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ABSTRACT 

The use of SiC-based martials in fabricating power semiconductor devices has shown 

more interest than conventional silicon-based. Its promising abilities to improve the performance 

of power electronic systems made it a valuable choice in building high power DC-DC 

converters. This thesis presents the design and implementation of a three-phase bidirectional DC-

DC Dual Active Bridge using SiC MOSFETs. The proposed circuit is first built in Matlab for 

simulation analysis. Then a phase shift modulation controller is designed in Simulink to test the 

simulation circuit. The controls are then integrated through an FPGA to test the prototype. 

Simulations and experimental results are evaluated to demonstrate the functionality and 

performance of the proposed circuit.  
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CHAPTER 1 

Introduction 

1. Background 

1.1.1. History of Converters 

Switching converters may have been introduced to the market in the 1950s, but their 

applications were limited due to the high costs of power switching transistors at the time. 

Starting in the 1970s, semiconductor devices such as MOSFETs (Metal-Oxide-Semiconductor-

Field-Effect Transistor) and IGBTs (Insulated Gate Bipolar Transistor) have become more 

available and reliable. This led the switching converters to become more prevalent in power 

applications [1]. The basic circuit of a typical bidirectional dc-dc converter will include a 

capacitor, inductor, diode and a switching transistor which allow the power to flow in both 

directions. The order these parts are placed in the circuit makes a topology. However, most of 

dc-dc converters can be derived from buck or boost converter which are the simplest topologies 

of a bidirectional converters [1].   

1.1.2. State-of- the-Art Bidirectional DC-DC Converters 

The terminology bidirectional emphasizes that there are two methods of operation that 

these converters go through considering the difference of voltage amplitude on each side of the 

converter. To clarify, Fig. 1 shows the basic mode operation of all bidirectional dc-dc converters.   
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Fig. 1.1. Basic structure of bidirectional dc-dc converter. 

 

The first mode of operation is called boost mode or step up mode where a low voltage is fed on 

the low voltage side (LV) and then stepped up based on the ratio of the conversion to a higher 

voltage on the high voltage side (HV). The second mode of operation is called a buck mode or 

step down mode where a high voltage amplitude is stepped down to match an amplitude of low 

voltage application. The converter has a forward power flow or backward power flow based on 

the current conditions as follows: 

 Forward power flow  i1<0, i2>0 

 Backward power flow i1>0, i2<0 

1.1.3. Non-isolated Bidirectional DC-DC Converters 

The dc-dc converters have shown how they can be advantageous for a variety of reasons 

in a variety of applications compare to other converters. With all the different topologies 

discovered, dc-dc converters are categorized into two types, non-isolated and isolated converter 

[2-23].   
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In the Non-isolated bidirectional dc-dc converters, the input and the output usually have a 

common ground unlike the isolated converters in which these two are electrically separated. 

Buck converter, boost converter, buck-boost converter, Cúk converter, and full-bridge converter 

are the five topologies that are common non-isolated converter. But only the buck and the boost 

converter are considered to be the basic topologies. The full-bridge is derived from the buck 

converter whereas both the Cúk and buck-boost converters are a combination of the buck and 

boost converters [24]. These converters are sometime used as unidirectional converters either to 

step up or step down the voltage. This is done by replacing the controllable switches on the 

configuration to diodes [25].  

1.1.4. Isolated Bidirectional DC-DC Converters 

Isolation is usually provided by using a high frequency transformer where the input and 

output of the converter are electrically separated. Having isolation will assist in noise reduction, 

help in personnel safety, and provides protection to the system due to galvanic isolation [25]. 

Topologies of the isolated dc-dc converter are being investigated and new ones are proposed 

based on old topologies structure. These topologies are paired into groups based on the 

operational aspect. However, there are two basic topologies that most of the isolated families fall 

into, voltage source converter and a current source converter which are tied together by a high 

frequency transformer. As shown in Fig.  2 the voltage source is paired with a current source to 

form a bidirectional flow to allow smooth power transfer. For instance, when having a voltage 

source on the LV, a current source converter should be placed on the HV and vice versa. The HV 

side or the LV side can use either an inverter or a rectifier depends on the mode of operation 

[26].   
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Fig. 1.2. The two basic configurations of isolated bidirectional dc-dc converter. 

 

Each inverter or rectifier block can be in a form of voltage source or a current source converter. 

There are three basic structures that make a voltage source or a current source converter. These 

are the full-bridge, half-bridge and push-pull structure. The basic three topologies of the current 

source can be achieved by replacing the parallel capacitor to the dc bus in a voltage source 

structure with an inductor that placed in series with the dc bus. In Fig. 3 is shown the three basic 

voltage source converters where (a)full bridge, (b) half-bridge and (c) push-pull whereas Fig. 4 

shows the same structure but in a current source mode [26].    

LV 

H

V 

H

V 

LV 
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Fig. 1.3. Voltage source converters (a) Full-bridge, (b) Half-bridge, (c) Push-pull.  

 

 

Fig. 1.4. Current source converters (a) Full-bridge, (b) Half-bridge, (c) Push-pull.  

 

 

 

 

(a) 

(a) 

(b) 

(b) 

(c) 

(c) 
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1.2. Dual Active Bridge Converters  

The Dual Active Bridge (DAB) converter family is an isolated bidirectional dc-dc converter 

that consists of two inverters, single or three-phase, which are tied together by a high frequency 

transformer. Their structure could consist of either half-bridge or full-bridge topology and 

usually is a symmetrical configuration. Having a symmetrical structure enables the DAB transfer 

power smoother than other isolated dc-dc converters. The DAB family has attractive features 

which make them highly suitable for high power applications. Bidirectional power flow, high 

power density, isolation, and low component stress when zero-voltage switching are some of 

these features [27], [28], [29]. These structures also perform at high frequencies which decrease 

the harmonic content; leading to less power quality issues. Using one power converter to support 

a bidirectional power flow would be more preferable for many applications than two converters 

(one for each direction). Using one power converter enables the systems to be smaller in size, 

lower in weight and more cost effective [30].  

1.2.1. Single-phase Dual Active Bridge 

The single-phase DAB was first introduced in the 1980s. The topology consists of two 

inverters connected together by a transformer. The inverters could be in a form of half-bridge or 

full-bridge topology as shown in Fig. 5.  The working operation of this structure is simple. The 

input voltage is converted into a high frequency square wave AC voltage in the first inverter 

which is then converted back by the second inverter into DC voltage after it passes through a 

transformer. The high frequency transformer not only provides galvanic isolation to the system 

but also is used as an energy storage component. The power flow is controlled by using a phase 

shift modulation. In each inverter the bridges are switched on at 50% duty cycle with the bridges 
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legs phase shifted by 120 degrees. The inverters on each side of the transformer are also phase 

shifted to determine the direction of the power flow.  The power flow depends on which bridge 

has leading or lagging power [31].  

 
Fig. 1.5. Single-phase DAB full-bridge topology. 

 

 

1.2.2. Three-phase Dual Active Bridge   

Another topology of the DAB family is the three-phase structure. The three-phase DAB 

circuit consists of two three-phase inverters that are tied together by a three-phase transformer as 

shown in Fig.  6. Despite the fact that the single-phase is considered to be more dominant in 

research, the three-phase is poised to become more utilized. Unlike the single-phase, using three-

phase transformer leads to better apparent power thus a higher power density is attainable [32]. 

Similar to the single phase, the upper and bottom switch in the three phase leg works at 

complementary 50% duty cycle. In each inverter, the legs are phase shifted by 120 degrees. Also, 

the inverters on each side of the transformer are phase shifted to control the direction and the 

amount of power flow [32].  
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Fig. 1.6. Three-phase DAB topology. 

 

 

1.2.3. Applications of  bidirectional DC-DC converters   

The use of DAB dc-dc converters has been increasing as the demand for bidirectional 

power flow with high efficiency is preferred in high voltage direct current (HVDC) transmission 

systems as well as battery application systems.  Uninterruptible power supplies (UPS), battery 

management systems, renewably energy systems and auxiliary power supplies for hybrid electric 

vehicles and fuel cell vehicles are some of the applications that also use the DAB family to 

achieve high power density with high efficiency. For instance, energy management systems 

prefer the combination of bidirectional dc-dc convertor along with an energy storage due to its 

promising advantages. Having these two in one systems will not only improve the efficiency but 

will also have a huge impact on the size and the cost of the system [26].  

In the hybrid electric vehicle (HEV), there are two suggested systems. One that works by 

only using an energy storage device and the second system that uses energy storage along with a 

bidirectional dc-dc converter as shown in Fig. 1.7. In both systems an electric generator is used 

to supply power to the motor drive and to charge the batteries. In the system where there is not a 
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dc-dc converter used, a high voltage battery is needed to match the output of the generator and 

the rated voltage of the inverter that supplies the motor drive. In the other system a low voltage 

battery will do the job and it will only be used during startup and acceleration. The second 

system may require more parts but it is considered to be more efficient due to its capabilities. 

The same concept applies for fuel cell vehicles (FCV), an ultra-capacitor bank that matches the 

fuel cell stack voltage is used when the system lacks a bidirectional dc-dc converter whereas a 

low voltage battery is used when the dc-dc converter is present[26].  

 

Fig. 1.7. HEV system (a) without dc-dc converter (b) with dc-dc converter. 

 

UPS’s are used when in need for backup to a system and to prevent loss of data. Many 

studies have shown that typical UPS uses an isolated ac-dc converter for battery charging and a 

dc-ac inverter to supply the grid. This process would require double conversion and thus lower 

efficiency. However, using a bidirectional dc-dc converter will enable the UPS to charge the 

batteries during normal mode and reverse power flow when the systems needs backup [33].    
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Renewable energy sources have become more popular even though they contribute a 

small share of energy production.  Their usage is depended on their cost and availability. Since 

oil and natural gas prices have increased tremendously the usage of different energy sources 

became an attractive option to look into [34]. In any system, achieving high power density with 

high efficiency is the target of today’s industry. However with renewable energy there is always 

the concern of power fluctuation due to nature’s call. Thus, energy storage devices are used in 

these systems to allow a smoother power flow to the load and to reduce the fluctuation in the 

system [25]. In the presence of energy storage in a system, a bidirectional power flow and 

flexible controls are required and a good choice to accomplish that is by using a bidirectional dc-

dc converters.  In connecting AC systems to a renewable power source, the DAB family was 

considered the next generation’s choice in having high efficiency as high as %99 [35]. Fig. 7 

illustrate the structure of typical photovoltaic (PV) system. A bidirectional dc-dc converter is 

present in the system to ensure a stable bus voltage and to charge the battery when needed. The 

battery size may vary depends on the required power level. Having an energy storage connected 

to the grid would not only provide voltage support but also help in grid stabilization, load 

shifting, reliability enhancement [25].  

 

 Fig. 1.8. Structure of PV power system connected to ac grid.  
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1.3. Objective  

The objective of this project is to investigate the benefits of three-phase bidirectional dc-dc 

dual active bridge converter while using a silicon carbide MOSFET. After reading this, the 

readers should have a clear understanding of the work done in this thesis from modeling and 

simulations to designing and implementation of the prototype. The development of the entire 

process can be seen through the flow chart in Fig. 1.9. 

Start

Research the 

Topology

Develop the 

controls in 

Simulink

Develop the 

circuit in 

Matlab

Simulate the 

circuit with the 

designed 

controls

Are results 

as expected?

Make controls 

compatible 

Develop the 

Prototype

Test Prototype

Are results 

as expected?

End

No No

NoNo

Yes

Yes

 

Fig. 1.9. Flow chart diagram of the project. 
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Each color in the flow chart represents a stage that was taken to accomplish this thesis. The first 

stage colored in blue focuses on the research and development of the circuit topology on a 

simulation program. The developments of the controls were also done in the same stage. The last 

step of stage one is to test the developed circuitry with the controls and see whether the results 

are as expected. The next stage colored in gray covers the design and implementation of the 

prototype. First thing in this stage is making the controls compatible to be used to test the 

prototype. After that, the prototype is tested and the results are checked and compared to 

simulation to confirm functionally of the prototype and demonstrates the benefits of the proposed 

three-phase DAB circuit with SiC devices.  The chapters of this thesis are arranged to follow the 

flow chart. Chapter 1 will target the background of DC-DC converters and the motivation for this 

work. Chapter 2 outlines the design of the circuitry, controls, simulation testing and results. 

Chapter 3 gives the real world implementation of the design.  Chapter 4 targets the experimental 

results and discussion. Chapter 5 provides conclusion found during this process and will also 

cover some insight for future work to improve the design.   
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CHAPTER 2 

Modeling and Simulation 

2.1. Introduction  

Simulation is a powerful tool especially for power electronic designers. It is the first step that 

designers use before constructing a physical power electronic application. Not only does it save 

the designer time and effort but it is cost effective. Using simulation software gives the 

opportunity for a fast response and feedback. Thereby allowing users to intervene when the 

system has any error and fix it or investigate different options all before building the real one. 

Once the designer is satisfied with the simulation results, prototyping of the system can begin.  

Simulation is a good way to verify the concept and demonstrate the expected behavior of the 

design even though the prototype results may not match the simulation exactly due to some real 

losses.     

2.2. Designing the circuit model 

The circuit of the three-phase DAB was constructed in simulation software called 

Matlab/Simulink. Using the SimPowerSystems block-set, components of the circuitry were 

obtained. The major components are a diode, capacitor, resistor, inductor, ideal switch and linear 

transformer. There are also the current measurement blocks, voltage measurement blocks and the 

output scopes. As mentioned before, the three-phase dc-dc DAB model consists of two three-

phase inverters connected together by a linear transformer. The input power supply is a constant 

DC voltage source and the output is also considered a DC voltage source that is smoothed by a 

capacitor. Fig.  2.1 shows the three-phase converter model designed in Matlab.  



14 

 

 

Fig. 2.1. Three-phase DAB model structure. 
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2.3. Controls 

There are many ways to control a three-phase DAB but the working principle is always the 

same. In DAB topologies the switches usually activate at 50% duty cycle with a constant speed. 

Thus the two switches in one bridge will generate identical output. The output of one bridge will 

then be phase shifted from the previous bridge by 120 degrees. The energy will flow from the 

low voltage side to the high voltage side when the converter is in a boosting mode. The energy 

will reverse the direction when in buck mode. The energy flow can be controlled through the 

phase shift angle between the two inverters. The transformer will not only provide isolation to 

the topology but will also serve as energy storage using its leakage inductance. Using the phase 

shift modulation scheme on the DAB will enable the converter to operate under zero voltage 

switching conditions. However, the topology will undergo from light switching when operating 

at light loads.    

In order for the controls that are designed for the simulation to be used to test the prototype, 

two frequencies were vital to know. The first one is the desired frequency. The second frequency 

is the clock cycle frequency of the field-programmable gate array (FPGA). Considering that the 

switches are made of SiC and the system also uses high frequency transformer, the controls 

frequency is chosen to be high. Any system that works with high frequencies will have a 

reduction in the harmonic content, leading to less power quality issues as well as greater power 

density. Three desired high frequency were chosen to test the simulation profile and the 

prototype. These frequencies are 100 KHz, 200 KHz, 300 KHz, and the clock cycle of the FPGA 

is 50MHz. In the controls, the chosen frequency is generated in the form of an integer multiple of 

the clock cycle. This is done by using a counter to count up one step per clock cycle. Pulses of 

desired length are then generated based on that timing. The signal is then shifted 120 degrees for 
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the second bridge then another 120 degrees shift between the second and the third bridge. Also, a 

phase angle is introduced to the controls to control the amount and the direction of the power 

flow. Calculations of the respected desired frequencies are carried out next. 

2.3.1. 100 KHz  

First the time is calculated. 

𝑇 =
1

𝑓
=

1

100𝐾𝐻𝑧
= 1𝑒−5      (2.1) 

Then the counts per cycle is determined using the equation, 

T

TClock cycle
=

1e−5

2e−8 = 500 coutns     (2.2) 

Next step is to choose a dead time, were switches are OFF, to prevent shoot-through. 14 counts 

were chosen for the 100 KHz case. Finding when the switches are on at zero phase-shift is the 

next step considering the counts and dead-time. After that the results are shifted by 120 degrees 

for the second leg on the three-phase inverter, then shifted from that by120 degrees for the third 

leg bridge as follow, 

At zero phase-shift, the switches 1 and 2 are on when, 

1≤ON≤236 

250≤ON≤486 
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At 120° phase shift, switches 3 and 4 are on when 

168≤ON≤403 

ON≥417 

ON≤153 

At -120° phase shift, switches 5 and 6 are on when 

ON≥334 

ON≤69 

83≤ON≤319 

These ranges are presented in the control as a logic gates such as AND or OR gates. Fig.  2.2 

shows the full Simulink model for the 100 kHz controls. Fig. 2.3 shows a close look of the 

controls for the first bridge on both sides of the transformer (switches 1, 2, 1’, and2’). It can be 

seen per the Fig. 2.3 that the control consists of a counter, a subtraction, an addition, an 

operational, a logical element, switches, and constant blocks.  
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Fig. 2.2. Simulink model for the 100 kHz three-phase controls. 



19 

 

 

Fig. 2.3. Simulink control schematic for one leg of the three-phase inverter at 100 kHz. 

2.3.2. 200 KHz 

As aforementioned, the DAB family is chosen due to its ability to provide high power 

density with high speed. The 200 KHz and 300 KHz are built to see the system performance 

when increasing the frequency. Same as the 100 KHz, calculation starts by determining the time 

to obtain the number of counts. This time the dead time is chosen to be 5 counts since the 

switching device has low switching losses. 
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𝑇 =
1

𝑓
=

1

200𝐾𝐻𝑧
= 5𝑒−6𝑠   (2.3) 

 

Then the counts per cycle are determined using the following equation, 

T

TClock cycle
=

5e−6

2e−8
= 250 coutns    (2.4) 

Finding when the switches are on at zero phase-shift is the next step considering the counts 

and dead-time. Fig. 2.4 shows a close look of the controls for the first bridge on both sides of the 

transformer (switches 1, 2, 1’, and2’). 

At zero phase-shift, the switches 1 and 2 are on when, 

1≤ON≤120 

125≤ON≤245 

At 120° phase shift, switches 3 and 4 are on when 

84≤ON≤203 

ON≥208 

ON≤78 

At -120° phase shift, switches 5 and 6 are on when 

ON≥168 

ON≤37 

42≤ON≤162 
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Fig. 2.4. Simulink control schematic for one leg of the three-phase inverter at 200 kHz. 

 

2.3.3. 300 KHz Switching Function 

A switching frequency of 300 KHz was chosen in case the transformer frequency range is 

suitable for over 200 KHz. The Simulink structure remains similar to the previous derivation.  

𝑇 =
1

𝑓
=

1

300𝐾𝐻𝑧
= 3.333𝑒−6𝑠    (2.5) 
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Then determining the counts per cycle using the equation, 

T

TClock cycle
=

3.333e−6

2e−8
= 166.667 ≈ 168 coutns     (2.6) 

 

At zero phase-shift, the switches 1 and 2 are on when, 

1≤ON≤79 

84≤ON≤163 

At 120° phase shift, switches 3 and 4 are on when 

57≤ON≤135 

ON≥140 

ON≤51 

At -120° phase shift, switches 5 and 6 are on when 

ON≥113 

ON≤23 

28≤ON≤107 
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Fig. 2.5. Simulink control schematic for one leg of the three-phase inverter at 300 KHz. 

Functionality of the controls were tested and approved.  Fig. 2.6 shows the pulse signal going 

to switches 1, 2, 3, 4, 5, and 6. Notice the shifting of the signal on 3, 4, 5, and 6 from the signals 

applied to the switches 1 and 2. Fig. 2.7 and Fig. 2.8 focus on the first bridge in the two inverters. 

At zero degrees both inverters are in phase but when changing the phase angle to 45 degrees for 

example, the second bridge shifts from the first bridge. This could be leading or lagging 

depending on the desired direction of the power flow.  
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Fig. 2.6. Switches 1,2,3,4,5,6. 
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Fig. 2.7. Switches 1, 2, 1’, and 2’ in phase at 0 degrees. 
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Fig. 2.8.  Switches 1, 2, 1’, 2’ phase shifted at 45 degrees. 
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CHAPTER 3 

Circuit Layout Design and Prototyping 

3.1. Introduction  

This chapter explores the process of designing and building the prototype. There are 

factors that need to be looked at when making a prototype. The power level that this prototype 

can be tested at is the first factor. Next is the components selection that drives the SiC MOSFET 

and withstands current limits. The last factor to consider in prototyping design and construction 

is the budget, how much creating the entire prototype is going to cost.   

3.2. Components selection 

Recently, silicon carbide (SiC) material have allowed the industry to fabricate smaller, 

faster, and more efficient power semiconductor devices compared to silicon (Si) [36]. Some of 

these devices include power diode, thyristor, power MOSFET, and IGBT. This come an 

advantage when building power electronic systems.   

Using surface mount devise (SMD) adds another advantage when constructing printed 

circuit board (PCB) projects. This section will target the parts used to build the three phase dual 

active bridge on a PCB and discusses the reason behind selected parts. 

3.2.1.  SiC MOSFET     

For this project a latest version of SiC MOSFET manufactured by Cree is used. As 

mentioned before, SiC devices have numerous advantages. Frist, the SiC MOSFET performs as a 

fast switching speed which leads to less switching losses. Also, it has the ability to block high 
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voltages with low RDS(on). These capabilities results in higher system efficiency and increase the 

system switching frequency. Having the system switch at a higher frequency decreases the 

harmonic content resulting in less power quality issues. Lastly, SiC MOSFET can operate at high 

temperature which reduces cooling requirements. It is qualified to be used in building 

applications that use auxiliary power supplies, solar Inverters, high-frequency applications or 

high voltage DC/DC converters which is the target of this project.  

3.2.2.  Gate Driver 

Finding the right gate driver depends on the specification of the chosen MOSFET. The 

output of the gate driver should be greater than or equal to the threshold voltage (VGS(th))  of the 

desired MOSFET. This gate drive, which designed by IXYS, operates from 4.5V to 35V which 

is enough to drive the 1200V SiC MOSFET used in this project. It has up to 9A peak of output 

current with low supply current. Also, it has the ability to disable output under faults with low 

propagation delay time. Other features include low output supply, matched rise and fall times, 

and ability to withstand heat up to 125° C. overall, IXDN406SI gate drive can drive any 

MOSFET to minimum switching time and maximum frequency limits. Fig. 3.1 shows the gate 

driver connection circuitry.  

 

Fig. 3.1. Gate driver connection circuitry [37]. 
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3.2.3.  Optocoupler Circuit 

Optocouplers, also called opto-isolators, are devices that are used to deliver electric 

signals between two circuits just like the operation of a switch. It could also be used to send 

feedback signals when used for analog devices. It provides isolation and protects circuit’s 

components. The way this device work is quite simple. As can be seen in Fig. 3.2 It consists of  a 

light emitting diode (LED) on the input side that produce current and a phototransistor at the 

output that conducts the current and transfers the signal.  

 

Fig. 3.2. Inside circuitry of an optocoupler [38]. 

The ACPL-4800-300E optocoupler designed by Avago Technologies was found suitable for this 

particular project due to some of the advantages that carries. It provides logic-compatible 

waveforms which exclude the use of extra devices to construct properly shaped waves. This 

device also has totem pole output therefore pull-up resistors are no longer required to drive either 

power modules or gate drives. This particular optocoupler activates at 4.5 volts and works up to 

20 Volts. The recommended connection circuitry for this optocoupler is shown in Fig.  3.3. 
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Fig. 3.3. Connection circuitry for ACPL-4800-300E opto-coupler [38]. 

 

3.2.4.  DC-DC Convertors 

There are two dc-dc converters used in this project. These are used to provide isolated 

power to the optocoupler and the gate driver. Both converters are manufactured by Recom. 

These RP series have up to 5.2KV isolated voltage rating with 1 W power and dual output 

signals. The RP-1205D provides unregulated 1W with input voltage of 12V and 5V output. The 

RP-1212D also provides unregulated 1W but with input voltage of 12V and +/- 12V output.  

Table 3.1 shows the specifications for these converters.   

Table. 3.1. Specifications of the converters. 

Part Number 

SIP7 

Input Voltage 

(VDC) 

Output 

Voltage 

(VDC) 

Output 

current (mA) 

Efficiency 

(%) 

Max 

Capacitive 

Load 

RP-1205D 12 ±5 ±100 74-76 ±470µF 

RP-1212D 12 ±12 ±42 79-82 ±220µF 
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3.2.5.  SMD Devices  

Surface mount devices (SMDs) have shown promising outcomes in recent technology 

applications and products compared to through-hole devices. These devices have helped in 

reducing the size of components and board layouts. Also, using SMDs help to block excessive 

inductance and capacitance that are freeloading around a circuit. SMDs require less holes, and 

smaller board size when building a circuit board. Moreover, these devices can withstand 

mechanical conditions such as shaking and vibrations. These factors have made SMDs become a 

more profitable and practical choice than through-hole devices. For this project all the devices 

including capacitors, resistors, diode, and integrated circuit chips are surface mount. The case 

size usually depends on the value and rating of the part but the general shape would be 

something like Fig. 3.4.   

 

 

Fig. 3.4. General shape of capacitor, resistor and diode SMDs. 

 

SMDs used in this project include the capacitors which are multilayer ceramic chip 

manufactured by Kemet. Its voltage can range from 4 volts up to 50 volts. Some of these 

capacitors were used as bypass and some were used for decoupling but the main reason for using 

ceramic capacitors is its ability to perform at a high frequencies. The zener diode manufactured 
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by Diode Inc. is used to clamp the output voltage of a dc-dc convertor used in the circuit. 

However, the resistors are a standard thick film chip manufactured by Vishay. The other SMD 

parts used were an optocoupler build by Avago Technologies Inc, a gate driver manufactured by 

IXYS- Corporation and the PL140 planar transformer manufactured by Coilcraft.   

3.2.6. Transformer 

There are some factors to be considered when choosing a transformer. Operation at high 

frequency, skin effect and proximity effect are taken into account. These factors are achieved in 

different design methods, one of which is the planar transformers. Planar transformers have 

several types. There are thick-film based, low temperature co-fired ceramic (LTCC) based, thin-

film based, and PCB based which is used in this project due to its advantages.  Low cost, 

frequency and the power range were the lead factors in choosing this method. The typical 

frequency for this type of planar transformers could range from 20 KHz to 2.0 MHz and runs at 

wide power rating, from 1.0 W to 5.0 KW [39]. Three single-phase planar transformers were 

used in this project. The transformer has turn ratio of 11:1 or 11:2 depending on how it is 

connected. Its frequency ranges from 200 KHz to 500 KHz at 140 Watts rated power.  

3.2.7.  Heat Sink 

Heat sinks are devices that are used in cooling power semiconductor devices. These 

power semiconductor devices cannot handle heat generated by it therefor an aluminum heat sink 

is used for that matter [24]. The junction temperature of the device must be known in order to 

pick the right heat sink. Also, the thermal resistance between the junction and the ambient plays 

a big role in choosing the size of the heat sink. The thermal resistor can be calculated using 

equation 3.1.  
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                                     𝑅𝜃𝑗𝑎 = 𝑅𝜃𝑗𝑐 + 𝑅𝜃𝑐𝑎 + 𝑅𝜃𝑠𝑎     (3.1) 

where, 

 𝑅𝜃𝑗𝑐 is the thermal resistance between the junction and the case of the power device.  

𝑅𝜃𝑐𝑎 is the thermal resistance between the case of the power device and the heat sink part.  

𝑅𝜃𝑠𝑎 is the thermal resistance between the heat sink device and the ambient. 

Using these resistors and the power dissipation of the power device, the SiC MOSFET, the 

junction temperature can be derived from the equivalent circuit diagram in Fig.  3.5 as follows: 

                              𝑇𝑗 = 𝑃𝑑(𝑅𝜃𝑗𝑐 + 𝑅𝜃𝑐𝑎 + 𝑅𝜃𝑠𝑎) +  𝑇𝑎   (3.2) 

 

Fig. 3.5. Equivalent circuit of heat flow based on thermal resistance. 

Some of these values can be obtained from the power device data sheet while some need to be 

calculated. Table 3.2 shows the values of the known and calculated thermal temperatures and 

resistance. Rθca is calculated depends on the thermal compound that will be used to seal the area 
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between the device and the heat sink. These thermal resistances are computed using equations 

3.3 and 3.4.    

RθSA =
TJ−TA

PD
− (RθJC + RθCS)    (3.3) 

RθCS =
1

Rθ∗ A
      (3.4) 

 

Table. 3.2. Temperatures and thermal resistance for the SiC MOSFET 

Definition Symbol Value Unit 

Junction temperature Tj 150°C C 

Ambient temperature TA 40°C C 

Power dissipation PD 25W W 

Junction to case 

thermal resistance 
RθJC 1° C/W 

Thermal paste 

thermal resistance 
Rθ 350000 W/m

2
°C 

Transistor Area A 3.276e-4 m
2 

Case to sink thermal 

resistance 
RθCS 0.008° C/W 

Sink to ambient 

thermal resistance 
RθSA 3.39° C/W 

 

3.3.  Layout Design and Prototyping 

3.3.1. Introduction 

 The next step is to develop a prototype to demonstrate the benefits of the proposed three-

phase DAB circuit. This starts by designing and manufacturing a printed circuit board (PCB). 

PCBs are considered to be a better method for constructing a circuit on a breadboard. It is easy to 

make mistakes connecting components in breadboards. Unlike breadboards, PCBs eliminate 

making these mistakes unless the user made the wrong connections in the schematic. Typical 

PCB consists of conductive and non-conductive layers. The conductive layer is made of copper 
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and fiberglass for the non-conductive layer. The board can be a single sided layer, double sided 

layer, or multilayers. The copper layer forms the traces that connect the circuit together while the 

fiberglass provides isolation between the traces.  

3.3.2. Printed Circuit Board (PCB) 

The first step in designing PCBs is choosing design software. CadSoft EAGLE PCB 

Design Software is used in this project. The circuit is first constructed on a schematic editor 

sheet as shown in Fig.  3.6. The layout tool is then used to place the parts in the desired location 

and connect the traces based on the schematic connections. The next step after drawing the 

schematics and finish the layout is to check for any design rules errors. Once the design is 

finalized and ready to be sent out for manufacturing, the PCB software generates files that 

describe each layer. This would include the dimensions, drill holes locations, pads, and vias.       

 
Fig. 3.6. The driver circuit for one SiC MOSFET. 
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As can be seen in Fig.  3.6, the driver circuit for one MOSFET consists of a gate driver, an opto-

isolator, and two isolated DC-DC converters. The power of the circuitry is provided by the two 

dc-dc converters. One converter provides positive bias and the other provides the negative bias. 

The output of both converters is connected together in series and the common pin is referenced 

to the source of the MOSFET. Thus, they control the gate pulse positive and negative voltage. 

The negative voltage created from the converters is used as a reference ground for the gate driver 

and the optoisolator. The diode, placed at the common terminal, is used to clamp the voltage 

incase the voltage exceeds the maximum ratings of the optoisolator. Once the design is finalized 

for one switch, it is a matter of replicating the circuitry to form a half bridge board. Fig.  3.8 

shows the schematic design for a half bridge circuit. Since the transformers are also SMD, PCBs 

are made for them. Fig.  3.7 shows the schematic design for a single phase planar transformer. 

  

Fig. 3.7. The schematic design for a single phase planar transformer. 
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Fig. 3.8. The board schematic for a half bridge circuit. 
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After finishing the schematic design, finishing the board layout is next. Due to the size 

limitations that the CadSoft EAGLE PCB Design Software has, a half bridge is made in one. 

There are a couple of questions that the designer must take under consideration before the design 

of any PCB. Traces raise most of these questions. Some of these questions would include the 

traces length, trace width, number of traces, and the distance between traces. These could be 

answered knowing the current expected to be carried in these traces, how much heat the trace can 

handle and the thickness of the copper board used. Over the years IPC curves were used to 

determine the relationship between the temperature rise and the current depending on some 

factors. Some of these are PCB size and thickness, number of traces carrying the current, trace 

separation, or pitch, presence or absence of the ground and/or power copper plane, and System 

cooling conditions[40]. For this project, the trace width was calculated using formulas from IPC-

2221 and the calculation was carried as follows:  

First, the Area is calculated:   

Area(mils2) =
Current(Amps)

K∗Tempreture rise(°C)b1/C              (3.8) 

Then, the Width is calculated:  

Width(mils) =
Area(mils2)

Thickness[oz]∗1.378[mils/oz]
    (3.9) 

Where k, b, and c are constants resulting from curve fitting to the IPC-2221 curves. But since 

there are two type of layers found on PCB design, internal layers and external layers, the 

variables k, b, c are defined as follow:   
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For IPC-2221 internal layers: k = 0.024, b = 0.44, c = 0.725  

For IPC-2221 external layers: k = 0.048, b = 0.44, c = 0.725  

Using copper board thickness of 1 oz. with the assumption of using the maximum current of the 

MOSFET, 17 Amps, the external layer was calculated and found to be 0.59 inches. Table 3.3 

shows the calculations of the required trace width. 

Table. 3.3.Trace width calculations. 

Current 17 Amps 

Thickness 1 oz/ft
2 

Required trace 

width 

15mm=0.59 inch 

Resistance 0.000857 Ohm 

Voltage drop 0.0146 Volts 

Power Loss 0.248 Watts 

Trace Length 1 inch 

 

After finishing the schematic design and calculating the required traces, the layout is then 

developed based on the desired space and location. Fig.  3.9 shows the board layout for a half 

bridge circuit. Since one board makes a half bridge, six boards are made to complete two three-

phase inverters and three PCB board are made for the planer transformer. Once the PCBs arrive 

the boards are populated and the final three-phase DAB topology is put together. Fig. 3.10 shows 

the final prototype. 
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Fig. 3.9. Board layout for a half bridge circuit. 

 

Fig. 3.10. Three-phase bidirectional dc-dc DAB prototype. 
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CHAPTER 4 

Results and Discussion 

4.1. Simulation  

4.1.1. Components Values  

In order to have simulation values close to the prototype results, values of the devices used 

are changed to datasheet values.  In simulations most of the devices behavior is ideal unless the 

values are changed to match a real device. This enables the designer to see the expected behavior 

of the prototype. This process begins by the ideal switch which represents the SiC switch in this 

prototype, the turn on resistance RDS(on) is changed to 160 mΩ. The other major part that needs 

change is the transformer. The magnetic and the leakage inductance are calculated by running 

two tests, open circuit and closed circuit test.  Using and LCR/ESR meter, both tests are taken 

across the high side (primary) and then reflected to secondary side (low) of the planer 

transformer used in this project. These theoretical calculations help determine the maximum 

limits for this transformer and provide simulation values. Equations 4.1-4.4 show these 

calculations at 100 KHz. The magnetizing resistance and inductance are then extracted from the 

total impedance. In the same way, the leakage resistance and inductance are obtained.  

                   𝑍ℎ𝑖𝑔ℎ 𝑠𝑖𝑑𝑒,𝑜𝑝𝑒𝑛 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑡𝑒𝑠𝑡 = 198.5∠89.12ͦ = 3.05 + 𝑗198.477 Ω     (4.1) 

                                                            𝐿𝑚 =
𝑗𝑥

2𝜋𝑓
= 316µ𝐻       (4.2) 

                                   𝑍ℎ𝑖𝑔ℎ 𝑠𝑖𝑑𝑒,𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑒𝑠𝑡 = 67∠50.91ͦ = 42.25 + 𝑗52 Ω         (4.3) 

                                                           𝐿𝑙 =
𝑗𝑥

2𝜋𝑓
= 89.35µ𝐻       (4.4) 
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4.1.2. Simulation Results 

As mentioned before the designed three-phase topology is run at constant speed with 

50% duty cycle using the phase shift modulation. Each leg of three-phase inverter is phase 

shifted by 120 degrees from the previous leg. There is also the phase angle that controls the 

power flow. Two constrains are taken during the simulation process. The first case targets the 

behavior of the model when placed in high voltage application such as the system presented in 

Fig.  4.1. The second case resembles the prototype scenario since the prototype is tested at low 

voltage level.  

 

Fig. 4.1. An example of HV renewable energy system.  
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During the first case a large load is used to symbolize the HVDC bus. Having a large load will 

affect the transformer ratio. Using the controls described in chapter 2, the simulation results of 

the output voltage with a large load at 20 volts input can be seen in Fig.  4.2.  

 
Fig. 4.2. Output dc voltage using high load.  

 

In the second case, the target is to track the current flow through the system in which is 

achieved by testing with a low load at the output. Evaluating the power flow is considered the 

most important aspect when testing the concept of any topology. When the system uses high load 

the current is really low and distorted. However, testing at a lower load enable the system to draw 

more current and produce less power distortions. These results are saved to be compared to the 

prototype results later. As mentioned in Chapter 2, there are three controls with different 

frequencies made for this project since the SiC MOSFET as well as the planer transformer 

operates at very high frequency. There are some advantages and disadvantages when using 

switching a system at high frequency. Using high frequencies may help in reducing the size of the 

passive components. Moreover, the harmonic content decrease which lead to less power quality 

issues. The switching losses on the other hand increases at high frequency which lead to having 
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less output power. A simulation comparison is taken between 100 KHz, 200 KHz and the 300 

KHz. The results shown in Table 4.1 and Table 4.2 demonstrate that point. The test is taken at 

lower power with different phase angle between the two bridges. The power rating at the 100 

KHz is higher than the 200 KHz and the 200 KHz power rating exceed the 300 KHz results. Also, 

the power increase when increasing the phase angle that controls the power flow direction. 

Table. 4.1. Comparison of output voltage, current, and power between 100 KHz and 200 KHz.  

Phase 

Angle 

Simulation at 100 KHz Simulation at 200 KHz 

Voltage (V) Current (A) Power (W) Voltage (V) Current (A) Power (W) 

-45 2.114 0.9611 2.032 -1.109 -0.5041 0.559 

-30 1.378 0.6263 0.863 -1.562 -0.7099 1.109 

-15 0.6009 0.2731 0.164 -1.94 -0.822 1.711 

0 2.772 1.26 3.493 1.039 0.4725 0.491 

15 3.269 1.486 4.585 1.941 0.8821 1.712 

30 3.24 1.47 4.763 2.114 0.9611 2.031 

45 3.126 1.421 4.442 2.119 0.9632 2.041 

 

Table. 4.2. Output voltage, current, and power at 300 KHz. 

Phase 

Angle 

Simulation at 300 KHz 

Voltage 

(V) 

Current 

(A) 

Power 

(W) 

-45 -1.311 -0.5959 0.781225 

-30 -0.7647 -0.3476 0.26581 

-15 -0.0993 -0.0451 0.004479 

0 0.55 0.2491 0.137005 

15 1.076 0.4891 0.526272 

30 1.464 0.6656 0.974438 

45 1.688 0.7625 1.2871 
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Fig. 4.3. Current at the secondary side of the transformer.  

 

Fig. 4.3 shows the three-phase transformer output current. At the peak point, the current is 120 

degrees phase shifted from the next one. Likewise, the voltage is stepped up based on the 

conversion ratio of the transformer and the output of Va is phase shifted by 120 degrees to form 

Vb then shifted again to form Vc. This can be seen in Fig. 4.4 below:  
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Fig. 4.4. Three-phase voltage at the secondary side of the transformer. 

 

 

 



47 

 

4.2. Bench  test set up and results 

4.2.1. Rapid Prototyping Environment 

Testing the prototype is the next step in finishing this project. Having rapid prototyping 

environment (RPE) helps in accomplish this.  RPE enables the designer to test the prototype 

using the same controls applied in simulations. Also, it eases the transition between different 

stages in the prototyping process which in this case changing the phase angle between the two 

inverters.  The RPE consists of the simulation program Matlab/Simulink that is then integrated 

with an FPGA using HDL coder.  The process starts by designing the controls on Simulink using 

HDL compatible blocks. Then, the FPGA integrates these codes and apply a test signal that 

matches the simulation’s frequency.  

 

Fig. 4.5. RPE setup. 
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4.2.2. Experimental Results  

This section covers the experimental results of the proposed DAB discussed in the last 

chapter. Considering that the prototype consists of two three-phase inverters and each inverter 

consists of three half-bridge boards tide together in parallel, testing each board for functionality 

before putting the whole system together is a vital step. This helps the ease of trouble shooting 

and avoids any delays when testing the entire system. Using a simplified version of the designed 

controls for the DAB, the output voltage of each half-bridge is shown in Fig. 4.4. After that, 

three half-bridges are tied together in parallel and tested by placing a three-phase resistance load 

at the output. Fig. 4.5 shows the output voltage of the two three-phase inverters. The phase shift 

between the bridges can be seen in those figures. The next test consists of one inverter and the 

high frequency planer transformer. Fig. 4.6 shows the output voltage of the transformer whereas 

Fig.  4.7 shows the simulation results at the same point in the circuit.  In Fig. 4.6, the red line 

represents the voltage and the green line represents the current measured at division of 10mV/A. 

 

 

 

 

 



49 

 

            

                            (a)                                                                         (b) 

           

                            (c)                                                                         (d) 

           

        (e)                                                                         (f) 

Fig. 4.6. Output voltage (a) board 1 (b) board 2 (c) board 3 (d) board 4 (e) board 5 (f) board 6. 
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Fig. 4.7. Three-phase output voltage of both inverters. 

 

Fig. 4.8. Prototype results of the output voltage ( in red) for an inverter with a transformer 

 

Fig. 4.9. Simulation results of the output voltage for an inverter with a transformer. 
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4.2.3.  Simulation vs experimental results 

The prototype has current limitations due to the low thickness of the copper boards. Thus 

the design is tested at low power level. Therefore, the full potential of the topology will not be 

achieved in this testing.  Fig. 4.8 to Fig. 4.13 shows the output voltage, in yellow, of the DAB 

while the output current is shown in green. Each figure is taken at a different phase angle. The 

phase angle control the direction of the power flow and determine when the DAB is in zero 

power transfer mode or in full power transfer mode. For instance, when the phase angle is zero, 

both inverters are working in phase with each other.  These graphs show the voltage and current 

are increasing as the phase angle increases until it reaches 90 degrees the values start to drop 

down. Table 4.3 illustrates the prototype behavior from zero degrees phase shift until 180 

degrees. The simulation also shares the same behavior despite the huge difference in the values 

between the simulation and the prototype. Evidently Table 4.4 shows the power at the output DC 

bus increase until a phase angle of 75 degrees then it starts to go down as the phase angle 

increases.  

 

Fig. 4.10. Experiment result at Zero phase angle          Fig. 4.11. Experiment result at 15 degrees. 

phase angle.                                                                                                                                   
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Fig. 4.12. Results at 30 degrees.     Fig. 4.13. Results at 45 degrees.                                                                                                                                                                                                            

 

Fig. 4.14. Results at 90 degrees.    Fig 4.15. Results at 105 degrees.  

 

 

 

 

 



53 

 

Table. 4.3. Experimental results of the prototype. 

Prototype results 

Phase 

angle 
Voltage(mV) Current(A) 

Power 

transfer(mW) 

0 380 0.249 94.62 

15 421 0.251 105.671 

30 433 0.265 114.745 

45 441 0.286 126.126 

60 475 0.321 152.475 

75 461 0.335 154.435 

90 441 0.325 143.325 

105 385 0.264 101.64 

120 381 0.307 116.967 

135 361 0.278 100.358 

150 338 0.267 90.246 

165 300 0.242 72.6 

180 271 0.241 65.311 

 

Table. 4.4. Experimental results of the simulations. 

Simulation results 

Phase 

Angle 
Voltage(mV) Current(A) 

Power 

transfer(mW) 

0 1.03 0.46 474 

15 1.47 0.6685 983 

30 1.799 0.8177 1471 

45 2.002 0.9099 1822 

60 2.132 0.9689 2066 

75 2.129 0.9679 2061 

90 1.957 0.8896 1741 

105 1.663 0.7557 1257 

120 1.254 0.5701 715 

135 0.717 0.3259 234 

150 0.21 0.0955 20 

165 -0.3559 -0.1636 58 

180 -0.888 -0.4039 359 
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4.2.4. Losses 

There are different types of power losses that can be seen in DAB. The switching losses 

of the MOSFET, the PCB copper losses, transformer losses and there is always the conduction 

loss.  Since SiC MOSFET and the planer transformer both switches at very high frequency, the 

losses are high despite the fact that a system with high frequency has less power quality issues. 

As mentioned in chapter 2, the output power is found to be less when the simulation topology is 

using the 200 KHz controls. The MOSFET also produce conduction loss since it has a forward 

voltage in the current conduction path. Looking at the three-phase DAB topology in Fig. 4.14 

and assuming that switches Q1, Q4, and Q5 are ON, the total resistance can be graphed as shown 

in Fig.  4.15. Where, 

 T: copper trace on half-bridge the PCB 

 Ron: turn on resistance for the SiC MOSFET 

 Rwire: The wires connecting the bridge to the transformer board.  

 RL: Leakage resistance of the transformer 

 XT: copper trace on the transformer PCB 

The PCB traces resistance is calculated using the trace length and width and some of the other 

resistances are found in the datasheet for each part. Table 4.5 shows the values of the each 

resistance. The total resistance is then calculated and the total loss, when these switches are on, is 

found to be 0.2V for each half-bridge board. 
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Table. 4.5. Resistance values. 

T1 3.74 mΩ 

T2 4.94 mΩ 

T3 5.18 mΩ 

T4 3.657 mΩ 

Ron 290 mΩ 

Rwire1 0.1 Ω 

XT1 4.01 mΩ 

RL 48.8 mΩ 

XT2 4.37 mΩ 

Rwire1-2 0.1 Ω 

  

 

 Fig. 4.16. Total resistance when switches Q1, Q4, and Q5 are ON. 
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Fig. 4.17. Total resistance when switches Q1, Q4, and Q5 are ON. 
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CHAPTER 5 

Conclusion and Future Work 

5.1 Conclusion 

The simulation and implementation of a three-phase bidirectional dc-dc dual active bridge 

converter using SiC switches has been presented. Switching converters may have been around 

for a long time but their applications were limited due to the high costs of the switching devices. 

Many studies have targeted the effects of changing the materials that goes into making the 

semiconductor devices to improve the performance of power electronic systems. Recently, the 

use of SiC material to fabricate power semiconductor devices have shown more interest than 

conventional silicon-based devices due to its promising abilities of  fast switching, operate at 

high voltages and has low losses. Many power applications requires bidirectional power flow 

which is one of the features of that the DAB converters has. High power density, isolation, and 

low component stress are other features that make the DAB topologies highly suitable for a 

variety of applications. The three-phase topology may not as popular as single-phase but can be 

more beneficial. Three-phase DAB show higher power destiny than single-phase due to the size 

of the transformer.  

The process of developing the simulation and the controls of the DAB are discussed in 

details in Chapter 2. The design of the PCB prototype and the components selection are covered 

in Chapter 3. Chapter 4 reviews the experimental results. The controls designed for the 

simulation is integrated through the FPGA to the test the prototype. Results show that the 

prototype shares the same behavior as the simulation circuit. The results do not match exactly 

considering the different kind of losses that is present. In the circuit simulations, the switches are 
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considered to be ideal since the control signal is going directly to the gate. On the other hand, the 

signal going to the MOSFET in the prototype has to go through passive devices which affect the 

output results. Overall, this work illustrates the benefits of the proposed three-phase DAB circuit 

with SiC devices. 

5.2 Future work  

Since the proposed topology is tested at low level, the next step is to alter the design that it 

could be tested at high voltage level. This modification will not only increase the output voltage 

level but will also reduce the losses. For the PCB, the thickness of the copper and the traces that 

carry power should be increased. This topology uses 1 oz/ft
2
 copper board in which can handle a 

current of 2.3 A. in order to operate up to the maximum current of the power MOSFET, the 

copper thickness is at best when the copper thickness is 5 oz/ft
2
. Having a high copper thickness 

will affect the width and length of the traces. Table 5.1 shows the calculations of the trace width 

and length. As can be seen the shorter the traces the less the resistance which lead to less power 

loss.   

Table. 5.1. Calculation of trace width. 

5 oz/ft 1 oz/ft 

Current 17 Amps Current 17 Amps 

Thickness 5 oz/ft
2
 Thickness 1 oz/ft

2
 

Required 

trace width 

2.99mm=0.0.117 

inch 

Required 

trace width 

15mm=0.59 

inch 

Resistance 0.000857 Ohm Resistance 0.000857 Ohm 

Voltage drop 0.0146 Volts 
Voltage 

drop 
0.0146 Volts 

Power Loss 0.248 Watts Power Loss 0.248 Watts 

Trace Length 1 inch 
Trace 

Length 
1 inch 
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Another way to reduce losses and increase voltage level is to make a power module of the design 

presented. Industries are already trying to perfect this. Cree made a three-phase module with SiC 

MOSFET that has a voltage ratting of 1.2 KV [41]. SiC capabilities of operating at high 

temperature and high frequency enables the industry to build smaller, lighter power modules that 

is more efficient than silicon-based material. Even though SiC materials have higher cost than Si 

materials, it makes any system more compact and less costly [42]. Also, research on high-power 

passive component is suggested to help in reducing the losses. Another step that could be taken 

would be to design a closed-loop control such that feedback is used to improve the performance 

of the three-phase DAB.  
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Appendix 

-- ------------------------------------------------------------- 

--  

-- File Name: 

hdl_prj\hdlsrc\Phase_Shift_Control_200kHz_Open_Loop\Phase_Shift_Control_200kHz_Open_

Loop.vhd 

-- Created: 2014-12-02 11:35:00 

--  

-- Generated by MATLAB 8.4 and HDL Coder 3.5 

--  

--  

-- ------------------------------------------------------------- 

-- Rate and Clocking Details 

-- ------------------------------------------------------------- 

-- Model base rate: 2e-08 

-- Target subsystem base rate: 2e-08 

--  

--  

-- Clock Enable  Sample Time 

-- ------------------------------------------------------------- 

-- ce_out        2e-08 

-- ------------------------------------------------------------- 

--  

--  

-- Output Signal                 Clock Enable  Sample Time 

-- ------------------------------------------------------------- 

-- S1                            ce_out        2e-08 

-- S2                            ce_out        2e-08 

-- S1_1                          ce_out        2e-08 

-- S2_1                          ce_out        2e-08 

-- S3                            ce_out        2e-08 

-- S4                            ce_out        2e-08 

-- S3_1                          ce_out        2e-08 

-- S4_1                          ce_out        2e-08 

-- S6                            ce_out        2e-08 

-- S5                            ce_out        2e-08 

-- S6_1                          ce_out        2e-08 

-- S5_1                          ce_out        2e-08 

-- ------------------------------------------------------------- 

--  

-- ------------------------------------------------------------- 

  

  

-- ------------------------------------------------------------- 
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--  

-- Module: Phase_Shift_Control_200kHz_Open_Loop 

-- Source Path: Phase_Shift_Control_200kHz_Open_Loop 

-- Hierarchy Level: 0 

--  

-- ------------------------------------------------------------- 

LIBRARY IEEE; 

USE IEEE.std_logic_1164.ALL; 

USE IEEE.numeric_std.ALL; 

  

ENTITY Phase_Shift_Control_200kHz_Open_Loop IS 

  PORT( clk                               :   IN    std_logic; 

        reset                             :   IN    std_logic; 

        clk_enable                        :   IN    std_logic; 

        ce_out                            :   OUT   std_logic; 

        S1                                :   OUT   std_logic; 

        S2                                :   OUT   std_logic; 

        S1_1                              :   OUT   std_logic; 

        S2_1                              :   OUT   std_logic; 

        S3                                :   OUT   std_logic; 

        S4                                :   OUT   std_logic; 

        S3_1                              :   OUT   std_logic; 

        S4_1                              :   OUT   std_logic; 

        S6                                :   OUT   std_logic; 

        S5                                :   OUT   std_logic; 

        S6_1                              :   OUT   std_logic; 

        S5_1                              :   OUT   std_logic 

        ); 

END Phase_Shift_Control_200kHz_Open_Loop; 

  

  

ARCHITECTURE rtl OF Phase_Shift_Control_200kHz_Open_Loop IS 

  

  -- Signals 

  SIGNAL enb                              : std_logic; 

  SIGNAL HDL_Counter4_out1                : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL HDL_Counter4_step_reg            : unsigned(15 DOWNTO 0);  -- ufix16 

  SIGNAL HDL_Counter4_stepreg             : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL HDL_Counter4_count               : unsigned(15 DOWNTO 0);  -- ufix16 

  SIGNAL Constant17_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL phi_out1                         : signed(15 DOWNTO 0);  -- int16 

  SIGNAL switch_compare_1                 : std_logic; 

  SIGNAL Gain_in0                         : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Gain_out1                        : signed(31 DOWNTO 0);  -- sfix32_En15 

  SIGNAL Zero_out1                        : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Zero_out1_dtc                    : signed(31 DOWNTO 0);  -- sfix32_En15 
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  SIGNAL Switch4_out1                     : signed(31 DOWNTO 0);  -- sfix32_En15 

  SIGNAL Subtract20_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract20_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract20_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator15_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator15_relop1     : std_logic; 

  SIGNAL Constant20_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract19_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract19_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract19_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator16_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator16_relop1     : std_logic; 

  SIGNAL Logical_Operator7_out1           : std_logic; 

  SIGNAL Constant18_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract17_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract17_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract17_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator12_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator12_relop1     : std_logic; 

  SIGNAL Constant1_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract1_add_cast               : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract1_add_cast_1             : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract1_out1                   : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator4_1_cast      : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator4_relop1      : std_logic; 

  SIGNAL Logical_Operator6_out1           : std_logic; 

  SIGNAL Constant7_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract4_sub_cast               : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract4_sub_cast_1             : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract4_sub_temp               : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract4_out1                   : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator6_1_cast      : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator6_relop1      : std_logic; 

  SIGNAL Logical_Operator3_out1           : std_logic; 

  SIGNAL Constant3_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL switch_compare_1_1               : std_logic; 

  SIGNAL phi_out1_dtc                     : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Switch5_out1                     : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract6_out1                   : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator2_relop1      : std_logic; 

  SIGNAL Constant5_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract5_out1                   : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator3_relop1      : std_logic; 

  SIGNAL Logical_Operator4_out1           : std_logic; 

  SIGNAL Constant4_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract3_out1                   : unsigned(16 DOWNTO 0);  -- ufix17 
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  SIGNAL Relational_Operator1_relop1      : std_logic; 

  SIGNAL Constant2_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract2_out1                   : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator5_relop1      : std_logic; 

  SIGNAL Logical_Operator2_out1           : std_logic; 

  SIGNAL Constant6_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract7_sub_cast               : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract7_sub_cast_1             : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract7_sub_temp               : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract7_out1                   : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator7_1_cast      : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator7_relop1      : std_logic; 

  SIGNAL Logical_Operator1_out1           : std_logic; 

  SIGNAL Constant9_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract12_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract12_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract12_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator10_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator10_relop1     : std_logic; 

  SIGNAL Constant12_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract10_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract10_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract10_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator11_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator11_relop1     : std_logic; 

  SIGNAL Logical_Operator12_out1          : std_logic; 

  SIGNAL Constant21_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract21_sub_cast              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract21_sub_cast_1            : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract21_sub_temp              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract21_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator21_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator21_relop1     : std_logic; 

  SIGNAL Logical_Operator13_out1          : std_logic; 

  SIGNAL switch_compare_1_2               : std_logic; 

  SIGNAL Constant10_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract9_add_cast               : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract9_add_cast_1             : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract9_out1                   : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator9_1_cast      : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator9_relop1      : std_logic; 

  SIGNAL Constant8_out1                   : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract8_add_cast               : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract8_add_cast_1             : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract8_out1                   : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator17_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 
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  SIGNAL Relational_Operator17_relop1     : std_logic; 

  SIGNAL Logical_Operator11_out1          : std_logic; 

  SIGNAL Constant19_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract14_sub_cast              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract14_sub_cast_1            : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract14_sub_temp              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract14_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator19_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator19_relop1     : std_logic; 

  SIGNAL Logical_Operator14_out1          : std_logic; 

  SIGNAL Switch1_out1                     : std_logic; 

  SIGNAL Constant22_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract13_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator8_relop1      : std_logic; 

  SIGNAL Constant13_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract11_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator13_relop1     : std_logic; 

  SIGNAL Logical_Operator8_out1           : std_logic; 

  SIGNAL Constant15_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract16_sub_cast              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract16_sub_cast_1            : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract16_sub_temp              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract16_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator20_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator20_relop1     : std_logic; 

  SIGNAL Logical_Operator9_out1           : std_logic; 

  SIGNAL switch_compare_1_3               : std_logic; 

  SIGNAL Constant11_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract22_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator22_relop1     : std_logic; 

  SIGNAL Constant16_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract18_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator14_relop1     : std_logic; 

  SIGNAL Logical_Operator5_out1           : std_logic; 

  SIGNAL Constant14_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract15_sub_cast              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract15_sub_cast_1            : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract15_sub_temp              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract15_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator18_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator18_relop1     : std_logic; 

  SIGNAL Logical_Operator10_out1          : std_logic; 

  SIGNAL Switch2_out1                     : std_logic; 

  SIGNAL Constant34_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract25_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract25_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 
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  SIGNAL Subtract25_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator23_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator23_relop1     : std_logic; 

  SIGNAL Constant25_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract23_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract23_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract23_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator24_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator24_relop1     : std_logic; 

  SIGNAL Logical_Operator17_out1          : std_logic; 

  SIGNAL Constant31_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract31_sub_cast              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract31_sub_cast_1            : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract31_sub_temp              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract31_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator31_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator31_relop1     : std_logic; 

  SIGNAL Logical_Operator18_out1          : std_logic; 

  SIGNAL switch_compare_1_4               : std_logic; 

  SIGNAL Constant23_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract34_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract34_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract34_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator34_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator34_relop1     : std_logic; 

  SIGNAL Constant33_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract33_add_cast              : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract33_add_cast_1            : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Subtract33_out1                  : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator27_1_cast     : signed(32 DOWNTO 0);  -- sfix33_En15 

  SIGNAL Relational_Operator27_relop1     : std_logic; 

  SIGNAL Logical_Operator16_out1          : std_logic; 

  SIGNAL Constant30_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract27_sub_cast              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract27_sub_cast_1            : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract27_sub_temp              : signed(33 DOWNTO 0);  -- sfix34_En15 

  SIGNAL Subtract27_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator29_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator29_relop1     : std_logic; 

  SIGNAL Logical_Operator19_out1          : std_logic; 

  SIGNAL Switch3_out1                     : std_logic; 

  SIGNAL Constant32_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract26_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator25_relop1     : std_logic; 

  SIGNAL Constant26_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract24_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 
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  SIGNAL Relational_Operator26_relop1     : std_logic; 

  SIGNAL Logical_Operator20_out1          : std_logic; 

  SIGNAL Constant28_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract29_sub_cast              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract29_sub_cast_1            : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract29_sub_temp              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract29_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator32_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator32_relop1     : std_logic; 

  SIGNAL Logical_Operator21_out1          : std_logic; 

  SIGNAL switch_compare_1_5               : std_logic; 

  SIGNAL Constant24_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract32_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator33_relop1     : std_logic; 

  SIGNAL Constant29_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract30_out1                  : unsigned(16 DOWNTO 0);  -- ufix17 

  SIGNAL Relational_Operator28_relop1     : std_logic; 

  SIGNAL Logical_Operator15_out1          : std_logic; 

  SIGNAL Constant27_out1                  : unsigned(15 DOWNTO 0);  -- uint16 

  SIGNAL Subtract28_sub_cast              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract28_sub_cast_1            : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract28_sub_temp              : signed(17 DOWNTO 0);  -- sfix18 

  SIGNAL Subtract28_out1                  : signed(15 DOWNTO 0);  -- int16 

  SIGNAL Relational_Operator30_1_cast     : signed(16 DOWNTO 0);  -- sfix17 

  SIGNAL Relational_Operator30_relop1     : std_logic; 

  SIGNAL Logical_Operator22_out1          : std_logic; 

  SIGNAL Switch6_out1                     : std_logic; 

  

BEGIN 

  enb <= clk_enable; 

  

  -- Count limited, Unsigned Counter 

  --  initial value   = 1 

  --  step value      = 1 

  --  count to value  = 250 

  HDL_Counter4_step_process : PROCESS (clk, reset) 

  BEGIN 

    IF reset = '1' THEN 

      HDL_Counter4_step_reg <= to_unsigned(16#0001#, 16); 

    ELSIF clk'EVENT AND clk = '1' THEN 

      IF enb = '1' THEN 

        IF HDL_Counter4_out1 = to_unsigned(16#00F9#, 16) THEN  

          HDL_Counter4_step_reg <= to_unsigned(16#FF07#, 16); 

        ELSE  

          HDL_Counter4_step_reg <= to_unsigned(16#0001#, 16); 

        END IF; 
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      END IF; 

    END IF; 

  END PROCESS HDL_Counter4_step_process; 

  HDL_Counter4_stepreg <= HDL_Counter4_step_reg; 

  

  HDL_Counter4_process : PROCESS (clk, reset) 

  BEGIN 

    IF reset = '1' THEN 

      HDL_Counter4_count <= to_unsigned(16#0001#, 16); 

    ELSIF clk'EVENT AND clk = '1' THEN 

      IF enb = '1' THEN 

        HDL_Counter4_count <= HDL_Counter4_count + HDL_Counter4_stepreg; 

      END IF; 

    END IF; 

  END PROCESS HDL_Counter4_process; 

  HDL_Counter4_out1 <= HDL_Counter4_count; 

  

  Constant17_out1 <= to_unsigned(16#0001#, 16); 

  

  phi_out1 <= to_signed(16#0000#, 16); 

  

   

  switch_compare_1 <= '1' WHEN phi_out1 >= to_signed(16#0000#, 16) ELSE 

      '0'; 

  

  Gain_in0 <=  - (resize(phi_out1, 17)); 

  Gain_out1 <= Gain_in0 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0'; 

  

  Zero_out1 <= to_unsigned(16#0000#, 16); 

  

  Zero_out1_dtc <= signed(resize(Zero_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0', 32)); 

  

   

  Switch4_out1 <= Gain_out1 WHEN switch_compare_1 = '0' ELSE 

      Zero_out1_dtc; 

  

  Subtract20_add_cast <= signed(resize(Constant17_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract20_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract20_out1 <= Subtract20_add_cast + Subtract20_add_cast_1; 

  

  Relational_Operator15_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   



72 

 

  Relational_Operator15_relop1 <= '1' WHEN Relational_Operator15_1_cast >= 

Subtract20_out1 ELSE 

      '0'; 

  

  Constant20_out1 <= to_unsigned(16#0078#, 16); 

  

  Subtract19_add_cast <= signed(resize(Constant20_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract19_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract19_out1 <= Subtract19_add_cast + Subtract19_add_cast_1; 

  

  Relational_Operator16_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator16_relop1 <= '1' WHEN Relational_Operator16_1_cast <= 

Subtract19_out1 ELSE 

      '0'; 

  

  Logical_Operator7_out1 <= Relational_Operator15_relop1 AND 

Relational_Operator16_relop1; 

  

  Constant18_out1 <= to_unsigned(16#007D#, 16); 

  

  Subtract17_add_cast <= signed(resize(Constant18_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract17_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract17_out1 <= Subtract17_add_cast + Subtract17_add_cast_1; 

  

  Relational_Operator12_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator12_relop1 <= '1' WHEN Relational_Operator12_1_cast >= 

Subtract17_out1 ELSE 

      '0'; 

  

  Constant1_out1 <= to_unsigned(16#00F5#, 16); 

  

  Subtract1_add_cast <= signed(resize(Constant1_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract1_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract1_out1 <= Subtract1_add_cast + Subtract1_add_cast_1; 

  

  Relational_Operator4_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & '0' 

& '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 
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  Relational_Operator4_relop1 <= '1' WHEN Relational_Operator4_1_cast <= Subtract1_out1 

ELSE 

      '0'; 

  

  Logical_Operator6_out1 <= Relational_Operator12_relop1 AND Relational_Operator4_relop1; 

  

  Constant7_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract4_sub_cast <= resize(Subtract1_out1, 34); 

  Subtract4_sub_cast_1 <= signed(resize(Constant7_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 34)); 

  Subtract4_sub_temp <= Subtract4_sub_cast - Subtract4_sub_cast_1; 

  Subtract4_out1 <= Subtract4_sub_temp(30 DOWNTO 15); 

  

  Relational_Operator6_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator6_relop1 <= '1' WHEN Relational_Operator6_1_cast <= 

resize(Subtract4_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator3_out1 <= Logical_Operator6_out1 OR Relational_Operator6_relop1; 

  

  Constant3_out1 <= to_unsigned(16#0001#, 16); 

  

   

  switch_compare_1_1 <= '1' WHEN phi_out1 >= to_signed(16#0000#, 16) ELSE 

      '0'; 

  

  phi_out1_dtc <= unsigned(phi_out1); 

  

   

  Switch5_out1 <= Zero_out1 WHEN switch_compare_1_1 = '0' ELSE 

      phi_out1_dtc; 

  

  Subtract6_out1 <= resize(Constant3_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator2_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) >= Subtract6_out1 

ELSE 

      '0'; 

  

  Constant5_out1 <= to_unsigned(16#0078#, 16); 

  

  Subtract5_out1 <= resize(Constant5_out1, 17) + resize(Switch5_out1, 17); 
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  Relational_Operator3_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) <= Subtract5_out1 

ELSE 

      '0'; 

  

  Logical_Operator4_out1 <= Relational_Operator2_relop1 AND Relational_Operator3_relop1; 

  

  Constant4_out1 <= to_unsigned(16#007D#, 16); 

  

  Subtract3_out1 <= resize(Constant4_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator1_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) >= Subtract3_out1 

ELSE 

      '0'; 

  

  Constant2_out1 <= to_unsigned(16#00F5#, 16); 

  

  Subtract2_out1 <= resize(Constant2_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator5_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) <= Subtract2_out1 

ELSE 

      '0'; 

  

  Logical_Operator2_out1 <= Relational_Operator1_relop1 AND Relational_Operator5_relop1; 

  

  Constant6_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract7_sub_cast <= signed(resize(Subtract2_out1, 18)); 

  Subtract7_sub_cast_1 <= signed(resize(Constant6_out1, 18)); 

  Subtract7_sub_temp <= Subtract7_sub_cast - Subtract7_sub_cast_1; 

  Subtract7_out1 <= Subtract7_sub_temp(15 DOWNTO 0); 

  

  Relational_Operator7_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator7_relop1 <= '1' WHEN Relational_Operator7_1_cast <= 

resize(Subtract7_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator1_out1 <= Logical_Operator2_out1 OR Relational_Operator7_relop1; 

  

  Constant9_out1 <= to_unsigned(16#0054#, 16); 

  

  Subtract12_add_cast <= signed(resize(Constant9_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract12_add_cast_1 <= resize(Switch4_out1, 33); 
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  Subtract12_out1 <= Subtract12_add_cast + Subtract12_add_cast_1; 

  

  Relational_Operator10_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator10_relop1 <= '1' WHEN Relational_Operator10_1_cast >= 

Subtract12_out1 ELSE 

      '0'; 

  

  Constant12_out1 <= to_unsigned(16#00CB#, 16); 

  

  Subtract10_add_cast <= signed(resize(Constant12_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract10_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract10_out1 <= Subtract10_add_cast + Subtract10_add_cast_1; 

  

  Relational_Operator11_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator11_relop1 <= '1' WHEN Relational_Operator11_1_cast <= 

Subtract10_out1 ELSE 

      '0'; 

  

  Logical_Operator12_out1 <= Relational_Operator10_relop1 AND 

Relational_Operator11_relop1; 

  

  Constant21_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract21_sub_cast <= resize(Subtract10_out1, 34); 

  Subtract21_sub_cast_1 <= signed(resize(Constant21_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' 

& '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 34)); 

  Subtract21_sub_temp <= Subtract21_sub_cast - Subtract21_sub_cast_1; 

  Subtract21_out1 <= Subtract21_sub_temp(30 DOWNTO 15); 

  

  Relational_Operator21_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator21_relop1 <= '1' WHEN Relational_Operator21_1_cast <= 

resize(Subtract21_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator13_out1 <= Logical_Operator12_out1 OR Relational_Operator21_relop1; 

  

   

  switch_compare_1_2 <= '1' WHEN Switch4_out1 >= to_signed(1409024, 32) ELSE 

      '0'; 
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  Constant10_out1 <= to_unsigned(16#004E#, 16); 

  

  Subtract9_add_cast <= signed(resize(Constant10_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract9_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract9_out1 <= Subtract9_add_cast + Subtract9_add_cast_1; 

  

  Relational_Operator9_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & '0' 

& '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator9_relop1 <= '1' WHEN Relational_Operator9_1_cast <= Subtract9_out1 

ELSE 

      '0'; 

  

  Constant8_out1 <= to_unsigned(16#00D0#, 16); 

  

  Subtract8_add_cast <= signed(resize(Constant8_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract8_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract8_out1 <= Subtract8_add_cast + Subtract8_add_cast_1; 

  

  Relational_Operator17_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator17_relop1 <= '1' WHEN Relational_Operator17_1_cast >= Subtract8_out1 

ELSE 

      '0'; 

  

  Logical_Operator11_out1 <= Relational_Operator9_relop1 OR Relational_Operator17_relop1; 

  

  Constant19_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract14_sub_cast <= resize(Subtract8_out1, 34); 

  Subtract14_sub_cast_1 <= signed(resize(Constant19_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' 

& '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 34)); 

  Subtract14_sub_temp <= Subtract14_sub_cast - Subtract14_sub_cast_1; 

  Subtract14_out1 <= Subtract14_sub_temp(30 DOWNTO 15); 

  

  Relational_Operator19_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator19_relop1 <= '1' WHEN Relational_Operator19_1_cast >= 

resize(Subtract14_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator14_out1 <= Logical_Operator11_out1 AND Relational_Operator19_relop1; 
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  Switch1_out1 <= Logical_Operator11_out1 WHEN switch_compare_1_2 = '0' ELSE 

      Logical_Operator14_out1; 

  

  Constant22_out1 <= to_unsigned(16#0054#, 16); 

  

  Subtract13_out1 <= resize(Constant22_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator8_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) >= 

Subtract13_out1 ELSE 

      '0'; 

  

  Constant13_out1 <= to_unsigned(16#00CB#, 16); 

  

  Subtract11_out1 <= resize(Constant13_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator13_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) <= 

Subtract11_out1 ELSE 

      '0'; 

  

  Logical_Operator8_out1 <= Relational_Operator8_relop1 AND Relational_Operator13_relop1; 

  

  Constant15_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract16_sub_cast <= signed(resize(Subtract11_out1, 18)); 

  Subtract16_sub_cast_1 <= signed(resize(Constant15_out1, 18)); 

  Subtract16_sub_temp <= Subtract16_sub_cast - Subtract16_sub_cast_1; 

  Subtract16_out1 <= Subtract16_sub_temp(15 DOWNTO 0); 

  

  Relational_Operator20_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator20_relop1 <= '1' WHEN Relational_Operator20_1_cast <= 

resize(Subtract16_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator9_out1 <= Logical_Operator8_out1 OR Relational_Operator20_relop1; 

  

   

  switch_compare_1_3 <= '1' WHEN Switch5_out1 >= to_unsigned(16#002B#, 16) ELSE 

      '0'; 

  

  Constant11_out1 <= to_unsigned(16#004E#, 16); 

  

  Subtract22_out1 <= resize(Constant11_out1, 17) + resize(Switch5_out1, 17); 
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  Relational_Operator22_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) <= 

Subtract22_out1 ELSE 

      '0'; 

  

  Constant16_out1 <= to_unsigned(16#00D0#, 16); 

  

  Subtract18_out1 <= resize(Constant16_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator14_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) >= 

Subtract18_out1 ELSE 

      '0'; 

  

  Logical_Operator5_out1 <= Relational_Operator22_relop1 OR Relational_Operator14_relop1; 

  

  Constant14_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract15_sub_cast <= signed(resize(Subtract18_out1, 18)); 

  Subtract15_sub_cast_1 <= signed(resize(Constant14_out1, 18)); 

  Subtract15_sub_temp <= Subtract15_sub_cast - Subtract15_sub_cast_1; 

  Subtract15_out1 <= Subtract15_sub_temp(15 DOWNTO 0); 

  

  Relational_Operator18_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator18_relop1 <= '1' WHEN Relational_Operator18_1_cast >= 

resize(Subtract15_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator10_out1 <= Logical_Operator5_out1 AND Relational_Operator18_relop1; 

  

   

  Switch2_out1 <= Logical_Operator5_out1 WHEN switch_compare_1_3 = '0' ELSE 

      Logical_Operator10_out1; 

  

  Constant34_out1 <= to_unsigned(16#002A#, 16); 

  

  Subtract25_add_cast <= signed(resize(Constant34_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract25_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract25_out1 <= Subtract25_add_cast + Subtract25_add_cast_1; 

  

  Relational_Operator23_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 
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  Relational_Operator23_relop1 <= '1' WHEN Relational_Operator23_1_cast >= 

Subtract25_out1 ELSE 

      '0'; 

  

  Constant25_out1 <= to_unsigned(16#00A2#, 16); 

  

  Subtract23_add_cast <= signed(resize(Constant25_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract23_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract23_out1 <= Subtract23_add_cast + Subtract23_add_cast_1; 

  

  Relational_Operator24_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator24_relop1 <= '1' WHEN Relational_Operator24_1_cast <= 

Subtract23_out1 ELSE 

      '0'; 

  

  Logical_Operator17_out1 <= Relational_Operator23_relop1 AND 

Relational_Operator24_relop1; 

  

  Constant31_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract31_sub_cast <= resize(Subtract23_out1, 34); 

  Subtract31_sub_cast_1 <= signed(resize(Constant31_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' 

& '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 34)); 

  Subtract31_sub_temp <= Subtract31_sub_cast - Subtract31_sub_cast_1; 

  Subtract31_out1 <= Subtract31_sub_temp(30 DOWNTO 15); 

  

  Relational_Operator31_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator31_relop1 <= '1' WHEN Relational_Operator31_1_cast <= 

resize(Subtract31_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator18_out1 <= Logical_Operator17_out1 OR Relational_Operator31_relop1; 

  

   

  switch_compare_1_4 <= '1' WHEN Switch4_out1 >= to_signed(2719744, 32) ELSE 

      '0'; 

  

  Constant23_out1 <= to_unsigned(16#0025#, 16); 

  

  Subtract34_add_cast <= signed(resize(Constant23_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract34_add_cast_1 <= resize(Switch4_out1, 33); 
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  Subtract34_out1 <= Subtract34_add_cast + Subtract34_add_cast_1; 

  

  Relational_Operator34_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator34_relop1 <= '1' WHEN Relational_Operator34_1_cast <= 

Subtract34_out1 ELSE 

      '0'; 

  

  Constant33_out1 <= to_unsigned(16#00A8#, 16); 

  

  Subtract33_add_cast <= signed(resize(Constant33_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

  Subtract33_add_cast_1 <= resize(Switch4_out1, 33); 

  Subtract33_out1 <= Subtract33_add_cast + Subtract33_add_cast_1; 

  

  Relational_Operator27_1_cast <= signed(resize(HDL_Counter4_out1 & '0' & '0' & '0' & '0' & 

'0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 33)); 

   

  Relational_Operator27_relop1 <= '1' WHEN Relational_Operator27_1_cast >= 

Subtract33_out1 ELSE 

      '0'; 

  

  Logical_Operator16_out1 <= Relational_Operator34_relop1 OR 

Relational_Operator27_relop1; 

  

  Constant30_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract27_sub_cast <= resize(Subtract33_out1, 34); 

  Subtract27_sub_cast_1 <= signed(resize(Constant30_out1 & '0' & '0' & '0' & '0' & '0' & '0' & '0' 

& '0' & '0' & '0' & '0' & '0' & '0' & '0' & '0', 34)); 

  Subtract27_sub_temp <= Subtract27_sub_cast - Subtract27_sub_cast_1; 

  Subtract27_out1 <= Subtract27_sub_temp(30 DOWNTO 15); 

  

  Relational_Operator29_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator29_relop1 <= '1' WHEN Relational_Operator29_1_cast >= 

resize(Subtract27_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator19_out1 <= Logical_Operator16_out1 AND Relational_Operator29_relop1; 

  

   

  Switch3_out1 <= Logical_Operator16_out1 WHEN switch_compare_1_4 = '0' ELSE 

      Logical_Operator19_out1; 
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  Constant32_out1 <= to_unsigned(16#002A#, 16); 

  

  Subtract26_out1 <= resize(Constant32_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator25_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) >= 

Subtract26_out1 ELSE 

      '0'; 

  

  Constant26_out1 <= to_unsigned(16#00A2#, 16); 

  

  Subtract24_out1 <= resize(Constant26_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator26_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) <= 

Subtract24_out1 ELSE 

      '0'; 

  

  Logical_Operator20_out1 <= Relational_Operator25_relop1 AND 

Relational_Operator26_relop1; 

  

  Constant28_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract29_sub_cast <= signed(resize(Subtract24_out1, 18)); 

  Subtract29_sub_cast_1 <= signed(resize(Constant28_out1, 18)); 

  Subtract29_sub_temp <= Subtract29_sub_cast - Subtract29_sub_cast_1; 

  Subtract29_out1 <= Subtract29_sub_temp(15 DOWNTO 0); 

  

  Relational_Operator32_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator32_relop1 <= '1' WHEN Relational_Operator32_1_cast <= 

resize(Subtract29_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator21_out1 <= Logical_Operator20_out1 OR Relational_Operator32_relop1; 

  

   

  switch_compare_1_5 <= '1' WHEN Switch5_out1 >= to_unsigned(16#0053#, 16) ELSE 

      '0'; 

  

  Constant24_out1 <= to_unsigned(16#0025#, 16); 

  

  Subtract32_out1 <= resize(Constant24_out1, 17) + resize(Switch5_out1, 17); 
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  Relational_Operator33_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) <= 

Subtract32_out1 ELSE 

      '0'; 

  

  Constant29_out1 <= to_unsigned(16#00A8#, 16); 

  

  Subtract30_out1 <= resize(Constant29_out1, 17) + resize(Switch5_out1, 17); 

  

   

  Relational_Operator28_relop1 <= '1' WHEN resize(HDL_Counter4_out1, 17) >= 

Subtract30_out1 ELSE 

      '0'; 

  

  Logical_Operator15_out1 <= Relational_Operator33_relop1 OR 

Relational_Operator28_relop1; 

  

  Constant27_out1 <= to_unsigned(16#00FA#, 16); 

  

  Subtract28_sub_cast <= signed(resize(Subtract30_out1, 18)); 

  Subtract28_sub_cast_1 <= signed(resize(Constant27_out1, 18)); 

  Subtract28_sub_temp <= Subtract28_sub_cast - Subtract28_sub_cast_1; 

  Subtract28_out1 <= Subtract28_sub_temp(15 DOWNTO 0); 

  

  Relational_Operator30_1_cast <= signed(resize(HDL_Counter4_out1, 17)); 

   

  Relational_Operator30_relop1 <= '1' WHEN Relational_Operator30_1_cast >= 

resize(Subtract28_out1, 17) ELSE 

      '0'; 

  

  Logical_Operator22_out1 <= Logical_Operator15_out1 AND Relational_Operator30_relop1; 

  

   

  Switch6_out1 <= Logical_Operator15_out1 WHEN switch_compare_1_5 = '0' ELSE 

      Logical_Operator22_out1; 

  

  ce_out <= clk_enable; 

  

  

 

 

 

  S1 <= Logical_Operator7_out1; 

  

  S2 <= Logical_Operator3_out1; 

  

  S1_1 <= Logical_Operator4_out1; 
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  S2_1 <= Logical_Operator1_out1; 

  

  S3 <= Logical_Operator13_out1; 

  

  S4 <= Switch1_out1; 

  

  S3_1 <= Logical_Operator9_out1; 

  

  S4_1 <= Switch2_out1; 

  

  S6 <= Logical_Operator18_out1; 

  

  S5 <= Switch3_out1; 

  

  S6_1 <= Logical_Operator21_out1; 

  

  S5_1 <= Switch6_out1; 

  

END rtl; 
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