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ABSTRACT 

 A modern power electronic module can save significant energy usage in the power 

electronic systems by improving their switching efficiencies. One way to improve the efficiency 

of the power electronic module is to reduce its parasitic circuit elements. The purpose of this 

thesis is to investigate the mitigation of parasitic circuit elements in power electronic modules. 

General methods of mitigating parasitic inductances were analyzed by the Q3D Extractor and 

verified by the time-domain reflectometry (TDR) measurements. In most cases, the TDR 

measurement results closely matched those predicted by the Q3D Extractor.  These methods 

were applied to design and analyze a 50KVA 650V silicon carbide (SiC) half-bridge power 

electronic power module consisting of three separate power substrates interconnected in parallel. 

The layout of this power module was constrained by the existing module housing. The parasitic 

inductances of the power module substrates were measured by TDR, and compared to those 

simulated values by the Q3D Extractor.  Due to the differences in the lengths of current paths, 

the parasitic circuit elements for the three paralleled SiC power substrates, each consisting of 10 

SiC power MOSFETs and 9 SiC diodes, were different. 
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Chapter 1.  Introduction 

Power electronic modules which incorporate multiple power semiconductor devices together 

with their control circuitries into a single compact package are becoming essential components in 

many power electronic systems.  Besides cost reduction, these power electronic modules can reduce 

parasitic circuit components, reduce weight and size, and improve electrical performance. These 

modules not only can lower the cost but they also can increase the reliability of the power electronic 

systems. Power electronic modules are currently in widespread use in electric vehicles, uninterrupted 

power supplies, motor control, robot welding machine, washing machines, air conditioners, 

refrigerators, and many others.  This thesis focuses on the design and packaging of power electronic 

modules for electric or hybrid electric vehicles. An H-bridge power electronic module was designed 

and fabricated. The electrical design considerations and fabrication processes will be discussed.  

The purpose of this thesis is to design and package an H-bridge module for hybrid electric 

(HEVs) or electric vehicles (EVs).  In general, the technology investigated in this thesis is also 

applicable for the development of power electronic modules for other applications. By incorporating 

multiple power semiconductor devices together with their control circuitries into a single compact 

module, the parasitic circuit elements (inductance and resistances) in the power electronic circuits 

have been shown to reduce considerably compared to the discrete power semiconductor device 

solutions where the interconnections are the main sources of the parasitic circuit elements.  Besides 

this main merit, the power modules also reduce the cost of the system since individual packages are 

not needed for each power semiconductor devices. Packages for power semiconductor devices are a 

substantial cost component. However, besides the parasitic circuit elements, thermal management 

becomes an important consideration in these power electronic modules due to the close proximity of 

the power semiconductor devices.  The electrical design parameters are addressed in this thesis. 
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Once the circuit topology has been decided, the power electronic module design starts with 

the layout of the power semiconductor devices along with peripheral circuit elements such as current 

sensing resistors, gate-source resistors, and others. The main goal for the module layout is to reduce 

the parasitic circuit elements by reducing the interconnection paths among the power semiconductor 

devices.  Simulation tools are usually used to help in this layout task.  Besides electrical optimization, 

thermal design needs to be performed concurrently.  Once the electrical and thermal designs of the 

power module are done, the material selections for the module are to be decided based on the 

electrical, thermal, and mechanical properties desired for the module. Compromises are needed to 

integrate these materials into a reliable power module.   

This thesis is organized into four chapters. Chapter 1 introduces the objectives of this thesis 

and the rationales behind the research work. Chapter 2 presents the parasitic mitigation as a part of 

the design process for the power electronic modules. Chapter 3 discusses the design and packaging 

of a silicon carbide half-bridge power module. Chapter 4 concludes the thesis work.   
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Chapter 2.  Electrical Design Considerations 

2.1 Introduction 

Parasitic circuit elements in power electronic modules are unavoidable and cannot be totally 

eliminated. These parasitic circuit elements include parasitic capacitances, parasitic resistances, and 

parasitic inductances.  P-cell and N-cell based IGBT power module design has been used to mitigate 

parasitic circuit elements in power electronic modules [1]  This design technique has been verified 

by the Q3D parasitic extraction software, double pulse test, and impedance analyzer [1] on a  simple 

full-bridge switch topology by comparing the parasitic circuit elements from two different layouts of 

the full-bridge switch.  The power semiconductor devices for the optimized layout have shorter 

current communication loop, as such, parasitic circuit elements are mitigated [1].   

In [2], the authors identified the critical layout path and described the mechanisms on how 

this path influenced the switching performance. It was shown that current sharing and common 

impedances affect the switching performance of the power electronic switch. Four effects were 

identified:  stray inductance of the different power commutation loops, the inductances along the 

common emitters, direct coupling, and different positive and negative couplings [2].  The main 

influence on the current distribution is the different positive and negative couplings, and one of the 

semiconductor devices is accelerating during turn-on due to the wire bond packaging [2].  In [3], it 

was demonstrated that a 5nH parasitic inductance can be achieved using a double-layer ceramic 

substrate.  In [4], the current paths are separated into a screw contact and a PCB-based connection to 

reduce the parasitic elements.  From the above literature review, it is clear that the most effective 

way to mitigate parasitic circuit elements is to shorten the length of the current path or to decrease 

the area of current loop.  

In this thesis work, only the parasitic resistances and parasitic inductances of the power 

modules are considered. The extraction of parasitic circuit elements is accomplished using the 
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ANASYS Q3D software simulation. A time-domain reflectometry (TDR) measurement will be used 

to verify some of these parasitic circuit elements.  In this Chapter, some of the most common 

parasitic circuit elements in power modules will be simulated. The parasitic circuit elements 

contributed by the copper traces on the direct bonded copper (DBC) substrate, wire bonds, and 

power terminal connections are considered.  Methods to reduce these parasitic circuit elements are 

proposed and verified by TDR using test structures.    

2.2. Parasitic Extractions of Simple Copper Conductors by Q3D Simulator 

A simple copper conductor structure on DBC to investigate its parasitic circuit elements is 

shown in Figure 2.1.  As shown, the green conductor is the copper trace on the DBC substrate. The 

green conductor is 20 mm long, 5 mm wide and 0.3 mm thick, which represent the thickness of the 

copper trace.  The blue pads on both sides of the copper trace are the terminal connectors which may 

represent the power connectors or inputs and outputs (I/Os).  In Q3D simulation, these are known as 

the source and sink. Both the source and sink terminals are 5 mm × 5 mm × 1 mm (width, length and 

height). As such, the length between the source and drain terminals is 10 mm. In this Q3D simulation, 

only a DC analysis is performed.   

 

Figure 2.1: A simple conductor for parasitic extraction 

Various lengths of the conductor length were simulated and the simulated results for the parasitic 

inductances and resistances are summarized in Table 2.1. As can be seen, the parasitic inductance 

increases with increasing conductor length.  The increase is almost a linear relationship since the 

self-inductance of the conductor is directly proportional to the length of the conductor as shown in 
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Fig. 2.2. As such, the long DBC copper trace can contribute a significant amount of the parasitic 

inductance.   

Length (mm) 1 2 4 6 8 10 12 14 

Inductance (nH) 0.6 1.0 1.9 2.9 4.0 5.2 6.4 7.7 

Resistance(mΩ ) 0.02 0.03 0.06 0.08 0.1 0.125 0.15 0.17 

 

Table 2.1:  Q3D simulated parasitic circuit element results. 

 

 

Figure 2.2:  Parasitic inductance versus DBC conductor length 

It is obvious that the parasitic inductance and resistance also depend on the width of the 

copper conductor.  Table 2.2 shows the parasitic inductances and resistances for different DBC 

copper widths from 1mm to 8 mm at a fixed length of 5 mm. The parasitic resistance is directly 

proportional to the aspect ratio,  
 

 
, where l is the length of the copper trace and w is the width of the 

copper trace.  As such, the parasitic resistance decreases as the width of the copper conductor on 

DBC increases.   Figure 2.3 shows the non-linear relationship of the parasitic inductance as a 

function of the copper conductor width on DBC for a fixed length of 5mm.  It shows that as the 
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width of the copper conductor becomes larger, the decrease of the parasitic resistance also decreases.  

However, a smaller decrease in parasitic inductance is obtained as the conductor width increases.   

Width (mm) 1 2 3 4 5 6 7 8 

Inductance (nH) 8.2 6.9 6.2 5.6 5.2 4.9 4.8 4.6 

Resistance (mΩ ) 0.6 0.3 0.21 0.16 0.125 0.1 0.09 0.08 

       

Table 2.2: DBC substrate width simulation results 

 

 

Figure 2.3:  Parasitic inductance versus width of copper conductor. 

2.3. Parasitic Extraction of Meander and Straight Conductors by Q3D 

The electrical conductors in power electronic module are seldom straight, they usually have 

bends and sometimes, meander in geometry.  This is because of the layout constraints due to size of 

the power substrate or parasitic mitigation.  Meander conductors are quite common to increase the 

desired trace resistance for certain applications such as current sensing resistors for the power 

semiconductor devices. As such, it is necessary to determine the parasitic circuit elements in these 
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meander conductors.  Figure 2.4 shows a meander conductor and its equivalent straight conductor.   

Both conductors have a similar length of 30 mm and a width of 3 mm.  The spacing between the two 

conductors in the meander conductor is 1 mm.    

 

 

Figure 2.4:  Straight and meander conductors used for parasitic extraction. 

 

   Straight Conductor Meander Conductor 

Inductance  13.5nH 4.4nH 

Resistance 0.062Ω  0.059Ω  

 

Table 2.3: Parasitic circuit elements of the straight and meander conductors. 

As can be seen in Table 2.3, the parasitic inductance for the meander conductor is about 3 

times smaller than that of the straight conductor while its parasitic resistance is almost the same for 

the two structures.  The decrease in parasitic inductance is due to the self-inductance cancelling 
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effects of the current flows in opposite directions in the meander conductor. The parasitic resistance 

is similar, but, slightly smaller for the meander conductor, due to the current crowding at the two 

corner conductors.   

2.4. Parasitic Extraction for Different Terminal Connections   

It has been found that different terminal connections affect the parasitic circuit elements in 

power electronic module layout.  Increasing the height and width of the output terminal affects the 

parasitic circuit elements. The effects of different terminal connections on the parasitic circuit 

elements are investigated in this section.   

2.4.1 Height of Terminal Connections 

Different terminal heights were simulated for the conductor trace shown in Figure 2.1.  Table 

2.4 lists the parasitic inductance and resistance as a function of the terminal connection heights from 

1mm to 8mm.  As can be seen, the parasitic inductance and resistance are increasing with terminal 

height, similar to the increasing in length of the conductor.  This is because as the terminal height 

increases, the effective length of the conductor increases.  Figure 2.5 shows the parasitic inductance 

increases with terminal height.   

Height (mm) 1 2 3 4 5 6 7 8 

Inductance (nH) 5.18 6.15 6.89 7.5 8.13 8.81 9.39 9.87 

Resistance (mΩ ) 0.0125 0.127 0.129 0.130 0.131 0.132 0.133 0.136 

    

Table 2.4: Terminal height simulation results 
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Figure 2.5: Parasitic inductance versus terminal height. 

2.4.2. Area of Terminal Connection 

It was shown in Figure 2.3 that the parasitic inductance for conductor decreases with the 

increasing width of the conductor.  Thus, it is reasonable to predict that the parasitic inductance also 

decreases with increasing width of the terminal connection. The area of the terminal connection is 

changed from 1mm x 1mm to 8mm x 8mm and the parasitic inductance and resistance are extracted 

using Q3D and summarized in Table 2.5.  As the area of terminal connection increases, the parasitic 

inductance and resistance decrease.  

Width and Length 

(mm) 

1×1 2×2 3×3 4×4 5×5 6×6 7×7 8×8 

Inductance (nH) 9.9 8.9 7.7 6.4 5.2 4.0 3.0 2.0 

Resistance (mΩ ) 0.22 0.2 0.17 0.15 0.125 0.1 0.08 0.06 

 

Table 2.5: Parasitic simulation result as a function of the area of the terminal connection. 
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2.5. Parasitic Extraction for Bond Wires  

 Wire bonds are used in connecting the power semiconductor devices to the packaging 

substrates as well as to provide interconnections. Wire bond introduces parasitic circuit elements in 

power electronic modules. As such, it is desired to know the parasitic circuit element contributions of 

these wire bonds.  Usually, bond wires of different diameters are used to provide the required current 

carrying capability. Multiple bond wires are also used to increase the current carrying capability.  As 

such, the parasitic contributions from these wire bonds are important electrical design considerations.     

2.5.1. Parasitic Extraction for Multiple Bond Wires 

Figure 2.6 shows a power module interconnection structure with multiple bond wires to 

provide the electrical interconnection.   The conductor trace is separated into two equal parts of 

10mm with a 2mm gap between the two conductors. Bond wires of 0.15mm diameter are used to 

connect the two conductors.  The length of the bond wires is 0.25mm.  One to twelve bond wires are 

used to connect the two conductor paths.  The parasitic extractions using Q3D simulator are shown 

in Table 2.7.  Figure 2.7 shows the parasitic inductance versus the number of bond wires. 

 

Figure 2.6:  Wire bond parasitic simulation 

Number of Wires 1 2 3 4 5 6 7 8 

Parasitic 

Inductance (nH) 

4.9 4.6 4.3 4.0 3.9 3.8 3.7 3.6 
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Number of Wires (continued) 9 10 11 12 

Parasitic Inductance (nH) 3.54 3.48 3.43 3.39 

 

Table 2.6:  Wire bond simulation results 

 

 

Figure 2.7:  Parasitic inductance versus the number of bond wires. 

As can be seen from Figure 2.7 the parasitic inductance decreases as the number of bond wire 

increases.  The parasitic inductance decreases more rapidly as the number of bond wires increases 

from one to four.  Thereafter, the decrease in parasitic inductance is more gradual after reaching this 

critical number of bond wires.  For a large number of bond wires such as 10, the decrease in parasitic 

inductance is very small.   The parasitic resistance is decreasing as the number of bond wires 

increases because the effective width of the conductor path is wider.  However, the number of bond 

wires should be as many as possible to decrease its parasitic resistance.   

2.5.2. Parasitic Extraction of Different Length of Bond Wires 

Next, the length of the bond wire is varied and Q3D is used to extract the parasitic circuit 

elements.  The same conductor parameters similar to Section 2.5.1 are used. Table 2.8 shows the 
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results of the Q3D extractions.  As can be seen both the parasitic inductance and resistance increase 

as the length of the bond wire increases.   

Length of wires (mm) 2.46 2.8 3.35 4 5 

Inductance (nH) 4.7 4.8 5.0 5.2 5.3 

Resistance (mΩ ) 0.76 0.96 1.02 2.15 3.38 

 

Table 2.7: Wire bond length simulation results 

 

2.5.3. Parasitic Extraction for Different Diameter of Bond Wires 

The effects of the diameter of the bond wire on the parasitic circuit elements are investigated.  

Increasing the diameter of the bond wire increases the current carrying capability of the wire bond. 

Table 2.9 shows the Q3D extracted results for different diameters of the bond wires.  Both the 

parasitic resistance and inductance are expected to be reduced using larger diameter bond wires.  

Figure 2.8 shows the parasitic inductance of the bond wire versus its diameter.  A larger decrease in 

parasitic inductance (about 20%) occurs as the diameter of the bond wire increases from 1mil to 3 

mil, thereafter, the decrease in parasitic inductance becomes gradual. The reason for the erratic result 

of the 2 mil diameter is not known.  

Diameter of Wires (mil) 1 2 3 4 5 6 7 

Inductance (nH) 5.8 6.0 5.2 5.2 4.97 4.8 4.7 

Resistance (mΩ ) 7.1 7.4 2.3 2.7 4.25 8.3 8.8 

 

Diameter of Wires (mil) 

(Continued) 

8 9 10 11 12 13 15 

Inductance (nH) 4.6 4.59 4.46 4.45 4.37 4.3 4.3 

Resistance (mΩ ) 0.69 0.69 0.47 0.47 0.42 0.38 0.44 

 

Table 2.8: Wire bond diameter simulation results 
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 Figure 2.8: Parasitic inductance versus diameter of bond wire 

2.5.4. Parasitic Extraction for Wire Bond with Different Spacing 

In some power modules more than ten bond wires are used for interconnections.  As shown 

earlier, paralleling of multiple bond wires decreases the parasitic inductance as well as the parasitic 

resistance. Table 2.10 shows the Q3D extraction results of multiple bond wires with 0.125mm and 

0.325mm spacing between each bond wire.  As can be seen the decrease in parasitic inductance with 

a larger spacing is very little for increased spacing.  As such, there is not much gain in parasitic 

inductance mitigation by increasing the spacing between the bond wires.   
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Wire bond 

numbers 

0.125mm separation 

between each wire bonds 

Separated each 9 wires with 

0.325mm 

18 wires  16.1nH 15.85nH 

27 wires 15.64nH 15.26nH 

36 wires 15.1nH 14.93nH 

  

Wire bond 

numbers  

0.125mm separation 

between each wire bonds 

Separate half wire bonds 

with 0.325mm 

2 wires 17.92nH 17.70nH 

4 wires 17.43nH 17.10nH 

6 wires 17.07nH 16.92nH 

 

Table 2.9: Parasitic inductance versus distance between bond wires. 

 

2.5.5. Wire Bond versus Conductor Trace Comparison 

 One reason for using wire bond technology in power module is because of its flexibility. 

However, from the perspective of parasitic inductance, does wire bond have the perceived benefit of 

parasitic mitigation?  Since both wire bonds and copper conductors contribute to parasitic inductance, 

it is important to compare their contributions to parasitic inductance. Figure 2.9 shows the two 

structures used for Q3D comparison of parasitic contributions. The width of the conductor trace, 5 

mm, is the same for both simulated structures.  For the wire bonded structure, 20 bond wires are used. 

However, different number of bond wires are also simulated and summarized in Table 2.10.   
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Figure 2.9:  Structures used to compare copper trace and wire-bonded copper trace. 

 Copper 

Trace  

Copper trace with 

solid copper 

Interconnect 

1 

wires 

5 wires 10 wires 15 wires 20 wires 

 

Inductance 6.1nH 6.15nH 8.6nH 7.2nH 6.7nH 6.4nH 6.4nH 

 

Table 2.10:  Parasitic inductance for structures shown in Figure 2.9. 

 

As can be seen from Table 2.10 the solid copper interconnect between the copper trace 

increases the parasitic inductance slightly, from 6.1nH to 6.15nH. Even though the parasitic 

inductance decreases with the increase in the number of bond wires, the parasitic inductance is still 

higher than that of the copper trace with solid copper interconnect.  

2.6.   Summary of Parasitic Extraction 

The above parasitic extractions illustrate the principles of how to mitigate the parasitic circuit 

elements for power electronic module design.  First, wire bond is not the best method to provide 

interconnection because of its parasitic inductance contribution.  It is best to use the copper traces on 

direct bond copper substrate for interconnections.  Second, the interconnection copper traces should 

be as short as possible.  Third, if wire bonds are needed, use as many bond wires as possible.   Fourth, 
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use a large diameter bond wire. Fifth, spacing between bond wires should be large. These are 

summarized in Table 2. 11. 

Classification Method to Use 

Wire Bond 1. Increase number of bond wires 

2. Shorten the length of bond wires 

3. Increase the diameter of bond wires 

4. Increase spaces between bond wires 

5. Replace bond wires with DBC trace 

6. Use new connection technology 

DBC Substrate 1. Shorten the Length 

2. Widen the width 

3. Use meander structure 

Power Connector 1. Reduce the height 

2. Reduce the area 

 

Table 2.11:  Parasitic mitigation design guidelines. 

 

2.7. Test Structure Verification 

Time-Domain Reflectometry (TDR) can be used to verify the parasitic inductance in power 

electronic module.  TDR sends a pulse voltage signal to the test structure and measured the reflected 

waveform to extract the impedance of the structure. Figure 2.10 shows a TDR measurement 

instrument and the test fixture which simply consists of two wires used to measure the interconnect 

structures in power electronic module substrate.  These two wires are soldered to the copper traces.  

It should be noted that even though the test fixture looks very primitive, the impedance measurement 

is quite accurate due to the background impedance subtraction. A Tektronix 6160 TDR is used for 

the measurement.   

 

Figure 2.10:  A TDR measurement set up. 
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 Figure 2.11 shows the two test structures for TDR measurements. A to G represent the wire 

bonds along with their copper traces to be measured.  Copper traces 1 and 2 are used to extract the 

copper trace parasitic inductance.  Some experimental errors are the different sizes of the source and 

drain terminal connections.  Due to the rise time of the TDR test signal, the TDR measurement 

cannot be performed for copper traces less than 8mm long.  Even though the result may not match 

the simulation result, but the behaviors of each test is successfully verified by the testing result.   

Figure 2.12 shows a typical TDR plot for the copper trace with a parasitic inductance of 62nH. As 

shown the x-axis is the time in nano second and the y-axis is the inductance in nH. The TDR 

measurement starts with the initialization of the software parameters and then performs a 

connectivity check. Then, the two connecting wires are soldered onto the test structure.  The black 

TDR waveform represents the parasitic inductance for the measured test structure. The pink TDR 

waveform is the parasitic inductance of the two connecting wires which is measured by shorting the 

two connecting wires on the test substrate.  The red TDR waveform displays the parasitic inductance 

of the test structure after subtracting the black TDR waveform from the pink TDR waveform.   

 

Figure 2.11:  TDR test structures.  



 

18 

 

Figure 2.12: TDR waveform for the copper trace.   

2.7.1.  TDR Measurement of Wire Bonds 

Wire bond E is verified by both the Q3D extraction and TDR measurement.  The TDR 

measurement is taken after one to seven wire bonds are made.  Figure 2.13 shows the parasitic 

inductance extracted from the Q3D and TDR measurement. The discrepancy between the Q3D and 

TDR results is most likely due to the length of the bond wires.  From these results, it shows that the 

parasitic inductance decreases from four bond wires to one bond wire.  The decrease of the parasitic 

inductance from four bond wires to seven bond wires is very gradual. There is a slight error in 

measuring the parasitic inductance for the 5 bond wires from the TDR measurement.  Hence, the 

Q3D extraction and TDR measurement yielded similar parasitic inductances. 
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Figure 2.13:  Parasitic inductance for one to seven bond wires from Q3D and TDR. 

 

 The test structures F and G are both simulated by Q3D and verified by TDR measurements.  

Figure 2.14 shows the simulated and TDR measured parasitic inductances for bond wire diameters of 

5 mils and 12 mil.  Each wire bond has three bond wires. A significant parasitic inductance reduction 

using a larger diameter bond wire can be seen from the results.  The large discrepancy of the Q3D 

extraction and TDR measurement results may be due to short distance between the source and drain 

contacts.  Due to the rise time constraint of the TDR test signal, the measurement can only be 

performed on a path longer than 8mm.  

 

 

 

 

 

 

 

Number of Wire Bonds Simulation Testing result 

1 11.6nH 11.7nH 

2 9.8nH 11.0nH 

3 8.9nH 10.3nH 

4 8.4nH 9.8nH 

5 8.0nH 8.9nH 

6 7.7nH 9.6nH 

7 7.5nH 9.36nH 
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Figure 2.14:  Wire bond diameter verification. 

 Test structures A, B, C, D in Figure 2.11 represent wire bonds of different lengths. Test 

structure A has the shortest wire bonds while test structure D has the longest wire bonds. Table 2.12 

shows the TDR measured parasitic inductances.  As can be seen the longer the bond wire the larger 

the parasitic inductance.   

 

 

 

 

 

 

Table 2.12: Parasitic inductance of bond wires of different lengths. 

 Copper traces 1 and 2 are used to measure the parasitic inductance and the results are 

summarized in Table 2.13.  As can be seen trace 2 has a smaller parasitic inductance compared to 

trace 1 because it has a larger width.  For both traces 1 and 2, a longer length yields a larger parasitic 

inductance.  These results are verified by Q3D extractions. 

 5 mils wire bonds 12 mils wire bonds 

Testing result 17.8nH 12nH 

Simulation 6.2nH 5.9nH 

 TDR Test Results Distance of Wires 

A 4.8nH 3.9 

B 7.5nH 4.5 

C 8.0nH 5.6 

D 11.6nH 6.75 
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Table 2.13: Parasitic inductance of DBC substrate of different lengths and widths 

Hence, TDR measurements verified the Q3D extracted parasitic inductances for copper 

interconnect and wire bond structures commonly used in power electronic modules.   

  

 8mm 14mm 20mm 28mm 

Trace 1 Test 

Result 

6.35nH 10.2nH 14nH 25nH 

Trace 2 Test 

Result 

4.6nH 7nH 10nH 16nH 
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Chapter 3.  Design and Packaging of a Power Electronic Module 

3.1.   Design Parameters of a Power Electronic Module 

Power electronic modules have many applications.  In this thesis, a 1200V 450A silicon 

carbide (SiC) half-bridge module for electric vehicle application was designed and fabricated.  The 

module is layout with the constraint to fit into an existing silicon insulated-gate bipolar transistor 

(IGBT) half-bridge module package for a direct footprint replacement in an electric vehicle inverter 

drive.  The ratings for both the SiC power MOSFETs and diodes are 1200V at 50A.  As such, many 

of these devices must be paralleled to provide the required current handling capability.   Figure 3.1 is 

the circuit topology of the power module. It consists of an upper (or high-side) switching position 

and a lower (or low-side) switching position.  Each switching position consists of 15 SiC power 

MOSFETs in parallel with three SiC diodes in anti-parallel position.  The SiC anti-parallel diodes are 

to provide reverse current conduction when the anti-paralleled power MOSFETs are switched off.  

The module was designed to operate at a junction temperature of 200
o
C.  According to the date sheet 

provided by the manufacturer [7-8], the current carrying capability of the SiC power MOSFETs is 

de-rated to 30A at 200
o
C.  This is the reason that 15 SiC power MOSFETs are chosen.   Since the 

SiC diode is capable of carrying a 50A current at the junction temperature of 200
o
C, only nine of 

them are required.   Thus, the switching position is rated at 450A at 200
o
C.   
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Figure 3.1: 600V/450A SiC MOSFET circuit schematic for 50KVA electric vehicle. 

The power substrate for the module is chosen to be a direct bonded copper (DBC) substrate. The 

power substrate area is 96mm × 32mm to fit into the existing module package.  In order to minimize 

the thermal and mechanical stresses, the power substrate is separated into three identical pieces to be 

electrically connected by wire bonding. Each of these power substrates, 38mm x 32mm, has 5 SiC 

MOSFETs and 3 SiC diodes attached for both the high-side and low-side switching positions. The 

dimensions for the SiC power MOSFET are 4.08mm × 4.08mm while the dimensions for the SiC 

diode are 8.23mm × 4.08mm. Table 3.1 summarizes the parameters of the power devices.   

 

Table 3.1: Dimensions of the SiC MOSFET and diode [7-8]. 

 

The module package has an outside dimension of 152mm × 62mm as shown in Figure 3.2.  

The inside cavity is 96mm x 38mm.  The housing provides electrical terminal connections and gate 

control pins for the module. The positive and negative power supply terminals are placed at the right 

side of the housing, and the two load connections are placed at the left side of the module. There are 

   Manufacture 

number 

Die size Source pad size Gate pad 

size 

Thickness Anode pad 

opening 

MOSFET CREE CPMF-

1200-S080B 

4.08mm×

4.08mm 

0.98mm×2.09mm

(×2) 

0.84mm

×0.6mm 

365μm N/A 

Diode CREE CPW2-

1200S050 

4.02mm×

8.23mm 

N/A N/A 387μm 3.22mm×7

.41mm 

DC + 

DC - 

High Side 

Low Side 

Gate 1 

Source 1 

Gate 2 

Source 2 

Single 

Phase 

Output 
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seven pins located on the both sides of the housing for the control signals. In this design, the module 

package size is the limiting factor.  The layout needs to be as symmetric as possible to reduce the 

power losses.  The other issue is the thermal performance.  Due to the size and form factor of the 

power substrate, the base plate may bend due to mismatch in thermal coefficient of thermal 

expansion of different interface layers of the module. 

 

Figure 3.2:  Package and power substrate of the module. 

3.2. Design Considerations - Current Sharing 

Unbalanced current sharing of power semiconductor devices can occur with improper layout.  

This happens when some of the powers MOSFETs are conducting a larger share of the total current.  

This can happen because of the differences in the intrinsic parameters (such as rds (on)) of the power 

MOSFETs or external parameters such as differences in parasitic circuit elements due to layout.  

Unbalanced current sharing can lead to having different power losses on the paralleled power devices 

which may lead to undesired module performance. The current sharing of the paralleled power 

semiconductor devices will be considered. 
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For a half-bridge switching position, there are two states of operation.   When the top side 

switching position is switched on, a current of 450A is flowing from the right positive terminal to the 

left load terminal connections.  Figure 3.3 shows the current flow through different impedances on 

the common source for each of the power substrate.  When the upper switching position is switched 

off and the bottom switching position is switched on, the 450A current is flowing from the left load 

terminals to the right negative terminal. Figure 3.4(A) and 3.4(B) show the current flow directions 

for the high-side switching position and low-side switching position, respectively.           

 

Figure 3.3:  Current flow on the common source conductor.   
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Figure 3.4:  Current flow for the (A) high-side and (B) low-side switching positions. 

3.3. Simulation of Current Vector  

The current sharing simulation is performed using the ANSYS Q3D simulator. The source 

and sink are the inlet and outlet for the current flow in Q3D simulation.  For these simulations, a 

current of 450A is injected into the source terminal and this current exists from the sink terminal.    

From these current flow vector simulations, the current distribution for the upper and lower 

switching positions are almost similar.  This means that the current is equally shared by the fifteen 

power MOSFETs in both the upper and lower switching positions because of the symmetrical layout 

of these power MOSFETs. In general, the current density is low, about 1.43 × 10
5
 A/m.   The current 

density is higher for the copper traces where the wire bonds connect to the sink and source areas for 
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both the high-side and low-side switching positions. Since the current accumulates from the source 

to the drain, the drain side has the highest current density, as can be seen in the low-side switching 

position.  

3.4. Resistor Network Analysis 

According to Ohm’s law, the current is the ratio of the voltage divided by the resistance.  

Hence, the voltage across the parallel string of power semiconductor devices is the same.  So, the 

current in each string depends on its equivalent resistance.  Since the conduction path will include 

copper traces and wire bonds, their equivalent resistance may not be similar.  In order to keep the 

same impedance in each parallel path, it must contribute an equal amount of parasitic circuit 

elements.  Thus, the copper traces and number of bond wires and their lengths must be the same.    

The path lengths for the two side and middle power substrates to the supply terminals are 

different because of the placement of the power connectors.  Thus, each of these three power 

substrates would have different parasitic resistances.  Figure 3.5 shows a resistive network for the 

power substrates.  A voltage source represents the voltage for each paralleled path. From the left side 

of resistor network shown in Figure 3.5(A), the equivalent resistances of the fifteen paralleled 

MOSFETs are represented by Rm while Rp represents the path resistance connecting these power 

MOSFETs. The currents that flow into each MOSFET are represented by 1 to 15 sequentially. In 

Q3D simulation, Rm is equal to 45µΩ and Rp is equal to 40µΩ.  
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Figure 3.5:  Resistive network representation of the paralleled MOSFETs. 

As can be seen from Figure 3.5(A) the equivalent resistances for each paralleled path are not 

the same.  The main reason is that Rp is not the same for each of these 15 SiC MOSFETs.  As 

mentioned earlier the power substrate is separated into three identical power substrates, each with 5 

SiC MOSFETs, in order to mitigate thermal and mechanical stresses.  These three identical power 

substrates are connected by wire bonds which give rise to a higher parasitic resistance.  It was found 

that the Rp between the three power substrates is 80Ω while the Rp within each power substrate is 
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40Ω.  By a simple re-drawing of the resistive network, the resistive network of Figure 3.5(B) shows 

different turn-on resistances for the SiC power MOSFETs.  

A different layout scheme, the star-connection, will be discussed later.  This layout can 

mitigate current imbalance but it is not usually realizable due to the size limitation and special 

packaging requirements.  

3.5. Conduction Loss 

Power losses in power modules consist of conduction losses and switching losses. Only 

conduction losses will be discussed since switching losses depend on the power electronic topology.  

Conduction loss is given by P = I
2
R where I is the drain current of the MOSFET and R is the 

equivalent resistance during conduction. From Q3D simulations of the high-side and low-side 

switching positions shown in Figure 3.6, the high-side switching position has an equivalent 

resistance of 0.92m while the low-side switching position has an equivalent resistance of 0.88m.  

With a conduction current of 450A, the conduction losses for the high-side and low-side switching 

positions are 186W and 178W, respectively.  In order to minimize the conduction losses the diameter 

of bond wires should be considered. Table 3.2 shows the conduction losses using different wire bond 

diameters for the connection between the power devices as well as the power substrates.  The result 

shows the conduction loss is significantly reduced if a larger bond wire diameter is used. The 

conduction loss is 270W if a bond wire diameter of 0.38mm is used while the conduction is reduced 

to 180W if a bond wire diameter of 0.15mm is used. 

Wire Bond Diameter  

(devices to the pads) 

 0.15mm 0.38mm 

Conduction loss (High Side) 270W 184W 

Conduction Loss (Low side) 274W 178W 

 

Table 3.2: Conduction loss simulation results. 
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Figure 3.6:  Conduction and parasitic Q3D simulation for high-side (top) and low-side (bottom). 

 

3.6. Parasitic Extraction 

 

Parasitic circuit elements affect the performance of switching positions in power electronic 

systems.  The main parasitic inductances are gate loop inductance, switch loop inductance, and the 

common source inductance. The mitigation methods described in the previous Chapter will be used 

to minimize the parasitic inductances.  The objective is to minimize the parasitic inductance of the 

power module.  TDR measurements will be used to verify the parasitic inductance in the power 

module.  

3.6.1. Parasitic Extraction of a Single Switching Position 

According to Figure 3.2, there are three identical power substrates each consists of 5 power 

MOSFETs and 3 SiC diodes for the upper and lower switching positions in the power module.    

Parasitic extraction is first performed for one of these three identical power substrates.  There are 

Source 
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five parts contributing to the parasitic inductances and resistances.  These are the DC+ bus path 

inductances (DC+ terminal connection and high-side auxiliary drain), MOSFET and diode wire 

bonds inductances, gate loop inductances, common source inductances, and DC- bus path inductance 

(Low-side common source and DC- terminal connection). Table 3.3 summarizes these parasitic 

inductances and resistances for one of these power substrates as shown in Figure 3.2.   

Parasitic Path Parasitic 

Inductance 

Parasitic 

Resistance 

DC+  terminal path (+ to yellow) 8.8nH 0.28m 

High-Side MOSFET wire bonds 2.3nH 0.45m 

Low-Side MOSFET wire bonds 2.5nH 0.46 m 

Diode wire bonds 2.6nH 0.46m 

Gate wire bonds 5.8nH 11.2m 

High side common drain path (yellow) 12.4nH 0.13m 

Gate1  loop (purple) 27.2nH 5.3m 

Gate 2 loop (light blue) 22.2nH 4.1m 

High-Side common source (middle 

green) 

11nH 0.8m 

Low-side common source (middle red) 12nH 0.9m 

DC- terminal path (- to red) 8.1nH 0.28m 
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Table 3.3:  Q3D parasitic extraction for a single switching position. 

As can be seen the low-side and high-side siwtching positions have slightly different parasitic 

circuit elements.  Figure 3.7 shows the parasitic inductance model for the high-side and low-side 

switching positions.   

 

Figure 3.7:  Parasitic model for the high-side and low-side switching positions. 

Parasitic Extraction Phase to Phase wire bonds connection 

High-side 

Drain 

Common Source Low-side 

Source 

Gate 1 Gate 2 

Stray inductances 2.3nH 6.5nH 1.8nH 1.7nH 1.9nH 

Resistance 0.2m 0.71m 0.22m 0.8m 0.85m 
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 As can be seen the gate loop parasitic inductance is larger than other parasitic inductances.  

The main reason is due to its longest current path.  The other is due to the use of only one bond wire 

for the gate connection.  This is because the size of the gate pad is 0.84mm×0.6mm which can only 

accommodate one bond wire.  The length of the gate bond wire is also determined by the gate pins 

on the module package.  

The length of the current path contributes to the most parasitic circuit elements for the 

module. Since the interconnection distance is different for each MOSFET and diode, their parasitic 

circuit elements are different. These differences in parasitic inductances affect current sharing for 

these power MOSFETs.  A similar situation occurs at the wire bond connections for the power 

MOSFETs and diodes. Due to the different sizes for the power semiconductor devices, different 

number of bond wires can be used to make the interconnections, as such, the parasitic circuit 

elements are different. These bond wires can contribute a parasitic inductance from 1.5nH to 5.8nH. 

The common source pad contributes a parasitic inductance of 13nH.  The total contributions for the 

wire bonds and DBC copper traces are about the same. Therefore it is necessary to extract the 

parasitic circuit elements for the whole module. 

3.6.2. Parasitic Extraction of the Switching Positions for the Whole Module 

Since the three power substrates are identical, it is only necessary to to consider one of the 

three identical power substrates.  Because of the consideration of the whole module, the simulated 

current path is different from the previous section as shown in Figure 3.8.  When the high-side 

switching position is switched on, current is flowing from the positive terminal at the upper right-

hand side of the module package to the drain terminals of the upper switching position.  The parasitic 

inductances for each of the power substrate is different because of the different lengths of the copper 

trace from the source terminals to the load terminal at the left hand side of the module package.   
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Figure 3.8:  Parasitic extraction of substrate 1 in the entire module. 

When the upper switching position is switched on, the current is flowing from the positive 

terminal on the upper right hand side of the module package to the load terminal located on the right 

side of the module package.  Because of the differences in length of the current paths from each of 

the power substrates to the load terminal, their parasitic inductances will be different. For power 

substrate 1 as shown in Fig. 3.2, the parasitic inductance from the positive terminal to the drain 

terminal is 8.8nH. Similarly, the parasitic inductances for power substrates 2 and 3 are 29.4nH and 
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50.1nH, respectively. When the lower switching position is switched off, the current is flowing from 

the load terminal to the negative terminal on the lower right side of the module package. As such, the 

parasitic inductances from the load terminal to the drain terminals of each of the power substrates 

will be different.  For power substrate 1, the parasitic inductance from the negative terminal to the 

drain terminal is 20nH. Similarly, the parasitic inductances from the negative terminal to the drain 

terminal for power substrates 2 and 3 are 45nH and 75.5nH, respectively. 

3.7.   TDR Verification of Parasitic Inductances 

 TDR is used to measure the parasitic inductances of the power substrate in order to verify the 

parasitic inductances from the Q3D simulations. Figure 3.9 shows the single power substrate for the 

5 power SiC MOSFETs and 3 SiC diodes. The common drain pad for the high-side switching 

position is shown as yellow while the common drain pad for the low-side switching position is 

shown as green on the bottom part of the power substrate. Table 3.4 shows the parasitic inductances 

from the Q3D simulation and TDR measurement.   

 

Figure 3.9:  Single power substrate for 5 MOSFETs and 3 diodes. 
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Cases Source to Drain TDR  Simulation  

Case 1 1 to 2 26nH 23nH 

2 to 3 32nH 31.8nH 

Top Gate Path 20nH 22nH 

Bottom Gate  Path 27nH 27nH 

Case 2  4 to 5 22nH 19nH 

5 to 6 12.7nH 11.3H 

6 to 7 26nH 22.8nH 

4 to 7 39.5nH 43.6nH 

 

Table 3.4: Parasitic inductance for the single power substrate. 

 

 As can be seen from Table 3.4 the measured TDR parasitic inductances match those from 

Q3D simulations.  For example, the parasitic inductances for the common source copper trace for the 

upper switching position which is shown as point 2 to point 3 in Figure 3.9 are 32nH and 31.75nH 

from TDR measurement and Q3D extraction, respectively.  The parasitic inductance for the current 

path for the lower switching position’s common source is low due to its unique current flow pattern 

shown in red color on Figure 3.9. Obviously parasitic inductance cancellation occurs for this 

common source current path as it wraps around the return drain current path in the middle.  When the 

current flows through point 5 to point 6 its parasitic inductance is reduced by approximately 25%. As 

the current passes through points 4 to 7, the parasitic inductance reduces from 60.7nH to 39.5nH. 

The 60.7nH parasitic inductance is calculated by adding the total parasitic inductances from points 4 

to 5, 5 to 6, and 6 to 7. As such, it is possible to mitigate the parasitic inductances by carefully 

considering the current return paths in power electronic modules.   
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3.8. Interconnected Power Substrates  

 The three power substrates are interconnected on a copper base plate.  The function of the 

base plate is to hold these three power substrates to enable them to be interconnected as well as to aid 

in heat spreading.  Two cases are considered. First, four 5-mil bond wires are used to perform 

interconnection between all the interconnection sites on the power substrates. Second, 12 5-mil bond 

wires are used to interconnect the common drain pad between the power substrates in addition to the 

interconnections made in the previous case.  In both cases the structure is first simulated by Q3D to 

extract the parasitic inductances.  Then, TDR is used to verify the simulated results.   

Figure 3.10 shows the three power substrates interconnected by bond wires in six locations.  

Figure 3.11 shows the colored current paths for the high-side and low-side switching positions.  The 

simulated and test points are labeled as points 1 through 6.   Table 3.5 lists the Q3D extracted and 

TDR measured parasitic inductances.  As the length of the current paths increases, the measured 

parasitic inductance increases as shown by the increase in parasitic inductance from 32nH from point 

1 to 2 to 56nH from points 1 to 6.    

 
 

Figure 3.10:  Interconnected power substrates on a base plate.   



 

38 

 
Figure 3.11: Simulated and test points for interconnected power substrates. 

 

 

Parasitic Inductance Test Structure Simulation 

1 to 2 32nH 29nH 

1 to 3 45nH 46nH 

1 to 4 62nH 72nH 

1 to 5 42nH 40nH 

1 to 6 56nH 73nH 

 

Table 3.5:  Parasitic inductances of the interconnected power substrates.    

 

 In the second case, 12 5-mil bond wires are used to interconnect the common drain pads 

between the power substrates in addition to the previous wire bond connections as shown in Figure 

3.12. Table 3.6 lists the parasitic inductances extracted by Q3D and measured by TDR measurements.  

As can be seen, the parasitic inductance reduces 7.4% to 24% from Q3D extraction compared to the 

decrease of 4% to 19% from TDR measurements.  
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Figure 3.12: Interconnected power substrates with interconnected common drain pads. 

 

Parasitic Inductance Test Structure Simulation 

1 to 2 30nH 22nH 

1 to 3 39nH 37nH 

1 to 4 55nH 61nH 

1 to 5 42nH 36nH 

1 to 6 59nH 68nH 

 

Table 3.6:  Parasitic inductances of interconnected power substrate shown in Figure 3.13. 

 

 In the layout for the high-side common source and low-side common drain pads, a reduction 

in parasitic inductance is observed. As can be seen from Table 3.6 the parasitic inductances for the 

common drain paths are 30nH (points 1-2), 40nH (points 1-3), and 60nH (points 1-4). So, when the 

high-side switching position is switched off, the current flows from the load terminals to the negative 

terminal through the low-side switching position.  The large differences of parasitic inductances as 
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the current flows through each power substrate may make the current sharing for the three power 

substrates a bit challenging.   

3.9.   Star Layout Design 

Conventional 3-phase inverter power module for electrical vehicles uses 6 Si IGBTs and 6 

diodes as the switching devices.  The Si IGBT has a dimension of 13.5mm×13.5mm while the Si 

diode has a dimension of 10mm × 10.0mm. The power rating for the module is 450A at 600V. 

Figure 3.13 shows the circuit topology of the 3-phase inverter. Most design layouts are for square or 

rectangular power substrates.  A star layout is proposed and is shown in Figure 3.14.    

 

Figure 3.13: Conventional IGBT switching position. 
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Figure 3.14: Star layout configuration for the module. 

 The advantage of this star layout is the equal distance from the power terminals to the emitter 

pad of each device. The layout is symmetrical. The circle on the left is the high-side switching 

position while the right circle is the low-side switching position.  The major disadvantage is the large 

area needed for the module. There are plenty of waste spaces on the power substrate as well.  The 

star layout yields an area of 152mm × 86mm compared to an area of 152 mm × 62mm for the 

conventional rectangular layout.  The disadvantage is the wasted area due to the round structure of 

the star layout configuration.  The gate wire bond from each device has to be over the common 

emitter electrode.  The difference in the areas of the positive and negative supply terminals may 

cause some electromagnetic interference (EMI) concerns.   

 The star layout module was simulated using Q3D.  Similar simulation parameters were used.  

Table 3.7 lists the Q3D simulated results. 
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 Switched-on Switched-off 

Parasitic inductance 12.7nH 14.8nH 

Resistance 0.11mΩ 0.11mΩ 

Calculated Conduction Loss 22.3W 22.3W 

 

Table 3.7: Simulation results of star layout design. 

 

 The main goal of the star layout design is to achieve the same parasitic influence for both the 

high-side and low-side switching positions. To achieve this, the positive and load terminals must be 

located in the center of the module.  However, in order to create a perfect symmetrical layout, the 

load terminal is moved from position X to the middle of the power module to achieve a similar 

current path from the high-side and low-side switching positions. In this way, the current is shared 

equally.  Table 3.7 lists the parasitic circuit elements and conduction losses for the star module.   As 

can be seen the parasitic inductances for the low-side and high-side switching positions are 14.8nH 

and 12.7nH, respectively.  The difference in parasitic inductance is only 3.1nH.  Table 3.8 lists the 

parasitic inductances for the conducting paths.  The parasitic inductance from the collector terminal 

to the IGBT 1, 2, 3 and diode 1, 2, 3 for the high-side switching position is 7nH.  However, the 

parasitic inductances from the load terminal to IGBT 4 and diode 4, IGBT5 and diode 5, or IGBT 6 

to diode 6 are all larger than 7nH. However, these parasitic inductances are much smaller than the 

parasitic inductance for the rectangular layout module. 
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 Parasitic Inductance 

High-side: collector terminal to  

IGBT 1,2,3 and diode 1,2,3 

7.1nH 

Low-side: Load terminal to IGBT 4 and diode 4  7.7nH 

Low-side: Load terminal to IGBT 5 and diode 5 10.6nH 

Low-side: Load terminal to IGBT 6 and diode 6 13.8nH 

 

Table 3.8: Simulation result for the niche of star layout design 

 

3.10. Fabrication of the power module 

The fabrication of the power substrate starts with the cleaning step. This is a very critical first 

step to ensure the quality and reliability of the power module. Copper is selected as the material for 

the base plate due to its high thermal conductivity. Direct bonded copper is selected as the power 

substrate.  The DBC power substrates and copper base plate are first cleaned in an ultrasonic bath 

using a 10% hydrochloric acid in water. After clean and dry, the power substrates and base plate are 

nickel plated immediately. The thickness of nickel must be in the range of 2-5µm. The plated nickel 

is to prevent the copper from oxidation during further processing as nickel oxidizes easily after 

exposure in the air environment. Nickel also increases the corrosion resistance of the DBC. The 

copper trace on the DBC power substrate is then patterned using a dry film process.  The nickel and 

copper are etched using a ferric chloride solution. Thus, current conducting paths are formed on the 

DBC substrate. Next, the power substrates are diced into individual pieces. Power semiconductor 

devices are attached onto the DBC power substrates using a fluxless and void-free soldering process. 

A vacuum furnace with an inert ambient is used to anneal the tin-silver-copper (SAC 405) solder 

alloy preforms. Figures 3.16 and 3.17 show the temperature profile and pressure profile for the solder 

attach process. As shown a peak temperature of 275°C is needed to achieve a successful attachment. 

The pressure is needed to yield void-free solder attach. Graphite fixture is used to hold the power 

semiconductor devices to prevent them from moving during the vacuum annealing process. Figure 
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3.18 shows the fixture design.  Next, the copper base plate is attached using a solder alloy that has a 

lower melting point than the die attach. After this, wire bonds are used to connect the power 

semiconductor devices to the copper traces. A 5mil bond wire is used to connect the gate electrodes 

while multiple 15 mil bond wires are used to connect the source electrodes of the power MOSFETs 

to the copper traces as shown in Figure 3.15.  Last but not least the assembly is placed inside a 

plastic module housing. Encapsulation is then dispensed and cured to protect the power module from 

environmental factors and handling.  Figure 3.19 shows the module after completion of the process.  

As can be seen, the module consists of 30 SiC MOSFETs and 18 SiC diodes.  

 

Figure 3.15:  A cross section view of the power module. 
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Figure 3.17: Temperature profile for die attachment of the power module. 

 

Figure 3.18: Pressure profile for die attachment of the power module. 
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Figure 3.19: AutoCAD fixture design of the power module. 

 

 

Figure 3.20:  Fabricated power module. 
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Chapter 4. Conclusion 

 Parasitic circuit elements are unavoidable in power electronic modules.  These parasitic 

circuit elements produce unwanted power losses and degrade the switching performance. The design 

and parasitic mitigation of power electronic module is investigated in this thesis research.  Both Q3D 

extraction software and TDR measurements were used to determine the parasitic inductance 

contributions of the current conduction paths and wire bonds.  The parasitic inductances from both 

the Q3D extractions and TDR measurements were very similar.  A half-bridge 1200V, 450A 

switching position using SiC devices was designed and fabricated.   The layout of this power module 

was constrained by the module housing.  The parasitic inductances of the power module substrates 

were measured by TDR, and compared to those simulated values by Q3D Extractor.  Due to the 

differences in the lengths of current paths for the power module substrates, the parasitic circuit 

elements for the three paralleled SiC power modules, each consisting of 10 SiC power MOSFETs 

and 9 SiC diodes, were different. 

In future work, the current sharing of individual power device in a power module should be 

investigated and their electrical characteristics due to the differences in the parasitic circuit elements 

should be investigated.  The star layout scheme, with further refinement, should be further 

investigated. 
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