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ABSTRACT 

In this thesis, a machine learning based method is proposed to predict the putt outcomes of 

golfers based on their electroencephalogram (EEG) data. The method can be used as a core 

building block of a brain-computer interface, which is designed to provide guidance to golf 

players based on their EEG patterns. The proposed method includes three steps. First, multi-

channel 1-second EEG trials were extracted during golfers’ preparation of putting. Second, 

different features are calculated such as correlation coefficient, power spectrum density and 

coherence, which are used as features for the classification algorithm. To predict golfers’ 

performance, the support vector machine algorithm is used to classify the EEG patterns into two 

categories corresponding to successful and non-successful putts. The proposed approach utilizes 

a large number of features extracted from the EEG signals, and it is capable of providing 

adequate prediction that could help golfers to improve their performances. 
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I. Introduction  

Mentally training individuals to reach their optimal performance or improve their performance 

even beyond their current skill levels is a desire of each sports field.  For the past decades, 

building biofeedback systems based on brainwave patterns is the main trend to train athletes after 

the brain wave was found to be highly associated with the event-related period. Therefore, brain 

wave analysis is needed before building such a biofeedback system.  Electroencephalogram 

(EEG) signals are popularly used brain signals that reflect the brain activity by placing electrodes 

on the scalp. It measures summation of electrical activities of thousands or even millions of 

neurons that have similar spatial orientations in the human brain (Thatcher, Biver, & M., 2004).  

Golf putting is well known as a cognitive goal-directed sports action due to the continuous 

thinking, concentration, aiming, planning, and decision-making during the preparation period. A 

large amount of research showed that golf putting performance is predictable by extracting the 

EEG signals in specific frequency bands. Recent research proposed a training method by setting 

a threshold for each EEG frequency. Once the signal frequency is higher than the threshold, the 

feedback system would encourage the golfer to putt within 1.5 seconds (Martijn Arns MS, 

Michiel Kleinnijenhuis MSc, Kamran Fallahpour , & Rien Breteler , 2008).  Prediction based on 

a threshold is propitious for applications, however, it is easy to cause misclassification due to the 

complicated variation of EEG signals and differences in successful patterns. With the purpose of 

giving an effective detection of successful pattern and precisely predicting golf performance, we 

proposed a classical machine learning algorithm -- Support Vector Machine (SVM) -- for 

analyzing EEG signals recorded during golfers’ preparation periods. After the structure of this 

classifier is set up in the neuro-feedback system, an instructive signal would be generated to 

encourage golfers to make the putt if a successful pattern is detected. Otherwise, if an 
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unsuccessful pattern is detected, it will let the golfer be more concentrated on aiming and 

planning.  

In this thesis, we will focus on the analysis of EEG signals that is collected by the preparation 

period. Four features are extracted from time domain and frequency domain. Nonlinear binary 

SVM models have been applied. In the second chapter, EEG data extraction and feature 

separation are presented. In the third chapter, details of building the SVM structure and 

parameters optimization are presented. In the fourth chapter, all experiment results are shown 

with the comparison between features and SVM models.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

3 
 

II. EEG data analysis 

A. EEG introduction   

We begin with the fact that human brain weighs approximately 2.5 pounds, consumes 

approximately 40% to 60% of blood glucose, and consumes the same amount of oxygen as our 

muscles for 24 hours a day. A large amount of energy has been used to produce electricity for 

supporting the actions of small and large groups of neurons. Each neuron needs to constantly be 

recharged (Tryer,L., 1988; Niedermeyer & Silva, 2012). 

EEG is the recording of electrical action by placing multiple electrodes on the scalp. It measures 

voltage variations caused by ionic current flows within the neurons in the brain  (Niedermeyer & 

Silva, 2012). Scalp EEG recording shows the electrical potentials difference between two 

locations nearby the electrode on the scalp. However, most of the human cerebral cortex is 

hidden deeply beneath the scalp. It is hard to record the immediate activity from small groups of 

neurons, and the waveforms recorded from the electrodes on the scalp represent the cortical 

potential differences that come from the synchronous activity created by large groups of neurons 

(Tatum, Husain, Benbadis, & Kaplan, 2007). 

In this chapter, we are aiming to find out the characteristics of EEG data which have a potential 

correlation with the golfers’ performances; the method of extraction and calculation will be 

presented. 

B. Literature review  

In the last few decades, people have had increasing interest in brain waves gathered from human 

scalps, which is Electroencephalography (EEG) data. It has been a necessary factor in 

performance analysis of goal-directed sports such as shooting (Hillman, Apparies, Janelle, & 

Hatfield, 2000), basketball (Chuanga, Huangb, & Hunga, 2013), and golf (Muangjaroen & 
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Wongsawat, 2012). In addition, EEG feedback can potentially enhance the performance of those 

sports that need a perfect physical balance control, such as ice-skating and skiing, by improving 

the concentration and attention (Hammond, 2007). Particularly, golf putting is well known as a 

cognitive goal-directed task because of the continuous thinking, concentration, planning, and 

decision making during the preparation period, and it has been studied extensively in terms of 

EEG signals (Babiloni.C, et al., 2008). EEG-based Brain Computer Interface (BCI) systems have 

been developed to improve the rate of successful putts by generating a continue signal that can 

help a golfer decide if he is ready to give a relatively successful putt (Martijn Arns MS, Michiel 

Kleinnijenhuis MSc, Kamran Fallahpour , & Rien Breteler , 2008). 

Generally, EEG data is divided into several bands in frequency domain: they are delta (1 – 4 Hz) 

theta (4 -7Hz), alpha (8 -12 Hz), beta (13 - 30 Hz), and gamma (30 -100 Hz) frequency bands. 

Normally, the amplitude in delta is relatively higher than other bands. It is always associated 

with deep sleep, and it has been applied for sleep stage research, while the Gamma band waves 

are shown during the short-term memory corresponding to recognized objects, sounds, or 

sensation (Kirmizi-Alsana, et al., 2006).Because of the weak relationship between golf putt and 

these two band waves, we would not consider the information in these two bands for this project. 

However, a large number of evidence showed that the theta band (4-7Hz), alpha band (8-12Hz) 

and beta band (13-30Hz, some articles separate this band into beta1 (13-20Hz) and beta2(21-30)) 

wave power has potential value for direct attention. Hillman et al proved the significant 

difference of power in theta band has showed between expert and novice rifle shooters, 

especially during the aiming process (Hillman, Apparies, Janelle, & Hatfield, 2000). In recent 

research, Lan-Ya et al. showed that relatively higher power in theta band has been found during 

the aiming processes for successful basketball throws (Chuanga, Huangb, & Hunga, 2013).  In 
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addition, for golf research area, Piyachatet al. proved that higher theta and alpha power are found 

in diverse channels in successful putt than unsuccessful putt (Muangjaroen & Wongsawat, 2012). 

Another research project displays that an increase in frontal-midline theta power appears in 

expert golfers in a golf putting task compared to novices. Therefore, the higher theta power 

might give a rise to occurrence of high focused attention on the performance (Baumeister, 

Herwegen, Liesen, & Weiss, 2007). In this case, we would only consider the information carried 

in 4-30 Hz, which covers theta, alpha, and beta band in the following analysis.  

Beside EEG power over three frequency bands, coherence over the frequency bands is another 

feature in EEG-based analysis which has been used widely (Babiloni, et al., 2011; Babiloni, 

Brancucci, Vecchio, Arendt-Nielsen, & Chen, 2006; Rilk, Soekadar, Sauseng, & Plewnia, 2011; 

Davey, Victor, & Schiff, 2000). It is an extension of Pearson’s correlation coefficient to complex 

number pairs. In EEG-based analysis, it can measure the relationship between EEG signals 

simultaneously recorded from two different electrode sites on the scalp at a given frequency and 

reflect the functional coupling among brain areas (Shaw, 1981; Babiloni, Brancucci, Vecchio, 

Arendt-Nielsen, & Chen, 2006). It may be more effective than PSD in inter-hemisphere analysis 

changes caused by cognitive tasks (Shaw, 1981). Recent research reported that a higher alpha 

coherence is associated with a better performance in a unimanual visuomotor task. At the same 

time, increase of beta1 coherence of centroparietal region and beta2 coherence of frontal region 

were observed (Rilk, Soekadar, Sauseng, & Plewnia, 2011).  The coherences of 12 combinations 

of 10 electrodes in the movement period and the baseline period were calculated and the 

difference of these two coherences in alpha1 and alpha2 bands is relatively higher in successful 

putting than unsuccessful putting (Babiloni, et al., 2011). 
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In this chapter, amplitude in time domain, correlation in time domain, power spectrum density in 

frequency domain (4-30 Hz), and coherence in frequency domain (4-30Hz) will be analyzed. 

C. EEG data extraction 

Objects and data                                                      

26 golfers have been recruited which include expert and novice, and their age range is from 18 to 

27. All golfers were asked to give 40 putts, and they were told to relax after they finished the 

first 20 putts. The EEG data was recorded with the movement of the club. A significant spike 

occurred in the club signals, and spikes are created with sudden changes in acceleration in a 

couple milliseconds (See Figure 2.1).  Suppose the moment that spike showed is 0s; -1s – 0s is 

considered as the putting period that includes the club moving backward and then hitting the ball. 

Before -1s-0s, golfers make preparation in their minds until they start moving the putter to stroke 

the ball. Therefore, the EEG data from -2 second to -1 second can reveal golfers’ brain states in 

preparation that are most correlated to their putting performance. In the following analysis, we 

will analyze the one second signals and try to find the correlation in different areas of the brain.   

 

Figure2.1 club data with a spike 
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Golfers’ putting performance is measured by two criteria. One straightforward and popular 

criterion is the error in centimeters which is the distance of the ball away from the hole. The 

other is perception of self-confidence, concentration, and quality of each stroke evaluated by 

golfers themselves (Crews, Martin, Hart, & Piparo, 1991). The perception has 10 grades from 1 

(worst) to 10 (best). The performance of each golf putt is classified into either success or failure 

based on both cm errors and perception grades. In this paper, if the perception grade is higher 

than 8 and the cm error is less than 30 cm, we consider it a successful putt. Otherwise, it is 

defined as an unsuccessful or failed putt. 

EMOTIV device        

The device we used to collect EEG data is the ‘Emotiv EEG neuroheadset,’ which is made by 

Emotiv Company. It uses 14 sensors attached on the scalp to detect electric signals produced by 

the brain and transmit them wirelessly to the computer.  The 14 sensors cover the locations based 

on the International 10-20 locations (Figure 2.2). They are: FP1, F7, F3, T3, C3, P7, P3, O1, O2, 

P4, C4, T4, F4, F8, and FP2. It doesn’t include Fz, Cz, Pz, A1 and A2.The sampling rate for this 

device is 128 Hz. It is sufficient for this project since we are only interested in the 4-30 Hz EEG 

data. Figure 2.3 shows the device which could be attached on the scalp. After this device extracts 

EEG signals, they are transmitted wirelessly to the receiver which is connected with the 

computer. 



 

 

 

Figure2.2 International 10-20 system

We use EEG signals from 8 electrodes in the EEG headset which are placed at

right frontal, left temporal, right temporal, left central, right central, left parietal, and right

parietal areas, since these 8 areas cover the main regions for visuospatial and somatomotor 

processes of both the left and right brain hemispheres which are closely correlated to golf putting 

performance (Babiloni, et al., 20

T4, C3, C4, P3, and P4 according to the international 10

D. Time domain analysis 

The signals we obtain directly from the receiver 

second, with a sampling rate of 128 Hz

target period that has a relative

outside this one second will be discard

features in time domain that include

                                                 
1Figure2.2 International 10-20 system source: 
http://en.wikipedia.org/wiki/10_20_system_(EEG)#mediaviewer
2 Fig 2.3 Emotiv EPOC model 1.0 source 
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system1                              Fig 2.3 Emotiv EPOC model 1.0

We use EEG signals from 8 electrodes in the EEG headset which are placed at

right frontal, left temporal, right temporal, left central, right central, left parietal, and right

parietal areas, since these 8 areas cover the main regions for visuospatial and somatomotor 

left and right brain hemispheres which are closely correlated to golf putting 

(Babiloni, et al., 2011). The corresponding 8 scalp locations are named F3, F4, T3, 

T4, C3, C4, P3, and P4 according to the international 10-20 scalp electrode placement system

The signals we obtain directly from the receiver are time sequences with 128 sample

, with a sampling rate of 128 Hz. Since the second to last second is considered 

relatively high correlation with the performance, the time sequence

be discarded in the following analysis. In this section we 

nclude amplitude and cross correlation. 

system source: 
http://en.wikipedia.org/wiki/10_20_system_(EEG)#mediaviewer        

Fig 2.3 Emotiv EPOC model 1.0 source ource:   http://emotiv.com/upload/media/1_big.jpg

 

Emotiv EPOC model 1.02   

We use EEG signals from 8 electrodes in the EEG headset which are placed at the left frontal, 

right frontal, left temporal, right temporal, left central, right central, left parietal, and right 

parietal areas, since these 8 areas cover the main regions for visuospatial and somatomotor 

left and right brain hemispheres which are closely correlated to golf putting 

The corresponding 8 scalp locations are named F3, F4, T3, 

20 scalp electrode placement system. 

with 128 samples per 

last second is considered as the 

orrelation with the performance, the time sequences 

In this section we will discuss 

/upload/media/1_big.jpg  
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Amplitude in time domain 

Figure 3.1 (a)-(d) came from Jen (one of the golfers). Different lines represent different time 

sequences from 14 channels, and the amplitudes are measured with microvolts. As we can see, 

the alterations of 14 lines have many similarities, which is because the signals we collected from 

one electrode not only come from the neurons right beneath the electrode, but are also mixed 

with the signals from neurons beneath other electrodes. 

                          

Figure2.4 (a) Quality: 10   CM Error: 0                     Figure2.4 (b) Quality: 10   CM Error: 47 

  

 Figure2.4 (c) Quality: 10   CM Error: 0                     Figure2.4 (d) Quality: 10   CM Error: 86 
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Qualities of both Figure2.4 (a) and (c) are 10, and cm errors are 0. However, the brain waves are 

totally different. For those successful putts that have different qualities and cm errors, the 

differences are even more indistinguishable.  

   

  

 Figure2.5 (a) Quality: 10   CM Error: 0                  Figure2.5 (b) Quality: 8   CM Error: 69 

 

Figure2.5(c) Quality: 10   CM Error: 0                      Figure2.5 (d) Quality: 8   CM Error: 77 

Figure 2.5 (a)-(f) came from DJ (one of the golfers), and the signals from him are more stable 

than Jen. However, it is still hard to distinguish successful and failed putts by observing the 

signals from the amplitude in time domain. This situation also happened to other golfers’ signal, 
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but we won’t show all the figures here. Because of the insignificant characteristic of time 

sequence amplitude, we do not consider it as a feature to classify the data. Another reason is that 

if we used all the time sequences, it would give 1792 amplitude values for every trials making 

the calculation cost too high. From the perspective of building an instantaneous feedback system, 

the high dimension trial calculation would cost a time lag which may provide false instruction to 

the golfer. 

Cross correlation 

Another feature that has been widely used in EEG time domain analysis and signal processing is 

cross correlation. For example, Bahcivan et al. used cross-correlation to prove the existence of 

common activity of two different locations during the epileptic seizures at a particular band 

(Bahcivan, Hopkins, Zhang, Mirski, & Sherman, 2001) . In addition, Hermanto suggested that 

cross-correlation is an important reference to measure the similarity of EEG signals that could be 

used to classify features in the brain computer interface signal processing (Hermanto, Mengko, 

Indrayanto, & Prihatmanto, 2013). 

In this project, one hypothesis is that the time sequences in successful golf putts have similar 

patterns. At the same time, there exists a relative big difference between successful golf putts and 

unsuccessful ones. If the hypothesis is supported by the real data, which means that the cross 

correlation between successful conditions would be higher than between successful and 

unsuccessful conditions. The cross correlation would be a reasonable feature that could be used 

in prediction by computing it between unknown EEG data and known successful time sequences.  

Cross-correlation has been defined by the function: 

 ������ �  	 
������  ���
�� �� , � � 0 , �1 , �2, … 1.1 
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After this introduction of definition of cross correlation, we need to decide which two signals 

would give the significant difference for support vector machine training. What we did is to 

calculate cross correlation between every trial with 10 successful trials. With the purpose of 

including all the successful features from the same person and some successful features from 

other persons, if there are no 10 successful trials for this person, the 10 successful trials with the 

closest distance to the target trial are selected. The order in the data set is fixed, so we searched 

forward to get five successful trials and backward to get another five successful trials. After we 

separately calculated the cross correlation between the target trial and reference trials, the middle 

areas were extracted from the long correlation sequence. For example, both the target time 

sequence and reference sequence have 128 values, so the total cross-correlation sequence has 

2 � 128  1 � 255 values. We only used the middle part of average cross correlation sequence, 

which is the fiftieth to the two hundredth values, for the consideration of dimensional reduction 

and sufficient overlaps between two signals.  For the convenience of viewing, we combined 8 

channels together. 

Figure 2.6 (a) represents 5 cross-correlation sequences that come from 5 successful putting of 

one golfer and figure 2.6 (b) comes from the unsuccessful putts. Five curves in the left figure 

have significant 8 peaks during 8 channels, only the fourth one is irregular. This means that most 

of the successful trial has correlation with other successful trials with the fourth one showing no 

correlation. In contrast, the five curves in the right figure are all irregular except the second one 

which gives the evidence that there are no marked correlations between successful and 

unsuccessful putting.  
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    Figure 2.6 (a) successful CC                            Figure 2.6 (b) unsuccessful CC 

However, not all the cross-correlation curves from the golfers showed significant difference. 

Figure 2.7 (a) - (b) came from another person. The second, third and fourth curves in the right 

figure have no spike in all 8 channels. Although, the number of peaks in the five curves obtained 

from cross- correlation between successful putting and reference putting is not as significant as 

those in figure 2.6 (a), they show more similarities than the correlation between unsuccessful 

putting and reference putting.  

   

    Figure 2.7(a) DANI successful CC                           Figure 2.7(b) DANI unsuccessful CC  
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Because of this characteristic, the cross-correlation sequences between target trials and reference 

successful trials are good features as the input of Support Vector Machine.  

E. Frequency domain analysis 

Power spectrum density analysis 

Fast Fourier Transform (FFT) is an algorithm to calculate the discrete Fourier transform (DFT). 

A Fourier Transform converts time domain signals to frequency domain signals; FFT is very fast 

at calculating such transformations.   

The function below shows the Discrete Fourier Transform: 

 ����  �  	 
������ �!
��"  2.2 

   
 
while ω �  $% � 2&' � 

 
2.3 

 

 

Power spectral density (PSD) describes how the power of a signal or time series is distributed 

over the different frequencies.  For discrete time signals, the definition of the power spectral 

density can be defined as: 

(�� � �∆*�+, -	 
������ �!
��" - + 

� ∆.!   /∑ 
������ �!��" / + 

� "�12�!� /∑ 
������ �!��" / + 

 
�  1�34 � '� |����| + 

2.4 

while  
��� � 
�� � ∆*� , T = N*∆* , 36 � ∆*. 
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The function 2.4 would be used in Matlab coding. The default window function used in FFT is 

the rectangular window. For the sake of avoiding power leakage, a popular window function, 

hamming window, has been applied. The function of the hamming window is  

 
7��� � 0.54  0.46cos �2& �'� 

2.5 

Coherence 

As mentioned previously, a large amount of research used coherence as a feature to analyze EEG 

signals and the relationship with human behavior. For the same reason, we would consider 

coherence to measure the quantity of phase constancy between two signals. If the relationship 

between two signals is constant, then the coherence is 1. If the relationship between two signals 

changed randomly, then the coherence is 0. 

Coherence in signal analysis is defined as: 

 

 >?@ �A� �  |BCD�A�|+BCC�A�BDD�A� 

 
2.6 

 

two time sequences are denoted as � and E, BCC�A� and   BDD�A� are the auto spectrum estimate 

of � and E at a given frequency A, respectively, and BCD�A�  is the cross spectrum estimate of 

these two time sequences. For the purpose of our experiment, we need spectral coherences 

between 4Hz and 30Hz of some combinations of 1-second EEG trials from the 8 scalp locations 

which are F3, F4, T3, T4, C3, C4, P3, and P4. To capture subtle and significant variations of the 

EEG patterns representing golf putting mental preparation state, we consider 22 pairs of these 8 

scalp locations.  To fully evaluate the inter-hemispheric functional coupling, all 16 combinations 

of 4 left scalp locations and 4 right scalp locations are included, which are F3-F4, T3-T4, C3-C4, 
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P3-P4, F3-T4, F3-C4, F3-P4, T3-F4, T3-C4, T3-P4, C3-F4, C3-T4, C3-P4, P3-F4, P3-T4, P3-

C4. Since frontal areas are closely associated with planning which is the process of thinking and 

organizing the activities required to achieve a desired goal, they play an important role in golf 

putting mental preparation. Therefore, the frontal intra-hemispheric functional coupling with 

other cortical regions in the same hemisphere are particularly evaluated (Babiloni, et al., 2011). 

Here, 6 combinations of left and right frontal areas with the respective other three areas in the 

same hemispheres are included, which are F3-T3, F3-C3, F3-P3, F4-T4, F4-C4, F4-P4. Based on 

1-second EEG trials extracted in the last subsection, the spectral coherences from 4Hz to 30Hz of 

the 22-pair electrodes can be computed. These 22 spectral coherences are concatenated into a 

vector which will be an input of the classification algorithm in the next step.  
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III. Applied SVM on EEG data   

A. SVM introduction  

In the previous chapter, we proposed 1) cross-correlation between target trials and the 10 closest 

reference trials; 2) power spectrum density in selected 8 channels over 4-30Hz ; 3) average 

power spectrum over theta (4-7Hz), alpha (8-12Hz), beta1 (13-20Hz)  and beta2 (21-30Hz) band; 

4) all coherences between 4Hz and 30Hz of 22 combinations for 8 electrodes on the scalp 5) 

average coherence in 4 bands that determined in the same manner as average PSD bands, used as 

the features to fully characterize the EEG patterns during putting preparation. However, it is 

unlikely to distinguish successful and unsuccessful EEG pattern directly. In order to effectively 

predict the putting performance, we choose support vector machine (SVM) algorithm to classify 

the all feature of EEG patterns that listed above into two categories corresponding to successful 

and unsuccessful putts since this algorithm has rigorous formulation and has been used in many 

EEG-based pattern recognition applications 

B. Literature review 

SVM was first introduced by (Bernhard E. Boser, Isabelle M. Guyon, & Vladimir N. Vapnik, 

1992) then it has been widely used in data analysis such as classification and pattern recognition 

applications (Schlkopf & Smola, 2002) (Shen, Li, Ong, Shao, & Wilder-Smith, 2008) (Li, Zhang, 

& Du, 2013) (Parvez & Paul, 2014). Paul claimed that decision patterns showed more potentials 

compare to no choice brain pattern which makes it possible to predict the decision-making EEG 

signals. (Paul, Leung, Peterson, Sejnowski, & Poizner, 2010). In another research (Li, Zhang, & 

Du, 2013), SVM is used to classify six different movement patterns in EEG signals, participants 

were asked to imagine different sports that were related to still, walking, squatting and stand up, 

up to the slopes, down to slopes and running. The result gives a relatively high prediction 
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accuracy that reached 78.9%, this result proved that SVM could effectively classify EEG on 

complicated thinking. Besides those, it is widely used in clinical areas such as Eplieptic (Parvez 

& Paul, 2014) and fatigue measurement (Shen, Li, Ong, Shao, & Wilder-Smith, 2008), 

furthermore, SVM has successfully classify the EEG data from alcoholics and non-alcoholics , 

the test accuracy  reached 94.67% (Kousarrizi, Biomed. Eng. Dept., Ghanbari, Gharaviri, & 

Teshnehlab, 2009) 

C. Binary SVM classifier 

Basic concepts of SVM 

For Binary SVM classifier, the input data consists of two labels corresponding to two classes of 

data, we call them positive examples and negative examples. SVMs represent those data as 

points in the high dimension space, then determining an optimal separating hyperlane in the 

space to classify those examples. (Drish, 1998) We uses given training examples  
F  G  H�, I �
1,2 … . . , J, labeled by  �F  G  KL1, 1M, to create A�
� by optimizing one or more parameters. The 

decision function A�
� can be used to predict the label of any test examples. (Schlkopf & Smola, 

2002) 

 

7Nx + b > 0 

7Nx + b < 0 

7Nx + b = 0 



 

 

Fig3.1 Scatterplot of a binary classification dataset

Figure3.3 is an example for linear binary dataset, the decision function is 

the weight vector and b is called bias.  The hyperlane 

 
  
  
divides (the dash line in the middle of dots in Figure) the dots into two: dots above the line are 

called positive examples, dots under the line are called negative examples. 

a) Margin and optimization problem

It is easy to find lots of hyperlanes

unique hyperlane among all the hyperlanes, 

the important standards. The optimal hyperlane 

Fig 3.2 Graphic showing the maximum separating 

Mathematically, it is decided by the solution of 

 

                                                 
3 Linear-svm-scatterplot. N.d. Wikipedia
<http://en.wikipedia.org/wiki/File:Linear
4 Svm Max Sep Hyperplane with Margin
http://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png
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Scatterplot of a binary classification dataset3 

Figure3.3 is an example for linear binary dataset, the decision function is 

weight vector and b is called bias.  The hyperlane  

 3.1
 
 

(the dash line in the middle of dots in Figure) the dots into two: dots above the line are 

called positive examples, dots under the line are called negative examples.  

and optimization problem 

hyperlanes separating the training example. To decide the optimal 

the hyperlanes, margins of separation between any examples 

. The optimal hyperlane has the maximum margin. (See Fig 3.4)

 

Graphic showing the maximum separating hyperlane and the margin.

decided by the solution of  

 

Wikipedia. Web. 22 Oct. 2013. 
<http://en.wikipedia.org/wiki/File:Linear-svm-scatterplot.svg>. 
Svm Max Sep Hyperplane with Margin. N.d. Wikipedia. Web. 16 Feb. 2008. 

http://en.wikipedia.org/wiki/File:Svm_max_sep_hyperplane_with_margin.png 

 x + b, w is 

3.1 
 
 

(the dash line in the middle of dots in Figure) the dots into two: dots above the line are 

. To decide the optimal 

margins of separation between any examples  are 

the maximum margin. (See Fig 3.4) 

and the margin.4 

3.2 
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Compare to Figure 3.1, Figure 3.2 has an optimal hyperlane for the same examples. As we can 

see the distance between the closest point and the point is 1/P7P, if we consider both sides, the 

distance would be 2/P7P . To maximize 2/P7P is to minimizeP7P/2 , so the optimization 

function is  

 minT,U
12 P7P+ 3.3 

 

 Subject to: �F�7 · 
F L W� X 1 3.4 

 

The reason we put the X 1 instead of X 0  is because no matter what kind of < 7, b> we find 

from this problem, we can find another < 7Y, WZ>, which multiplied by  [�0 \ [ \ 1�, that can 

reach a minimizer  "+ P7P+ , putting   X 1  on the right side effectively fixed this problem. 

Furthermore, �F�7 · 
F L W�  make sure that 7 · 
F L W �  L1  when �F � L1 , 7 · 
F L W �  1 

when �F � 1. 

To solve this problem, we can introduce the Lagrange multipliers  [F X 0 and the Lagrangian: 

 
]�7, W, [� �  12 P7P+  	 [F ��F�7 · 
F L W�  1^

F�" � 
 

3.5 

 

Take the partition differential of  ] respect to 7, W 

 
__7 ]�7, W, [� � 7  	 [F �F
F

^
F�" � 0 

 

3.6 

 
Then 

 7 � 	 [F �F
F
^

F�"  3.7 
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__W ]�7, W, [� � 	 [F �F
^

F�" � 0 

 

3.8 

Let’s plug the 3.7 and 3.8 in 3.5 we can get the dual problem 

 
`a
b  	 [F

�
F�"  12 	 	 [F [� �F��
FN
�

^
��"

^
F�"   

 

3.9 

Subject to  

 0 c [F c >  A?� I � 1,2, … , � 3.10 

     
Once we get [ , it is easily to obtain 7 by equation 1.5. The decision function A�
� would be as 

follow 

 A�
� � (d��	 [F �F
FN
 L W^
F�" � 3.11 

 

The x in equation 3.11 is the data that needs to be classified. If   f(x) = 1, the test data x would be 

considered as positive samples. If f(x) = -1, it would be consider as negative samples. 

b) Kernel functions and non-linear classification 

For some complicated situation, it is hard to generate a liner hyperlane which separates positive 

and negative examples perfectly. (Figure1.10) when positive and negative examples have 

overlaps, non-linear classifier is more efficient.  
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       Figure 3.3（a） linear classifier                               Figure 3.3(b) non-linear classifier 

To generate a non-linear hyperlane, we need to replace the  
FN
�  in function 3.9 by non-linear 

kernel functions such as polynomial kernels, Gaussian radials basis kernels and sigmoid kernels.  

Gaussian radial basis function （RBF） was selected, it is defined as: 

 ef
F , 
�g � �
h ijk
F  
�k+l , j m 0 3.12 

   

If we generate a matrix with K with data point 
", 
+, … … . 
^  the ef
F , 
�g is positive definite, 

then it is possible to generate a Φ function such that  

 ef
F, 
�g � \ Φ�
F�, Φf
�g m 3.13 

 

 A�
� � (d��	 [F �FΦ�
F�NΦ�
� L W^
F�" � 3.14 

Then the final decision function would be written as 3.14 (Schlkopf & Smola, 2002) 

c) Important parameters 

      To construct a SVM model with a higher classification accuracy, both parameters > and j 

need to be tuned very carefully. In our study, we use iterative grid search and cross validation 


+ 


" 
" 


+ 
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techniques to optimize >  and j . Usually, in the experiment, all available samples can be 

partitioned into two parts. One is used to find best > and j and construct SVM model and it is 

called training data. The other is used to test the performance of well-trained SVM model and so 

called testing data. Now, we focus on training data to optimize the  > and j and construct SVM 

model. To find better >  and j  and at the same time reduce the computation complexity, an 

iterative grid search with exponentially growing values of two parameters in (Hsu, Chang, & 

Lin, 2010) is used for our problem. At the first search, the values of > and j are bounded in the 

coarse sets K2�o , 2�opq, … , 2�op"rq,  2�op+sqM and K2�"s , 2�"spq, … , 2�"sp"tq, 2�"sp"oqM, 
respectively, where the step  @ to discretize the power of 2 is 1. Given any pair of > and j, a 5-

fold cross validation is performed, where the training data are divided into 5 subsets of equal 

size. In the cross validation, any four of these five training subsets are used to train SVM model 

and the remaining is used to test this model. Thus, each sample of the whole training set is 

predicted once so the cross-validation accuracy is the percentage of data which are correctly 

classified. We pick the best > and j in the two ranges with the highest cross validation accuracy. 

In addition, we add a bound of the average training accuracy based on any four training subsets 

in the cross validation. If this training accuracy of one pair of > and j is lower than the bound, 

then this pair has to be eliminated from the parameter ranges to further guarantee good SVM 

model and save the computation cost. In our experiment, such a training accuracy bound is set to 

80%. Suppose the best  > and j to be 2F and 2� at the first search. Then, a smaller region with 

the finer grid at the second search can be identified as K2F�"sq , 2F�rq, … 2Fprq，2Fp"sqM and 

{ 2��"sq , 2��rq, … 2�prq，2�p"sq}, where the new step @ is 0.5. The same procedure can be 

followed to find the best > and j  in the new ranges. In our method, we will implement the grid 

search 5 times. To iteratively improve > and j, we narrow down their ranges by shrinking step @ 
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to �0.5�+,  �0.5�u, and �0.5�t for the third, fourth and fifth search, respectively. Using the best > 

and j after five searches, the final SVM model is well trained based on the whole training set 

and also the corresponding training accuracy can be computed. 
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IV. Experiment result 

To demonstrate the performance of the proposed method, we will use support vector machine 

with RBF kernels to analyze 573 1-second EEG trials extracted by the procedure given in the 

previous section and the corresponding putting performance data. In our method, the feature as 

the input of SVM is the spectral coherence vector defined in the previous section. We will 

compare prediction accuracies using this feature with those using cross correlation, PSDs from 

4Hz to 30Hz, coherence, and average coherence over theta, alpha, beta1 and beta2 bands to show 

the proposed feature is better than the other three commonly used features.  

     In our experiments, 573 EEG trials were recorded from 26 golfers. Unlike (Muangjaroen & 

Wongsawat, 2012) (Martijn Arns MS, Michiel Kleinnijenhuis MSc, Kamran Fallahpour , & Rien 

Breteler , 2008; P. Terry, P. Mahoney, 2006; Baumeister, Herwegen, Liesen, & Weiss, 2007; DJ 

& DM., 1993; Babiloni.C, et al., 2008) where the golf putting skill levels and ages are strictly 

controlled, some of them are excellent experts and some are novices who may be playing golf for  

the first time. The participants’ putting skill varies very much. Their ages also spread widely 

from 18 to 71 years old. These may make our EEG pattern recognition and putting performance 

prediction much more difficult. However, the experimental results still clearly show that the 

proposed method outperforms the SVM with cross-correlation, PSDs, average PSD and average 

coherence as inputs.  

      To implement our method, we divided 573 samples into training data and testing data. We 

made three different partitions. At each partition, two third of the total samples are used as 

training data and the other one third is used as testing data. That is to say, there are 383 training 

data and 190 testing data. The training data includes 196 successful trials and 187 unsuccessful 

trials and the testing data includes 97 successful trials and 93 trials. Since the sampling rate of 
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the recorded EEG signal is 128Hz, the PSDs of each EEG channel and the spectral coherences of 

each pair of EEG channels were computed at 65 frequency bins from 0Hz to 64Hz. We only 

need PSDs of the 8 channels and the spectral coherences of 22-pair channels from 4Hz to 30Hz.  

We concatenated PSDs of 8 channels and the spectral coherences of 22-pair channels to form a 

216-dimensional PSD vector and a 594-dimensional coherence vector which will be used as 

inputs of the SVM. We also took the averages of PSDs and spectral coherences over theta, alpha, 

beta1 and beta2 bands to compact their carried information. Then we concatenated these 

numbers across the 8 channels to form a 32-dimensional average PSD vector and across the 22-

pair channels to form a 88-dimensional average coherence vector as inputs of the SVM. We will 

compare the performance of the SVM with four types of inputs in this paper.       

The confusion matrix structure is like the following table: 

Table 1 Confusion matrix example 
Confusion matrix 

example 

Actual  label 

successful unsuccessful 

Predict 

Result 

successful 165 31 

unsuccessful 22 165 

Used the first PSD training accuracy as an example 

Before using the method we proposed to verify the data set of golf related EEG signal features, 

we firstly applied this algorithm on the data set of two direction thinking EEG signals. A person 

is asked to wear the Emotiv device and think about the direction of forward and backward. 100 

samples have been collected with 50 forward thinking EEG data and 50 backward thinking EEG 

data. Among the 100 samples, 68(close to 2/3 of all data) of them are used as training and 32 of 

them used as test data. The results showed that 13 backward and 15 forward have been detected, 

which gives a test accuracy of 87.5%. 



  

27 
 

We did 21 tests of each features, the full results are presented in Appendix A.  For each tests, we 

changed the combinations of test trials and training trials with fixed successful/unsuccessful 

ratio. 

The combinations were randomly generated with the seed changed. Four test results are given in 

the following 4 tables, each table gives 1 best result of one feature from the 21 tests 

corresponding to 3 results of other 3 features, and four results listed in the same table share the 

same seed.  

Table 2 Highest cross-correlation with other features 
Features 
Random 

generator V5 

Optimal 
parameters 

(C, v) 
 

Cross-
validation 
accuracy 

(%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Cross 
Correlation  
(4-30Hz),  
seed 71 

   
C = 7.0250 
γ  = 0.0653 

53.4211 99.48 
Confusion matrix 

=[194    2 
0   187] 

58.95 
Confusion matrix 

=[ 67   30 
48    45] 

PSD  
(4-30Hz),  
seed 71 

   
C = 
2.896e+03 
γ  = 30.6433 

47.1053 80.16 
Confusion matrix 

=[171    25 
51    136] 

50 
Confusion matrix 

=[ 56    41 
54    39] 

Coherence  
(4-30Hz),  
seed 71 

   
C = 1 
γ  = 1.1388 

58.6842 93.21 
Confusion matrix 

=[184    12 
14   173] 

52.63 
Confusion matrix 

=[  36    61 
29    64] 

 
Average 
Coherence  
seed 71 

   
C = 0.4 
γ  = 12.3377 

59.7368 78.85 
Confusion matrix 

=[147    49 
32   155] 

52.63 
Confusion matrix 

=[  33    64 
26    67] 

 

The highest overall test accuracy of cross-correlation is 58.95% (see table 2), 63 successful 

patterns have been detected from 97 successful patterns, which gives a 65% successful detection 

accuracy. On the contrast, the overall test accuracy of PSD and coherence and average coherence 

are relatively lower than cross-correlation over this combination of training and test data set. 

However, the unsuccessful detection accuracy reaches 67/(67+26)=72% in average coherence 
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and 64/(67+29)=68.8% coherence. This situation may be caused by inconspicuous of successful 

coherence and average coherence patterns in the training set, therefore, the classifier is trend to 

target the unknown trials to decision of unsuccessful putting. 

Table 3 Highest power spectrum density with other features 
Features 
Random 
generator V5 

Optimal 
parameters 
(C, v) 
 

Cross-
validation 
accuracy 

(%) 

Training 
accuracy 
(%) 
confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Cross 
Correlation 
(4-30Hz), 
seed 1 

 
C = 4 
γ  = 0.0089 

57.1053 84.07 
Confusion matrix 
=[178    18 

43  44] 

57.89 
Confusion matrix 
= [63    34 

46    47] 
PSD 
(4-30Hz), 
seed 1 

 
C = 8192 
γ  = 28.1 

52.3684 86.16 
Confusion matrix 
=[165    31 

22   165] 

53.68 
Confusion matrix 
= [51    46 

42    51] 
Coherence 
(4-30Hz), 
seed 1 

C = 
3.0048e+04 
γ  = 0.001 

60 86.42 
Confusion matrix 
=[171    25 

27   160] 

54.74 
Confusion matrix 
= [52   45 

41   52] 
Average 
coherence 
seed 1 

 
C = 609 
γ  = 1.0443 

57.8947 99.74 
Confusion matrix 
=[195    1 

0   187] 

54.21 
Confusion matrix 
= [55   42 

45   48] 

 

The highest overall test accuracy gives the percentage of 53.68 (see table 3) which is lower than 

other features. Except these combinations, the complete results (Appendix A, Table B) show that 

most of the result that calculated with PSD features gives relative lower overall test accuracy 

than other features. It gives the efficient evidence that using power spectrum density directly is 

more possible to give a poor performance in classification. In this case, we may use other 

features to training the final SVM model in the feature.    
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Table 4 Highest coherence with other features 
Features 
Random 

generator V5 

Optimal 
parameters 

(C, v) 
 

Cross-
validation 
accuracy 

(%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Cross 
Correlation  
(4-30Hz),  
seed 81 

 
C = 61.2866 
γ = 0.0010 

58.4211 80.94 
Confusion matrix 

=[173    23 
50   137] 

54.74 
Confusion matrix 

=[  55    42 
44    49] 

PSD  
(4-30Hz),  
seed 81 

 
C = 6049 
γ = 9.5137 

52.8947 80.68 
Confusion matrix 

=[151    45 
29   158] 

43.16 
Confusion matrix 

=[  45    52 
56    37] 

Coherence  
(4-30Hz),  
seed 81 

 
C = 2 
γ = 1.834 

55.2632 99.22 
Confusion matrix 

=[194    2 
1   186] 

62.11 
Confusion matrix 

=[  56    41 
31    62] 

Average 
Coherence  
seed 81 

 
C = 25268 
γ = 0.015 

56.0526 80.68 
Confusion matrix 

=[160    36 
38   149] 

60 
Confusion matrix 

=[  62   35 
41   52] 

 

The coherence gives the highest overall test accuracy among all the features and all the test, 

62.11% (see table 4). At the same time, average coherence gives an overall test accuracy - 60% 

with the same training and test data set, especially the successful detection accuracy of average 

coherence is 64%. This result illustrate that using coherence and average coherence as features is 

more possible to give a good performance of prediction in this situation , and the training data set 

of this combination have markedly characteristic successful patterns and unsuccessful patterns. 

On the contrast, the overall test accuracy of PSD is only 43.1 which proved the previous 

hypothesis – using PSD as features to classify the golfer’s performance gives high degree of 

misclassification. 

Table 5 as following is another example to prove the superiority of using coherence and average 

coherence as features. 
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Table 5 Highest average coherence with other features 
Features 
Random 

generator V5 

Optimal 
parameters 

(C, v) 
 

Cross-
validation 
accuracy 

(%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Cross 
Correlation 
(4-30Hz), 
seed 151 

 
C = 12.8839 
γ  = 0.0049 

62.3684 87.47 
Confusion matrix 

=[181    15 
33   154] 

51.58 
Confusion matrix 

=[  54    43 
49    44] 

PSD 
(4-30Hz), 
seed 151 

 
C = 25268 
γ  = 20.7494 

51.3158 89.06 
Confusion matrix 

=[175    21 
21   166] 

49.47 
Confusion matrix 

=[  53    44 
52    41] 

Coherence 
(4-30Hz), 
seed 151 

 
C = 1.5024 
γ  = 0.0014 

55.7895 84.33 
Confusion matrix 

=[167   29 
31   156] 

53.16 
Confusion matrix 

=[  54    43 
46    47] 

Average 
Coherence 
seed 151 

 
C = 70 
γ  = 0.4585 

58.1579 80.68 
Confusion matrix 

=[161    35 
39   148] 

60 
Confusion matrix 

=[  54    43 
33    60] 

 

Although the variations of training and testing data sets caused by the random selection have 

strong influence over the structure building and classification, the parameters and structures 

corresponding to the highest successful detection accuracy or failure detection accuracy would 

be used in the final BCI system.  

From all the results we obtained,  we claim that coherence has significant high overall test 

accuracy among all the test and features, the accuracy of average coherence is not worse than 

coherence in most of the cases. However, because of the compression of information, average 

coherence took shorter time to selecting the optimal > and γ corresponding to cross-validation. 

This is the trade-off between test accuracy and computation cost.  
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V. Conclusion and discussion 

      This thesis has proposed a method to predict the putting performance of a golfer based on 

her/his EEG signals. The method collects multi-channel 1-second EEG signals before the actual 

putting action, extracts features from the EEG signals, and analyzes the EEG signals with SVM 

to predict the outcome of the putting. The operations can be implemented in a BCI system, which 

can help a golfer to improve her/his putting performance by providing positive feedback (such as 

a tone) when the EEG signals indicate a high chance of successful putting.  

Four features have been used, and they are: cross correlation, PSD, coherence and average 

coherence. Experiment results indicate that using coherence has the highest accuracy, followed 

by cross correlation, average coherence, and PSD.  

All results show that the training accuracies are much higher than testing accuracies for all four 

features.  The main reason is that the hyperlanes that are used to separate the successful and 

failed trials overfitted the training data sets, especially in the high dimensions classifications.  

Overfitting   training data set results in a perfect separation of the training examples. However, it 

might not work properly for new data samples. Generally, Overfitting occurs when positive and 

negative examples are indistinguishable. 

In the experiment, we randomly selected the training data with a fixed ratio of all the available 

data, and the result changed with the variation of training data combinations.  Comparing all the 

21 combinations, we found that some combinations yield higher test accuracies due to a better 

separation between the successful and failed trials in the training sets; other combinations give 

relatively low test accuracy. According to this phenomenon, we know that some of the successful 

trails do not have marked patterns, and using those data as training data would increase the 
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degree of misclassifications. However, since it is possible to select the training data set, more 

selections and tests are needed to optimize the training data composition. 

In addition, it has been claimed that the coherence in theta alpha and beta band changed 

significantly with age (Vysata, et al., 2014; Vysata, et al., 2014). This is an important factor that 

causes the misclassification since the age range of participants in this project is from 18 to71. In 

addition, according to the Neurofeedback training research  (Martijn Arns MS, Michiel 

Kleinnijenhuis MSc, Kamran Fallahpour , & Rien Breteler , 2008), the successful power 

spectrum patterns in theta, alpha , beta1 and beta2 vary from different persons. To enhance the 

accuracy under this individual diversity, more training data is needed to build personalized 

training data set in order to distinguish the different successful putting patterns. In the future, this 

proposed method would be separately applied on expert and novice individuals which would 

give rise to a higher predicition accuracy. 

To further improve the prediction accuracy, we can consider to enhancement to the SVM 

implemented in this thesis.  

Probabilistic outputs of SVM 

The SVM makes binary decisions based on the input data, and there is a high chance of 

misclassifications, even for well trained SVM structures. To improve the prediction accuracy, 

probabilistic outputs would be more reasonable than a simple binary decision. In 1999, Platt 

proposed a method to approximate the posterior probability by map the binary decision to a 

sigmoid function (Platt, 1999)  

Pr�� � 1|
� � 11 L exp �}A�
� L ~� 



  

34 
 

where f(x) in this function is the decision that made by the SVM, A and B are parameters that are 

obtained by the following maximum likelihood problem (Lin, Lin, & Weng, 2007) 

min�,�  	�*F log hF L �1  *F � log�1  hF���
F�"  

 

*F � �!�p"!�p+   if  �F � L1
"!�p+   if  �F � 1�   i= 1,2,3,… l 

where 'p is the number of positive examples and '� is the number of negative examples. 

However, since this probablistic method is based on the binary classification reslut, in another 

word, it is a posterior probabily that maps the original binary classifucation reusult to a probility. 

So that the probabilty is influenced by original classification result. In addition, the ratio of 

positive examples and negative examples strongly affects the probabilistic result. Consequently, 

if we want to use this method, we need to avoid quantities imbalance of  positive and negative 

trials. Otherwise, it would directly map all the test data to one group (either positive and  

negative) with  higher ratio in the training data  set.  

Muli-class SVM  

Another popular transformation of binary SVM is multi-class SVM, which is capable to map the 

high dimension examples to more than two categories (Schlkopf & Smola, 2002). In the future 

work, the EEG features that have been used above would be separated in 3 groups corresponding 

to successful, normal and unsuccessful. All the trials without significant successful and 

unsuccessful characteristic would be classified in the normal group.  
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Appendix A   Complete result tables 

Table A:  Binary classification for correlation coefficient 
Features 

Random generator V5 
Optimal parameters (C, v) 

 
Cross-validation 

accuracy (%) 
Training accuracy 

(%) 
confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

 
Cross Correlation 

(4-30Hz), 
seed 1 

 
C = 4 

γ  = 0.0089 

 
57.1053 

 
84.07 

Confusion matrix 
=[178    18 

43  44] 

 
57.89 

Confusion matrix 
= [63    34 

46    47] 
 

Cross Correlation 
(4-30Hz), 

seed 11 

 
C = 28.1 
γ  = 0.0356 

 
58.1579 

 
100 

Confusion matrix 
=[196    0 

0   187] 

 
56.32 

Confusion matrix 
= [48    49 

34    59] 
 

Cross Correlation 
(4-30Hz), 

seed 21 

 
C = 1.3543 
γ  = 0.1051 

 
59.2105 

 
99.22 

Confusion matrix 
=[195    1 

2   185] 

 
51.05 

Confusion matrix 
= [53   44 

49   44] 
 

Cross Correlation 
(4-30Hz), 

seed 31 

 
C = 6.7272 
γ = 0.0156 

 
57.3684 

 
95.04 

Confusion matrix 
=[194    2 

17  170] 

 
53.16 

Confusion matrix 
= [62    35 

54    39] 
 

Cross Correlation 
(4-30Hz), 

seed 41 

 
C = 1 

γ  = 0.3536 

 
56.8421 

 
100 

Confusion matrix 
=[196     0 

0  187] 

 
54.74 

Confusion matrix 
= [88     9 

77    16] 
Cross Correlation 

(4-30Hz), 
seed 51 

 
C = 1.1388 
γ  = 0.0203 

 
61.0526 

 
84.60 

Confusion matrix 
=[183    13 

46  141] 

 
50 

Confusion matrix 
= [52   45 

50   43] 
 

Cross Correlation 
(4-30Hz), 

seed 61 

 
C = 4.1771 
γ  = 0.0482 

 
58.9474 

 
99.22 

Confusion matrix 
=[195   1 

2  185] 

 
56.32 

Confusion matrix 
=[ 55   42 

41   52] 

 
Cross Correlation 

(4-30Hz), 
seed 71 

 
C = 7.0250 
γ  = 0.0653 

 
 

53.4211 

 
99.48 

Confusion matrix 
=[194    2 
0   187] 

 
58.95 

Confusion matrix 
=[ 67   30 

48    45] 

 
Cross Correlation 

(4-30Hz), 
seed 81 

 
C = 61.2866 
γ = 0.0010 

 
58.4211 

 
80.94 

Confusion matrix 
=[173    23 
50   137] 

 
54.74 

Confusion matrix 
=[  55    42 

44    49] 
 

Cross Correlation 
(4-30Hz), 

seed 91 

 
C = 181.0193 
γ  =0.0010 

 
57.6316 

 
88.25 

Confusion matrix 
=[183   13 
32   155] 

 
53.16 

Confusion matrix 
=[  57    40 
49    44] 

Cross Correlation 
(4-30Hz), 
seed 101 

 
C = 29.3441 
γ  =0.0012 

 
56.3158 

 
78.33 

Confusion matrix 
=[169  27 
56  131] 

 
53.16 

Confusion matrix 
=[  66    31 

58    35] 
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Table A (Cont.) 

Features 
Random generator V5 

Optimal parameters (C, v) 
 

Cross-validation 
accuracy (%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

 
Cross Correlation 

(4-30Hz), 
seed 111 

   
C = 8.3542  
γ  = 0.0058 

 
58.6842 

 
84.86 

Confusion matrix 
=[184    12 
46   141] 

 
55.79 

Confusion matrix 
=[  62    35 

49    44] 

 
Cross Correlation 

(4-30Hz), 
seed 121 

   
C = 291.5299 
 γ = 0.0011 

 
58.6842 

 
94.52 

Confusion matrix 
=[188   8 
13   174] 

 
48.42 

Confusion matrix 
=[  46   51 
47   46] 

 
Cross Correlation 

(4-30Hz), 
seed 131 

   
C = 24.6754 
γ  = 0.0013 

 
58.6842 

 
79.37 

Confusion matrix 
=[169    27 
52   135] 

 
53.68 

Confusion matrix 
=[  60   37 

51   42] 

 
Cross Correlation 

(4-30Hz), 
seed 141 

   
C = 2.1810 
γ  = 0.0682 

 
57.6316 

 
98.69 

Confusion matrix 
=[193    3 
2   185] 

 
48.95 

Confusion matrix 
=[ 54   43 

54   39] 
 

Cross Correlation 
(4-30Hz), 
seed 151 

   
C = 12.8839 
γ  = 0.0049 

 
62.3684 

 
87.47 

Confusion matrix 
=[181    15 
33   154] 

 
51.58 

Confusion matrix 
=[  54    43 

49    44] 

 
Cross Correlation 

(4-30Hz), 
seed 161 

   
C = 76.1093 
γ  = 0.0041 

 
59.2105 

 
97.91 

Confusion matrix 
=[193    3 
5   182] 

 
49.47 

Confusion matrix 
=[  51    46 

50    43] 

Cross Correlation 
(4-30Hz), 
seed 171 

 
C = 66.8335 
γ  = 0.0221 

 
56.0526 

 
100 

Confusion matrix 
=[196    0 
0    187] 

 
56.32 

Confusion matrix 
=[  53    44 

39    54] 
Cross Correlation 

(4-30Hz), 
seed 181 

 
C = 98.7015 
γ = 0.0014 

 
59.4737 

 
88.25 

Confusion matrix 
=[186    10 
35   152] 

 
53.68 

Confusion matrix 
=[  57    40 

48    45] 

Cross Correlation 
(4-30Hz), 
seed 191 

 
C = 1 
γ  = 0.0313 

 
57.3684 

 
88.25 

Confusion matrix 
=[190   6 
39  148] 

 
55.79 

Confusion matrix 
=[  63    34 

50    43] 
Cross Correlation 

(4-30Hz), 
seed 201 

 
C = 122.5732 
γ  = 0.0013 

 
56.0526 

 
88.77 

Confusion matrix 
=[181    15 
28   159] 

 
52.63 

Confusion matrix 
=[  48    49 

41    52] 
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Table B: Binary classification for power spectrum density 
Features 

Random generator V5 
Optimal parameters (C, v) 

 
Cross-validation 

accuracy (%) 
Training accuracy 

(%) 
confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

PSD 
 (4-30Hz),  
seed 1 

  
C = 8.192e+03 
γ  = 28.1 

 
52.3684 

 
86.16 

Confusion matrix 
=[165    31 

22   165] 

 
53.68 

Confusion matrix 
= [51    46 

42    51] 
PSD  
(4-30Hz),  
seed 11 

  
C = 1.579e+03 
γ  = 24.6754 

 
56.3158 

 
80.68 

Confusion matrix 
=[165    31 

43   144] 

 
50.53 

Confusion matrix 
= [54    43 

51    42] 

PSD  
(4-30Hz),  
seed 21 

  
C = 3.444e+03 
γ  = 12.3377 

 
50.2632 

 
77.55 

Confusion matrix 
=[137    59 

27   160] 

 
47.89 

Confusion matrix 
= [43   54 

45   48] 
PSD 
 (4-30Hz),  
seed 31 

  
C = 3.2768e+04 
 γ = 32 

 
48.4211 

 
89.56 

Confusion matrix 
=[181   15 

25  162] 

 
50 

Confusion matrix 
= [57    40 

55    38] 
PSD  
(4-30Hz),  
seed 41 

  
C = 2.7554e+04  
γ  = 8 

 
51.5789 

 
83.29 

Confusion matrix 
=[169     27 
37   150] 

 
51.58 

Confusion matrix 
= [55    42 

50    43] 
PSD 
 (4-30Hz),  
seed 51 

  
C = 1.166e+03  
γ  = 32 

 
52.1053 

 
79.63 

Confusion matrix 
=[158    38 

40   147] 

 
43.16 

Confusion matrix 
= [46    51 

57    36] 
PSD 
 (4-30Hz),  
seed 61 

   
C = 4.871e+03 
γ  = 20.7494 

 
48.9474 

 
81.20 

Confusion matrix 
=[168   28 

44   143] 

 
50 

Confusion matrix 
=[ 56    41 

54    39] 
PSD  
(4-30Hz),  
seed 71 

   
C = 2.896e+03 
γ  = 30.6433 

 
47.1053 

 
80.16 

Confusion matrix 
=[171    25 
51    136] 

 
50 

Confusion matrix 
=[ 56    41 

54    39] 
PSD  
(4-30Hz),  
seed 81 

   
C = 6.049e+03 
 γ = 9.5137 

 
52.8947 

 
80.68 

Confusion matrix 
=[151    45 
29   158] 

 
43.16 

Confusion matrix 
=[  45    52 

56    37] 
PSD  
(4-30Hz),  
seed 91 

   
C = 2.8774e+04 
γ  = 2.0885 

 
41.5789 

 
75.98 

Confusion matrix 
=[157   39 
   53   134] 

 
51.05 

Confusion matrix 
=[  60    37 

56    37] 
PSD  
(4-30Hz),  
seed 101 

   
C = 4.467e+03 
γ  = 32 

 
49.4737 

 
80.94 

Confusion matrix 
=[165  31 
   42  145] 

 
47.37 

Confusion matrix 
=[  47   50 

50   43] 
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Table A (Cont.) 

Features 
Random generator V5 

Optimal parameters (C, v) 
 

Cross-validation 
accuracy (%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

PSD  
(4-30Hz),  
seed 111 

   
C = 3.2768e+04  
γ  = 5.4170 

 
50 

 
83.03 

Confusion matrix 
=[170    26 
39   148] 

 
44.21 

Confusion matrix 
=[  47    50 

56    37] 

PSD  
(4-30Hz),  
seed 121 

   
C = 2.543e+03 
 γ = 26.9087 

 
46.3158 

 
75.72 

Confusion matrix 
=[140   56 
37   150] 

 
49.47 

Confusion matrix 
=[  36    61 

35   58] 

PSD  
(4-30Hz),  
seed 131 

   
C = 2.543e+03 
γ  = 12.8839 

 
55.2632 

 
79.37 

Confusion matrix 
=[142    54 
25   162] 

 
41.05 

Confusion matrix 
=[ 32    65 
47    46] 

PSD  
(4-30Hz),  
seed 141 

   
C = 2.1247e+04  
γ  = 16 

 
50 

 
86.42 

Confusion matrix 
=[171    25 
27   160] 

 
46.84 

Confusion matrix 
=[ 43    54 
47    46] 

PSD  
(4-30Hz),  
seed 151 

   
C = 2.5268e+04 
γ  = 20.7494 

 
51.3158 

 
89.06 

Confusion matrix 
=[175    21 
21   166] 

 
49.47 

Confusion matrix 
=[  53    44 
52    41] 

PSD  
(4-30Hz),  
seed 161 

   
C = 1.117e+03  
γ  = 32 

 
54.4737 

 
78.33 

Confusion matrix 
=[174    22 
61  126 ] 

 
47.89 

Confusion matrix 
=[  60    37 

62    31] 

PSD  
(4-30Hz),  
seed 171 

   
C = 2.7554e+04 
γ  = 16.7048 

 
51.8421 

 
88.25 

Confusion matrix 
=[181    15 
30   157] 

 
46.84 

Confusion matrix 
=[  51    46 

55    38] 
PSD  
(4-30Hz),  
seed 181 

   
C = 8.192e+03 
 γ = 32 

 
53.6842 

 
85.12 

Confusion matrix 
=[169    27 
30   157] 

 
48.95 

Confusion matrix 
=[  47    50 

47    46] 
PSD  
(4-30Hz),  
seed 191 

   
C = 2.1247e+03 
γ  = 4.3620 

 
54.7368 

 
81.72 

Confusion matrix 
=[165   31 
39   148] 

 
50.53 

Confusion matrix 
=[  48    49 

45    48] 
PSD  
(4-30Hz),  
seed 201 

   
C = 2.774e+03 
γ  = 16.7048 

 
50.2632 

 
77.28 

Confusion matrix 
=[178    18 
69    118] 

 
51.58 

Confusion matrix 
=[  55    42 

50    43] 
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Table C: Binary classification for coherence 
Features 

Random generator V5 
Weight (w1 w2) 

Optimal parameters (C, v) 
 

Cross-validation 
accuracy (%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Coherence 
 (4-30Hz),  
seed 1 

 
C = 3.0048e+04 
γ  = 0.001 

 
60 

 
86.42 

Confusion matrix 
=[171    25 

27   160] 

 
54.74 

Confusion matrix 
= [52   45 

41   52] 
coherence  
(4-30Hz),  
seed 11 

  
C = 29 
γ  = 1.4768 

 
61.0526 

 
100 

Confusion matrix 
=[196    0 

0   187] 

 
52.63 

Confusion matrix 
= [44    53 

37    56] 

coherence  
(4-30Hz),  
seed 21 

  
C = 1 
γ  = 1.7563 

 
60.5263 

 
96.87 

Confusion matrix 
=[194    2 

10   177] 

 
54.21 

Confusion matrix 
= [32   65 

22    71] 
Coherence 
 (4-30Hz),  
seed 31 

  
C = 1.117e+03 
 γ = 0.0033 

 
59.4737 

 
79.63 

Confusion matrix 
=[166    30 

48  139 ] 

 
47.89 

Confusion matrix 
= [50   47 

52   41] 
coherence  
(4-30Hz),  
seed 41 

  
C = 8  
γ  = 3.3636 

 
60.2632 

 
99.74 

Confusion matrix 
=[195     1 

0   187] 

 
50.53 

Confusion matrix 
= [33    64 

30    63] 

Coherence 
 (4-30Hz),  
seed 51 

  
C = 1722 
γ  = 0.0022 

 
58.1579 

 
79.90 

Confusion matrix 
=[163    33 

44  143] 

 
55.79 

Confusion matrix 
= [63   34 

50   43] 
Coherence 
 (4-30Hz),  
seed 61 

   
C = 1.5024e+04 
γ  = 0.0097 

 
56.8421 

 
99.74 

Confusion matrix 
=[195   1 

0   187] 

 
50 

Confusion matrix 
=[ 51   46 

49   44] 
Coherence  
(4-30Hz),  
seed 71 

   
C = 1 
γ  = 1.1388 

 
58.6842 

 
93.21 

Confusion matrix 
=[184    12 
14   173] 

 
52.63 

Confusion matrix 
=[  36    61 

29    64] 
Coherence  
(4-30Hz),  
seed 81 

   
C = 2 
 γ = 1.834 

 
55.2632 

 
99.22 

Confusion matrix 
=[194    2 
1   186] 

 
62.11 

Confusion matrix 
=[  56    41 

31    62] 
Coherence  
(4-30Hz),  
seed 91 

   
C = 4 
γ  = 2.7085 

 
57.8947 

 
99.74 

Confusion matrix 
=[196    0 
1   186] 

 
52.63 

Confusion matrix 
=[  34    63 

27    66] 
Coherence  
(4-30Hz),  
seed 101 

   
C = 609  
γ  = 0.0072 

 
57.8947 

 
82.77 

Confusion matrix 
=[167  29 
37 150] 

 
56.32 

Confusion matrix 
=[  59    38 

45    48] 
Coherence  
(4-30Hz),  
seed 111 

   
C = 2  
γ  = 1.7563 

 
56.5789 

 
99.48 

Confusion matrix 
=[195    1 
1   186] 

 
54.74 

Confusion matrix 
=[  43    54 

32    61] 
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Table C (Cont.) 

Features 
Random generator V5 

Weight (w1 w2) 
Optimal parameters (C, v) 
 

Cross-validation 
accuracy (%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Coherence  
(4-30Hz),  
seed 121 

   
C = 59 
 γ = 0.5 

 
56.5789 

 
99.74 

Confusion matrix 
=[195   1 
0   187] 

 
50.53 

Confusion matrix 
=[  50   47 

47   46] 
Coherence  
(4-30Hz),  
seed 131 

   
C = 1 
γ  = 1.2968 

 
56.5789 

 
96.61 

Confusion matrix 
=[192  4 
9   178] 

 
56.32 

Confusion matrix 
=[  51   46 

37   56] 

Coherence  
(4-30Hz),  
seed 141 

   
C = 9  
γ  = 0.5453 

 
58.9474 

 
99.74 

Confusion matrix 
=[195   1 
0   187] 

 
51.58 

Confusion matrix 
=[  47   50 
42   51] 

Coherence  
(4-30Hz),  
seed 151 

   
C = 1.5024 
γ  = 0.0014 

 
55.7895 

 
84.33 

Confusion matrix 
=[167   29 
31   156] 

 
53.16 

Confusion matrix 
=[  54    43 

46    47] 
Coherence  
(4-30Hz),  
seed 161 

   
C = 18 
γ  = 9.766e-04; 

 
59.7368 

 
89.56 

Confusion matrix 
=[182    14 
26    161] 

 
51.05 

Confusion matrix 
=[  56    41 

52    41] 

Coherence  
(4-30Hz),  
seed 171 

   
C = 52 
γ  = 1.4142 

 
53.9474 

 
99.74 

Confusion matrix 
=[196   0 
1   186] 

 
56.84 

Confusion matrix 
=[  38   59 

23   70] 
Coherence  
(4-30Hz),  
seed 181 

   
C = 431 
 γ = 0.0313 

 
57.6316 

 
95.82 

Confusion matrix 
=[187   9 
7  180] 

 
49.47 

Confusion matrix 
=[  41    56 

40   53] 

Coherence  
(4-30Hz),  
seed 191 

   
C = 1 
γ  = 1.1892 

 
61.3158 

 
95.56 

Confusion matrix 
=[189    7 
10  177] 

 
52.63 

Confusion matrix 
=[  53    44 

46    47] 

Coherence  
(4-30Hz),  
seed 201 

   
C = 1.328e+03 
γ  = 0.0024 

 
58.9474 

 
79.11 

Confusion matrix 
=[163    33 
47  140] 

 
57.89 

Confusion matrix 
=[  59    38 

42    51] 
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Table D: Binary classification for average coherence 
Features 

Random generator 
V5 

Optimal parameters (C, v) 
 

Cross-validation 
accuracy (%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Average coherence 
seed 1 

  
C = 6.09e+02 
γ  = 1.0443 

 
57.8947 

 
99.74 

Confusion matrix 
=[195    1 

0   187] 

 
54.21 

Confusion matrix 
= [55   42 

45   48] 

Average coherence  
seed 11 

  
C = 6 
γ  = 32 

 
56.8421 

 
99.74 

Confusion matrix 
=[195    1 

0   187] 

 
50.53 

Confusion matrix 
= [30    67 

27    66] 

Average coherence  
seed 21 

  
C = 2 
γ  = 13.4543 

 
60.7895 

 
97.13 

Confusion matrix 
=[194    2 

9   178] 

 
57.89 

Confusion matrix 
= [54   43 

37   56] 

Average Coherence 
seed 31 

  
C = 7 
 γ = 1.1388 

 
59.7368 

 
79.90 

Confusion matrix 
=[174    22 

55   132] 

 
52.11 

Confusion matrix 
= [53   44 

47   46] 

Average Coherence  
seed 41 

  
C = 5  
γ  = 3.0844 

 
60.2632 

 
89.82 

Confusion matrix 
=[182     14 

25   162] 

 
48.42 

Confusion matrix 
= [50    47 

51    42] 

Average Coherence 
seed 51 

  
C = 15  
γ  = 0.8781 

 
60.7895 

 
83.03 

Confusion matrix 
=[174    22 
43    144] 

 
52.11 

Confusion matrix 
= [60  37 

54  39] 
Average Coherence 
seed 61 

   
C = 636  
γ  = 0.0743 

 
60.7895 

 
79.90 

Confusion matrix 
=[165   31 

46   141] 

 
52.63 

Confusion matrix 
=[ 52   45 

45   48] 
Average Coherence  
seed 71 

   
C = 70 
γ  = 12.3377 

 
59.7368 

 
78.85 

Confusion matrix 
=[147    49 
32   155] 

 
52.63 

Confusion matrix 
=[  33    64 

26    67] 

Average Coherence  
seed 81 

   
C = 2.5268e+04 
 γ = 0.015 

 
56.0526 

 
80.68 

Confusion matrix 
=[160    36 
38   149] 

 
60 

Confusion matrix 
=[  62   35 

41   52] 

Average Coherence  
seed 91 

   
C = 159 
γ  = 0.3242 

 
63.6842 

 
85.38 

Confusion matrix 
=[177    19 
37  150] 

 
51.05 

Confusion matrix 
=[  49   48 

45   48] 
Average Coherence  
seed 101 

   
C = 4  
γ  = 8.7241 

 
57.6316 

 
97.65 

Confusion matrix 
=[193   3 
6   181] 

 
52.11 

Confusion matrix 
=[  50    47 

44    49] 
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Table D (Cont.) 

Features 
Random generator 
V5 

Optimal parameters (C, v) 
 

Cross-validation 
accuracy (%) 

Training accuracy 
(%) 

confusion matrix 

Testing accuracy 

(%) 
confusion matrix 

Average Coherence  
seed 111 

   
C = 2.543e+03; 
γ  = 0.1928 

54.7368 94.26 
Confusion matrix 

=[187    9 
13   174] 

56.32 
Confusion matrix 

=[ 55    42 
41    52] 

Average Coherence  
seed 121 

   
C = 25 
 γ = 13.4543 

 
58.4211 

 
99.74 

Confusion matrix 
=[195   1 
0   187] 

 
54.21 

Confusion matrix 
=[ 50   47 

40   53] 
Average Coherence  
seed 131 

   
C = 2.0347e+04;  
γ  = 0.1621 

 
58.4211 

 
98.69 

Confusion matrix 
=[192    4 
1   186] 

 
52.63 

Confusion matrix 
=[ 53    44 

46    47] 
Average Coherence  
seed 141 

   
C = 1  
γ  = 5.1874 

 
59.7368 

 
83.55 

Confusion matrix 
=[174    22 
41   146] 

 
58.95 

Confusion matrix 
=[  63   34 

44   49] 
Average Coherence  
seed 151 

   
C = 70 
γ  = 0.4585 

 
58.1579 

 
80.68 

Confusion matrix 
=[161    35 
39   148] 

 
60 

Confusion matrix 
=[  54    43 

33    60] 
Average Coherence  
seed 161 

   
C = 13  
γ  = 0.8409 

 
62.1053 

 
82.77 

Confusion matrix 
=[170    26 
40   147] 

 
53.16 

Confusion matrix 
=[  55     42 

47     46] 

Average Coherence  
seed 171 

   
C = 512 
γ  = 0.5 

 
55.2632 

 
94.26 

Confusion matrix 
=[183    13 

9   178] 

 
50.53 

Confusion matrix 
=[  50    47 

47    46] 
Average Coherence  
seed 181 

   
C = 2.7554e+04; 
 γ = 0.1621 

 
59.2105 

 
99.22 

Confusion matrix 
=[193    3 
0   187] 

 
50 

Confusion matrix 
=[  41    56 

39    54] 

Average Coherence  
seed 191 

   
C = 279 
γ  = 0.4788 

 
61.3158 

 
90.86 

Confusion matrix 
=[177   19 
6    171] 

 
53.68 

Confusion matrix 
=[  57   40 

48   45] 

Average Coherence  
seed 201 

   
C = 6 
γ  = 11.3137 

 
58.9474 

99.74 
Confusion matrix 

=[195    1 
0   187] 

50.53 
Confusion matrix 

=[  48   49 
45   48] 
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Appendix B   Source code 
clc;  
close all;  
clear all; 
%% input data 
powerdata_all = csvread('all573_time128_coherence_4_30.csv',0,0);  
decision_data_all = xlsread('all573_performance30withtext_official.xlsx','D2:E574'); 
%% important condition  
percentage_bound = 80 ; 
%% scaling the original data 
x_all = (powerdata_all - repmat(min(powerdata_all,[],1),size(powerdata_all,1),1))*... 
         spdiags(1./(max(powerdata_all,[],1)-
min(powerdata_all,[],1))',0,size(powerdata_all,2),size(powerdata_all,2)); 
  
%% pre-label by Qualities and centmeters 
for i = 1:573 
if  decision_data_all(i,1) >= 8 && decision_data_all(i,2)<=30;  
    decision_data(i) = 1; %good  
elseif decision_data_all(i,1) <= 7 && decision_data_all(i,2)>=50; 
    decision_data(i) = 3; %bad 
else 
    decision_data(i) = 2; %ok    
end 
end 
y_all = decision_data;  
  
%% seperate training data and testing data 
seed               = 81 ; % seed generate different random sequency 
all_c_train_matrix =[];         % for recording all training confusion matrix 
all_c_test_matrix  =[];         % for recording all training confusion matrix 
for h = 1:length(seed) 
     
rand('state',seed(h)); randn('state',seed(h)); 
%1/3 is test data and 2/3 is training data, the ratio is fixed 
finaltest_index = [randsample(find(y_all==1),floor(length(find(y_all==1))/3))... 
                   randsample(find(y_all==2),floor(length(find(y_all==2))/3))... 
                   randsample(find(y_all==3),floor(length(find(y_all==3))/3))]; 
x_finaltest     = x_all(finaltest_index,:); 
y_finaltest     = y_all(finaltest_index)'; 
  
  
Train_index      = setdiff(1:length(y_all),finaltest_index); 
x_Train_all1     = x_all(Train_index,:); 
y_Train_all1     = y_all(Train_index)'; 
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%make sure the first group that input the structure is labeled 1 
[y_Train_all,right_order] = sort(y_Train_all1); 
x_Train_all               = x_Train_all1(right_order,:); 
        
%% ratio in five subsets is fixed and the examples # is fixed  
index_s    = find(y_Train_all==1); 
index_a    = find(y_Train_all==2); 
index_f    = find(y_Train_all==3); 
  
number_of_success = length(index_s); 
number_of_average = length(index_a); 
number_of_failure = length(index_f); 
  
alpha=1-number_of_success/(number_of_success+number_of_average+number_of_failure); 
xValidationFolds = 5; 
  
% make sure the length in each fold is the same  
cloumn1      =  floor(length(index_s)/xValidationFolds); 
cloumn2      =  floor(length(index_a)/xValidationFolds); 
cloumn3      =  floor(length(index_f)/xValidationFolds); 
  
rand('state',1); randn('state',1); 
index_ss       =  reshape(index_s(randperm(5*cloumn1)),5,cloumn1); 
index_aa       =  reshape(index_a(randperm(5*cloumn2)),5,cloumn2); 
index_ff       =  reshape(index_f(randperm(5*cloumn3)),5,cloumn3); 
  
%combine 2 and 3 together as 2 
y_finaltest(find(y_finaltest==3))=2; 
y_Train_all(find(y_Train_all==3))=2; 
  
%% start search  
for search = 1:5 
% set up c and sigma for each searching 
if search == 1 
% original C    step 1 
step1 =1 ; 
min_c = -5; max_c =15; 
C_array = 2.^(min_c:step1:max_c); 
% original Sigma step 1 
min_sigma = -10; max_sigma = 5; 
Sigma_array = 2.^(min_sigma:step1:max_sigma); 
G_length = length(Sigma_array); 
else 
step1 = step1/2; 
% new c  
C_range = max(min_c, log2(best_C)-step1*10):step1:min(log2(best_C)+step1*10,max_c); 
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C_array = 2.^(C_range); 
% new sigma 
Sigma_range = max(min_sigma, log2(best_sigma)-
step1*10):step1:min(log2(best_sigma)+step1*10,max_sigma); 
Sigma_array=2.^(Sigma_range); 
end 
C_length = length(C_array); 
G_length=length(Sigma_array);   
%%     
% 3 important value  
train_correct_rate = zeros(C_length, G_length); 
test_correct_rate  = zeros(C_length, G_length);   
optimal_weight     = zeros(C_length, G_length); 
  
%% training start  
for k=1:C_length 
    for j=1:G_length 
        for fold=1:xValidationFolds            
            testIndex    = [index_ss(fold,:),index_aa(fold,:),index_ff(fold,:)];            
            trainIndex   = setdiff(1:length(y_Train_all),testIndex); 
             
            x_train      = x_Train_all(trainIndex,:) ;  
            y_train      = y_Train_all(trainIndex); 
             
            x_test       = x_Train_all(testIndex,:); 
            y_test       = y_Train_all(testIndex); 
  
            Parameters   = ['-c ' num2str(C_array(k)) ' -g ' num2str(Sigma_array(j)) ' -b 0']; 
            model        = libsvmtrain(y_train,x_train,Parameters); 
  
               
           [label_train1,~,group_train] = libsvmpredict(y_train, x_train, model,'-b 0'); %revised by 
baohua %[~,~,group_train] = libsvmpredict(y_train, x_train, model); 
           [label_test1,~,group]        = libsvmpredict(y_test, x_test, model, '-b 0');  %revised by 
baohua %[~,~,group]       = libsvmpredict(y_test, x_test, model); 
            
           %% 
            % training accuracy  
            train_correct_rate(k,j) = 
train_correct_rate(k,j)+100*sum(label_train1==y_train)/size(x_train,1); 
            % test accuracy 
            test_correct_rate (k,j) = 
test_correct_rate(k,j)+100*sum(label_test1==y_test)/size(x_test,1); 
             
            Pro_test_1              = 
length(intersect(find(y_test==1),find(label_test1~=1)))/length(find(y_test==1)); 
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            if isnan(Pro_test_1); 
                Pro_test_1 = 0; 
            end 
             
            Pro_test_2              = 
length(intersect(find(y_test==2),find(label_test1~=2)))/length(find(y_test==2)); 
            if isnan(Pro_test_2); 
                Pro_test_2 = 0; 
            end 
             
            optimal_weight(k, j)    = optimal_weight(k, j)+alpha*Pro_test_1+(1-alpha)*Pro_test_2;   
        end % end fold 
        train_correct_rate(k,j)     = train_correct_rate(k,j)/xValidationFolds; 
        test_correct_rate(k,j)      = test_correct_rate(k,j)/xValidationFolds; 
        optimal_weight(k, j)        = optimal_weight(k,j)/xValidationFolds;  % as high as possible 
        %%%%%%%%%%%% 
        if train_correct_rate(k,j)  < percentage_bound 
           optimal_weight(k, j)     = Inf; 
        end 
        %%%%%%%%%%%% 
    end % end j 
end %end k 
  
[best_rate1,index1] = min(optimal_weight); 
[best_rate2,index2] = min(best_rate1);     
best_C              = C_array(index1(1, index2));  
best_sigma          = Sigma_array(index2);            
cross_validation    =test_correct_rate(index1(1, index2), index2); 
end 
  
Final_Parameters          = ['-c ' num2str(best_C) ' -g ' num2str(best_sigma) ' -b 0']; 
final_model               = libsvmtrain(y_Train_all,x_Train_all,Final_Parameters); 
  
[label_train,~,p_train]   = libsvmpredict(double(y_Train_all),x_Train_all, final_model,'-b 0'); 
[label_test,~,p_test]     = libsvmpredict(double(y_finaltest),x_finaltest, final_model,'-b 0'); 
  
train_acc                 = sum(label_train == y_Train_all) ./ numel(y_Train_all)    
test_acc                  = sum(label_test == y_finaltest) ./ numel(y_finaltest) 
C_train                   = confusionmat(y_Train_all,label_train) 
C_test                    = confusionmat(y_finaltest,label_test) 
  
  
allc(h)  = best_C  
allsigma(h) = best_sigma 
bestrate(h) = best_rate2 
cross_validation_all(h) = cross_validation 
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all_train_acc(h) = train_acc 
all_test_acc(h) = test_acc 
all_c_train_matrix = [all_c_train_matrix, C_train] 
all_c_test_matrix  = [all_c_test_matrix, C_test] 
end 
savefile = 'Thesis_psd_2class_lin' 
save(savefile,'allc','allsigma','bestrate','cross_validation','all_train_acc','all_test_acc',... 
     'all_c_train_matrix','all_c_test_matrix') 

 

 


	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	8-2014

	Improving Golf Putt Performance with Statistical Learning of EEG Signals
	Qing Guo
	Recommended Citation


	Microsoft Word - 301165_supp_0721B91C-0C42-11E4-B1A5-91452E1BA5B1.docx

