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ABSTRACT

In this thesis, a machine learning based methooraposed to predict the putt outcomes of
golfers based on their electroencephalogram (EEA#.dThe method can be used as a core
building block of a brain-computer interface, whishdesigned to provide guidance to golf
players based on their EEG patterns. The proposstian includes three steps. First, multi-
channel 1l-second EEG trials were extracted duriolfeis’ preparation of putting. Second,
different features are calculated such as coroglatioefficient, power spectrum density and
coherence, which are used as features for theifatatien algorithm. To predict golfers’
performance, the support vector machine algorithinsied to classify the EEG patterns into two
categories corresponding to successful and noressfid putts. The proposed approach utilizes
a large number of features extracted from the ElfBats, and it is capable of providing

adequate prediction that could help golfers to maprtheir performances.
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l. Introduction

Mentally training individuals to reach their optihpgerformance or improve their performance
even beyond their current skill levels is a desifeeach sports field. For the past decades,
building biofeedback systems based on brainwavenpatis the main trend to train athletes after
the brain wave was found to be highly associatdl thie event-related period. Therefore, brain
wave analysis is needed before building such aebiifack system. Electroencephalogram
(EEG) signals are popularly used brain signalsrbidect the brain activity by placing electrodes
on the scalp. It measures summation of electricaViies of thousands or even millions of
neurons that have similar spatial orientationientiuman brain (Thatcher, Biver, & M., 2004).
Golf putting is well known as a cognitive goal-dited sports action due to the continuous
thinking, concentration, aiming, planning, and demi-making during the preparation period. A
large amount of research showed that golf puttiedogpmance is predictable by extracting the
EEG signals in specific frequency bands. Recemare proposed a training method by setting
a threshold for each EEG frequency. Once the siigaguency is higher than the threshold, the
feedback system would encourage the golfer to pittiin 1.5 seconds (Martijn Arns MS,
Michiel Kleinnijenhuis MSc, Kamran Fallahpour , &dR Breteler , 2008). Prediction based on
a threshold is propitious for applications, howeveis easy to cause misclassification due to the
complicated variation of EEG signals and differenresuccessful patterns. With the purpose of
giving an effective detection of successful patind precisely predicting golf performance, we
proposed a classical machine learning algorithnSupport Vector Machine (SVM) -- for
analyzing EEG signals recorded during golfers’ prapon periods. After the structure of this
classifier is set up in the neuro-feedback systamjnstructive signal would be generated to

encourage golfers to make the putt if a succespéitern is detected. Otherwise, if an
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unsuccessful pattern is detected, it will let trefegy be more concentrated on aiming and
planning.

In this thesis, we will focus on the analysis ofcEignals that is collected by the preparation
period. Four features are extracted from time danaaid frequency domain. Nonlinear binary
SVM models have been applied. In the second chapgEG data extraction and feature
separation are presented. In the third chapterildebf building the SVM structure and

parameters optimization are presented. In the Hocinapter, all experiment results are shown

with the comparison between features and SVM models



1. EEG data analysis

A. EEG introduction

We begin with the fact that human brain weighs apipnately 2.5 pounds, consumes
approximately 40% to 60% of blood glucose, and ooress the same amount of oxygen as our
muscles for 24 hours a day. A large amount of gnbag been used to produce electricity for
supporting the actions of small and large groupsenfrons. Each neuron needs to constantly be
recharged (Tryer,L., 1988; Niedermeyer & Silva, 201

EEG is the recording of electrical action by placmultiple electrodes on the scalp. It measures
voltage variations caused by ionic current flowshwm the neurons in the brain (Niedermeyer &
Silva, 2012). Scalp EEG recording shows the elegtrpotentials difference between two
locations nearby the electrode on the scalp. Howewest of the human cerebral cortex is
hidden deeply beneath the scalp. It is hard torcettee immediate activity from small groups of
neurons, and the waveforms recorded from the eldes on the scalp represent the cortical
potential differences that come from the synchrenactivity created by large groups of neurons
(Tatum, Husain, Benbadis, & Kaplan, 2007).

In this chapter, we are aiming to find out the eleteristics of EEG data which have a potential
correlation with the golfers’ performances; the Inoet of extraction and calculation will be

presented.

B. Literaturereview

In the last few decades, people have had increasiegest in brain waves gathered from human
scalps, which is Electroencephalography (EEG) ddttahas been a necessary factor in
performance analysis of goal-directed sports swlsheoting (Hillman, Apparies, Janelle, &

Hatfield, 2000), basketball (Chuanga, Huangb, & #n2013), and golf (Muangjaroen &
3



Wongsawat, 2012). In addition, EEG feedback caemi@lly enhance the performance of those
sports that need a perfect physical balance corsuch as ice-skating and skiing, by improving
the concentration and attention (Hammond, 2007xida&arly, golf putting is well known as a
cognitive goal-directed task because of the cootisuthinking, concentration, planning, and
decision making during the preparation period, artths been studied extensively in terms of
EEG signals (Babiloni.C, et al., 2008). EEG-baseaiBComputer Interface (BCI) systems have
been developed to improve the rate of successtis oy generating a continue signal that can
help a golfer decide if he is ready to give a reddy successful putt (Martijn Arns MS, Michiel
Kleinnijenhuis MSc, Kamran Fallahpour , & Rien Bxletrr , 2008).

Generally, EEG data is divided into several bandsaquency domain: they are delta (1 — 4 Hz)
theta (4 -7Hz), alpha (8 -12 Hz), beta (13 - 30,Hxnd gamma (30 -100 Hz) frequency bands.
Normally, the amplitude in delta is relatively heghthan other bands. It is always associated
with deep sleep, and it has been applied for sk&ge research, while the Gamma band waves
are shown during the short-term memory correspando recognized objects, sounds, or
sensation (Kirmizi-Alsana, et al., 2006).Becausehefweak relationship between golf putt and
these two band waves, we would not consider thenmdtion in these two bands for this project.
However, a large number of evidence showed thathtbia band (4-7Hz), alpha band (8-12Hz)
and beta band (13-30Hz, some articles separatédhis into betal (13-20Hz) and beta2(21-30))
wave power has potential value for direct attentibhllman et al proved the significant
difference of power in theta band has showed betweepert and novice rifle shooters,
especially during the aiming process (Hillman, Apgs, Janelle, & Hatfield, 2000). In recent
research, Lan-Ya et al. showed that relatively éigtower in theta band has been found during

the aiming processes for successful basketbaliwhi@huanga, Huangb, & Hunga, 2013). In
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addition, for golf research area, Piyachatet aved that higher theta and alpha power are found
in diverse channels in successful putt than unsstakputt (Muangjaroen & Wongsawat, 2012).
Another research project displays that an increasiontal-midline theta power appears in
expert golfers in a golf putting task compared twices. Therefore, the higher theta power
might give a rise to occurrence of high focuseerdibn on the performance (Baumeister,
Herwegen, Liesen, & Weiss, 2007). In this caseywwald only consider the information carried
in 4-30 Hz, which covers theta, alpha, and betal anhe following analysis.

Beside EEG power over three frequency bands, coberever the frequency bands is another
feature in EEG-based analysis which has been useelyw(Babiloni, et al., 2011; Babiloni,
Brancucci, Vecchio, Arendt-Nielsen, & Chen, 200@kRSoekadar, Sauseng, & Plewnia, 2011,
Davey, Victor, & Schiff, 2000). It is an extensiohPearson’s correlation coefficient to complex
number pairs. In EEG-based analysis, it can meath@eelationship between EEG signals
simultaneously recorded from two different elecé@ites on the scalp at a given frequency and
reflect the functional coupling among brain are8hajw, 1981; Babiloni, Brancucci, Vecchio,
Arendt-Nielsen, & Chen, 2006). It may be more dffecthan PSD in inter-hemisphere analysis
changes caused by cognitive tasks (Shaw, 1981erReesearch reported that a higher alpha
coherence is associated with a better performaneeunimanual visuomotor task. At the same
time, increase of betal coherence of centropanetabn and beta2 coherence of frontal region
were observed (Rilk, Soekadar, Sauseng, & Plevi2@ial). The coherences of 12 combinations
of 10 electrodes in the movement period and theelives period were calculated and the
difference of these two coherences in alphal apldadl bands is relatively higher in successful

putting than unsuccessful putting (Babiloni, et 2011).



In this chapter, amplitude in time domain, correlain time domain, power spectrum density in
frequency domain (4-30 Hz), and coherence in fraquelomain (4-30Hz) will be analyzed.

C. EEG data extraction

Objectsand data

26 golfers have been recruited which include exped novice, and their age range is from 18 to
27. All golfers were asked to give 40 putts, anelytiwvere told to relax after they finished the
first 20 putts. The EEG data was recorded withrttewement of the club. A significant spike
occurred in the club signals, and spikes are adeaith sudden changes in acceleration in a
couple milliseconds (See Figure 2.1). Supposertbment that spike showed is 0s; -1s — 0s is
considered as the putting period that include<hhle moving backward and then hitting the ball.
Before -1s-0s, golfers make preparation in themdsiuntil they start moving the putter to stroke
the ball. Therefore, the EEG data from -2 second teecond can reveal golfers’ brain states in
preparation that are most correlated to their pgtperformance. In the following analysis, we

will analyze the one second signals and try to timelcorrelation in different areas of the brain.

No Movement Initiation of Movement
(Player preparing to (Includes forward and Impact

start put) backward swing)

Figure2.1 club data with a spike



Golfers’ putting performance is measured by twdecia. One straightforward and popular
criterion is the error in centimeters which is thistance of the ball away from the hole. The
other is perception of self-confidence, concentrgtiand quality of each stroke evaluated by
golfers themselves (Crews, Martin, Hart, & Pipa®91). The perception has 10 grades from 1
(worst) to 10 (best). The performance of each gaott is classified into either success or failure
based on both cm errors and perception gradesidrpaper, if the perception grade is higher
than 8 and the cm error is less than 30 cm, weideng a successful putt. Otherwise, it is
defined as an unsuccessful or failed putt.

EMOTIV device

The device we used to collect EEG data is the ‘BmMBEG neuroheadset,” which is made by
Emotiv Company. It uses 14 sensors attached osdélp to detect electric signals produced by
the brain and transmit them wirelessly to the cot@puThe 14 sensors cover the locations based
on the International 10-20 locations (Figure 212)ey are: FP1, F7, F3, T3, C3, P7, P3, 01, 02,
P4, C4, T4, F4, F8, and FP2. It doesn’t include®z,Pz, A1 and A2.The sampling rate for this
device is 128 Hz. It is sufficient for this projesshce we are only interested in the 4-30 Hz EEG
data. Figure 2.3 shows the device which could taelaed on the scalp. After this device extracts
EEG signals, they are transmitted wirelessly to tbeeiver which is connected with the

computer.
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Figure2.2 International 10-Xysten® Fig 2Bmotiv EPOC model 12

We use EEG signals from 8 electrodes in the EE@d®tavhich are placed the left frontal,
right frontal, left temporal, right temporal, lefentral, right central, left parietal, and ri
parietal areas, since these 8 areas cover the ragions for visuospatial and somatomc
processes of both theft and right brain hemispheres which are closelyelated to golf puttin
performancgBabiloni, et al., 211). The corresponding 8 scalp locations are named £3T,

T4, C3, C4, P3, and P4 according to the internati@f-20 scalp electrode placement sys.

D. Timedomain analysis

The signals we obtain directly from the receiare time sequencesith 128 sampls per
second with a sampling rate of 128 I. Since the second tast second is consideras the
target period that has r@latively high correlation with the performance, the time sequs
outside this one second wiie discared in the following analysidn this section wwill discuss

features in time domain thatdlude amplitude and cross correlation.

Figure2.2 International 10-2§/stem source
http://en.wikipedia.org/wiki/10_20_system_(EEG)#nagtewe|
% Fig 2.3 Emotiv EPOC model 1.0 souiource: http://femotiv.corfupload/media/1_big.jf
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Amplitudein time domain

Figure 3.1 (a)-(d) came from Jen (one of the gs}feDifferent lines represent different time
sequences from 14 channels, and the amplitudes@asured with microvolts. As we can see,
the alterations of 14 lines have many similaritiggich is because the signals we collected from
one electrode not only come from the neurons rigteath the electrode, but are also mixed

with the signals from neurons beneath other eldeso

Jen pre success6 Anglitude in Time domain Jen pre failure5 Anglitude in Tine domain

Figure2.4 (a) Quality: 10 CM Error: 0 Figure2.4 (b) Quality: 10 CM Error: 47

Jen pre success12 Anrplitude in Time domein Jen pre failurel0 Anplitude in Time domain

Anplitude( V)
Anpiitude( V)

Figure2.4 (c) Quality: 10 CM Error: O Figure2.4 (d) Quality: 10 CM Error: 86



Qualities of both Figure2.4 (a) and (c) are 10, amderrors are 0. However, the brain waves are
totally different. For those successful putts thawve different qualities and cm errors, the

differences are even more indistinguishable.

DJ pre success2 Anditude in Time domain

DJ pre failure3 Angditude in Time domein

Figure2.5 (a) Quality: 10 CM Error: O Figure2.5 (b) Quality: 8 CM Error: 69

DJ pre ssucess5 Anplitude in Time domain DJ pre failue4 Anditude in Time domain

Figure2.5(c) Quality: 10 CM Error: 0 Figure2.5 (d) Quality: 8 CM Error: 77

Figure 2.5 (a)-(f) came from DJ (one of the golfeend the signals from him are more stable
than Jen. However, it is still hard to distingusinccessful and failed putts by observing the
signals from the amplitude in time domain. Thisigiton also happened to other golfers’ signal,

10



but we won’'t show all the figures here. Becauseth& insignificant characteristic of time
sequence amplitude, we do not consider it as are#d classify the data. Another reason is that
if we used all the time sequences, it would give2l@mplitude values for every trials making
the calculation cost too high. From the perspeativieuilding an instantaneous feedback system,
the high dimension trial calculation would costrag lag which may provide false instruction to
the golfer.

Crosscorrelation

Another feature that has been widely used in EBte lomain analysis and signal processing is
cross correlation. For example, Bahcivan et aldugess-correlation to prove the existence of
common activity of two different locations durinbet epileptic seizures at a particular band
(Bahcivan, Hopkins, Zhang, Mirski, & Sherman, 2001h addition, Hermanto suggested that
cross-correlation is an important reference to meathe similarity of EEG signals that could be
used to classify features in the brain computesrfate signal processing (Hermanto, Mengko,
Indrayanto, & Prihatmanto, 2013).

In this project, one hypothesis is that the timgusmces in successful golf putts have similar
patterns. At the same time, there exists a reldtigealifference between successful golf putts and
unsuccessful ones. If the hypothesis is supporjethé real data, which means that the cross
correlation between successful conditions would Higher than between successful and
unsuccessful conditions. The cross correlation didd a reasonable feature that could be used
in prediction by computing it between unknown EEfadand known successful time sequences.

Cross-correlation has been defined by the function:

ey k] = z x[nlyfn—k] k=0,+1,+2, .. 1.1

11



After this introduction of definition of cross cefation, we need to decide which two signals
would give the significant difference for suppogctor machine training. What we did is to
calculate cross correlation between every triahwli® successful trials. With the purpose of
including all the successful features from the sgaeson and some successful features from
other persons, if there are no 10 successful tivalghis person, the 10 successful trials with the
closest distance to the target trial are seledtbd.order in the data set is fixed, so we searched
forward to get five successful trials and backwiardet another five successful trials. After we
separately calculated the cross correlation betwleetarget trial and reference trials, the middle
areas were extracted from the long correlation eecel For example, both the target time
sequence and reference sequence have 128 valuts smtal cross-correlation sequence has
2 %128 —1 = 255 values. We only used the middle part of averagescoorrelation sequence,
which is the fiftiethto the two hundredth valuef®r the consideration of dimensional reduction
and sufficient overlaps between two signals. ker ¢onvenience of viewing, we combined 8
channels together.

Figure 2.6 (a) represents 5 cross-correlation sempgethat come from 5 successful putting of
one golfer and figure 2.6 (b) comes from the unessful putts. Five curves in the left figure
have significant 8 peaks during 8 channels, ondyftiurth one is irregular. This means that most
of the successful trial has correlation with otheccessful trials with the fourth one showing no
correlation. In contrast, the five curves in thghtifigure are all irregular except the second one
which gives the evidence that there are no markedelations between successful and

unsuccessful putting.
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Figure 2.6 (a) successful CC Figure 2.6 (b) unsuccessful CC
However, not all the cross-correlation curves frima golfers showed significant difference.
Figure 2.7 (a) - (b) came from another person. 3émond, third and fourth curves in the right
figure have no spike in all 8 channels. Althoudite humber of peaks in the five curves obtained
from cross- correlation between successful putind reference putting is not as significant as
those in figure 2.6 (a), they show more similasitttan the correlation between unsuccessful

putting and reference putting.
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Figure 2.7(a) DANI successful CC Figure 2.7(b) DANI unsuccessful CC
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Because of this characteristic, the cross-cormiagequences between target trials and reference
successful trials are good features as the inp8upport Vector Machine.

E. Frequency domain analysis

Power spectrum density analysis

Fast Fourier Transform (FFT) is an algorithm tocaoddte the discrete Fourier transform (DFT).
A Fourier Transform converts time domain signalérégiuency domain signals; FFT is very fast
at calculating such transformations.

The function below shows the Discrete Fourier Tiams:

N
X(k) = 2 x[n]e~on 2.2
n=1
_ _ 2
while W= W=7k 23

Power spectral density (PSD) describes how the poiva signal or time series is distributed
over the different frequencies. For discrete tisignals, the definition of the power spectral

density can be defined as:

N

Z x[n]eJon

n=1

_ e

2
Sxx T

== |2, x[nle~on|2

1 _:
= (o) |Z7I\1’=1 x[n]e ]wnl 2

1
~ (F*N)

X ()] 2 -

while x[n] = x(n * At) , T = N*At , Fs = At.
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The function 2.4 would be used in Matlab codinge Tefault window function used in FFT is
the rectangular window. For the sake of avoidingv@oleakage, a popular window function,

hamming window, has been applied. The functiorhefttamming window is

n
w(n) = 0.54 — 0.46c0s (ZHN) 2.5

Coherence

As mentioned previously, a large amount of reseasdd coherence as a feature to analyze EEG
signals and the relationship with human behaviar. #he same reason, we would consider
coherence to measure the quantity of phase constatween two signals. If the relationship
between two signals is constant, then the cohensntelf the relationship between two signals

changed randomly, then the coherence is 0.
Coherence in signal analysis is defined as:

|Sxy ()I?

Coh ) = 5 DS () 2.6

two time sequences are denotedXamndY, Sxx(f) and Syy(f) are the auto spectrum estimate
of X andY at a given frequencf, respectively, andyy (f) is the cross spectrum estimate of
these two time sequences. For the purpose of operiement, we need spectral coherences
between 4Hz and 30Hz of some combinations of 1rak&dEG trials from the 8 scalp locations
which are F3, F4, T3, T4, C3, C4, P3, and P4. Tawa subtle and significant variations of the
EEG patterns representing golf putting mental pra&pan state, we consider 22 pairs of these 8
scalp locations. To fully evaluate the inter-hgshisric functional coupling, all 16 combinations

of 4 left scalp locations and 4 right scalp locasi@re included, which are F3-F4, T3-T4, C3-C4,
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P3-P4, F3-T4, F3-C4, F3-P4, T3-F4, T3-C4, T3-P4,;F@3C3-T4, C3-P4, P3-F4, P3-T4, P3-
C4. Since frontal areas are closely associated plahning which is the process of thinking and
organizing the activities required to achieve arddsgoal, they play an important role in golf
putting mental preparation. Therefore, the frontata-hemispheric functional coupling with
other cortical regions in the same hemisphere argcplarly evaluated (Babiloni, et al., 2011).
Here, 6 combinations of left and right frontal areeth the respective other three areas in the
same hemispheres are included, which are F3-T&33-3-P3, F4-T4, F4-C4, F4-P4. Based on
1-second EEG trials extracted in the last subsectie spectral coherences from 4Hz to 30Hz of
the 22-pair electrodes can be computed. These @&rap coherences are concatenated into a

vector which will be an input of the classificatialgorithm in the next step.
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1. Applied SVM on EEG data
A. SVM introduction

In the previous chapter, we proposed 1) cross-etiva between target trials and the 10 closest
reference trials; 2) power spectrum density in el 8 channels over 4-30Hz ; 3) average
power spectrum over theta (4-7Hz), alpha (8-12Hedal (13-20Hz) and beta2 (21-30Hz) band;
4) all coherences between 4Hz and 30Hz of 22 caoatibims for 8 electrodes on the scalp 5)
average coherence in 4 bands that determined isatine manner as average PSD bands, used as
the features to fully characterize the EEG pattelasgng putting preparation. However, it is
unlikely to distinguish successful and unsuccesgfeXc pattern directly. In order to effectively
predict the putting performance, we choose supgntor machine (SVM) algorithm to classify
the all feature of EEG patterns that listed abane two categories corresponding to successful
and unsuccessful putts since this algorithm hawoigs formulation and has been used in many

EEG-based pattern recognition applications

B. Literaturereview

SVM was first introduced by (Bernhard E. Boserbkge M. Guyon, & Vladimir N. Vapnik,
1992) then it has been widely used in data anabysib as classification and pattern recognition
applications (Schlkopf & Smola, 2002) (Shen, Li,gd8hao, & Wilder-Smith, 2008) (Li, Zhang,
& Du, 2013) (Parvez & Paul, 2014). Paul claimed tihecision patterns showed more potentials
compare to no choice brain pattern which makesssible to predict the decision-making EEG
signals. (Paul, Leung, Peterson, Sejnowski, & R&izA010). In another research (Li, Zhang, &
Du, 2013), SVM is used to classify six differentwvement patterns in EEG signals, participants
were asked to imagine different sports that welaed to still, walking, squatting and stand up,

up to the slopes, down to slopes and running. Eseltr gives a relatively high prediction
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accuracy that reached 78.9%, this result provetl $vd could effectively classify EEG on
complicated thinking. Besides those, it is widebed in clinical areas such as Eplieptic (Parvez
& Paul, 2014) and fatigue measurement (Shen, Lig,08hao, & Wilder-Smith, 2008),
furthermore, SVM has successfully classify the Eda®a from alcoholics and non-alcoholics ,
the test accuracy reached 94.67% (Kousarrizi, BohnEng. Dept., Ghanbari, Gharaviri, &
Teshnehlab, 2009)

C. Binary SVM classifier

Basic concepts of SVM

For Binary SVM classifier, the input data consistgwo labels corresponding to two classes of
data, we call them positive examples and negatkameles. SVMs represent those data as
points in the high dimension space, then deterrgiran optimal separating hyperlane in the
space to classify those examples. (Drish, 1998)udés given training examples € R",i =

1,2 .....,1, labeled byy; € {+1,—1}, to createf (x) by optimizing one or more parameters. The
decision functiorf (x) can be used to predict the label of any test el@snfSchlkopf & Smola,

2002)

wix+b=0

wIix +b>(

. \\\ - . g0 °
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Fig3.1Scatterplot of a binary classification dat?
Figure3.3 is an example for linear binary datatbet,decision function i X+ b, wis
theweight vector and b is called bias. The hyper!

3.1

divides(the dash line in the middle of dots in Figure) tiwes into two: dots above the line

called positive examples, dots under the line alied@ negative example

a) Margin and optimization problem

It is easy to find lots ohyperlane separating the training example To decide the optimi
unique hyperlane among alie hyperlanesmargins of separation between any exam are
the important standard$¥he optimal hyperlanhasthe maximum margin. (See Fig &

A

2;.

Fig 3.2Graphic showing the maximum separathyperlaneand the margi*

Mathematically, it ilecided by the solution «

3.2

® Linear-svm-scatterplot. N.&Vikipedie. Web. 22 Oct. 2013.

<http://en.wikipedia.org/wiki/File:Linei-svm-scatterplot.svg>.

*Svm Max Sep Hyperplane with Mar. N.d. Wikipedia Web. 16 Feb. 2008.

http://en.wikipedia.org/wiki/File:Svm_max_sep_hyplane with_margin.pr
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Compare to Figure 3.1, Figure 3.2 has an optimpkHgne for the same examples. As we can
see the distance between the closest point angoiheis1/||w||, if we consider both sides, the
distance would b&/||lw||. To maximize2/||lw|| is to minimizd|lw||/2, so the optimization

function is

in— 2 3.3
mipa v

Subject toy;(w-x; +b) > 1 3.4

The reason we put the 1 instead of> 0 is because no matter what kind olv<b> we find

from this problem, we can find anothem< b'>, which multiplied byA(0 < A < 1), that can
reach a minimizer%llwllz, putting =1 on the right side effectively fixed this problem.

Furthermorey;(w - x; + b) make sure thav -x; + b = +1 wheny;, =+1,w-x; +b = —1
wheny; = —1.

To solve this problem, we can introduce the Lageamgltipliers 4; > 0 and the Lagrangian:

m
1
Lw b, ) = SIwl? = ) Alyw-x+b) =1 5o
i=1

Take the partition differential of. respect taw, b

m
d
WL(W'b'/U=W_Z/1i}’ixi =0 36
i=1
Then
m
w = Z/liyixi 37
i=1
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—L(W b, 1) —Ellyl —0
3.8

Let’s plug the 3.7 and 3.8 in 3.5 we can get thal guoblem

n m m
x Z 221 A yiyxi % 3.9
i=1

i=1j=1

Nlr—\

Subject to
0<4 <C fori=12,..,n 3.10
Once we gel , it is easily to obtaim by equation 1.5. The decision functiftx) would be as

follow

fx) = Sgn(z A yixIx +b) 3.11

The x in equation 3.11 is the data that needs wdssified. If f(x) = 1, the test data x would be

considered as positive sampled(X) = -1, it would be consider as negative samples.

b) Kernel functions and non-linear classification
For some complicated situation, it is hard to gateer liner hyperlane which separates positive
and negative examples perfectly. (Figurel.10) whpesitive and negative examples have

overlaps, non-linear classifier is more efficient.
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Figure 3.3 a) linear classifier gkre 3.3(b) non-linear classifier

To generate a non-linear hyperlane, we need t(mephexiij in function 3.9 by non-linear

kernel functions such as polynomial kernels, Gausgadials basis kernels and sigmoid kernels.

Gaussian radial basis functionRBF ) was selected, it is defined as:
2
K (x, %) = exp (=v|lx; = x;]|),¥ > 0 3.12

If we generate a matrix witk with data pointe;, x5, ... ... X, theK(xi,xj) Is positive definite,

then it is possible to generat@aunction such that

K(xi,xj) =< CD(XL'),CD(XJ') > 3.13

flx) = sgn(z A yi®(x)Td(x) + b) 3.14
i=1
Then the final decision function would be writtex\314 (Schlkopf & Smola, 2002)

C) | mportant parameters
To construct a SVM model with a higher clésation accuracy, both parametérandy

need to be tuned very carefully. In our study, e terative grid search and cross validation
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techniques to optimiz€ andy. Usually, in the experiment, all available samptas be
partitioned into two parts. One is used to findtlieandy and construct SVM model and it is
called training data. The other is used to tesp#rformance of well-trained SVM model and so
called testing data. Now, we focus on training dataptimize theC andy and construct SVM
model. To find bette€ andy and at the same time reduce the computation coaylean
iterative grid search with exponentially growinglues of two parameters in (Hsu, Chang, &
Lin, 2010) is used for our problem. At the firsasgh, the values af andy are bounded in the
coarse Setgz—S , 2—5+h’ " 2—5+19h’ 2—5+20h} and{z—lo , 2—10+h, o 2—10+14h, 2—10+15h},
respectively, where the stefpto discretize the power of 2 is 1. Given any @di€ andy, a 5-
fold cross validation is performed, where the tragndata are divided into 5 subsets of equal
size. In the cross validation, any four of these firaining subsets are used to train SVM model
and the remaining is used to test this model. Tiekash sample of the whole training set is
predicted once so the cross-validation accuradhespercentage of data which are correctly
classified. We pick the beStandy in the two ranges with the highest cross validatocuracy.

In addition, we add a bound of the average traimioguracy based on any four training subsets
in the cross validation. If this training accuramyone pair ofC andy is lower than the bound,
then this pair has to be eliminated from the patamenges to further guarantee good SVM
model and save the computation cost. In our expgrinsuch a training accuracy bound is set to
80%. Suppose the begt andy to be2! and2’ at the first search. Then, a smaller region with
the finer grid at the second search can be idedtifis{2i-10% ,2i=5%  2i+%r 2i+10m gpg
{2/710Rh 2j=%h  2J*%h 2j+10h} \where the new step is 0.5. The same procedure can be
followed to find the best andy in the new ranges. In our method, we will impletnine grid

search 5 times. To iteratively impro¢eandy, we narrow down their ranges by shrinking step
23



to (0.5)2, (0.5)3, and(0.5)* for the third, fourth and fifth search, respedyvéJsing the bes€
andy after five searches, the final SVM model is wedlined based on the whole training set

and also the corresponding training accuracy casobguted.
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V.  Experiment result

To demonstrate the performance of the proposedadgetlie will use support vector machine
with RBF kernels to analyze 573 1-second EEG texigacted by the procedure given in the
previous section and the corresponding puttinggperdnce data. In our method, the feature as
the input of SVM is the spectral coherence vecteiingd in the previous section. We will
compare prediction accuracies using this featuth Wiose using cross correlation, PSDs from
4Hz to 30Hz, coherence, and average coherencdlwter, alpha, betal and beta2 bands to show
the proposed feature is better than the other toeenonly used features.

In our experiments, 573 EEG trials were reedrétom 26 golfers. Unlike (Muangjaroen &
Wongsawat, 2012) (Martijn Arns MS, Michiel Kleinenhuis MSc, Kamran Fallahpour , & Rien
Breteler , 2008; P. Terry, P. Mahoney, 2006; Bausteej Herwegen, Liesen, & Weiss, 2007; DJ
& DM., 1993; Babiloni.C, et al., 2008) where thelfgaoutting skill levels and ages are strictly
controlled, some of them are excellent expertssamde are novices who may be playing golf for
the first time. The participants’ putting skill was very much. Their ages also spread widely
from 18 to 71 years old. These may make our EE@&patecognition and putting performance
prediction much more difficult. However, the expeental results still clearly show that the
proposed method outperforms the SVM with crossetation, PSDs, average PSD and average
coherence as inputs.

To implement our method, we divided 573 samphto training data and testing data. We
made three different partitions. At each partitibnp third of the total samples are used as
training data and the other one third is used stintpdata. That is to say, there are 383 training
data and 190 testing data. The training data imduiP6 successful trials and 187 unsuccessful

trials and the testing data includes 97 successéis and 93 trials. Since the sampling rate of
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the recorded EEG signal is 128Hz, the PSDs of E&sh channel and the spectral coherences of
each pair of EEG channels were computed at 65 émcyubins from OHz to 64Hz. We only
need PSDs of the 8 channels and the spectral catem®f 22-pair channels from 4Hz to 30Hz.
We concatenated PSDs of 8 channels and the spectrafences of 22-pair channels to form a
216-dimensional PSD vector and a 594-dimensionbhei@nce vector which will be used as
inputs of the SVM. We also took the averages of £#8d spectral coherences over theta, alpha,
betal and beta2 bands to compact their carriednnatoon. Then we concatenated these
numbers across the 8 channels to form a 32-dimeaisaverage PSD vector and across the 22-
pair channels to form a 88-dimensional average restoe vector as inputs of the SVM. We will
compare the performance of the SVM with four typesputs in this paper.

The confusion matrix structure is like the followitable:

Table 1 Confusion matrix example

Confusion matrix Actual label

example successful| unsuccessful
Predict | successful 165 31

Result | unsuccessful| 22 165

Used the first PSD training accuracy as an example
Before using the method we proposed to verify the det of golf related EEG signal features,
we firstly applied this algorithm on the data sktveo direction thinking EEG signals. A person
is asked to wear the Emotiv device and think allatdirection of forward and backward. 100
samples have been collected with 50 forward thigltEG data and 50 backward thinking EEG
data. Among the 100 samples, 68(close to 2/3 alath) of them are used as training and 32 of
them used as test data. The results showed thHaadd®vard and 15 forward have been detected,

which gives a test accuracy of 87.5%.
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We did 21 tests of each features, the full resaréspresented in Appendix A. For each tests, we
changed the combinations of test trials and trgirtmmals with fixed successful/unsuccessful
ratio.

The combinations were randomly generated with &l £hanged. Four test results are given in
the following 4 tables, each table gives 1 besultesf one feature from the 21 tests

corresponding to 3 results of other 3 features, fand results listed in the same table share the

same seed.
Table 2 Highest cross-correlation with other features
Features Optimal Cross Training accuracy | Testing accuracy
Random parameters validation (%) (%)
generator V5 C,y) accuracy confusion matrix | confusion matrix
(%)
Cross 53.4211 99.48 58.95
Correlation C =7.0250 Confusion matrix | Confusion matrix
(4-30H2), y =0.0653 =[194 2 =[67 30
seed 0 187] 48 45]
PSD 47.1053 80.16 50
(4-30H2), C = Confusion matrix | Confusion matrix
seed 2.896e+03 =[171 25 =[56 41
y =30.6433 51 136] 54 39]
Coherence 58.6842 93.21 52.63
(4-30H2), Cc=1 Confusion matrix | Confusion matrix
seed y =1.1388 =[184 12 =[ 36 61
14 173] 29 64]
Average 59.7368 78.85 52.63
Coherence cC=04 Confusion matrix | Confusion matrix
seed™ y =12.3377 =[147 49 =[ 33 64
32 155] 26 67]

The highest overall test accuracy of cross-coiimlais 58.95% (see table 2), 63 successful
patterns have been detected from 97 successfearpstiwhich gives a 65% successful detection
accuracy. On the contrast, the overall test acgusd®SD and coherence and average coherence
are relatively lower than cross-correlation oves tbombination of training and test data set.

However, the unsuccessful detection accuracy reabli§67+26)=72% in average coherence
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and 64/(67+29)=68.8% coherence. This situation begaused by inconspicuous of successful
coherence and average coherence patterns in thmgraet, therefore, the classifier is trend to

target the unknown trials to decision of unsucadgaitting.

Table 3 Highest power spectrum density with other features

Features Optimal Cross Training Testing accuracy
Random parameters | validation accuracy (%)
generator V5 | (C, y) accuracy (%) confusion matrix
(%) confusion matrix

Cross 57.1053 84.07 57.89
Correlation C=4 Confusion matrix | Confusion matrix
(4-30H2), y =0.0089 =[178 18 =[63 34
seed" 43 44] 46 47]
PSD 52.3684 86.16 53.68
(4-30H2), C=8192 Confusion matrix | Confusion matrix
seed' y =28.1 =[165 31 =[51 46

22 165] 42 51]
Coherence C =| 60 86.42 54.74
(4-30H2), 3.0048e+04 Confusion matrix | Confusion matrix
seed' y =0.001 =[171 25 =[52 45

27 160] 41 52]
Average 57.8947 99.74 54.21
coherence C =609 Confusion matrix | Confusion matrix
seed" y =1.0443 =[195 1 =[55 42

0 187] 45 48]

The highest overall test accuracy gives the peacgnof 53.68 (see table 3) which is lower than
other features. Except these combinations, the epesults (Appendix A, Table B) show that
most of the result that calculated with PSD featuyeves relative lower overall test accuracy
than other features. It gives the efficient evidetitat using power spectrum density directly is
more possible to give a poor performance in clesdibn. In this case, we may use other

features to training the final SVM model in thetfea.
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Table 4 Highest coherence with other features

Features Optimal Cross- Training accuracy | Testing accuracy
Random parameters | validation (%) (%)
generator V5 (C,y) accuracy confusion matrix | confusion matrix
(%)

Cross 58.4211 80.94 54.74
Correlation C =61.2866 Confusion matrix | Confusion matrix
(4-30H2z), vy =0.0010 =[173 23 =[ 55 42
seed” 50 137] 44  49]
PSD 52.8947 80.68 43.16
(4-30H2), C =6049 Confusion matrix | Confusion matrix
seed™ y = 9.5137 =[151 45 =[ 45 52

29 158] 56 37]
Coherence 55.2632 99.22 62.11
(4-30H2), C=2 Confusion matrix | Confusion matrix
seed™ y=1.834 =[194 2 =[ 56 41

1 186] 31 62]
Average 56.0526 80.68 60
Coherence C = 25268 Confusion matrix | Confusion matrix
seed™ y=0.015 =[160 36 =[ 62 35

38 149] 41 52]

The coherence gives the highest overall test acguaanong all the features and all the test,
62.11% (see table 4). At the same time, averagereabe gives an overall test accuracy - 60%
with the same training and test data set, espgdiad successful detection accuracy of average
coherence is 64%. This result illustrate that usioigerence and average coherence as features is
more possible to give a good performance of pragidh this situation , and the training data set
of this combination have markedly characteristiccessful patterns and unsuccessful patterns.
On the contrast, the overall test accuracy of PSonly 43.1 which proved the previous
hypothesis — using PSD as features to classifygthifer's performance gives high degree of
misclassification.

Table 5 as following is another example to prowe ghperiority of using coherence and average

coherence as features.
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Table 5 Highest average coher ence with other features

Features Optimal Cross Training accuracy | Testing accuracy
Random parameters | validation (%) (%)
generator V5 C,y) accuracy | confusion matrix | confusion matrix
(%)

Cross 62.3684 87.47 51.58
Correlation C =12.8839 Confusion matrix | Confusion matrix
(4-30H2z), y =0.0049 =[181 15 =[ 54 43
seed™! 33 154] 49 44]
PSD 51.3158 89.06 49.47
(4-30H2), C =25268 Confusion matrix | Confusion matrix
seed™* y =20.7494 =[175 21 =[ 53 44

21 166] 52 41]
Coherence 55.7895 84.33 53.16
(4-30H2), C =1.5024 Confusion matrix | Confusion matrix
seed™* y =0.0014 =[167 29 =[ 54 43

31 156] 46 47]
Average 58.1579 80.68 60
Coherence Cc=70 Confusion matrix | Confusion matrix
seed™* y =0.4585 =[161 35 =[ 54 43

39 148] 33 60]

Although the variations of training and testingalaets caused by the random selection have
strong influence over the structure building andssification, the parameters and structures
corresponding to the highest successful detectooaracy or failure detection accuracy would
be used in the final BCI system.

From all the results we obtained, we claim thatertence has significant high overall test
accuracy among all the test and features, the acgwf average coherence is not worse than
coherence in most of the cases. However, becautee afompression of information, average
coherence took shorter time to selecting the optirendy corresponding to cross-validation.

This is the trade-off between test accuracy andpctation cost.
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V. Conclusion and discussion

This thesis has proposed a method to preéléciputting performance of a golfer based on
her/his EEG signals. The method collects multi-clehri-second EEG signals before the actual
putting action, extracts features from the EEG aligjnand analyzes the EEG signals with SVM
to predict the outcome of the putting. The operaioan be implemented in a BCI system, which
can help a golfer to improve her/his putting parfance by providing positive feedback (such as
a tone) when the EEG signals indicate a high chahsaccessful putting.
Four features have been used, and they are: cmsslation, PSD, coherence and average
coherence. Experiment results indicate that usoterence has the highest accuracy, followed
by cross correlation, average coherence, and PSD.
All results show that the training accuracies arelmhigher than testing accuracies for all four
features. The main reason is that the hyperldmaisare used to separate the successful and
failed trials overfitted the training data setspexsally in the high dimensions classifications.
Overfitting training data set results in a petfeeparation of the training examples. However, it
might not work properly for new data samples. GaltgrOverfitting occurs when positive and
negative examples are indistinguishable.
In the experiment, we randomly selected the trgimata with a fixed ratio of all the available
data, and the result changed with the variatiottashing data combinations. Comparing all the
21 combinations, we found that some combinatioetdyhigher test accuracies due to a better
separation between the successful and failed tnalke training sets; other combinations give
relatively low test accuracy. According to this pbmenon, we know that some of the successful

trails do not have marked patterns, and using thizda as training data would increase the
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degree of misclassifications. However, since ipéssible to select the training data set, more
selections and tests are needed to optimize timentgadata composition.

In addition, it has been claimed that the cohereinc¢heta alpha and beta band changed
significantly with age (Vysata, et al., 2014; Vysagt al., 2014). This is an important factor that
causes the misclassification since the age rangartitipants in this project is from 18 to71. In
addition, according to the Neurofeedback trainimgearch (Martijn Arns MS, Michiel
Kleinnijenhuis MSc, Kamran Fallahpour , & Rien Byler , 2008), the successful power
spectrum patterns in theta, alpha , betal and het2from different persons. To enhance the
accuracy under this individual diversity, more riiag data is needed to build personalized
training data set in order to distinguish the défe successful putting patterns. In the futurs, th
proposed method would be separately applied onrexgpel novice individuals which would
give rise to a higher predicition accuracy.

To further improve the prediction accuracy, we @amsider to enhancement to the SVM

implemented in this thesis.

Probabilistic outputs of SVM

The SVM makes binary decisions based on the inpad,dand there is a high chance of
misclassifications, even for well trained SVM stires. To improve the prediction accuracy,
probabilistic outputs would be more reasonable thasimple binary decision. In 1999, Platt
proposed a method to approximate the posteriorgiibty by map the binary decision to a
sigmoid function (Platt, 1999)

1

Prly =110 = I e Ar ) £ B)
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wheref(x) in this function is the decision that made by 8V, A and B are parameters that are

obtained by the following maximum likelihood probi€Lin, Lin, & Weng, 2007)
l

min - Z(ti logp; + (1 — £;)log(1 — py))
i=1

Ny+1

Ni+2
1

N_+2

ti = i:l,2,3,...|

whereN, is the number of positive examples andis the number of negative examples.
However, since this probablistic method is basedhenbinary classification reslut, in another
word, it is a posterior probabily that maps theyioral binary classifucation reusult to a probility.
So that the probabilty is influenced by originahsdification result. In addition, the ratio of
positive examples and negative examples strondgécisf the probabilistic result. Consequently,
if we want to use this method, we need to avoichtjtias imbalance of positive and negative
trials. Otherwise, it would directly map all thestedata to one group (either positive and
negative) with higher ratio in the training deagat.

Muli-class SVM

Another popular transformation of binary SVM is tnglass SVM, which is capable to map the
high dimension examples to more than two categgBebklkopf & Smola, 2002). In the future
work, the EEG features that have been used aboutthbe separated in 3 groups corresponding
to successful, normal and unsuccessful. All thaldriwithout significant successful and

unsuccessful characteristic would be classifieth@normal group.
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Appendix A Complete result tables

Table A: Binary classification for correlation coefficient

Features Optimal parameters(C, y) | Cross-validation Training accuracy Testing accuracy
Random generator V5 accuracy (%) (%) (%)
confusion matrix confusion matrix
Cross Correlation C=4 57.1053 84.07 57.89
(4-30H2z), vy =0.0089 Confusion matrix Confusion matrix
seed' =[178 18 =[63 34
43 44] 46 47]
Cross Correlation c=281 58.1579 100 56.32
(4-30H2z), y =0.0356 Confusion matrix Confusion matrix
seed" =[196 O =[48 49
0 187] 34 59
Cross Correlation C=1.3543 59.2105 99.22 51.05
(4-30Hz), vy =0.1051 Confusion matrix Confusion matrix
seed* =[195 1 =[53 44
2 185] 49 44]
Cross Correlation C=6.7272 57.3684 95.04 53.16
(4-30H2z), vy =0.0156 Confusion matrix Confusion matrix
seedf! =[194 2 =[62 35
17 170] 54 39]
Cross Correlation c=1 56.8421 100 54.74
(4-30Hz), y =0.3536 Confusion matrix Confusion matrix
seed" =[196 0 =[88 9
0 187] 77 16]
Cross Correlation
(4-30H2z), C=1.1388 61.0526 84.60 50
seed™ y =0.0203 Confusion matrix Confusion matrix
=[183 13 =[52 45
46 141] 50 43]
Cross Correlation C=4.1771 58.9474 99.22 56.32
(4-30Hz), vy =0.0482 Confusion matrix Confusion matrix
seed* =[195 1 =[55 42
2 185] 41 52]
Cross Correlation C =7.0250 99.48 58.95
(4-30H2z), y =0.0653 53.4211 Confusion matrix Confusion matrix
seed™ =[194 2 =[67 30
0 187] 48 45]
Cross Correlation C =61.2866 58.4211 80.94 54.74
(4-30Hz), vy =0.0010 Confusion matrix Confusion matrix
seedf* =[173 23 =[ 55 42
50 137] 44  49]
Cross Correlation C =181.0193 57.6316 88.25 53.16
(4-30H2z), vy =0.0010 Confusion matrix Confusion matrix
seed™ =[183 13 =[ 57 40
32 155] 49 44]
Cross Correlation
(4-30H2z), C =29.3441 56.3158 78.33 53.16
seed'®* y =0.0012 Confusion matrix Confusion matrix
=[169 27 =[ 66 31
56 131] 58 35]
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Table A (Cont.)

Features Optimal parameters(C, y) | Cross-validation Training accuracy Testing accuracy
Random generator V5 accuracy (%) (%) (%)
confusion matrix confusion matrix
Cross Correlation C =8.3542 58.6842 84.86 55.79
(4-30Hz), vy =0.0058 Confusion matrix Confusion matrix
seed™* =[184 12 =[ 62 35
46 141] 49 44]
Cross Correlation C =291.5299 58.6842 94.52 48.42
(4-30Hz), y =0.0011 Confusion matrix Confusion matrix
seed? =[188 8 =[ 46 51
13 174] 47 46]
Cross Correlation C =24.6754 58.6842 79.37 53.68
(4-30Hz), y =0.0013 Confusion matrix Confusion matrix
seed™! =[169 27 =[ 60 37
52 135] 51 42]
Cross Correlation C =2.1810 57.6316 98.69 48.95
(4-30Hz), vy =0.0682 Confusion matrix Confusion matrix
seed" =[193 3 =[54 43
2 185] 54 39]
Cross Correlation C =12.8839 62.3684 87.47 51.58
(4-30H2z), vy =0.0049 Confusion matrix Confusion matrix
seed™! =[181 15 =[ 54 43
33 154] 49 44]
Cross Correlation C =76.1093 59.2105 97.91 49.47
(4-30Hz), vy =0.0041 Confusion matrix Confusion matrix
seed'®! =[193 3 =[ 51 46
5 182] 50 43]
Cross Correlation
(4-30H2z), C =66.8335 56.0526 100 56.32
seed” y =0.0221 Confusion matrix Confusion matrix
=[196 © =[ 53 44
0 187] 39 54]
Cross Correlation
(4-30H2z), C =98.7015 59.4737 88.25 53.68
seed'® y=0.0014 Confusion matrix Confusion matrix
=[186 10 =[ 57 40
35 152] 48 45]
Cross Correlation
(4-30H2z), c=1 57.3684 88.25 55.79
seed®* y =0.0313 Confusion matrix Confusion matrix
=[190 6 =[ 63 34
39 148] 50 43]
Cross Correlation
(4-30H2z), C =1225732 56.0526 88.77 52.63
seed?™ y =0.0013 Confusion matrix Confusion matrix
=[181 15 =[ 48 49
28 159] 41 52]

39




Table B: Binary classification for power spectrum density

Features Optimal parameters(C, y) | Cross-validation Training accuracy Testing accuracy
Random generator V5 accuracy (%) (%) (%)
confusion matrix confusion matrix
PSD
(4-30Hz), C =8.192e+03 52.3684 86.16 53.68
seed' y =28.1 Confusion matrix Confusion matrix
=[165 31 =[51 46
22 165] 42 51]
PSD
(4-30H2z), C =1.579e+03 56.3158 80.68 50.53
seed" y =24.6754 Confusion matrix Confusion matrix
=[165 31 =[54 43
43 144 51 42]
PSD
(4-30H2z), C = 3.444e+03 50.2632 77.55 47.89
seed y =12.3377 Confusion matrix Confusion matrix
=[137 59 =[43 54
27 160] 45 48]
PSD
(4-30Hz), C =3.2768e+04 48.4211 89.56 50
seed™ y=32 Confusion matrix Confusion matrix
=[181 15 =[57 40
25 162] 55 38]
PSD
(4-30H2z), C =2.7554e+04 51.5789 83.29 51.58
seed™ y=8 Confusion matrix Confusion matrix
=[169 27 =[55 42
37 150] 50 43]
PSD
(4-30Hz), C =1.166e+03 52.1053 79.63 43.16
seed y =32 Confusion matrix Confusion matrix
=[158 38 =[46 51
40 147] 57 36]
PSD
(4-30Hz), C =4.871e+03 48.9474 81.20 50
seed y =20.7494 Confusion matrix Confusion matrix
=[168 28 =[56 41
44 143] 54 39
PSD
(4-30H2z), C =2.896e+03 47.1053 80.16 50
seed y =30.6433 Confusion matrix Confusion matrix
=[171 25 =[56 41
51 136] 54 39]
PSD
(4-30H2z), C =6.049e+03 52.8947 80.68 43.16
seed™ y=9.5137 Confusion matrix Confusion matrix
=[151 45 =[ 45 52
29 158] 56 37]
PSD
(4-30H2z), C =2.8774e+04 41.5789 75.98 51.05
seed™ y =2.0885 Confusion matrix Confusion matrix
=[157 39 =[ 60 37
53 134] 56 37]
PSD
(4-30H2z), C =4.467e+03 49.4737 80.94 47.37
seed® y =32 Confusion matrix Confusion matrix
=[165 31 =[ 47 50
42 145] 50 43]
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Table A (Cont.)

Features Optimal parameters(C, y) | Cross-validation Training accuracy Testing accuracy
Random generator V5 accuracy (%) (%) (%)
confusion matrix confusion matrix
PSD
(4-30H2z), C =3.2768e+04 50 83.03 44.21
seed™ y =5.4170 Confusion matrix Confusion matrix
=[170 26 =[ 47 50
39 148 56 37]
PSD
(4-30H2z), C =2.543e+03 46.3158 75.72 49.47
seed® y = 26.9087 Confusion matrix Confusion matrix
=[140 56 =[ 36 61
37 150] 35 58]
PSD
(4-30H2z), C =2.543e+03 55.2632 79.37 41.05
seed™® y =12.8839 Confusion matrix Confusion matrix
=[142 54 =[32 65
25 162] 47 48]
PSD
(4-30H2z), C =2.1247e+04 50 86.42 46.84
seed" y =16 Confusion matrix Confusion matrix
=[171 25 =[43 54
27 160] 47 48]
PSD
(4-30H2z), C =2.5268e+04 51.3158 89.06 49.47
seed™ y =20.7494 Confusion matrix Confusion matrix
=[175 21 =[ 53 44
21 166] 52 41]
PSD
(4-30H2z), C=1.117e+03 54.4737 78.33 47.89
seed® y =32 Confusion matrix Confusion matrix
=[174 22 =[ 60 37
61 126] 62 31]
PSD
(4-30H2z), C = 2.7554e+04 51.8421 88.25 46.84
seed* y =16.7048 Confusion matrix Confusion matrix
=[181 15 =[ 51 46
30 157] 55 38]
PSD
(4-30H2z), C =8.192e+03 53.6842 85.12 48.95
seed® y=32 Confusion matrix Confusion matrix
=[169 27 =[ 47 50
30 157] 47 48]
PSD
(4-30H2z), C =2.1247e+03 54.7368 81.72 50.53
seed"* y =4.3620 Confusion matrix Confusion matrix
=[165 31 =[ 48 49
39 148 45 48]
PSD
(4-30H2z), C =2.774e+03 50.2632 77.28 51.58
seec?™ y =16.7048 Confusion matrix Confusion matrix
=[178 18 =[ 55 42
69 118] 50 43]
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Table C: Binary classification for coherence

Features Weight (w1l w2) Cross-validation Training accuracy Testing accuracy
Random generator V5 Optimal parameters(C, y) accuracy (%) (%) (%)
confusion matrix confusion matrix
Coherence
(4-30H2z), C =3.0048e+04 60 86.42 54.74
seed" y =0.001 Confusion matrix Confusion matrix
=[171 25 =[52 45
27 160] 41 52
coherence
(4-30H2z), Cc=29 61.0526 100 52.63
seed" y =1.4768 Confusion matrix Confusion matrix
=[196 0 =[44 53
0 187] 37 56]
coherence
(4-30H2z), c=1 60.5263 96.87 54.21
seed y =1.7563 Confusion matrix Confusion matrix
=[194 2 =[32 65
10 177] 22 71]
Coherence
(4-30Hz), C=1.117e+03 59.4737 79.63 47.89
seed v =0.0033 Confusion matrix Confusion matrix
=[166 30 =[50 47
48 139] 52 41]
coherence
(4-30H2z), c=8 60.2632 99.74 50.53
seed™ y =3.3636 Confusion matrix Confusion matrix
=[195 1 =[33 64
0 187 30 63
Coherence
(4-30Hz), C=1722 58.1579 79.90 55.79
seed™ y =0.0022 Confusion matrix Confusion matrix
=[163 33 =[63 34
44 143 50 43]
Coherence
(4-30Hz), C =1.5024e+04 56.8421 99.74 50
seed y =0.0097 Confusion matrix Confusion matrix
=[195 1 =[51 46
0 187] 49 44]
Coherence
(4-30H2z), c=1 58.6842 93.21 52.63
seed* y =1.1388 Confusion matrix Confusion matrix
=[184 12 =[ 36 61
14 173] 29 64]
Coherence
(4-30H2z), c=2 55.2632 99.22 62.11
seed™ y=1.834 Confusion matrix Confusion matrix
=[194 2 =[ 56 41
1 186] 31 62
Coherence
(4-30H2z), C=4 57.8947 99.74 52.63
seed” y =2.7085 Confusion matrix Confusion matrix
=[196 0 =[ 34 63
1 186] 27 66]
Coherence
(4-30H2z), C =609 57.8947 82.77 56.32
seed™ y =0.0072 Confusion matrix Confusion matrix
=[167 29 =[ 59 38
37 150] 45 48]
Coherence
(4-30H2z), c=2 56.5789 99.48 54.74
seed! y =1.7563 Confusion matrix Confusion matrix
=[195 1 =[ 43 54
1 186] 32 61]
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Table C (Cont.)

Features Weight (w1l w2) Cross-validation Training accuracy Testing accuracy
Random generator V5 Optimal parameters (C, y) accuracy (%) (%) (%)
confusion matrix confusion matrix
Coherence
(4-30H2z), C =59 56.5789 99.74 50.53
seed? y=05 Confusion matrix Confusion matrix
=[195 1 =[ 50 47
0 187] 47 46
Coherence
(4-30H2z), c=1 56.5789 96.61 56.32
seed™! y =1.2968 Confusion matrix Confusion matrix
=[192 4 =[ 51 46
9 178] 37 56|
Coherence
(4-30H2z), c=9 58.9474 99.74 51.58
seed" y =0.5453 Confusion matrix Confusion matrix
=[195 1 =[ 47 50
0 187 42 51]
Coherence
(4-30H2z), C =1.5024 55.7895 84.33 53.16
seed™* y =0.0014 Confusion matrix Confusion matrix
=[167 29 =[ 54 43
31 156] 46 47
Coherence
(4-30H2z), Cc=18 59.7368 89.56 51.05
seed® y =9.766e-04; Confusion matrix Confusion matrix
=[182 14 =[ 56 41
26 161] 52 41]
Coherence
(4-30H2z), Cc=52 53.9474 99.74 56.84
seed* y =1.4142 Confusion matrix Confusion matrix
=[196 0 =[ 38 59
1 186] 23 70]
Coherence
(4-30H2z), C=431 57.6316 95.82 49.47
seed® y=0.0313 Confusion matrix Confusion matrix
=[187 9 =[ 41 56
7 180] 40 53]
Coherence
(4-30H2z), c=1 61.3158 95.56 52.63
seed"* y =1.1892 Confusion matrix Confusion matrix
=[189 7 =[ 53 44
10 177] 46 47
Coherence
(4-30H2z), C =1.328e+03 58.9474 79.11 57.89
seed™ y =0.0024 Confusion matrix Confusion matrix
=[163 33 =[ 59 38
47 140] 42 51]
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Table D: Binary classification for average coherence

Features Optimal parameters (C, y) Cross-validation Training accuracy Testing accuracy
Random gener ator accuracy (%) (%) (%)
V5 confusion matrix confusion matrix
Aver age coherence
seed' C =6.09e+02 57.8947 99.74 54.21
y =1.0443 Confusion matrix Confusion matrix
=[195 1 =[55 42
0 187] 45 48]
Aver age coherence
seed" C=6 56.8421 99.74 50.53
y =32 Confusion matrix Confusion matrix
=[195 1 =[30 67
0 187] 27 66]
Aver age coherence
seed c=2 60.7895 97.13 57.89
vy =13.4543 Confusion matrix Confusion matrix
=[194 2 =[54 43
9 178] 37 56]
Aver age Coherence
seed™ c=7 59.7368 79.90 52.11
vy=1.1388 Confusion matrix Confusion matrix
=[174 22 =[53 44
55 132] 47 46]
Average Coherence
seed" C=5 60.2632 89.82 48.42
y =3.0844 Confusion matrix Confusion matrix
=[182 14 =[50 47
25 162] 51 42]
Average Coherence
seecf! c=15 60.7895 83.03 52.11
y =0.8781 Confusion matrix Confusion matrix
=[174 22 =[60 37
43 144] 54 39]
Average Coherence
seedf! C =636 60.7895 79.90 52.63
y =0.0743 Confusion matrix Confusion matrix
=[165 31 =[52 45
46 141] 45 48]
Aver age Coherence
seed™ C=70 59.7368 78.85 52.63
y =12.3377 Confusion matrix Confusion matrix
=[147 49 =[ 33 64
32 155] 26 67]
Average Coherence
seed™ C =2.5268e+04 56.0526 80.68 60
vy =0.015 Confusion matrix Confusion matrix
=[160 36 =[ 62 35
38 149] 41 52]
Average Coherence
seed™ C =159 63.6842 85.38 51.05
y =0.3242 Confusion matrix Confusion matrix
=[177 19 =[ 49 48
37 150] 45 48]
Average Coherence
seed™ Cc=4 57.6316 97.65 52.11
y =8.7241 Confusion matrix Confusion matrix
=[193 3 =[ 50 47
6 181] 44  49]
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Table D (Cont.)

Features Optimal parameters(C, y) Cross-validation Training accuracy Testing accuracy
Random generator accuracy (%) (%) (%)
V5 confusion matrix confusion matrix
Average Coherence 54.7368 94.26 56.32
seed! C = 2.543e+03; Confusion matrix Confusion matrix
y =0.1928 =[187 9 =[55 42
13 174] 41 52]
Average Coherence
seed?! Cc=25 58.4211 99.74 54.21
vy =13.4543 Confusion matrix Confusion matrix
=[195 1 =[50 47
0 187] 40 53]
Aver age Coherence
seed™! C =2.0347e+04; 58.4211 98.69 52.63
vy =0.1621 Confusion matrix Confusion matrix
=[192 4 =[53 44
1 186] 46 47]
Aver age Coherence
seed*! c=1 59.7368 83.55 58.95
vy =5.1874 Confusion matrix Confusion matrix
=[174 22 =[ 63 34
41 146 44 49]
Average Coherence
seed™! C=70 58.1579 80.68 60
y =0.4585 Confusion matrix Confusion matrix
=[161 35 =[ 54 43
39 148] 33 60]
Average Coherence
seed! C=13 62.1053 82.77 53.16
y =0.8409 Confusion matrix Confusion matrix
=[170 26 =[ 55 42
40 147] 47  46]
Average Coherence
seed™ C=512 55.2632 94.26 50.53
y =05 Confusion matrix Confusion matrix
=[183 13 =[ 50 47
9 178] 47 48]
Average Coherence
seed®! C = 2.7554e+04; 59.2105 99.22 50
y=0.1621 Confusion matrix Confusion matrix
=[193 3 =[ 41 56
0 187] 39 54]
Aver age Coherence
seed! C =279 61.3158 90.86 53.68
vy =0.4788 Confusion matrix Confusion matrix
=[177 19 =[ 57 40
6 171] 48 45]
Aver age Coherence 99.74 50.53
seedf™ C=6 58.9474 Confusion matrix Confusion matrix
y =11.3137 =[195 1 =[ 48 49
0 187] 45 48]
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Appendix B Source code
clc;
close all;
clear all;
%% input data
powerdata_all = csvread(‘all573_time128_ coherencg04sv',0,0);
decision_data_all = xIsread('all573_performance8ttext official.xlsx','D2:E574");
%% important condition
percentage bound = 80 ;
%% scaling the original data
x_all = (powerdata_all - repmat(min(powerdata_ll)[size(powerdata_all,1),1))*...
spdiags(1./(max(powerdata_all,[],1)-
min(powerdata_all,[],1))',0,size(powerdata_all,2efpowerdata_all,2));

%% pre-label by Qualities and centmeters

fori=1.573

if decision_data_all(i,1) >= 8 && decision_datal(ie?)<=30;
decision_data(i) = 1; %good

elseif decision_data_all(i,1) <= 7 && decision_dad#(i,2)>=50;
decision_data(i) = 3; %bad

else
decision_data(i) = 2; %ok

end

end

y_all = decision_data;

%% seperate training data and testing data

seed = 81 ; % seed generate diffesardom sequency
all_c_train_matrix =[]; % for recording a@thining confusion matrix
all_c_test_matrix =[]; % for recording &dhining confusion matrix

for h = 1:length(seed)

rand('state’,seed(h)); randn('state’,seed(h));

%1/3 is test data and 2/3 is training data, thie ratfixed

finaltest_index = [randsample(find(y_all==1),flolentgth(find(y_all==1))/3))...
randsample(find(y_all==2),floer{gth(find(y_all==2))/3))...
randsample(find(y_all==3),floler{gth(find(y_all==3))/3))];

x_finaltest = x_all(finaltest_index,:);

y_finaltest =y all(finaltest_index)’;

Train_index = setdiff(1:length(y_all),finaltegndex);
x_Train_alll = x_all(Train_index,:);
y Train_alll =y all(Train_index)’;
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%make sure the first group that input the strucisitabeled 1
[y_Train_all,right_order] = sort(y_Train_alll);
X_Train_all = x_Train_all1(right_omgl¢;

%% ratio in five subsets is fixed and the examglesfixed
index_s = find(y_Train_all==1);
index_a =find(y_Train_all==2);
index_f =find(y_Train_all==3);

number_of success = length(index_s);
number_of average = length(index_a);
number_of failure = length(index_f);

alpha=1-number_of success/(number_of success+nuofbaverage+number_of failure);
xValidationFolds = 5;

% make sure the length in each fold is the same

cloumnl = floor(length(index_s)/xValidatiorn#s);
cloumn2 = floor(length(index_a)/xValidatioris);
cloumn3 = floor(length(index_f)/xValidationles);

rand('state’,1); randn('state’,1);

index_ss = reshape(index_s(randperm(5*cldyjim cloumnl);
index_aa = reshape(index_a(randperm(5*cl@)im cloumn?2);
index_ff = reshape(index_f(randperm(5*clo@d))rb,cloumn3);

%combine 2 and 3 together as 2
y_finaltest(find(y_finaltest==3))=2;
y_Train_all(find(y_Train_all==3))=2;

%% start search

for search = 1.5

% set up ¢ and sigma for each searching
if search ==

% original C step 1

stepl =1,

min_c = -5; max_c =15;

C_array = 2.°(min_c:stepl:max_c);

% original Sigma step 1

min_sigma = -10; max_sigma = 5;
Sigma_array = 2.~(min_sigma:stepl:max_sigma);
G_length = length(Sigma_array);

else
stepl = stepl/2;
% new c

C_range = max(min_c, log2(best_C)-step1*10):stepi(iog2(best_C)+stepl*10,max_c);
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C_array = 2.~(C_range);

% new sigma

Sigma_range = max(min_sigma, log2(best_sigma)-
stepl1*10):stepl:min(log2(best_sigma)+step1*10,mapxna);
Sigma_array=2.~(Sigma_range);

end

C_length = length(C_array);
G_length=length(Sigma_array);

%%

% 3 important value

train_correct_rate = zeros(C_length, G_length);
test_correct_rate = zeros(C_length, G_length);
optimal_weight = zeros(C_length, G_length);

%% training start
for k=1:C_length
for j=1:G_length
for fold=1:xValidationFolds
testindex = [index_ss(fold,:),inder(fold,:),index_ff(fold,:)];
trainindex = setdiff(1:length(y_Traal),testindex);

X_train  =x_Train_all(traininde)x;:
y _train =y Train_all(trainindex);
X_test = x_Train_all(testindey,:)
y_ test =y Train_all(testindex);

Parameters =[-c ' num2str(C_arrgy(kg ' num2str(Sigma_array(j)) ' -b 07;
model = libsvmtrain(y_train,xaitn, Parameters);

[label_trainl,~,group_train] = libsvmpredy train, x_train, model,’-b 0'); %revised by
baohua %[~,~,group_train] = libsvmpredict(y_traintrain, model);

[label_testl,~,group] = libsvmpoe(y_test, x_test, model, -b 0%); %revised by
baohua %[~,~,group] = libsvmpredict(y_test.estt model);
%%

% training accuracy

train_correct_rate(k,j) =
train_correct_rate(k,j)+100*sum(label_train1==yin)ésize(x_train,1);

% test accuracy

test_correct_rate (k,j) =
test_correct_rate(k,j)+100*sum(label_testl==y femt@(x_test,1);

Pro_test_1 =
length(intersect(find(y_test==1),find(label_testlyp/length(find(y_test==1));
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if isnan(Pro_test_1);
Pro_test 1 =0;
end

Pro_test_2 =
length(intersect(find(y_test==2),find(label_testPyg/length(find(y_test==2));
if isnan(Pro_test_2);
Pro_test 2 =0;
end

optimal_weight(k, ) = optimal_weigk, j)+alpha*Pro_test 1+(1-alpha)*Pro_test 2;
end % end fold
train_correct_rate(k,j)) = train_corraette(k,j)/xValidationFolds;
test_correct_rate(k,j)) = test_correate(k,j)/xValidationFolds;
optimal_weight(k, j) = optimal_weitgk, j)/xValidationFolds; % as high as possible
%%%% %% %% %% %%
if train_correct_rate(k,j)) < percentageuid
optimal_weight(k, j)) = Inf;
end
%%%% %% %% %% %%
end % end |
end %end k

[best_ratel,index1] = min(optimal_weight);
[best_rate2,index2] = min(best_ratel);

best C = C_array(index1(1, index2));

best_sigma = Sigma_array(index2);

cross_validation =test_correct_rate(index1(dek®), index2);

end

Final_Parameters = ['-c ' num2str(best -§) num2str(best_sigma) ' -b 07;
final_model = libsvmtrain(y_Train_all Train_all,Final_Parameters);
[label_train,~,p_train] = libsvmpredict(double(yrain_all),x_Train_all, final_model,-b 0%);
[label_test,~,p _test] = libsvmpredict(doublefgpaftest),x_finaltest, final_model,-b 0');
train_acc = sum(label_train == yaifir all) ./ numel(y_Train_all)

test_acc = sum(label_test == yalfest) ./ numel(y_finaltest)

C_train = confusionmat(y_Trairl,label_train)

C_test = confusionmat(y_finalfedel test)

allc(h) =best C

allsigma(h) = best_sigma

bestrate(h) = best_rate2
cross_validation_all(h) = cross_validation
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all_train_acc(h) = train_acc

all_test_acc(h) = test_acc

all_c_train_matrix = [all_c_train_matrix, C_train]

all_c_test_matrix =[all_c_test matrix, C_test]

end

savefile = 'Thesis_psd_2class_lin’'

save(savefile,'allc','allsigma’,'bestrate’,'croasidation’,'all _train_acc','all_test_acc',...
‘all_c_train_matrix','all_c_test_matrix’)
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