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Automated Collaborative Filtering (ACF) is one of the most successful strategies avail-

able for recommender systems. Application of ACF in more sensitive and critical applica-

tions however has been hampered by the absence of better mechanisms to accommodate

imperfections (ambiguities and uncertainties in ratings, missing ratings, etc.) that are in-

herent in user preference ratings and propagate such imperfections throughout the decision-

making process. Thus one is compelled to make various “assumptions” regarding the user

preferences giving rise to predictions that lack sufficient integrity.

With its Dempster-Shafer belief theoretic basis, CoFiDS, the automated Collaborative

Filtering algorithm proposed in this thesis, can (a) represent a wide variety of data imperfec-

tions; (b) propagate the partial knowledge that such data imperfections generate throughout

the decision-making process; and (c) conveniently incorporate contextual information from

multiple sources.

The “soft” predictions that CoFiDS generates provide substantial flexibility to the do-

main expert. Depending on the associated DS theoretic belief-plausibility measures, the

domain expert can either render a “hard” decision or narrow down the possible set of

predictions to as smaller set as necessary. With its capability to accommodate data imper-

fections, CoFiDS widens the applicability of ACF, from the more popular domains, such as

movie and book recommendations, to more sensitive and critical problem domains, such as

medical expert support systems, homeland security and surveillance, etc.

We use a benchmark movie dataset and a synthetic dataset to validate CoFiDS and

compare it to several existing ACF systems.



To my parents,

for everything



Acknowledgements

The research reported in this thesis was carried out at the Department of Electrical and

Computer Engineering of the University of Miami, Florida, during the period from May

2006 to Dec 2007.

I extend my sincere gratitude and appreciation to my thesis supervisor and chairman

of the thesis committee, Professor Kamal Premaratne, for his guidance, support and sug-

gestions throughout this work. My special thanks also go to Professors Miroslav Kubat of

the Department of Electrical and Computer Engineering, and Dushyantha T. Jayaweera of

the Division of Infectious Diseases, Department of Internal Medicine of the Miller School of

Medicine, for accepting the appointment to the dissertation committee and for their helpful

suggestions and support.

The fruitful discussions I had with Professor S. Ramakrishnan of the Department of

Mathematics were invaluable in completing this work. I also wish to thank my colleagues

K. Wickramarathna and K. K. R. G. K. Hewawasam for their unfailing support.

The support provided through NSF Grant No. IIS-0513702 is also acknowledged. En-

couragement and support I received from my friends and colleagues is highly appreciated.

My special thanks go to Aunty Benita for supporting me in many ways for my studies and

Josephene and Wallace Hanchey for their kindest support.

I would like to thank all my teachers who have guided me throughout the years. Finally,

I extend my utmost gratitude to my parents, my brother Kanishka, my sister Gayani, and

last but not least, my wife Thanushi for their encouragement, patience and love, which

made this work a reality.

Thanuka Wickramarathne

University of Miami

May 2008



Table of Contents

List of Figures vi

List of Tables vii

CHAPTER 1 Introduction 1

1.1 Collaborative Filtering and Related Work . . . . . . . . . . . . . . . 4

1.2 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization of Presentation . . . . . . . . . . . . . . . . . . . . . . . 10

CHAPTER 2 Preliminaries 11

2.1 Automated Collaborative Filtering . . . . . . . . . . . . . . . . . . . 11

2.1.1 User Preferences and Ratings Matrix . . . . . . . . . . . . . . 12

2.1.2 Memory-Based ACF Systems . . . . . . . . . . . . . . . . . . 13

2.1.3 Model Based Systems . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Knowledge Discovery in the Presence of Imperfect Data . . . . . . . . 16

2.2.1 Bayesian Probability Theory . . . . . . . . . . . . . . . . . . . 16

2.2.2 Possibility Theory . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 DS Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Approach for Handling of Data Imperfections . . . . . . . . . 23

2.3.2 Incorporation of Contextual Information . . . . . . . . . . . . 23

iii



CHAPTER 3 CoFiDS Overview 27

3.1 User Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 User Similarity and Neighborhood . . . . . . . . . . . . . . . . . . . . 30

3.3 Predictions and Decision Making . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 4 User Preference Modeling 34

4.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 DS Modeling Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Rated Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 Unrated Items . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 User-BoE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 An Important Result on User-BoEs . . . . . . . . . . . . . . . 44

CHAPTER 5 Similarity and Neighborhoods 46

5.1 Distance Between User-BoEs . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 User-User Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 User Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

CHAPTER 6 Prediction and Decision Making 52

6.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

CHAPTER 7 Evaluation Matrices 54

7.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Performance Measures for “Crisp” Databases . . . . . . . . . . . . . . 54

7.3 Performance Measures for “Soft” Databases . . . . . . . . . . . . . . 57

CHAPTER 8 Experiments and Results 58

8.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.1.1 MovieLens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



8.1.2 DS−MovieLens . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.1.3 PR−MovieLens . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.4 LKLD−MovieLens . . . . . . . . . . . . . . . . . . . . . . . 62

8.2 Other ACF algorithms for Comparison . . . . . . . . . . . . . . . . . 62

8.3 User Preference Modeling . . . . . . . . . . . . . . . . . . . . . . . . 63

8.3.1 Experiments on “Crisp” Dataset . . . . . . . . . . . . . . . . . 63

8.3.2 Experiment on “Soft” Dataset . . . . . . . . . . . . . . . . . . 64

8.4 Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.5.1 Comparison on “Crisp Dataset” . . . . . . . . . . . . . . . . . 65

8.5.2 Comparison on DS−MovieLens . . . . . . . . . . . . . . . . 66

8.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.6.1 Experiments on MovieLens . . . . . . . . . . . . . . . . . . . 67

8.6.2 Evaluations on DS −MovieLens . . . . . . . . . . . . . . . . 71

CHAPTER 9 Conclusion and Future Research 74

9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Bibliography 79

v



List of Figures

8.1 Partial Probability Models used in generating DS−MovieLens. . . . 60

8.2 Variation of MAE of CoFiDS with dispersion factor σ for several com-

binations of {K, τ}. Here, CoFiDS α = 0.9. . . . . . . . . . . . . . . 68

8.3 Variation of MAE of CoFiDS with neighborhood size K. . . . . . . . 69

8.4 Variation of MAE of CoFiDS with similarity threshold τ . . . . . . . . 69

8.5 Variation of DS-MAE of CoFiDS with neighborhood size K. . . . . . 70

8.6 Variation of DS-MAE of CoFiDS with similarity threshold τ . . . . . . 71

8.7 CoFiDS with {α, σ} = {0.9, 2/3}: DS−PE1 versus p. . . . . . . . . . 72

8.8 CoFiDS with {α, σ} = {0.9, 2/3}: DS−PE2 versus p. . . . . . . . . . 72

8.9 CoFiDS with {α, σ} = {0.9, 2/3}: DS-PE1 versus K when p = 0.1. . 73

vi



List of Tables

2.1 A Simple Ratings Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 DS Theoretic Models of Various Types of Data Imperfections . . . . . 21

3.1 A simple ratings matrix allowing more flexibility in user preferences.

Ratings space is a “5-star” system, i.e., users are allowed to pick ratings

from {1, 2, 3, 4, 5}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Examples of CoFiDS Predictions . . . . . . . . . . . . . . . . . . . . 33

8.1 Observed Rating = 2 of a ±1 user. Generating DS−MovieLens,

PR−MovieLens and LKLD−MovieLens from MovieLens . . . . . 61

8.2 Performance Comparison with “Hard” Decisions . . . . . . . . . . . . 67

8.3 Performance Comparison with “Soft” Decisions . . . . . . . . . . . . 70

8.4 Performance Comparison on DS−MovieLens . . . . . . . . . . . . . 71

vii



CHAPTER 1

Introduction

Information systems that interact with real-world application scenarios must be

capable of dealing with imperfect information when processing data and retrieving

knowledge, especially when one requires more accurate and realistic results. However,

as pointed out in [1], much of the work has been taken up with building elegant and

idealized models that are never approached in reality. According to the same author,

this has led to the study of imperfections being marginalized instead of accepting the

reality of imperfect data in real-world application domains.

There have been many attempts at classifying these imperfections over the years.

Although no consistent or coherent classification system is available to fate, these clas-

sifications are useful in understanding the nature of the imperfections. Uncertainty,

imprecision, incompleteness, inconsistency, and vagueness are some of the terms used

by different authors to describe different types of imperfections. Uncertainty arises

from the lack of information about a certain proposition. Imprecision arises by not

being able to measure with a suitable precision, whereas incompleteness arises from

the absence of a particular data value. Inconsistency captures the notion of possible

existence of two conflicting propositions and vagueness quantifies the vague nature in

human expression, e.g., “good boy,” “expensive car.”

1
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There are different sources of imperfections in a typical information system [2].

These imperfections can be a result of unreliable information sources, such as faulty

reading instruments, or data input forms filled-out incorrectly (intentionally or inad-

vertently), e.g., in medical data records; or system errors including input errors, trans-

mission “noise,” delays in processing update transactions, system software/hardware

defects, and corrupted data owing to failure or sabotage. Uncertainty is a type of

an imperfection inherited in information gathering methods that require estimation

or judgement by it’s own nature. Imperfections could also be a result of restrictions

imposed by the information gathering model itself. For example, an integer rating

scheme for a movie recommendation system, e.g., Netflix movie recommender sys-

tem. In this type of a setup, uncertainty is trivially embedded in user preferences in

cases where he/she is indecisive between two rating.

Exponential growth in the amount of available information during the past two

decades has resulted in technologies for the management of information. These, re-

ferred to as Information Filtering Systems, are essentially methods of purging in-

formation sources via relegation of irrelevant and redundant data using automated

computer techniques. But, surprisingly, almost all of these systems are based on ide-

alized models, ignoring the imperfections that are inherent in the information they

parse. So, these systems, never attempting to model reality as it is, end up in gener-

ating results that may be far from being realistic and acceptable. These techniques

proposed in early years of information growth are now facing challenges, due to ex-

tremely large amounts of historical data, very high rates of new information being

added and contradicting evidence in the stored data, even without taking the inherent

imperfections in data into account. This problem of locating only the relevant infor-

mation in such harsh conditions has been compared to “locating needles in a haystack

that is growing exponentially” in [3]. These difficulties associated with information
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filtering is further exacerbated if one wishes to work with more elaborate and realistic

models capable of dealing with the imperfections present in data.

Advanced and sensitive information filtering applications require technologies ca-

pable of handling imperfections in data and propagating them throughout the entire

process. Thus, the end-user can actually estimate the reliability of the results that

he/she gets from such an information filtering system. Indeed, highly sensitive and

critical application scenarios (e.g., medical and health care scenarios, battlefield situa-

tion and threat assessment, etc.) typically call for decision support systems that assist

the end-user make an informed decision, but not systems that replace the decision

making task itself.

Recommender Systems are a specific type of information filtering system which

recommend information items a user might be interested in, e.g., movies, books,

music, news, restaurants, etc. These systems became an important research area

in both academia and industry since the first publication on Collaborative Filtering

(CF) in the early-1990s. Automated collaborative filtering (ACF) has now become

perhaps the most successful recommender system [4]. As mentioned in [5], “... the

interest in this research area still remains high because it constitutes a problem-rich

research area and because of the abundance of practical applications that help users to

deal with information overload and provide personalized recommendations, content,

and services to them.”

Existing work on ACF has not successfully addressed the issue of handling data

with imperfections. Indeed, these limitations in existing ACF algorithms have limited

their applicability to simpler and non-sensitive domains. To quote [2], “... uncertainty

permeates our understanding of the real world. The purpose of information systems is

to model the real world. Hence information systems must be able to deal with uncer-

tainty.” In this thesis, we present a novel ACF scheme that is applicable to data with
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imperfections. This Dempster Shafer theory based Collaborative Filtering algorithm,

which we refer to as CoFiDS, can more accurately represent the imperfections inher-

ent in user preferences and propagate them throughout the entire decision making

process via the use of Dempster-Shafer (DS) belief theoretic notions.

CoFiDS opens up the door for a new breed of ACF schemes capable of working

with more general and richer user preference ratings, thus widening the applicability

of ACF to more advanced and sensitive problem domains, such as medical expert

support systems, homeland security and surveillance, etc. Since it provides “soft”

predictions (as opposed to “crisp” or “hard” decisions), CoFiDS enables the end-user

to make a decision with the full knowledge of the impact that data imperfections may

have had on the predictions.

This chapter is organized as follows. First, we will briefly explain CF and related

research work. Our motivation and goals towards the work presented in this thesis

are detailed next. We conclude the chapter by presenting an outline of the rest of the

chapters.

1.1 Collaborative Filtering and Related Work

CF is a method of making predictions on item preferences of a user by collecting

similar preferences from many peers, based on the assumption that those who agreed

in the past tend to agree again in the future. One can identify this as an automation

of the “word of mouth” process [6] people use in day-to-day decision making tasks —

a process in which the opinions of peers are used as an aid to making a decision.

CF systems were first introduced to tackle the issues where Content-Based Fil-

tering (CBF) failed to perform well. CBF is essentially another information filtering

technique that uses machine analysis of the contents of items being analyzed to make

predictions. CF and CBF are both Recommender Systems; but they differ in the
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following aspect: CF does not process the contents of items like CBF; instead, CF

processes user’s preferences of items for filtering.

Early CF systems required manual specification of predictive relationships or ex-

plicit routing of preferred items. This method of CF is sometimes referred to as Active

Collaborative Filtering [7], e.g., the Tapestry System [4]. ACF automates all tasks

with the exception of the collection process of historical user preference data.

ACF possesses some attractive features that have inevitably made these algorithms

very popular both in academia and industry. Some of the key advantages of ACF, as

pointed out in [8], are its ability to

• filter information of any type of content;

• filter based on complex and hard to represent preferences; and

• receive serendipitous recommendations.

With all these features and advantages, ACF has easily found many applications,

especially in the area of e-commerce during past few years. These applications include,

recommending books, audio CDs, movies, vacations, restaurants, etc. In fact, ACF

plays a key role in some of the major e-commerce successes, such as amazon.com [9].

Musicmatch.com, barnesandnoble.com, half.ebay.com, iLike.com, netflix.com,

and TiVo.com.

Widespread adoption in such e-commerce applications [10], and the increased

attention that researchers in both industry and academia are beginning to pay towards

addressing the various issues of such applications [11, 12], have resulted in significant

improvements in ACF technology.

Many issues related to ACF have been addressed by research work done during the

past few years. Improving the accuracy of predictions provided by these algorithms

has been one of the main areas addressed by many researchers [13, 14, 5]. Novel
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approaches to ACF [15, 16, 17, 18], that improve upon different aspects of ACF,

have been proposed. More advanced systems that combine ACF with other recom-

mendation methods [19, 20, 21] have also been proposed to exploit the advantages

of individual systems, especially combining the advantages of CBF with ACF. Work

has also been done on understanding and explaining various ACF methods and their

predictions [22].

With all these developments, ACF has been applied to a diverse set of domains

that are not limited to the previously mentioned applications. Such applications

include, recommendations of restaurants [23], ski mountaineering [24], dating [25],

online recruitment support services [26], peer-to-peer file sharing [27], locating experts

in an organization [28], etc.

It is clear that ACF is advancing towards an era where advanced and more general

classes of user preferences need to be handled. Applications such as dating, restaurant

recommendations, etc., indeed require ACF algorithms capable of handling such pref-

erences. Researchers have already understood the importance of accurately modeling

the user preferences [29] for extracting better performance from ACF systems.

1.2 Motivation and Goals

Current rate of adoption of ACF to different application domains has created a

growing demand for more accurate and advanced ACF systems with improved un-

derstanding and interpretation capabilities on their predictions. This essentially calls

for systems capable of handling more general classes of user preference models. We

believe that it is of utmost importance to have in place mechanisms that appropri-

ately model the imperfections inherited in user preferences and then propagate these

throughout the entire filtering process. To quote [30], “ ... one should take the un-

certainty into account, trading the loss of elegance and simplicity for more accurate

modeling.”
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To better illustrate the importance of ACF systems that are endowed with better

mechanisms for modeling and propagating user preference imperfections, consider a

medical expert who is involved in HIV treatment using highly active antiretroviral

(HAART) therapy. HAART therapy has been shown to decrease the mortality and

morbidity in HIV patients at all stages of infection [31]. In HAART therapy, patients

are administered drug combinations, commonly referred to as drug cocktails; the

choice of a particular drug cocktail is usually based upon the recommendation of the

Department of Health and Human Services (DHHS) [32], experience of the physician

[33], and results of clinical trials [34]. Unfortunately, the DHHS recommendations

and clinical trials are both based on large well controlled clinical trials with anti HIV

agents using a study population of HIV subjects which may not reflect the “real world

scenario.” Hence, physicians at times rely on other factors that are also known to

influence a patient’s response to drugs, and a physician may make use of previous

successes/failures to aid in determining future drug administration decisions. This

basically gives rise to the typical ACF scenario.

Unlike in traditional ACF algorithms, in this example scenario, one cannot expect

the user ratings — in this case, drug response effectiveness — to be “hard” (or “crisp”

or “perfect”). Indeed, the qualitative nature of the subjectivity that is inherent in

a physician’s rating surely calls for an algorithm that can model data imperfections

more effectively. This is especially the case when a rating is generated as a collective

decision of a team of physicians. For instance, in this HAART therapy scenario, it

is more likely that a particular drug cocktail is rated as, “Good with a 70% level

of confidence,” or that the physician concludes that the drug cocktail is “definitely

not Poor but more evidence is needed to discern further.” How can such ratings

be adequately captured? The ACF algorithm should be capable of accommodating

and propagating such data imperfections and terminate its decision-making process
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by enabling the end-user — in this case, the physician — to make a decision with

the full recognition and understanding of the data imperfections inherent in the user

ratings.

Lack of techniques to appropriately model and accommodate the data imperfec-

tions in user preferences, one is compelled to make various “assumptions” and “inter-

polations” to avoid the difficulties associated with such data. But such a strategy can

severely impair the integrity of the decision-making process and yield inferences that

are not trustworthy [35]. It is indeed difficult to justify the use of such ACF systems

in more advanced and critical applications. Lack of better techniques for modelling

and accommodating data imperfections throughout the decision-making process is in

fact a significant hindrance to the application of various methodologies developed in

computer engineering/science domains.

Traditional ACF algorithms must also grapple with two common problems.

Data Sparsity The sparsity associated with the user preferences. i.e. only a very

small subset of total user-item space is rated

Cold-Start This refers to the difficulties associated with making predictions when

either new users or new items being introduced into the system.

Data sparsity directly manifests in ACF algorithms as,

• decreased prediction accuracy because of errors introduced by other users who

are wrongly identified as neighbors; and

• inability to make predictions because of the unavailability of ratings from true

neighbors.

Again, these difficulties associated with data sparsity and cold-start are further

exacerbated by the presence of data imperfections.
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Thus, having the motivation to tackle the above problems, we seek an advanced

ACF system capable of modeling and working with a richer class of user preferences.

Such an effective ACF methodology then needs to have mechanisms in place to address

the following issues:

1. How do we represent or model user preferences?

2. How can this model be used for extracting useful knowledge and making reliable

predictions that are robust against data imperfections?

3. How can the prediction accuracy be improved?

4. How can the common ACF problems of data sparsity and cold-start be ad-

dressed in this new setup?

The use of a Dempster-Shafer (DS) theoretic notions provides a very convenient

framework for modeling several types of data imperfections that are commonly en-

countered: missing data, incomplete data, ambiguities generated from lack of evidence

to discern among a set of hypotheses, and of course probabilistic uncertainties. Prob-

abilistic approaches requiring one to make initial assumptions on the model, such

as independence, identically-distributed assumptions, etc., can generate misleading

predictions when the actual models are different. But, on the other hand DS models

are significantly more robust to such modeling errors (see [36] and references therein).

Such a methodology is exactly what is needed in the present context where one may

not be able to justify the typical assumptions required for a probabilistic approach.

However, DS theoretic models draw substantial criticism because of their poten-

tially prohibitive computational burden. So, it is essential that algorithms utilizing

DS theoretic methods have in place effective mechanisms to mitigate this computa-

tional effort.
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“Soft” or belief theoretic predictions that CoFiDS provides are new to both ACF

community and researchers, and there are no accepted measures for evaluating such

predictions. Thus we’ll have to come-up with mechanisms to overcome the difficulties

in performance evaluations and comparisons to exiting algorithms.

1.3 Organization of Presentation

This thesis is organized as follows: Chapter 2 provides the preliminary information

for the developments in later chapters followed by an overview of CoFiDS Collabo-

rative Filtering engine in Chapter 3. User preference modeling are introduced in

Chapter 4 with data models and machinery required for later computations. Simi-

larity Computation and Neighborhood Selection stages are discussed in Chapter 5.

CoFiDS predictions and notions associated with decision making with DS-theoretic

predictions are detailed in Chapter 6, followed by a discussion on evaluation measures

in Chapter 7. Experiments done on CoFiDS and two other existing algorithms and

their results are presented in Chapter 8. We conclude this presentation with some

remarks on future research in Chapter 9.



CHAPTER 2

Preliminaries

In this chapter, after first introducing the basic notions of ACF, we discuss differ-

ent approaches available for knowledge discovery from imperfect data. Three main

classes of ACF namely, memory-based, model-based and hybrid ACF systems are

briefly explained. The main tools used for knowledge discovery from imperfect data

include probability theory, possibility theory and DS theory. Each of these methods

contributes a distinct methodology for addressing problems in its domain to provide

a more accurate and low cost solution as compared to traditional solutions that could

handle only clean data. We conclude the chapter with our contributions.

2.1 Automated Collaborative Filtering

ACF is essentially a strategy for predicting the rating that a user might allocate

to an unrated item based on aggregated ratings of “similar” users in a historical

database. ACF systems can be classified into three broad categories:

1. Memory-Based Systems: Entire database of user preferences is used for pre-

dictions.

2. Model-Based Systems: Preferences are first used to learn a “prediction model”

which is then used for predictions.

11
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3. Hybrid Systems: Combination of two or more recommender techniques, usually

ACF combined with CBF

ACF posseses some unique challenges which are inherited from the nature of the

filtering problem:

Data Sparsity: Problem of the ratings matrix being very sparse, i.e., only a very

small number of entries are filled.

Cold-Start: Inability of the system to provide recommendations when a new user

or item is introduced.

Gray-Sheep: Existence of users who are consistently different from others.

Reduced Coverage: Inability of the system to provide recommendations due to the

number of ratings being very small compared to the large number of available

items.

Scalability: Prohibitive computational requirements when applying ACF to huge

datasets.

Synonymy: Tendency of same or very similar items to occupying different entries

in the database.

2.1.1 User Preferences and Ratings Matrix

A user’s preference on a given item is usually referred to as either user preference

or rating of that item. These ratings are collected and stored in a database. This

historical database of user preferences is usually viewed as a matrix which is referred

to as the ratings matrix, where the rows and columns represent users and items

respectively. Table 2.1.1 shows an example of a simple ratings matrix. Here, the



13

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 1 4 3 1

u2 2 4 5

u3 4 3 2 3

u4 2 1 3 1

u5 3 1 2

u6 5 1 5 5 3 4

Table 2.1: A Simple Ratings Matrix

ratings space — the set from which user ratings are drawn — is a 5-star ratings

system. The blank entries represent the user-item pairs that have not been rated.

An item that is rated by multiple users is referred to as being co-rated for those

users, e.g., i1 is co-rated by users u1 and u3. We refer to a user who has rated multiple

items as a co-rated user for those items, e.g., u1 is a co-rated user for items i4 and i7.

2.1.2 Memory-Based ACF Systems

Entire or sample of the ratings database is used by memory-based ACF algorithms

for making predictions. These algorithms first locate a small subset of users referred

to as the neighborhood via some distance matric, which estimates the differences in

their ratings [6]. Users in the neighborhood are referred to as neighbors. For a given

user, predictions are then obtained by taking a weighted average of the ratings of

his/her neighbors on a given item.

Similarity Computation

Core of the memory-based ACF systems lies in locating a “good set of neighbors”

who have similar preferences to the active user — the user to whom the current

predictions are done. Thus, similarity computation is a very critical step in this

method of CF. Two broad variants of memory-based ACF systems can be identified

based on the similarity computation method:
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User-Based: Similarity between users are calculated using their co-rated items

Item-Based: Similarity between items are calculated based on their co-rated users

[37].

New algorithms have been proposed using a combination of both methods [16].

There are many different methods used by ACF community for similarity computa-

tion, each technique having its own strengths and weaknesses.

Correlation based methods: Similarity is computed based on the correlation co-

efficient of the co-rated entities (items or users), e.g., Pearson correlation and

Spearman rank correlation.

Cosine based methods: Here, co-rated entities are viewed as two vectors and the

cosine angle between these two vectors are used as a measure of similarity, e.g.,

vector cosine and adjusted cosine.

Conditional probability based methods: This method is not widely used, but is

used to estimate the similarity of two items based on a conditional probability

based matric, e.g., similarity of items i and j via P (i|j)/P (j)

Neighborhood Selection

Neighborhood selection becomes a trivial task once the similarities are computed.

Active user’s neighborhood is usually selected as the K-nearest neighbors — K or

less most similar users — to that user. The value of K is often left as an optimization

parameter. A small caveat of selecting K-nearest neighbors (KNN) is the possibility

of selecting a set of users having very low similarity to the active user. This problem

can be overcome by setting a minimum similarity threshold for neighbors first, and

then selecting K or less nearest neighbors [38]. Not all algorithms use a subset of
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users (or items if item-based) for predictions. Exceptions include the ACF algorithms

proposed by Nakamura, et al. [16].

Predictions

This is the most crucial step in all types of ACF algorithms. Predictions are

usually given as either

• a weighted sum of neighbors ratings in user-based methods, or

• a simple weighted average in item-based methods.

Recommendations

This is often referred to as top-N recommendations. Top-N recommendation [5]

problem is to identify a set of N items that are of best interest to a given user,

e.g., in amazon.com recommendations. Once the ACF algorithm predicts the ratings

for items that are not rated by the active user, top N items with highest ratings

are selected as top-N recommendations. Top-N recommendation methodologies are

different for item-based and user-based ACF variants. Item-based algorithms are

shown to be more robust against scalability issues when compared to their user-based

counterparts.

2.1.3 Model Based Systems

These algorithms work by learning models for user ratings. In this method, pre-

diction for a given item of the active user is estimated by his/her own ratings of the

other items. Models for user are learned using different machine learning techniques,

giving rise to different types of model based ACF systems. A few popular techniques

used for learning models are Bayesian networks,clustering techniques, neural network

classifiers, association rules, dependency networks, etc.
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2.1.4 Hybrid Systems

Hybrid systems are essentially recommender systems combining two or more algo-

rithms. Often ACF is combined with CBF. Hybrid systems can be carefully designed

to exploit the strengths and minimize the weaknesses of individual algorithms. In-

deed, it has been shown empirically that hybrid systems outperform classical ACF

algorithms [20, 21].

2.2 Knowledge Discovery in the Presence of Im-

perfect Data

Three basic frameworks are popularly used when the data available are imperfect.

2.2.1 Bayesian Probability Theory

Methods based on classical probability theory are well established and have earned

wide popularity [39]. In this theory, one of many mutually exclusive hypotheses

(possible events) are tested against the gathered evidence. A Bayesian probabilistic

model consists of the triple (Ω,F , P ) where Ω is the sample space, F is a σ-algebra of

subsets of Ω and P is a non-negative mapping of F into the interval [0, 1]. It possesses

the following properties:

Axiom 1. Ω ∈ F with P (Ω) = 1.

Axiom 2. If A ∈ F , then A ∈ F , where A denotes the complement of A.

Axiom 3. For pairwise disjoint {An}, n ≥ 1,

P

( ∞⋃

n=1

An

)
=
∞∑

n=1

P (An). (2.1)
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Each proposition A ∈ F is associated with the probability P (A). Note that,

P (A) + P (A) = 1, ∀A ∈ F . (2.2)

Bayes’ theorem is employed to compute the probability of a hypothesis, given some

observation event. Consider a collection of hypotheses {Hi}i=1,n, Hi ∈ F and suppose

P (E) > 0 for an observation event E. Conditional probability of the occurrence of

Hi provided the evidence E is given by

P (Hi|E) =
P (E|Hi)P (Hi)

P (E)
, (2.3)

and

P (E) =
N∑

i=1

P (E|Hi)P (Hi). (2.4)

The quantities P (Hi) and P (E|H) are termed a-priori probabilities since they

represent statements that can be made prior to knowing the true subject of any ob-

servation. P (E|H) is also referred as the likelihood of E given H. The conditional

probabilities are calculated using above quantities along with the probability of obser-

vation event, the evidence P (E). These conditional probabilities are then combined

using the generalized Bayesian inference formula [40] based on the assumption that

event E is conditionally independent w.r.t. Hi:

P (Hi|E1 ∩ . . . ∩ Ek) =
P (Hi)P (E1|Hi) . . . P (Ek|Hi)∑N

n=1 P (Hn) [P (E1|Hn) . . . P (Ek|Hn)]
(2.5)

to obtain a-posteriori probabilities with respect to the totality of events E1, . . . , Ek.

A suitable decision logic is utilized to arrive at a decision based on these final prob-

abilities. Maximum a posteriori (MAP) and maximum likelihood (ML) methods are

widely used as Bayesian decision rules [41, 42, 43].

In a Bayesian model, the knowledge one has about a proposition A determines

explicitly the knowledge one has regarding its complement. We cannot refrain from

assigning probability numbers to events in A that we are not certain of. Therefore,
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it is incapable of representing the ignorance we may have regarding the events in A.

Moreover, the difficulties in defining the priors P (Hi) when sufficient information is

not available, and the requirement that the competing hypotheses must be mutually

exclusive, are other disadvantages of Baysian probability theory [40].

2.2.2 Possibility Theory

Possibility measures introduced by Zadah [44] are closely associated with fuzzy

sets and measures [45]. It considers a body of knowledge represented as subsets of

a reference set S. When Ω denotes the power set, i.e., Ω ≡ 2S , confidence functions

that map the elements of Ω into the interval [0,1] is defined as C : Ω 7→ [0, 1]. These

confidence functions are monotonic in the sense that A ⊆ B =⇒ C(A) ≤ C(B).

This may be interpreted as follows: if an event A implies a second event B, then

there is at least as much confidence in the occurrence of event B as in the occurrence

of the event A. Consequences of this monotonicity are that

C(A ∪B) ≥ max[C(A), C(B)] and C(A ∩B) ≤ min[C(A), C(B)]. (2.6)

The limiting case C(A ∪ B) = max[C(A), C(B)] defines what are referred to as

possibility measures [46]. Suppose E ∈ Ω is such that C(E) = 1. Possibility measure

Π is defined as Π(A) = 1 if A∩E 6= ∅, and 0 otherwise. We interpret Π(A) = 1 as A

is possible. Also note that Π(A ∪ A) = Π(S) = 1 and max[Π(A),Π(A)] = 1. Using

this, A and A can be interpreted as two contradictory events, i.e., at least one is

possible. However, one being possible does not prevent the other being possible too.

The notion of C(A∪B) = max[C(A), C(B)] seems to be consistent with possibility in

the real world, i.e., occurrence of A∪B requires only the easiest event (most possible

event) of the two to happen.

Similarly, using the other limiting case C(A ∩ B) = min[C(A), C(B)], necessity

measure N is defined to interpret that if an event is necessary, its contrary is im-
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possible. Conversely, if an event is possible, its contrary is absolutely not necessary.

Uncertainty of events can be characterized by these possibility and necessity functions

thus weakening axiom 2.2 of the Bayesian framework.

This framework can be used effectively to represent imperfections associated with

data. Fuzzy membership functions defining various relationships among fuzzy sets

serve as possibility distribution functions. Approaches based on fuzzy reasoning can

represent the vagueness of information. Probability theory only allows us to represent

the chance of extremes (occurrence or non-occurrence) of an event while possibility

theory could extend our view over “to what extent would the event be possible ?”

and “to what extent would the event be necessary ?.” In situations where such

vagueness of information needs to be represented, this formalism offers advantages

over probability theory [47, 48].

The disadvantages of this framework include increased number of computations

compared to other methods. Also there is a potential difficulty in generating suitable

membership functions corresponding to the fuzzy sets.

2.2.3 DS Theory

Let Θ = {θ1, . . . , θL} be a finite set of mutually exclusive and exhaustive proposi-

tions about some problem domain. It signifies the corresponding “scope of expertise”

and is referred to as its frame of discernment (FoD) [49]. A proposition θi, referred

to as a singleton, represents the lowest level of discernible information in this FoD.

Elements in 2Θ, the power set of Θ, form all propositions of interest. A proposition

that is not a singleton is referred to as a composite, e.g., (θ1, θ2). Henceforth, the

term “proposition” is used to denote both singletons and composites.

Cardinality of set A is denoted by |A|. The set A \ B denotes all singletons in

A ⊆ Θ that are not included in B ⊆ Θ, viz., A \ B = {θi ∈ Θ : θi ∈ A, θi 6∈ B}; A

denotes Θ \ A.
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Basic Notions

Definition 1 (Basic Probability Assignment (BPA)) The mapping m : 2Θ 7→

[0, 1] is a basic probability assignment (BPA) or mass structure for the FoD Θ if

(i) m(∅) = 0; and (ii)
∑

A⊆Θ m(A) = 1.

The mass of a proposition is free to move into its individual singletons. This is how

DS theory allows one to model the notion of ignorance. For example, complete lack

of evidence can be conveniently captured via the vacuous BPA: m(A) = 0, ∀A ⊂ Θ

and m(Θ) = 1.0. A proposition that possesses a nonzero mass is referred to as a

focal element; the set of focal elements is the core and is denoted by F . The triple

{Θ,F ,m} is referred to as the body of evidence (BoE); the number of focal elements

in this BoE is |F|.

Definition 2 (Belief, Plausibility) Given a BoE {Θ,F ,m} and A ⊆ Θ, (i) Bl :

2Θ 7→ [0, 1] where Bl(A) =
∑

B⊆Am(B) is the belief of A; and (ii) Pl : 2Θ 7→ [0, 1]

where Pl(A) = 1− Bl(A) is the plausibility of A.

So, while m(A) measures the support assigned to proposition A only, the belief

assigned to A takes into account the supports for all proper subsets of A as well;

Bl(A) represents the total support that can move into A without any ambiguity.

Pl(A) represents the extent to which one finds A plausible. When the core contains

only singletons, the BPA, belief and plausibility all reduce to probability.

These DS theoretic notions allow one to represent a wide variety of data imper-

fections with ease [50, 35]. See Table 2.2.3.

A probability distribution Pr(•) such that Bl(A) ≤ Pr(A) ≤ Pl(A), ∀A ⊆ Θ, is

said to be compatible with the underlying BPAm(•). An example of such a probability

distribution is the pignistic probability distribution Bp(•) [51]

Bp(θi) =
∑

θi∈A⊆Θ

m(A)/|A|. (2.7)
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Type of Imperfection rik Remarks

Proposition mik

Hard (Perfect, Crisp) θ2 1.0

Probabilistic θ1 0.1 Singleton focal elements only

θ2 0.7

θ3 0.2

Possibilistic θ1 0.7 Consonant focal elements only

(θ1, θ3) 0.2

Θ 0.1

Ambiguity (θ1, θ2) 1.0 Inability to discern among rat-
ings

Vacuous BoE Θ 1.0 Missing or unknown entry

Belief theoretic
∑

A⊆Θ

mik(A) = 1.0 Most general

Table 2.2: DS Theoretic Models of Various Types of Data Imperfections

Evidence Combination

The evidence of two “independent” BoEs could be “pooled” to form a single BoE

via

Definition 3 (Dempster’s Rule of Combination (DRC)) Suppose the two BoEs

{Θ,Fi,mi}, i = 1, 2, span the same FoD Θ. Then, if

K ≡ 1−
∑

C∈F1, D∈F2

C∩D=∅

m1(C)m2(D) 6= 0,

the DRC generates the BPA m(•) : 2Θ 7→ [0, 1] where

m(A) =
∑

C∈F1, D∈F2
C∩D=A

m1(C)m2(D)÷K, ∀A ⊆ Θ.

This combination operation is denoted as m = m1 ⊕m2.

The operation ⊕ is both associative and commutative thus enabling the combi-

nation of multiple BoEs with ease [49]. A variation of the DRC that accounts for
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evidence reliability is

m(A) = (m
(disc)
1 ⊕m(disc)

2 )(A),

where m
(disc)
i (A) =





dimi(A), for A ⊂ Θ;

(1− di) + dimi(Θ), for A = Θ.

(2.8)

Here, di ∈ [0, 1] is referred to as a discounting factor [49].

2.3 Contribution

In the previous chapter, we pointed out the importance of advanced ACF schemes

that are capable of modeling and working with a richer class of user preferences.

There, we raised several questions that should be addressed by such a methodology.

To rephrase,

1. How can we model a wider class of user preferences?

2. How can this model be used for extracting useful knowledge and making reliable

predictions that are robust against data imperfections?

3. How can the prediction accuracy be improved?

4. How can the common ACF problems of data sparsity and cold-start be ad-

dressed in this new setup?

Our contribution is a new breed of ACF algorithms that effectively address the

above questions via the incorporation of several novel and unique concepts. First, we

pioneer in introducing ACF algorithms applicable to domains with data imperfections.

We also introduce an ACF methodology that is capable of incorporating domain

expertise and background data to aid the prediction task in unified manner.
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2.3.1 Approach for Handling of Data Imperfections

We utilize a data model that allows one to accommodate imperfections and then

propagate these throughout the decision-making process via the integration of DS

belief theoretic notions into ACF. As we have already mentioned, due to this DS

theoretic framework, we refer to our automated Collaborative Filtering algorithm as

CoFiDS.

We prefer to use DS theory because of its ability to conveniently represent a wide

variety of data imperfections. Such imperfections include, probabilistic uncertain-

ties, qualitative aspects of evidence, evidence ambiguities, missing information, etc.

Apart from the convenience it offers, DS models are better able to capture partial or

incomplete knowledge. Table 2.2.3 shows different types of imperfections that can be

captured by DS theoretic models.

Our decision to use DS theory, is justified by the wide variety of applications

of DS theoretic methods to domains possessing data imperfections [35, 52, 53]. In

these applications, integrity of the decision making process and robustness against

modeling errors are critical issues. Here, the modeling errors could be result of lack

of information on the underlying probability distributions. Example applications

include battlefield target tracking, situation awareness, etc.

2.3.2 Incorporation of Contextual Information

As we have already mentioned, only a subset of user population are used in general

for prediction purposes in memory-based ACF Systems [6]. Thus, identifying truly

similar users is of paramount importance towards more accurate predictions.

However, the challenge one encounters is the sparsity of the ratings matrix. In

practice these matrices are extremely sparse. e.g. Data Sparsity is about 93.7% in

the MovieLens dataset [54] — a widely used, benchmark CF dataset. For instance,



24

consider the ratings matrix associated with the HAART therapy scenario we intro-

duced in Chapter 1. It would definitely be extremely sparse because, the different

number of drug cocktails that may have been prescribed to each patient would be sig-

nificantly small compared to the number of available drug cocktails. The number of

drug cocktails that have actually been “rated” — the effectiveness of drugs evaluated

— could very well be even a smaller fraction.

In such a situation, the number of co-rated items that are rated by any given

two users would be extremely small. Thus any identified similarity among users that

is based upon co-rated items may not be a true reflection of how similar the group

members are. For an illustration, take the example ratings matrix in Table 2.1.1.

Let user u5 be the active user. Co-rated users would be users {u1, u3, u4, u6}. But,

all these users have only co-rated a single item out of 10 items in total. In such a

situation, one can not justify the accuracy of predictions made by an ACF system —

utilizing similarities based on co-rated entities (items or users) only.

The inferences made on such similarity computations would be less reliable and

prediction accuracy would be low. But, somehow it could turn out that the prediction

accuracy is reasonably better in a practical dataset, as it is indeed the case in most

practical ACF systems in use today. However, in these applications, e.g. a Movie

Recommender — many users tend to rate a common subset of items. Thus, the users

are indeed compared on a common set and their predictions are again made onto the

same set of items as well. However, this problem is not captured by the algorithm

evaluation methods and measures in existence. For instance, take the N-fold cross

validation method used for algorithm testing. Here, two independent subsets of user-

item pairs are chosen for training and testing. Unfortunately, the testing and training

sets being subsets of the “commonly rated set” — as we have pointed out earlier,

all computations and predictions are done onto the common subset. This, actually
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hides the effects of wrong neighbors and usually provide a good prediction accuracy

in evaluations. But, one can not assure reliability of such predictions. These can

manifest as misleading recommendations made by such systems. Such experiences can

actually be seen by the opinions of frustrated users who use commercial recommender

systems for their decision making tasks, such as “movie selections.”

Since our motive is to arrive at an ACF system applicable to advanced and critical

domains, reliability of predictions are of paramount importance. Thus, we focus on

methodologies enabling us to select a true neighbor set even at a cost of increased

computational requirements.

It has been shown that one may generate more accurate predictions by making use

of metadata of items and users and/or domain expertise (or background knowledge)

[55, 56, 57]. Such methods usually use metadata and domain expertise to generate

separate predictions, which are then fused with predictions generated by ACF algo-

rithm. Although one may obtain higher prediction accuracy using such strategies,

the problems caused by data sparsity still remains.

DS theoretic framework that forms the basis of CoFiDS allow it to address data

sparsity in a unique and elegant manner. To begin with, one may simply replace each

unrated entry of the ratings matrix by a vacuous mass structure, the DS theoretic

model of a missing value. CoFiDS however go substantially further by exploiting

contextual information to “narrow” the uncertainty that a vacuous mass structure

may otherwise harbor. In essence, CoFiDS enables one to “fill in” or populate each

unrated item in the ratings matrix prior to carrying out the ACF task. This strat-

egy makes the computed similarity among users more reliable. For example, in the

HAART therapy scenario, CoFiDS allows one to integrate physician expertise on do-

main, user and drug metadata (e.g., patient age, drug compliance, co-morbidity, etc.)

into the ACF algorithm from the very outset thus resulting in improved predictions.
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This strategy of exploiting contextual information prior to the ACF task also

addresses the cold-start problem in an elegant manner. In the HAART therapy

scenario, drug response entries corresponding to a new patient can now be populated

with the DS theoretic models of the relevant contextual information; the same applies

to a new drug being introduced.



CHAPTER 3

CoFiDS Overview

The ACF algorithm CoFiDS presented in this thesis can be seen as a generalization

of the memory-based ACF algorithms via the incorporation of DS theoretic notions.

We believe that CoFiDS presents a novel and pioneering ACF algorithm due to the

following reasons:

• It constitutes a new breed of ACF sytems capable of handling more general

classes of user preferences.

• It is a coherent and consistent method for exploiting contextual information for

improved predictions.

• It provides soft predictions enabling the end-user to make a more reliable deci-

sion with the full knowledge of the underlying data imperfections.

But, in spirit, CoFiDS is similar to classical memory-based ACF algorithms. The

generalized user ratings matrix that we refer to as the DS-ratings matrix represents

more general classes of user preferences via DS theoretic BoEs spanning the ratings

space. The similarity matrix is then generated on a user-user basis. CoFiDS predic-

tions are made by fusing user ratings from a selected neighborhood which, as usual,

is a subset of user space. As far as its predictions are concerned, CoFiDS differs

27
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significantly from its traditional counterparts. Indeed, CoFiDS gives its predictions

as DS theoretic BoEs.

3.1 User Preferences

In CoFiDS, each user rating is represented as a BoE spanning the ratings space,

allowing it to represent a wide range of user preferences (e.g., uncertain, partial, and

ambiguous data).

DS theoretic representations of the ratings in domains where user preferences

are hard, can easily be obtained by simply assigning the total mass to the given

proposition. For instance, consider the user ratings matrix in Table 3.1. User u1’s

rating “2 for sure” on item i1 can be modeled as m({2})=1. An unrated item can

be represented via the vacuous BPA m({1, 2, 3, 4, 5}) = 1.0. This type of “N-star”

rating systems are widely used in existing recommender systems.

i1 i2 i3 i4 i5
u1 2 for sure 4 for 75%

u2 2 or below 4

u3 3 or 4 less than 3 not 1 or 2

u4 2 2 if not 1

u5 3

u6 4 or above 1 5 for 95%

Table 3.1: A simple ratings matrix allowing more flexibility in user preferences. Rat-
ings space is a “5-star” system, i.e., users are allowed to pick ratings from {1, 2, 3, 4, 5}.

However, these recommenders do not allow the flexibility that is required for the

other types of user preferences in Table 3.1. In domains where user preferences are

forced to be hard, which is the case in almost all the recommender systems up to

date, a user may have difficulty in picking, or may be unwilling to pick, a single label

as his/her proper rating. Thus, the expressed rating is imperfect to a certain degree.

Such simple data imperfections can be very conveniently modeled using DS theoretic

notions.



29

For example, user u6’s rating on item i5 in Table 3.1 can be captured via the

BPA {m(5), m(1, 2, 3, 4, 5)}={0.95, 0.05}. This capability allows CoFiDS to perform

its processing on user’s real preferences, taking into consideration the inherent data

imperfections, thus leading to more accurate predictions.

DS theoretic models allow CoFiDS to represent user preferences in sensitive and

critical application domains. This idea is best explained with an example. Con-

sider the HAART therapy scenario we introduced in Chapter 1. The physician

may generate and utilize a ratings matrix with each row and column correspond-

ing to a patient and a drug cocktail, respectively. Each ratings matrix entry would

then indicate the effectiveness of the drug cocktail when administered to the cor-

responding patient. For example, the physician may use elements from the set

Θpref = {Excellent, Good, Fair, Poor} for rating a drug response. Unlike in tradi-

tional ACF algorithms, in this example scenario, one cannot expect the user ratings

— in this case, drug response effectiveness — to be “hard” (or “crisp” or “perfect”).

This is especially the case when a rating is generated as a collective decision of a team

of physicians. For instance, it is more likely that a particular drug cocktail is rated

as, “Good with a 70% level of confidence,” or that the physician concludes that the

drug cocktail is “definitely not Poor but more evidence is needed to discern further.”

The BPAs {m(Good), m(Θpref)} = {7/10, 3/10} and m(Excellent, GoodFair) = 1.0

would elegantly capture those two ratings respectively.

CoFiDS’s capability to handle this type of user preferences without making any

assumptions or interpolations, allows the deployment of recommender systems with

more user friendly rating schemes. Allowing simple but flexible preference specifica-

tions such as those shown in Table 3.1 would be convenient for users and indeed will

result in more accurate predictions, and hence recommendations.



30

CoFiDS also introduces a unique methodology for estimating the user preferences

for unrated items using contextual information from the very outset, prior to any ACF

task. This enables one to exploit domain expertise or background information or user

and/or item metadata to reduce the ambiguity in the preferences of unrated items.

For instance, consider item i4 in the Ratings Matrix shown in Table 3.1. Assume that

the domain expert is certain that “no user will rate the item i4 below ‘3-stars’ !” In

such a situation, he/she may use this information to replace the ratings for all users

who have not rated that item, i.e., ratings of users u3 and u5 in this example. This

reduces the ambiguity in all those ratings to that of BPA m({3, 4, 5}) = 1.0. When

such information is not available on the user preferences, in Chapter 4, we propose a

technique that can make use of the available ratings.

3.2 User Similarity and Neighborhood

Similarity matrix is generated on a user-user similarity basis. For any two given

users, user-user similarity is usually computed using only the co-rated items — items

that are rated by both the users in common. The ratings matrix being very sparse, the

number of co-rated items used for similarity evaluation of two given users would be

extremely small. Thus, any such identified similarity among users that is based upon

co-rated items may not be a true reflection of their actual similarity. With our inten-

tion of applying CoFiDS to more sensitive and critical application domains, CoFiDS

approach for similarity computation differs from its peer memory-based algorithms.

As we have already mentioned, CoFiDS uses contextual information from the very

outset to reduce the ambiguity of the user preferences for items that are originally not

rated by users. This essentially “fills in” the DS-ratings Matrix. It then extends user

preference ratings of items — which can be viewed as “intra-item” preferences into

“inter-item” preferences representing the user’s preference on all items as a whole.
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CoFiDS then compares users based on inter-item preferences which we refer to as

User-BoEs. With this setup, user-user similarities computed will be more reliable

than those based on co-rated items only, but at a cost of increased computational

requirements.

CoFiDS uses K nearest neighbors (KNN), based on their user-user similarity for

predictions. K is kept as an optimization parameter as usual. For a given active

user, once the item to be predicted is specified, the traditional method of selecting a

neighborhood is to select the K most similar users, who have actually rated the given

item. The obvious weaknesses in this method of neighborhood selection manifests as

two problems exacerbated by the sparseness of the ratings matrix.

1. Possibility of neighborhood set being empty due to unavailability of rated users

for the selected item. If so, ACF algorithm will then fail to make a prediction.

2. Possibility of the users who have actually rated the given item being dissimilar

to active user, i.e. similarity is significantly lower.

CoFiDS handles this challenge as follows. First, it sets a lower bound or a thresh-

old on similarity for neighborhood selection. This avoids the possibility of capturing

dissimilar users, but increases the chances of neighborhood set being empty. In such a

situation, since the DS-ratings matrix is already “filled out” using contextual informa-

tion, CoFiDS selects a second-tier K-neighborhood of users discarding the constraint

on “item-ratedness”, i.e., the users in neighborhood are not required to have rated

the item. But, indeed they should satisfy the lower bound on their similarity to

the active user. This strategy along with contextual information incorporation tech-

nique elegantly tackles the problem of cold-start as well. Similarity computations and

neighborhood selection procedures are elaborated in Chapter 5.
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3.3 Predictions and Decision Making

CoFiDS prediction stage closely resembles that of traditional memory-based ACFs.

Once the neighborhood for a given prediction request is chosen, CoFiDS generates the

prediction by fusing the item preferences of those neighbors. Since the DS-ratings

matrix has already been “filled up”, entry corresponding to the requested item of

active user would probably be non-vacuous — not completely ambiguous. Thus,

CoFiDS indeed fuses this information with the prediction obtained using neighbors

for improved prediction accuracy.

CoFiDS predictions are essentially “soft” information. This enables the end-user

to make decisions with full recognition and understanding of the reliability measures

of the generated predictions. If one wishes to obtain a hard decision, “pignistic

transformation” or “maxBL with non-overlapping intervals” strategies can be used.

But, these methods degrade the information content of a rating that is expressed

as a BoE. Table 3.3 shows some example predictions generated by CoFiDS (from

experiments on MovieLens) along with the single label predictions that one obtains

with the pignistic transformation and the maxBL strategy.

Note the following facts on hard decisions arrived at via the pignistic transforma-

tion and the maxBL strategy. These examples provide evidence on the importance of

“soft predictions” for better understanding of the predictions and eventual decision

making process.

• Decisions arrived at for user-item pairs (72, 550) and (19, 211) are uncontrover-

sial.

• For user-item pair (116, 758), while the maxBL strategy captures the indecision

that is apparent in the CoFiDS prediction, the pignistic transformation does

not.



33

User-Item True CoFiDS Prediction Single Label Decision

Pair Rating Proposition Mass Pignistic MaxBL

(72, 550) 4 3 0.129 4 4

4 0.870

(3, 4) 0.001

(19, 211) 4 3 0.047 4 4

4 0.953

(2, 251) 5 4 0.505 4 4

5 0.490

(4, 5) 0.005

(116, 758) 1 1 0.305 2 (1, 2)

2 0.436

(1, 2) 0.224

(3, 4) 0.035

Table 3.2: Examples of CoFiDS Predictions

• The decision for user-item pair (2, 251) illustrates the difficulty one would have

in attempting to capture the richer information content in a DS theoretic BoE

with a single label decision. Although both pignistic transformation and the

maxBL strategy favor a “4” rating, the CoFiDS prediction is clearly not very

decisive between the “4” and “5” (true) ratings.

Chapter 6 elaborates the technical details of CoFiDS prediction making process.



CHAPTER 4

User Preference Modeling

We elaborated upon the strengths of CoFiDS in modeling different types of user

preferences in Section 3.1 of Chapter 3. In this chapter, we introduce DS theoretic user

preference modeling techniques and elaborate upon one such simple model that can

be used to represent a wide variety of data imperfections where the actual preferences

are forced to be hard by the system. Then, we develop the user-BoE by extending

user’s preferences on individual items to the user preference on all items as a whole.

First, we introduce the notation that will be used hereafter.

4.1 Nomenclature

Let U = {U1, U2, ..., UM} and I = {I1, I2, ..., IN} denote exhaustive sets of M

users and N items, respectively. We assume that a user allocates his rating to an

item via an element θl from the finite, rank-ordered set of L labels denoted by Θpref =

{θ1, θ2, . . . , θL}, where θj < θ` whenever j < `. A user rating is identified as a mapping

fR : U× I 7→ Θpref : Ui × Ik 7→ rik, where rik ∈ Θpref denotes the rating that user Ui

allocates to item Ik; if Ik has not been rated by Ui, we use rik = ∅. Ratings matrix

is then given by the M ×N matrix created as R = {rik}. Let rik = {Θpref ,Fik,mik}

denote the dual of the rating rik in DS theoretic domain. Let the M ×N matrix R

34
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denote the DS ratings matrix, which is then given by R = {rik}. For i = 1,M and

k = 1, N , we also introduce

R
(user)
i = {Ij : rij 6= ∅}; R

(user)
i = I \R(user)

i (4.1)

R
(item)
k = {Ui : rik 6= ∅}; R

(item)
k = U \R(item)

k (4.2)

Thus, R
(user)
i and R

(item)
k denote the items rated by user Ui, and users who have rated

item Ik, with R
(user)
i and R

(item)
k denoting their complements respectively.

4.2 DS Modeling Functions

As we have already mentioned in Chapter 3, CoFiDS view each user rating as

a BoE spanning the FoD Θpref = {θ1, . . . , θL}, where the singletons of Θpref (i.e.,

θi, i = 1, L) represent the smallest discernible levels in user ratings. The DS modeling

function defined next, maps the given user ratings to DS theoretic domain.

Definition 4 (DS Modeling Function fR) Let the mapping,

fR : rik 7→ rik = {Θpref ,Fik,mik}

be defined as the DS modeling function. This generates the BoE rik capturing the

rating rik, for all rik ∈ R

How should one select an appropriate DS modeling function that captures the

explicit and implicit user preferences while accommodating the associated imperfec-

tions ? Unfortunately, this question is far from being trivial and one cannot expect to

arrive at a “universally applicable” DS modeling function that caters to all problem

domains. We believe that a domain expert should carefully design an appropriate

mapping taking into account the characteristics of the domain as well as of users and

items.
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In the following two sections, we provide some guidelines and insight into designing

proper DS modeling functions. First, we discuss the case where users have actually

rated the items, i.e. rik 6= ∅. The case where users have not explicitly rated the items,

is explained next, where we use an elegant methodology to reduce the ambiguity of

the ratings in unrated items.

4.2.1 Rated Items

CoFiDS is applicable with any user preference that can be modeled via a DS

theoretic BPA. One can identify two broad categories of application domains based

on the type of user preference ratings that they allow:

1. Domains with “Forced” Hard Preference Ratings Typical ACF domains fall

into this category. e.g., movie recommender systems with an “N-star” ratings

space.

2. “Soft” Preference Ratings Sensitive and critical ACF application domains re-

quire this type of user preference handling. For instance, the HAART therapy

scenario falls into this category.

Domains with ‘Forced’ Hard Preference Ratings

In most of the recommender systems in use today, users are forced to rate the items

via “hard” or “crisp” ratings. This type of preferences can be very easily modeled

with DS notions. (See the example shown in Section 3.1 of Chapter 3). In this type

of domain, it may first appear that user ratings are devoid of any imperfections.

However, as pointed out in [16], the ratings assignment process itself often possesses

a level of uncertainty. For example, a user may have difficulty in picking, or may be

unwilling to pick, a single label as the proper rating. A DS theoretic model that can

capture the user uncertainty in a wide variety of such scenarios is the following:
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Definition 5 (Simple DS Modeling Function) Suppose the rating that the user

Ui allocates to item Ik is rik = θ` ∈ Θpref . The mapping fR : rik 7→ rik : Θpref 7→

{Θpref ,Fik,mik} where

mik(A) =





αik(1− σik), when A = θ`;

αikσik, when A = B;

1− αik, when A = Θpref ;

0, otherwise,

where

B =





(θ1, θ2), if ` = 1;

(θL−1, θL), if ` = L;

(θ`−1, θ`, θ`+1), otherwise,

is referred to as the Simple DS modeling function (S-DS Modeling Function). Here,

the real-valued parameters αik ∈ [0, 1] and and σik ∈ [0, 1] are referred to as the

trust factor and dispersion factor corresponding to the rating rik, respectively.

The trust factor and dispersion factor in combination control the DS theo-

retic mass assigned to the user given rating. Thus, a wide variety of user prefer-

ences can be represented by carefully selecting the two parameters, trust factor and

dispersion factor.

• trust factor: quantifies how likely the user assigned rating reflects the user’s true

perception. The value αik = 0 represents the case when the user’s rating is

completely untrustworthy; therefore it is modeled via the vacuous BoE.

• dispersion factor: quantifies how likely the user assigned rating would span a

larger set. The value σik = 0 represents the case when the user assigned rating

is allocated a DS theoretic mass (provided that αik 6= 0).
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For instance, consider the ACF algorithms proposed by Nakamura and Abe in

[16] where weighted majority voting strategies have produced significant prediction

performance improvements compared to correlation based methods. By allowing a ±1

tolerance on user ratings when calculating similarities, these algorithms accommodate

a certain level of uncertainty in user rating assignment. We may easily capture this

scenario via the S-DS modeling function with the parameters {αik, σik} = {1, 1}.

One’s choice of trust factor and dispersion factor would be domain and dataset

dependent. Depending on the available evidence and the complexity of the process,

one may utilize user-wide, item-wide, or system-wide constants for these parameters.

They can also be used as a means of capturing the “significance” of a particular

rating towards the overall ACF prediction process. To elaborate, consider a scenario

where most users allocate a similar rating for a particular item (e.g., most users in

the MovieLens dataset [54] give a higher rating for the movie Titanic [38]). Then

that rating would play a less significant role in the CF prediction process. One can

use a smaller item-wide constant value for αik in such a scenario.

Domains with “Soft” Preference Ratings

Some domains may contain user preferences that are in the “soft” format — pref-

erences that are not “hard” or “crisp,” e.g., ratings of the HAART therapy scenario

introduced in Section 1.2 of Chapter 1. In this case, an identity map can be chosen

as the DS modeling function. But, one can still design a somewhat complicated and

flexible DS modeling function — taking into account the domain characteristics and

available evidence for further improvements.
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4.2.2 Unrated Items

An unrated entry in ratings matrix can be mapped to DS-ratings matrix as the

vacuous BoE. Although one could simply proceed with this obvious DS modeling

function, CoFiDS employs a more elaborate mapping. This strategy adopted by

CoFiDS allows unrated items to be modeled with a reduced degree of ambiguity,

which would otherwise be completely ambiguous. This approach,

• constitutes a method whereby the ratings matrix could be completely populated

prior to the application of ACF,

• has the ability to combine information from multiple sources taking into account

their reliability and significance, and

• provides an elegant solution to difficulties associated with data sparsity and

cold-start.

To better explain how CoFiDS incorporates contextual information into ACF,

consider our HAART therapy scenario introduced in Chapter 1, where a physician

is interested in predicting the therapeutic response rating of a drug cocktail that

has not yet been administered to a particular patient. Patient’s Drug Compliance,

Initial V iral Load, and Age are all criteria that are known to have a significant

impact on the therapeutic response of a drug cocktail. Such domain expertise can

be considered Concepts for grouping patients — each concept gives a criterion based

on which the patients may be grouped, e.g., the concept Drug Compliance may

have the following groups: Drug Compliance.High, Drug Compliance.Medium,

and Drug Compliance.Low. Patients belonging to a group is expected to possess

a similar drug responses to a given drug. Note that, the groups corresponding to a

given concept need not partition the user space, i.e., a user may belong to one or

more groups from the same concept.

Suppose we are interested in incorporating such contextual information to popu-

late the hitherto unrated entry rik ∈ R corresponding to patient ui and drug cocktail
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ik. The notion being advocated by CoFiDS for this purpose is to combine or fuse the

effectiveness rating that each group in which the patient ui is member allocates to

drug cocktail ik as a whole. This fusion operation is carried out in two stages:

1. Group Level fuse the group preference of each group which patient ui belongs

to and generate a concept preference; and

2. Concept Level use the concept preference of all grouping concepts and generate

the overall contextual preference.

In an attempt to formalize these notions, we make the following observation. Al-

though the above discussion related to the HAART therapy scenario concentrated

on user-based concepts, completely analogous notions exist for item-based concepts

as well. For example, the physician can very well group the drug cocktails based on

the item-based concept Class of Drugs. Realizing that the development of these

analogous notions follows the same pattern, we concentrate only on user-based con-

cepts. In any case, the experiments we carry out in Section 8 in Chapter 8 utilize an

item-based concept for generating contextual information.

In the development of contextual preference BoEs, we consider only one concept

for notational simplicity; if the need arises to refer to multiple concepts, we will have

to attach a subscript/superscript i to differentiate among them. Unless it becomes es-

sential, we will not incorporate this lest the notation becomes even more cumbersome

than perhaps it already is. So, we proceed as follows.

Note. At this point, all the entries of DS-ratings matrix corresponding to rik 6= ∅

has been populated via an appropriate DS modeling function.

Nomenclature

Let us identify the Q number of groups belonging to the “generic” concept Concept

as {Concept.Group1, . . . , Concept.GroupQ}. We identify the groups to which a user
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belongs via the mapping fC : U 7→ {Concept.Group1, . . . , Concept.GroupQ}; this

mapping is referred to as the grouping function.

Group Preference BoE

We capture how the group members belonging to the group Concept.Groupj

would, as a whole, rate the item Ik via a DS theoretic BPA. If information regarding

the group preferences of each item is available, e.g., “therapeutic response of the group

Drug Compliance.Low is ‘poor’ for all items,” one may use this information directly

in a DS theoretic setting; otherwise, one may use those users within a given group

who have already rated item Ik.

Definition 6 (Group Preference BoE) The group preference BPA is m
(Groupj)
k :

2Θ 7→ [0, 1], where

m
(Groupj)
k =

⊕

i: Ui∈Concept.Groupj ;
Ik∈Ri

mik.

The corresponding BoE

BoE
(Groupj)
k = {Θpref ,F (Groupj)

k ,m
(Groupj)
k }

is referred to as the group preference BoE.

Concept Preference BoE

The concept preference BoE corresponding to user Ui and item Ik is then obtained

by combining or fusing these group preference BoEs.

Definition 7 (Concept Preference BoE) The concept preference BPA is m
(Concept)
ik :

2Θ 7→ [0, 1], where

m
(Concept)
ik =

⊕

j: Concept.Groupj
∈fC(Ui)

m
(Groupj)
k .
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The corresponding BoE

BoE
(Concept)
ik = {Θpref ,F (Concept)

ik ,m
(Concept)
ik }

is referred to as the concept preference BoE.

Contextual Preference BoE

The overall contextual preference BoE corresponding to user Ui and item Ik is

then obtained by fusing all the concept preference BoEs.

Definition 8 (Contexual Preference BoE) The contextual preference BPA is m
(Context)
ik :

2Θ 7→ [0, 1], where

m
(Context)
ik =

⊕

All Concepts

m
(Concept)
ik .

The corresponding BoE

BoE
(Context)
ik = {Θpref ,F (Context)

ik ,m
(Context)
ik }

is referred to as the contextual preference BoE.

At this point, CoFiDS modifies the DS ratings matrix R such that each unrated en-

try is replaced by its corresponding contexual preference BoE, i.e., rik ≡ BoE
(Context)
ik

when matrix element rik = ∅. This is the ratings matrix that we would employ from

now onwards.

Taking “Reliability and Significance of The Information Sources” into ac-

count

In the fusion operations being carried out in Definitions 6,7 and 8, one may employ

a discounting factor to discount each constituent BoE prior to application of the DRC.

This may be particularly relevant in an application such as our HAART therapy

scenario. For example, if one concept, say Age, is known to have less of an impact
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on the drug response than the other concepts, a discounting factor can be used to

accommodate this fact.

Once the DS-ratings matrix is generated via use of appropriate DS modeling

functions, we may now generate the user-BoE.

4.3 User-BoE

While the BoE rik can be considered an “intra-item” BoE that captures the pref-

erence that a user has towards a single item, to capture the preference that the user

has towards all items as a whole, one requires an appropriately constructed “inter-

item” BoE defined over the cross-product space of Θ ≡ Θpref×· · ·×Θpref (N times) ≡
∏N

j=1 Θpref . To proceed, we need to introduce the following notion:

Definition 9 (Cylindrical Extension) Consider the focal element A ∈ Fik ex-

tracted from the BoE rik. Its cylindrical extension to the cross-product FoD Θ is

cylΘ(A) =

[
Θ1 . . . Θi−1 A Θi+1 . . . ΘN

]
,

where Θi = Θpref , ∀i = 1, N .

We may then show that [35]

Lemma 1 The mapping Mik : 2Θ 7→ [0, 1] where

Mik(B) =





mik(A), for B = cylΘ(A);

0, otherwise.

generates a valid BPA defined on the FoD Θ. The corresponding BoE is referred to

as the user-BoE generated by extending the BoE rik.
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This leads us to

Definition 10 (User-BoE) For user ui, consider the BoEs Mik(•), k = 1, N , gen-

erated by extending the BoEs rik, i = 1, N , respectively. Then, the BPA Mi : 2Θ 7→

[0, 1] where

Mi =
N⊕

k=1

Mik,

is referred to as the user-BPA of user ui; the corresponding BoE {Θ,Fi,Mi} is referred

to as the user-BoE.

4.3.1 An Important Result on User-BoEs

We utilize the following important result in similarity computation stage.

Claim 1 Consider the i-th user’s user-BPA Mi (defined over the cross-product FoD

Θ) and the ratings BPAs mik, k = 1, N , each defined over the FoD Θpref . Then, the

pignistic probability of the singleton
∏N

k=1 θ
(ik) ≡ θ(i1) × · · · × θ(iN ) ∈ Θ is

Bpi

(
N∏

k=1

θ(ik)

)
=

N∏

k=1

Bpik(θ
(ik)),

where θ(ik) ∈ Θpref , j = 1, N . Here, Bpi(•) and Bpik(•) refer to user ui’s pignistic

probability distributions corresponding to its user-BoE and ratings BoEs, respectively.
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Proof: From (2.7), note that

Bpi

(
N∏

k=1

θ(ik)

)
=

∑

θ(ik)∈Ak⊆Θpref

Mi(A1 × · · · × AN)

|A1| · · · |AN |

=
∑

θ(ik)∈Ak⊆Θpref

N∏

k=1

mik(Ak)

|Ak|

=
N∏

k=1

∑

θ(ik)∈Ak⊆Θpref

mik(Ak)

|Ak|

=
N∏

k=1

Bpik(θ
(ik)).



CHAPTER 5

Similarity and Neighborhoods

We have elaborated upon the importance of computing user similarities based

on their preferences over all items. A user-BoE defines a user’s preference over all

items. Thus, we can employ a distance metric defined on the cross-product FoD

Θ (≡ ∏N
j=1 Θpref) to calculate the “distance” between two users and then use it to

identify the similarity among users. But, in general, DS theoretic models demand

extra computational power compared to other related methods. If one wish to work

on the cross-product space, computations can quickly become untractable. These

huge computational requirements — sometimes prohibitive — have to be tackled

very efficiently and carefully, making the problem at hand tractable, but still not

destroying the rich information content, a DS theoretic model provides. We proceed

as follows.

5.1 Distance Between User-BoEs

If a distance measure between two probability mass functions (p.m.f.s) is available,

via the application of the pignistic transformation in (2.7) [51], one may use it as a

distance measure between two BoEs. For our purposes, we use the distance measure

introduced recently in [58] mainly because of its numerous desirable properties. We

46
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combine these properties with the result we obtained in last chapter in Claim 1 to

obtain significant improvements over computational requirements.

Definition 11 (Distance Measure Between User-BoEs) The distance between

the two user-BPAs Mi and Mj defined over the same cross-product FoD Θ is

D(Mi,Mj) = CD(Bpi,Bpj),

where Bpi and Bpj denote the pignistic probability transformations corresponding to

Mi and Mj, respectively, and CD(•, •) refers to the Chan-Darwiche (CD) distance

measure [58]:

CD(Bpi,Bpj) = ln max
θ∈Θ

Bpj(θ)

Bpi(θ)
− ln min

θ∈Θ

Bpj(θ)

Bpi(θ)
.

We then obtain the following important result on distances measured between

user-BoEs. This result implies that one can obtain user distances by summing the

distances among individual items over all items.

Claim 2 The distance between the two user-BPAs Mi and Mj is

D(Mi,Mj) =
N∑

k=1

CD(Bpik,Bpjk),

where Bpik and Bpjk refer to the pignistic probability distributions corresponding to

the ratings BPAs of users ui and uj, respectively.



48

Proof: Consider the singleton θ = θ(`1) × · · · × θ(`N ) ≡ ∏N
k=1 θ

(`k) ∈ Θ. Use

Claim 1:

ln max
θ∈Θ

Bpj(θ)

Bpi(θ)
= ln max

`k=1,L

∏N
k=1 Bpj(θ

(`k))
∏N

k=1 Bpi(θ
(`k))

= max
`k=1,L

ln
N∏

k=1

Bpj(θ
(`k))

Bpi(θ
(`k))

= max
`k=1,L

N∑

k=1

ln
Bpj(θ

(`k))

Bpi(θ
(`k))

=
N∑

k=1

ln max
`k=1,L

Bpj(θ
(`k))

Bpi(θ
(`k))

.

Similarly, we have

ln min
θ∈Θ

Bpj(θ)

Bpi(θ)
=

N∑

k=1

ln min
`k=1,L

Bpj(θ
(`k))

Bpi(θ
(`k))

.

Therefore,

CD(Bpi,Bpj)

=
N∑

k=1

[
ln max

`k=1,L

Bpj(θ
(`k))

Bpi(θ
(`k))

− ln min
`k=1,L

Bpj(θ
(`k))

Bpi(θ
(`k))

]

=
N∑

k=1

CD(Bpik,Bpjk).

This completes the proof.

Thus, one may now use distances between user preference ratings BoEs defined

over Θpref , instead of directly computing the distance between the two user-BoEs

defined over the cross-product FoD Θ. The associated reduction in computational

overhead is from O(MC2L
N) to O(MC2LN), or by a fraction of O(LN−1/N).

Computational Complexity Reduction

Let’s compare the computational requirements for the two approaches. First, let’s

define the set, ΘBetP = {θ | θ = θ(`1) × · · · × θ(`N ), θ(`k) ∈ Θpref}. This set exhausts

all possible singletons θ, that are to be used, if one wishes to use D(Mi,Mj) =
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CD(Bpi,Bpj) approach. Here, we make a formal assumption that the pignistic

probabilities Bpj(θ) and Bpj(θ
(lk)) are readily available for all j, k, l. Moreover, we

spread-out the computational resource requirements for min, max and ln over
Bpj(•)
Bpj(•)

computations, and take that as the unit measure.

Let’s compute the distance between two user-BPAs Mi and Mj, via D(Mi,Mj) =

CD(Bpi,Bpj). In this approach, we need to evaluate ln max
θ∈ΘBetP

Bpj(θ)

Bpi(θ)
and ln min

θ∈ΘBetP

Bpj(θ)

Bpi(θ)

for all such θ ∈ ΘBetP. So, with |ΘBetP| = LN , there are LN of
Bpj(•)
Bpi(•) computations

for each user pair. Since, the distance is to be calculated for each user pair, we get

|U |C2 = MC2 possibilities, thus giving rise to a total number of MC2L
N computations.

Hence, the computational complexity for this approach is in O(MC2L
N).

Now, lets’ compute the distance via D(Mi,Mj) =
∑N

k=1 CD(Bpik,Bpjk). Thus,

there are N computations of CD(Bpik,Bpjk). Now, each such computation requires

evaluation of ln max
θ(lk)∈ΘPref

Bpj(θ
(lk))

Bpi(θ
(lk))

and ln min
θ(lk)∈ΘPref

Bpj(θ
(lk))

Bpi(θ
(lk))

for each θ(lk) ∈ Θpref , thus

with |Θpref | = L we have a total of LN computations of
Bpj(•)
Bpi(•) for each user pair. So,

for all pairs of users we get a total of MC2LN computations, hence the computational

complexity is in O(MC2LN).

Hence, the use of Claim 2 results in an optimization with an order of O(LN−1/N).

5.2 User-User Similarity

We quantify the similarity between two users via

Definition 12 (User-User Similarity) Consider a monotonically decreasing func-

tion ψ : [0,∞] 7→ [0, 1] satisfying ψ(0) = 1 and ψ(∞) = 0. Then, with respect to ψ(•),

sij = ψ(D(Mi,Mj)) is referred to as the user-user similarity between users Ui and Uj.
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For ψ(•), one may simply use ψ(x) = e−γx, where γ ∈ (0,∞) is a domain specific

constant. The M×M user-user similarity matrix is then generated as S = {sij}. This

transformation allows one to view the similarities in the conventional [0, 1] interval.

Indeed, CoFiDS uses the same similarity values for discounting neighbor rating BoEs.

5.3 User Neighborhood

As we have mentioned earlier, to overcome the weaknesses involved with KNN

strategy, CoFiDS uses K-nearest with minimum similarity thresholding technique as

proposed in [38]. In a situation, where adequate amount of rated users satisfying

given constraints can not be obtained, CoFiDS makes use of the evidence gathered

from fusing contextual information. We proceed as follows.

Definition 13 (Neighborhood Set) The neighborhood set Nbhdik of user Ui ∈

U for prediction of item Ik ∈ I is the largest set that satisfies the following: for given

paramaters τ , K and Kmin,

Nbhdik =





Nbhd(primary), if |Nbhd(primary)| < Kmin

Nbhd(secondary), otherwise

where,

Nbhd(primary) =

{
Uj ∈ R(user)

k

∣∣∣∣∣ sij ≥ max
∀Ul /∈Nbhd(primary)

{τ, sil}
}

and,

Nbhd(secondary) =

{
Uj ∈ U

∣∣∣∣∣ sij ≥ max
∀Ul /∈Nbhd(secondary)

{τ, sil}
}

with |Nbhd(primary)| ≤ K, |Nbhd(secondary)| ≤ K.

So, Nbhdik may be chosen via the following strategy:
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1. Use a similarity threshold τ , and select users from R
(user)
k — the users who

have rated item Ik, those who meet the minimum similarity threshold τ with

Ui; then

2. Apply KNN and select at most K users having the highest similarity with Ui

from this user set. Denote the resulting set as Nbhd(primary); then

3. If the number of users in Nbhd(primary) is larger than or equal to Kmin, then

choose it as Nbhdik. If not,

4. Use a similarity threshold τ , and select users from U — the total user space,

those who meet the minimum similarity threshold τ with Ui; then

5. Apply KNN and select at most K users having the highest similarity with Ui

from this user set. The resulting set — Nbhd(secondary), gives the Nbhdik.



CHAPTER 6

Prediction and Decision Making

As we have already discussed, prediction generation is the most crucial step in

any recommender system. ACF predictions are usually generated by fusing only the

evidence gathered from the neighbors. CoFiDS slightly differs in this aspect. It has

already used contextual information to populate the ratings of all users. Moreover,

CoFiDS has filled up the active user’s item on which the current prediction is to be

done as well. Thus, CoFiDS fuses this information with the gathered evidence from

neighbors to make the final prediction. We proceed as follows.

6.1 Prediction

Definition 14 CoFiDS represents the prediction of the unrated item ik of the active

user ui as the BoE r̂ik = {Θpref , F̂ik, m̂ik}, where

m̂ik = m
(Nbhd)
ik ⊕mik.

Here, m
(Nbhd)
ik is the BPA corresponding to the neighborhood prediction BoE

BoE
(Nbhd)
ik = {Θpref ,F (Nbhd)

ik ,m
(Nbhd)
ik },

where

m
(Nbhd)
ik =

⊕

∀Uj ∈Nbhdik

m
(disc)
jk ,
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with

m
(disc)
jk (A) =





sijmjk(A), for A ⊂ Θpref ;

(1− sij) + sijmjk(Θpref), for A = Θpref .

Remark. Since the similarities are captured via the user-user similarity, in Def-

inition 14 CoFiDS utilizes this similarity as a discounting factor to “discount” the

ratings BoEs of the neighbors prior to fusion. Higher the similarity of a neighbor

to active user, more weight is given to his actual rating. When, the similarity be-

tween two users degrades, DS theoretic mass is pushed towards Θpref , lowering the

contribution to fused BPA.

6.2 Decision Making

The DS theoretic ratings prediction that we get from CoFiDS provides much more

flexibility to the decision-maker that other ACF schemes may not provide. Not only

does this flexibility allow one to make a decision that better caters to the application

domain requirements, it also provides information regarding the confidence associated

with the ratings prediction.

For a “hard” decision on a singleton classification, one may use the pignistic

probability in (2.7) and pick a singleton as the preference label. If one preference

label (a singleton or a composite) is desired, one can use the maximum belief with

non-overlapping interval strategy (maxBL) [59]. This involves picking the singleton

preference label whose belief is greater than the plausibility of any other singleton; if

such a preference label does not exist, one decides in favor of the composite prefer-

ence label constituted of the singleton label that has the maximum belief and those

singletons that have a higher plausibility. The pignistic transformation may be uti-

lized to establish a rank ordering of the constituent singletons of this maxBL classifier

[35, 60].



CHAPTER 7

Evaluation Matrices

Performance evaluation has always been a problem for CF researches. With

CoFiDS providing “soft” predictions, this task has become even more difficult. Thus,

we will stick to the widely used measures. In this section, we describe how an algo-

rithm producing predictions with richer information contents, such as CoFiDS can

be evaluated and compared to other algorithms along different dimensions. Before

proceeding, recall the following notation regarding the rating that user Ui allocates

to item Ik:

7.1 Nomenclature

User ratings are allocate via the label set Θpref = {θ1, . . . , θL}. The true rating is

given by rik ∈ Θpref . Let r̂ik denote a “crisp” prediction, whereas CoFiDS prediction

is given by r̂ik. Let D(Test) denote the testing dataset.

7.2 Performance Measures for “Crisp” Databases

Here, the dataset is “crisp.” Thus, the widely used Mean Absolute Error (MAE)

[61] can be used for performance evaluation. MAE is a direct indication of how

different the true and predicted ratings are. It is defined as,

54
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Definition 15 (Mean Absolute Error for a given label θj - MAE(θj))

MAE(θj) =
1

|Dj|
∑

(i,k)∈Dj

|rik − r̂ik|, (7.1)

where

Dj =
⋃{

(i, k) ∈ D(Test)

∣∣∣∣∣ rik = θj ∈ Θpref

}
, (7.2)

where MAE(θj) is referred to as the MAE corresponding to the rating θj of the testing

set D(Test).

MAE(θj) identifies the prediction error in user-item pairs whose true rating is

θj ∈ Θpref . The overall MAE for D(Test) can be obtained as,

Definition 16 (Overall Mean Absolute Error - MAE)

MAE =
1

|D(Test)|
∑

(i,k)∈D(Test)

|rik − r̂ik| (7.3)

=
1

|D(Test)|
L∑

j=1

MAE(θj) · |Dj| (7.4)

But, note that the MAE can only be used if the predictions are “crisp.” Thus,

one can use pignistic transformation on DS-theoretic predictions to obtain “hard”

decisions in order to apply MAE. But, this transformed prediction do not contain the

richer information content, that the original belief theoretic predictor had.

Memory-based ACF algorithms are usually not viewed as a classification task.

But, if one wish to evaluate the algorithm as a classification task, traditional precision,

recall and other related measures can be used. For “soft” decisions, one can use the

DS theoretic measures DS-Precision, DS-Recall, and DS-Accuracy proposed in [35].
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Definition 17 (DS Performance Measures [35])

DS-Precision(θj) =
TP (θj)

TP (θj) + FP (θj)
; (7.5)

DS-Recall(θj) =
TP (θj)

TP (θj) + FN(θj)
; (7.6)

DS-Accuracy =

∑
θj∈Θpref

TP (θj)∑
θj∈Θpref

|Dj|
, (7.7)

where

TP (θj) =
∑

(i,k)∈Dj

B̂pik(θj);

FP (θj) =
∑

(i,k)∈D`;
j 6=`

B̂pik(θj);

FN(θj) =
∑

(i,k)∈Dj ;
j 6=`

B̂pik(θ`).

Here, B̂pik(•) refers to the pignistic probability corresponding to the DS theoretic BPA

m̂ik(•).

Inspired by these DS theoretic measures and the traditional definitions, for the

purpose at hand, we also introduce the following measures:

Definition 18 (DS−Fβ Measure)

DS−Fβ(θj) =
(β2 + 1) · DS-Precision(θj) · DS-Recall(θj)

β2 · DS-Precision(θj) + DS-Recall(θj)
(7.8)

where DS−Fβ(θj) defines the DS theoretic counterpart for Fβ measure.

Definition 19 (DS Theoretic Mean Absolute Error DS−MAE)

DS−MAE(θj) =
1

|Dj|
∑

(i,k)∈Dj ;
θ`∈Θpref

B̂pik(θ`) · |rik − rank(θ`)| (7.9)

where DS−MAE defines the DS theoretic counterpart of the MAE measure.

DS−MAE measure is capable of taking into account the mass that is assigned to

preference labels in computing the error between predicted and actual ratings.
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7.3 Performance Measures for “Soft” Databases

If the given dataset is “soft” to begin with, none of the above defined measures can

not be used. But, in this case, both given and predicted ratings are both “soft.” Thus,

one can make a comparison using a distance measure defined over belief functions.

Inspired by the work done in [62], we define the following measure.

Definition 20 (Type-1 DS Prediction Error - DS−PE1)

DS−PE1 =
1

|D(test)|
∑

(i,k)∈D(test)

BD(r̂ik, r̃ik), (7.10)

where BD(•, •) is given by,

BD( ~mi, ~mj) =

√
1

2
( ~mi − ~mj)T D ( ~mi − ~mj)

where D is a (2Θpref × 2Θpref )-dimensional matrix with d[i, j] = |A ∩ B|/|A ∪ B|, and

A,B ∈ 2Θpref with |∅ ∩ ∅|/|∅ ∪ ∅| = 0.

We define another performance measure,

Definition 21 (Type-2 DS Prediction Error - DS−PE2)

DS−PE2 =
1

|D(test)|
∑

(i,k)∈D(test)

‖Bp(r̂ik)−Bp(r̃ik)‖, (7.11)

where Bp(•) and ‖ • ‖ denote the pignistic probability distribution and the euclidean

norm respectively.

Note that both DS−PE1 and DS−PE2 is bounded both from above and below

by 1 and 0 respectively. One could use KL-Divergence instead of euclidean norm

in DS−PE2. But, in that case the error is unbounded and one has to overcome

issues that may arise from not having the identical support on predictions and actual

preferences.



CHAPTER 8

Experiments and Results

In this chapter we apply CoFiDS to a popular ACF problem of movie recommen-

dations. Our intention is to study it’s behavior on different conditions and to evaluate

and compare to existing algorithms. The behavior of the proposed simple DS model-

ing function was studied in a setup where, it was used to model the uncertainties in

a typical movie recommendation domain.

First, we apply CoFiDS to a benchmark ACF dataset, MovieLens — a movie

recommendation dataset [54] widely used by ACF researchers for validation and com-

parison purposes. Strength of CoFiDS is best illustrated on a “soft” dataset. But,

due to the unavailability of such a dataset, CoFiDS is evaluated on a synthetic dataset

which we refer to as DS−MovieLens.

8.1 Datasets

8.1.1 MovieLens

MovieLens consists of 100, 000 ratings of 943 users on 1682 movies. Ratings are

given via the integers 1 − 5, with 1 being the worst and 5 being excellent. Thus,

Θpref = {1, 2, 3, 4, 5}. In addition, MovieLens contains Genre data on all 1682

58
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movies along with other user metadata such as Age, Gender and Occupation, and

item metadata such as T itle, IMDb URL, etc.

8.1.2 DS−MovieLens

DS−Movielens is generated using MovieLens itself, thus making it identical to

original MovieLens dataset in database properties, such as number of users, number

of items, rating characteristics such as data sparsity etc. CF datasets are unique in

the sense that they carry hidden user-user, item-item and item-user relationships. We

believe that these relationships lay the foundation for ACF, and the procedure we

adopted is actually capable of preserving such relationships in the transformation of

MovieLens to DS−MovieLens. In fact, this is indirectly proven, by the fact that

the LKLD−MovieLens dataset we obtained being identical to MovieLens.

A user rating for a given movie in MovieLens can be identified as an observation

based on which, we have to deduce the actual preference. If the user has not rated a

movie, preference is completely ambiguous. If the user has actually rated it, his actual

preference may or may not be interrupted by his disposition or any other related cause

which manifests as a noise in his real preference. We utilize this fact, and employ

a partial probability model with the evidential reasoning based approach referred

to as “powerset method” in [63] to generate a “soft” dataset. Powerset method has

previously been used for generating “soft” datasets in [35].

Thus the Observed Rating in MovieLens could actually come from either user’s

actual preference or from noise in his/her rating. This is modeled via two equally

likely uniform probability distributions as shown by light and dark regions respectively

in Figures 8.1(a), 8.1(b), 8.1(c) and 8.1(d), where the dark distribution denote the

user’s actual rating, and light distribution denote his uncertainty associated with it.
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Different users or user dispositions give rise to different levels of noise in ratings.

These different user dispositions can be modeled via appropriate partial probability

distributions.
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(d) ±2 Tolerance User

Figure 8.1: Partial Probability Models used in generating DS−MovieLens.

To explain the power set approach, let us identify the gray and black distri-

butions via 0 and 1, respectively. Then, the state of nature can be considered

to be in one of 25 = 32 states. Suppose a ±1 tolerance user has allocated an

Observed Rating of 2 in MovieLens. Then, if the state of nature is {1, x, 1, x, x}

– i.e., the generating distributions are black for Actual Rating = {1, 3} and it is

either gray or black for the other ratings then the only “feasible” Actual Rating

that could have generated Observed Rating = 2 is in fact Actual Rating = 2; if
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the state of nature is {0, x, 0, x, x} – i.e., the generating distributions are gray for

Actual Rating = 2 = {1, 3} and it is either gray or black for the other ratings then

the feasible true ratings are Actual Rating = {1, 2, 3}. In this manner, one may

complete the “Feasible True Rating” column in Table 8.1.

State of Nature Feasible States MovieLens dataset

{1,2,3,4,5} Actual Rating DS PR LKLD

(1,x,1,x,x) {2} 0.4286 {1} = 0.1548

(0,x,1,x,x) (1,2) 0.2143 {2} = 0.6904 {2}
(1,x,0,x,x) (2,3) 0.2143 {3} = 0.1548

(0,x,0,x,x) (1,2,3) 0.1428

Table 8.1: Observed Rating = 2 of a ±1 user. Generating DS−MovieLens,
PR−MovieLens and LKLD−MovieLens from MovieLens

The set of feasible true ratings of any other Movielens rating corresponding to

an arbitrary user “disposition” can be obtained similarly. For more details on this

mechanism, see [35] and [63]. So, we generate DS−MovieLens as follows.

1. Observe a rating given by user ui for movie ik

2. Randomly pick one of the four models in Figure 8.1 with probability {p, (1 −

p)/3, (1− p)/3, (1− p)/3}.

3. Obtain the feasible states and evidential masses from the selected model for the

observed reading

4. Assign the read BoE as corresponding entry in DS−MovieLens. viz., rik

5. Repeat for all entries in MovieLens

8.1.3 PR−MovieLens

Probabilistic dataset of DS−MovieLens is obtained via pignistic transformation.
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8.1.4 LKLD−MovieLens

Applying the likelihood criterion to PR−MovieLens one can obtain the LKLD−MovieLens.

Due to the symmetry in the user “disposition” profiles and properties of powerset

method, LKLD−MovieLens dataset turns out to be identical to MovieLens dataset.

This indeed verifies our initial contention of preserving the user-user, item-item and

user-item relationships in the MovieLens, when generating the soft dataset.

8.2 Other ACF algorithms for Comparison

For comparison purposes, we re-implemented the following ACF algorithms as

well:

CORR : This refers to the correlation-based ACF algorithm in [38]. These results

were taken as the baseline since it can be considered the most widely used and

well known ACF system.

NA : This refers to the recent ACF strategy proposed by Nakamura and Abe in

[16]. They suggest three variants based on user-user and item-item similarities,

and a combination of the two; we refer to these as u−NA, i−NA, and c−NA

respectively. These algorithms attracted our attention because they enable one

to accommodate the ignorance inherent in user ratings. Indeed, the results in

[16] demonstrate a significant improvement over correlation-based methods.

We apply CoFiDS, CORR and NA to MovieLens. But, one cannot directly

apply either CORR or NA to DS−MovieLens. If one wishes to apply the widely

used CORR to such a dataset, the trivial approach is to obtain a crisp dataset via

pignistic transformation first, and then apply the algorithms to the crisp “ratings.”

Thus, for comparison purposes we obtain such a “crisp” ratings as follows.
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1. Pick the corresponding entry in PR−MovieLens. Then,

2. Weigh each rating θ` ∈ Θpref by it’s probability

3. Sum the weighted ratings to obtain the “crisp” value, which is in general a

non-integer.

CORR is then applied to those “crisp” ratings for comparison with CoFiDS. But,

on the other hand, NA requires the ratings to be integer valued. Generating an integer

valued dataset from a “soft” dataset severely damages the information content. Thus,

we do not test NA on DS−MovieLens.

8.3 User Preference Modeling

8.3.1 Experiments on “Crisp” Dataset

DS Modeling Function

We have extensively tested CoFiDS using the S-DS modeling function in Defi-

nition 5. The model parameters — trust factors and dispersion factors — were all

set to be system-wide constants to reduce extra computational cost and due to the

unavailability of relevant supplementary information. Thus, we have {αik, σik} ≡

{α, σ}, ∀i, k throughout all experiments.

Group Preference BoE

The only concept we consider for generating item-based contextual information is

the Genre information. The other concepts one may consider are Cast and Director

(both item-based concepts), Age (a user-based concept), etc.
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Recalling the nomenclature and the development in Section 4.2.2, for Genre in-

formation, we identify the following:

Concept:=Genre;

Groups :={Genre.Group1, . . . Genre.GroupQ}, (8.1)

where the concept groups could be Drama, Thrillers, Romance, etc.

For generating the group preference BoEs, we capture how movies belonging to

a particular genre would, as a whole, be rated by a given user Ui. One can design a

movie recommender system where users are allowed to express their genre preferences

explicitly. These then can be captured via a DS theoretic model. With no such

information available in MovieLens, we used Definition 6 with those movies that

have already been rated by user Ui to estimate the genre preferences. No discounting

was incorporated.

Concept Preference BoE

We followed Definition 7 with no discounting.

Contextual Preference BoE

We followed Definition 8 with no discounting. Note that, if additional concepts

are being utilized, not all concepts may contribute equally to user preferences. For

example, the concept Director may contribute differently than the concept Cast.

These difference should be accommodated via discounting.

8.3.2 Experiment on “Soft” Dataset

We simply take the given ratings as the user preference BoE without additional

modeling. i.e. The DS modeling function is simply an identity map. Genre informa-

tion was used as in the above case.
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8.4 Experimental Technique

We employed the experimental technique suggested in [38] to generate the training

and testing datasets for both experiments:

• Testing Set: 10% of users were randomly selected; for each user in this set, ratings

for 5 randomly selected movies were withheld. These user-item pairs constituted the

testing set.

• Training Set: The remaining user-item pairs constituted the training set.

This process was repeated 10 times thus yielding 10 splits of MovieLens, viz.,

the testing sets D
(Test)
` and training sets D

(Train)
` = MovieLens \D(Test)

` (or D
(Train)
` =

DS−MovieLens \ D(Test)
` for DS−MovieLens), for ` = 1, 10. These datasets were

generated prior to conducting the experiments and the same 10 splits were used

throughout the entire process of experiments. Results provided are the averaged

values for all the 10 datasets. For determining user-user similarity, we used γ = 10−4

throughout the experiments.

8.5 Comparison

8.5.1 Comparison on “Crisp Dataset”

For a fair comparison, we interpret (a) CoFiDS predictions as “hard,” (b) retain

them as “soft” and interpret the CORR and NA predictions as “soft.” We use Over-

all MAE (and DS-MAE in (b)) as the main comparison criterion and tune all the

algorithms (refer Section 7) on that.

Interpreting CoFiDS Predictions as “Hard” Decisions

We used the pignistic transformation to generate “hard” decisions from the CoFiDS

predictions. For a movie recommendation scenario, one is particularly interested in
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precision as well. e.g. what fraction of total predictions are accurate ?. Thus, We also

compared the algorithms via Precision.

Retaining CoFiDS Predictions as “Soft” Decisions

The predictions of CORR are not necessarily integer-valued. Hence, to interpret

a CORR prediction r̂ik as a “soft” decision, we allocated the following DS theoretic

BPA:

m̂ik(A) =





dr̂ik − r̂ik; for A = br̂ik when r̂ik 6∈ Θpref ;

r̂ik − br̂ik; for A = dr̂ik when r̂ik 6∈ Θpref ;

1, for A = r̂ik when r̂ik ∈ Θpref ;

0, otherwise.

(8.2)

where br̂ik and dr̂ik denote the highest integer ratings not more than and the lowest

integer rating not less than the CORR prediction r̂ik, respectively.

As an example, suppose the ratings belong to Θpref = {1, 2, 3, 4, 5}. We interpret

a CORR prediction of 3.3 as the “Bayesian” statement, “The rating is 3 with 70%

confidence, and it is 4 with 30% confidence;” (8.2) corresponds well with this typical

interpretation of a CORR prediction.

It is difficult to interpret the NA predictions as “soft” because they are necessarily

integer-valued. Therefore, NA predictions were not included in this comparison. Now

that all predictions are in “soft” form and “actual ratings” are “crisp” one can use

the proposed DS-MAE measure and other measures in [35].

8.5.2 Comparison on DS−MovieLens

Here the actual preferences are “soft” information. Thus, we use the measure

DS−PE1 as the main criterion for performance evaluation. CoFiDS predictions are

indeed “soft,” but CORR predictions are not. Thus we convert the CORR predic-
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tions to “soft” via the model in Definition 8.2. Again, we show the comparison on

pignistic probability transformed predictions via DS−PE2. We observe that CoFiDS

outperforms CORR in this case as well.

8.6 Results

8.6.1 Experiments on MovieLens

Interpreting CoFiDS Predictions as “Hard” Decisions

A
lg

or
it

h
m Overall

MAE

True Rating Mean

Metric 1 2 3 4 5 ±Var%

C
oF

iD
S MAE 2.0080 1.2506 0.6383 0.2443 1.0504 0.7374

Precision 0.6364 0.2731 0.3576 0.4113 0.6827 ±0.13%

Recall 0.0254 0.1215 0.3675 0.7736 0.0696

F1 0.0488 0.1682 0.3625 0.5371 0.1263

C
O

R
R

MAE 1.8143 1.2370 0.8220 0.6144 0.9020 0.8725

Precision 0.2957 0.2211 0.3158 0.3994 0.4158 ±0.45%

Recall 0.1283 0.2038 0.3254 0.4800 0.3442

F1 0.1789 0.2121 0.3205 0.4360 0.3766

u
-N

A

MAE 2.0217 1.2094 0.6450 0.3418 1.1071 0.7838

Precision 0.0000 0.2632 0.3428 0.3953 0.3962 ±0.25%

Recall 0.0000 0.1740 0.3710 0.6902 0.0548

F1 0.0000 0.2095 0.3563 0.5027 0.0963

i-
N

A

MAE 2.1776 1.5170 0.8259 0.4995 0.8641 0.8783

Precision 0.0000 0.1691 0.3627 0.3849 0.3373 ±0.18%

Recall 0.0000 0.1187 0.3179 0.5464 0.3048

F1 0.0000 0.1395 0.3388 0.4516 0.3202

c-
N

A

MAE 1.9485 1.2514 0.7233 0.4745 0.9248 0.8115

Precision 0.0000 0.2435 0.3589 0.4000 0.3863 ±0.10%

Recall 0.0000 0.1938 0.3676 0.5717 0.2506

F1 0.0000 0.2158 0.3632 0.4707 0.3040

Table 8.2: Performance Comparison with “Hard” Decisions

Table 8.2 compares CoFiDS with CORR and NA using four performance measures;

the last column depicts the overall MAE along with its variance (as a percentage). For
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each ACF algorithm, the configuration that yields the best overall MAE was used for

the comparison carried out in Table 8.2 [61]. For CoFiDS, we used {α, σ} = {0.9, 2/3}.

Remark. Coverage, which measures the percentage of items for which the recom-

mendation system can make predictions, tends to be lower for CORR when it is tuned

for a lower MAE; both NA and CoFiDS however provide almost 100% coverage. So,

for a fairer comparison, for CORR, we used a configuration that minimizes MAE

while having a 90% level of coverage.

Bold values in Table 8.2 indicate the best performance measures in each cate-

gory. Even with the rather simple DS modeling function and the coarse system-wide

parameters, CoFiDS shows a significant improvement over CORR and NA. Bear in

mind that this is in spite of the fact that conversion to a “hard” decision cannot

exploit the full strength of the DS theoretic basis of CoFiDS.
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Figure 8.2: Variation of MAE of CoFiDS with dispersion factor σ for several combi-
nations of {K, τ}. Here, CoFiDS α = 0.9.

With α = 0.9, which corresponds to a 90% trust for each user rating, Fig. 8.2

depicts the variation of MAE of CoFiDS with the dispersion factor σ for several

combinations of {K, τ}.
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One is particularly interested on the “Effect of Neighborhood Size and Similarity

Threshold” on performance. Thus, with all other parameters held constant, Figure 8.3

and Figure 8.4 shows the variation of MAE of CoFiDS with neighborhood size K and

similarity threshold τ respectively.
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Figure 8.3: Variation of MAE of CoFiDS with neighborhood size K.
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Figure 8.4: Variation of MAE of CoFiDS with similarity threshold τ .

Retaining CoFiDS Predictions as “Soft” Decisions

Here we compare the algorithms DS theoretic versions of the performance mea-

sures. Table 8.3 compares CoFiDS with CORR using the DS theoretic versions of
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A
lg

or
it

h
m

Overall

DS True Rating MAE

-Metric 1 2 3 4 5 Mean

C
oF

iD
S MAE 2.0119 1.2892 0.6570 0.2581 1.0590 0.7567

Precision 0.5302 0.2773 0.3427 0.4030 0.6210

Recall 0.0353 0.1129 0.3529 0.7595 0.0660

F1 0.0661 0.1605 0.3478 0.5266 0.1192

C
O

R
R

MAE 1.8109 1.2537 0.8581 0.6544 0.8907 0.8951

Precision 0.2861 0.2110 0.3083 0.3994 0.3941

Recall 0.1618 0.2009 0.3128 0.4471 0.3678

F1 0.2067 0.2059 0.3105 0.4219 0.3805

Table 8.3: Performance Comparison with “Soft” Decisions

the performance measures that were used in Table 8.2. For each ACF algorithm,

the configuration that yields the best overall DS-MAE was used for the comparison

carried out in Table 8.3. We continued to use same {α, σ} pairs. Again, bold values

in Table 8.3 indicate the best performance measures in each category.
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Figure 8.5: Variation of DS-MAE of CoFiDS with neighborhood size K.

The effects of neighborhood size and similarity threshold on performance are

drawn in Figure 8.5 and Figure 8.6 respectively.
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Figure 8.6: Variation of DS-MAE of CoFiDS with similarity threshold τ .

8.6.2 Evaluations on DS −MovieLens

User actual ratings are “soft” in the DS−MovieLens dataset. Thus, the perfor-

mance comparison is done based on the DS−PE1 and DS−PE2 as in 20 and 21.

A
lg

or
it

h
m

Zero tolerance user selection probability p

Metric 0.1 0.3 0.5 0.7 0.9

C
oF

iD
S

DS-PE1 0.4498 0.4903 0.5220 0.5496 0.5566

DS-PE2 0.5657 0.6265 0.6818 0.7361 0.7669

C
O

R
R

DS-PE1 0.5513 0.5779 0.5804 0.5906 0.6125

DS-PE2 0.6946 0.7529 0.7740 0.8060 0.8550

Table 8.4: Performance Comparison on DS−MovieLens

CORR predictions were converted back to “soft” form via 8.2. The comparison

is carried out in Table 8.4 for several different values of p — probability with which

the zero tolerance user was selected; the other 3 user profiles were selected with equal

probability.

Figures 8.7 and 8.8 show plots of variations of DS−PE1 and DS−PE2 of CoFiDS
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Figure 8.7: CoFiDS with {α, σ} = {0.9, 2/3}: DS−PE1 versus p.

and CORR with the zero tolerance user selection probability p respectively. Error

in CORR is always higher than that of CoFiDS, even though both of them follow a

similar trend.
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Figure 8.8: CoFiDS with {α, σ} = {0.9, 2/3}: DS−PE2 versus p.
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Figure 8.9 shows how DS−PE1 varies with the changing neighborhood size K.

Here p = 0.1 is fixed at 0.1. This is typical for a “Error Vs K” plot, where the

error decreases with increasing neighborhood size and then at a certain point it starts

increasing again.
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Figure 8.9: CoFiDS with {α, σ} = {0.9, 2/3}: DS-PE1 versus K when p = 0.1.



CHAPTER 9

Conclusion and Future Research

9.1 Conclusion

Most of the information systems in existence today are based on the assumption

that the information is perfect. These methods are not capable of accurately modeling

and working with imperfect, real-world data. This has resulted in technologies that

possess elegant models but do not represent reality and produce unreliable outputs.

DS theory has been in the focus of many researchers working in different disci-

plines, and it has proven to produce better and reliable results in critical and im-

portant applications when in the presence of data imperfections. Few attempts have

been made to apply DS theory to information systems for representing various types

of data imperfections in rule mining and classification problems.

The most important contribution of the work presented in this thesis is to intro-

duce DS theoretic notions for use in recommender systems, in particular, for ACF. We

utilized a DS theoretic data model that allows one to accommodate imperfections and

then propagate these throughout the decision-making process, thus producing more

reliable decisions. We have shown how different user preferences could be captured

via simple DS theoretic models.

74



75

In the last two decades, ACF has gained a tremendous significance among other

competing recommender systems as one of the most successful recommendation strate-

gies. ACF has been applied to various problem domains, especially to e-commerce

applications. The nature of ACF, difficulties in evaluating and understanding the

generated predictions, and lack of proper methods for working with imperfect data,

have indeed restricted these algorithms to much simpler and low-risk application do-

mains. On the other hand, the ACF’s strength of being able to work with extremely

sparse, different types of information, make it an ideal candidate for critical and sen-

sitive applications, such as medical expert support systems, homeland security and

surveillance etc. However, before ACF’s utility in such applications, it is imperative

that techniques are put in place that enable ACF to perform in the presence of various

types of data imperfections that are inherent in most sensitive applications.

The ACF algorithm presented in this thesis, CoFiDS, has the ability to conve-

niently represent a wide variety of data imperfections, such as probabilistic uncer-

tainties, qualitative aspects of evidence, evidence ambiguities, missing information,

etc., using DS theoretic notions. Apart from the convenience it offers in representa-

tion, DS theoretic models are better in capturing partial or incomplete knowledge,

and are more robust against modeling errors. These models are based on a solid

mathematical foundation. Moreover, CoFiDS being able to provide “soft” predic-

tions, enables the end-user to make decisions with full recognition and understanding

of the reliability of the generated predictions. Thus, the work we present here widens

the applicability of ACF, and make it possible to apply ACF to critical and sensitive

domains with confidence.

In ACF, most of the existing algorithms use only co-rated items (or users) for

comparing users (or items). This approach has the weakness of generating similarities

based on a small subset of total items (or users) space, thus has a risk of generating
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misleading neighbors. In most of these application domains, contextual information is

available which can be very useful in improving predictions. Indeed, there are various

algorithms making separate predictions using these information and combining them

at a latter stage with ACF predictions. But, we have proposed a unified method to

fuse contextual information from the very outset and integrate them into the same

ACF framework. This method is more consistent and allows the ACF algorithm to

make use of extra information to identify neighbors with improved accuracy.

Even though the use of DS theoretic notions allow significant improvements, such

as ability to work with imperfections, robustness against modeling errors and “trans-

parent predictions;” it requires extensive computational requirements. These are

prohibitively large when one works on the cross-product space, especially with the

larger dimensional datasets used in ACF. Thus, in our similarity computation stage

— where we have to work on cross-product space, the user-BoEs are compared after

projecting them to probability space. We have obtained significant computational

complexity reductions via this conversion along with an attractive distance metric

defined for probability mass functions.

ACF performance evaluations have always been a subtle issue due to weaknesses in

existing measures, and various other reasons related to recommendations. Now that

the proposed method output being in “soft” format, this problem is further compli-

cated. There are no other ACF algorithms providing predictions as belief functions,

neither in a “soft” format. So, no direct comparisons are possible. So, we took

different directions for comparison with existing algorithms, by transforming “soft”

predictions to “crisp” and vice versa. We have proposed new basic measures to be

used with algorithms such CoFiDS, providing rich predictions. Method presented

in this thesis was extensively tested on a benchmark dataset comparing to existing

popular algorithms. There are no benchmark “soft” datasets in use by ACF commu-
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nity. So, we have created a synthetic dataset using popular and widely used powerset

method, for evaluation of CoFiDS on a pure “soft” data domain. On all these dat-

sets, CoFiDS outperforms correlation based method [38] and the method proposed

by Nakamura and Abe [16].

9.2 Future Research

ACF is being used extensively in e-commerce applications today. Thus, most of

the current work is mainly focused on improving performance in existing algorithms

and new application development related to these areas. Even though, there has

been few attempts in different directions, less attention has been paid on how to

accommodate and handle imperfections that could potentially improve the quality

of the recommendation process. On the other hand, research in uncertainty reason-

ing domain has shown significant progress with the development of many tools and

methodologies to represent and manipulate imperfections in information. But there

have been only a few attempts to couple reasoning under the presence of imperfection

to information systems.

This lack of methodologies and datasets have hindered our ability for a fair com-

parison of CoFiDS to existing algorithms. This ignorance has manifested as, no de-

veloped or accepted measures for comparison of ACF algorithms capable of producing

predictions with such richer information contents. Development of such meaningful

measures for comparison of CF predictions, is an important research problem to be

undertaken.

CoFiDS uses DRC for evidence combination. Some critics have shown that DCR

has some profound weaknesses when combining BoEs with conflicting evidence. Even

though CoFiDS combines only users that have been found to be similar, there can be

instances where such a combination of conflicting evidences occur. This combination
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of evidence of neighbors with conflicting evidence, is another important area for ACF

research, especially in the presence of data imperfections. In particular, CoFiDS has

to be extensively checked using different combination rules proposed in DS literature.

Existing recommenders only allow users to rate the items via a crisp rating space.

Now, with more advanced ACF algorithms such as CoFiDS, one can model more

richer user preferences for accurate and improved predictions. Thus, the development

of sophisticated but user-friendly interfaces allowing users to indicate their actual

preference, would be a good research topic to be undertaken.

CoFiDS predictions are in “soft” format. This allows the end-user to make the

final decision him/herself, with the full recognition of reliability of it’s outputs. But,

a commercial recommender system should provide a user-friendly interface. Showing

the resulting mass structure to the end-users will not be the ideal method one should

undertake. Thus, methodologies should be developed for interpreting the resulting

mass structures and presenting them in a more user-friendly, easy to understand

manner, especially if one wish to apply these technologies to domain where end-users

are not very competent in evidence theory.
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