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Abstract

Artificial two-level quantum systems are widely investigated as the fundamental build-

ing blocks of future quantum computers. These quantum bits (qubits) can be realized

in many solid state systems, including Josephson junction based devices, nitrogen va-

cancy centers in diamond, and electron spins in semiconductor quantum dots. Among

these systems, Si is very promising since it can be isotopically purified to eliminate

random fluctuating hyperfine fields from lattice nuclei, leading to ultra-long quantum

coherence times. However, lower heterostructure quality, higher electron effective

mass and valley degeneracy present many challenges in realizing high quality qubits

in Si.

This thesis demonstrates consistent realization of robust single-electron silicon

qubits with high yield. With optimized device designs and DC/RF measurement

techniques developed at Petta lab in Princeton University, we have achieved versatile

quantum control of a single electron, as well as sensitive read-out of its quantum

state. By applying microwave radiation to the gate electrodes, we can probe the

energy level structure of the system with 1 µeV resolution. We apply bursts of

microwave radiation to extract the qubit lifetime, T1. By experimentally tuning the

qubit, we demonstrate a four order of magnitude variation of T1 with gate voltage.

We show that our experimental results are consistent with a theory that takes into

account phonon-mediated charge relaxation.
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Chapter 1

Introduction

The invention of the modern computer is one of the greatest scientific achievements

of the last century [1]. At the early days of analog computers, it was hardly scalable

and practical. However, the invention of the transistor [2] by John Bardeen, Walter

Brattain, and William Shockley in 1947, greatly advanced the rate of industrializa-

tion, leading to personal computers. This arguably completely revolutionized modern

society, from personal life to scientific research.

In a modern computer, the transistor is the basic computation and logic compo-

nent [1]. The classical information is stored in the classical bit as two possible classical

states, namely “0” (off) and “1” (on), realized as the voltage or the current modes.

With inventions such as electron-beam lithography and atomic force microscopy, the

quantum world becomes experimentally accessible with modern nano-technology. As

such, scientists are now actively developing quantum bits (qubits), the building block

of the future quantum computer [3, 4].

Quantum mechanics has also often been referred to as “wave mechanics”, since

one of the most crucial differences between the quantum and the classical is none

other than the word “phase”. The quantum states of the qubit can be written as

|ψ〉 = cos θ |0〉+ eiφ sin θ |1〉. As a result, instead of the binary information storage, in
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a quantum bit the quantum information can be stored anywhere on the Bloch sphere,

as an arbitrary quantum superposition of two basis states, with phase information

represented in θ and φ.

0

1

Classical Bit Quantum Bit(a) (b)

θ

φ

0

1

Figure 1.1: The comparison between (a) a classical bit and (b) a quantum bit. In contrast
to the classical binary information storage mechanism, quantum information is represented
as a superposition of states, |ψ〉 = cos θ |0〉+ eiφ sin θ |1〉.

In addition to this data storage efficiency, quantum computers also promise the

enhancement of computational speed and power for many realistic problems, by im-

plementing quantum algorithms [5, 6]. Certain problems that require astronomical

computational power from a classical computer can be significantly simplified when

they are performed in a quantum computer. One example of a quantum algorithm is

the Shor’s quantum Fourier transform scheme [5], which provides an exponential en-

hancement of computational speed over problems such as factorization and ordering,

compared to the best known classical algorithms. Another good example is Grover’s

quantum search algorithm [6] which gives a quadratic computational speed boost

in this type of computation. Moreover, the recently developed quantum cryptogra-

phy schemes, as well as the famous quantum no-cloning theorem [7], promise almost

unbreakable quantum information securities.
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Similar to the classical computer, the realization of a scalable quantum com-

puter relies on the successful real world implementation of a robust quantum bit.

The physical quantum two-level systems can be realized in many different condensed

matter environments, such as the circuit quantum electrodynamics system (cQED)

[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] utilizing superconducting Josephson-junction-

based devices, or in nitrogen vacancy centers in diamond [19].

This thesis focuses on electron qubits in electrically defined semiconductor quan-

tum dots [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Motivated by mechanisms to suppress

the decoherence in conventional GaAs qubits [21, 30, 31, 32, 33, 34, 35, 36], we have

developed a robust device architecture for Si qubits. We demonstrate high quality

transport and charge-sensing measurements in Si double quantum dot (DQD) de-

vices. We implement fast single charge sensing using rf reflectometry [37] and probe

the energy level diagram of the charge qubit using photon assisted tunneling [38]. We

have systematically measured the qubit lifetime T1, and demonstrate a four order of

magnitude tunability of T1 up to as long as 100 µs.

1.1 GaAs Quantum Dot Devices and Coulomb

Blockade

Proposed by Daniel Loss and David DiVincenzo [20, 39], one physical qubit utilizes the

spin of electrons trapped in semiconductors. In this proposal, the qubit basis states

are defined by the electron spin polarization, with the exchange coupling between

adjacent electron spins controlled by gate voltages. This approach has been extremely

successful in the past ten years for the experiments based on the AlGaAs/GaAs

heterostructures, where the coherent Rabi oscillations as well as dynamic decoupling

has been demonstrated in singlet-triplet qubits [21, 30, 31, 33, 34, 32]. The remainder

of the chapter will be focused on introducing the charge qubit as well as the S-T0
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qubit in the AlGaAs/GaAs system [21, 30], the discussion of which will eventually

motivate the development of Si/SiGe qubit devices.

VRVL VC

VN

VQPC

Figure 1.2: A typical DQD device contains a mesa-etched 2DEG, electrically connected
with ohmic-contacted arms. On top of the central mesa, a set of gate electrodes are used to
form the quantum dot. The gate voltages VL and VR define the lead-dot coupling strength,
while the gate voltages VN and VC set the interdot tunnel coupling strength.

A spin qubit is generally realized in a DQD device fabricated on a semiconductor

heterostructure [Fig. 1.2]. Taking the AlGaAs/GaAs system as an example, the most

crucial part of the heterostructure is the interface between the n-type AlGaAs and

intrinsic GaAs [Fig. 1.2]. The charges that transfer from AlGaAs to GaAs create a

triangular quantum well at the GaAs/AlGaAs interface. The free electrons provided

by the dopants then reside in it, with the electron wavefunction taking on a quasi

two-dimensional form due to the strong confinement in z. This thin layer of electron

is generally referred to as a two-dimensional electron gas (2DEG), which provides the

electrons the qubit are formed from [Fig. 1.2] [21].

In a typical GaAs quantum dot device, the heterostrucuture is etched into a

small mesa (typically on the length scale of 100 µm), which is connected by a few

4



arms leading to the ohmic contacts. A fine set of electron-beam lithography defined

gates is deposited on top of the small mesa. As negative gate voltage is applied

to these gates to selectively deplete the electrons in the underlying 2DEG, a quasi

zero dimensional electron gas in the active device region (quantum dot) is isolated

from (and at the same time, weakly coupled to) the rest of the 2DEG (source/drain

reservoirs) [21, 30, 31, 33, 34, 32]. In this device geometry, the gate voltages VL and

VR define the lead-dot coupling strength, while the gate voltages VN and VC set the

barrier height between the left/right side of the active device region, determining the

so called interdot tunnel coupling strength, tc [Fig. 1.2].

DS

VR 

 

(mV)

V L
 (m

V)

g

Finite

Zero

S D

-eVSD

V S
D 
(m

V)

VG 

 

(mV)

I

Finite

Zero

(a) (b)

(c) (d)

Figure 1.3: At zero bias, when the single quantum dot (SQD) level is (a) in resonance
with source-drain chemical potential, a finite conductance is measured. This yields (b) a
pattern of parallel lines in the conductance measured as a function of VL and VR. At finite
source-drain bias, a finite current is measured (c) when one or more dot levels resides in
the source-drain bias window. Due to their shape, these features are called (d) Coulomb
diamonds.
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Due to the strong spatial confinement, the energy levels in the single quantum

dot (SQD) are quantized [Fig. 1.3(a)] [21]. In the zero-bias regime, VSD = 0, current

can only flow through the device when one of the energy levels in the dot matches in

energy with the source/drain Fermi level (resonance condition)[Fig. 1.3(a)] [40]. As a

result, when the conductance of the quantum dot is measured as a function of VL and

VR, a non-zero signal appears in a pattern of parallel lines [Fig. 1.3(b)]. Along these

lines, the resonance condition is satisfied. As VL is swept towards more negative values

(which raises the dot potential), VR needs to be swept towards more positive values

(which lowers the dot potential) in order to keep the dot energy level in resonance

with the lead Fermi level, giving rise to the negative slope of the parallel line pattern

in the voltage parameter coordinates. Taking a 1D cut in a direction orthogonal to

these parallel lines, as shown by the dashed arrow in [Fig. 1.3(b)], yields a typical set

of Coulomb blockade peaks [41, 42, 43]. The gate voltage sweep along this direction

is defined as VG hereafter.

When a finite source-drain bias is applied, a finite current is measured when one

or more dot energy levels fall within the source-drain bias window [Fig. 1.3(c)]. Along

the vertical axis of Fig. 1.3(c), as the source drain bias voltage |VSD| increases, the

source drain bias window becomes larger for the dot energy levels to fall into. As a

result, the range of VG at which through-dot current can be measured scales linearly

with |VSD| [Fig. 1.3(d)]. Eventually, when |VSD| becomes greater than the electron

charging energy, the dot conduction requirement will always be met, since at least

one of the dot energy levels will lay in the source drain bias window. The blockaded

region is shaped like a specific symbol in poker cards, hence it is generally referred to

as “Coulomb diamonds”.
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VR   (mV)

V L
 (m

V)

I

Finite

Zero

D

D

DS

S D

S D

DS D

DDS

S D

(1)

(1)

(2)

(2)

(3)
(3)

Figure 1.4: Transport through a DQD can be observed when at least one dot energy level
for both left dot and right dot lie between the source-drain bias window and the energy level
of the left dot is lower/higher than that of the right dot at positive/negative bias. Three
extreme points defines the triangular shape of the conduction region, at gate voltages where
(1) both left and right dot energy levels are in resonance with source, (2) both left and right
dot energy level are in resonance with drain, (3) left dot evergy level is in resonance with
source while the right dot energy level is in resonance with drain.

1.2 Double Quantum Dot and Charge Sensing

If a more negative gate voltage is applied to VN and VC (which results in a less trans-

parent interdot tunnel barrier), the electron wavefunction originally spanning freely

over the entire dot region will be divided into two weakly connected counterparts.

As one can intuitively see, the conduction condition becomes harder to meet [21, 44].

At finite source-drain bias, the regions of gate parameter space where current can be

7



measured correspond to the energy level configurations in which [Fig. 1.4] at least one

dot energy level for both left dot and right dot fall in the source-drain bias window

and the energy level of the left dot is lower/higher than that of the right dot at pos-

itive/negative source-drain bias. Three extreme points define the triangular shape of

the current region, at gate voltages where (1) both left and right dot energy levels

are in resonance with source, (2) both left and right dot energy level are in resonance

with drain, (3) left dot energy level is in resonance with source while the right dot

energy level is in resonance with drain.

To identify the number of electrons trapped in a quantum dot system, it is helpful

to introduce the notation (NL, NR), where NL/NR is the number of electrons in the

left/right quantum dot. Taking negative bias as an example, the electron is pumped

one by one from source to drain via the “finite bias triangles” [Fig. 1.4]. There are

two distinct ways where this single electron pumping process can happen [44]. One

of them is the electron-like process in which an electron is directly pumped from the

source to the left dot, then being pumped to the right dot, and then to the drain. This

corresponds to a charge transition cycle of (NL, NR) → (NL+1, NR) → (NL, NR+1)

→ (NL, NR), and corresponds to the lower triangle. Another involves the hole-like

process where an electron in the right dot is first tunneled to the drain, then another

electron in the left dot tunnels to the right dot to take the newly available vacancy,

and finally yet another new electron in source tunnels into the left dot to occupy it

again, putting the dot back to its original charge occupation. This corresponds to a

charge transition cycle of (NL+1, NR+1) → (NL+1, NR) → (NL, NR+1) → (NL+1,

NR+1) , and corresponds to the upper triangle.

Transport measurements are useful to estimate the tunnel rates as well as the dot

configuration. However, the measurement requires exchange of dot electrons with

leads, and therefore cannot be used to probe the qubit states. A non-invasive method

of determining the dot electron charge configuration was developed in the early days

8



VQPC 

 

(mV)

g Q
PC
(e

2 /
h)

3

0

2

1

VR 

 

(mV)

V L
 (m

V)
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s /dV

L (a.u.)

Signal

Background

(a) (b)

(NL +1, NR )

(NL , NR ) (NL , NR +1)

(NL +1, NR +1)

VQPC

VQPC

Figure 1.5: (a) Due to the strong confinement in the the QPC channel (inset), measuring
conductance gQPC as a function of VQPC yields the famous “quantized steps in conduc-
tance”, in steps of a single quantum conductance g0. (b) By parking gQPC at one of the
steps in conductance, the quantum dot occupation can be sensitively measured, providing
access to the charge stability diagram.

of GaAs quantum dot research, generally known as “charge sensing” [21, 45, 37,

46, 47, 48, 36, 49, 50]. This technique utilizes a nearby gate VQPC which forms a

conductance channel together with VR or VL, with a channel width comparable to

the Fermi wavelength of the 2DEG. Due to the strong confinement in the channel,

its energy levels are quantized and a measurement of channel conductance gQPC as a

function of VQPC yields the famous “quantized steps in conductance”, in steps of a

single quantum conductance g0 [Fig. 1.5(a)].

By parking the QPC conductance gQPC at one of the sharp steps in conductance,

even a very small perturbation in local electrostatic potential (due to the change of

electron occupation inside the DQD) will result into a robustly measurable response

in QPC conductance gQPC . A “charge stability diagram” can be then generated

by measuring gQPC as a function of VL and VR and then numerically differentiating

it. Figure 1.5 shows a typical charge stability diagram near the (NL+1, NR) - (NL,

NR+1) charge configuration, with two sets of parallel lines corresponding to the lead-

dot electron tunneling events and the center line (positive slope) corresponding to the

interdot electron tunneling events. When the quantum dots are completely emptied

of electrons, no more charge transitions will be observed in the left bottom corner of
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the charge stability diagram. By counting up from the (0,0) charge occupation, we

can determine the electron occupation at any arbitrary VL and VR.

1.3 Charge Qubits

With knowledge of the charge occupation, we are ready to form a few electron quan-

tum bit in our DQD device [Fig. 1.6(a)]. In the past 15 years, two main types of

electron qubits have been widely implemented and investigated in DQD systems,

namely charge qubits and singlet-triplet spin qubits.

The basis states |0〉 and |1〉 of a charge qubit are the one-electron charge states

(1,0) and (0,1) [Fig. 1.6(b)] [38]. Simply sweeping the gate voltage across the (1,0)

- (0,1) interdot charge transition (a parameter hereafter defined as detuning, ε) in

the stability diagram tunes the left dot potential with respect to the right dot po-

tential, setting the energy splitting between the (1, 0) and (0, 1) states [Fig. 1.6(b)].

Therefore, the diagonal matrix elements of the Hamiltonian is simply H = ε
2
σz.

The off-diagonal term in the Hamiltonian is given by the interdot tunnel coupling

between the left QD and the right QD. In our experiment, the interdot tunnel coupling

tc can be continuously adjusted over a wide range by tuning the gate voltages VN and

VC , giving a fully tunable Hamiltonian H = ε
2
σz + tcσx. The energy level diagram is

plotted as a function of detuning in Fig. 1.6(c). Tunnel coupling leads to an avoided

crossing near the zero detuning and an total energy splitting of Ω =
√
ε2 + 4t2c .

One way to realize charge qubit manipulation is through the photon-assisted tun-

neling (PAT) technique [38, 51, 52]. By applying continuous microwaves on one of the

gate electrodes [Fig. 1.6(d)], coherent oscillations between the electron charge states

can be observed at the detunings where the energy splitting matches with a single

photon energy, namely Ω =
√
ε2 + 4t2c = hf , in which f is the microwave frequency

[Fig. 1.6(e)]. By carefully tracking the PAT peak position as a function of detuning
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Figure 1.6: (a) Large scale and (b) zoomed in charge stability diagram at the few electron
regime. (c) The probability of measuring the electron in the (1,0) charge state, P(1,0), as a
function of detuning ε, shows a step like feature with the step width positively correlated
with the interdot tunnel coupling tc. When (d) microwave excitation is applied to one of the
DQD gate electrodes, coherent Rabi oscillation happens at the detuning where the energy
splitting Ω =

√
ε2 + 4t2c matches with a single photon energy hf . This gives rise to the (e)

PAT peaks (data adapted from [38]).

ε and applied microwave frequency f , a detailed energy level diagram of the system

can be accurately mapped out. By applying a “chopped” microwave signal with a

50/50 on/off ratio (in the first half of the duty cycle, the microwave is on; while in

the second half of the duty cycle, the microwave is off), and stepping the duty cycle

period, one can measure the decay behavior of the qubit states and extract from it the

charge relaxation time T1 (In this case, this equals to the qubit lifetime by definition).
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Figure 1.7: A Mach-Zehnder type of experiment can be performed for charge qubit manip-
ulation. (a) The qubit state is initialized in (0,1), and (b) non-adiabatically swept across
zero detuning, resulting in a 50/50 probability of finding electron in either the (1,0) or
(0,1) charge states. This sweep essentially works like a 50/50 beam splitter. (c) The qubit
state will then be allowed to precess in the x-y plane with a certain free evolution time,
after which the (d) qubit states will be pulsed back to positive detuning across the avoided
crossing. A charge-sensing measurement is then performed. The fundamental physics is
very similar to that in the optical Mach-Zehnder interferometry experiment.

Another way of achieving coherent charge manipulation comes from an experimen-

tal scheme similar to the Mach-Zehnder interferometry experiment [Fig. 1.7] [53, 33].

Instead of applying a continuous microwave signal, a sequence of voltage pulses is

applied to adjust the DQD detuning. As an example, let’s choose the initial state

to be (0,1), the ground state at positive detuning [Fig. 1.7(a)]. When adiabatically

swept across zero detuning from (0,1) to far negative detuning, the new qubit state

becomes the new ground state (1,0). However, when the sweep is non-adiabatic and
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fast compared to the interdot tunneling rate, nearly all of the population remains in

the initial state (0,1). There is an intermediate regime [53] where passage through

the avoided crossing acts as a quantum beam splitter, with the resulting state be-

ing a superposition of (0,1) and (1,0) charge states, depending on the speed of the

sweep [Fig. 1.7(b)]. The probability of finding the qubit in the original (0,1) state

(non-adiabatic transition), after pulsing across the avoided crossing, is given by the

famous Landau-Zener formula, P = e−
2πt2c
~v , in which tc is the interdot tunnel coupling

and v = |dΩ/dt| is the speed of change of the energy splitting for the charge qubit.

One can calibrate the pulse speed so that the resulting qubit state contains 50% of

both (1,0) and (0,1), analogous to an optical 50/50 beam splitter. Viewing this pro-

cess in the Bloch sphere, the qubit state is effectively projected onto the x-y plane of

the Bloch sphere [Fig. 1.7(b)].

Then the qubit state will precess in the x-y plane with a Larmor frequency propor-

tional to the energy splitting Ω =
√
ε2 + 4t2c [Fig. 1.7(c)], after which the qubit states

will be pulsed back to positive detuning across the avoided crossing [Fig. 1.7(d)]. At

the end of the pulse cycle, the measurement of the probability of finding the qubit

in the (1,0) state, P(1,0), is essentially a Mach-Zehnder interference pattern in which

|1, 0〉 and |0, 1〉 are analogous to the two light paths in a conventional Mach-Zehnder

experiment. With careful calibration of pulse height and pulse length, coherent ma-

nipulation of the charge qubit can be realized using this technique [18, 53].

1.4 Singlet-Triplet Spin Qubits

In contrast to charge qubits, singlet-triplet spin qubits utilize two-electron spin states

as the qubit basis states [30]. There are total of four possible spin configurations for

an electron pair, namely the singlet state |S〉, and the triplet states |T0〉, |T+〉 and

|T−〉. With a typical 100 mT external magnetic field applied, the four spin states
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become the ground state |T+〉 (ms = 1), the doubly degenerate |S〉 and |T0〉 (ms =

0), and the excited state |T−〉 (ms = -1). The qubit basis states are chosen to be |S〉

and |T0〉, which are energetically well isolated from |T+〉 and |T−〉 [Fig. 1.8(a)].

(1,1)S, T0


 
(mV)

(a)

(0,2)S

(0,2)S
T0 , (1,1)S

T-

T+

S

T0

S

T0

S

T0

S

T0

Free evolutionσx projection σz projection(b)

(0, 2)
(1, 1)

(c)

t

S T+

T-

T+

Figure 1.8: (a) The energy level diagram of a S-T0 qubit. (b) A typical spin manipulation
experiment consists of initialization, σx projection, free evolution, σz projection and spin
read out. These are realized by (c) applying a combination of adiabatic and non-adiabatic
step pulses to the detuning parameter, ε.

The singlet-triplet qubit can be formed at either the (1,1) - (0,2) or (1,1) - (2,0)

charge transitions. In the following context, we will use the (1,1) - (0,2) transition as

an example. Similar to charge qubit, the energy splitting between |S〉 and |T0〉 (or

the σz term in the Hamiltonian) is also experimentally tunable. However, instead of

scaling almost linearly with the detuning parameter ε, the singlet-triplet splitting has

a more complicated detuning dependence. As required by the Pauli exclusion princi-

ple, the total electron wave function is required to be anti-symmetric. So the spatial
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wavefunction for the |S〉 state (antisymmetric spin wavefunction) is required to be

symmetric. And similarly the spatial wavefunction for the |T0〉 state (symmetric spin

wavefunction) is required to be antisymmetric. As a result, as long as there is electron

wave function overlap between the left quantum dot and the right quantum dot, there

will be a difference in terms of spatial electron probability distributions between the

|S〉 state and the |T0〉 state. This difference in turn causes different Coulomb repul-

sion strengths between the two electrons, which then results in a detuning-dependent

energy splitting (usually called the exchange coupling J(ε)) between |S〉 and |T0〉.

As previously mentioned, the S-T0 splitting can be simply tuned by sweeping the

detuning parameter ε. When ε is pulsed deep into the (1,1) charge configuration,

the two electrons are well separated spatially and have minimum overlap with each

other. As a result, there will be minimal difference between the electron probability

distribution between the |S〉 and |T0〉 states, giving J ∼ 0. In the other case, when ε is

pulsed deep into the (0,2) charge configuration, the two electrons are forced to reside

in the right quantum dot and therefore have maximum overlap with each other. As a

result, the exchange splitting J is maximized deep in the (0,2) charge configuration.

Figure 1.8(a) shows the energy level diagram of the S-T0 qubit system.

Now that we have experimentally tunable σz matrix elements, what about the

σx matrix elements? Each electron spin in the GaAs DQD experiences an effective

magnetic field via the so called contact hyperfine interaction [21]. The word “contact”

arises from the fact that the predominant contribution of the hyperfine field comes

from the integration of the electron wavefunction over the divergent point right at

the nucleus, instead of the nuclear dipole field itself which decays with 1/R3 law. In

a typical GaAs DQD, the effective hyperfine field is on the order of a few mT, and

is fluctuating as a function of time with a typical timescale of tens of µs [21]. As a

result, the hyperfine field in the left quantum dot and right quantum dot are different

from one another. It is exactly this field gradient that sets the σx matrix element.
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The full Hamiltonian can be then written as H = J(ε)
2
σz + ∆Bnucσx, in which ∆Bnuc

is the difference between the nuclear field in left quantum dot and right quantum dot.

A typical Rabi pulse sequence consists the following steps [Fig. 1.8(b)–(c)] [30, 21].

The qubit is initialized in the |S〉 state, then the detuning is swept non-adiabatically

through the |S〉 - |T+〉 anti-crossing, to prevent the leakage of |S〉 into |T+〉 [Fig.

1.8(c)]. After this, the detuning is swept adiabatically deep into the (1,1) charge

configuration. In this process, the exchange coupling J(ε) is adiabatically turned off

and the qubit state is therefore projected to the new eigenstates of the system, which

are in the x-y plane of the Bloch sphere [Fig. 1.8(b)]. The detuning is then swept

back toward zero-detuning non-adiabatically to turn the exchange coupling back on,

enabling the qubit to precess in the x-y plane of the Bloch sphere with a Larmor

frequency proportional to the exchange coupling J(ε) [Fig. 1.8(b)–(c)].

At the end of free evolution, the qubit state is projected back onto the σz axis [Fig.

1.8(b)–(c)] to perform spin readout using the “spin to charge” conversion technique.

The attempt of pulsing the qubit from the (1,1) to (0,2) charge configurations will

only be successful when the qubit is in |S〉 state. If the qubit state is in |T0〉, then the

(1,1) - (0,2) charge transition will be energetically forbidden due to the large exchange

coupling at the (0,2) charge configuration, and the qubit will be blockaded in the (1,1)

charge configuration. Utilizing this “spin blockade” [50, 54] and monitoring the qubit

charge configuration (using a charge sensor) after pulsing from (1,1) to (0,2), enables

us to perform sensitive spin read-out. Combined with the calibrated control of the

exchange coupling, coherent control of singlet-triplet qubit has been demonstrated

[30].
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Chapter 2

Spin Qubit Decoherence

Mechanisms - Towards

Silicon-Based Quantum Devices

In the previous chapter, we reviewed the successful implementation of charge and spin

qubits in GaAs DQDs. In this chapter, we introduce the main decoherence mecha-

nisms in the GaAs system [21, 34], and justify our motivation to move to Si/SiGe

based heterostructures in order to improve the robustness of the semiconductor qubits.

We have shown in the previous chapter that coherent spin manipulation can be

realized in singlet-triplet qubits in GaAs DQDs. However, the amplitude of the co-

herent Rabi oscillation is found to quickly decay on a timescale of tens to hundreds of

nanoseconds [30]. The processes that lead to the observed decay are generally catego-

rized as qubit relaxation and qubit decoherence. The relaxation process, as the name

suggests, corresponds to the qubit relaxation from the qubit excited state (|0〉) to the

qubit ground state (|1〉). The timescale of relaxation is described by the qubit life-

time T1, which is strongly correlated with the spin-orbit coupling strength in the host

material. The coherence time T2 describes the timescale that it takes for the qubit to
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“lose” its in-plane coherent phase information. Many processes can lead to decoher-

ence, such as qubit relaxation, hyperfine interaction, as well as charge noise. In this

chapter we will focus on discussing the former two mechanisms, as they can directly be

improved by switching to a new qubit host heterostructure with more favorable ma-

terial properties. Although the qubit coherence time can be significantly improved

through the dynamic decoupling techniques (decoherence correction/compensation

techniques using trains of well calibrated π-pulses), a more straightforward solution

to the qubit decoherence problem is to directly suppress the spin-orbit and hyperfine

interaction by moving to Si.

2.1 Spin-orbit Interaction

In a semiconductor qubit, the excited state |0〉 can relax to the ground state |1〉 via

phonon mediated mechanisms [21, 34, 55]. While this is a straightforward process in

charge qubit experiments, the relaxation of pure electron spin states (in spin qubits)

involves a spin flip process and therefore a change of spin angular momentum. As a

result, phonons are unable to directly participate in the pure spin relaxation process

since they carry zero angular momentum. In fact, the spin states are never “pure” in

realistic condensed matter systems, as the spin degree of freedom is always coupled

to the orbital levels via the spin-orbit interaction [56].

The spin-orbit interaction arises from the relativistic correction of the Schrodinger

equation (or equivalently speaking, non-relativistic approximation to the Dirac equa-

tion) [57]. Conduction electrons in bands move at the Fermi velocity, which is signifi-

cantly less than the speed of light [58]. However, the Fermi velocity only represents a

time-averaged, center of mass velocity of the electron. Microscopically, each electron

in a solid is moving with relativistic velocity relative to the the host lattice nucleus

[Fig. 2.1(a)]. As a result of invariant Lorenzian transformation of electromagnetic field
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Figure 2.1: (a) In the lab frame, an electron in a solid state environment moves with
relativistic velocity relative to the host lattice nuclei. As a result, the electron experiences
(b) a “stretched” version of lattice Coulomb potential, and an effective magnetic field in
the plane perpendicular to the electron movement. (c) The spin-orbit interaction couples
the originally “pure” spin states to the higher orbitals, thereby allowing spin relaxation via
spontaneous emission of a phonon.

[59], these relativistic electrons experience a “stretched” version of lattice Coulomb

potential, and most importantly, an effective magnetic field in the plane perpendicu-

lar to the electron movement with a strength proportional to its velocity [Fig. 2.1(b)].

These characteristics are also well represented in the spin-orbit Hamiltonian, given as

HSO = − ~
4m2

0c
2
σ · p× (5V0), (2.1)

in which ~ is the reduced Planck’s constant, m0 is the electron mass, σ are Pauli spin

matrices, p is the electron momentum and V0 is the local Coulomb potential.

The spin-orbit interaction mechanisms are generally categorized into bulk inver-

sion asymmetry induced (BIA) and structure inversion asymmetry (SIA) induced.

The BIA spin-orbit interaction (also known as Dresselhaus effect) exists in III-V

semiconductors with a zinc blende lattice structure (such as GaAs, whose lattice

lacks a center of inversion), while the SIA spin-orbit interaction exists in QD de-

vices with a structure inversion asymmetry of the confinement potential (also known

as Rashba effect). It is worth noting that while the SIA spin-orbit interaction is
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mainly contributed by the macroscopic electric field (which is gate tunable), the BIA

spin-orbit interaction is dominated by the microscopic spin-orbit interaction from the

atomic cores of the host lattice. For electrons in a 2DEG, the Dresselhaus spin-orbit

interaction can be generally written as

HD = β[−pxσx + pyσy], (2.2)

where β is a constant describing the strength of Dresselhaus spin-orbit interaction.

The Rashba spin-orbit interaction is written in the form of

HR = α[−pyσx + pxσy], (2.3)

where α is a constant describing the Rashba spin-orbit interaction strength.

The strength of the spin-orbit coupling can be represented by the spin-orbit length,

which is a function of α and β,

lSO =
~

m
√
α2 + β2

. (2.4)

The spin-orbit length can be qualitatively understood as the distance over which the

electron spin flips due to the spin-orbit interaction. In InAs, the spin-orbit length is

usually 100-200 nm [60], while the spin-orbit length in GaAs is on the order of tens

of µm [61].

Independent of the specific mechanisms, the pure spin states are coupled to the

higher orbitals via the spin-orbit interaction [Fig. 2.1(c)]. And as a result, neither spin

nor orbital is a good quantum number anymore and the resulting qubit states become

spin-orbit mixed states. The previous selection rule for the pure spin relaxation

process is therefore lifted and the phonon’s participation in the relaxation process
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becomes allowed. In order to achieve a long spin qubit lifetime in semiconductor

QDs, a weaker spin-orbit coupling strength is therefore desired.

2.2 Contact Hyperfine Interaction and Inhomoge-

nious Spin Dephasing

In this section we will discuss the hyperfine interaction [62, 30, 34, 63, 64, 65] in more

detail and show how it leads to spin qubit decoherence. Each nucleus in GaAs carries

spin I = 3/2 and therefore generates a nuclear magnetic dipole field

B(r,R) = 5×5×
(

µ

|r−R|

)
= 5

[
µ · 5

(
1

|r−R|

)]
− µ52

(
1

|r−R|

)
, (2.5)

in which B is the dipole field at r, generated by the nucleus at R, and µ is the

magnetic dipole moment of the nuclear spin [59].

The first term takes the form of

5
[
µ · 5

(
1

|r−R|

)]
=

3(r−R)[µ · (r−R)]

|r−R|5
− µ

|r−R|3
, (2.6)

giving the well known dipole field equation that decays by R3 law. However, this only

contributes very marginally to the effective nuclear magnetic field felt by the electrons

in the GaAs DQD, as the magnetic dipole field decays quickly at the vicinity of the

nucleus. Instead, the hyperfine field is dominated by the contribution from the second

term [66], which is given by

µ52

(
1

r−R

)
= µ4πδ(r−R). (2.7)

21



Since the dominant term in the Hamiltonian takes the form of Dirac function, the

effective nuclear field is also referred to as contact hyperfine field. The strength of

the contact hyperfine field depends both on the local nuclear bath and the spatial

electron wavefunction. It can be generally written as a sum over all the nuclei in the

active device region

BN =
16πv0

3ge

∑
j

µj|uc(Rj)|2|ψ(Rj)|2
Ij
Ij
, (2.8)

in which v0 is the unit cell volume, ge is the electron g factor, µj, Ij and Rj are the

magnetic moment, spin and coordinate of the jth nuclei, uc(r) and ψ(r) are electron

Bloch wavefunction and electron envelope wavefunction [62].

Due to the fact that the g factor of a nuclear spin is about 1000 times smaller than

that of an electron spin, the Zeeman splitting of the nuclear spin is well below the

electron temperature (typically measured to be 100 mK in our dilution refrigerators,

which corresponds to 8.6 µeV) at a typical external magnetic field of 100 mT. As a

result, at any given time, the direction at which each Ij is pointing is considered to

be random and fluctuating. This gives rise to a Gaussian distribution of the total

contact hyperfine field, in the form of

W (BN) =
1

π
3
2 ∆B3

nuc

exp

[
− |BN |2

∆B2
nuc

]
. (2.9)

In a typical GaAs DQD, ∆Bnuc is normally found to be on the order of a few mT

[21].

In order to see how this Gaussian distribution of the hyperfine field leads to

decoherence, let’s use a single electron spin as an example. After projecting the

electron spin onto the x-y plane of the Bloch sphere, it precesses with a Larmor

frequency proportional to the Zeeman splitting, ωL = geµBB/~. The in-plane phase

of the spin as a function of time can then be written as eiωnt+iω0t, in which ωn∝BN ·ẑ is
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contributed by the nuclear field and is therefore fluctuating, and ω0 is contributed by

the 100 mT external field generated by the superconducting magnet and is therefore

constant.

In reference [30], spin read-out is performed using a lock-in measurement of the

QPC conductance, with a measurement time on the order of tens of ms. Meanwhile,

a typical Rabi pulse sequence has a duty cycle period of tens of ns to tens of µs. As

a result, for each of the data points taken, it’s effectively measuring a time-ensemble-

averaged value over many repeated pulse sequences. Due to the fluctuating nature of

the hyperfine field, the Larmor frequency fluctuates as a function of time, resulting

into a time-ensemble-averaged in-plane spin vector given by

< σx >=
∑
i

C0exp

[
− ω2

i

∆ω2

]
eiωit+iω0t = C1e

−t2∆ω2

eiω0t, (2.10)

where C0 and C1 are both constants. This corresponds to coherent in-phase Rabi

oscillations eiω0t that exhibit Gaussian decay with a form e−t
2/T 2

2 , and coherence time

T2 = 1/∆ω ∝ 1/∆Bnuc.

In order to extend T2, one can apply the dynamic decoupling pulse sequences,

such as spin echo [67, 30] and Carr-Purcell-Meiboom-Gill pulse sequences [68, 69, 35],

or simply reduce the number of nuclear spins in the 2DEG. This thesis focuses on

using the latter method to improve the lifetime and coherence time of the qubits, by

switching from GaAs to Si based DQDs.

2.3 Si/SiGe Heterostructures

In GaAs DQDs, the spin-orbit interaction and the hyperfine interaction are the domi-

nant spin relaxation and decoherence mechanisms. In order to increase spin dephasing

times, it is desirable to implement the qubit in a material environment whose deco-

herence and relaxation mechanisms are significantly reduced. As a result, silicon

23



becomes one of the best candidates for future ultra-coherent qubits [70]. Due to its

small atomic number, the spin-orbit coupling strength in silicon is much weaker com-

pared to GaAs. And most importantly, its naturally abundant isotope, 28Si, carries

zero nuclear spin. In addition, with the help of isotopic purification, one can create

a nearly-nuclear-spin-free environment for qubit electron with a 29Si (which carries

nuclear spin I=1/2) concentration smaller than 400 ppm [71].

There are several differences between GaAs and Si 2DEGs [72, 73, 74, 75, 76, 77,

78]. For Si1−xGex alloys, the band structure is “silicon-like” when x<0.85, and the

conduction band minima are found along the six equivalent (100) directions. Whereas

when x>0.85, the conduction band minima are found along the eight (111) directions

and the band structure is “germanium like”. The Si/SiGe heterostructures used in

this thesis research, either modulation doped or enhancement mode, the SiGe layers

consists of Si0.7Ge0.3. The indirect bandgap of Si1−xGex is given by ∆ = 1.12 - 0.41x +

0.008x2 eV [79]. For Si0.7Ge0.3, we have ∆ = 0.998 eV. Taking into account the band

alignment of strained Si1−xGex/Si heterostructure grown on Si1−yGey substrate [80],

the heterostrcuture creates an effective quantum well potential for the conduction

electrons with the confinement along the growth direction.

While the lattice mismatch in GaAs system is negligible, there is a 4.2% lattice

constant difference between Si and Ge, which induces in-plane strain on the Si 2DEG

layer and may also leads to threading dislocations during the wafer growth. Last but

not least, while GaAs is a direct band gap semiconductor, the conduction minima in

Si are found along the six [100] directions near the X points in the Brillouin zone [81],

specifically at k = [k0, 0, 0], [-k0, 0, 0], [0, k0, 0], [0, -k0, 0], [0, 0, k0] and [0, 0, -k0],

where k0 ∼ 0.85 2π
a0

.

A two-level system based on spin is required to build the spin qubit. However,

adding in the degenerate valley degree of freedom would lead to a 12-state manifold.

This provides leakage paths for relaxation and decoherence, and will render the “spin
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to charge conversion” ineffective as it can lift the spin blockade. It is therefore desir-

able to have only one low-lying valley, well separated in energy from the higher valley

states. In chapter 5, we provide in-depth discussions about valley degeneracy and our

new devices designed to overcome this challenge.

In addition to the valley degeneracy, there are many other challenges that need to

be overcome before a robust Si qubit can be realized. The relatively low heterostruc-

ture quality of the Si/SiGe 2DEG with a typical mobility on the order of ∼ 100,000

cm2/Vs [82, 51], the larger electron effective mass in Si, and the instability of the P

donor in modulation doped Si/SiGe wafers, have all presented us with difficulties in

our quest to fabricate high quality Si/SiGe DQD devices. In the remainder of this

thesis, we explain in detail our experimental approaches to solve each of the problems

along our way of realizing robust qubits in Si.
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Chapter 3

Depletion-Mode Si Quantum Dots

In the previous chapters, we described the recent successes of spin qubits based on

modulation-doped GaAs/AlGaAs heterostructures, and the limitations of their co-

herence times due to the hyperfine and spin-orbit interactions. As we transition to

silicon, whose material properties hold promise for ultra-coherent qubits, a first natu-

ral step to take in terms of device fabrication is to reproduce the successful methods in

GaAs. Hence, we started this project by investigating depletion-mode DQD devices

fabricated on modulation-doped heterostructures.

In this chapter, we systematically explore the relationship between the het-

erostructure growth profile and 2DEG quality by varying 2DEG depths and doping

levels. We identify several heterostructure growth profiles where the 2DEG has low

electron density, n, high electron mobility, µ, and shows no evidence of parallel

conduction attributable to charge accumulation near the Si cap layer. Double

quantum dots fabricated on the most promising wafers are investigated using dc

transport and quantum point contact based charge sensing. When tuned to the single

dot regime, we observe clear signatures of single electron charging and low electron

temperatures, Te = 100 mK. However, we show that the depletion-mode DQD devices

are unstable, possibly due to the existence of the P modulation doping layer (see
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Chapter 4 for results from undoped devices). The charge population/depopulation

of the phosphorus dopants induces switching noise in the device at large negative

gate voltages. In addition, the dopants cause potential fluctuations which lead to

non-uniform 2DEGs and unintentional quantum dot formation (defect dots).

3.1 Quantum Hall Characterization of Commercially-

Grown Depletion-Mode Samples

To fabricate few electron DQDs, we need high quality heterostructures that can pro-

vide low electron densities and high mobilities. Based on results from the GaAs

system, we desire charge densities n ≤ 5 × 1011/cm2 and mobilities µ ≥ 50,000

cm2/Vs. In order to optimize the 2DEG parameters, we investigated several sample

growth profiles using the quantum Hall effect.

We measure the transport properties of Si/SiGe heterostructures grown us-

ing chemical vapor deposition by Lawrence Semiconductor Research Laboratories

(LRSL). Three main heterostructure growth profiles are investigated, based on

previous reports in the literature [83, 84]. Series 1, Series 2, Series 3 are each adapted

from heterostructure designs used at HRL Laboratories, Prof. Eriksson’s group at

the University of Wisconsin Madison [83] and Prof. Sturm’s group at Princeton

Table 3.1: Layer thicknesses for three different heterostructure growth profiles

Layer Series 1 Series 2 Series 3

Si Cap (nm) 7.5 9 11
SiGe Top Spacer (nm) 25 45 25

SiGe Supply Layer (nm) 20 2.6 2.5
Doping Range (/cm3) 2–10x1017 6–50x1017 5–50x1017

SiGe Bottom Spacer (nm) 5 or 10 22 22
Si Quantum Well (nm) 15 18 10

SiGe Buffer Re-grow (nm) 225 225 225
SiGe Relaxed Buffer (µm) 3 3 3
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University [84]. Layer thicknesses and doping profiles are listed in Table 3.1. Relaxed

buffer layers are first grown on Si substrates by varying the Ge content from 0 to 30%

over a thickness of 3 µm. A 300-nm thick layer of Si0.7Ge0.3 is grown on the relaxed

buffer before it is polished. After polishing, the wafers are completed by growing a

225-nm thick Si0.7Ge0.3 layer, followed by a strained-Si quantum well, a Si0.7Ge0.3

bottom spacer, a phosphorus-doped Si0.7Ge0.3 supply layer, a Si0.7Ge0.3 top spacer,

and a Si cap. The growth structure is shown in the upper left inset of Figure 3.1.

We perform magnetotransport measurements on Hall bars fabricated from the

wafers (see upper right inset of Fig. 3.1). Ohmic contacts are made by thermally

evaporating a 20/1/30/1/70 nm stack of Au/Sb/Au/Sb/Au and annealing at 390 ◦C

for 10 min. Low-frequency ac lock-in techniques are used to simultaneously measure

the longitudinal voltage, Vxx, and Hall voltage, Vxy, as a function of field, B, with a

10 nA current excitation. Charge density is extracted from the low-field Hall response

(B < 1 T) and the mobility is extracted from measurements of the zero-field Vxx. All

measurements were performed in a top-loading dilution refrigerator equipped with a

14 T superconducting magnet. The base temperature of the cryostat is 35 mK.

Figure 3.1 shows typical Hall data measured on a series 1 sample after illumination

with a red light-emitting diode (LED) for 1 min. The wafer has a 10-nm bottom

spacer layer and doping level of 6 × 1017/cm3. Clear integer quantum Hall plateaus

are visible for filling factors, ν = 1, 2, 4, 6, 8, 10 and 12 at values of ρxy = h/(νe2). As

is the case in Fig. 3.1, we always observe more Hall plateaus for even values of ν than

for odd values. This is consistent with previous reports that the valley splitting is

smaller than the Zeeman splitting in similar Si/SiGe heterostructures in the quantum

Hall regime [85]. The data in Fig. 3.1 also reveal vanishing minima in ρxx at fields

corresponding to the ν = 1, 2, and 4 plateaus. The vanishing quantum Hall minima

in ρxx, coupled with the high mobilities observed, confirm that the 2DEG is the only

conduction channel, which is an important prerequisite for operating QD devices.

28



10, and 12 at values of qxy¼ h/(me2). As is the case in Fig. 1,

we always observe more Hall plateaus for even values of m
than for odd values. This is consistent with previous reports

that the valley splitting is smaller than the Zeeman splitting

in similar Si/SiGe heterostructures in the quantum Hall re-

gime.14 The data in Fig. 1 also reveal vanishing minima in

qxx at fields corresponding to the m¼ 1, 2, and 4 plateaus.

The vanishing quantum Hall minima in qxx, coupled with the

high mobilities observed, confirm that the 2DEG is the only

conduction channel, which is an important prerequisite for

operating quantum dot devices. Overshoots in qxy on the low

field side of the resolvable quantum Hall plateaus for m> 2

have been attributed to the co-existence of incompressible

strips with different filling factors.14

Hall data were recorded from 16 wafers after illumination

with a LED, resulting in the scatter plot of mobility as a func-

tion of density shown in Fig. 2(a). Hall bars fabricated on the

same chip showed variations in carrier density of less than

5% and carrier mobility of less than 10%, provided there was

no evidence of parallel conduction. The data in Fig. 2(a) indi-

cate that the specific heterostructure growth profile can have a

large impact on 2DEG quality. Series 3 wafers support low

density 2DEGs with n� 2� 1011/cm2, but the mobility is

comparably poor, l< 40 000 cm2/Vs. While series 2 wafers

support low density 2DEGs with n¼ 1–3� 1011/cm2, the

mobilities are moderate, l� 70 000 cm2/Vs. Series 1 wafers

with a 5 nm thick bottom spacer have comparably high mobi-

lities (typically above 60 000 cm2/Vs and reach a maximum

of �90 000 cm2/Vs). However, densities below 3� 1011/cm2

were not attainable. Increasing the bottom spacer thickness of

the series 1 wafers to 10 nm results in l� 100 000 cm2/Vs

with charge densities in the range of 1–3� 1011/cm2, indicat-

ing that this series is the most promising for the fabrication of

quantum dot devices.

For each measured sample, we attempted to perform

Hall measurements prior to illumination, but the Ohmic con-

tact resistance for low density samples was on the order of

1 MX, independent of wafer series. Illumination typically

reduced the contact resistances to a few kX allowing us to

make reliable Hall measurements. Furthermore, for samples

with low Ohmic contact resistance prior to illumination, Hall

measurements revealed non-vanishing quantum Hall minima

in qxx for all but the highest density samples. As a specific

example, it is evident in the data in Fig. 2(b) that near the

m¼ 1 plateau qxx is finite prior to illumination and vanishes

after illumination. However, illumination does not guarantee

vanishing quantum Hall minima in qxx. For each series, sam-

ples with the lowest densities did not exhibit zeros in the lon-

gitudinal resistance after illumination [see Fig. 2(c)].

Optimal quantum dot device performance will most likely be

achieved by illuminating the samples prior to measurements

and by selecting material with a moderate density, rather

than the lowest measurable density within a series.

Based on the quantum Hall characterization, we fabri-

cated quantum dot devices on a series 1 wafer with a 5 nm

spacer thickness and a doping level of 8� 1017/cm3, which

yields n¼ 3.4� 1011/cm2 and l¼ 78 000 cm2/Vs. Low-

leakage Pd top gates are used to define the double quantum

dot [see inset of Fig. 3(b)]. Figure 3(a) shows the conduct-

ance, g, through the device measured as a function of gate

voltage, Vg, and bias voltage, VSD, yielding clear Coulomb

diamonds in the single dot regime. The absence of abrupt

switching during this 14 h scan demonstrates the excellent

stability of the device in this regime. By fitting to the Cou-

lomb blockade peak shown in the inset of Fig. 3(a), we

extract an electron temperature Te¼ 100 mK.15 We consis-

tently observe electron temperatures in the range of 100–150

mK, which suggests that previous reports of high electron

temperatures in Si quantum dots may be due to sample qual-

ity or electrical filtering.16

FIG. 2. (Color online) (a) Carrier mobility plotted as a function of charge

density for each wafer series. (b) Hall data sets recorded before and after

illumination with a LED for a series 2 wafer with a doping level of 3� 1018/

cm3, resulting in l¼ 30 000 cm2/Vs and n¼ 1.8� 1011/cm2 before illumina-

tion and l¼ 49 000 cm2/Vs and n¼ 2.4� 1011/cm2 after illumination. (c) A

series 1 wafer (5 nm spacer) with a doping level of 6� 1017/cm3 does not

show clear zeros in qxx after illumination with a LED. l¼ 48 000 cm2/Vs

and n¼ 3.7� 1011/cm2 for this sample.

FIG. 1. (Color online) Typical Hall data set from which we extract

l¼ 96 000 cm2/Vs and n¼ 2.5� 1011/cm2. Wafer details are given in main

text. Horizontal lines indentify the visible quantum Hall plateaus. Upper left

inset: Heterostructure growth profile. Upper right inset: Hall bar geometry

with dimensions given in microns.
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Figure 3.1: Typical Hall data set from which we extract µ = 96,000 cm2/Vs and n = 2.5
× 1011/cm2. Wafer details are given in the main text. Horizontal lines identify the visible
quantum Hall plateaus. Upper left inset: Heterostructure growth profile. Upper right inset:
Hall bar geometry with dimensions given in microns.

Overshoots in ρxy on the low-field side of the resolvable quantum Hall plateaus for

ν > 2 have been attributed to the co-existence of incompressible strips with different

filling factors [85].

3.2 Comparison of Electron Densities and Mobil-

ities Obtained from the Commerically-Grown

Modulation-Doped Heterostructures

Hall data were recorded from 16 wafers after illumination with a LED, resulting in

the scatter plot of mobility as a function of density shown in Fig. 3.2(a). Hall bars

fabricated on the same chip showed variations in carrier density of less than 5% and

carrier mobility of less than 10%, provided that there was no evidence of parallel
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conduction. The data in Fig. 3.2(a) indicate that the specific heterostructure growth

profile can have a large impact on 2DEG quality. Series 3 wafers support low density

2DEGs with n ∼ 2 ×1011/cm2, but the mobility is comparably poor, µ < 40,000

cm2/Vs. While series 2 wafers support low density 2DEGs with n = 1–3 × 1011/cm2,

the mobilities are moderate, µ ∼ 70,000 cm2/Vs. Series 1 wafers with a 5-nm thick

bottom spacer have comparably high mobilities (typically above 60,000 cm2/Vs and

reach a maximum of ∼ 90,000 cm2/Vs). However densities below 3 × 1011/cm2 were

not attainable. Increasing the bottom spacer thickness of the series 1 wafers to 10 nm

results in µ ∼ 100,000 cm2/Vs with charge densities in the range of 1–3 × 1011/cm2.

Most GaAs DQD experiments were performed on samples with electron densities in

this range and the electron mobilities on the same order of magnitude. Therefore, by

extension, this series is the most promising for the fabrication of DQD devices.

For each measured sample, we attempted to perform Hall measurements prior

to illumination, but the Ohmic contact resistance for low density samples was on

the order of 1 MΩ, independent of wafer series. Illumination typically reduced the

contact resistances to a few kΩ allowing us to make reliable Hall measurements.

Furthermore, for samples with low Ohmic contact resistance prior to illumination,

Hall measurements revealed non-vanishing quantum Hall minima in ρxx for all but

the highest density samples. As a specific example, it is evident in the data in Fig.

3.2(b) that near the ν = 1 plateau ρxx is finite prior to illumination and vanishes

after illumination. However, illumination does not guarantee vanishing quantum Hall

minima in ρxx. For each series, samples with the lowest densities did not exhibit

zeros in the longitudinal resistance after illumination [see Fig. 3.2(c)]. Optimum QD

device performance will most likely be achieved by illuminating the samples prior to

measurements and by selecting material with a moderate density, rather than the

lowest measurable density within a series.
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10, and 12 at values of qxy¼ h/(me2). As is the case in Fig. 1,

we always observe more Hall plateaus for even values of m
than for odd values. This is consistent with previous reports

that the valley splitting is smaller than the Zeeman splitting

in similar Si/SiGe heterostructures in the quantum Hall re-

gime.14 The data in Fig. 1 also reveal vanishing minima in

qxx at fields corresponding to the m¼ 1, 2, and 4 plateaus.

The vanishing quantum Hall minima in qxx, coupled with the

high mobilities observed, confirm that the 2DEG is the only

conduction channel, which is an important prerequisite for

operating quantum dot devices. Overshoots in qxy on the low

field side of the resolvable quantum Hall plateaus for m> 2

have been attributed to the co-existence of incompressible

strips with different filling factors.14

Hall data were recorded from 16 wafers after illumination

with a LED, resulting in the scatter plot of mobility as a func-

tion of density shown in Fig. 2(a). Hall bars fabricated on the

same chip showed variations in carrier density of less than

5% and carrier mobility of less than 10%, provided there was

no evidence of parallel conduction. The data in Fig. 2(a) indi-

cate that the specific heterostructure growth profile can have a

large impact on 2DEG quality. Series 3 wafers support low

density 2DEGs with n� 2� 1011/cm2, but the mobility is

comparably poor, l< 40 000 cm2/Vs. While series 2 wafers

support low density 2DEGs with n¼ 1–3� 1011/cm2, the

mobilities are moderate, l� 70 000 cm2/Vs. Series 1 wafers

with a 5 nm thick bottom spacer have comparably high mobi-

lities (typically above 60 000 cm2/Vs and reach a maximum

of �90 000 cm2/Vs). However, densities below 3� 1011/cm2

were not attainable. Increasing the bottom spacer thickness of

the series 1 wafers to 10 nm results in l� 100 000 cm2/Vs

with charge densities in the range of 1–3� 1011/cm2, indicat-

ing that this series is the most promising for the fabrication of

quantum dot devices.

For each measured sample, we attempted to perform

Hall measurements prior to illumination, but the Ohmic con-

tact resistance for low density samples was on the order of

1 MX, independent of wafer series. Illumination typically

reduced the contact resistances to a few kX allowing us to

make reliable Hall measurements. Furthermore, for samples

with low Ohmic contact resistance prior to illumination, Hall

measurements revealed non-vanishing quantum Hall minima

in qxx for all but the highest density samples. As a specific

example, it is evident in the data in Fig. 2(b) that near the

m¼ 1 plateau qxx is finite prior to illumination and vanishes

after illumination. However, illumination does not guarantee

vanishing quantum Hall minima in qxx. For each series, sam-

ples with the lowest densities did not exhibit zeros in the lon-

gitudinal resistance after illumination [see Fig. 2(c)].

Optimal quantum dot device performance will most likely be

achieved by illuminating the samples prior to measurements

and by selecting material with a moderate density, rather

than the lowest measurable density within a series.

Based on the quantum Hall characterization, we fabri-

cated quantum dot devices on a series 1 wafer with a 5 nm

spacer thickness and a doping level of 8� 1017/cm3, which

yields n¼ 3.4� 1011/cm2 and l¼ 78 000 cm2/Vs. Low-

leakage Pd top gates are used to define the double quantum

dot [see inset of Fig. 3(b)]. Figure 3(a) shows the conduct-

ance, g, through the device measured as a function of gate

voltage, Vg, and bias voltage, VSD, yielding clear Coulomb

diamonds in the single dot regime. The absence of abrupt

switching during this 14 h scan demonstrates the excellent

stability of the device in this regime. By fitting to the Cou-

lomb blockade peak shown in the inset of Fig. 3(a), we

extract an electron temperature Te¼ 100 mK.15 We consis-

tently observe electron temperatures in the range of 100–150

mK, which suggests that previous reports of high electron

temperatures in Si quantum dots may be due to sample qual-

ity or electrical filtering.16

FIG. 2. (Color online) (a) Carrier mobility plotted as a function of charge

density for each wafer series. (b) Hall data sets recorded before and after

illumination with a LED for a series 2 wafer with a doping level of 3� 1018/

cm3, resulting in l¼ 30 000 cm2/Vs and n¼ 1.8� 1011/cm2 before illumina-

tion and l¼ 49 000 cm2/Vs and n¼ 2.4� 1011/cm2 after illumination. (c) A

series 1 wafer (5 nm spacer) with a doping level of 6� 1017/cm3 does not

show clear zeros in qxx after illumination with a LED. l¼ 48 000 cm2/Vs

and n¼ 3.7� 1011/cm2 for this sample.

FIG. 1. (Color online) Typical Hall data set from which we extract

l¼ 96 000 cm2/Vs and n¼ 2.5� 1011/cm2. Wafer details are given in main

text. Horizontal lines indentify the visible quantum Hall plateaus. Upper left

inset: Heterostructure growth profile. Upper right inset: Hall bar geometry

with dimensions given in microns.
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Figure 3.2: (a) Carrier mobility plotted as a function of charge density for each wafer series.
(b) Hall data sets recorded before and after illumination with a LED for a series 2 wafer with
a doping level of 3 × 1018/cm3, resulting in µ = 30,000 cm2/Vs and n = 1.8 × 1011/cm2

before illumination and µ = 49,000 cm2/Vs and n = 2.4 × 1011/cm2 after illumination. (c)
A series 1 wafer (5-nm spacer) with a doping level of 6 × 1017/cm3 does not show clear
zeros in ρxx after illumination with a LED. µ = 48,000 cm2/Vs and n = 3.7 × 1011/cm2

for this sample.

3.3 Coulomb Blockade in Depletion-Mode Single

Quantum Dots

The first challenge we face in terms of quantum dot device fabrication is presented

by the high effective mass of electron in silicon. In order to create a comparable

energy splitting, we need a smaller gate geometry. This can be seen in a simple

“particle in the box” equation, En = n2h2

8meL2 , in which h is Planck’s constant, n is the

energy level index, me is the effective electron mass and L is the dimension of the

box. According to this equation, a three times higher transverse effective mass in Si

implies that we need to scale down the electron beam pattern by a factor of 1.73.

Through many experiments, we’ve found an optimum scaling factor of 2.5 [Fig. 3.3].
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Figure 3.3: Scanning electron microscope (SEM) image of ebeam gates for a typical GaAs
DQD device (from ref. [63]) and a typical Si DQD device, plotted with the same scale bar.

This presents considerable technical complications, as the resulting dimensions of the

depletion gates have reached the resolution of the 30 keV electron-beam lithography

tool available in Princeton at the time of this research.

We have taken many measures in order to successfully scale down the gate geome-

try. We take into account the proximity effect induced by the backscattered secondary

electrons during the exposure of nearby gate electrodes and optimize the individual

dose factors of each gate electrode in the active device. We optimize the exposure

conditions of the electron-beam lithography tool by performing three-point alignment,

adjusting stigmation and aperture, and optimizing the exposure time. With all these

efforts, we manage to obtain a reliable electron beam lithography recipe for the much

smaller Si/SiGe DQD gate pattern.

After we successfully optimize the electron beam gate recipe, we need high quality

Si/SiGe two-dimensional electron gases (2DEGs) with low charge density and high

carrier mobility, free of threading defects stemming from the relaxed buffer substrate

growth. And on top of this, we need high quality DQD devices with low gate leakage
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Figure 3.4: Growth profile of a typical depletion-mode silicon double quantum dot device.

and high charge stability, free of switching noise [86, 70, 73, 81, 87]. Based on the

quantum Hall characterization, we fabricated QD devices on a series 1 wafer with a

5-nm spacer thickness and a doping level of 8 × 1017/cm3, which yields n = 3.4 ×

1011/cm2 and µ = 78,000 cm2/Vs [Fig. 3.4]. Low-leakage Pd top gates are used to

define the DQD [see Fig. 3.4 and inset of Fig. 3.8(c)].

We begin our measurements by operating the device in the SQD regime [Fig.

3.5(a)]. The interdot tunnel coupling is mainly tuned by the gate voltages VN and VC .

By setting these voltages to comparably positive values, the interdot tunnel barrier

becomes transparent and the electron wavefunction spans over the entire active area

of the device, formimg a SQD. As shown in [Fig. 3.5(b)], conductance through the

DQD measured as a function of VR and VL exhibits a pattern consisting of parallel

lines, a clear signature of Coulomb blockade. The data in Fig. 3.5(c) are obtained by

measuring the conductance along the white line in Fig. 3.5(b). As shown in the data,
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Figure 3.5: (a) SEM image of the device showing the depletion gate pattern and the mea-
surement circuit. (b) Dot conductance, g, measured as a function of VL and VR. The
periodic modulation of the conductance is due to Coulomb blockade. (c) Conductance g as
a function of Vg.

we have obtained high quality Coulomb blockade peaks. The gate voltage along this

indicated direction is hereafter defined as Vg.

Figure 3.6 shows the conductance, g, through the device measured as a function of

gate voltage, Vg, and bias voltage, VSD, yielding clear Coulomb diamonds in the single

dot regime. The absence of abrupt switching during this 14-hour scan demonstrates

the excellent stability of the device in single dot regime.

The shape of Coulomb blockade peak is described by the equation g
gmax

=

cosh−2
(

eα∆V
2.5kBTe

)
, in which gmax is the height of the CB peak, ∆V is the gate voltage

with respect to the CB peak position, kB is Boltzmann’s constant, Te is the electron

temperature and α is the lever arm conversion between gate voltage and energy.

This parameter can be extracted by studying the CB diamond shown in Fig. 3.6.

At the top or bottom point of any specific single CB diamond, the dot energy level

configuration is such that |eVSD| = Ec, in which Ec is the charging energy. Therefore,

the difference in VSD between these two points (∆VSD) is related to the charging

energy by the relation |e∆VSD| = 2Ec. Meanwhile, the difference between the left and

right point of the same CB diamond (∆Vg) is related to the charging energy by the

relation |α(e∆Vg)| = Ec. Therefore, the lever arm is given by α = ∆VSD
2∆Vg

. By fitting

the Coulomb blockade peak shown in the inset of Fig. 3.6, we extract an electron
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Figure 3.6: Colorscale plot of QD conductance, g, as a function of Vg and VSD. Clear
Coulomb diamonds are observed when the device is configured as a single dot. Inset:
Conductance as a function of Vg for VSD = 0.

temperature Te = 100 mK [41]. We consistently observe electron temperatures in

the range of 100–150 mK, which suggests that previous reports of high electron

temperatures in Si QDs may be due to sample quality or electrical filtering [88].

3.4 Tranport Measurements and Charge-Sensing

in Depletion-Mode Double Quantum Dots in

the Many-Electron Regime

In the last section, we explored the single-dot regime and demonstrated single-electron

charging and low electron temperatures. We now increase the interdot barrier height

to explore the double dot regime [Fig. 3.7(a)]. Finite bias triangles in measurements

of the dc current, I, as a function of VL and VR have been observed, and are a clear

signature of DQD charging physics [Fig. 3.7(b)].

We measure the charge stability diagram of the DQD using a proximal QPC as a

charge sensor [Fig. 3.7(c)]. Figure 3.7(d) shows the QPC channel conductance, gQPC ,

as a function of QPC gate voltage VQPC . The QPC conductance is quantized in steps
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Figure 3.7: (a) DC current through the dot is measured at the double dot regime, where
a high interdot tunnel barrier is established by comparably negative VN and VC voltages.
(b) Typical finite bias triangles at many electron regimes, measured in current. (c) Charge
sensing measurement is carried out by measuring the conductance across the proximal QPC
channel. (d) The QPC conductance, gQPC , as a function of QPC gate VQPC . When gQPC is
parked at one of the steps in conductance (denoted by the blue line), it is highly sensitive to
local electrostatic potential. A single electron tunneling event will result into an electrostatic
potential change at the QPC that leads to (e) a measurable change in gQPC . (f) Charge
stability diagram of a DQD as a function of VL and VR.

of conductance quanta g0. To operate the QPC channel as a charge sensor, we park

the gate voltage at one of the steps in conductance (denoted by the blue line). At this

configuration, the QPC conductance gQPC is highly sensitive to the local electrostatic

potential. Even single-electron tunneling events will therefore result in electrostatic

potential changes at QPC that lead to a measurable change in gQPC [Fig. 3.7(e)]. The

DQD charge stability diagram can be mapped out by performing QCP conductance
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measurements as a function of VL and VR. These data are then differentiated with

respect to VL, resulting in the data shown in [Fig. 3.7(f)]. Black transitions (negative

slopes) correspond to charge transitions that change the total number of electrons,

while yellow transitions (positive slopes) correspond to interdot charge transitions.

We observe clear charging lines that correspond to interdot charge transitions, where

the total electron number is fixed, and transitions with the leads, where an electron

is either added or removed from the DQD. The differentiated sensing data shows a

clear honeycomb pattern, indicative of a typical DQD.

3.5 Towards the Few-Electron Regime in Depletion-

Mode Double Quantum Dots

Although we have obtained stable transport and charge-sensing data in the many-

electron regime, attempts to completely empty the DQD of electrons were unsuccess-

ful due to the onset of switching noise at large negative gate bias voltages [Fig. 3.8(a)].

We attribute this to the random charging events at the P dopants [Fig. 3.8(b)]. In

addition to this complication, we have also encountered accidental dot formation be-

fore we can enter the few-electron regime. Figure 3.8(c) shows the derivative of the

charge sensor conductance, dgQPC/dVL, plotted as a function of the gate voltages VL

and VR at more negative gate bias voltages. In contrast to the cleanest GaAs double

dot devices [30], the stability diagram shows transitions with three distinct negative

slopes, indicative of accidental triple QD formation [89]. The data suggests that the

existence of P dopants may also introduce spatially fluctuating potential landscape.

This results in a non-uniform 2DEG, and makes it difficult to form a well-controlled

and symmetric double quantum well potential.
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Figure 3.8: (a) Current measurement through the dot, as a function of VL and VR, at
more negative gate voltages, in an attempt to enter the few-electron regime. The data
display a honeycomb pattern, indicative of a DQD charge stability diagram. However, the
data are switchy due to local charge fluctuations. (b) The charge noise may be due to
random charge population/depopulation of the P dopants, which begins at large negative
gate biases. (c) Charge sensing measurement of another device, with a similar gate electrode
design. Derivative of the charge sensor conductance, dgQPC/dVL, measured as a function
of VL and VR. Inset: SEM image of of a DQD similar to the one measured.

3.6 Summary

In this chapter I have described our attempts to fabricate few-electron DQD de-

vices using depletion-mode Si/SiGe heterostructures. The depletion-mode quantum

well structures are commercially grown by LSRL. We first characterized these wafers

through measurements of the Hall mobility and electron density. We then scaled

down the gate electrode pattern to account for the effective mass difference between

GaAs and Si. This allowed us to make many-electron SQD devices and DQD devices

with charge-sensing capabilities, from which we extracted an electron temperature of

∼100 mK. However, the existence of the P dopant layer prevented us from reaching
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the few-electron regime in a DQD, motivating the development of dual-gated DQD

devices discussed in the next chapter [90].
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Chapter 4

Dual-Gated Silicon Quantum Dots

While Si closely approximates a “semiconductor vacuum” for electron spins, its elec-

tronic band structure leads to potential complications that are absent in the con-

ventional GaAs/AlGaAs 2DEG system. In the previous chapter, we saw that the

∼ 3 times larger effective mass of electrons in Si requires depletion gate patterns

to be scaled down significantly, in order to achieve orbital level spacings compara-

ble to those obtained in GaAs. In addition, the band structure of bulk Si consists

of six degenerate valleys, which introduces an additional decoherence pathway [91].

Valley degeneracy is partially lifted by uniaxial strain in a Si/SiGe heterostructure

[81]. However, the energy splitting between the lowest two valleys is highly sensitive

to device specifics, such as step-edges in the quantum well [92, 93, 90]. Detailed

measurements of the low-lying energy level structure and the timescales that govern

energy relaxation between these levels, are therefore needed in Si quantum dots [94].

In this chapter, we systematically measure the interdot relaxation time T1 of a

single electron trapped in a Si DQD as a function of detuning ε and interdot tunnel

coupling tc. We demonstrate a four order of magnitude variation in T1 using a single

depletion gate and obtain T1 = 45 µs for weak interdot tunnel coupling [38]. We also

use photon assisted tunneling (PAT) to probe the energy level structure of the single
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Figure 4.1: Profile of a typical undoped Si/SiGe heterostructure. Doping layer and dopants
are absent in the heterostructure. Instead, the 2DEG is accumulated by applying positive
voltages to the global top gate.

electron system, demonstrating spectroscopy with an energy resolution of ∼ 1 µeV. In

contrast to single-electron GaAs dots, we observe low-lying excited states ∼ 55 µeV

above the ground state, an energy scale that is consistent with previously measured

valley splittings [92, 90].

4.1 Undoped Si/SiGe Heterostructures

In the previous chapter, we demonstrated charge-sensing and transport measurements

in depletion-mode DQD devices fabricated on modulation-doped Si/SiGe heterostruc-

tures. However, we were unable to reach the few electron regime in the DQDs due

to device instabilities and unintended formation of triple quantum dots at low charge

occupancies. Based on results from HRL [90], where undoped structures were used,

we have concluded that the only path forward is to redesign the heterostructure and
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Figure 4.2: (a) Optical image of a typical accumulation-mode Hall bar device. Main contacts
are labeled as S (source), D (drain) and T (top gate). (b) Conductance g as a function of
top gate voltage VT . The 2DEG turns on at VT = 800 mV and saturates at VT = 3000 mV .

eliminate the phosphorus donors altogether, using a global top gate to accumulate

the 2DEG gas instead.

Figure 4.1 shows the growth profile of a typical undoped Si/SiGe heterostructure.

To characterize the heterostructure, we fabricate accumulation-mode Hall bars [Fig.

4.2(a)] and measure the longitudinal conductance as a function of top gate voltage,

VT . As shown in Fig. 4.2(b), the conductance turns on around VT = 800 mV and

increases as the top gate is swept to more positive voltages, until it saturates at VT

= 3000 mV . As shown in Fig. 4.3, we have systematically measured the electron

density n and electron mobility µ as a function of VT . At an electron density of

∼ 1− 6× 1011/cm2, we measure a mobility of ∼ 25,000 - 70,000 cm2/Vs .

In the early stages of accumulation mode device development, we frequently en-

countered sudden top gate voltage threshold shifts. Specifically, the turn-on voltage

would shift to more positive top gate voltages after a piece of electrical equipment is

turned on or off, or after static charges are suddenly transfered around the device.
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Figure 4.3: (a) Measured 2DEG density as a function of top gate voltage. (b) Measured
electron mobility µ as a function of electron density n.

We attribute these random shifts to the voltage spikes in the measurement setup.

We have found that the electrical properties of the device will be significantly al-

tered if the top gate voltage is brought above the saturation voltage due to static

discharge, even for a very short time period. We conducted systematic measurements

to determine the relationship between the 2DEG saturation and the device shift.

Figure 4.4(a) shows six consecutive measurements of conductance g as a function

of VT . The turn-on voltage shifts by 1-2 V each time the device conductance is swept

past saturation. The arrows denote different stages of charge accumulation. In the

isolation stage (I), no electrons have accumulated in the Si quantum well and the

device is insulating. In the accumulation stage (A), charge accumulates linearly with

VT , until it stops accumulating in the saturation stage (S). Figure 4.4(b) shows a sim-

ulated band diagram of the heterostructure in each of the three conductance stages,
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plotting the conduction band minimum as a function of distance from the top sur-

face of the sample. These simulations, combined with the experimental observations,

clearly explain the origin of the device shifts.

In the isolation stage, the conduction band minimum is well above the Fermi level

across the entire heterostructure, resulting into no electrical conductivity. The con-

duction band minimum in the Si 2DEG layer is brought below the Fermi energy in the

accumulation stage, so the device becomes conductive. As the gate voltage increases,

more electrons accumulate in the 2DEG, resulting in an increase in conductance with

VT . However, with increasing top gate voltage the conduction band minimum in the

Si cap layer eventually falls below the Fermi level, resulting in electron accumulation

in the Si cap layer instead of the Si quantum well. Unlike the nearly-free 2D elec-

trons in the Si quantum well, the newly accumulated electrons in the cap layer may

be captured by charge defects at the rough interfaces, and therefore do not conduct,

resulting in saturation of the device conductance. Furthermore, since these electrons

are trapped, sweeping the top gate voltage back to zero will not release them back

to the reservoir. The trapped electrons at the Si cap layer act effectively as a global

negative top gate which shifts the electrical properties of the active 2DEG (such as

the turn-on voltage).

Now that we fully understand the device shift problem, we are able to take effective

measures to prevent it. By adding long time constant RC filter on the DAC filter and

directly onto the circuit board, setting up a copper strap to allow a low resistance

path between the measurement set up and the ground, operating device away from

the saturation voltage and taking extra care handling electrical equipment connected

to the sample, we are able to minimize the risk of device shifting in our experiments.
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Figure 4.4: (a) Six consecutive measurements of the longitudinal conductance g as a func-
tion of top gate voltage VT . The arrows denote different stages of the device operation,
namely the isolation stage (I), the accumulation stage (A) and the saturation stage (S). (b)
Simulated band diagrams of the heterostructure in each of the three conductance stages,
showing the conduction band minimum as a function of depth.

4.2 Dual-Gated Few-Electron Double Quantum

Dot With Fast Single-Charge Sensing

Now that we fully understand the properties of the accumulation-mode 2DEG, we

can fabricate dual-gated-mode Si/SiGe DQD devices. We apply a top gate voltage

VT = 2 V to accumulate carriers in a Si quantum well located ∼ 40 nm below the

surface of the wafer [see Fig. 4.2(a)]. The resulting 2DEG has an electron density of

∼ 4 × 1011/cm2 and a mobility of ∼ 70,000 cm2/Vs. A 100-nm thick layer of Al2O3

separates the top gate from the depletion gates, which are arranged to define a DQD

and a single-dot charge-sensor. The depletion gate pattern is scaled down by a factor
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Figure 4.5: (a) The DQD is operated by biasing a global top gate at voltage VT to accumu-
late carriers in the quantum well (left). Local depletion gates define the DQD confinement
potential (center). Charge-sensing is performed using rf-reflectometry (right). (b) Few elec-
tron charge stability diagram visible in the derivative of the reflected rf amplitude dA/dVL.
(NL, NR) indicate the number of electrons in the left and right dots. (Inset) P(1,0) plotted as
a function of detuning, for different values of VN, showing tunable interdot tunnel coupling
at the (1,0)–(0,1) interdot charge transition.

of ∼ 2.5 compared to few electron GaAs DQDs to compensate for the larger effective

mass of electrons in Si [30].

Compared to the depletion-mode devices, the electron beam gate pattern has

also been further optimized to improve the charge sensing measurement. Instead of

using a quantum point contact, a single quantum dot is used as a high sensitivity

charge detector [46]. The single dot is coupled to a resonant circuit [Fig. 4.5(a)]
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Figure 4.6: Measured reflection coefficient, S11, at different charge-sensor conductances,
with a device similar to the one discussed in this chapter. At the resonance frequency fr =
418 MHz, the reflected signal amplitude depends strongly on the sensor conductance.

[37, 47, 48, 95, 96] that is driven near its resonance frequency fr = 431.8 MHz [Fig.

4.6]. The reflected amplitude A is a sensitive function of the conductance of the single

dot sensor [Fig. 4.6], gQ, which is modulated by charge transitions in the DQD. The

complete RF circuit diagram can be found in Appendix B.

The single-dot sensor can be operated in different regimes depending on the spe-

cific needs of the experiment [Fig. 4.7(a)]. In general, the charge-sensing signal-to-

noise ratio increases with the conductance slope (as a function of sensor gate voltage)

at which the sensor is operated. By tuning the shape of the electron wave function

at the dot sensor from a QPC channel to a well-defined single quantum dot, we can

achieve three different operating regimes with different sensitivity. As shown in [Fig.

4.7], the signal-to-noise ratio is best when the sensor is tuned to the single dot regime.

Therefore, we operate the sensor at this regime when we take charge relaxation and

qubit manipulation data. Meanwhile, due to the increasing difficulty in QPC com-

pensation in the single dot regime, the high quality sensing data can only be obtained
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Figure 4.7: (a)–(c) Comparison of DC and RF sensing signals in different sensing regimes.
The conductance slope becomes sharper as we move from the (a) QPC regime to the (c) SQD
regime. (d)–(f) Comparison of raw sensing data in different sensing regimes at the same
charge configuration. The quality of the data improves as the sensor is tuned towards the
SQD regime. (g)–(i) 1D cut through the raw data, demonstrating increasing signal-to-noise
ratio as the sensor is tuned to the SQD regime.

over a typical gate voltage range of 20 mV. For this reason, we operate the sensor as a

QPC when we map out the large scale stability diagram. Therefore, in a device where

both full range charge stability diagram and high quality zoomed in sensing data are

important, the ability to continuously tune the sensor between different operation

regimes is essential.

After optimizing the charge sensor, we demonstrate single-electron occupancy us-

ing radio frequency (RF) reflectometry [97]. We map out the DQD charge stability
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diagram in Fig. 4.5(b) by measuring dA/dVL as a function of VL and VR. No charg-

ing transitions are observed in the lower left corner of the charge stability diagram,

indicating that the DQD has been completely emptied of free electrons. We identify

this charge configuration as (0,0), where (NL, NR) indicates the number of electrons

in the left and right dots. We operate the device as a single-electron charge qubit

near the (1,0)–(0,1) interdot charge transition. Charge dynamics are governed by

the Hamiltonian H = ε
2
σz + tcσx, where σi are the Pauli matrices. Tunable interdot

tunnel coupling is necessary for quantum control since it sets charge qubit Larmor

precession frequencies and the exchange energy in a singlet-triplet spin qubit [20, 30].

We demonstrate tunable interdot tunnel coupling in the single-electron regime by

measuring the left dot occupation P(1,0) as a function of detuning [Fig. 4.5(b), inset].

Qubit occupation is described by

P(1,0) =
1

2

[
1− ε

Ω
tanh

(
Ω

2kBTe

)]
, (4.1)

where kB is Boltzmann’s constant, Te ∼ 100 mK is the electron temperature, and

Ω =
√
ε2 + 4t2c is the qubit energy splitting [45]. With VN = 225 mV, the interdot

charge transition is thermally broadened as 2tc < kBTe. Increasing tc by adjusting VN

leads to further broadening of the interdot transition. For VN = 290, 300 and 310 mV

we extract 2tc = 3.8, 5.9 and 9.0 GHz by fitting the data to Eq. 4.1. These results

show that interdot tunnel coupling can be sensitively tuned in the single-electron

regime despite the large effective mass of electrons in Si [98].

4.3 Excited State Spectroscopy

Transport measurements can be used to probe the energy level structure of the DQD

[44]. In a few-electron GaAs DQD, orbital excited states are typically several meV

higher in energy than the ground state [49]. We investigate the DQD energy level
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Figure 4.8: (a) (left) Current, I, measured as a function of VL and VR near the (1,0)–(0,1)
charge transition. A cut through the finite bias triangle (right) indicates the presence of a
low lying excited state. (b) P(1,0) plotted as a function of detuning ε for different excitation
frequencies f . For f & 15 GHz, a new PAT peak emerges (grey arrow) corresponding to
the (1, 0)g ↔ (0, 1)e transition. The appearance of this PAT peak is accompanied by the
suppression of (1, 0)g ↔ (0, 1)g PAT peak (black arrow) at positive detuning. (c) Transition
frequencies as a function of detuning and (d) energy level diagram extracted from data in
(c). The data in (c) are best fit with an interdot tunnel coupling tc = 1.9 GHz and an
excited state energy ∆ = 55 µeV.

structure in Fig. 4.8(a), where we plot the current I as a function of VL and VR with

a fixed source-drain bias VSD = 700 µeV. In contrast with GaAs devices, the current

in the finite bias triangles is not a smooth function of gate voltage. In particular,

we observe a small resonance ∼ 60 µeV away from the interdot charge transition,

suggesting the existence of a low-lying excited state in one of the dots.

We obtain higher energy resolution using microwave spectroscopy. Microwaves

drive charge transitions (PAT spectroscopy) when the photon energy matches the

qubit splitting, hf = Ω, where f is the photon frequency and h is Planck’s constant.
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PAT transitions are directly observed as deviations from the ground state occupation

in measurements of P(1,0) as a function of detuning [compare Fig. 4.8(b) and the inset

to Fig. 4.5(b)]. For f . 15 GHz, the PAT peaks are symmetric around ε = 0 mV

and shift to larger detuning with increasing photon energy, consistent with a simple

two level interpretation [18, 38]. However, for f & 15 GHz, an additional PAT peak

emerges at negative detuning and is not accompanied by a PAT peak at positive

detuning. Figure 4.8(c) shows the extracted transition frequencies as a function of

detuning.

The data are fit using a three-level Hamiltonian that includes the left dot ground

state (1, 0)g, the right dot ground state (0, 1)g, and a right dot excited state (0, 1)e,

as sketched in the inset of Fig. 4.8(b). The Hamiltonian can be written as

H =


− ε

2
tc tc1

tc
ε
2

ic

tc1 ic
ε
2

+ ∆

 , (4.2)

in which ε is the detuning parameter, ∆ is the excited state energy splitting, tc,

tc1 and ic are the coupling terms between (1, 0)g and (0, 1)g, (1, 0)g and (0, 1)e, and

between (0, 1)g and (0, 1)e.

For the data shown in Fig. 4.8(c), the positions of the two main PAT peaks

corresponding to (1, 0)g ↔ (0, 1)g are symmetric about ε = 0 mV and contain no

anti-crossing feature within the resolution of our measurements (∼ 1 µeV). This is

in agreement with tc1, ic1 � tc. In the following discussion, we will therefore assume

tc1, ic1 = 0. The Hamiltonian then becomes

H =


− ε

2
tc 0

tc
ε
2

0

0 0 ε
2

+ ∆

 , (4.3)
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which gives the eigenenergies

E1,2 = ±1

2

√
ε2 + 4t2c

E3 =
ε

2
+ ∆.

(4.4)

PAT peaks are expected at resonant microwave frequencies

f1 =

∣∣∣∣ε2 + ∆ +
1

2

√
ε2 + 4t2c

∣∣∣∣ /h
f2 =

∣∣∣∣ε2 + ∆− 1

2

√
ε2 + 4t2c

∣∣∣∣ /h
f3 =

√
ε2 + 4t2c/h.

(4.5)

When |ε| � tc, we have f1 ≈ ∆/h at negative ε and f2 ≈ ∆/h at positive ε. This

corresponds to the intradot transition between (0, 1)g and (0, 1)e. This transition does

not involve net charge transfer from the left dot to the right dot and can therefore

not be detected using charge sensing. As a result, no PAT peaks are visible at f =

∆/h.

Using the expressions above, the fit to the data gives tc = 1.94 GHz and ∆ = 55

µeV. These values are consistent with the charge sensing data shown in the inset of

Fig. 4.5(b) and the dc transport data shown in Fig. 4.8(a). The energy eigenstates

obtained from the model are plotted as a function of detuning in Fig. 4.8(d). We

note that an excited state is observed in the left quantum dot in Device 2, with ∆ =

64 µeV [Fig. 4.9]. For both devices, the excited state energy is highly sensitive to VN

and VC, suggesting that it is not purely orbital in origin [93].

In addition to the asymmetry of the excited state PAT peak position, we have ob-

served two other notable features in our PAT spectroscopy data. First of all, the PAT

peak for the (1, 0)g ↔ (0, 1)e transition is absent at positive detuning. Second, the

peak height of the (1, 0)g ↔ (0, 1)e PAT peak can be suppressed at higher frequencies
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Figure 4.9: (a) Few electron stability diagram of device 2. (b) Qubit transition frequency
as a function of detuning and (c) energy level diagram extracted from data in (b). The data
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(f & 15 GHz) [Fig. 4.8(b)]. We note that both these features can be explained within

our simple three-level model.

At negative detuning [Fig. 4.10(a)], (1, 0)g is the ground state of the system and

the coherent charge oscillations occur when the applied microwave frequency f =(
E(0,1)e − E(1,0)g

)
/h [Fig. 4.10(a)]. In contrast, (0, 1)g becomes the new ground state

at positive detuning [Fig. 4.10(b)]. As a result, the electron is trapped in (0, 1)g as
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Figure 4.10: Sketch of the energy level diagram for the (1, 0)g ↔ (0, 1)e PAT peak at (a)
negative and (b) positive values of ε. The corresponding PAT peak is absent at negative ε
due to the electron being trapped in (0, 1)g.

we attempt to drive charge oscillations between (1, 0)g and (0, 1)e, resulting in the

suppression of the excited state PAT peak.
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Figure 4.11: Sketch of the energy level diagram for the (1, 0)g ↔ (0, 1)g PAT peak for f &
15 GHz, at (a) negative and (b) positive values of ε. The PAT peak height at negative ε
can be suppressed under certain conditions, due to the electron being partially trapped in
(0, 1)e.

Figure 4.11 shows the energy level diagram for the (1, 0)g ↔ (0, 1)e transition at

f & 15 GHz. At negative detuning [Fig. 4.11(a)], (0, 1)e is the highest energy state

and does not interfere with the coherently driven charge oscillation (1, 0)g ↔ (0, 1)e.

However, at positive detuning [Fig. 4.11(b)], (0, 1)e lies between (0, 1)g and (1, 0)g.

Depending on the value of tc and the energy deference between (1, 0)g and (0, 1)e,

the interdot transition rate Γ can be faster or comparable to the intradot relaxation
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rate Γi. Under such a condition, the (1, 0)g charge state can leak to (0, 1)e during the

charge oscillation and result in the electron being partially trapped in (0, 1)e. The

PAT peak height will therefore decrease due to the reduced time averaged probability

of the electron being in the (1, 0)g state.

Several additional features observed in the data are explained by the three-level

model. The (0, 1)g ↔ (0, 1)e intradot charge transition [dotted line, Fig. 4.8(c)] is not

visible since the charge detector is only sensitive to interdot charge transitions. We

also note that the (0, 1)e ↔ (1, 0)g PAT peak is not visible at positive detuning. At

low temperatures, the qubit population resides in the ground state (0, 1)g, preventing

microwave transitions from (0, 1)e to (1, 0)g. Finally, the (0, 1)g ↔ (1, 0)g PAT peak

is suppressed when ε > ∆ due to population trapping in (0, 1)e.

4.4 Charge Relaxation Time T1

The longer spin relaxation times measured in Si compared to GaAs are attributed

to the absence of piezoelectric phonon coupling, along with a weaker spin-orbit in-

teraction. Likewise, the absence of piezoelectric phonon coupling in Si is expected

to result in longer charge relaxation times than in GaAs where T1 ∼ 10 ns [99]. We

measure the interdot charge relaxation time T1 by applying microwaves to VL with a

50% duty cycle and varying the pulse period τ [Fig. 4.12(a)]. We focus on the (1, 0)g

↔ (0, 1)g transition at negative detuning, where the high energy state (0, 1)e is not

populated. Simulations of P(1,0) as a function of time, t, for τ = 1 µs are shown in

Fig. 4.12(a) for three realistic values of T1. During the first half of the pulse cycle,

microwaves coherently drive the (1, 0)g ↔ (0, 1)g charge transition, resulting in an

average P(1,0) = 0.5. The microwave excitation is then turned off, leading to charge

relaxation during the second half of the pulse cycle, with P(1,0) approaching 1 on a

timescale set by T1.
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Figure 4.12: (a) Pulse sequence used to measure T1 and simulated qubit response. P(1,0) =
0.5 when resonant microwaves drive transitions between (0, 1)g and (1, 0)g, and approaches
1 on a timescale set by T1 when the microwaves are turned off. (b) P ∗(1,0) as a function of
τ extracted for different VN at f = 19.5 GHz. Fits to the data give T1 = 1.4 µs, 0.3 µs
and 0.05 µs for VN = 225 mV, 250 mV and 265 mV. (Inset) Comparison of typical PAT
peaks at different τ , with fixed VN = 225 mV and f = 25.9 GHz. (c) T1 as a function of
VN in device 1. (d) T1 as a function of VC in device 2. In both devices, T1 increases as the
interdot barrier is made less transparent.

In the inset of Fig. 4.12(b), P(1,0) is measured as a function of detuning for τ = 10

ns and τ = 100 µs. As expected, the PAT peak is smaller for longer periods due to

charge relaxation. Specifically, in the limit τ � T1, relaxation has no time to occur

during the second half of the pulse cycle, leading to a time-averaged value of P(1,0)

= 0.5. In contrast, in the limit τ � T1, relaxation happens quickly, leaving P(1,0) =

1 for the majority of the second half of the pulse cycle. Combined with P(1,0) = 0.5

for the first half of the pulse cycle, a time-averaged value of P(1,0) = 0.75 is expected.

Due to experimental limitations, such as frequency dependent attenuation in the coax

lines and finite pulse rise times at small τ , we are unable to drive the transitions to

saturation for some device configurations. To extract T1 we therefore fit the raw P(1,0)
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data as a function of τ to the form

P(1,0) = Pmax + (Pmin − Pmax)
2T1(1− e−τ/(2T1))

τ
, (4.6)

where Pmax and Pmin account for the limited visibility of the PAT peaks [38]. Ex-

tracted T1 values are insensitive to the rescaling of the data via Pmax and Pmin.

The interdot charge relaxation rate is strongly dependent on the depletion gate

voltages that tune the interdot tunnel coupling. This variation is directly visible in

the data shown in Fig. 4.12(b) for VN = 225 mV, 250 mV and 265 mV. To facilitate a

direct comparison of the data, we plot the normalized electron occupation P ∗(1,0) = 0.5

+ 0.25 × (P(1,0) − Pmin)/(Pmax − Pmin), using the values of Pmin and Pmax extracted

from fits to Eq. 4.6. In Fig. 4.12(c), we plot T1 over a wide range of VN for two

different excitation frequencies. We see a longer characteristic relaxation time for

larger interdot barrier heights. Notably, T1 is tunable over four orders of magnitude

with a maximum observed value of 45 µs. The same overall trend is observed in data

from Device 2 [Fig. 4.12(d)] where the interdot tunnel coupling was tuned using VC.

Interdot tunnel coupling tc is only measurable in charge sensing when 2tc > kBTe [45].

For Device 1 [see Fig. 4.12(c)] we obtain 2tc = 2.4, 3.8 and 5.9 GHz for VN = 280,

290 and 300 mV and for Device 2 [see Fig. 4.12(d)] we obtain 2tc = 3.2 GHz for VC

= -325 mV.

4.5 Excited State Charge Relaxation Time

Another essential parameter for quantum control of charge and spin qubits is the

detuning parameter, ε [30]. An understanding of its influence on the relaxation time

is therefore important. The bottom panel of Fig. 4.13(a) shows T1 as a function of f

∝ ε for the (0, 1)g ↔ (1, 0)g transition. Data are taken at f = 12.3, 19.5, 25.9 and

30.0 GHz, as indicated by the arrows in the energy level diagram in the upper panel
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Figure 4.13: (a) T1 increases weakly with f for the (0, 1)g → (1, 0)g transition (lower). Data
are taken at the four values of f indicated by arrows in the energy level diagram (upper).
(b) T1 for the (0, 1)g → (1, 0)g and (0, 1)e → (1, 0)g transitions as a function of f with
VN = 250 mV (lower). There are two (0, 1)e → (1, 0)g relaxation pathways (upper). Our
measurements suggest a fast intradot relaxation rate.

of Fig. 4.13(a). To study the lifetime of the excited state, we also measure T1 for

both the (0, 1)g → (1, 0)g and the (0, 1)e → (1, 0)g relaxation processes at the same

values of f [bottom panel of Fig. 4.13(b)]. Our data indicate that T1 increases weakly

as a function of detuning for the range of frequencies accessible in our cryostat, and

that (0, 1)e → (1, 0)g relaxation is faster than (0, 1)g → (1, 0)g relaxation for the same

energy splitting. This implies a fast intradot relaxation rate of the excited state. In

contrast with the (0, 1)g → (1, 0)g relaxation process, (0, 1)e can relax via two distinct

pathways [top panel of Fig. 4.13(b)]. The first relaxation process is a direct transition

from (0, 1)e → (1, 0)g with a rate Γr2, while the second pathway proceeds via intradot

charge relaxation to (0, 1)g with a rate Γi followed by an interdot transition to (1, 0)g

with rate Γg. We have Γg > Γr based on T1’s weakly increasing dependence on the

detuning [Fig. 4.13(c)]. We also estimate Γr ≥ Γr2 because the energy splitting is the

same in both relaxation process and the initial and final states may have different
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valley components which could potentially suppresses the relaxation rate [94]. The

much smaller excited state T1 therefore implies that (0, 1)e → (0, 1)g → (1, 0)g is the

dominant relaxation path due to a fast intradot relaxation rate [100]. Based on the

measured T1 at f = 21 GHz, we make a rough lower bound estimate on Γi of ∼

1.5× 107 s−1. This fast valley relaxation rate can be expected in realistic devices due

to the interface-induced strong valley-orbit mixing [101].

4.6 Theory of Phonon-Mediated Charge Relax-

ation

To gain a better understanding of our data, we employ a phonon-mediated relaxation

model from reference [99]. The electron-phonon coupling Hamiltonian in a Si quantum

well takes the form of

He−ph =i
∑
Q,λ

(
~|Q|

2ρV cλ

) 1
2

Dλ
Q

(
a+
Q,λe

iQ·r − aQ,λe−iQ·r
)
, (4.7)

where

Dλ
Q =

(
Ξdê

λ
Q · Q̂ + Ξuê

λ
Q,zQ̂z

)
. (4.8)

Here aQ,λ (a+
Q,λ) are the annihilation (creation) operators for phonons belonging to

branch λ (λ = TA1, TA2 for transverse phonons and λ = LA for longitudinal phonons)

with wave number Q, and speed of sound in Si cλ. V is the volume of the Si quantum

well layer and ρ is the density of Si. Ξu and Ξd are the shear and dilation potential

constants and Q̂ are the phonon unit wave vectors [99]. The phonon unit polarization

vectors êλQ are chosen in the following form
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êLAQ = Q̂ = Q/|Q|

êTA1
Q = (QxQz, QyQz,−Q2

‖)/QQ‖

êTA2
Q = (Qy/Q‖,−Qx/Q‖, 0),

(4.9)

where Q‖ = (Qx.Qy, 0), Q‖ = (Q2
x +Q2

y)
1
2 .

In the regime of interest where ε � tc, the initial and final states of the charge

transition can be treated as non-hybridized (0, 1)g and (1, 0)g charge states. We

assume Gaussian wavefunctions of the form,

|1, 0〉g = (
1√
πa

)(
1√
πb

)
1
2 e−

(x+d)2+y2

2a2 − z2

2b2 (4.10)

|0, 1〉g = (
1√
πa

)(
1√
πb

)
1
2 e−

(x−d)2+y2

2a2 − z2

2b2 , (4.11)

in which a is the dot radius, b is the vertical confinement and 2d is the separation of

the two dots. All these values depend strongly on the voltages on the top gate and

the depletion gates, as well as device specifics.

For the LA phonon, the electron-phonon coupling Hamiltonian takes the form

HLA
e−ph =i

∑
Q,λ

(
~|Q|

2ρV cλ

) 1
2

Ξd

(
1 +

Ξu

Ξd

Q2
z

|Q|2

)
×
(
a+
Q,λe

iQ·r − aQ,λe−iQ·r
)
.

(4.12)

The transition rate is given by Fermi’s golden rule,

ΓLA = 1/T1 =
2π

~
∑
q

|〈1, 0|gHLA
e−ph|0, 1〉g|2δ(~ωQ − Ω)

=
πΞ2

d

ρV cl

∑
Q

|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× |〈1, 0|geiQ·r|0, 1〉g|2δ(~ωQ − Ω),

(4.13)
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in which

|〈1, 0|geiQ·r|0, 1〉g|

= (
1√
πa

)2(
1√
πb

)

∫∫∫
e−

x2+y2+d2

a2 − z
2

b2 eiQ·rdxdydz

= e−
d2

a2−
1
4

[a2(Q2
x+Q2

y)+b2Q2
z ]

, (4.14)

therefore the transition rate is

ΓLA =
πΞ2

d

ρV cl

e−
2d2

a2

∑
Q

|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× e−
1
2

[a2(Q2
x+Q2

y)+b2Q2
z ]δ(~ωQ − Ω)

=
πΞ2

d

ρV cl

V

(2π)3
e−

2d2

a2

∫∫∫
|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× e−
1
2

[a2(Q2
x+Q2

y)+b2Q2
z ]δ(~cl|Q| − Ω)dQxdQydQz

=
Ξ2

d

8π2ρcl

e−
2d2

a2

∫∫∫
|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× e−
1
2
a2|Q|2e−

1
2

(b2−a2)Q2
zδ(~cl|Q| − Ω)|Q|2 sin θ

d|Q|dθdφ

=
Ξ2

d

4πρcl

Ω3

(~cl)4
e−

2d2

a2 e
− 1

2

(
aΩ
~cl

)2

∫ (
1 +

Ξu

Ξd

cos2 θ

)2

e
− 1

2
(b2−a2)

(
Ω
~cl

)2
cos2 θ

sin θdθ.

(4.15)

For the TA phonon, the electron-phonon coupling Hamiltonian takes the form

HTA
e−ph =i

∑
Q,λ

(
~|Q|

2ρV cλ

) 1
2
(
−Ξu

QzQ‖
|Q|2

)
×
(
a+
Q,λe

iQ·r − aQ,λe−iQ·r
)
,

(4.16)
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therefore the transition rate is

ΓTA =
πΞ2

u

ρV ct

e−
2d2

a2

∑
Q

|Q|
(
QzQ‖
|Q|2

)2

× e−
1
2

[a2(Q2
x+Q2

y)+b2Q2
z ]δ(~ωQ − Ω)

=
πΞ2

u

ρV ct

V

(2π)3
e−

2d2

a2

∫∫∫
|Q|
(
QzQ‖
|Q|2

)2

× e−
1
2

[a2(Q2
x+Q2

y)+b2Q2
z ]δ(~ct|Q| − Ω)dQxdQydQz

=
Ξ2

u

8π2ρct

e−
2d2

a2

∫∫∫
|Q|
(
QzQ‖
|Q|2

)2

× e−
1
2
a2|Q|2e−

1
2

(b2−a2)Q2
zδ(~ct|Q| − Ω)|Q|2 sin θ

d|Q|dθdφ

=
Ξ2

u

4πρct

Ω3

(~ct)4
e−

2d2

a2 e
− 1

2

(
aΩ
~ct

)2

∫
e
− 1

2
(b2−a2)

(
Ω
~ct

)2
cos2 θ

sin3 θ cos2 θdθ.

(4.17)

The total charge relaxation rate is given by 1/T1 = ΓTA + ΓLA.

An important result is that T1 scales with e
2d2

a2 . When VN is swept from 300 mV

to 200 mV in device 1, the tunnel barrier becomes less transparent as 2d increases

when the dots move further apart (and at the same time, dot a decreases). We note

that T1 is extremely sensitive to a and d [Fig. 4.14], which depend strongly on device

specifics. As a result, a quantitative estimation of T1 requires a precise understanding

of the heterostructure profile, actual device gate pattern layout and details of the

confinement potential. This is beyond the scope of the discussion presented here. We

will focus on a scaling law for T1 in the remainder of this section.

To understand how T1 scales with VN (or VC) in the far-detuned regime, we present

a simple theory on the the effect of VN and VC on the confinement potential and the dot

separation. We assume an interdot barrier potential Vb = V0e
− x2

w2 , where V0 depends

linearly on the gate voltage VN (or VC). In the limit V0 = 0, the confinement potential
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Figure 4.14: Simulated T1 (a) as a function of a, at d = 75 nm and (b) as a function of d,
at a = 38 nm. T1 changes by orders of magnitude with a small change in a or d.

is assumed to be harmonic, Vconf = 1
2
mω2x2. In the presence of a finite interdot barrier,

Vconf = 1
2
mω2x2 + V0e

− x2

w2 forms a double well potential, with minima at x = −d and

x = d by definition.

We Taylor-expand the barrier potential near x = d, which gives

Vconf |x→d ≈
1

2
mω2x2 + (x− d)

(
dVb
dx

)
x→d

=
1

2
mω2x2 − V0

2d

w2
e−

d2

w2 (x− d)

=
1

2
mω2

(
x− 2dV0

mw2ω2
e−

d2

w2

)2

− C

(4.18)

in which C is a constant independent of x.

By definition of d, we have

d =
2dV0

mw2ω2
e−

d2

w2

⇒ d2 = w2lnV0 + C1

(4.19)

in which C1 is a constant independent of V0. Combined with the previously obtained

result T1 ∝ e
2d2

a2 , we therefore have T1 ∝ V
w2

a2

0 .
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For device 1 where T1 is tuned by VN, we therefore have T1 ∝ (VN0 − VN)
w2

a2 , in

which VN0 is a constant offset. Similarly, we expect T1 ∝ (VC0 − VC)
w2

a2 for T1 data

extracted from device 2 [Fig. 4.12(d)]. The best power law fit to the T1 data gives

w/a ∼ 2.7 for device 1 and w/a ∼ 2.3 for device 2.

We note that in our simplified model, both w and a are treated as independent of

VN (or VC). In reality, w increases and a decreases gradually as VN (or VC) is swept

to more negative values, resulting in the deviation from the power law dependence.

This is in agreement with our observations, in which T1 has increased with a slightly

faster power law at more negative gate values. A more quantitative theory of T1

would require a complete understanding of the device specifics and the details of a

realistic confinement potential.

Now let us turn to the zero detuning limit (ε = 0), in this case, the initial and

final states are the fully hybridized bonding and anti-bonding states given by

|+〉 =
1√
2

(|1, 0〉g + |0, 1〉g), (4.20)

|−〉 =
1√
2

(|1, 0〉g − |0, 1〉g). (4.21)

The relaxation rate is given similarly to Eq. 4.13,

ΓLA =
πΞ2

d

ρV cl

∑
Q

|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× |〈+|eiQ·r|−〉|2δ(~ωQ − Ω),

(4.22)

in which

|〈+|eiQ·r|−〉|

=
1

2
(|〈1, 0|geiQ·r|1, 0〉g − 〈0, 1|geiQ·r|0, 1〉g|),

(4.23)
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where

〈1, 0|geiQ·r|1, 0〉g

= (
1√
πa

)2(
1√
πb

)

∫∫∫
e−

(x+d)2+y2

a2 − z
2

b2 eiQ·rdxdydz

= (
1√
πa

)e−
1
4

[a2Q2
x+b2Q2

z ]

∫
e−

(x+d−i a
2

2 Qx)2

a2 − d
2

a2 e
(d−i a

2

2 Qx)2

a2 dx

= e−iQxde−
1
4

[a2(Q2
x+Q2

y)+b2Q2
z ].

(4.24)

Note that instead of the e−
d2

a2 prefactor we have in the far-detuned regime (which

corresponds to envelope decay as a function of d), the prefactor we have near ε = 0

is e−iQxd (which corresponds to oscillating behavior as a function of d). Similarly, we

have

〈0, 1|geiQ·r|0, 1〉g

= eiQxde−
1
4

[a2(Q2
x+Q2

y)+b2Q2
z ],

(4.25)

therefore we have

|〈+|eiQ·r|−〉|

=
1

2
(|〈1, 0|geiQ·r|1, 0〉g − 〈0, 1|geiQ·r|0, 1〉g|)

= sin(Qxd)e−
1
4

[a2(Q2
x+Q2

y)+b2Q2
z ].

(4.26)

The relaxation rate in the zero detuning limit can then be written as
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ΓLA =
πΞ2

d

ρV cl

∑
Q

|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× sin2(Qxd)e−
1
2

[a2(Q2
x+Q2

y)+b2Q2
z ]δ(~ωQ − Ω)

=
πΞ2

d

ρV cl

V

(2π)3

∫∫∫
|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× sin2(Qxd)e−
1
2

[a2(Q2
x+Q2

y)+b2Q2
z ]δ(~cl|Q| − Ω)dQxdQydQz

=
Ξ2

d

8π2ρcl

∫∫∫
|Q|
(

1 +
Ξu

Ξd

Q2
z

|Q|2

)2

× sin2(Qxd)e−
1
2
a2|Q|2e−

1
2

(b2−a2)Q2
zδ(~cl|Q| − Ω)|Q|2 sin θ

d|Q|dθdφ

=
Ξ2

d

8π2ρcl

Ω3

(~cl)4
e
− 1

2

(
aΩ
~cl

)2

∫∫
sin2

(
Ωd sin θ cosφ

~cl

)(
1 +

Ξu

Ξd

cos2 θ

)2

× e−
1
2

(b2−a2)
(

Ω
~cl

)2
cos2 θ

sin θdθdφ,

(4.27)

since Ω
~cl
� 1, we have sin

(
Ωd sin θ cosφ

~cl

)
= Ωd sin θ cosφ

~cl
, which is equivalent to the dipole

approximation made in [94]. We then have

1/T1 =
Ξ2

dd
2

8πρcl

Ω5

(~cl)6
e
− 1

2

(
aΩ
~cl

)2

∫ (
1 +

Ξu

Ξd

cos2 θ

)2

× e−
1
2

(b2−a2)
(

Ω
~cl

)2
cos2 θ

sin3 θdθ,

(4.28)

Note that ΓLA ∝ Ω5 (similarly, we also have ΓTA ∝ Ω5) comes from the intradot

integration of the electron operator. At zero detuning, the interdot integration com-

ponent cancels out and the integration contains purely intradot components which

gives Ω5, consistent with the result found in reference [94] where the intradot relax-

ation is discussed. In the far-detuned regime, the integration of the electron operator
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contains purely interdot components which gives an Ω3 dependence, the “missing” Ω2

is replaced by decay prefactor e
−2d2

a2 which gives rise to the strong tc dependence of T1

observed in our data. Our experiment is carried out in the far-detuned regime, there-

fore only the results from Eq. 4.15 and Eq. 4.17 are used to generate the simulation

plots shown in [Fig. 4.14].

4.7 Summary

We have developed a reliable fabrication recipe for dual gate DQD devices, based on

the undoped heterostructures. The accumulated 2DEG is stable and absent of the

switching noises previously encountered in the doped devices. With the improved

electron beam gate design, we are able to reproducibly empty the devices with elec-

trons and consistently form few electron qubits. We have enhanced our charge sensing

capability by implementing a SQD sensor design and RF reflectometry setup.

We have measured charge relaxation times in a single electron Si/SiGe DQD,

demonstrating a four order of magnitude variation in T1 with gate voltage. Energy

level spectroscopy indicates the presence of a low-lying excited state. From the esti-

mated dot radius a ∼ 38 nm, we expect orbital level spacings on the order of 1 meV,

a factor of 18 larger than the value obtained from PAT spectroscopy (∆ = 55 µeV).

This suggests that the low-lying excited state is a valley-orbit mixed state. Since spin

state preparation and readout rely on large excited state energies, a more detailed

understanding of the low-lying energy states will be beneficial to the development of

Si spin qubits [10].

We are unable to observe spin-blockade at the two electron transitions in all of

the dual gate devices (∼ 10 devices) we have measured at the base temperature. We

attribute this to the valley splitting in our device being too small, due to the valley

orbit coupling and the presence of lattice steps in the active device region. A new
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device design with potentially more localized and uniform electron wavefunction, is

therefore proposed to enhance the valley splitting. In the next chapter, we will discuss

the design and initial development of these accumulation-only devices.
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Chapter 5

Accumulation-Only Mode Si

Quantum Dots

In the previous chapter, we successfully formed a high quality single-electron charge

qubit, measured the energy level structure, and systematically measured its charge

relaxation time T1. We then attempted to form a singlet-triplet qubit. To look for

signs of spin blockade, we have systematically examined the two-electron transitions

in both transport and pulsed charge-sensing measurements. We measured finite bias

triangles at negative and positive source-drain bias as shown in Figure 5.1. In contrast

with GaAs DQD devices, the region of strong current suppression at negative bias

(spin blockade region) was not observed [Fig. 5.1(a)].

To confirm the absence of Pauli blockade, we also performed pulse-gate experi-

ments. A series of pulses was applied to VL and VR, as shown in Figure 5.1(c). The

double dot was cycled through three configurations, while the charge-sensing mea-

surement is performed [Figure 5.1(c)]. The DQD is pulsed to (0,1) in the “empty”

(E) step (10% of the pulse period), and a new electron is added to the left dot in

the subsequent “reset” (R) step (10% of the pulse period), resulting into (1,1) charge

state with a mixture of four possible spin configurations (singlet S, triplets T−, T0

69



(1,1) 

(0,1) (0,2)

(1,2)

M

E

R

(a) (b) (c)

Figure 5.1: The finite bias triangles measured in current, I, at the (1,1) - (0,2) charge
transition, with a 50 mT in-plane external magnetic field and a (a) negative and (b) positive
source-drain bias voltages applied to a dual-gated DQD device. (c) Pulse-gate charge sensing
data. No sign of spin blockade has been observed in either type of data.

and T+). In the “measurement” (M) step (80% of the pulse period), (1,1)S is pulsed

to (0,2)S while the spin triplet states remains in the (1,1) charge configuration due to

spin blockade. In contrast with GaAs DQDs [31, 63], the spin-blockaded region (with

some portion of (1,1) in the (0,2) region in the stability diagram) was not observed

[Fig. 5.1(c)].

We performed similar experiments on more than ten DQD devices, but didn’t

observe signs of spin blockade in any of the devices. One possible explanation for

the lack of spin blockade is a small valley splitting. The valley splitting has so far

presented the biggest challenge in the field of Si quantum computing. It prevents us

from establishing spin qubits and motivates us to develop a new type of DQD device

that will potentially enhance the valley splitting. In this chapter, we introduce valley

physics in Si QDs. We show that a tighter and more uniform electron wavefunction

is desirable to maximize the valley splitting in DQD devices. Following this logic,

we have designed several new DQD device geometries and have obtained some initial

transport data.
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Figure 5.2: (a) The six-fold valley degeneracy in Si (pictures adapted from Wikipedia). (b)
Due to lattice mismatch induced strain in the Si quantum well, the six-fold degeneracy is
partially lifted. The resulting ground state is two-fold degenerate. (c) Due to the presence
of a sharp interface potential in the Si/SiGe heterostructure, the remaining two-fold degen-
eracy is fully lifted, achieving the maximum valley splitting. (d) The presence of a lattice
miscut creates a tilt angle between the heterostructure growth axis and the (001) lattice
direction. This results in valley-orbit coupling that suppresses the valley splitting.

5.1 Valley Splitting in Silicon Quantum Dots

In contrast to GaAs, the Si conduction band has a six-fold valley degeneracy [81].

The positions of the conduction band minima are found along the six [100] directions

near the X points in the Brillouin zone, specifically at k = [k0, 0, 0], [-k0, 0, 0], [0,

k0, 0], [0, -k0, 0], [0, 0, k0] and [0, 0, -k0], where k0 ∼ 0.85 2π
a0

[Fig. 5.2(a)]. Ideally

this six-fold degeneracy would be fully lifted, resulting in a single ground state valley

that is isolated in energy from other valley states.
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In a GaAs/AlGaAs heterostructure, the lattice constant is 5.65325 Å for GaAs

and 5.6533+0.0078x Å for AlxGa1−xAs. Therefore, even for x=1, the lattice mismatch

is as small as 0.14%. However, in a Si/SiGe heterostructure, the lattice constant is

5.431 Å for Si and 5.431 + 0.20x + 0.027x2 Å for Si1−xGex. For the Si0.7Ge0.3/Si

heterostructures used in this thesis, this gives a lattice mismatch as large as ∼ 1.15%.

As a result, the thin Si quantum well that has been grown on the relaxed SiGe buffer

is uniaxially strained in the x-y plane in order to match the lattice constant of SiGe.

This uniaxial strain breaks the symmetries of the six valleys into two groups [Fig.

5.2(b)], the four-fold degenerate valley excited states ∆4 (k = [k0, 0, 0], [-k0, 0, 0],

[0, k0, 0], [0, -k0, 0]) and the doubly degenerate valley ground states ∆2 (k = [0, 0,

k0], [0, 0, -k0]), with an energy splitting of ∼ 0.2 eV for Si on relaxed Si0.7Ge0.3 [81].

Therefore, the ∆4 valleys are energetically irrelevant, and we only need to consider

the two low-lying ∆2 valleys..

The presence of electrostatic fields along the (001) direction (the quantum well

growth direction) further lifts the ∆2 valley degeneracy and gives rise to a valley

splitting EV . Because the coupling matrix element is proportional to the interface

electric field Ei, one can expect a linearly dependent valley splitting EV ∝ Ei. Indeed,

in accumulation-only devices where dots are directly accumulated underneath gate

electrodes, recent experiments have demonstrated a gate-tunable valley splitting that

scales linearly with the gate voltage [101] . Up until now, we have been assuming a

flat and defect-free heterostructure interface, with the growth direction of the het-

erostructure perfectly aligned with the [001] direction. Under these conditions, the

valley index is a good quantum number and the valley splitting is maximized with

the valley eigenstates fully coupled.

In reality, the growth direction of the heterostructure (z direction) does not per-

fectly match with the (001) lattice direction. This lattice miscut (typically under 1

degree) and other surface defects result in atomic steps in the quantum well that lead
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Figure 5.3: Schematic of lattice miscut in Si/SiGe heterostructure. The blue line corre-
sponds to the lattice plane perpendicular to (001) direction, while the red line corresponds
to the cut direction of Si substrate. The resulting atomic steps are separated by ∆x = a

tan θ ,
in which a ≈ 0.54 nm is the lattice constant of Si and θ is the lattice miscut angle.

to destructive interference between the valley states, which in turn suppress the valley

splitting [92]. The valley splitting, instead of the singlet-triplet splitting, becomes the

smallest energy scale in the device, limiting the size of the readout window. Based on

the variational principle, theorists have also predicted that the atomic steps give rise

to the valley-orbit coupling, which mixes the pure valley states with higher orbital

levels, transforming the ground states into valley-orbit mixed states [93]. This is con-

sistent with the energy scale and the orbital nature of the low-lying excited states we

observed in our dual-gated devices [51]. Valley-orbit coupling has also been posited

as a possible mechanism leading to faster qubit relaxation, analogous to spin-orbit

coupling [93, 21].

Assuming a typical lattice miscut angle of 0.5 degrees and Si lattice constant of

0.54 nm, one can estimate an average separation of atomic steps to be ∆x ≈ 0.54
tan 0.5◦

≈

62 nm [Fig. 5.3]. Intuitively, one can expect that reducing the electron wavefunction

span will lower the probability of having the wavefunction overlap with a step edge.

Applying an electric or magnetic field confines the electron wavefunction, therefore

leading to potentially larger valley splittings [92, 93, 101]. The tightest electron con-

finement has been achieved recently in accumulation-only device architectures [101].

The strong electron confinement, combined with the tunable interface electric field,

has given rise to a valley splitting as large as 0.8 meV, approaching the theoretically

predicted maximum value in Si/SiGe heterostructures [101].
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Figure 5.4: (a) A SEM image of a typical accumulation only device developed in the Petta
Lab. (b) Simulation of its electrostatic potential with realistic gate voltages applied.

5.2 Accumulation-Only Device Development

Motivated by the large valley splitting recently measured by the Dzurak group [101],

we have been developing our own accumulation-only device structure in the Petta Lab.

Figure 5.4(a) shows a SEM image of the new device geometry. There are two layers

of Al gates in the device, namely the 25 nm thick screening gates deposited directly

on top of the heterostructure and the 45 nm thick accumulation gates deposited on

top of those. The two layers of gates are electrically isolated from each other by a

native Al2O3 layer with a thickness of around 5 nm. In contrast to the dual-gate

DQD devices discussed in the previous chapter, there is no global top gate or global

2DEG accumulation in this device. The dot is locally accumulated by the 45 nm

thick center plunger gate VC , and a comparably negative voltage is applied on the

screening gates (top and bottom part of the SEM image) to prevent unnecessary

2DEG accumulation outside the active dot region. The left plunger gate voltage VL

and right plunger voltage VR are used to adjust the lead-dot coupling, and a pair of

comparably large accumulation gates form a conducting channel all the way from the

active dot region towards the ion-implanted ohmic contacts.

The simulation shown in Figure 5.4(b) demonstrates a potentially more uniform

and tighter confinement potential, and may result in a larger valley splitting. In addi-

tion, the dot is formed using a single accumulation gate compared to many depletion
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Figure 5.5: (a) Schematic diagram showing the confinement potential of the device. The
dot is accumulated locally using a single gate VC , where the lead-dot barriers are controlled
by two plunger gate voltages VL and VR. (b) Coulomb diamond measured in current as a
function of gate voltage Vg and source-drain bias voltage. (c) Measured conductance as a
function of plunger gate voltages VL and VR, in a device with similar gate geometry as in
Figure 5.4. (d) 1D conductance measurement as a function of Vg, demonstrating typical
Coulomb blockade peaks.

gates in our previous device architectures. Due to the local nature of the dot accumu-

lation, the dot is predominantly controlled by a single accumulation gate instead of

being equally coupled to many depletion gates. The reduced cross-capacitive coupling

promises a more easily tunable Hamiltonian, by providing independent tuning of the

dot potential, dot-lead tunnel couplings, and the interdot tunnel coupling. Further-

more, scaling up the current SQD design to a DQD, triple quantum dot (TQD) or

quadruple quantum dot (QQD) only requires adding more plunger gates between the

ohmic accumulation gates, making the process lithographically easy.
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We have cooled down a device fabricated in this gate architecture, demonstrating

the formation of a single quantum dot. Figure 5.5(a) depicts the SQD confinement

potential, where the dot-lead tunnel barrier is controlled by the gate voltages VL and

VR and the dot chemical potential is tuned by the center plunger gate voltage VC . By

applying an appropriate combination of gate voltages, it is possible to form a single

quantum dot [Fig. 5.5(a)]. Figure 5.5(c) shows measurements of the conductance as a

function of plunger gates VL and VR. The parallel lines are Coulomb blockade peaks

[Fig. 5.5(d)], indicative of single dot formation. In addition, the Coulomb diamonds

[Fig. 5.5(b)] have also been observed in the current measurement, further confirming

the single dot formation.

5.3 Future Si Spin Qubit Devices: Singlet-Triplet

Qubits and Exchange-Only Qubits

In the previous section, we demonstrated the fabrication of accumulation only SQDs.

Qubit rotations can be achieved for a single electron spin in a SQD using electron

spin resonance (ESR) techniques [102], where the qubit basis states are defined by the

Zeeman-split single electron spin states. However, full access to the Bloch sphere as

well as controlled coherent Rabi oscillations using ESR is technically challenging, as

the Rabi oscillation frequency is proportional to the applied microwave power. The

realization of robust electron spin qubits therefore requires scaling up the SQD device

to DQD and TQD device geometries, which allows us to explore singlet-triplet qubits

and exchange-only qubits.

In the first chapter, we introduced singlet-triplet spin qubits [30, 21, 34]. In a

singlet-triplet qubit, the z-axis rotation frequency is set by the exchange coupling

J and the x-axis rotation frequency is set by the hyperfine field difference ∆Bnuc.

Rotations about two-axes provide full access to the Bloch sphere. In GaAs singlet-
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triplet spin qubits, σz oscillations were demonstrated by simply tuning the detuing

parameter ε [30], and nuclear spin polarization was used to generate a field gradient

[32].

However, the hyperfine field is much weaker in Si/SiGe quantum dots, whose

naturally abundant isotope contains zero nuclear spin. While this promises improved

qubit coherence, a much deeper pulse in the detuning parameter ε is required to

successfully project the qubit state towards the x-y plane of the Bloch sphere, which

introduces further uncertainties and inefficiencies into the coherent manipulation of

the qubit states [90]. Furthermore, in an ultra-coherent Si qubit where the Si 2DEG

layer is isotopically purified, the same σx rotation schemes would cease to function.

There are many ways in which a σx rotation can be performed in the absence

of nuclear field. One example is to implement a micromagnet next to the DQD,

creating a slanting magnetic field that defines the σx matrix elements [102]. Figure

5.6(a) shows our old dual-gated device design with a 20 nm nickel micro-magnet

deposited right next the active DQD device. Under a 100 mT external magnetic field

along the x-direction, the nickel layer is magnetized and creates a strong local field

that decays quickly as a function of distance. Figure 5.6(b) shows a simulation of BZ

as a function of distance to the micromagnet edge, in the plane that cuts through

the center of the micromagnet. As expected, the field is strong in the proximity of

the micromagnet, but decays quickly as a function of distance. Careful alignment

of the micro-magnet provides a field difference of ∆B ≈ 5 mT between the left and

right dot, suitable for singlet-triplet qubit operations. The fabrication recipe of the

micromagnet has already been well defined in the Petta Lab. Therefore it would be

lithographically trivial to implement the micromagnet in our new accumulation-only

DQD device architecture.

Another way to enable efficient two-axis rotations in isotopically purified Si spin

qubits is to implement the so-called exchange-only qubit scheme [103]. The qubit uti-
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Figure 5.6: (a) A SEM image of a dual-gated DQD device with a nearby Ni micromagnet.
(b) Simulated z component of the total field, BZ , in the presence of a BX = 100 mT external
field as a function of distance to the magnet edge.

lizes three electron spin states, and therefore is realized in a TQD device architecture

[89]. The three electron spin states contain eight eigenstates in total, namely four

quadruplet states and two pairs of doublet states. In an exchange-only qubit, only

the doublet states are utilized for qubit manipulation.

The total of four doublet states can be labeled as |∆SZ 〉 and |∆′SZ 〉, where SZ = ±1
2

is the z-projection of total electron spin. The qubit basis states are formed within the

doublet states that share the same SZ , and the system Hamiltonian is experimentally

tuned by the detuning parameter across the three electron transitions (2, 0, 1) - (1,

1, 1) - (1, 0, 2), which continuously set the nearest neighbor exchange coupling J12

(left-most two electrons) and J23 (right-most two electrons). When pulsed towards

the (1, 0, 2) charge configuration, the exchange coupling J12 eventually vanishes and

J12/J23 → 0. The doublet eigenstates then become

|D 1
2
〉 =

1√
6

(| ↑↑↓〉+ | ↑↓↑〉 − 2| ↓↑↑〉) (5.1)

|D− 1
2
〉 =

1√
6

(| ↓↓↑〉+ | ↓↑↓〉 − 2| ↑↓↓〉) (5.2)

|D′1
2
〉 =

1√
2

(| ↑↑↓〉 − | ↑↓↑〉) (5.3)

|D′− 1
2
〉 =

1√
2

(| ↓↓↑〉 − | ↓↑↓〉). (5.4)
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Similarly, when pulsed towards the (2, 0, 1) charge configuration, the exchange

coupling J23 eventually vanishes and J23/J12 → 0. The doublet eigenstates then

become

|D 1
2
〉 = − 1√

6
(| ↓↑↑〉+ | ↑↓↑〉 − 2| ↑↑↓〉) (5.5)

|D− 1
2
〉 = − 1√

6
(| ↑↓↓〉+ | ↓↑↓〉 − 2| ↓↓↑〉) (5.6)

|D′ 1
2
〉 = − 1√

2
(| ↑↓↑〉 − | ↓↑↑〉) (5.7)

|D′− 1
2
〉 = − 1√

2
(| ↓↑↓〉 − | ↑↓↓〉). (5.8)

These states are fundamental for exchange-only qubit definition and coherent

manipulations [103]. For example, one can define |D 1
2
〉 and |D′1

2

〉 as the qubit basis

states. By pulsing towards the (1, 0, 2) charge configuration, these states become the

system eigenstates and coherent Rabi oscillations around the σZ axis are achieved

with a Rabi frequency proportional to the exchange coupling between the rightmost

electron pair, J23. |D 1
2
〉 and |D′ 1

2
〉 defines the other rotation axes. The two exchange

rotation axes are separated by 120 degrees on the Bloch sphere. Pulsing towards

the (2, 0, 1) charge configuration will then allow coherent Rabi oscillations around

this tilted axis, with a Rabi frequency proportional to the exchange coupling between

the leftmost electron pair, J12. Therefore, by only adjusting the detuning parameter

ε, two-axis coherent oscillations and arbitrary access to the Bloch sphere can be

achieved in an exchange-only qubit, without the need of a slanting magnetic field or

dynamically polarized hyperfine field [104].

79



5.4 Summary

In this chapter, we have developed a new quantum dot device architecture with an

accumulation-only gate design. The new device promises easier control of the system

Hamiltonian as well as linear scalability towards more complicated qubit devices.

Most importantly, the local nature of the dot accumulation scheme gives rise to a

tighter and more uniform electronic confinement potential, promises enhanced valley

splitting, a physical property crucial to the robustness of Si spin qubits.

We have demonstrated the fabrication of accumulation-only SQD devices. Work-

ing towards ultra-coherent spin qubits in isotopically purified Si, future work will

include scaling-up the devices to DQD and TQD. Full Bloch sphere control can be

achieved in singlet-triplet spin qubits in DQDs using the exchange interaction and lo-

cal magnetic field gradients generated by micromagnets. In TQDs, full qubit control

can be achieved by adjusting two exchange couplings in the device.
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Chapter 6

Conclusions

At the time of this writing, qubits in solid state systems are being widely investi-

gated, both experimentally and theoretically. Quantum computers [3, 4] have many

advantages over the classical computers. First and foremost, the computational ca-

pability of a quantum computer in solving certain solving certain realistic problems is

enhanced exponentially [5, 6]. Furthermore, the data storage mechanism is quantum

mechanical and the data security is arguably unbreakable [7]. These advantages bode

well for the education, industry, science, civil and military sectors. For this reason,

despite the overwhelming challenges, great efforts are being put into realizing this

quantum dream of human civilization.

To realize this vision, we must first demonstrate a robust qubit. Many approaches

have been taken in solid state systems, such as the circuit quantum electrodynam-

ics (cQED) architecture [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], nitrogen vacancy

centers in diamond [19] and electrons in electrically defined semiconductor quantum

dots (which is the focus of this thesis). Many landmark experiments demonstrating

qubit realization and coherent control [21, 30, 31, 32, 33, 34, 35, 36] have been suc-

cessfully performed in GaAs quantum dots in the past fifteen years, inspired by the

Loss-DiVincenzo proposal [20, 39]. However, due to the relatively strong spin-orbit
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interaction and hyperfine interaction in the GaAs 2DEG system, the qubit robustness

and coherence are found to be orders of magnitude lower [21, 30, 31, 32, 33, 34, 35, 36]

than required by a practical quantum computer.

Although pulse techniques such as dynamic decoupling can improve the qubit

coherence to some extent, a more direct and effective approach is to improve the

qubit environment by switching to a different 2DEG host material. As a result,

silicon becomes one of the best candidates for future ultra-coherent qubits [70], due

to its much weaker spin-orbit coupling and hyperfine interaction. In addition, a

nuclear-spin-free environment (“semiconductor vacuum”) that is almost completely

free of hyperfine interactions (with a 29Si concentration smaller than 400 ppm) can

be created for qubit electrons, using isotopic purification [71].

Motivated by Silicon’s great promise for ultra-coherent qubits, we started the

Si/SiGe QD project in the Petta Lab. At the beginning of this study, we were

presented with many challenges in our attempts to fabricate high quality DQD de-

vices. These difficulties include comparably lower heterostructure quality, signifi-

cantly higher electron effective mass and the instability of P donors. Over the six

years of my thesis research, these challenges have been overcome and we have suc-

cessfully realized high quality single-electron charge qubits in Si quantum dots.

Hoping to emulate the successful path of GaAs QD research, we began our project

by fabricating depletion-mode DQDs on modulation-doped Si/SiGe heterostructures.

With careful engineering and control of the heterostruture growth parameters, we

managed to obtain many Si 2DEG samples of decent quality. We resolved the chal-

lenge of the high effective mass by optimizing our electron beam lithography recipe,

after which we were able to fabricate many-electron QDs and demonstrate basic trans-

port measurements in them, such as Coloumb blockade and finite bias triangles. In

addition, we successfully realized charge sensing using both DC and RF measurement

techniques.
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However, we were unable to reach the few electron regime in the DQDs due to

device instabilities and unintended formation of triple quantum dots at low charge oc-

cupancies. The difficulties of forming high quality quantum dots from doped Si/SiGe

heterostructures have encouraged us to develop new approaches to realize Si qubits.

Based on results from HRL [90], where undoped structures were used, we have con-

cluded the only path forward is to redesign the heterostructure and eliminate the

Phosphorus donors altogether, using a global top gate to accumulate the 2DEG in-

stead. Based on these newly developed enhancement-mode heterostructures, we have

consistently and reproducibly realized single electron charge qubits in dual-gated Si

DQD devices. We systematically measured the interdot relaxation time T1 of a single

electron trapped in a Si DQD as a function of detuning ε and interdot tunnel cou-

pling tc and demonstrated a four order of magnitude variation in T1 using a single

depletion gate, all of the way up to T1 = 45 µs [38, 51]. We showed that our data

are consistent with a phonon mediated charge relaxation theory [51]. In addition, we

also used photon assisted tunneling (PAT) to probe the energy level structure of the

single electron system, demonstrating spectroscopy with an energy resolution of ∼ 1

µeV. In contrast with single electron GaAs dots, we observed low-lying excited states

∼ 55 µeV above the ground state, an energy scale that is consistent with previously

measured valley splittings [92, 90].

Despite their success in hosting high quality charge qubits, for over ten dual-gated

devices that we have investigated at cryogenic temperature, no sign of spin blockade

has been observed at the two-electron transitions. We suspect this is due to disor-

der near the quantum well, which is predicted to result in small valley splittings.

This challenge prevented us from establishing robust spin qubits and motivated us

to develop new types of DQD devices. A few months before this thesis was writ-

ten, we successfully developed a fabrication recipe for the next generation of Si QD

devices, namely the accumulation-only device architecture. The new device architec-
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ture promises enhanced valley splitting, less cross-gate-capacitive coupling and linear

scaling of QDs. Based on the new device architecture, our future research will involve

realizing singlet-triplet qubits in DQDs, implementing exchange-only qubits in TQDs

and fabricating spin chains. We look forward to the exciting on-going research of Si

qubits in the Petta Lab, both for the promise it holds for a future quantum computer

and for studies of fundamental quantum physics.
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Appendix A

Low-Frequency Circuits

This appendix describes the low frequency measurement setup used to acquire data

for this thesis. Low-frequency charge-sensing, dot conductance, and dot current mea-

surement circuits are described. Figure A.1 shows the circuit diagram.

The dot conductance and current are measured using a voltage-biased circuit

configuration. An Agilent 33250 signal generator creates AC and DC signals. These

signals are divided by a 1000:1 voltage divider consisting a 50 kΩ and 50 Ω resistors.

The divided signal is then connected to the source reservoir, providing low-frequency

source-drain excitation and the DC source-drain bias voltage.

The resulting current is measured with an Ithaco current amplifier, giving a voltage

output proportional to the gain of the amplifier times the current flowing into the

drain reservoir (“system ground” defined by the ground of the current amplifier).

For DC current measurements, the output of the current amplifier is first filtered by

a low-pass RC filter (with a RC time constant of 0.1 ms, the same as the typical

current amplifier rise time used in our DC measurements) to filter out the AC signal,

and then sent to a National Instruments data acquisition (NIDAQ) system. For

AC conductance measurements, the output of the current amplifier is connected to

the Stanford Research (SR) lock-in amplifier (which is synchronized with the Agilent
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Figure A.1: Low-frequency measurement setup used to acquire data for this thesis. The
diagram contains low-frequency charge-sensing, dot conductance, and dot current measure-
ment circuits. The dot conductance and current are measured using a voltage-biased circuit
configuration. AC and DC signals created by an Agilent 33250 signal generator are divided
by a 1000:1 voltage divider before being connected to the source reservoir. The resulting
current is measured with an Ithaco current amplifier. For DC current measurements, the
output of the current amplifier is first filtered by a low-pass RC filter before being sent
to a National Instruments Data acquisition (NIDAQ) system. For AC conductance mea-
surements, the output of the current amplifier is connected to the Standard Research (SR)
lock-in amplifier, the output of which is then sent to the NIDAQ. Simultaneous measure-
ments of DC current and AC differential conductance are allowed with this setup. The
charge sensing measurement is performed using a current-biased circuit configuration. The
AC and DC signals created by another Agilent 33250 signal generator are connected to a
100 MΩ resistor and then connected to the source contact of the QPC channel. The dif-
ferential input ports on another SR lock-in amplifier are connected to the contacts on both
sides of the QPC channel to measure the voltage drop across it. The output of the lock-in
is connected to the NIDAQ, and the measured output voltage is then converted numerically
to QPC conductance in the data acquisition program.

33250 signal generator). The output of the SR lock-in amplifier is sent to the NIDAQ,

and the measured output voltage is then converted numerically to dot conductance in

the data acquisition program. This setup allows simultaneous measurements of the

DC current and AC differential conductance of the quantum dot device.

The charge sensing measurement is performed using a current-biased circuit con-

figuration. The AC and DC signals created by another Agilent 33250 signal generator
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are connected to a 100 MΩ resistor and then connected to the source contact of the

QPC channel. We normally operate the QPC with a conductance around 0.1 g0, which

corresponds to a QPC resistance of ∼256 kΩ, orders of magnitude smaller than the

100 MΩ resistor. Therefore, the 33250 signal generator together with the 100 MΩ

resistor can be considered as a current source in the charge-sensing measurement.

The differential input ports on another SR lock-in amplifier (which is synchronized

with the Agilent 33250 signal generator) are connected to the ohmic contacts on both

sides of the QPC channel to measure the voltage drop across the QPC. The output of

the lock-in is connected to the NIDAQ, and the measured output voltage is converted

numerically to QPC conductance in the data acquisition program.
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Appendix B

Radio-Frequency Circuits

This appendix describes the radio-frequency measurement setup used to acquire data

for this thesis. Fast charge-sensing, PAT spectroscopy and charge relaxation time T1

measurement circuits are described. Figure B.1 shows the circuit diagram.

The fast charge sensing measurement utilizes the RF reflectometry technique. In

this setup, a RF microwave excitation is generated by an Agilent N5181A signal

generator, typically with a frequency ranging from 300 MHz to 500 MHz. This

signal is sent to a Mini-Circuit ZEDC-15-2B directional coupler. The output of the

directional coupler is connected to a frequency doubler and a high-pass filter, and

then connected to the LO port of Analog Devices AD5348 Evaluation Board. This

portion of the signal is used as a reference for demodulation, which will be hereafter

referred to as the reference signal. The other signal exiting the directional coupler

is attenuated by 50 dB at room temperature, and further attenuated by a -30 dB

attenuator at 4K and another Mini-Circuit ZEDC-15-2B directional coupler (-15 dB)

at the cold plate of the dilution refrigerator (50 mK), before it is connected to the

source contact of the QPC via a bias tee. This portion of the signal will be hereafter

referred to as the carrier signal.
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Figure B.1: Radio-frequency measurement setup used to acquire data for this thesis. Fast
charge sensing, PAT spectroscopy and charge relaxation time T1 measurement circuits are
included. The fast charge sensing measurement utilizes the RF reflectometry technique. The
QPC channel, the parasitic capacitance CP together with the carefully-chosen capacitors
and inductors, forms the so-called impedance-matching network. When the carrier wave
frequency fC matches with the resonant frequency fR, the reflected signal will be extremely
sensitive to changes in the QPC conductance, gQPC . This enables a fast charge sensing
measurement. In the PAT spectroscopy measurement, an Agilent E8257D generates a
microwave signal with typical frequency fext ranging from 5 GHz to 30 GHz to drive the
resonant transition. The microwave signal is rapidly switched on and off using a Marki
M80420MS switch, the IF port of which is connected to a Tektronix AWG7122B arbitrary
waveform generator. This enables application of chopped microwave excitation with an 50%
on/off ratio. By varying the period τ of the microwave excitation, a measurement of the
charge relaxation time T1 can be performed.
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The bias tee consists of a 5 nF capacitor, 5 kΩ resistor and 10 nH inductor, which

enables simultaneous application of low frequency (from Agilent 33250A) and radio

frequency (from Agilent N5181A) excitations to the connected ohmic contacts and

gate electrodes. The QPC channel, the parasitic capacitance CP together with the

carefully-chosen capacitors and inductors, forms the so-called impedance-matching

network. The attenuated signal from N5181A is then reflected by the impedance-

matching network. When the carrier wave frequency fC matches the resonant fre-

quency fR (typically around 430 MHz in our experiments), the network’s impedance

become 50 Ω (same as the characteristic impedance of the coax cable used in out

experiments) and the reflected signal is minimized. In such condition, the reflected

signal will be extremely sensitive to changes in the QPC conductance, gQPC , as it

modifies the impedance of the matching network. Therefore, by setting fC = fR and

monitoring the reflected signal, fast measurement of gQPC can be achieved.

This is of course just a part of the story. Now that we have fast measurements of

the QPC conductance at any given DQD gate configuration, we need to sweep the gate

voltages in order to obtain a full charge stability diagram. In the DC charge sensing

measurement, each data point is taken separately as the data taking program steps

the gate voltages VL and VR by controlling the Harvard BiasDAC. In the fast charge

sensing measurement, both a DC voltage offset (provided by the BiasDAC) and a

low-frequency AC sweep (triangular wave generated by another Agilent 33250A) are

applied to VL through an adder box consisting of a series of 45 kΩ, 15 kΩ and 3 kΩ

resistors. While VR is still stepped by the BiasDAC, a triangular waveform is used to

sweep VL at a frequency of 47 Hz.

Sweeping these gate voltages (VR and VL) modulates gQPC and therefore the am-

plitude of the reflected signal. If we Fourier-transform the gQPC modulation, the

dominating terms would be low-frequency components. For the sake of our discus-

sion here, we will focus on one of these low frequency components, with a frequency
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of f0. The amplitude-modulated (AM) reflected signal will then have two frequency

components, f+ = fC + f0 and f− = fC - f0. The reflected signal is then consecutively

amplified by a 30 dB Cryogenic amplifier at 4K and two 17 dB amplifiers before it is

connected to the IF/IP port of the Analog Devices AD8348 evaluation board. The

signal is further amplified by a built-in variable-gain amplifier (VGA), with a gain set

by BiasDAC through the VGIN port of the evaluation board.

The frequency of the amplified signal is then doubled by a built-in frequency

doubler in the evaluation board, in order to separate the in-phase (I) and quadrature

phase (Q) components (instead of a 90-degree phase difference, they will have a 180-

degree phase difference with each other, making them easier to separate and process).

The frequency components of the amplified wave then become 2f+ = 2fC + 2f0 and

2f− = 2fC - 2f0. It then mixes with the reference wave at frequency 2fC in the built-

in mixer in the evaluation board, resulting in a total of three frequency components,

namely 4fC + 2f0, 4fC - 2f0 and 2f0. The frequency of the mixed signal is then divided

by a factor of two in the evaluation board, resulting in new frequency components,

namely 2fC + f0, 2fC - f0 and f0. The high-frequency components (2fC + f0, 2fC

- f0) are then filtered by a low-pass filter, leaving only the f0 waveform (which is

the original gQPC response to the sweep signal). The resulting output waveform from

the Q and I ports are connected to a National Instrument data acquisition (NIDAQ)

board, and then numerically converted to the fast charge-sensing data.

The PAT spectroscopy and charge relaxation time T1 measurements rely on the

capability to apply well-calibrated and well-controlled microwave excitations to the

gate electrodes on the DQD device. An Agilent E8257D generates a microwave signal

with typical frequency fext ranging from 5 GHz to 30 GHz. The signal is fed through

a Marki M80420MS switch and subsequently filtered by a 20 dB attenuator at 1 K,

a 6 dB attenuator at 50 mK and a 3 dB attenuator at 20 mK before it is connected

to VL. When the single photon energy matches the energy-level energy splitting in
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the DQD, PAT peaks can be observed in the RF fast charge-sensing measurement

described above. By stepping fext and detuning ε, a full energy spectroscopy of the

DQD can be measured.

In addition, a series of step pulses generated by the Tektronic AWG7122B arbi-

trary waveform generator is connected to the IF port of Marki M80420MS. This en-

ables fast switching of the applied microwave excitation. In the charge relaxation time

T1 measurement, the microwave signal generated by the Agilent E8257D is chopped

by the AWG-controlled Marki M80420MS with an 50% on/off ratio. By varying the

period τ of the microwave excitation, a measurement of the charge relaxation time

T1 can be performed.
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