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Abstract

This dissertation focuses on the optimum design of spectral efficient green wireless communica-

tions. Energy efficiency (EE), which is defined as the inverse of average energy required to successfully

deliver one information bit from a source to its destination, and spectral efficiency (SE), which is

defined as the average data rate per unit bandwidth, are two fundamental performance metrics of

wireless communication systems. We study the optimum designs of a wide range of practical wireless

communication systems that can either maximize EE, or SE, or achieve a balanced tradeoff between

the two metrics. There are three objectives in this dissertation. First, an accurate frame error

rate (FER) expression is developed for practical coded wireless communication systems operating in

quasi-static Rayleigh fading channels. The new FER expression enables the accurate modeling of

EE and SE for various wireless communication systems. Second, the optimum designs of automatic

repeat request (ARQ) and hybrid ARQ (HARQ) systems are performed to by using the EE and SE

as design metrics. Specifically, a new metric of normalized EE, which is defined as the EE normal-

ized by the SE, is proposed to achieve a balanced tradeoff between the EE and SE. Third, a robust

frequency-domain on-off accumulative transmission (OOAT) scheme has been developed to achieve

collision-tolerant media access control (CT-MAC) in a wireless network. The proposed frequency

domain OOAT scheme can improve the SE and EE by allowing multiple users to transmit simulta-

neously over the same frequency bands, and the signal collisions at the receiver can be resolved by

using signal processing techniques in the physical layer.
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Chapter 1

Introduction

1.1 Background and Motivation

Energy efficiency (EE) and spectral efficiency (SE) are two most important metrics in wireless com-

munications. EE can be defined as the inverse of average energy required to successfully deliver one

information bit from a source to its destination. With the help of EE, the average energy consump-

tion to successfully transmit a information bit can be quantified. SE can be defined as the average

data rate per unit bandwidth. It quantifies how efficient the precious spectrum is utilized to transmit

information.

Improving SE is always an important goal when developing wireless communication techniques,

designing wireless system, and deploying wireless networks. Based on several important factors, in

United States (US), the Federal Communications Commission (FCC) and the National Telecommu-

nications and Information Administration (NTIA) administers the spectrum for different types of

applications. Because the transmitted signal power in wireless communication degrades at least with

square of the transmission distance, the upper spectrum is often limited, currently with 275 GHz [1].

In addition, for wireless communications, the antenna size is directly determined by the inverse of

carrier frequency. Therefore, the limitation of antenna size confines the lower spectrum, which is

currently 9 KHz [1]. Even the total spectrum resource is limited, they are divided into a lot of much

smaller pieces for different types of applications, such as radio channel, television channel, satellite

channel, and mobile channel, etc. Nowadays, with growing strong needs of wireless communications,
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the spectrum resource is crowded. However, with the limited spectrum resource, high quality-of-

service (QoS) is whereas desired to be achieved; for instance, with Wideband Code Division Multiple

Access (WCDMA), the channel access is with 5 MHz band, but several users with high quality of

voice or video transmissions are desired to be supported. Therefore, SE is important and always a

critical metric to designing communication systems.

Besides the SE, EE is gained more and more attention in wireless communications nowadays.

One of the reasons is the large global greenhouse gas (GHG) emissions caused by global information

and communication technology (ICT). It is estimated that there will be 2.3% of global GHG emitted

by global ICT in 2020, and the number will be even increased later [2]. Specifically, we can know

how huge of GHG emitted to the air from the respective of cellular towers, which is only a part of

global ICT. It shows currently there are more than 5 million towers worldwide to provide cellular

commercial network access services [2]. To provide the power to these towers, there are more than 78

Mtons of carbon dioxide emitted to the air [2]. Improving EE is an effective way to reduce the global

GHG caused by ICT. In this way, improving EE can be seen as a type of green communications,

which is energy-sustainable, resource-saving, and environment-friendly. Another important reason

to improve EE is to increase the life time of wireless access applications where power sources are

limited, such as the mobile terminals, wireless sensor network (WSN), and satellite communications,

etc.

With both needs of large EE and SE; however, EE and SE constructs the most fundamental

trade-off in wireless communications. To achieve high SE, it often requires high Eb/N0, where Eb is

the energy per bit and N0 is noise power spectral density which can be treated as a constant for a

designed receiver. Since high Eb means high energy consumption then low EE, therefore, high SE is

often achieved with low EE, and vice versa. It constructs the most fundamental tradeoff in wireless
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communications. It arises some very interesting questions that how can we quantify this relationship

of EE and SE for various communication systems, also how can we achieve the balanced tradeoff

between the two metrics. We define the balanced tradeoff point between EE and SE as “With a

process of largely increase SE by just sacrificing little EE, SE cannot be increased largely any more

by only sacrificing little EE”. After the balanced tradeoff point, SE can only be achieved by sacrificing

large EE.

Bit error rate (BER) and frame error rate (FER) are two metrics in physical layer to evaluate

end-to-end performances of communication systems. It is intuitive that BER and FER can facilitate

the analysis of EE and SE; however, FER is more appropriate, since it quantifies the probability

that a packet can be successfully transmitted or not, which matches well with the definitions of

EE and SE. When formulating EE and SE, it requires the bit is successfully transmitted, which

implies the packet is transmitted successfully, since in practical protocols, only the packet with all

correct recovered bits is seen as a success transmission. For a packet, even there are plenty of bits

are correctly transmitted, the packet is always directly discarded or saved for possible potential use

with the retransmissions of the same packet, when there are some bits are wrong, since it is difficult

to determine the locations of the error bits. The entire packet rather than the error bits had to be

retransmitted again. It then arises a very interesting question that how can the FER be modelled

to facilitate the communication system performance analysis and cross-layer design. It is very hard,

even not impossible, to model the FER for general coded system, where there are practical channel

coding schemes employed in the wireless communications. There are many papers talked about the

FER for coded system; however, either the model is only fit for a specialized coding scheme [3] or

some parameters need to be re-evaluated each time if any system parameter is changed [4]– [6],

such as packet length, modulation scheme, or coding rate, etc. The system parameters adaptation
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however widely utilized in the cross-layer design to fit for different requirement of QoS with varied

wireless channel environments. The general FER model for different combinations of frame length,

modulation scheme, and coding scheme remain open but urgently needed.

With a general FER model, the EE and SE can be directly expressed as a function of several

system parameters. EE and SE can then be individually optimized. Due to the tradeoff between EE

and SE, the optimization scheme of EE and SE could be very different. Therefore, how to effectively

obtain the balanced tradeoff point between EE and SE, for practical systems, where expressions of

EE and SE could be very complex? This is exactly what we are going to explore in this dissertation.

Besides the analysis of EE and SE, we should also resort to techniques to improve EE and SE

simultaneously, since they share some commons. For instance, to improve EE, we want to reduce

the energy consumption to successfully transmit a bit. Therefore, if interferences from other sources,

such as multi-user interference and co-channel interference, can be reduced, the energy required for

a bit can also be reduced, thus EE is increased. Besides, for a packet, if the first transmission is

failed, we should utilize the received packet for further detection, rather than directly discard it. By

exploiting every received packet, the energy required for retransmission of the packet can be reduced,

also the number of retransmission times of the packet. Therefore, less energy will be needed for

the total energy consumption to successfully transmit the packet, EE can then be increased. The

techniques to reduce interferences and exploiting every received packet can also reduce the transmis-

sion time to successfully transmit a bit with unit bandwidth, thus increasing the SE. Therefore, for

a wireless network, it would be very interesting to design transmission techniques, powerful digital

signal processing (DSP) detections, and multi-user coordination techniques to improve both EE and

SE.
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1.2 Objectives

The objectives of this dissertation are summarized here.

I. Building the general FER system model for various coded system, considering practical system

parameters, such as the frame length, modulation schemes, and coding rate, etc. Besides the

single-input single-output (SISO) system, the FER model for the receiver diversity systems

are also derived, considering there exists several retransmissions of a packet in practise with

maximum ration combining (MRC).

II. With the built FER system model, the EE of automatic repeat-request (ARQ) system and

hybrid ARQ system are formulated and analyzed. For ARQ system, the packet length and

transmission power are jointly optimized to maximize EE. For HARQ system, the transmission

power in each round to retransmit a packet is optimized to maximize EE.

III. Similar with the analysis of EE for ARQ system and HARQ system, the SE are also maximized

for the two systems. After analysing both EE and SE for the two systems, the balanced tradeoff

between EE and SE are then analyzed.

IV. Besides the performance analysis of practical wireless communication systems, a radio resource

management scheme is also proposed to improve both network EE and network SE, by coordi-

nating the frequency resources to each node, also powerful DSP detection techniques.

1.3 Dissertation Outline

The outline of the rest of the dissertation is given as follows.

Chapter 2: In this chapter, a new FER approximation is proposed for wireless communication

systems with receiver diversity and independent but non-identically distributed (i.n.d.) diversity
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branches. Receiver diversity exists in many practical systems, such as single-input multiple-output

(SIMO) systems [21], multi-node relay systems [22], and hybrid ARQ systems [23], where the receiver

can coherently combine multiple copies of the transmitted message. Signals at different diversity

branches usually experience non-identically distributed fading due to the effects of pathloss and

differences in transmission power. The statistical properties of the SNR for receiver diversity systems

undergoing i.n.d. quasi-static Rayleigh fading are derived with the help of the moment generating

function (MGF). The results are used to develop the FER approximation with the threshold-based

method.

Different from existing threshold-based methods that need to calculate a new threshold value for

each frame length, the proposed FER analysis models the threshold value as a linear function of the

frame length in the log-domain, with the slope and intercept of the linear function determined by

the modulation and coding schemes. It is discovered that the threshold value is independent of the

actual fading distributions or the number of diversity branches. Enabled by the log-domain linear

threshold modelling, the new FER is expressed as an explicit function of various parameters related to

modulation, coding, frame length, SNR, number of diversity branches, and power distribution across

the diversity branches. Such a parametric FER approximation summarizes the complex operations

in the PHY layer into a few adjustable design parameters, and this is especially useful for cross-layer

designs where joint optimization can be performed by flexibly adjusting the PHY layer parameters

based on the FER requirement of upper layer protocols. It should be noted that none of the existing

FER approximations provide such parametric flexibility that is essential for cross-layer designs. The

newly proposed FER approximation is general enough to include many previous works as special

cases, and simulation results demonstrate that the analytical FER approximation can accurately

predict the performance of a wide range of practical wireless communication systems.
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Chapter 3: In this chapter and our extended work [19], we studied the optimum energy- and

spectral-efficient designs of type-I ARQ systems, where a package is retransmitted if it cannot be

recovered at the receiver. Although many varieties of ARQ and HARQ systems exist that offer

different tradeoffs between the performance and complexity [12,13,17,18,24], type-I ARQ has a wide

range of applications due to its simplicity that is especially important for low cost and low energy

communication systems. Three optimization schemes are considered for type-I ARQ in flat fading

channels: the first scheme aims to minimize the energy per information bit Et, which is the energy

required to successfully deliver one information bit from a transmitter to a receiver; the second

scheme minimizes the normalized energy per information bit Em = Et
ηs

, where ηs is the SE in bps/Hz;

and the third scheme minimizes Et under the constraint of a minimum SE, ηs ≥ ηth, with ηth being

a constant threshold. The first scheme minimizes the overall energy consumption at the cost of the

SE. The second metric Em can be minimized by either reducing Et or increasing ηs, thus providing

one possible tradeoff between EE and SE. The third optimization scheme allows us to flexibly adjust

the EE-SE tradeoff based on specific system requirements, and it includes the Et or Em minimization

as special cases.

The optimum designs are performed by jointly optimizing the transmission energy in the PHY

layer and the frame length in the MAC layer. The system designs incorporate a large number of

practical system parameters, such as the efficiency of the power amplifier, the power consumption

of digital hardware, data rate, coding and modulation, frame length and protocol overhead, frame

error rate (FER), and frame retransmission, etc. To quantify the impacts of transmission energy

and frame length, a new log-domain threshold approximation to FER in Rayleigh fading channels is

proposed, which enables explicit analytical solutions to the three optimization schemes.
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Another important contribution in this chapter is that the fundamental EE-SE tradeoff for type-

I ARQ systems are identified through theoretical analysis of the third optimization scheme. The

result corroborates that the minimum energy per information bit, which is inversely proportional

to the EE, is quasiconvex in the SE, or equivalently, the EE is quasiconcave in the SE. This result

agrees with the EE-SE tradeoff relationship presented in [15] for the downlink OFDMA system. Due

to the quasiconvexity, the Et–ηs curve can be divided into two regions, one with a negative slope

and the other one with a positive slope. The operation parameters corresponding to the negative

slope region of the Et–ηs curve are not desirable for practical operations, because there always exist

parameters that can outperform any point in this region in terms of both EE and SE. The non-

negative slope region of the Et–ηs curve reveals the fundamental EE-SE tradeoff in ARQ systems.

It provides a general optimization framework that enables us to obtain optimum system designs by

flexibly adjusting the EE-SE tradeoffs based on the various requirements of practical systems.

Chapter 4: In this chapter, we studied the optimum transmission of coded HARQ systems with

Chase combining, where the signals from all transmission attempts of the same packet are combined

coherently at the receiver during the detection process. The optimum design is performed by iden-

tifying the optimum energy distribution, i.e., the sequence of transmission energy that should be

used at different transmission attempts, such that the overall energy required to successfully deliver

a bit from a source to its destination is minimized. A large number of practical system parameters,

such as the efficiency of the energy amplifier, the energy consumption of digital hardware, data rate,

modulation and coding schemes, frame length, FER, and the protocol overhead, etc., are considered

during the design. With the help of a new backward sequential method, the optimum transmission

energy is expressed as closed-form expressions of all the practical system parameters. Both simula-

tion and analytical results demonstrate that the proposed energy efficient system design can achieve
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significant energy savings over conventional systems.

Chapter 5: In this chapter, we proposed a new frequency-domain on-off accumulative transmission

(OOAT) scheme that achieves collision-tolerant MAC with MUD in the PHY layer. The proposed

scheme is extended from a time-domain OOAT scheme in our previous work [25], which can only

operate in frequency-flat fading. In the frequency-domain OOAT, the channel is divided into multiple

orthogonal sub-channels with the help of OFDM. Different from conventional OFDM, each symbol

is transmitted over multiple sub-channels in our scheme. Consequently, the proposed scheme can

not only deal with frequency-selectivity of wideband wireless channels as OFDM, but also exploit

frequency diversity since each symbol is spread to several sub-channels.

The frequency-domain OOAT scheme converts the relative transmission delays among the users in

the time domain into phase shifts in the frequency domain, such that the sub-channels from different

users are perfectly aligned. This allows us to carefully plan the on-off patterns employed by different

users to minimize the number of users colliding on each sub-channel. Based on the OOAT signal

structure, optimum and sub-optimum MUDs are proposed, and an analytical matched filter bound

is derived to quantify the performance of the proposed scheme.

Chapter 6: Conclusion remarks are drawn in this chapter. The major contributions of this

dissertation are summarized and some future research topics are listed.
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Chapter 2

An Accurate Frame Error Rate Approximation of Coded Diversity Systems with

Non-identical Diversity Branches

Gang Wang, Jingxian Wu, and Yahong Rosa Zheng

2.1 Abstract

This paper presents an accurate approximation of the frame error rate (FER) of coded wireless

communication systems with receiver diversity, such as single-input multiple-output (SIMO) sys-

tems with maximum ratio combining (MRC) or hybrid automatic repeat request (HARQ) systems

with Chase combining. The signals at different diversity branches experience independent but non-

identically distributed Rayleigh fading. The FER approximation is obtained with a threshold-based

method. Specifically, the threshold value, which is critical to the FER approximation accuracy, is

modeled as a linear function of the frame length in the log-domain, with the slope and intercept

of the linear function determined by the underlying modulation and channel coding schemes. The

analytical FER approximation is expressed as an explicit function of parameters related to modu-

lation, coding, frame length, number of diversity branches, and the power distribution across the

diversity branches. Such an FER approximation summarizes the complex physical layer operations

into a few parameters, and it provides the parametric flexibility that is not available in most existing

FER approximations. Simulation results show that the proposed FER approximation can accurately

predict the FER performance of a wide range of receiver diversity systems.
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2.2 Introduction

Bit error rate (BER) and frame error rate (FER) are two important metrics used to measure the

quality of service (QoS) of communication systems. BER provides a measurement of the end-to-end

communication quality in the physical (PHY) layer. FER is also a PHY layer metric, but it can be

used to facilitate the design across multiple protocol layers in a wireless network. For example, a

frame error after PHY layer channel decoding can be detected with cyclic redundancy check (CRC)

or parity check in the media access control layer (MAC), and frames with unrecoverable errors will

be retransmitted if automatic repeat request (ARQ) is employed. The knowledge of the FER at

the upper layers can thus greatly facilitate the design of wireless networks, especially for cross-layer

designs that aim to improve the system performance by jointly optimizing the system parameters

across two or more protocol layers [1] and [13].

Recently there are growing interests in FER analysis for wireless communication systems due to

the increasing importance of cross-layer designs. It is extremely difficult, if not impossible, to obtain

the exact analytical FER expression, especially for coded systems. Therefore almost all the works in

the literature focus on the analytical approximations of the actual FER. In [3], an FER approximation

is provided for systems with low-density parity-check (LDPC) codes over binary symmetric channel

(BSC) by enumerating a large number of error patterns. A threshold-based FER approximation

for a system with quasi-static Rayleigh fading is proposed in [4]. The threshold-based method is

developed by using an assumption that the FER in an additive white Gaussian noise (AWGN)

channel can be approximated by either 1 or 0 depending on whether the signal-to-noise ratio (SNR)

is less than or greater than a waterfall threshold. The results in [4] are extended to diversity systems

with independent and identically distributed (i.i.d.) Rayleigh fading channels in [5] and to 2-hop

relay networks with incremental hybrid relay selection in [6]. The FER approximations in [4]– [6]

15



are semi-analytical in that the threshold values of coded systems need to be evaluated through FER

simulations in AWGN channels. None of the above FER approximations can explicitly quantify many

important design parameters, such as frame length, modulation, coding, and the diversity orders,

etc.

In this paper, a new FER approximation is proposed for wireless communication systems with re-

ceiver diversity and independent but non-identically distributed (i.n.d.) diversity branches. Receiver

diversity exists in many practical systems, such as single-input multiple-output (SIMO) systems [7],

multi-node relay systems [8], and hybrid ARQ systems [9], where the receiver can coherently combine

multiple copies of the transmitted message. Signals at different diversity branches usually experi-

ence non-identically distributed fading due to the effects of pathloss and differences in transmission

power. The statistical properties of the SNR for receiver diversity systems undergoing i.n.d. quasi-

static Rayleigh fading are derived with the help of the moment generating function (MGF). The

results are used to develop the FER approximation with the threshold-based method.

Different from existing threshold-based methods that need to calculate a new threshold value for

each frame length, the proposed FER analysis models the threshold value as a linear function of the

frame length in the log-domain, with the slope and intercept of the linear function determined by

the modulation and coding schemes. It is discovered that the threshold value is independent of the

actual fading distributions or the number of diversity branches. Enabled by the log-domain linear

threshold modelling, the new FER is expressed as an explicit function of various parameters related to

modulation, coding, frame length, SNR, number of diversity branches, and power distribution across

the diversity branches. Such a parametric FER approximation summarizes the complex operations

in the PHY layer into a few adjustable design parameters, and this is especially useful for cross-layer

designs where joint optimization can be performed by flexibly adjusting the PHY layer parameters
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based on the FER requirement of upper layer protocols. It should be noted that none of the existing

FER approximations provide such parametric flexibility that is essential for cross-layer designs. The

newly proposed FER approximation is general enough to include many previous works as special

cases, and simulation results demonstrate that the analytical FER approximation can accurately

predict the performance of a wide range of practical wireless communication systems.

2.3 System Model

Consider a wireless communication system with receiver diversity. The receiver has N copies of the

transmitted signal, each goes through i.n.d. Rayleigh fading.

At the transmitter, the binary information bits are divided into frames with L bits per frame.

The bits are encoded with a rate-r channel code, and the coded bits are modulated with M -ary

modulation. The number of symbols per frames is thus Ks = L
r log2M

, where L is chosen in a way

such that Ks is an integer. Denote a frame as x = [x1, · · · , xKs ]
T ∈ SKs×1, where S is the modulation

alphabet set, and AT denote the transpose of the matrix A.

The signals are transmitted through anN -branch diversity channel, with each branch experiencing

i.n.d. Rayleigh fading. The N -dimensional equivalent discrete-time signals observed at the receiver

is

yk = hxk + zk, for k = 1, · · · , Ks (2.1)

where yk = [yk(1), · · · , yk(N)]T ∈ CN×1 is the received signal vector corresponding to the k-th

transmitted symbol in a frame, zk = [zk(1), · · · , zk(N)]T ∈ CN×1 is the additive white Gaussian noise

vector with zero mean and correlation matrix N0IN , with IN being a size-N identity matrix, and

h = [h(1), · · · , h(N)] ∈ CN×1 are the fading coefficient vector. The channel fading is assumed to be

quasi-static, i.e., it is constant within one frame, but changes from frame to frame.
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For a system experiencing Rayleigh fading, h is a zero-mean complex Gaussian distributed random

vector with the auto-covariance matrix being a diagonal matrix as Rh = diag([σ2
1, · · · , σ2

N ]
T ) ∈ RN×N .

The fading coefficients are normalized to unit energy with trace(Rh) =
∑N

n=1 σ
2
n = 1.

The receiver performs maximal ratio combining (MRC) over the signals. The decision variable

for the k-th symbol at the output of the MRC is

αk = hHyk = hHhxk + hHzk. (2.2)

The equivalent signal-to-noise ratio (SNR) at the output of the MRC detector is thus

γ = r log2Mγ0 · hHh = γ0μM
·
N∑
n=1

|h(n)|2, (2.3)

where μ
M

= r log2M is related to the coding rate and modulation level, γ0 = Eb

N0
with Eb being the

energy per uncoded information bit. Since {h(n)}Nn=1 are not identically distributed, γ cannot be

modelled as a χ2 distributed random variable. The statistical properties of the SNR will be discussed

in the next Section.

2.4 FER Analysis

In this section, an accurate threshold-based approximation of the FER for a system with receiver

diversity and i.n.d Rayleigh fading channel is derived with the help of the statistical properties of

the SNR at the receiver.

2.4.1 Statistical Properties of the Receiver SNR

The probability density function (pdf) of the SNR, γ, is derived in this section with the help of its

MGF.

Define γn = γ0μM
|h(n)|2 as the SNR on the n-th branch. Since h(n) is a zero-mean complex
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Gaussian random variable with variance σ2
n, the MGF of γn can be written as

Φn(s) = E [exp(−sγn)] = 1

1 + sλn
, (2.4)

where λn = μ
M
γ0σ

2
n.

Based on the assumption of independence among γn, the MGF of γ at the output of the MRC

detector, Φ(s) = E [exp(−sγ)], can be written as

Φ(s) =
N∏
n=1

1

1 + sλn
. (2.5)

Even though the channel experiences i.n.d. fading, a subset of the fading coefficients might share

the same variance. Without loss of generality, assume there are V ≤ N distinct values of λn. Divide

the index set, N = {1, · · · , N}, into V subsets, Nv ⊆ N , for v = 1, · · · , V , such that λm = λn if

and only if m,n are in the same subset. Denote the cardinality of the v-th subset as nv, and define

λ̄v = λm, ∀m ∈ Nv.

Based on the subset notation given above, the MGF can be alternatively represented by

Φ(s) =
V∏
v=1

1(
1 + sλ̄v

)nv
. (2.6)

Performing partial fraction expansion over Φ(s) given in (2.6) yields

Φ(s) =
V∑
v=1

nv−1∑
q=0

β
(v)
q

q!

λ̄−qv
(1 + sλ̄v)nv−q , (2.7)

where β(v)
q is

β(v)
q =

∂q

∂sq

[
V∏

k=1,k �=v

1

(1 + sλ̄k)nk

]∣∣∣∣∣
s=−λ̄−1

v

. (2.8)

The pdf of γ can then be obtained by performing the inverse Laplace transform over (2.7), and

the result is

fγ(x) =
V∑
v=1

nv−1∑
q=0

β
(v)
q

q!

xnv−q−1

λ̄nv
v

exp
(
− x
λ̄v

)
Γ(nv − q)

, (2.9)
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where Γ(a) =
∫∞
0
ta−1e−tdt is the Gamma function.

The cumulative distribution function (CDF) of the SNR, Fγ(x) =
∫ x
0
fγ(u)du, is then

Fγ(x) =
V∑
v=1

nv−1∑
q=0

β
(v)
q

q!

λ̄−qv
Γ(nv − q)

ψ

(
nv − q,

x

λ̄v

)
, (2.10)

where ψ(s, x) is low incomplete gamma function with ψ(s, x) =
∫ x
0
ts−1e−tdt.

2.4.2 Threshold-based FER Approximation

The exact FER of a receiver diversity system experiencing i.n.d quasi-static Rayleigh fading channel

can be expressed as

FER =

∫ +∞

0

FERG(γ)× fγ(x)dx, (2.11)

where FERG(γ) is the FER for a system operating in an AWGN channel with SNR γ. The exact

evaluation of FER requires the knowledge of FERG(γ), which depends on a number of factors, such as

modulation, coding, and frame length, etc. For most practical systems, FERG(γ) eludes an analytical

expression because of the complex channel coding employed in the system.

An accurate approximation of the FER can be obtained by using a threshold-based method [4],

which was originally designed for a single-input and single-output system with quasi-static Rayleigh

fading. The basic idea of the threshold-based method is that there exists a threshold γω, such that

FERG(γ) � 1 when γ ≤ γω and FERG(γ) � 0 when γ > γω. With the threshold γω, the FER of a

diversity receiver with i.n.d. quasi-static Rayleigh fading can be approximated by

FER =

∫ γω

0

FERG(γ)×fγ(x)dx+
∫ +∞

γω

FERG(γ)×fγ(x)dx

�
∫ γω

0

fγ(x)dx. (2.12)

Combining (2.10) and (2.12) yields

FER �
V∑
v=1

nv−1∑
q=0

β
(v)
q

q!

λ̄−qv
Γ(nv − q)

ψ

(
nv − q,

γω
λ̄v

)
, (2.13)
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which is the CDF of the instantaneous SNR γ evaluated at the threshold γω. The value of γω is

critical to the evaluation of the FER. The calculation of γω for different modulation and coding

schemes is discussed in the next subsection.

We next consider three special cases: 1) σ2
i �= σ2

j , ∀i �= j; 2) σ2
1 = · · · = σ2

N ; and 3) N = 1.

2.4.2.1 σ2
i �= σ2

j , ∀i �= j

This corresponds to the special case that no two channels share the same power. This case is quite

common in practical systems. For example, in an HARQ system with Chase combining, the energy

used at each retransmission round is usually different from the others in order to minimize the overall

energy consumption [9]– [10]. In a SIMO system, the distances between the transmit antenna to the

various receive antennas are usually different, which introduces different SNR at different channels.

In this case, V = N , nv = 1, and λ̄n = λn, for v = 1, · · · , N . With unique SNR on each diversity

branch, the MGF in (2.7) can be simplified to

Φ(s) =
N∑
n=1

(
N∏

k=1,k �=n

λn
λn − λk

)
1

1 + sλn
. (2.14)

The pdf of γ can then be obtained by performing the inverse Laplace transform of Φ(s) over

(2.14), and the result is

fγ(x) =
N∑
n=1

(
N∏

k=1,k �=n

λn
λn − λk

)
1

λn
exp

(
− x

λn

)
. (2.15)

The threshold-based FER approximation can then be obtained by combining (2.12) and (2.15),

and the result is

FER �
N∑
n=1

(
N∏

k=1,k �=n

λn
λn − λk

)[
1− exp

(
−γω
λn

)]
. (2.16)
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2.4.2.2 σ2
1 = · · · = σ2

N = 1
N

This corresponds to the case that the N diversity branches are i.i.d., which is a common assumption

used in many SIMO systems, such as in [5] and [11]. In this case, V = 1, nv = N , and denote λ = λn

for n = 1, 2, · · · , N . The pdf can then be written as

fγ(x) =
xN−1

Γ(N)λN
exp

(
−x
λ

)
. (2.17)

The SNR follows a χ2 distribution with 2N -degree of freedom.

The threshold-based FER approximation can then be obtained by combining (2.12) and (2.17),

FER �
∫ γω

0

xN−1

Γ(N)λN
exp

(
−x
λ

)
dx, (2.18)

which simplifies to the result in [5].

2.4.2.3 N = 1

This corresponds to a non-diversity system. The FER approximation can be directly obtained by

setting N = 1 in (2.18), and the result is

FER �
∫ γω

0

1

λ
exp

(
−x
λ

)
dx = 1− exp

(
−γω
λ

)
, (2.19)

which matches the result in [4].

2.4.3 A Log-Domain Linear Approximation of the Threshold

The threshold, γω, depends on a number of factors, such as the frame length, the modulation scheme,

and the channel coding employed at the receiver. In [4], the value of γω is evaluated by integrating

over the difference between the exact and approximated FERs, and then force the integral to be zero.

The result is expressed as [4, eqn. (20)]

γω =

(∫ ∞

0

FERG(γ)

γ2
dγ

)−1

. (2.20)
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For practical systems with channel code, the result in (2.20) usually needs to be evaluated through

simulations because there is no analytical expression of FERG(γ) for such systems. Therefore the

change in any system parameter other than the average SNR will require a revaluation of γω. There-

fore, it does not build an explicit relationship between γω and the various system design parameters,

and such relationship is usually critical for the design and optimization of practical systems.

In this subsection, a log-domain linear approximation of the threshold is proposed to build an

explicit connection between FER and the various system parameters. To gain insights about the

value of γω, simulations are performed to obtain the simulated FER under different combinations

of modulation, channel coding, frame length, diversity order, and channel power distributions. The

value of γω is then optimized by matching the approximate FER in (2.13) to the simulated FER with

the least squares (LS) method.

Fig. 2.1 shows the values of γω as a function of the log-domain frame length, logL, for systems

with different combinations of modulations and channel codings. There are N = 4 i.n.d. Rayleigh

fading branches, with the ratio of the channel variance being σ2
1 : σ2

2 : σ2
3 : σ2

4 = 1 : 3 : 5 : 7, or,

σ2
n = 2n−1

N2 , which satisfies
∑N

n=1 σ
2
n = 1. The modulation schemes are QPSK, 16QAM, and 64QAM,

respectively. Code 1 is a popular convolutional code with coding rate r = 1
2
, generator polynomial

[171, 133]8, and a constraint length 7, commonly utilized in space communications; code 2 is a

convolutional code with coding rate r = 1
3
, generator polynomial [557, 663, 711]8, and a constraint

length 9, which is adopted in wideband code division multiple access (W-CDMA) standard. For

both codes, soft Viterbi decoding are used. From the figure, it is interesting to note that γω can be

accurately approximated as a linear function of logL, with the slope and intercept determined by

the different modulation and coding scheme.
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Figure 2.1: γω for different combination of modulation scheme, coding scheme, and frame length.

Therefore, we propose to model γω as

γω � k
M
logL+ b

M
, (2.21)

where k
M

and b
M

are the slope and intercept determined by the modulation scheme and the actual

channel code. The values of k
M

and b
M

can be obtained by applying the LS curve fitting to the

results in Fig. 2.1. In additional to the convolutional codes shown in Fig. 2.1, we also evaluated the

FER of systems with turbo codes and low-density parity check (LDPC) codes, and observed a similar

trend. The k
M

and b
M

for various coding and modulation combinations are given in Table 2.1. The

turbo code is a rate r = 1
3

code with generator polynomials [1, 5/7, 5/7]8 and a block interleaver. The

turbo decode is performed with six iterations [13]. The LDPC code is a variable coding rate irregular

code with maximum iteration decoding number set to 20 [17]. The frame length of the LDPC code

is less than 3819 bits during the evaluation.

The results in Fig. 2.1 are obtained for systems with N = 4 i.n.d. fading branches. More
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Table 2.1: k
M

and b
M

in (2.21)
QPSK 16QAM 64QAM

k
M

b
M

k
M

b
M

k
M

b
M

Code 1 0.209 0.207 0.372 0.170 0.667 -0.131
Code 2 0.169 0.180 0.270 0.140 0.462 -0.122

Turbo Code 0.053 0.836 0.087 1.191 0.164 1.590
LDPC Code 0.331 0.025 0.849 -0.800 2.414 -4.168

simulations are performed for systems with different number of diversity branches and different fading

power distributions. The simulation results indicate that the number of fading branch, N , and the

power distribution have negligible effects on γω. That is, the slope and intercept of the log-domain

linear approximation of γω is independent of N and the power distributions among the branches,

and they depend only on the modulation and channel coding. As an example, the values of γω are

calculated for six different systems and the results are given in Table 2.2. The modulation is QPSK

and the channel code is code 1. The number of diversity branches are N = 1, 3, 6, respectively. There

are two different power distributions of the fading branches. The fading variances in distributions 1

and 2 satisfy σ2
n = 1

N
and σ2

n = 2n−1
N2 , respectively, for n = 1, · · · , N . The values of γω in Table 2.2 are

obtained through LS curve fitting between the analytical FER approximation and the simulated FER

under the various system configurations. A frame length of L = 1, 000 is used for the calculations.

It is clear that there is only a slight variation (less than 0.18%) in the values of γω across the six

different system configurations. The slight change in value is mainly caused by the limited numerical

precision used in the calculations.

The independence of γω on N and power distribution can be intuitively explained by the mecha-

nism behind the threshold-based FER approximation. The value of γω is chosen such that FERG(γ) �

1 when γ ≤ γω and FERG(γ) � 0 otherwise. Therefore, the value of γω mainly depends on the shape

of FERG(γ) obtained in the AWGN channel, and it is independent of the actual SNR distribution
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Table 2.2: The value of γω in a QPSK modulated system with code 1.
N = 1 N = 3 N = 6

Distribution 1 1.670 1.669 1.670
Distribution 2 1.670 1.667 1.667

fγ(x). As a result, the values of γω is independent of the underlying fading distribution as shown in

Table 2.2.

Combining (2.13) and (2.21) yields an accurate approximation of the FER in i.n.d. Rayleigh

fading channel as

FER �
V∑
v=1

nv−1∑
q=0

β
(v)
q

q!

λ̄−qv
Γ(nv−q) ψ

(
nv−q, kM

logL+b
M

λ̄v

)
. (2.22)

In (2.22), the FER is expressed as an explicit function of various system parameters, such as the

number of branches N =
∑V

v=1 nv, the value of λn = r log2(M)γ0σ
2
n that is related to coding rate,

modulation level, and fading power distribution, the frame length L, and the values of k
M

and b
M

,

which are determined by the combination of modulation and coding used in the system.

2.5 Numerical Results

Simulation results are provided in this section to validate the newly proposed FER approximation,

and to study the impacts of various system parameters on the FER performance.

Fig. 2.2 studies the impacts of fading power distribution on the FER for systems with N = 4.

The channel code is code 1. The frame length is L = 4, 000 bits for all systems. Power distributions 1

and 2 are the same as those in Table 2.2. The fading variances in power distribution 3 satisfy σ2
1 : σ2

2 :

σ3
3 : σ2

4 = 1 : 5 : 10 : 20. The analytical FER approximations from (2.22) are compared to the FER

obtained from Monte Carlo simulations, and they agree very well for all system configurations. Equal

power distribution results in the best performance, and the FER degrades as the energy difference

becomes larger. The diversity gain in a communication system can be measured by
∏N

n=1 σ
2
n. Based
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Figure 2.2: FER comparison of 3 distributions with N = 4.

on the geometric mean-arithmetic mean inequality, we have
∏N

n=1 σ
2
n ≤

∏N
n=1

1
N

under the constraint

∑N
n=1 σ

2
n = 1, and the equality is achieved when σ2

n = 1
N

. Therefore, the system with equal power on

all branches has the highest diversity gain, thus the best FER performance.

Next, the FER performance for systems with different numbers of diversity branches is compared,

and the results are shown in Fig. 2.3. The modulation scheme is QPSK, channel code is code 1, and

the channel variances satisfy σ2
n = 2n

N(N+1)
, for n = 1, · · · , N . All other parameters are the same as

in Fig. 2.2. Excellent agreement is observed between the analytical and simulation results for all

cases. As expected, the FER improves as N increases due to higher diversity orders. At FER = 10−2,

increasing N from 1 to 2 or from 2 to 4 yields a performance gain of 8 dB and 4.5 dB, respectively.

In Fig. 2.4, the analytical FER is shown as a function of L in the log domain. There are N = 4

branches with power distribution 2. The channel code is code 1. The average Eb/N0 is 10 dB. It

is shown that the FER increases monotonically with L, for all three modulation schemes. Given
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constraints on FER and L, we can easily choose the modulation scheme that will meet the design

requirements by using the results in Fig. 2.4.

2.6 Conclusions

An accurate FER approximation was proposed for wireless communication systems with receiver

diversity and i.n.d quasi-static Rayleigh fading. The FER approximation was obtained with a

threshold-based method, with the threshold value modelled as a linear function of the frame length

in the log domain. The analytical FER approximation was expressed as an explicit function of a

large number of system parameters related to modulation, channel code, frame length, the number

of diversity branches, and power distribution of the diversity branches. The parametric FER rep-

resentation allows the flexible design and optimization of a wide range of practical communication

systems, such as SIMO systems with MRC and HARQ systems with Chase combining. Simulation

28



102 103 10410−3

10−2

10−1

100

Frame length L (bits)

Fr
am

e 
er

ro
r r

at
e

QPSK with Code 1
16QAM with Code 1
64QAM with Code 1

Figure 2.4: FER comparison of MQAM and Code 1 with N = 4 at Eb/N0 = 10 dB.

results demonstrated that the proposed FER approximation can accurately predict the actual FER

performance.
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Chapter 3

Cross-Layer Design of Energy Efficient Coded ARQ Systems

Gang Wang, Jingxian Wu, and Yahong Rosa Zheng

3.1 Abstract

The energy efficient design of coded automatic-repeat-request (ARQ) systems is studied in this paper.

The optimization aims to minimize the energy required for the successfully delivery of one information

bit from a transmitter to a receiver. The design is performed by incorporating a wide range of

practical system parameters and metrics, such as hardware power consumption, modulation, channel

coding, and frame error rate (FER) in the physical layer, and frame length and protocol overhead

in the media access control layer. A new log-domain threshold approximation method is proposed

to analytically quantify the impacts of the various system parameters on the FER, and the results

are used to facilitate the system design. The optimum transmission energy and frame length that

minimize the energy per information bit are identified in closed-form expressions as functions of the

various practical system parameters. The analytical and simulation results demonstrate that the

total energy consumption in a coded ARQ system can be reduced by increasing the transmission

energy during one transmission attempt, and significant energy saving as high as 9.5 dB is achieved

with the optimum system.

3.2 Introduction

Energy efficient communication can extend the battery life of communication terminals, reduce the

energy cost, and make the communication process more environmental friendly.

A large number of energy efficient communication techniques have been developed in the physical
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(PHY) layer [1] and [2] and the media access control (MAC) layer [3]– [7]. Most PHY layer energy

efficient communication techniques are developed by exploiting the trade-off between power efficiency

and spectral efficiency through various coding, modulation, and signal processing techniques [1]

and [2]. In the MAC layer, the energy consumption can be reduced in a number of ways, such as

decreasing the transmission duty cycle [3] and [4], carefully scheduling the transmissions to reduce

or avoid collisions [5] and [6], or power controls [7], etc.

Most schemes are developed by following the traditional layered-protocol design approach, and

they do not directly take advantage of the interactions among the protocol layers that might be critical

to energy efficient communications [8]. A cross-layer power-rate-distortion framework is proposed

in [9] by considering the trade-off among source distortion, data rate, and hardware complexity, but

with an assumption of error-free channel. A PHY/MAC cross-layer design is considered in [10],

where the optimum power assignment for the hybrid automatic-repeat-request (H-ARQ) technique

in fading channel is studied to reduce the total average power consumption. The optimization in [10]

is performed under the constraint of a targeted outage probability, and it does not consider the effects

of practical system parameters such as overhead, modulation, data rate, and bit error rate (BER),

etc.

In this paper, we propose a new optimum design of practical ARQ systems to minimize the energy

required to successfully deliver an information bit from a transmitter to a receiver through a Rayleigh

fading channel. The optimization incorporates a large number of practical system parameters that

cover the operations in the hardware, the PHY layer, and the MAC layer, such as the efficiency of the

power amplifier, the power consumption of digital hardware, data rate, modulation, frame length,

frame error rate (FER), and the protocol overhead, etc.

The system design is performed by jointly optimizing the transmission energy in the PHY layer
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and the frame length in the MAC layer. For a system employing ARQ, a lower transmission energy

does not necessarily mean less total energy consumption, because it might increase the number of

retransmissions, thus the total energy required to successfully deliver a frame. On the other hand,

increasing the transmission energy beyond its optimum operation point will result in a waste of the

energy resource. Similarly, a longer frame usually means a higher FER, yet a shorter frame has poor

overhead efficiency. To quantify the impacts of transmission energy and frame length, a new log-

domain threshold approximation is proposed to build an explicit analytical relationship between the

FER and the design parameters. The optimum transmission energy and frame length are expressed

as closed-form expressions of the various practical system parameters. The analytical and simulation

results demonstrate that significant energy savings are achieved through the optimization.

3.3 System Model

Consider a transmitter and a receiver separately by a distance d. The information bits at the

transmitter are divided into frames. Each frame has L uncoded information bits and L0 overhead

bits. The information bits and overhead bits from the transmitter are encoded with a channel

encoder with code rate r. For a system employing M-QAM, the number of symbols in each frame is

Ls =
L+L0

r log2M
, where L is chosen in a way such that Ls is an integer.

The m-th symbol observed at the receiver is

ym =
√
Erhmxm + zm, for m = 1, 2, · · · , Ls, (3.1)

where Er is the average energy of a symbol at the receiver, xm ∈ S is the m-th modulated symbol

transmitted, S is the modulation constellation set with the cardinality M = |S|, ym, hm, and zm

are the received sample, the fading coefficient between the transmitter and the receiver, and additive

white Gaussian noise (AWGN) with single-sided power spectral densityN0, respectively. It is assumed

36



that the system undergoes quasi-static Rayleigh fading, such that the fading coefficient is constant

within one frame, and changes from frame to frame.

Define the average Eb/N0 of an uncoded information bit at the receiver as

γb �
Eb
N0

=
Er

rN0 log2M
. (3.2)

For a transmitter and receiver pair separated by a distance d, the average transmission energy

for each symbol at the transmitter can be modelled as [1]

Es = ErG1d
κMl, (3.3)

where κ is the path-loss exponent, G1 is the gain factor (including path-loss and antenna gain) at

a unit distance, and Ml is the link margin compensating the hardware process variations and other

additive background noise or interference.

In addition to the actual transmission energy, we also need to consider the circuit energy per

symbol that can be modelled as [1],

Ec =

(
ξ
M

η
− 1

)
Es +

β

Rs

, (3.4)

where Rs =
1
Ts

is the gross symbol rate, η is the drain efficiency of the power amplifier, ξ
M

is the peak-

to-average power ratio (PAPR) of an M -ary modulation signal, β incorporates the effects of baseband

processing, such as signal processing, encoding and modulation. For M-ary quadrature amplitude

modulated (MQAM) systems with square constellations, ξ
M
� 3(

√
M − 1√

M
+ 1) for M ≥ 4 [11].

From (3.2), (3.3), and (3.4), the energy required to transmit one information bit during one

transmission attempt is

E0 =
Ls
L
(Es + Ec) =

L+ L0

L

γbξMN0Gd

η
+

β

Rb

, (3.5)

where Gd = G1d
κMl, and Rb =

L
Ls
Rs is the net bit rate of the uncoded information bit.
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Due to the effects of channel fading and noise, the receiver might not be able to successfully recover

the transmitted signal. The probability that a transmitted frame cannot be recovered equals to FER,

which is a function of the γb at the receiver, the frame length Ls, the modulation level M , and the

channel code. The packet will be retransmitted if the transmitter receive a negative acknowledgement

(NACK). Since the retransmissions are independent, the number of retransmissions is a geometric

random variable with the parameter FER. The average number of retransmissions is thus

Λ =
1

1− FER
. (3.6)

The total energy required to successfully deliver an information bit from the transmitter to the

receiver can then be calculated by Et = ΛE0, which can be expanded by combining (3.5) and (3.6)

as

Et =
1

1− FER

[
L+ L0

L

γbξMN0Gd

η
+

β

Rb

]
. (3.7)

The total energy per information bit Et relies on a number of system parameters, including Eb/N0

at the receiver γb, the number of information bits L and the number of overhead bits L0 per frame,

the modulation level M , the net data rate Rb, and the FER that inherently depends on all the above

parameters and the code rate r, etc.

The value of γb has two opposite effects on Et. On one hand, FER is a decreasing function in

γb. Therefore, increasing γb will decrease the average number of retransmissions Λ, thus reduce Et.

On the other hand, E0 is a strictly increasing function in γb, thus it translates a positive relationship

between γb and Et.

A similar observation can also be obtained for the relationship between Et and L. Λ translates

a positive relationship between Et and L because FER is an increasing function in L for a given

channel code and modulation scheme, whereas E0 is a decreasing function in L.
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Therefore, it is critical to identify the optimum values of γb and L that can achieve minimal

energy per information bit.

3.4 Optimum System Design

The optimum system design that can minimize Et under the constraints of fixed M , Rb and L0 are

studied in this section.

3.4.1 FER with a Log-Domain Linear Threshold Approximation

In this subsection, an accurate approximation of the FER of coded systems in quasi-static Rayleigh

fading is obtained with the threshold-based method originally presented in [12]. Furthermore, we

propose a new log-domain linear approximation method for the calculation of the threshold value

required for the FER approximation. The threshold-based method with the newly proposed log-

domain linear approximation explicitly build a connection between the FER and the various system

parameters.

With the threshold-based method [12], the FER of a coded system in a quasi-static Rayleigh

fading channel can be accurately approximated by

FER � 1− exp

(
−γω
γb

)
, (3.8)

where γω is a threshold value that can be calculated as

γω =

[∫ ∞

0

1− FERG(γ)

γ2
dγ

]−1

, (3.9)

where FERG(γ) is the FER in an AWGN channel.

Fig. 3.1 shows γω as a function of L + L0 under various modulation schemes. The channel code

is a rate r = 1
2

convolutional code with the generator polynomial [5, 7]8 and constraint length 3. It is
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observed from the figure that γω can be modelled as a linear function of log(L+ L0), with the slope

and intercept determined by the different modulation schemes. Similar linear relationships are also

observed for other channel codes. Therefore, we propose to model γω as

γω � k
M
log(L+ L0) + b

M
, (3.10)

where k
M

and b
M

are the slope and intercept determined by the modulation scheme and the actual

channel code. The value of k
M

and b
M

can be estimated by performing the least squares (LS) method

on the results in Fig. 3.1. For the M = 4, we have k4 = 0.3744 and b4 = −0.31.

Combining (3.8) and (3.10) leads to a new FER approximation

FER � 1− (L+ L0)
− k

M
γb exp

(
−bM
γb

)
. (3.11)

Fig. 3.2 compares the actual FER obtained through simulation with the corresponding analytical

approximation by using (3.11), under different values of L + L0, for systems with M = 4. The

convolutional code is the same as the one used in Fig. 3.1. Excellent agreements are observed

between the actual simulation results and their analytical approximations. Therefore, the analytical

expressions in (3.8) and (3.10) give a very accurate approximation of the actual FER.

3.4.2 Optimum γb

The optimum value of γb at the receiver that minimizes Et is studied in this subsection.

Before proceeding to the actual optimization, we present the following theorem about convexity,

which will be used in identifying the optimum system parameters.

Theorem 1 : Consider a decreasing function f(x) and an increasing function g(x). If both f(x)

and g(x) are convex, then f(x)g(x) is convex.
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Figure 3.1: γω as a function of L+ L0

Proof: Consider 0 < x1 < x2 and α ∈ [0, 1]. Define θ1 = αf(x1)g(x1) + (1− α)f(x2)g(x2), and

θ2 = f(αx1 + (1 − α)x2)g(αx1 + (1 − α)x2). Since f(x) and g(x) are convex, we have θ2 ≥ θ3 with

θ3 defined as

θ3 = [αf(x1) + (1− α)f(x2)][αg(x1) + (1− α)g(x2)] (3.12)

Since θ1 = θ1(1− α + α), the term θ1 can be alternatively represented as

θ1 = α2f(x1)g(x1) + (1− α)2f(x2)g(x2) + α(1− α) [f(x1)g(x1) + f(x2)g(x2)] (3.13)

From (3.12) and (3.13), we have

θ3 − θ1
α(1− α)

= [f(x1)− f(x2)][g(x2)− g(x1)] ≥ 0. (3.14)

Therefore θ2 ≥ θ3 ≥ θ1, and this completes the proof.

We can prove that Λ in (3.6) is a decreasing function in γb, and it is convex in γb by showing that

∂2Λ
∂γ2b

≥ 0, and details are omitted here for brevity. It is straightforward to show that E0 in (3.5) is
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Figure 3.2: Comparison of the simulation FER with the analytical approximation in (3.11).

an increasing and convex function in γb. Therefore, based on the results in Theorem 1, we have the

following corollary about the convexity of Et = ΛE0.

Corollary 1 : For the FER given in (3.11), the total energy per information bit, Et, in (3.7) is

convex in γb. �

Once we establish the convexity of Et in γb, the optimum γb can be solved as stated in the

following corollary.

Corollary 2 : In a quasi-static Rayleigh fading channel, if the FER is given in (3.11), then the

optimum γb that minimizes Et is

γ̂b =
1

2

(
γω +

√
γ2ω + 4γω

B

A

L

L+ L0

)
(3.15)

where A =
ξ
M
N0Gd

η
, and B = β

Rb
.
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Proof: Since Et is convex in γb, the optimum γb that minimize Et can be obtained by solving

∂En

∂γb
= 0, which yields

γ2b − γωγb − γω
B

A

L

L+ L0

= 0 (3.16)

The result in (3.15) can be obtained by solving (3.16).

It should be mentioned here that the optimum γb is the average Eb/N0 at the receiver. Corre-

spondingly, the optimum energy per symbol required at the transmitter is

Ês = γ̂b ×N0 × r × log2M ×Gd, (3.17)

where γ̂b is the optimum value calculated from (3.15).

3.4.3 Optimum L

The optimum number of information bits L that minimizes Et is studied in this subsection.

Similar to the results in Corollary 2, the optimum solution of L relies on the convexity of Et.

However, the direct proof of the convexity of Et with respect to L is quite tedious. To simplify

analysis, we can show that Et is convex in ξ = log(L+ L0).

We can prove that 1) Λ in (3.6) is an increasing and convex function in ξ; and 2) E0 in (3.5) is

a decreasing and convex function in ξ, and details are omitted here for brevity. Therefore, based on

Theorem 1, we have the following corollary regarding the convexity of Et with respect to ξ.

Corollary 3 : For the FER given in (3.11), the total energy per information bit Et in (3.7) is

convex in ξ = log(L+ L0). �

Based on the convexity of Et in L, the optimum L is stated as follows.
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Corollary 4 : In a quasi-static Rayleigh fading channel, if the FER is given in (3.11), then the

optimum L that minimize Et satisfies the following equality

L̂ =

√
A2(k

M
+ γb)2 + 4Ak

M
B − A(k

M
− γb)

2k
M
(Aγb + B)

γbL0 (3.18)

where A =
ξ
M
N0Gd

η
, and B = β

Rb
.

Proof: The optimum L is obtained by solving ∂En

∂ξ
= 0, which yields

k
M
(Aγb +B)L2 + AγbL0 (kM

− γb)L− Aγ2bL
2
0 = 0 (3.19)

The result in (3.18) can be obtained by solving (3.19).

It is worth pointing out that even though the result in Corollary 4 is obtained through ∂En

∂ξ
= 0,

it is exactly the same as solving ∂En

∂L
= 0 because ∂ξ

∂L
= 1

L+L0
�= 0.

3.4.4 Joint Optimum γb and L

In (3.15) and (3.18), the optimum value of γb is expressed as a function of L and vice versa. The

global optimum operation point can be achieved by jointly optimizing γb and L.

Since Et is convex in both γb and L, the joint optimum values can be obtained by treating (3.15)

and (3.18) as a system of two equations with two variables in γb and L. The analytical results are

very tedious and are omitted here for brevity.

Alternatively, the joint optimum values of γb and L can be efficiently calculated by iteratively

invoking (3.15) and (3.18). Given an initial value L, we can calculate the optimum γb by using

(3.15), the output of which is then used to update the value of L with (3.18). This procedure can be

performed iteratively, and it will converge to the joint optimum value of γb and L that achieves the

global minimum energy consumption.
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Table 3.1: Simulation Parameters
L0 48 bits

Bit Rate 300 kbps
η 0.35
β 310.014 mw

N0/2 -174 dBm/Hz
G1 30 dB
κ 3.5
Ml 40 dB
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Figure 3.3: Energy per information bit Et v.s. γb at the receiver.

3.5 Numerical Results

Numerical results are presented in this section. The simulation parameters are summarized in Table

3.1.

Fig. 3.3 shows Et as a function of γb, with various values of L + L0. The distance is d = 100

m. The optimum values of γ̂b for different L calculated from (3.15) are marked on the figure as the

optimum operation points. It can be seen from the figure that Et is a convex function in γb. The
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Figure 3.4: Energy per information bit Et v.s. number of bits per frame L+ L0.

optimum operation points obtained from the analytical results match perfectly with the simulation

results. If γb < γ̂b, the FER is so high such that the total energy consumption is dominated by the

effect of the retransmissions. In this case, we can reduce the total energy consumption by increasing

γb. For example, for L + L0 = 10, 000, increasing γb from -2 to 5 dB will result in an energy saving

of 9.5 dB. When γb > γ̂b, Et increases almost linearly with γb because the FER is low enough such

that the effect of retransmission is negligible. The result demonstrates that a higher Eb/N0 does

not necessarily mean a better performance. Significant energy saving can be achieved with carefully

choosing the operation point.

In Fig. 3.4, Et is plotted as a function of L + L0 under various values of γb. The distance is

d = 100 m. The optimum values of L̂ for different γb are calculated from (3.18), and are marked

on the figure. As expected, Et is convex in log(L + L0). Again, excellent agreement is observed

between the analytical optimum operation points and the simulation results. When L < L̂, the
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Figure 3.5: Minimum energy per information bit as a function of distance.

energy consumption is dominated by the overhead. Thus significant energy saving can be achieved

by slightly increasing L. When L > L̂, the slope of Et with respect to log(L + L0) decreases as

γb increases. This is because the impact of increasing L on FER becomes smaller at higher γb.

Therefore, system operates at lower γb is more sensitive to the frame length.

In the last example, the global optimum Et is shown as a function of the transmitter-receiver

distance d, for systems employing different modulation schemes. The joint optimum (γ̂b, L̂) are

obtained by iteratively invoking (3.15) and (3.18), and the results are then used to calculate the

optimum Et. For example, at d = 100 m, the optimum values are (2.66 dB, 230 bits), (4.29 dB, 243

bits), and (6.77 dB, 191 bits) for QPSK, 16-QAM, and 64-QAM, respectively. Lower level modulation

has better energy performance at the cost of worse spectral efficiency. Increasing M from 2 to 4, or

from 4 to 6, results in approximately 5 dB energy loss, when d ≥ 100 m.
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3.6 Conclusions

The energy efficient design of coded ARQ systems operating in a quasi-static Rayleigh fading channel

has been studied in this paper. A new log-domain threshold approximation method has been proposed

to analytically quantify the impacts of receiver Eb/N0 and frame length on the FER, and the results

have been used to facilitate the system optimization. The optimum transmission energy and frame

length that minimize the energy per information bit have been obtained in closed-form expressions,

and they incorporate the effects of a large number of practical system operation parameters in

hardware, the PHY layer, and the MAC layer. From the analytical and simulation results, we have

the following observations: 1) The total energy consumption in ARQ can be reduced by increasing

the transmission energy in one transmission attempt; 2) systems operating at higher Eb/N0 are less

sensitive to the frame length; 3) increasing the modulation level by a factor of 4 leads to approximately

5 dB energy loss; 4) significant energy savings (as high as 9.5 dB) can be achieved through the

proposed optimum system design.
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Chapter 4

Optimum Energy and Spectral Efficient Transmissions for Delay Constrained Hybrid

ARQ Systems

Gang Wang, Jingxian Wu, and Yahong Rosa Zheng

4.1 Abstract

This paper discusses the energy and spectral efficient transmissions for delay constrained wireless

communication systems utilizing hybrid automatic repeat request (HARQ). Three design metrics are

considered: 1) the energy efficiency (EE) measured by the average energy required to successfully

deliver one information bit from a source to its destination; 2) the spectral efficiency (SE) defined as

the average data rate per unit bandwidth; and 3) the average energy per bit normalized by the SE.

Optimum system designs with respect to different metrics are developed by analytically identifying

the feasible energy distributions, i.e., the sequences of transmission energy that should be employed

at different retransmissions. The optimum energy distributions are calculated with a new backward

sequential calculation method, where the energy at each retransmission round is expressed as a

closed-form expression of a wide range of practical system parameters, such as circuit power and

coding in the physical layer, and frame length and protocol overhead in the media access control

layer. Reducing the SE-normalized energy per bit yields a balanced tradeoff between the EE and SE.

Numerical results demonstrate that reducing the SE-normalized energy per bit achieves a 26.7% SE

gain over the system that minimizes the average energy per bit, yet the EE of the two systems are

almost identical.
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4.2 Introduction

Energy efficiency (EE) and spectral efficiency (SE) are two essential design metrics for wireless com-

munication systems. Energy efficient communications reduce energy consumption, extend the battery

life of wireless terminals, and reduce environment pollution [1]– [2]. Spectral efficient communications

can support more simultaneous users or a higher data rate in a unit bandwidth, thus achieve better

utilizations of the scarce spectrum resources [3]. EE and SE feature one of the most fundamental

tradeoffs in communications [4]. Many communication techniques improve EE at the cost of SE, or

vice versa. With the increased demands for high rate multimedia communications, and the growing

needs of green communications, it is imperative to develop communication technologies that can

balance the EE-SE tradeoff.

There are a large number of works in the literature devoted to the development of energy effi-

cient communication systems, and many are designed across multiple protocol layers [3], [5]– [12].

Cross-layer design is especially beneficial to multimedia transmissions [7]– [8], because the trans-

mission parameters in the lower protocol layers can be directly optimized by upper layers based on

specific quality of service (QoS) requirements, such as data rate and transmission delay. In [5], an

energy efficient video transmission system is designed with an energy-rate-distortion framework that

considers the tradeoffs among source distortion, data rate, and hardware complexity, yet with an

assumption of error-free channel. In [6], the average transmission energy is minimized for automatic

repeat request (ARQ) systems by gradually increasing the transmission energy after each unsuccessful

retransmission attempt, in both single-hop and multi-hop communications under a delay constraint.

In [9] and [10], the optimum transmission energy distribution, i.e., the sequence of energy employed

at different retransmission rounds of hybrid ARQ (HARQ) systems, is identified by minimizing the

total average energy consumption, under the assumption that the retransmissions of the same packet
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undergo the same fading. The quasi-static fading assumption is reasonable for multimedia commu-

nications given the stringent delay constraint. It is assumed in [9] and [10] that a retransmission

occurs if the signal-to-noise ratio (SNR) is below a threshold, yet in practical systems a packet is

retransmitted if there are unrecoverable errors in the received packets. The results in [6]– [10] do

not consider the circuit energy consumption, which is shown to be non-negligible especially for short

range communications [11]. In [3] and [12], the energy per bit in a type-I ARQ system is minimized

by considering many practical system parameters including packet length, circuit energy, protocol

overhead, modulation and coding schemes, and frame error rate (FER).

The EE is usually achieved at the cost of SE. Recently there are growing interests in system designs

that consider the EE-SE tradeoff [3], [4], [13]– [15]. In [3], it is shown through analytical study that

the EE is a quasi-concave function of SE in type-I ARQ systems. A similar observation is obtained

in [13] for a downlink orthogonal frequency division multiple access (OFDMA) system, and in [14]

for a band unlimited system under a rate constraint. The system configurations corresponding to the

positive EE-SE slope are non-desirable because the EE and SE can always be improved simultaneously

in this region by adjusting the operation parameters. Consequently, all practical systems should

operate at the region with the negative EE-SE slope, which means any improvement in SE will be

achieved at the cost of EE. Both [13] and [14] use the Shannon channel capacity to measure data rate

without considering practical operations such as coding, hardware energy consumption, and protocol

overhead. A new metric, the SE-normalized energy per bit, which is defined as the average energy

per bit normalized by the SE, is introduced in [3] and [15] to balance the EE-SE tradeoff. It is shown

that minimizing the SE-normalized energy per bit can achieve significant gain in SE with only a

small cost in EE. The results in [3] and [15] are only applicable to type-I ARQ systems.

In this paper, we study the energy and spectral efficient transmissions for coded HARQ systems
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with delay constraints. In HARQ systems with Chase combining [16], the signals from all transmission

attempts of the same packet are combined coherently at the receiver during the detection process.

A strict delay constraint can thus be enforced by setting the maximum number of retransmissions

allowed by the system. The optimum designs are performed by identifying the optimum energy

distributions that can minimize or maximize certain design metrics. Three metrics are considered

for different EE-SE tradeoffs. The first metric is the average energy required to successfully deliver

one information bit from a source to its destination; the second metric is the SE defined as the

effective data rate per unit bandwidth; and the third metric is the SE-normalized energy per bit

as defined in [3] and [15]. The EE can be maximized by minimizing the average energy per bit at

the cost of SE, and vice versa. The minimization of the SE-normalized energy per bit provides a

balanced tradeoff between the EE and SE. The optimum energy distributions with respect to EE

and SE are analytically identified by considering a large number of practical system parameters,

such as the efficiency of the energy amplifier, the energy consumption of digital hardware, data rate,

modulation and coding schemes, frame length, FER, and the protocol overhead, etc. With the help

of a new backward sequential method, the optimum transmission energy distributions with respect to

the EE and SE metrics are expressed as closed-form expressions of all practical system parameters.

In addition, a balanced tradeoff between EE and SE is also provided by reducing the SE-normalized

energy per bit. Both simulation and analytical results demonstrate that the proposed energy efficient

system design can achieve significant energy savings over conventional systems.

The remainder of the paper is organized as follows. Section II presents the system model by

considering the operations of the hardware, the physical layer, and the media access control layer.

The optimum energy distributions with respect to EE and SE are studied in Sections III and IV,

respectively. In Section V, the balanced tradeoff between EE and SE is studied. Numerical results
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are given in Section VI, and Section VII concludes the paper.

4.3 System Model

4.3.1 Energy Consumption Model

Consider a transmitter and a receiver separated by a distance d. The information bits are divided

into packets. There are Lb uncoded information bits and L0 overhead bits in each packet. The

information bits and overhead bits are encoded with a rate-r channel encoder. For a system with

modulation level M , the number of symbols in each packet is Ls = Lb+L0

r log2M
, where Lb is chosen in a

way such that Ls is an integer.

The signal is transmitted through a flat Rayleigh fading channel. Due to the effects of channel

fading and noise, the receiver might not be able to successfully recover the transmitted signal. In

case of a detection failure in a system with HARQ, the receiver will send back to the transmitter a

negative acknowledgement (NACK), upon receiving which the transmitter retransmits the original

packet. The receiver detects the packet by performing maximum ratio combining (MRC) over all

the retransmissions of the same packet. The detection is successful if the recovered packet passes a

cyclic redundancy check (CRC), and the receiver sends an acknowledgement (ACK) packet to the

transmitter. Otherwise, either an NACK will be sent back to the transmitter, or the packet will be

discarded if the maximum number of retransmissions, K, is reached. The value of the maximum

retransmission number K is determined by the delay constraint of the application. There are usually

stringent delay constraints in real time multimedia communications, and packets exceeding the delay

constraint are directly discarded.

The signals received by the receiver in the k-th transmission attempt can be represented as

ymk =
√
Erkhmkxm + zmk, m = 1, 2, · · · , Ls, (4.1)
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where Erk is the average energy of a symbol observed at the receiver, xm ∈ S is the m-th modulated

symbol in a length-Ls packet, with S being the modulation constellation set with the cardinality

M = |S|, ymk, hmk, and zmk are the received sample, the fading coefficient, and additive white

Gaussian noise (AWGN) with single-sided power spectral density N0, respectively. Similar to [9]

and [10], it is assumed that the retransmissions of the same packet undergoes the same fading, i.e.,

the fading coefficient is constant within theK transmissions of one packet, and changes independently

from packet to packet. Such an assumption is reasonable for multimedia communications with

stringent delay constraints.

The average transmission energy for each symbol at the transmitter in the k-th transmission is [1]

Esk = ErkGd, (4.2)

where Gd = G1d
κMc, d is the transmitter-receiver distance, κ is the path-loss exponent, G1 is the

gain factor (including path-loss and antenna gain) at a unit distance, and Mc is the link margin

compensating the hardware process variations and other additive background noise or interference.

In addition to the actual transmission energy, we also need to consider the hardware energy per

symbol consumed at both the transmitter and receiver, and it can be modeled as [1],

Eck =

(
ξ
M

μ
− 1

)
Esk +

β

Rs

, (4.3)

where Rs = 1
Ts

is the gross symbol rate, μ is the drain efficiency of the power amplifier, ξ
M

is the

peak-to-average power ratio (PAPR) of an M -ary modulation signal, β incorporates the effects of

baseband processing, such as signal processing, encoding in the transmitter and decoding in the

receiver, and it can be treated as a constant determined by the particular transceiver structure. For

MQAM systems, ξ
M
� 3(

√
M − 1√

M
+ 1) for M ≥ 4 [27].

From (4.2) and (4.3), the energy required to transmit an uncoded information bit during the k-th
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transmission is

Etk =
Ls
Lb

(Esk + Eck) = γkηb +B, (4.4)

where ηb = Lb+L0

Lb

ξ
M
N0Gd

η
with Gd = G1d

κMc, B = β
Rb

, Rb =
Lb

Ls
Rs is the net bit rate of the uncoded

information bit, and γk = Erk

rN0 log2M
is the average Eb/N0 at the receiver for an uncoded bit (including

both information bit and overhead bit) in the k-th transmission.

4.3.2 Frame Error Rate

In a system with HARQ, a retransmission occurs when the received frame has an unrecoverable error.

Therefore the performance of an HARQ system is directly related to the FER. Denote the FER at

the k-th transmission as εi. With HARQ and Chase combining, εi is a function of {γk}ik=1. Let

pk and ek represent, respectively, the probability that a packet is successfully recovered at the k-th

transmission, and the probability that a packet is not correctly detected in the first k transmissions.

The probabilities can be represented by

pk = (1− εk)
k−1∏
i=1

εi, (4.5)

ek =
k∏
i=1

εi. (4.6)

Combining (4.5) and (4.6) yields

pk = ek−1 − ek, (4.7)

with e0 = 1.

In a quasi-static Rayleigh fading channel, the FER of a coded system can be accurately approxi-

mated by [26]

FER(γb) � 1− exp

(
−γω
γb

)
, (4.8)
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where γb is the average Eb/N0 at the receiver, and γω is a threshold value that can be calculated with

a linear approximation to frame length in the log-domain, as [3]

γω � k
M
log(Lb + L0) + b

M
, (4.9)

where k
M

and b
M

are determined by the modulation scheme and the actual channel code. The values

of k
M

and b
M

for various modulation and coding combinations are given in [3, Table 1]. It is shown

in [3] that the combination of (4.8) and (4.9) yields a very accurate approximation of the FER over

a large range of modulation and coding schemes.

In a system with HARQ, each packet is detected by performing MRC over all the current and

previous retransmissions of the same packet. Therefore, the Eb/N0 at the receiver after the k-th

retransmission is
∑k

i=1 γi. From (4.8), the FER, εk, can be expressed as

εk = 1− exp

(
− γω∑k

i=1 γi

)
. (4.10)

To ensure the QoS of the system, we impose an upper bound on the FER after the K-th retrans-

mission as ε
K
≤ δ.

4.4 Optimum Energy Distribution to Maximize Energy Efficiency

The optimum energy distribution, i.e., the sequence of energy at different retransmissions, that can

minimize the average energy per uncoded information bit is discussed in this section.

4.4.1 Optimum Energy Distribution

With the notations in (4.4)–(4.7), the average energy required to transmit one uncoded information

bit in HARQ can be denoted as

Et =
K∑
k=1

pk

k∑
i=1

Eti + eK

K∑
k=1

Etk. (4.11)
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Substituting (4.7) into (4.11), and switching the order of summation in the first term of (4.11), we

have

Et =
K−1∑
i=1

Eti

K−1∑
k=i

(ek−1 − ek) + eK−1

K∑
k=1

Etk. (4.12)

The above equation can then be simplified to

Et = Et1 +
K∑
k=2

Etkek−1. (4.13)

Substituting (4.4) and (4.6) into (4.13), we can get the average energy per information bit as

Et = ηbγ1 +B +
K∑
k=2

[ηbγk +B]×
k−1∏
i=1

εi. (4.14)

From (4.10) and (4.14), the average energy per information bit can be represented as an explicit

function of γj as

Et = η
b
γ1+B+

K∑
k=2

(η
b
γk+B)

k−1∏
i=1

[
1−exp

(
− γω∑i

j=1 γj

)]
. (4.15)

The constraint, ε
K
≤ δ, can be alternatively expressed as

K∑
k=1

γk ≥ − γω
log(1− δ)

. (4.16)

Therefore, the optimization problem can be represented as

minimize Et with respect to γ1, γ2, · · · , γK
≥ 0,

subject to
K∑
k=1

γk ≥ − γω
log(1− δ)

(4.17)

with Et specified in (4.15).

The optimization problem in (4.17) is non-linear and non-covex, due to the fact that Et is not

a convex function in γ = [γ1, · · · , γK
]T ∈ Y = {γ|∑K

k=1 γk ≥ − γω
log(1−δ) , γk ≥ 0, k = 1, · · · , K}.

However, it can be easily shown that Et is continuously differentiable in Y .
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To solve the non-linear optimization problem, we first find the values of γ that satisfy the Karush–

Kuhn–Tucker (KKT) conditions, which are necessary conditions for the solution of the optimization

problem. The global optimality of the solutions that satisfy the KKT conditions will be shown in

the next subsection.

For the optimization problem in (4.17) for the minimum Et, the stationary objective function of

the KKT conditions can be expressed by,

ψ(γ, λ) = η
b
γ1 +B +

K∑
k=2

(η
b
γk +B)

k−1∏
i=1

εi − λ

[
K∑
k=1

γk +
γω

log(1− δ)

]
, (4.18)

where λ is the Lagrangian multiplier, and γ = [γ1, γ2, · · · , γK
].

The first derivatives of ψ(γ, λ) with respect to γn, for n = 1, · · · , K, are

∂ψ(γ, λ)

∂γn
= η

b
ϕn−

K∑
k=n+1

(η
b
γk+B)

k−1∑
l=n

ϑl

k−1∏
i=1
i �=l

εi − λ, for n = 1, · · · , K − 1, (4.19a)

∂ψ(γ, λ)

∂γ
K

= ηbϕK
− λ, (4.19b)

where

ϕn =

⎧⎪⎪⎨
⎪⎪⎩

1, n = 1

∏n−1
i=1 εi, for n = 2, · · · , K.

(4.20)

and

ϑl =
(1− εl)γω

(
∑l

j=1 γj)
2
. (4.21)

Setting (4.19b) to 0 yields λ = ηbϕK > 0, which satisfies the KKT dual feasibility condition.

Based on the KKT complementary slackness condition, λ
(∑K

k=1 γk +
γω

log(1−δ)

)
= 0, since λ > 0,

we have

γ0 �
K∑
k=1

γk = − γω
log(1− δ)

. (4.22)

With (4.22), the KKT primal feasibility condition is also satisfied. Therefore, the solution to the

equation system described in (4.19) and (4.22) satisfies the KKT conditions. Consequently, the
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global optimum value γ∗ must be one of the solutions to the equation system in (4.19) and (4.22).

We will first solve the equation system that satisfies the KKT conditions, and then show the solution

is actually the global optimum one.

Even though the equation system in (4.19) and (4.22) can be solved numerically, the complexity

is quite high given that the equations are non-linear. In addition, numerical solutions do not provide

information regarding the global optimality of the results. We provide an analytical solution to the

problme in the next subsection.

4.4.2 Optimization via Backward Sequential Calculations

A backward sequential optimization method is proposed to analytically identify the solutions that

satisfy the KKT conditions. The method calculates γn by using the values of γi, for i = n+1, · · · , K.

This enables the backward calculations of γn, i.e., γ
K

is calculated first, and γn is calculated by using

{γk}Kk=n+1, for n = 2, · · · , K − 1.

Since ∂ψ(γ, λ)/∂γn = 0, we have ∂ψ(γ, λ)/∂γn−1−∂ψ(γ, λ)/∂γn = 0. From (4.19), the expression

of ∂ψ(γ,λ)
∂γn−1

− ∂ψ(γ,λ)
∂γn

for different values of n are

∂Et
∂γn

− ∂Et
∂γn+1

= η
b
(1− εn)ϕn − (η

b
γn+1 +B)ϑnϕn −

K∑
k=n+2

(η
b
γk + B)ϑn

k−1∏
i=1,i �=n

εi,

for n = 1, · · · , K − 2, (4.23a)

∂Et
∂γ

K−1

− ∂Et
∂γ

K

= η
b
(1− σK−1)ϕK−1

− (η
b
γ

K
+ B)ϑK−1ϕK−1

. (4.23b)

4.4.2.1 Calculation of γ
K

To initiate the backward sequential calculation, we would need the value of γ
K
, which can be calcu-

lated by setting (4.23b) to 0, and the result is

K−1∑
k=1

γk =

√
γω

(
γ

K
+
B

η
b

)
. (4.24)
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Combining (4.22) with (4.24) leads to√
γω

(
γ

K
+
B

η
b

)
+ γ

K
= − γω

log(1− δ)
. (4.25)

Solving the above equation yields

γ
K
= γ0 +

γω
2
−

√
γ0γω +

γ2ω
4

+ γω
B

η
b

. (4.26)

It should be noted that the value of γ
K

in (4.26) is unique, because the other root of the second-

order linear equation of (4.25) is γ0 + γω
2
+
√
γ0γω +

γ2ω
4
+ γω

B
η
b
, which violates (4.22) with γk ≥ 0 for

k = 1, 2, · · · , K.

4.4.2.2 Calculation of γn, for n = 1, · · · , K − 1

Setting (4.23a) to 0 leads to

n∑
k=1

γk =
√
γω ×

√√√√γn+1+
B

ηb
+

K∑
l=n+2

(
γl+

B

η
b

) l−1∏
i=n+1

εi, for n = 1, 2, · · · , K−2. (4.27)

Eqns. (4.24) and (4.27) can be written in a unified form as

n∑
k=1

γk =
√
γω ×

√
γn+1 + Cn, for n = 1, 2, · · · , K − 1, (4.28)

where

Cn=

⎧⎪⎪⎨
⎪⎪⎩

B
ηb
+

∑K
l=n+2

(
γl+

B
ηb

)∏l−1
i=n+1 εi, n = 1, · · ·,K−2

B
ηb
, n = K−1

(4.29)

From (4.28), and based on the fact that γn =
∑n

k=1 γk −
∑n−1

k=1 γk, we have

γn =
√
γω ×

(√
γn+1 + Cn −

√
γn + Cn−1

)
, for n = 2, · · · , K − 1. (4.30)

In the above equation, the calculation of γn requires the knowledge of Cn−1 and Cn, which in

turn depend on σk and
∑k

i=1 γi, for k = n, · · · , K, as in (4.10). To enable the backward sequen-

tial calculation, we obtain an alternative expression of the FER by using (4.22) and the fact that
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∑k
i=1 γi =

∑K
i=1 γi −

∑K
i=k+1 γi, and the result is

εk = 1− exp

[
γω

γω
log(1−δ) +

∑K
i=k+1 γi

]
. (4.31)

From (4.29) and (4.31), it can be seen that Cn and Cn−1 depend only on {γk}Kk=n+1. Therefore,

(4.30) is a second-order linear equation in γn, which can be expressed as

γ2n −
[
γω + 2

√
γω(γn+1 + Cn)

]
γn + γω(γn+1 + Cn − Cn−1) = 0. (4.32)

The solution of (4.32) can be expressed in a closed-form as

γn =
1

2
γw −

√
γ2w
4

+ γw
√
γw(γn+1 + Cn) + γwCn−1 +

√
γw(γn+1 + Cn), for n = 2, · · · , K − 1.

(4.33)

Appendix 4.9.1 shows that (4.33) is the unique solution to (4.30).

In (4.33), γn is expressed as an explicit function of {γk}Kk=n+1, with Cn calculated from (4.29) and

(4.31). Therefore, γn can be calculated by using {γk}Kk=n+1, for n = 2, · · · , K − 1. Finally, γ1 can be

calculated from (4.22) as

γ1 = − γw
log(1− δ)

−
K∑
k=2

γk. (4.34)

With the above analytical results, the solution for γi, i = 1, 2, · · · , K in (4.26), (4.33), and (4.34)

is unique. Since the solutions are the necessary conditions for the optimality and they are unique,

the solution yields the global optimum operation point to the optimization problem.

The backward sequential calculation method is summarized in Algorithm 1.

Once the optimum values of {γn}Kn=1, which are the average Eb/N0 at the receiver, are identified,

then the optimum energy per symbol at the transmitter can be calculated as (c.f. (4.2))

Esk = γ
k
×N0 × r × log2M ×Gd. (4.35)

65



Algorithm 1 Backward sequential calculation
1: Input: K and δ.
2: Calculate γ

K
with (4.22) and (4.26).

3: for n = K − 1, K − 2, · · · , 1 do
4: Calculate εn from (4.31),
5: Calculate Cn and Cn−1 from (4.29),
6: Calculate γn from (4.33).
7: end for
8: Calculate γ1 from (4.34).
9: Output: γ.

4.5 Optimum Energy Distribution to Maximize Spectral Efficiency

In this section, the optimum energy distribution that can maximize the average spectral efficiency,

ηs, is identified.

If the transmission is successful during the k-th transmission attempt, then the net data rate

would be

Rbk =
Lb
kT0

=
Lb

k Lb+L0

rRs log2M

=
Lb

Lb + L0

rRs log2M

k
, (4.36)

where T0 is the duration of one frame, and Rs is the gross symbol rate. If the transmission is successful

during the k-th attempt, then the corresponding spectral efficiency is

η
k
=

Rbk

(1 + α)Rs

=
Lb

Lb + L0

r log2M

k(1 + α)
, (4.37)

where α is the roll-off factor of the pulse shaping filter, and it expands the bandwidth of each symbol

from Rs to (1 + α)Rs.

The average spectral efficiency of an HARQ system can then be calculated by

ηs =
K∑
k=1

η
k
p
k
=

K∑
k=1

η
k
(e

k−1
− e

k
). (4.38)

Substituting (4.6), (4.10) and (4.37) into the above equation and simplifying yield

ηs =
Lb

Lb + L0

r log2M

1 + α
×

K∑
k=1

1

k
× exp

(
− γω∑k

j=1 γj

)
k−1∏
i=1

[
1−exp

(
− γω∑k

j=1 γj

)]
. (4.39)
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The first derivatives of ηs with respect to γn, for n = 1, · · · , K, is

∂ηs
∂γn

=
Λϑnϕn
n

+ Λ
K∑

k=n+1

(
ϑk
k

k−1∏
i=1

εi− 1−εk
k

k−1∑
l=n

ϑl

k−1∏
i=1,i �=l

εi

)
, for n = 1, 2, · · · , K − 1, (4.40a)

∂ηs
∂γ

K

=
Λϑ

K
ϕ

K

K
, (4.40b)

where εi, ϕn and ϑl are defined in (4.10), (4.20), and (4.21), respectively, and Λ = Lb

Lb+L0

r log2M
1+α

. We

have the following proposition regarding the values of the first derivatives of ηs.

Lemma 1 : For an HARQ system that employs the MRC receiver, if the FER is given in (4.10),

then ∂ηs
∂γ1

> ∂ηs
∂γ2

> · · · > ∂ηs
∂γ

K
> 0.

Proof: The proof is in Appendix 4.9.2.

From Lemma 1, it can be seen that ηs is an increasing function in γn, for n = 1, · · · , K, and the

slope of ηs with respect to γn decreases as n increases. That is, allocating additional energy to the

n-th transmission round yields a larger SE gain compared to adding the same amount of energy to

the k-th round with k > n. Therefore, we have the following corollary regarding the optimum energy

distribution that can maximize the SE.

Proposition 1 : Consider an HARQ system that employs MRC at the receiver. Under the con-

straint,
∑K

k=1 γk = γ0 = − γω
log(1−δ) , the average SE can be maximized by employing the energy

distribution γ = [γ0, 0, · · · , 0]T . On the other hand, the average SE can be minimized by the energy

distribution γ = [0, · · · , 0, γ0]T . The maximum and minimum achievable SE is given as follows

max(ηs) =
Lb

Lb + L0

r log2M

1 + α
(1− δ), (4.41)

min(ηs) =
Lb

Lb + L0

r log2M

1 + α

1− δ

K
. (4.42)

Proof: The proof is in Appendix 4.9.3.
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4.6 Energy Distribution to Achieve a Balanced Tradeoff between EE and SE

The transmission energy distribution that can reduce the SE-normalized energy per bit, Em = Et

ηs
,

is discussed in this section. The metric Em can be reduced by either decreasing Et or increasing ηs.

Therefore, reducing Em can achieve a balanced tradeoff between the EE and SE.

To facilitate the analysis, the solution is performed in the log-domain by considering the metric

logEm = logEt − log ηs. Since log x is a monotonic increasing function in x for x > 0, reducing

logEm yields the same results as reducing Em. Since Et is lower bounded, and ηs are bounded both

above and below, logEm is lower bounded.

We propose to find the optimum energy distribution with respect to Em by solving the equations,

∂ logEm

∂γn
− ∂ logEm

∂γn+1
= 0, for n = 1, · · · , K − 1, which can be alternatively written as

1

Et

(
∂Et
∂γn

− ∂Et
∂γn+1

)
=

1

ηs

(
∂ηs
∂γn

− ∂ηs
∂γn+1

)
. (4.43)

It should be noted that the solutions to (4.43) might lead to local optimum points. However,

our extensive numerical evaluations indicate that the solutions to (4.43) always coincide with the

global optimum point obtained through exhaustive search for all system parameters considered in

this paper.

Substituting (4.23) and (4.40) into the above equation and simplifying, we have

n∑
k=1

γi=
√
γω

√
ΛEt
ηsηb

(
1

n
− 1−σn+1

n+ 1
−Dn

)
+γn+1+Cn, for n = 1, 2, · · · , K − 1, (4.44)

where Cn is defined in (4.29), and

Dn=

⎧⎪⎪⎨
⎪⎪⎩

∑K
l=n+2

1−εl
l

∏l−1
i=n+1 εi, n = 1, · · · , K−2,

0, n = K − 1.

(4.45)

From (4.22), (4.44) and the identity, γn =
∑n

k=1 γk −
∑n−1

k=1 γk, we have

γ
K
=γ0 −√γω

√
ΛEt
ηsηb

(
1

K−1
− 1−σ

K

K

)
+γ

K
+
B

η
b

, (4.46)
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and

γn=

[√
ΛEt
ηsηb

(
1

n
− 1−σn+1

n+ 1
−Dn

)
+γn+1+Cn−

√
ΛEt
ηsηb

(
1

n−1−
1−σn
n

−Dn−1

)
+γn+Cn−1

]
√
γω,

for n = 2, 3, · · · , K − 1, (4.47)

Eqns. (4.46) and (4.47) are linear second order equations in γ
K

or γn. They can be solved and

expressed as closed-form functions of Et, ηs, γn+1, and {εk}Kk=n, which in turn depend on {γk}Kk=n+1

as in (4.31). In order to implement the backward sequential calculation as in Section 4.4, we need

to know Et and ηs, the values of which depend on the optimum distribution {γk}Kk=1 that are to be

solved.

To address this problem, we propose to identify the feasible values of {γk}Kk=1 by combining the

backward sequential calculation with an iterative algorithm. In the iterative algorithm, the values of

Et and ηs are initialized by assuming equal energy distribution, i.e., γ1 = · · · = γ
K
= γ0

N
. Then the

backward sequential calculation can be used to calculate γn with (4.46) for n = K, with (4.47) for

n = 2, · · · , K − 1, and with (4.34) for n = 1, where γ
K

is calculated first and γ1 is calculated last.

During the backward sequential calculation, once the value of γm is obtained, we update the values

of Et with (4.15) and ηs with (4.39) by setting γn = 1
m−1

(γ0 −
∑K

k=m γm), for n = 1, · · · ,m − 1.

The updated values of Et and ηs are then used for the calculation of γm−1. At the end of the

backward sequential calculation, Et and ηs are calculated by using the values of {γn}Kn=1 obtained in

this iteration. The new values of Et and ηs are then used as the initial values for the calculation of γ
K

at the beginning of the next iteration. The above procedure is performed iteratively until stopping

criteria are satisfied.

The stopping criteria of the algorithm are determined by comparing the values of Et and ηs at

the beginning and end of one iteration. If we let Et0 and ηs0 denote the values at the beginning of

an iteration, and Et and ηs denote the values at the end of the same iteration, then the algorithm
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stops if |Et − Et0| < ε
E

and |ηs − ηs0| < εη, with ε
E

and εη being very small positive numbers. In

the numerical results, we use ε
E
= εη = 10−6. The numerical results demonstrated that the feasible

solution can usually be obtained in three iterations.

The iterative backward sequential calculation algorithm is summarized as follows in algorithm 2.

Algorithm 2 Iterative backward sequential calculation algorithm
1: Input: K, δ, ε

E
, and εη.

2: Set γn = γ0
K

= − 1
K

γω
log(1−δ) for n = 1, 2, · · · , K.

3: Calculate Et with (4.15) and ηs with (4.39).
4: Set Et0 = +∞ and ηs0 = +∞.
5: while |Et − Et0| < ε

E
and |ηs − ηs0| < εη do

6: Set Et0 ← Et, ηs0 ← ηs,
7: for n = K,K − 1, · · · , 1 do
8: Calculate γn from (4.46) for n = K, or (4.47) for 2 ≤ n ≤ K − 1, or (4.34) for n = 1,
9: Update γm = − 1

n−1
γω

log(1−δ) −
∑K

k=n γk for 1 ≤ m ≤ n− 1,
10: Update Et with (4.15) and ηs with (4.39).
11: end for
12: end while
13: Output: γ.

Once the values of {γn}Kn=1 are obtained, we can calculate the transmission energy for each

transmission attempt as in (4.35).

4.7 Numerical Results

Numerical results are presented in this section to demonstrate the proposed energy and/or spectral

efficient transmissions for various HARQ systems. Most of the simulation parameters follow [1]:

μ = 3.5, β = 310.014 mW, N0/2 = -174 dBm/Hz, G1 =30 dB, κ = 3.5, and Mc = 40 dB. The rest

of the parameters are L0 = 48 bits, Lb = 2048 bits, Rb = 2 Mbps, and d = 100 m. The modulation

scheme is QPSK. The channel code is a rate r = 1
2

convolutional code with the generator polynomial

[171, 133]8 and a constraint length 7. The parameters k
M

= 0.2066 and b
M

= 0.14 are used in the
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linear threshold approximation for the FER as in (4.9) [3].

The performance of the systems with the various optimization criteria will be compared to those

with equal energy used for all retransmissions. For fairness of comparison, the same FER upper

bound δ is enforced for all systems. For systems with equal energy retransmissions, from (4.16), the

average Eb

N0
observed by the receiver during each retransmission is

γ′k = −
1

K

γω
log(1− δ)

, for k = 1, 2, · · · , K. (4.48)

Fig. 4.1 shows the optimum energy distribution, {γk}Kk=1, that minimizes the average energy per

bit, Et, when the maximum number of retransmissions is set to K = 6. As expected, the optimum

values of γk varies with respect to the retransmission round index k. For systems considered in this

example, the second round uses the least amount of energy and the last round uses the most. The

optimum systems use significantly less energy compared to their equal energy counterparts during

the first five transmission attempts, but use more energy during the last transmission attempt. In

this example, the probability of using the sixth transmission attempt is e5 = 2 × 10−4 for δ = 10−3

and e5 = 2 × 10−5 for δ = 10−4. Therefore overall the optimum system requires much less energy

than its equal energy counterpart, as evident in the results in Fig. 4.2.

Fig. 4.2 shows the total average energy per information bit, Et, as a function of the maximum

number of retransmissions, K, under various values of δ. The optimum energy distributions are

obtained by minimizing Et. Systems with optimum energy distributions achieve significant energy

savings compared to their equal energy counterparts. When K = 6, systems with optimum energy

distribution outperform their equal energy counterparts by 16.9 dB, 26.8 dB and 36.8 dB, for δ =

10−3, 10−4, and 10−5, respectively. The performance of systems with optimum energy distributions

and different outage probabilities converge when K > 6, i.e., systems with δ = 10−3 and δ = 10−5

have similar Et. Therefore, the optimum energy distribution scheme can greatly improve the outage
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Figure 4.1: Optimum energy distribution of γk as a function of the transmission round index (K =
6).

performance without requiring extra energy when K is sufficiently large. On the other hand, for

systems with equal energy retransmissions, 10 dB extra energy per information bit is needed to

improve the system outage by a factor of 10, regardless of K.

Fig. 4.3 shows the impacts of limiting δ on average energy per information bit Et with different

values of K. The optimum energy distributions are obtained by minimizing Et. For both equal en-

ergy and optimum energy systems, Et decreases with δ, but with different slopes. The performance

difference between the optimum and equal energy systems increases as δ decreases. For the optimum

system with K = 6, improving the system outage from 10−1 to 10−5 only requires 3.6 dB additional

energy per information bit; yet an extra 38.1 dB is required to achieve the same performance im-

provement for its equal energy counterpart. In addition, for the optimum system, the absolute value

of the slope of the Et-δ curve decreases as K increases, i.e., less extra energy is needed to improve

the system outage when K is larger. The performance gain is achieved at the cost of a longer delay
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Figure 4.2: Average energy per information bit versus maximum number of transmission attempts
K.

with a larger K. Therefore, for a specific δ, the value of K should be determined by considering both

the energy and delay requirements.

Next we compare the performance of systems employing different optimization metrics, i.e., min-

imizing the average energy per information bit Et, maximizing the average SE ηs, or reducing the

SE-normalized energy per information bit Em. Figs. 4.4 and 4.5 show, respectively, the average SE,

ηs, and average energy per information bit, Et, as functions of K, under various system configura-

tions. The outage probability is set at δ = 10−3. The system that maximizes ηs allocates all the

energy to the first transmission attempt, therefore its performance is independent of K. For the

equal energy distribution, it achieves the second best SE (0.8 bps/Hz) as in Fig. 4.4, but at the cost

of significant EE loss as shown in Fig. 4.5. For example, when K = 4, the SE of the equal energy

distribution is 0.1 bps/Hz better than that of the Em-reducing scheme as in Fig. 4, but at the cost

of an energy loss of 16 dB as shown in Fig. 5. In Fig. 4.4, the ηs-maximizing energy distribution
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Figure 4.3: Average energy per information bit versus δ.

achieves the best SE as expected, followed by the equal energy system, the Em-reducing system, and

the Et-minimizing system. On the other hand, the order of the four systems is reversed in terms

of EE in Fig. 4.5, where the Et-minimizing system has the best EE, followed by the Em-reducing

system, the equal energy system, and the ηs-maximizing system.

The Em-reducing system achieves a balanced tradeoff between EE and SE. The SE of the Em-

reducing system is consistently better than that of the Et-minimizing system, yet the two systems

maintain a similar EE. At K = 10, the Em-reducing system achieves an additional 0.11 bps/Hz, or

26.7%, SE compared to the Et-minimizing system with only negligible cost in EE. For Em-reducing or

Et-minimizing systems, the SE decreases and the EE increases as K increases. The SE gap between

the Et-minimizing and Em-reducing systems grows as K increases.
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Figure 4.4: Average SE versus maximum number of transmission attempts K under various system
configurations.

4.8 Conclusions

The optimum energy distributions for delay-constrained transmissions employing HARQ with Chase

combining have been discussed in this paper. Three optimization metrics have been studied: the

average energy per information bit Et, the average spectral efficiency ηs, and the SE-normalized

average energy per information bit Em = Et

ηs
. The optimum energy distributions with respect to the

EE and SE have been derived through analytical studies. An algorithm has been provided to reduce

the Em to achieve a balanced tradeoff between EE and SE. The feasible energy distributions for the

Et-minimizing and Em-reducing systems are obtained with a new backward sequential calculation

method, where the optimum energy is expressed as closed-form expressions of a large number of

system parameters. Numerical results demonstrated that the proposed schemes can achieve signifi-

cant performance gains over conventional HARQ systems with equal energy distribution. When the
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Figure 4.5: Average energy consumption per information bit versus maximum number of transmission
attempts K under various system configurations.

maximum number of retransmissions is K = 10, the Et-minimizing system outperformed the ηs-

maximizing system by as much as 29.1 dB, but at the cost of 0.39 bps/Hz SE loss. The Em-reducing

system achieves a balanced tradeoff between EE and SE. The Em-reducing system can increase the

SE of the Et-minimizing system by as much as 26.7% yet with only negligible cost in terms of EE.

The three different design metrics correspond to different tradeoff points on the EE-SE tradeoff

curves, and they can be applied based on different system design requirements. The Et-minimizing

scheme can be used for applications with extremely stringent energy constraints, such as many

wireless sensor networks designed for environment monitoring or structure health monitoring, which

need to operate over a long period of time with very limited energy supplies, but only require a low

or moderate data rate due to the slow changing nature of the monitored objects. The ηs-maximizing

scheme should be used in applications demanding high SE, such as multimedia communications, at the

cost of a higher energy consumption. The Em-reducing scheme achieves a balanced tradeoff between
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EE and SE. It can achieve a higher SE than the Et-minimizing scheme, without incurring apparent

energy cost. Thus the Em-reducing scheme can be used for a wide range of wireless applications.

4.9 Appendix of Proofs

4.9.1 Proof of Uniqueness of (4.33)

We will show here that (4.33) is the unique solution to (4.30). The uniqueness is proved in two steps.

First, it will be shown that there is only one solution to (4.30). Second, it will be shown that (4.33)

is a valid solution to (4.30).

The left hand side of (4.30) is a strictly increasing function in γn with values ranging from

0 to ∞. Denote the right hand side of (4.30) as f(γn). Since Cn, Cn−1, γω, and γn+1 are all

independent of γn, f(γn) is a strictly decreasing function in γn, with values ranging from f(0) =

√
γω ×

(√
γn+1 + Cn −

√
Cn−1

)
to −∞ as γn goes from 0 to ∞. Since Cn > Cn−1, there is f(0) > 0.

Therefore, there exists one and only one solution to (4.30).

The second order linear equation in (4.32) is obtained as γ2n = f 2(γn), which has two solutions,

γ∗n = f(γ∗n), and −γ′n = f(γ′n), and the valid solution should be γ∗n. One solution to (4.32) is given

in (4.33), and the other solution is 1
2
γw +

√
γ2w
4
+ γw

√
γw(γn+1 + Cn) + γwCn−1 +

√
γw(γn+1 + Cn).

It can be easily shown that both solutions are positive. Since f(γn) is a strictly decreasing function

in γn, we have γ∗n < γ′n because f(γ′n) < 0 < f(γ∗n). Therefore γ∗n should be the one given in (4.33),

which is the smaller one of the two possible solutions to (4.32).

4.9.2 Proof of Lemma 1

From (4.40a) and (4.40b), we have

∂ηs
∂γ

K−1

− ∂ηs
∂γ

K

= Λϑ
K−1

ϕ
K−1

[
1

K − 1
− 1− ε

K

K

]
> 0.
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From (4.40a), we have

∂ηs
∂γn

− ∂ηs
∂γn+1

= Λϑnϕn ×
[
1

n
− 1− σn+1

n+ 1
−

K∑
k=n+2

1− εk
k

k−1∏
i=n+1

εi

]
for n = 1, 2, · · · , K − 2. (4.49)

Setting n = K − 2 in the above equation yields

∂ηs
∂γK−2

− ∂ηs
∂γ

K−1

= Λϑ
K−2

ϕ
K−2

×
[

1

K−2
− 1− σK−1

K−1
− 1− ε

K

K
σK−1

]
. (4.50)

The term in the bracket of (4.50) can be rewritten as

(
1

K−2
− 1

K−1

)
(1− σ

K−1
) +

(
1

K−2
− 1− σ

K

K

)
σ

K−1
,

which is greater than 0. Therefore ∂ηs
∂γK−2

> ∂ηs
∂γ

K−1
.

Proof by induction. Assume ∂ηs
∂γn

− ∂ηs
∂γn+1

> 0 for n = m + 1 with 1 ≤ m ≤ K − 2. Then from

(4.49) we have

1− σm+2

m+ 2
+

K∑
k=m+3

1− εk
k

k−1∏
i=m+2

εi <
1

m+ 1
. (4.51)

We next need to prove ∂ηs
∂γn
− ∂ηs

∂γn+1
> 0 for n = m. Simplifying (4.49) leads to

1

Λϑmϕm

(
∂ηs
∂γm

− ∂ηs
∂γm+1

)
=

(
1

m
− 1

m+1

)
(1 − σm+1) + σm+1 ×

{
1

m
−

K∑
k=m+2

1−εk
k

k−1∏
i=m+2

εi

}
. (4.52)

Substituting the inequality of (4.51) into the above equation and simplifying, we have

∂ηs
∂γm

− ∂ηs
∂γm+1

> Λϑmϕmσm+1

(
1

m
− 1

m+ 1

)
> 0. (4.53)

In addition, since

∂ηs
∂γ

K

=
Λ

K
ϑK

K−1∏
i=1

εi > 0, (4.54)

the proof is complete.
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4.9.3 Proof of Proposition 1

We first prove the SE-maximizing energy distribution by contradiction. Assume γn > 0, for any

n = 2, · · · , K. Then we can always increase the average SE by moving an infinitesimal value Δγ

from the n-th transmission attempt to the first one, i.e., γ′n = γn −Δγ and γ′1 = γ1 + Δγ, because

the net change in spectral efficiency would be

(
∂ηs
∂γ1

− ∂ηs
∂γn

)
Δγ > 0. (4.55)

Therefore, to obtain the maximum average SE, the optimum energy distribution is γ1 = γ0 and γn = 0,

for n = 2, · · · , K. The result states that, in order to maximize the average SE, all the transmission

energy should be allocated to the first transmission attempt under a total energy constraint. This

is intuitive because more retransmissions mean a longer delay, which results in a smaller SE. The

maximum average SE can then be calculated as η1p1 =
Lb

Lb+L0

r log2M
1+α

(1− δ).

Similarly, the SE can be minimized by setting γK = γ0 and γn = 0 for n = 1, 2, · · · , K−1, because

we can always achieve a higher SE by moving an infinitesimal value Δγ from the K-th transmission

to the n-th transmission, ∀n. The minimum average SE in this case is η
K
p
K
= Lb

Lb+L0

r log2M
1+α

1−δ
K

.
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Chapter 5

Collision-Tolerant Media Access Control for Asynchronous Users over Frequency

Selective Channels

Gang Wang, Jingxian Wu, Guoqing Zhou, and Geoffrey Ye Li

5.1 Abstract

In this paper, a frequency-domain cross-layer collision-tolerant (CT) media access control (MAC)

scheme is proposed for the up-links of broadband wireless networks with asynchronous users. The

collision tolerance is achieved with a frequency-domain on-off accumulative transmission (FD-OOAT)

scheme, where the frequency-selective spectrum is divided into a large number of orthogonal sub-

channels, and each symbol is transmitted over a small subset of the sub-channels to reduce the

probability of collisions. Such a radio resource management scheme renders a special signal structure

that enables multi-user detection (MUD) in the physical layer to resolve the collisions at the MAC

layer. Most existing MUDs require precise symbol level synchronization among the users. The

proposed scheme, however, can operate with asynchronous users. A new theoretical framework is

provided to study the impacts of time-domain user delays on system performance, and the theoretical

results provide guidelines on system designs. Both analytical and simulation results demonstrate that

the proposed FD-OOAT structure with time-domain oversampling is robust to user delays and the

timing phase offset caused by the sampling clock difference between the transmitter and the receiver.

It is shown that the proposed scheme can achieve significant performance gains, in terms of both the

number of users supported and the normalized throughput.
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5.2 Introduction

With the growing demands for reliable and high data rate wireless communications, the limited

radio spectrum resource is expected to support a large number of simultaneous broadband users

with stringent quality of service (QoS) requirements. On the other hand, the design of reliable

broadband multi-user systems faces a number of challenges, such as frequency-selective fading due

to broadband communications, the competitions for the limited spectrum resource among users, and

the lack of precise synchronization, etc. The main objective of this work is to develop a spectrum

efficient communication technique that can address all these challenges by exploiting the interactions

between physical (PHY) layer and media access control (MAC) layer in a communication network.

In many conventional MAC schemes, such as slotted ALOHA or carrier sensing multiple access

(CSMA), signals collided at a receiver will be discarded and retransmitted. This results in a waste

of the precious energy and spectrum resources. Various collision-tolerant (CT) MAC protocols have

been developed to extract the salient information contained in the collided signals by resorting to

cross-layer designs [1]– [10]. Multi-packet reception (MPR) in [1]– [4] assumes that the receiver can

recover a fraction of the collided signals by signal processing in the PHY layer. Iterative interference

cancellation (IC) methods are used to resolve multi-user collisions in a contention-resolution diversity

slotted ALOHA (CRDSA) [5] and an irregular repetition slotted ALOHA (IRSA) scheme [6] and [7].

In the CRDSA and IRSA schemes, each packet is transmitted multiple times at random slots in a

frame. If one of the packet is detected, then it can be used to subtract the interference caused by its

replicas. The IC process is performed iteratively. These schemes work well under low offered loads.

However, the throughput drops dramatically once the normalized offered load exceeds certain point,

because the IC schemes in CRDSA or IRSA are unable to find at least one collision-free signal at the

receiver to initiate the iterative IC process under heavy load. In addition, all above MAC techniques
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rely on perfect synchronization among the users, which is difficult, if not impossible, to achieve in

practical systems.

The limitations of iterative IC can be partly solved by using multi-user detection (MUD), which

performs simultaneous detection of signals from two or more users collided at the receiver. MUD in

the PHY layer can be combined with MAC techniques to improve the spectrum and energy efficiency

in wireless networks [8]– [10]. MUD techniques are often designed with multi-dimensional signals in

the PHY layer, such as code-division multiple access (CDMA) [8] or orthogonal frequency division

multiplexing (OFDM) [9]. An on-off accumulative transmission (OOAT) scheme in [10] can support

more simultaneous users than the dimension of the signals by repeating the same signal multiple

times and using silence periods between two consecutive repetitions to reduce collisions. However,

the OOAT scheme in [10] works only work in flat fading channels, yet broadband communications

dictate an operation environment of frequency-selective fading.

In a multi-user system, two types of synchronizations are needed: the synchronization among the

users, denoted as multi-user synchronization (MUS), and the synchronization of the sampling phase

between the transmitter and receiver clocks, denoted as sampling phase synchronization (SPS). The

SPS is usually based on correlation between a specially designed training sequence and the received

signals [10], [14] and [15]. In multi-user systems, the base station (BS) first estimates the relative

delays of all the users by correlation-based SPS. The estimated timing information can either assist

the detection process [10], or be fed back to the users through a down-link control channel to achieve

MUS [16]. All these schemes have residual timing offsets or synchronization errors, which could cause

additional multiple access interference (MAI) and/or destroy the special signal structure critical to

MUD [11]. The residual SPS errors may also introduce timing phase offset that will increase inter-

symbol interference (ISI) and degrade signal-to-noise ratio (SNR) at the receiver [12,13]. If the users

86



in a multi-user system are not aligned perfectly in the time-domain, then there is always timing phase

offset for some users.

In this paper, we propose a new cross-layer CT-MAC scheme that can support a large number of

simultaneous users operating in frequency-selective fading, require neither MUS nor SPS, and is also

robust to timing phase offsets. Most existing CT-MAC schemes in the literature are developed for flat

fading channels [5]– [7], [10]. For example, time dispersion caused by frequency-selective fading will

destroy the special signal structure that is critical to the original time-domain OOAT scheme [10]. We

address this problem by developing a new frequency-domain OOAT (FD-OOAT), where a frequency-

selective channel is divided into multiple orthogonal sub-channels in the frequency domain with the

help of OFDM. Different from conventional OFDM, each symbol is transmitted over several sub-

channels with a certain on-off pattern in our scheme. The frequency-domain repetition increases the

degree-of-freedom (DoF) of the signals at the receiver, thus enables the collision tolerance of the

system. With the FD-OOAT, the relative transmission delays among the users in the time-domain

are manifested as phase shifts in the frequency domain, and our theoretical analysis shows that

they have negligible impacts on system performance. Therefore, FD-OOAT does not require precise

MUS or SPS, yet synchronization is critical to most existing CT-MAC systems. More importantly,

the frequency-domain operations allow us to minimize the number of users colliding on each sub-

channel by using simple on-off patterns that are radically different from those used by the original

time-domain OOAT schemes [10].

Another important contribution of this work is the development of a new theoretical framework

that quantifies the impacts of timing phase offset on system performance in multi-user multi-carrier

systems. New analytical expressions of the frequency-domain channel coefficients are developed as

functions of the timing phase offsets, and they provide guidelines on system designs. Both theoretical
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and simulation results demonstrate that time-domain oversampling can effectively remove the effects

of timing phase offset for multi-carrier systems. Therefore, the proposed scheme can operate in

an asynchronous environment without incurring additional interference or SNR degradation. The

collisions in FD-OOAT are resolved by using optimum and sub-optimum MUDs, which do not require

precise synchronization as most existing MUD schemes. An analytical performance bound is derived

to quantify the performance of the proposed scheme.

The rest of this paper is organized as follows. The FD-OOAT scheme with time-domain over-

sampling is presented in Section 5.3. The optimum and sub-optimum detection methods that can

resolve collisions and collect the diversity gains are described in Section 5.4. In Section 5.5, theo-

retical studies are performed to quantify the impacts of multipath diversity gain and timing phase

offset. Simulation results are given in Section 5.6, and Section 5.7 concludes the paper.

5.3 Frequency-Domain OOAT with Time-Domain Oversampling

The model and operations of the proposed FD-OOAT scheme with time-domain oversampling are

presented in this section.

5.3.1 Proposed System Structure

Consider a wireless network with N users transmitting to the same receiver through a shared channel.

Each MAC frame contains K symbols. To achieve collision tolerance in the MAC layer, users employ

the FD-OOAT in the PHY layer as shown in Fig. 5.1.

The entire available bandwidth, B, is divided into KM sub-channels, denoted as sub-channels

0, 1, · · · , KM − 1 in order, with a bandwidth B0 = B
KM

each. Each symbol uses M sub-channels

uniformly spread over the entire frequency band, that is, the M sub-channels with indices, {mK +

k}M−1
m=0 , are assigned for the k-th symbol in the frame, for k = 0, · · · , K−1. During each transmission,
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Figure 5.1: A frequency-domain OOAT system with N = 5 users, R = 4 sub-channels occupied out
of M = 12 sub-channels for each symbol.

only R sub-channels from the M ones for each symbol are occupied. The indicator vector of the

occupied sub-channels for the n-th user can be represented by a binary vector of length M , pn =

[pn[0], · · · , pn[M − 1]]T ∈ BM×1, where B = {0, 1}, with pn[m] = 1 if the k-th symbol is transmitted

at the {mK + k}-th sub-channel, and pn[m] = 0 otherwise. Symbols of the same user use the

same transmission pattern pn. With such a scheme, each symbol is repeated over R sub-channels

(accumulative transmission), and the utilization of the sub-channels are determined by an on-off

transmission pattern pn. In the example shown in Fig. 5.1, there are N = 5 users, M = 12 available

sub-channels per symbol, and R = 4 out of the 12 available sub-channels are occupied. It is assumed

that all users use the same carrier frequency, thus the same set of sub-channels. As a result, signals

from different users are aligned in the frequency domain as shown in Fig. 5.1.

Based on the above description, the signal transmitted on the (mK + k)-th sub-channel of the

n-th user can be represented as

dn[mK + k] = pn[m]snk, (5.1)

where snk is the k-th symbol from user n. Consequently, the signal vector of the n-th user can be

89



expressed as

dn = [dn[0], dn[1], · · · , dn[KM − 1]]T ∈ SL×1
+ , (5.2)

where L = KM , S+ = {S, 0}, and S is the modulation constellation set with a cardinality S = |S|.

The signal vector, dn, is converted to the time-domain by applying an L-point inverse discrete

Fourier transform (IDFT) as

xn = FH
L
· dn, (5.3)

where xn = [xn[0], xn[1], · · · , xn[L − 1]]T is the time-domain signal vector, and F
L
∈ CL×L is the

L-point discrete Fourier transform (DFT) matrix with the (r + 1, c+ 1)-th element being

[F
L
]r,c =

1√
L
exp

(
−j2πr · c

L

)
, r, c = 0, 1, · · · , L− 1. (5.4)

The space between two consecutive time-domain samples is T1 = 1
B

.

Before transmission, a length-lcp cyclic prefix (CP) is added to the time-domain signal xn to

avoid interference between consecutively transmitted frames. The time-domain signals pass through

a transmit filter, ϕ1(t), and then transmitted over a quasi-static frequency-selective fading channel

with impulse response gn(t). In a quasi-static channel, the fading is constant inside a frame, and

varies independently from frame to frame. At the receiver, the received signals pass through a receive

filter, ϕ2(t). Define the composite impulse response (CIR) of the channel as

hnc(t) = ϕ1(t)� gn(t)� ϕ2(t), (5.5)

where � is the convolution operator. The CIR, hnc(t), includes the effects of the physical channel

and the transmit and receive filters. The transmit receive filters are used to limit the bandwidth of

the transmitted signal. For systems with root-raised-cosine (RRC) filters as the transmit and receive

filters, the bandwidth of hnc(t) is 1+α
T1

, where α is the roll-off factor of the filter, and T1 is the space

between two consecutive time domain samples at the transmitter.
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The output of the receive filter is

yc(t) =
N∑
n=1

+∞∑
l=−∞

√
Es
R
xn[l]hnc(t− lT1 − τn) + zc(t), (5.6)

where Es is the energy per symbol, τn is the relative delay of the n-th user, xn[l] is the l-th time-

domain sample from the n-th user with a sample period T1, zc(t) = p2(t)�vc(t) is the noise component

at the output of the receive filter, with vc(t) being the additive white Gaussian noise (AWGN) with

one-sided power spectral density N0. The relative delay, τn, introduces mis-match between the receive

filter and transmit filter, and the effects are captured as a time shift in the CIR hnc(t). It should be

noted that the effects of frequency offsets are not considered in (5.6). In case of non-zero frequency

offsets, they can be estimated at the receiver then compensated at the transmitter with the help of

a feedback channel.

The output of the receive filter is sampled at the time instant t = iT2, where T2 = T1/u is the

sampling period at the receiver, with the oversampling factor, u, being an integer. Denote the relative

delays among the users as τn = lnT2 + τn0, where ln represents the mis-alignment among the users in

terms of receive samples, and τn0 ∈ [0, T2] is the timing phase offset between the sampling clocks at

the transmitter and receiver. The discrete-time samples are

y
T
[i] =

N∑
n=1

ulc−1∑
l=0

√
Es
R
x

nT
[i− l − ln]hnT

[l] + z
T
[i], (5.7)

where y
T
[i] = yc(iT2) and z

T
[i] = zc(iT2) are the T2-spaced samples of the received signals and noise

components, respectively, h
nT
[l] = hnc(lT2 − τn0) is the sampled version of the continuous-time CIR

hnc(t), and x
nT
[i] is the oversampled version of xn[i] as x

nT
[i] = xn[i/u], if i/u is an integer, and 0

otherwise. It is assumed that the length of the CIR, ulc, is an integer multiple of u, with lc being the

length of the CIR without oversampling, which can be always met by appending zeros to the CIR.

The timing phase offset τn0 is incorporated in the discrete-time CIR h
nT
[l]. We will study in Section
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5.5 through frequency-domain analysis the impacts of τn0 on the statistical properties of the channel

coefficients and the system performance.

With the discrete-time system model given in (5.7), the length of the CP should satisfy lcp ≥

lc + ld/u − 1, where ld = max{ln} is the maximum relative transmission delay among the users. It

should be noted that the proposed method can work for arbitrary value of ld, and a larger ld means

a longer CP. To achieve better spectral and energy efficiency, it is assumed in the simulation that

ld ∈ [0, uK).

Due to the time span of the transmit and receive filters, the CIR coefficients, {h
nT
[l]}uLc−1

l=0 ,

are correlated, even though the underlying channel might undergo uncorrelated scattering. The

correlation coefficient, cn[l1, l2] = E
[
h

nT
[l1]h

∗
nT
[l2]

]
, can be calculated as [18, eqn. (17)].

cn[l1, l2]=

∫ +∞

−∞
Rϕ(l1T2 − τn0 − τ)R∗

ϕ(l2T2 − τn0 − τ)ζ(τ)dτ, (5.8)

where ζ(τ) is the power delay profile of the physical channel, and Rϕ(t) is the convolution of the

transmit and receive filters.

After the removal of the CP, the received symbols can be written in a matrix form as

y
T
=

√
Es
R

N∑
n=1

H
nT
· xn + z

T
, (5.9)

where y
T

= [y
T
[0], · · · , y

T
[uL − 1]]T ∈ CuL×1, z

T
= [z

T
[0], · · · , z

T
[uL − 1]]T ∈ CuL×1, H

nT
=

[hn,1,hn,u+1, · · · ,hn,(L−1)u+1] ∈ CuL×L, with hn,k ∈ CuL×1 being the k-th column of a circulant

matrix Hn ∈ CuL×uL. The first column of Hn ∈ CuL×uL is hn,1 = [0Tln , hnT [0], hnT [1], · · · , hnT [ulc −

1],0TuL−ln−ulc , ]
T , and 0a is a length-a all-zero vector. With the equivalent discrete-time CIR rep-

resentation, mis-alignments among users are represented in the form of time shifts in the columns

of the circulant channel matrix Hn, and the timing phase offsets are incorporated in the statistical

properties of the discrete-time CIR hnT [l]. They might negatively affect system performance if not
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handled properly. We will study their impacts on system performance through frequency-domain

analysis.

Due to the time span of the receive filter and the oversampling operation, the time-domain

noise vector is also correlated. The vector, z
T
, is zero-mean complex Gaussian distributed with

a covariance matrix Rz
T

= E(z
T
zH

T
) = N0Rϕ ∈ CuL×uL, where the (m,n)-th element of Rϕ is

∫ +∞
−∞ ϕ2((m− n)T2 + τ)ϕ∗

2(τ)dτ [19, Lemma 2].

The uL-point DFT is applied to the vector y
T

to convert the signal to the frequency domain as

y
F
=

√
Es
R

N∑
n=1

H
nF
· dn + z

F
, (5.10)

where y
F
= F

uL
y

T
and z

F
= F

uL
z

T
are the frequency-domain signal vector and noise vector, respec-

tively, and H
nF

= F
uL
H

nT
FH

uL
∈ CuL×L is the frequency-domain channel matrix, with the (r+1, c+1)-

th element of the uL-point DFT matrix F
uL
∈ CuL×uL being

[F
uL
]r,c =

1√
uL

exp
(
−j2πr · c

uL

)
, r, c = 0, 1, 2, · · · , uL− 1. (5.11)

Due to the correlation among the noise samples in the time domain, they are still correlated in the

frequency domain. The covariance matrix of z
F

is Rz
F
= N0FuL

RϕF
H
uL

. It should be noted that due

to the on-off transmission, only RK out of the L =MK elements in dn are non-zero.

From (5.10), signals from different users are aligned in the frequency domain, even though they are

asynchronous in the time domain. The time-domain mis-alignment is incorporated in the frequency-

domain channel matrix H
nF

. The matrix H
nF

can be partitioned into a stack of u sub-matrices as

H
nF

= [GT
n0, · · · ,GT

n(u−1)]
T , where Gnv ∈ CL×L. The matrix, Gnv, is a diagonal matrix, with the

(m+ 1)-th diagonal element being [19, Corollary 1]

Gnv[m] =
exp

[
−j2π ln·(vL+m)

uL

]
√
u

×
ulc−1∑
l=0

h
nT
[l] exp

[
−j2π (vL+m) · l

uL

]
. (5.12)
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In (5.12), the relative delay, ln, in the time-domain is manifested as a phase shift in the frequency

domain as exp
[
−j2π ln·(vL+m)

uL

]
.

With the model given in (5.10) and (5.12), each dn[m] is equivalently transmitted over u sub-

channels with coefficients {Gnv[m]}u−1
v=0 . It should be noted that due to oversampling, u sub-channels

at the receiver occupy the same bandwidth as one sub-channel at the transmitter. However, the

relative alignment of the sub-channels from different users remain unchanged. Consider the example

in Fig. 5.1, with the block diagonal structure of H
nF

, the sub-channels at the receiver side can

be obtained by duplicating the diagram in Fig. 5.1 u times in the frequency domain, then reduce

the bandwidth of each sub-channel by a factor of u. Since each symbol is repeated R times at the

transmitter, each modulated symbol, snk, is equivalently transmitted over uR sub-channels in the

frequency domain. Therefore, frequency diversity is achieved with the proposed FD-OOAT scheme.

The uR sub-channels spread over the entire frequency band to maximize the frequency diversity.

We will quantify the frequency diversity order by resorting to an analytical performance bound in

Section 5.5.

5.3.2 Collision Tolerance

With the frequency-domain system representation in (5.10), the received information at the m-th

sub-channel at the BS is the superposition of a set of signals, {dn[m]}Nn=1. The value of dn[m] is 0 if

pn[im] = 0. Therefore, only a subset of the users will collide at the m-th sub-channel. The collision

order at the m-th sub-channel is Nc[m] =
∑N

n=1 pn [im]. The collision order of the network is then

defined as Nc = maxmNc[m]. We have Nc = 2 for the system shown in Fig. 5.1. For a system with N

users, R repetitions, and M sub-channels per symbol, there are exactly NR repetitions transmitted

over M sub-channels, thus it can be easily shown that the minimum collision order is Nc =
⌈
NR
M

⌉
,

with a� being the smallest integer no less than a.

94



There are many different ways to construct the position vectors to achieve the minimum collision

order. Here we present one simple construction scheme through cyclic shifting.

Definition 1 : Given M and R, define the position vector of the first user as p1 = [1TR,0
T
M−R]

T ,

where 1R is an all-one vector of length R. The position vector of the n-th user can then be obtained

by cyclically shifting p1 to the right by (n− 1)R positions, for n = 2, · · · , N .

Lemma 2 : Consider an FD-OOAT system with N users, R repetitions, and M sub-channels per

symbol. If the position vectors are constructed with the cyclic shifting scheme described in Definition

1, then the collision order of the system is Nc =
⌈
NR
M

⌉
.

Proof: Without loss of generality, consider sub-channel with index 0. Based on the cyclic

shifting construction method, user n will transmit on sub-channel 0 if and only if there exists a

non-negative integer q such that

(n− 1)R ≤ qM ≤ (n− 1)R +R− 1 < nR. (5.13)

Since q is an integer, the inequality in (5.13) can be alternatively written as

(n− 1)R

M
� ≤ q < nR

M
�. (5.14)

For a system with N users, we thus have max(q) ≤ NR
M
�−1 < NR

M
�. On the other hand, NR

M
�−1 ≤

 (N−1)R
M

� ≤ max(q). Therefore max(q) = NR
M
� − 1. The minimum value of q is 0. Therefore there

are at most NR
M
� values of q satisfying the inequality. Each value of q uniquely determines an n,

thus there are at most NR
M
� users transmitting at sub-channel 0. The collision orders on the other

sub-channels can be bounded in a similar manner by using the cyclic shifting property.

It should be noted that the construction described in Definition 1 is not unique. We can get a set

of position vectors that achieve the minimum collision order by performing the same permutations on
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all the position vectors obtained from Definition 1. Since all users permutate their position vectors

following the same pattern, the relative collision relationship among the N users remains unchanged.

The oversampled FD-OOAT scheme contributes to the performance improvement of the wireless

network from the following perspectives. First, the on-off transmission across the sub-channels will

reduce the collision order. Second, the transmission of R identical sub-symbols with oversampling

results in a uR-dimensional received signal in the frequency domain, which can be used for the

detection of the Nc-dimensional signal in the space domain. Third, frequency diversity is achieved by

transmitting the k-th symbol in uR sub-channels. Fourth, the relative delays among the users in the

time domain are represented as phase shifts in the frequency domain, thus the user mis-alignment

does not affect the collision order in the frequency domain. It should be noted that user mis-alignment

has significant impacts on collision orders for the original time-domain OOAT [10].

5.4 Collision Resolution with Optimum and Sub-optimum Detections

In this section, optimum and sub-optimum detectors are developed for the oversampled FD-OOAT

system to resolve the collisions among the users and to collect the inherent frequency diversity. The

detectors do not require precise synchronizations among the users. The complexity of the receiver is

also studied.

5.4.1 Muti-user Detection

Since the time-domain mis-alignment among the users does not affect the user alignment in the

frequency domain as shown in Fig. 5.1, the k-th symbol from one user will only interfere the k-

th symbols from the other users. This is different from the time-domain OOAT [10], where the

k-th symbol from one user might interfere adjacent symbols from the other users due to the signal

mis-alignment in the time-domain.
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The k-th symbols from all the N users, {snk}Nn=1, can be jointly detected by using a block of

uM received signal samples rk = [yT0 , · · · ,yTu−1]
T ∈ CuM×1 with yv = [y

F
[vL + k], y

F
[vL + K +

k], · · · , y
F
[vL+(M − 1)K + k]]T ∈ CM×1. The vector rk defined above is obtained by extracting uM

elements from the frequency domain vector y
F
, and it can be alternatively represented as

rk = BkyF
, (5.15)

where Bk ∈ BuM×uL is obtained by extracting uM rows from a size-uL identity matrix IuL. The

indices of the extracted rows are vL+mK + k, for v = 0, · · · , u− 1 and m = 0, · · · ,M − 1.

From (5.10), we have

rk =

√
Es
R

Hk · sk +wk, (5.16)

where sk = [s
1k
, s

2k
, · · · , s

Nk
]T ∈ SN×1 and wk = BkzF

∈ CuM×1 are the modulation symbol vector

and noise vector, respectively, Hk = [GT
0 , · · · ,GT

u−1]
T , and Gv ∈ CM×N is the frequency-domain

channel matrix with the (m+ 1, n)-th element being pn[m]Gnv[mK + k].

Since the elements of wk are extracted from z
F
, they are mutually correlated with the covariance

matrix Rwk
= N0BkFuLRpF

H
uLB

H
k . The covariance matrix might be rank deficient. Define the

pseudo-inverse of 1
N0

Rwk
as

Φk = VkΩ
−1
k VH

k ∈ CuM×uM, (5.17)

with

Vk = [vk1,vk2, · · · ,vkuk ] ∈ CuM×uk (5.18a)

Ωk = diag[ωk1, ωk2, · · · , ωkuk ] ∈ Cuk×uk , (5.18b)

where uk is the number of non-zero eigenvalues of 1
N0

Rwk
, Ωk is a diagonal matrix, with the elements,

{ωki}uki=1, being the non-zero eigenvalues of 1
N0

Rwk
, and {vki}uki=1 are the corresponding orthonormal

eigenvectors.
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Define the noise whitening matrix Dk = Ω
−1/2
k VH

k . Applying Dk on both sides of (5.16) leads to

an equivalent system

r̄k =

√
Es
R

H̄k · sk + w̄k, (5.19)

where r̄k = Dkrk, H̄k = DkHk, and w̄k = Dkwk. The covariance matrix of the noise vector, w̄k,

in the equivalent system can be calculated as Rw̄k
= DkRwk

DH
k = N0Iup . Therefore, the original

system in (5.16) with uM outputs and a colored noise is converted into an equivalent system with

uk outputs and a white noise.

The optimum maximum likelihood (ML) detection of (5.19) is

ŝk = argmin
sk∈SN

(
r̄k −

√
Es
R

H̄ksk

)H (
r̄k −

√
Es
R

H̄ksk

)
. (5.20)

The ML detection requires the exhaustive search of a set of SN possible signal vectors. The complexity

of the optimum detector grows exponentially with the modulation level S and the number of users

N .

A low-complexity detection algorithm is presented here to balance the performance-complexity

tradeoff. The sub-optimum algorithm is developed by employing an iterative soft input soft output

(SISO) block decision feedback equalizer (BDFE) [20], which performs soft successive interference

cancellation (SSIC) among the N symbols in sk.

The soft input to the iterative BDFE equalizer is the a priori probability of the symbols, P (snk =

Si), for n = 1, · · · , N and i = 1, · · · , S, where Si ∈ S. The a priori information is obtained from the

previous detection round with an iterative detection method. The soft output of the equalizer is the

a posteriori probability of the symbols, P (snk = Si |̄rk), for n = 1, · · · , N and i = 1, · · · , S. With the

soft output at the equalizer, define the a posteriori mean, ŝnk, and the extrinsic information, βnk[i],
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of the symbol sn(k) as

ŝnk =
S∑
i=1

P (snk = Si |̄rk)Si (5.21a)

βnk[i] = logP (snk = Si |̄rk)− logP (snk = Si). (5.21b)

The a posteriori mean, ŝnk, is used as soft decisions for the SSIC during the SISO-BDFE process.

Details of the SISO-BDFE detection can be found in [20].

In the proposed sub-optimum detection, the SISO-BDFE with SSIC will be performed iteratively.

At the first iteration, the a priori probability is initialized to P (snk = Si) = 1
S
. The extrinsic

information at the output of the v-th iteration will be used as the soft input of the (v+1)-th iteration

as P (snk = Si) = cnk exp[βnk[i]], where cnk is a normalization constant to make
∑S

i=1 P (snk = Si) = 1.

At the final iteration, hard decision will be made based on the a posteriori probability generated by

the SISO-BDFE as

ŝnk = argmax
Si∈S

P (snk = Si |̄rk). (5.22)

Simulation results show that the performance of the iterative detection algorithm usually con-

verges after 4 iterations. The sub-optimum iterative detection algorithm can achieve a performance

that is very close to its optimum counterpart, but with a much lower complexity.

5.4.2 Complexity Analysis

The complexity of the proposed oversampled FD-OOAT scheme is mainly contributed by the op-

erations at the receiver, because the transmitter only involves simple linear operations. Thus here

we only consider the complexity at the receiver side. The complexity is measured by the number of

complex multiplications (CM). For BDFE detection with u = 1, the complexity is on the order of

O(MN2) [23]. When u > 1, the complexity of the whitening operation is on the order of O(u3M3),

and the complexity of the BDFE is on the order of O(uMN2). Thus the overall complexity of the
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oversampled system with BDFE is on the order of O(uMN2 + u3M3). For the optimum detection

with ML detector, the computational complexity is on the order of O(SN + u3M3), where the first

term is due to the exhaustive search and the second term is due to the noise whitening operation. The

complexity of the ML detection grows exponentially with the constellation size S and the number of

users N , yet the complexity of the BDFE detectors scales only with N2. In addition, the complexity

of the oversampled system is slightly higher than that of the system with u = 1. We will show

through both theoretical analysis and simulations that u = 2 is sufficient to render the optimum per-

formance for a system with at most 100% excessive bandwidth. Therefore the complexity difference

between systems with u = 1 or u = 2 is very small. However, it will be shown through simulations

that the oversampled systems can achieve significant performance gains over their non-oversampled

counterparts.

5.5 Performance Analysis

Theoretical analysis is performed in this section to quantify the impacts of timing phase offsets on

the performance of the proposed FD-OOAT scheme.

5.5.1 An Analytic Performance Lower Bound

An analytic performance lower bound on the bit-error rate (BER) of the proposed frequency-domain

CT-MAC scheme with binary phase shift keying (BPSK) is developed by employing the genie-aided

detector [21], where a genie provides side information of the symbols from all other users such that

interference-free detection can be performed. The genie-aided bound is the same as the exact BER

of a single user system, because it assumes that interferences from all other users can be removed.

It will be shown through simulations that the bound is very tight even when the number of users is

large due to the collision-tolerance properties of the proposed scheme.
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With the interference-free assumption, the received signal corresponding to the k-th symbol of

the n-th user is

rnk =

√
Es
R

gnk · snk +wnk, (5.23)

where rnk = [yTn0, · · · ,yTn(u−1)]
T ∈ CuR×1 with ynv = [y

F
[vL+n1K+k], · · · , y

F
[vL+nRK+k]]T ∈ CR×1,

nr is the r-th non-zero position in pn, wnk = [zTn0, · · · , zTn(u−1)]
T ∈ CuR×1 with znv = [z

F
[vL +

n1K + k], · · · , z
F
[vL + nRK + k]]T ∈ CR×1, and gnk = [G̃T

n0, · · · , G̃T
n(u−1)]

T ∈ CuR×1 with G̃nv =

[Gnv[n1K + k], · · · , Gnv[nRK + k]]T ∈ CR×1 being the channel coefficient vector.

From the system model in (5.23), R repetitions of each symbol is equivalently transmitted over

uR sub-channels, which is equivalent to a single-input multiple-output (SIMO) system. The SIMO

system has correlated channel taps and is corrupted by colored noise.

The channel coefficient vector, gnk, can be represented as

gnk =
√
LBnk · FuL

· hn,1, (5.24)

where hn,1 is the first column of the circulant time-domain channel matrix Hn, and Bnk ∈ BuR×uL

is a binary matrix, with the (vR + r, vL + nrK + k + 1)-th element being 1, for r = 1, · · · , R,

v = 0, · · · , u− 1, and all other elements of Bnk being zero.

The auto-correlation matrix, Rnk = E[gnkg
H
nk], can then be calculated as

Rnk = LBnkFuL
Rh̃nF

H
uL
BT
nk, (5.25)

where Rh̃n = E(hn,1h
H
n,1) is the auto-correlation matrix of the time-domain CIR vector. Rh̃n can be

written as a block matrix as

Rh̃n =

⎡
⎢⎢⎢⎢⎢⎢⎣

0ln×ln 0ln×ulc 0ln×lr

0ulc×ln Rhn 0ulc×lr

0lr×ln 0lr×ulc 0lr×lr

⎤
⎥⎥⎥⎥⎥⎥⎦
, (5.26)
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where lr = L− ln − ulc, and the (l1, l2)-th element of Rhn ∈ Culc×ulc is cn[l1, l2] defined in (5.8).

The covariance matrix Rwnk
of the colored noise wnk can be represented as

Rwnk
= N0BnkFuL

RϕF
H
uL
BT
nk. (5.27)

The covariance matrix might be rank deficient. Define the pseudo-inverse of the noise covariance

matrix Rwnk

R+
wnk

= UnkΛ
−1
nkU

H
nk ∈ CuR×uR, (5.28)

with

Unk = [unk,1,unk,2, · · · ,unk,vk ] ∈ CuR×vk (5.29a)

Λnk = diag[λnk,1, λnk,2, · · · , λnk,vk ] ∈ Cvk×vk , (5.29b)

where vk is the number of non-zero eigenvalues of Rwnk
, Λnk is a diagonal matrix with {λnk,i}vki=1 being

the non-zero eigenvalues of Rwnk
, and {unk,i}vki=1 are the corresponding orthonormal eigenvectors.

Define the noise whitening matrix Dnk = Λ
−1/2
nk VH

nk. Applying Dnk to both sides of (5.28) yields

an equivalent system

r̄nk =

√
Es
R

ḡnk · snk + w̄nk, (5.30)

where r̄nk = Dnkrnk, ḡnk = Dnkgnk, and w̄nk = Dnkwnk with the covariance matrix of w̄nk being

Rw̄nk
= DnkRwnk

DH
nk = N0Ivk .

The SNR of (5.30) can be written as

γ = gHnkR
+
wnk

gnk
γ0
R
, (5.31)

where γ0 = Es

N0
is the SNR without fading. For systems with BPSK and Rayleigh fading, the error

probability for snk is [12]

Pnk(E) =
1

π

∫ π
2

0

L̃nk∏
r=1

[
1 +

δnkrγ0
R sin2 θ

]−1

dθ, (5.32)
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where L̃nk is the rank of the product matrix, DnkRnkD
H
nk, and δnkr, for r = 1, · · · , L̃nk, are the

corresponding non-zero eigenvalues. A closed-form expression of (5.32) can be obtained through

partial fraction expansion. In case all the eigenvalues are unique, which is the case for most practical

systems, the closed-form expression of (5.32) can be written as

Pnk(E) =
1

2

L̃nk∑
r=1

L̃nk∏
l=1,l �=r

δnkr
δnkr − δnkl

[
1−

√
δnkrγ0

R + δnkrγ0

]
(5.33)

The average BER can then be calculated as

P (E) =
1

NK

N∑
n=1

K∑
k=1

Pnk(E). (5.34)

In the above analysis, the order of multipath diversity is L̃nk, which is the rank of DnkRnkD
H
nk.

The matrix Rnk corresponds to correlation of the frequency domain channel coefficients, and DH
nkDnk =

R+
wnk

is the pseudo-inverse of the noise covariance matrix, Rwnk
.

The off-diagonal elements of the matrix Rwnk
are contributed by the correlation of the colored

noise. The uR elements in the noise vector, wnk, are extracted from the size-uL frequency-domain

noise vector z
F

based on the transmission pattern pn, and there is at least K sub-channels between

any two samples in wnk. As a result, the mutual correlation between the samples in wnk is usually

very small. To measure the mutual correlation of the samples in wnk, define a metric

ρ =
1

NK

N∑
n=1

K∑
k=1

‖R′
wnk
‖2

‖Rwnk
‖2 , (5.35)

where R′
wnk

is a diagonal matrix obtained by setting all off-diagonal elements of Rwnk
to 0, and ‖A‖2

is the Frobenius norm of the matrix A. The metric 0 ≤ ρ ≤ 1 measures the percentage of energy on

the diagonal of Rwnk
, and ρ = 1 means that Rwnk

is a diagonal matrix. Table 1 shows the values of

1− ρ with u = 2, M = 12, R = 2, and various values of K. It is clear that ρ is very close to 1, and

the difference between ρ and 1 decreases as K increases. The results in Table 1 demonstrate that
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Table 5.1: The metric 1− ρ under various values of K (M = 12, R = 2 and u = 2).
K 1 10 20 50 100
1−ρ 4.9×10−3 2.3×10−4 8.9×10−5 4.0×10−5 1.8×10−5

the off-diagonal elements of Rwnk
are negligible compared to its diagonal elements. Therefore, the

mutual correlation among the noise samples is very small or negligible.

If we ignore the off-diagonal elements of Rwnk
and approximate the noise vector wnk as white

noise with correlation matrix R′
wnk

, then we can simplify the error performance analysis. With the

white noise assumption, the SNR in (5.31) can be approximated by

γ′nk =
γ0
R

u−1∑
v=0

R∑
r=1

|Gnv[nrK + k]|2φnk[vR + r], (5.36)

where φnk[r] = q−1
nk [r] if qnk[r] �= 0 with qnk[r] being the r-th diagonal element of Rwnk

, and φnk[r] =

0 otherwise. The error probability in (5.32) and (5.34) can then be approximated by using the

eigenvalues of the product matrix D′
nkRnkD

′H
nk , with D′

nk = diag
{
φ
1/2
nk [0], · · · ,

φ
1/2
nk [uR− 1]

}
being a diagonal matrix. The BER results calculated with the white approximation

in (5.36) is very close to the exact genie-aided bound in (5.32), from our simulation since ρ is very

close to 1.

5.5.2 Impacts of Relative Delays

In this subsection, a theoretical framework is provided to study the impacts of the relative delays

among the users on the performance of the proposed FD-OOAT scheme. From the analysis in the

previous subsection, the performance of the system is dominated by the statistical properties of the

SNR γ′nk defined in (5.36), which in turn depends on the squared amplitude of the channel coefficients,

|Gnv[m]|2. It should be noted that the power and the auto-correlation of the noise components are

independent of the relative delays τn as evident in (5.27).

The relative delay can be expressed as τn = lnT2 + τn0, where ln represents the mis-alignment
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among the asynchronous users, and τn0 ∈ [0, T2] is the timing phase offset of the sampler. It is clear

from (5.12) that ln has no impact on the squared amplitude |Gnv[m]|2. Next we will study the impact

of τn0 on |Gnv[m]|2.

Define the discrete-time Fourier transform (DTFT) of the T2-spaced discrete-time CIR, h
nT
[l], as

H
nT
(f) =

ulc−1∑
l=0

h
nT
[l]e−j2πlf , 0 ≤ f ≤ 1 (5.37)

Since h
nT
[l] = hnc(lT2 − τn0), based on the sampling theorem, the DTFT can be expressed as

H
nT
(f) =

1

T2

∞∑
i=−∞

Hnc

(
f − i

T2

)
exp

(
−j2πτn0f − i

T2

)
, (5.38)

where Hnc

(
f
T2

)
is the Fourier transform of the CIR hnc(t).

From (5.12), (5.37), and (5.38), we can write the frequency-domain channel coefficient, Gnv[m],

as

Gnv[m] =
exp

(
−j2π ln·(vL+m)

uL

)
T2
√
u

×
∞∑

i=−∞
Hnc

(
vL+m

uLT2
− i

T2

)
exp

(
−j2πτn0 vL+m−uLi

uLT2

)
. (5.39)

The CIR, hnc(t), includes the effects of the physical channel and the transmit and receive filters.

From (5.5), we have

Hnc

(
f

T2

)
= P1

(
f

T2

)
Gn

(
f

T2

)
P2

(
f

T2

)
, (5.40)

where Pi
(
f
T2

)
and Gn

(
f
T2

)
are the Fourier transforms of ϕi(t) and gn(t), respectively. If the roll-

off factor of the transmit and receive filters is α, then the frequency domain support of Pi
(
f
T2

)
is∣∣∣ fT2

∣∣∣ ≤ 1+α
2T1

, or |f | ≤ 1+α
2u

. All practical systems have at most 100% excessive bandwidth, i.e., α ≤ 1.

Therefore, Hnc

(
f
T2

)
= 0 for |f | > 1

u
.

5.5.2.1 u = 1

For a system without oversampling, we have T1 = T2, and the frequency domain support of Pi
(
f
T1

)
and Hnc

(
f
T1

)
are | f

T1
| < 1+α

2T1
. In this case, due to the excessive bandwidth of the transmitted signal
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when α > 0, the sampling operation at the receiver causes spectrum aliasing as shown in (5.38) and

(5.39). It is apparent from (5.39) that the frequency domain channel coefficient is a function of τn0.

Therefore, the performance of the system with u = 1 will be affected by the timing phase offset τn0.

5.5.2.2 u ≥ 2

The frequency domain support of Pi
(
f
T2

)
and Hnc

(
f
T2

)
are | f

T2
| < 1+α

2uT2
≤ 1

2T2
for α ≤ 1. Therefore,

the sampling rate 1
T2

is at least twice as much as the signal bandwidth, thus there is no spectrum

aliasing after the sampling operation. The frequency-domain channel coefficient in (5.39) can be

simplified to

Gnv[m] =
exp

(
−j2π ln·(vL+m)

uL

)
T2
√
u

×Hnc

(
vL+m

uLT2

)
exp

(
−j2πτn0 vL+m

uLT2

)
. (5.41)

The squared amplitude of the channel coefficient can then be expressed as

|Gnv[m]|2 = 1

T2
√
u

∣∣∣∣Hnc

(
vL+m

uLT2

)∣∣∣∣
2

. (5.42)

It is interesting to note that |Gnv[m]|2 is independent of the user mis-alignments ln or the timing

phase offset τn0. Since the system performance is dominated by the squared amplitude of the channel

coefficient as shown in the SNR defined in (5.36), the user mis-alignments or timing phase offset has

a very small, if any, impact on the performance of the system when u ≥ 2. Specifically, for systems

with at most 100% excessive bandwidth, an oversampling factor of 2 is sufficient to avoid spectrum

aliasing at the receiver, thus removes the impacts of τn0. The above analysis is corroborated by

simulation results with both optimum and sub-optimum detectors.

5.6 Simulation Results

Simulation results are presented in this section to demonstrate the performance of the oversam-

pled FD-OOAT scheme with the optimum or low-complexity detection. The effects of time-domain
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oversampling and the timing phase offset on the system performance are also studied in this section.

In the simulation examples, the sample period at the transmitter is set to T1 = 3.69 μs, and RRC

filters with a roll-off factor α = 1.0 is used for both the transmit and receive filters. The relative

delays among the users, τn, is uniformly distributed between [0, KT1] with K = 50 unless stated

otherwise. The frequency-selective fading channel follows the Typical Urban (TU) power delay profile

(PDP) [22].

Fig. 5.2 shows the BER results of the proposed CT-MAC system under various system config-

urations. There are M = 12 sub-channels per symbol and each symbol is transmitted with R = 2

repetitions. The sub-optimum BDFE detection is performed with 4 iterations. The analytical results

are obtained with both (5.33) and the white approximation as in (5.36), and the two results overlap.

Only the one obtained with (5.33) is shown in the figure. We have the following observations about

the results. First, when N = 1, the analytical and simulation results match perfectly for both u = 1

and 2. Second, with the BDFE receiver, increasing N has less impacts on the oversampled system

with u = 2 than the system with u = 1. At BER = 2× 10−3, increasing N from 1 to 10 results in a

1.5 dB and a 0.8 dB performance loss for systems with u = 1 and u = 2, respectively. This indicates

that the proposed FD-OOAT system can operate properly even when there are a large number of

users and collisions. In addition, when u = 2 and N = 10, the sub-optimum BDFE receiver achieves

almost the same performance as the optimum ML receiver, but with a much lower complexity. Third,

the oversampled system consistently outperforms the system without oversampling. The performance

improvement is contributed by the additional multipath diversity and the insensitivity to the timing

phase offset due to the oversampling operation. At BER = 2 × 10−3 and N = 10, the oversampled

system outperforms its non-oversampled counterpart by 5.6 dB when BDFE is used.

The effects of the receiver timing phase offset on the system performance are studied through
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Figure 5.2: BER performance comparison of systems with M = 12 sub-channels per symbol, R = 2
repetitions, and different number of users.

simulations in Fig. 5.3 for single-user systems and Fig. 5.4 for multi-user systems, respectively. In

Fig. 5.3, there are M = 12 sub-channels per symbol, and each symbol is transmitted with R = 2

repetitions. To have a better understanding on the effects of timing phase offset, it is assumed that

τn0 is fixed at 0 or 0.5T2 in Fig. 5.3. The performance of the system with u = 1 varies as τn0 changes,

yet the performance of the oversampled system is independent of τn0.

A similar observation is obtained in Fig. 5.4 for systems with multiple users, where the BER

is shown as a function of τn0. The mis-alignment among the asynchronous users, ln, is uniformly

distributed between [0, uK]. The Eb/N0 is 10 dB. The BER of the oversampled system stays constant

regardless of the values of τn0, for both the optimum and sub-optimum algorithms with different

number of users. On the other hand, the BER of the system with u = 1 is a function of τn0.

The simulation results corroborate the theoretical analysis that twice oversampling is sufficient to
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Figure 5.3: The effects of the receiver timing phase offset on the BER performance of the system
(There are N = 1 user, M = 12 sub-channels per symbol, and R = 2 repetitions).

remove the effects of τn0 for a system with at most 100% excessive bandwidth. Therefore, the

proposed oversampled FD-OOAT scheme can operate effectively at the presence of both multi-user

interference, user mis-alignment, and timing phase offset.

Fig. 5.5 demonstrates the impacts of the number of iterations on the frame error rate (FER) with

the sub-optimum BDFE detector through simulation results. There are N = 10 active users, M = 12

sub-channels per symbol, R = 2 repetitions. As seen from the figure, the largest performance gain

is achieved at the second iteration and the performance converges at the fourth iteration for systems

with u = 1 or u = 2. At the fourth iteration and FER = 4 × 10−2, the FER performance of the

oversampled system outperforms the one without oversampling by 5.6 dB, which is consistent with

the BER improvement observed in Fig. 5.2.

Fig. 5.6 shows the normalized throughput as a function of the normalized offered load for various
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Figure 5.4: BER v.s. timing phase offset (Eb/N0 = 10 dB. There are M = 12 sub-channels per
symbol, and R = 2 repetitions).

MAC schemes. For the FD-OOAT system, there are M = 10 sub-channels per symbol, and R = 2

repetitions. All other systems have M = 10 slots per frame. The normalized offered load of all

the systems is calculated as G = N
M

. The normalized throughput is defined as the amount of data

successfully delivered to the receiver per unit time per unit bandwidth. The normalized throughput

for the FD-OOAT scheme is calculated as N
M
(1− FER). Details of the calculation of the normalized

offered load and normalized throughput can be found in [10]. For the slotted ALOHA, CRDSA, and

IRSA systems, the simulations are performed under the assumption of noise-free communication, i.e.,

the only source of errors for these systems is the unresolvable signal collisions among the users. Results

obtained under the noise-free assumption represent the best possible performance under any channel

configurations. On the other hand, the results of the proposed FD-OOAT systems are obtained in a

frequency-selective fading channel with Eb/N0 = 15 dB. As shown in the figure, the slotted ALOHA,
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Figure 5.5: FER performance of systems with the BDFE receiver (There are N = 10 users, M = 12
sub-channels, and R = 2 repetitions).

CRDSA and IRSA achieve their respective peak throughputs when G ≤ 1, and the throughputs drop

dramatically when G > 1. This is similar to a traditional orthogonal frequency division multiple

access (OFDMA) system, where the maximum number of users supported is the same as the number

of sub-channels. The proposed FD-OOAT scheme achieves the maximum throughput 1.03 bps/Hz

at G = 1.6 when u = 1. For the oversampled system with u = 2, the maximum throughput 2.06

bps/Hz is achieved at G = 2.6. Therefore, the FD-OOAT system can be overloaded by supporting

more users than the number of sub-channels, yet all the other MAC or OFDMA schemes must

operate with G ≤ 1. Employing FD-OOAT increases both the number of users supported and peak

throughput. In addition, time-domain oversampling allows the FD-OOAT system to support 60%

more users than the system with u = 1, and improves the throughput by 100%.
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Figure 5.6: Normalized throughput v.s. normalized offered load.

5.7 Conclusions

A cross-layer CT-MAC scheme with frequency-domain OOAT and time-domain oversampling has

been proposed for broadband wireless networks operating in frequency-selective fading channels.

With the help of time-domain oversampling, the proposed scheme can operate without precise syn-

chronization, and it is insensitive to timing phase offsets between the sampling clocks at the trans-

mitter and receiver. The collision tolerance in the MAC layer was achieved by performing MUD over

the specially designed FD-OOAT signal in the PHY layer. Simulation results demonstrated that 1)

the performance of the oversampled FD-OOAT system was insensitive to user mis-alignment or sam-

pler timing phase offset; 2) significant multipath diversity gain was achieved with the oversampled

FD-OOAT scheme; 3) the proposed scheme could achieve a high spectral efficiency by supporting

a large number of simultaneous broadband users. An oversampled FD-OOAT with M sub-channels

per symbol could support up to N = 2.6M simultaneous users and has a normalized throughput
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peak at 2.06 bps/Hz with BPSK modulation.
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Chapter 6

Conclusions

This chapter summarizes the main contributions of this dissertation and lists some possible directions

for the future research.

6.1 Contributions

The contents presented in this dissertation focus on the energy efficiency and spectral efficiency for

wireless systems, and the main contributions are summarized as follows.

First, we developed an accurate FER approximation formula for quasi-static Rayleigh fading

channel, a general assumed channel model for wireless networks. The FER approximation was

obtained with a threshold-based method, and the threshold value modelled as a linear function of

the frame length in the log domain. The analytical FER approximation was expressed as an explicit

function of a large number of system parameters related to modulation, channel code, frame length,

and signal-to-noise ratio. The formula has been verified with several practical channel coding schemes

in junction with different modulation schemes. The practical channel coding schemes include a

popular convolutional code with coding rate r = 1
2
, generator polynomial [171, 133]8, and a constraint

length 7, commonly utilized in space communications; a convolutional code with coding rate r = 1
3
,

generator polynomial [557, 663, 711]8, and a constraint length 9, adopted in W-CDMA standard; the

turbo code with a rate r = 1
3

code with generator polynomials [1, 5/7, 5/7]8 and a block interleaver;

and the LDPC code with a variable coding rate irregular code with maximum 20 iteration decoding

number set and the frame length less than 3819 bits. Besides the FER approximation for single

transmission, we also developed the FER approximation for general receiver diversity systems, such
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as for the SIMO system with MRC and HARQ system with Chase combining. It shows our proposed

FER approximations can accurately predict the actual FER performances for many practical wireless

communications.

Second, the energy efficiency design has been studied for both ARQ and HARQ systmes, where the

average energy consumption per information bit is minimized. A practical energy consumption model

is firstly built considering many system parameters, including the hardware power consumption,

modulation, channel coding, and FER in the physical layer, and frame length and protocol overhead in

the media access control layer. For ARQ system, to minimize the energy consumption, the joint design

for the transmission energy and frame length has been optimized. For HARQ system with Chase

combining, to minimize the energy consumption while ensuring the QoS requirement, the transmission

energy sequence in each transmission round has been optimized. The closed-form solutions have been

derived for both ARQ and HARQ systems while minimizing the energy consumption per information

bit.

Third, the fundamental trade-off between energy efficiency and spectral efficiency has been an-

alyzed for both ARQ system and HARQ system with Chase combining. A simple but effective

new metric has been proposed to facilitate the analysis. The new metric is the normalized energy

consumption per information bit by the spectral efficiency. It shows that for both systems, the min-

imum energy consumption is achieved at the cost of spectral efficiency, and vice versa. However,

the spectral efficiency can always be largely increased while sacrificing littler energy consumption,

comparing with the minimum energy consumption case, by minimizing or reducing our proposed new

metric. Therefore, it exists the balanced trade-off between these two metrics. For ARQ system, the

closed-form solution for the joint design of transmission energy and frame length has been provided

to achieve this balanced trade-off. For HARQ system with Chase combining, to achieve the balance,
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the numerical search algorithm has been provided for the determination of the transmission energy

in each round.

Fourth, besides the above fundamental analysis for point-to-point system, we designed a frequency-

domain on-off accumulative transmission (OOAT) scheme for the network energy efficiency and spec-

tral efficiency. Due to the nature of wireless transmission channel, the interference is always existed

for wireless communications. Therefore, to achieve both high energy efficiency and spectral efficiency

for wireless networks, we take advantage of each received packet, even it is collided by interferences.

We resort to the powerful digital signal processing capability and frequency resource management

among multiple nodes to achieve this goal. It shows that each node can achieve the collision-tolerate

transmission with our proposed frequency-domain OOAT scheme, even multiple nodes transmit si-

multaneously.

6.2 Future Works

There are several possible directions for the future works, some of them we are exploring.

First, for the point-to-point system, we only fully considered the ARQ and HARQ case for

the energy efficiency, spectral efficiency, and balanced trade-off between EE and SE, where the

transmitter retransmits its own information without the help of other nodes. Therefore, it arises a

question that what is the optimum transmission scheme for either energy efficiency, spectral efficiency,

or the balanced trade-off between these two metrics, for cooperative communications. We want

to firstly investigate a basic situation, where there is only one relay node. For the relay node,

it purely help to forward the information bits from the transmitter to receiver, but not transmit

its own information bits. There are two types of basic cooperative communication, which are the

amplifier-and-forward (AF) scheme and decode-and-forward (DF) scheme. We are exploring the
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optimum transmission schemes for these two types of cooperative communication for different metrics

of performance evaluation. We will then be able to get some conclusions that in what situations

non-cooperative communication, AF cooperative scheme, or DF cooperative scheme is preferred for

different performance requirements in different scenarios.

Second, we want to extend our work to network performance evaluation, such as the network

energy efficiency, network spectral efficiency, and the balanced trade-off between the two metrics.

For non-cooperative communication, our results for ARQ and HARQ can be easily extended to

wireless networks. However, what are the optimum transmission schemes for cooperative wireless

networks with AF scheme and DF scheme? Here we will consider each relay node not only forward

the information bits from other nodes, but also transmit its own information bits to its destination.

Therefore, it arises three questions that 1) Which relay node(s) should a general node choose among

multiple potential relay nodes? 2) For each node, how many bits should be transmitted for its own

information, and how many bits should be forwarded for other nodes? 3) For each node with energy

constraint, how much energy should be assigned to transmit its own information and how much

should be utilized for forwarding information bits from other nodes?

Finally, we believe there exist advanced communication techniques can improve both the energy

efficiency and spectral efficiency. Therefore, we are also exploring some other advanced communica-

tion schemes, such as the conjunction of network coding, interference alignment management, rateless

code, and effective DSP detection algorithms.
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