser beam.  Optical filters are placed in the beam’s path to pass the Raman 

scattered light to the spectroscopy and the detector, while blocking the transmittance of laser 

beam (Rayleigh scattering). Two types of filters were used: notch and edge.  Figure 3.1 shows 

the optical configuration of the Raman spectroscopy.  The laser beam excites the sample through 

optical microscope, and the Raman scattered light is collected and detected after filtration. 
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Figure 3.1 Sketch of Raman spectroscopy. [45] 

Spectral Response 

 Spectral response is an optical characterization technique used to characterize the 

devices, and it is defined as the ratio of photo-generated current to the incident optical power.  

The spectral response intensity is expressed in arbitrary units and plotted versus the wavelength.   

The spectrum drops to zero at wavelengths above the bandgap of the nanocrystals. Since 

nanocrystals cannot absorb photons with energy lower than their bandgap. Therefore the device 

cannot generate current at energies lower than the bandgap. 

 In this project, the spectral response spectra were recorded using Bruker 125 HR Fourier 

transform infrared (FTIR) spectrometer in conjunction with Keithley 428 current preamplifier. 

FTIR spectroscopy is used to measure the absorbance or emission spectra.  It is based on 

Michelson interferometer, which consists of a beam splitter, movable and fixed mirrors.  The 

beam splitter splits the incoming beam into two separate beams, each traveling in a different 
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path.  When the beams are reflected from the mirrors and recombined back on the beam splitter, 

inference occurs depending on the optical path difference. The total beam obtained from the 

recombination is detected by the detector (device to be tested).  The output from the 

interferometer is called interferogram.  As the position of the movable mirror varies the 

interferogram changes, and it is transformed into the spatial coordinate using Fourier transform.  

The position of the movable mirror is tracked using HeNe laser.  The devices were placed inside 

Janis cryostat.  Quartz halogen source was used as a broadband light source that covers the 

spectral range 400 - 2000 nm.  Quartz beam splitter was also used in FTIR spectroscopy.  The 

measurement was performed under vacuum of ~ 10-5 Torr.  Figure 3.2 shows block diagram of 

FTIR spectroscopy. 

 

Figure 3.2 Block diagram of FTIR spectroscopy. 
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C. STRUCTURAL CHARACTERIZATION 

 The structural properties of CuInS2 nanocrystals were investigated using x-ray diffraction 

(XRD), which is a material characterization technique used to determine: the crystal structure, 

crystal orientation, and the lattice constant.  In this measurement, x-ray beam strikes the layers of 

atoms within the crystal structure.  Part of the x-ray beam is scattered and the other part passes 

through the layers of atoms, as shown in figure 3.3.  The scattered x-ray beams interfere with 

each other and a diffraction pattern is created.  When the scattered beams are in phase 

constructive interference is obtained, while out of phase scattered beams will interfere 

destructively.   

 According to Bragg’s law, constructive interference between scattered beams occurs 

when the distance traveled through the layers of atoms is multiple of the wavelength of the beam.  

Diffraction patterns are plotted against the angle 2θ, where θ is shown in figure 3.3. The 

diffraction peaks (constructive interference) occurs at )2/λ(sinθ 1 dn , where n is an integer, λ 

is the wavelength of the beam, and d is the spacing between layers of atoms.  The XRD 

measurement was performed using Philips PW 3040 X’PERT. 

 

Figure 3.3 Scattering of x-ray beam. 
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D. ELECTRICAL CHARACTERIZATION 

 The current-voltage (I-V) characteristics of the photodetector were extracted using 

Keithley 4200 semiconductor parameter analyzer.  The photocurrent was measured under the 

illumination of a broadband light source that covers the wavelength spectral range from 360 to 

1800 nm, and with a power density of 350 mW/cm2. The dark current was measured while the 

device was placed inside a dark chamber.   

 The I-V characterization system is made from source measuring unit that applies bias 

voltage and measures the current at the same time.  The bias voltage is applied to the 

photodetector through one pair of high resistive measuring probes, while the current is measured 

through other separate pair of probes with lower resistivity.  This configuration is called four 

probe measurement, and it decreases the error obtained in the measurement. 
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IV.   RESULTS AND DISCUSSION  

A. INTRODUCTION 

 In this chapter, the major characterization outcomes for both the materials and the devices 

are presented and discussed.  Section B will discuss the characterization results of CdSe and 

CuInS2 nanocrystals.  Section C will discuss the results obtained from the CdSe photodetector.  

Finally, section D will discuss the current-voltage characteristics and spectral response spectra of 

semi-insulating GaAs photodetectors. 

B.  MATERIALS RESULTS  

CdSe Nanocrystals 

 The synthesized CdSe nanocrystals were characterized by measuring the absorbance and 

photoluminescence spectra to determine the bandgap and the size distribution of them.  Both 

spectra were plotted as function of the growth reaction time in figure 4.1 (a) and (b). [46] The 

absorbance spectra were measured for the nanocrystals while dispersed in chloroform and placed 

inside a cuvette.  The PL spectra were measured for nanocrystals placed on a glass slide after 

evaporating the solvent (chloroform).   

The growth reaction time was varied between 30 seconds and one hour.  The absorbance 

and PL spectra showed a decrease in the bandgap of the nanocrystals as the reaction time 

increases. Which indicates that the size of the nanocrystals become larger with the reaction time.  

An increase in the growth reaction time beyond an hour does not produce nanocrystals with 

bandgaps lower than 1.7 eV (730 nm).  
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For an hour reaction time the PL spectrum consists of a single narrow peak positioned at 

730 nm, indicating that the size variation of the nanocrystals is minimized.  On the hand, the PL 

spectrum for 5 minutes reaction time consists of two peaks, which results from the presence of 

two dominant sizes for the nanocrystals.  For shorter reaction times (< 3 min) the broad peak 

above 650 nm in the PL spectra is caused by unstable state in the nucleation stage. [43] 

 

Figure 4.1 (a) Absorbance spectra of the dispersed CdSe nanocrystals grown at different reaction 

times are plotted against wavelength.  (b) PL intensities are plotted versus wavelength 

at different reaction times. Reprinted with permission from Nusir et al. [46]  

The peaks that appear in the absorbance spectra of the CdSe nanocrystals are called 

exciton absorption peaks, and they are caused by interband transition of electrons.  Quantum 

confinement effect in the nanocrystals led to a discrete absorption spectrum, due to the transition 

of electrons between quantized energy states.  The lowest two electron states in order of 

increasing in the energy are 1s and 1p.  The first peak that occurs at lower energy of the 

absorption spectra is attributed to the transition of electrons from 1s state of the valence band to 

1s state of the conduction band.  While the second peak that occurs at higher energy of the 

absorption spectra is probably due to 1p-1p transitions. 
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CuInS2 Nanocrystals 

 The optical properties of the synthesized CuInS2 nanocrystals were extracted from the 

optical absorption and PL spectra of the dispersed nanocrystals.  Figure 4.2 presents the 

absorption of nanocrystals grown at different growth reaction times. The reaction time was 

varied between 6 and 10.5 minutes.  During the absorbance measurement, the nanocrystals were 

dispersed in toluene and placed inside quartz cuvette.  The onset of the absorption spectra 

undergo a shift from 550 to 720 nm with increase in the reaction time. This indicates the growth 

of nanocrystals in a quantum confined system.  The shoulder that appears in the absorption 

spectra is assigned to the excitonic transition in the nanocrystals.  

 

 

 

 
 

 

 

Figure 4.2 Absorption spectra of the CuInS2 nanocrystals at different reaction times. 
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 The PL spectrum of CuInS2 nanocrystals grown at 230 oC for 30 minutes was measured 

and combined with the absorbance spectrum.  As shown in figure 4.3, the PL spectrum of the 

nanocrystals consists of a single intense peak with narrow width positioned at 780 nm (1.59 eV). 

The slight shift between the PL peak and the absorbance threshold is attributed to Stokes Shift 

that results from electron-phonon interaction.  As electrons decay from the conduction band to 

the valence band, they emit phonons.  Therefore, the energy of emitted photons reduces, and the 

PL peak is shifted to a higher wavelength.  The PL spectrum of the nanocrystals was measured at 

77 K, to reduce the thermal excitation of electrons and to observe the excitons more clearly.  The 

absorbance spectrum of the nanocrystals was measured at room temperature. 

 

 

 

 

Figure 4.3 Absorbance and Photoluminescence spectra of CuInS2 nanocrystals dispersed in    

toluene. 
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 The crystalline phases of CuInS2 nanocrystals were identified by measuring the Raman 

spectra of the nanocrystals.  Normally, CuInS2 nanocystals crystalline into chalcopyrite structure.  

Figure 4.4 represents the Raman spectra of two samples of CuInS2 nanocrystals.  The annealing 

condition for the sample was 110 oC for 30 minutes.  The A1 peak located at 300 cm-1 coincides 

with the literature, [47,48] and is assigned to the main vibrational mode associated with 

chalcopyrite phase.  

  The other peak observed at 340 cm-1 is assigned to E1
LO vibrational mode and it also 

related to chalcopyrite phase. [47] No Raman peak was observed at 475 cm-1, which indicates the 

absence of CuxS phases. [49] After annealing the nanocrystals, they become more crystalline and 

another peak appears at 305 cm-1 that is assigned to A1* vibrational mode related to CuAu (non-

chalcopyrite) phase. [49] This phase is derived from zincblende structure by re-ordering the 

cations (Cu+1, In+3), and it causes a decrease in the photovoltaic effect. [47] 
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Figure 4.4 Raman spectra of CuInS2 nanocrystals at different annealing conditions.  
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 To study the structural dependence of CuInS2 nanocrystals on the stoichiometric ratio, 

nanocrystals with different Cu:In ratio were synthesized and characterized.  The Raman spectra 

of the synthesized nanocrystals are plotted in Figure 4.5.  For 1:1 ratio the Raman spectrum 

consists of two peaks positioned at 290 and 340 cm-1, and are related to chalcopyrite phase. 

Raman spectrum of copper poor samples showed the formation of CuAu structure, since the 

main peak is shifted to a higher wave number (309 cm-1).  This result matches with previous 

reports that showed Cu-deficient structures cause the formation of CuAu phase. [47]   On the 

other hand, no CuAu phase is expected to form in copper rich samples, and the extra copper will 

form CuS segregation at the surface. [47]               

 

 

 

 

 

Figure 4.5 Raman spectra of CuInS2 nanocrystals with different Cu:In ratio.  
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 Structural characteristics of the synthesized CuInS2 nanocrytals were investigated by 

means of x-ray diffraction (XRD).  Figure 4.6 presents the XRD pattern of un-annealed sample.  

The diffraction peaks obtained at angles (2θ) of 28o, 48o, and 54o confirmed the formation of 

tetragonal crystal structure of CuInS2 chalcopyrite.  These peaks coincide with previous reports, 

[50,51] and in consistence with the respective “JCPDS” (Joint Committee on Powder Diffraction 

Standards) card No. 032-0339 for tetragonal CuInS2.  However, the strong peaks obtained at 

angles (2θ) of 34o, 37.6o, and 44o are attributed to the existence of copper oxide phase (CuO).  

Since these peaks are in consistence with JCDPS card No. 078-0428 for the cubic copper oxide.  

 

 

 

Figure 4.6 XRD pattern for CuInS2 nanocrystals. 
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C.  CdSe PHOTODETECTOR 

I-V Characteristics  

The current-voltage (I-V) characteristics for the CdSe photodetectors with electrode 

spacing of 1, 5, and 50 µm are plotted in figure 4.7.  The dark current of the device with 50 µm 

electrode spacing was 0.25 nA at a bias voltage of 3 V (600 V/cm), whereas the photocurrent 

was 0.4 µA.  By reducing the electrode spacing to 5 µm, the dark current was dropped to 28 pA 

and the photocurrent was increased to 3.8 µA at 3 V (6,000 V/cm) applied bias.  As can be seen 

in figure 4.7, the photocurrent was about five orders of magnitude larger than the dark current.     

 

 

                                              

                                               

 

Figure 4.7 Current-voltage characteristics for devices with 1, 5, and 50 μm electrode spacing in 

dark and under illumination.  
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The I-V characteristics for the device with electrode spacing of 1 μm shows that dark 

current is 7.5 pA at bias voltage 3 V (30,000 V/cm), and the photocurrent to dark current ratio is 

three orders of magnitudes. The active area of the devices with electrode spacing of 1, 5, and 50 

µm, are 0.008, 0.03, and 0.05 cm2, respectively. 

The device with its interdigital metallization structure creates a metal-semiconductor-

metal interface, which consists of two back-to-back Schottky contacts. [52] When a bias voltage 

is applied, one Schottky contact is forward biased and the other is reverse biased.  The open 

circuit voltage of the Schottky barrier junction becomes more pronounced with lower values of 

dark current as shown in figure 4.7 (a) for the 5 µm spacing device.  The general expression for 

the open circuit voltage is given by the following equation: [53]  

)ln(
o

scg

OC
J

J

e

nkT

e

E
V                                                       (4.1) 

where Voc is the open circuit voltage, Eg is the bandgap, n is the ideality factor, e is the electron 

charge, k is the Boltzmann constant, T is the absolute temperature, Jsc is the short circuit current 

density, and Jo = A*T2exp(-qϕ/KT) is the saturation current density, A* is the Richardson constant 

(15.6 A/cm2.K2 for CdSe), and ϕ is the Schottky barrier height (0.68 eV). [54] 

 According to equation 4.1 the value of Voc shifts to a negative quantity as the dark current 

is reduced, since the value of Jsc becomes very small compared with that of Jo which is around 

4.2x10-5 A/cm2.  This also can be shown experimentally from figures 4.7, the 5 µm device has 

the lowest dark current density and the highest open circuit voltage. While the device with 1 μm 

spacing has higher dark current density and lower open circuit voltage compared to 5 µm spacing 

device.  And finally the device with 50 µm spacing has the highest dark current density and the 

lowest open circuit voltage.  
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 The detectivity of the photodetectors with 5 and 50 µm electrode spacing is plotted in 

figure 4.8 as a function of the applied bias voltage. [46] The detectivity of the devices at room 

temperature was extracted from the I-V curves and calculated using equation 1.4.  High 

detectivity was obtained from the device with 5 µm electrode spacing, in which it was found to 

be 3.4x1010 cmHz1/2W-1 at 5 V (10,000 V/cm) applied bias voltage.  

 

 

 

   

 

Figure 4.8 The detectivity of the photodetector was extracted from the I-V curve and plotted as 

function of the bias voltage. Reprinted with permission from Nusir et al. [46]  
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and plotted in figure 4.9. [46] Higher spectral response intensity was obtained from the device 
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average carrier transit time affects the value of the photoconductive gain (G) as indicated by the 

following equation. [36]  

 
2d

V
G




rt
,                                                       (4.2) 

where τ is the carrier life time.  According to equation 4.2 the photoconductive gain depends on 

the ratio of carrier life time to the carrier transit time.  Therefore, the reduction in the electrode 

spacing is accompanied with increase in the spectral response intensity as shown in figure 4.9.  

  

   

 

 

 

Figure 4.9 Spectral response and PL spectra were measured and plotted as a function of the 

wavelength. Reprinted with permission from Nusir et al. [46] 
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mainly because Carry 500 is a double monochromator and the beam splitter is not needed.  The 

slight shift between PL spectrum of the nanocrystals and the device spectral response can be 

attributed to Stokes shift.  

   These results indicates that high detectivity was obtained in the visible-near-infrared 

spectral region compared with previous reports on CdSe photodetetors, [31,56] which exhibit a 

limited photocurrent to dark ratio within the visible region.  The high detectivity observed here is 

perhaps due to the role of treatment with pyridine to remove the thick organic sheath surrounding 

the nanocrystals.  These organic moieties affect the transfer of the carriers and act as 

recombination centers, which hamper the optoelectronic properties of the nanocrystals. [57]  

D. SEMI-INSULATING GaAs PHOTODETECTOR 

I-V Characteristics  

 The I-V characteristics of semi-insulating GaAs with interdigitated gold electrodes are 

presented in figure 4.10.  The semi-insulating GaAs wafer has a resistivity of 2.2x108 Ω.cm, and 

carrier concentration of 5x106 cm-3. Different electrode spacing (5, 10, 20, and 50 μm) were 

investigated.  The photocurrent was measured under the illumination of boardband light source 

with intensity of 350 mW/cm2.  The dark current of the devices was on the order of 10-8 A, 

whereas the photocurrent was on the order of 10-2 A.   The photocurrent to dark current ratio was 

around six orders of magnitudes, and increase with reduction in the electrode spacing of the 

device.   
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Figure 4.10 Current-voltage characteristics of devices on semi-insulating GaAs with different 

electrode spacing under dark conditions and photo-illumination. 

 The results obtained from the I-V curves showed an increase in the photocurrent as the 

electrode spacing decreases.  This is mainly because the reduction in the electrode spacing is 

accompanied with increase in the carrier transit time, which increases the number of circulated 

carriers per absorbed photons.  As a result, higher photoconductive gain can be achieved with 

lower electrode spacing. And higher photocurrent is also obtained, since it is directly 

proportional to the photoconductive gain as indicated by equation 1.2.    
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Spectral Response   

 Spectral response measurements were performed on the devices with different electrode 

spacing (5, 10, 20, and 50 μm) while biased at 1 V.  No response was obtained for wavelengths 

above the bandgap of GaAs (870 nm), since the energy of incident photons is insufficient to 

excite electrons.  As shown in figure 4.11, the highest spectral response was obtained from 

device with electrode space of 5 μm. The spectral response results were in consistence with the  

I-V curves and both showed an increase in the photocurrent as the electrode spacing was 

reduced. This results from the increase in the photoconductive gain with lower electrode spacing.  

The effect of interdigital shape on enhancing the response was investigated by fabricating a 

device with single gap of 2 mm wide.  The spectral response of the 2 mm gap device was very 

weak compared with the others with interdigital metallization, as shown in figure 4.11. 

 

 

 

 

 

 

 

 

Figure 4.11 Spectral response of devices with different electrode spacing. 
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Polarizer Study 

 Significant enhancement in the spectral response was obtained as the spacing between 

electrodes was reduced from 50 to 5 µm.  We believe that this enhancement is the result of high 

electric fields, and photon interaction with metal which may produce plasmonic effect.  To 

confirm this assumption, polarizer study was performed on the devices to investigate the 

polarization dependence of the spectral response.  The spectral response measurements were 

performed with two orientations of the polarizer’s transmission axes: horizontal, and vertical.  

Also, the devices were tilted 90o and the spectral response measurements were repeated.   

 Figure 4.12 (a) presents the spectral response of 5 μm spacing device with two 

orientations of the polarizer, while the electrodes of the device are in horizontal position.  The 

intensity of the light drops after adding the polarizer, and therefore the spectral response of the 

devices were reduced too.  The spectral response with vertically polarized light possesses higher 

intensity compared to the spectral response with horizontally polarized light. 

 Afterwards, the device was tilted 90o with respect to the original position, in which the 

electrodes became in vertical position.  The measurements were repeated again and the obtained 

spectra are plotted in figure 4.12 (b).  For horizontally polarized light, the spectral response 

intensity was higher than that with vertically polarized light.  However, the separation between 

the spectra in figure 4.12 (b) is reduced.  Different variables may cause the reduction in the 

separation, especially that both experiments (before and after tilting the device) were not 

performed at the same time. 
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Figure 4.12   (a) Spectral response of the 5 μm device with two orientations of the polarizer.            

(b) Spectral response while the device is tilted 90o.  

 The previously mentioned procedure was repeated for device with electrode spacing of 

10 μm, and the obtained spectral response spectra are plotted in figures 4.13 (a) and (b).  First, 

the spectral response was measured while the electrodes of the device were in horizontal 

position. As shown in figure 4.13 (a), the spectral response with vertically polarized light 

exhibits higher intensity. Then the device was tilted 90o and the spectrum with horizontally 

polarized light was higher than that with vertically polarized light, as shown in figure 4.13 (b). 

 Polarization study was performed also on devices with electrode spacing of 20 and 50 

μm, and the obtained spectral response spectra were plotted in figures 4.14 (a) and (b), 

respectively.  Both measurements were carried while the electrodes of the devices were in 

horizontal position.  No difference was observed in the spectral response of both devices as the 

polarization of the light was switched between vertical and horizontal positions, this can be seen 

in figure 4.14 (a) and (b). 
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Figure 4.13 (a) Spectral response of the 10 μm device with two orientations of the polarizer.            

(b) Spectral response while the device is tilted 90o.  
 

 

Figure 4.14 Spectral response of devices with spacing of (a) 20 μm (b) 50 μm.  
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  As indicated from previous results, the spectral response was observed to be stronger for 

incident light with polarization across the interdigital electrodes (perpendicular to the electrodes), 

compared with light polarized along the electrodes (parallel to the electrodes).  And the 

polarization dependence was observed to be highest in the device with electrode spacing of 5 and 

10 μm. However, the spectral response spectra of devices with larger spacing (20 and 50 μm) did 

not show any polarization dependence.    

 According to the configuration of the electrodes, the circulation of the carriers is 

perpendicular to the electrodes.  Therefore, enhancement in the electric field transverse to the 

electrodes will cause more carriers to circulate and will increase the photocurrent. On the other 

hand, longitudinal electric field will mainly be blocked by the electrodes and will not contribute 

in the enhancement of the spectral response. [38] This is similar to the mechanism of wire grid 

polarizer described in section C of chapter 1. 

 Figure 4.15 represents the distribution of surface plasmon (SP) waves inside gold 

electrode for a p-polarized incident light (the electric field is parallel to the plane of incidence 

xy).  The x-axis represents the width of the electrode (10 µm) and the y-axis represents the 

thickness of the electrode (50 nm).  As can be seen in figure 4.15, the SP wave propagates along 

the x-axis and decays in both directions (x and y).  The SP wave can be described as following:  

).(exp(|)|.exp()0,,(),,( txkiykEEzyxE spyyx 


                             (4.3) 

where ksp is the wave vector  of SP wave which is calculated using equation 1.6, and ky = 

22

omsp kk  , where εm is the permittivity of gold and ko is the wave vector of free space. 
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Figure 4.15 Cross sectional view of electric field inside the electrode for p-polarized wave. 

The incident wavelength (λo) is equal to 440 nm, and the corresponding complex permittivity of 

gold at this frequency is equal to -1.75-5.4i.   Since the permittivity of gold is a complex 

quantity, the value of ksp is complex also.  Therefore, the SP wave decays as it propagates along 

the x-axis.  At x=d the SP wave will be reflected and there will be two waves propagating inside 

the metal: incident and reflected waves.  The reflection coefficient (ρ) can be expressed 

according to the following equation: 
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 where nm and nd are the refractive indices of the metal and the dielectric material, respectively.  

From figure 4.15, the SP wave is concentrated at the edge of the electrode. 
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 For s-polarized incident light (electric field is perpendicular to the plane of incidence xy), 

the cross sectional view showing the distribution of the surface plasmon wave is plotted in figure 

4.16. The SP wave propagates along the electrode and decays exponentially through the metal.  

The SP wave can be described according to the following equation:  

).(exp(|)|.exp(),0,0(),,( tzkiykEzyxE spyz 


                               (4.5) 

As shown in figure 4.16, the electric field of the surface plasmon is concentrated at the surface of 

the electrode and decays in the direction of y-axis.  

 

Figure 4.16 Cross sectional view of electric field inside the electrode for s-polarized wave. 
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enhancement of electric field between the electrodes, since the wave is concentrated at the 

surface of the electrodes.  As the separation between electrodes increases, the electric field drops.  

Therefore, the enhancement in the electric fields due to the SP wave was not clearly observed in 

devices with larger electrode spacing (20 and 50 µm).    
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V. CONCLUSION AND FUTURE WORK 

Conclusion  

 Two types of nanocrystals (CuInS2 and CdSe) were investigated in this project.  The 

nanocrystals were grown using wet chemical method, and characterized by: optical absorption 

and photoluminescence techniques.  Several spectra were collected for nanocrystals grown at 

different synthesis time to show the growth of nanocrystals in a quantum confined system.  The 

nanocrystals were purified and dispersed in a solvent for further processing.  CdSe nanocrystals 

were functionalized by removing the long ligands to facilitate the transfer of carriers between the 

nanocrystals. The structural properties of CuInS2 nanocrystals were investigated by measuring 

the Raman spectra and x-ray diffraction patterns.     

 Photodetectors based on CdSe nanocrystals were faricated by spin-coating the 

nanocrystals on interdigitated electrodes.  The I-V characteristics and spectral response spectra 

were measured for two devices with electrode spacing of 5 and 50 m.   It was observed that the 

device with 5 m spacing has a superior performance as compared to that with 50 m spacing.  

The room temperature detectivity of the devices was extracted from the photocurrent and dark 

current and found to be on the order of 5x1010 cmHz1/2W-1 at bias voltage of 5 V. 

 Another photodetector was fabricated from semi-insulating GaAs and gold interdigitated 

electrodes. Enhancement in the spectral response was observed as the spacing between 

electrodes was reduced from 50 to 5 µm.  Polarization study was performed on the devices, and 

showed that the spectral response depends on the polarization of incident light.  Transvers 

polarized light with respect to the electrodes will produce transvers surface plasmon waves. 

These transverse plasmonic waves will enhance the electric field between the electrodes.    
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Future Work 

 Photodetectors based on CdSe nanocrystals have a spectral response at the edge of near-

infrared spectral region (~710 nm), and it contains toxic and extremely dangerous heavy metals 

(Cd).  Replacing these nanocrystals with cadmium free ones, such as CuInS2, will produce 

environmental friendly devices, and can push the spectral response of the devices  more into the  

near-infrared spectral region (~780 nm).  Photodetectors based on CuInS2 nanocrystals were not 

investigated yet, and it is considered as a promising technology in the field of optoelectronics 

devices for its distinctive optical and electrical properties. 

 The implementation of semi-insulating GaAs in light detection using interdigital 

metallization is considered encouraging.  The high resistivity of the semi-insulating GaAs will 

provide low dark currents, and therefore high detectivity can be achieved at room temperature.  

Also, fabricating devices with smaller electrode spacing (< 1 µm) is expected to provide higher 

photocurrent to dark current ratio.  The role of surface plasmon in the enhancement of the 

spectral response can be further investigated by plotting the electric field between the 

interdigitated electrodes using numerical solutions rather than analytical solutions.      
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