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Abstract

In this thesis, I will present studies on the collective modes of the fractional quantum

Hall states, which are bulk neutral excitations reflecting the incompressibility that

defines the topological nature of these states. It was first pointed out by Haldane that

the non-commutative geometry of the fractional quantum Hall effects (FQHE) plays

an important role in the intra-Landau-level dynamics. The geometrical aspects of the

FQHE will be illustrated by calculating the linear response to a spatially varying elec-

tromagnetic field, and by a numerical scheme for constructing model wavefunctions

for the neutral bulk excitations. Compared to early studies of the magneto-roton

modes with single mode approximation (SMA), the scheme presented in this thesis

is good not only in the long wavelength limit, but also for large momenta where the

neutral excitations evolve into quasihole-quasiparticle pair. It is also shown that in

the long wavelength limit, the SMA scheme produces exact model wavefunctions de-

scribing a quadrupole excitation. The same scheme can also extend to describe the

neutral fermion mode in the Moore-Read state, reflecting its non-Abelian nature.

The numerically generated model wavefunctions are then identified with a family

of analytic wavefunctions that describe both the magneto-roton modes and the neutral

fermion modes. Like the ground state wavefunction of the Laughlin and Moore-Read

state, the family of the analytic wavefunctions do not have any variational parame-

ters. This set of analytic wavefunctions unifies previous numerical works on neutral

excitations of single-component FQH states, both from the Jack polynomial point

of view presented in this thesis, and from the composite fermion picture developed

by Jain and collaborators. The compact analytic forms also lend much insight into

the nature of the neutral excitations from the plasma analogy. In particular, the

quadrupole excitation gap is related to the free energy cost of the fusion of charged

particles in a two-dimensional plasma with a neutralizing background.
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Chapter 1

Introduction

The quantum Hall effect (QHE)[1] is one of the great discoveries in the history of

condensed matter physics. It leads to many exciting physical concepts in (2 + 1)

dimensional spacetime, including fractional[7] and non-Abelian statistics[20], classifi-

cation of matter with topological phases[8], bulk-edge correspondence[9, 12] and the

framework of topological quantum computing[13], just to name a few. Quantum Hall

systems are experimentally realized by confining an electron gas to a two-dimensional

manifold with a strong perpendicular magnetic field which breaks time reversal sym-

metry (see Fig.(1.1)). Experimental discovery of the integer quantum Hall effect

(IQHE) dates back to 1980, when Klaus von Klitzing[2] found the quantization of the

Hall conductivity at integer multiples of e2/h, where e is the elementary charge and h

is the Planck’s constant. The formation of plateaus and the vanishing of dissipative

longitudinal resistivity are hallmarks of the quantum Hall effect, suggesting a gapped

phase with non-trivial attributes very robust against disorder. The integer coefficients

multiplying e2/h at these plateaus are accurate up to 10−8. These integers are equal

to the ratio of the number of electrons to the number of flux quanta h/e at the special

incompressible points (which are typically in the middle of the plateau). We call this
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Figure 1.1: Schematic drawing of the experimental setup of quantum Hall sample
(Kosmos, 1986)

ratio the filling factor ν. The Hall conductivity is thus widely used as a standardized

unit for resistivity.

The fractional quantum Hall effect (FQHE) was discovered in 1982 by Tsui,

Stormer and Gossard[3], where the plateau in the Hall conductivity was found in

the lowest Landau level (LLL) at fractional filling factors (notably at ν = 1/3).

Unlike the IQHE, which can be primarily explained by single particle physics, the

FQHE is a result of strong interactions between electrons within a single Landau

level, in which the single particle kinetic energy is a trivial constant. Theoretical un-

derstandings of the FQHE was initiated by R. Laughlin[15]; in his seminal paper the

wavefunctions for the ground state and charged excitations were proposed for filling

factors ν = 1/m, where m is an odd integer for fermions. Soon after that Haldane[16]

and later Trugman and Kivelson[17] constructed the model Hamiltonians in the form

of pseudopotentials where Laughlin-like model wavefunctions are exact zero energy

2



Figure 1.2: Integer quantum Hall effect (Kosmos, 1986)

states gapped from the rest of the energy spectrum. These elegant model Hamilto-

nians are intuitively appealing, and are believed to be adiabatically connected to the

realistic physical interactions in the thermodynamic limit. Though general arguments

of gauge invariance and recognition of the non-trivial band topology were first inspired

by IQHE[18], the idea that topological phases can exist beyond Landau’s paradigm of

spontaneous symmetry breaking became widespread after people start to understand

the FQHE. Till this day, the FQHE is one of the very few experimental examples (and

probably the only reasonably well-understood theoretical model) where strongly cor-

related topological phases are realized without the protection of any symmetry (also

see ref.[31] for a relatively modern understanding of the superconducting phases).

A more comprehensive review of the quantum Hall effect can be found in the

Les Houches lecture notes prepared by Steve Girvin[4]. In this chapter I will give a

brief overview of some of the important aspects of the QHE. A formal approach with

the microscopic model will be presented. Though the effect of disorder is crucial in
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Figure 1.3: Fractional quantum Hall effect[14]

the experimental realization of the QHE, in this thesis the disorder is ignored unless

otherwise stated.

1.1 Aspects of Quantum Hall Effects

Most features of the integer quantum Hall effect (IQHE) can be understood in the

framework of single particle physics. The energy levels of a two-dimensional electron

gas (2DEG) subject to a perpendicular magnetic field form Landau levels (LL), each

with macroscopic degeneracy Nφ = BA · e
h
, which is proportional to the system size.

Here B is the strength of the magnetic field, A is the area of the 2DEG and h/e is

the flux quantum; thus Nφ is the number of flux quanta piercing through the Hall

surface. The magnetic length is given by lB =
√

1/eB, where we set ~ = 1, and e is

the charge of the particle. For Galilean invariant systems the energy spacing of LLs is

given by the characteristic cyclotron frequency ωc = eB/mc, where m is the effective
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mass of the particle and c is the speed of light. It is easy to see that the ground

state of completely filled LLs are gapped. On the other hand the partially filled LLs

are compressible due to the macroscopic degeneracy. For a translationally invariant

system the Hall conductivity is always equal to ν e
2

h
, where the filling factor ν can

be any real number. In this ideal situation experimental measurement of the Hall

conductivity cannot distinguish between compressible and incompressible phases.

In real samples, the presense of disorder, however weak it is, is expected to localize

the state and suppress the Hall conductivity[5, 6]. The surprising fact is at integer

filling factor when the system is incompressible, the Hall conductivity is unaffected by

disorder. On the contrary, any small deviation from these integer filling factors creates

particle or hole charge carriers that are localized by disorder, forming the plateau

around these integer filling factors[6]. The presense of disorder is not necessary for

the physics of the QHE, but is essential to experimentally expose these special filling

factors, where the ground state is gapped and dissipationless.

It is by now understood that any quantity that is robust against small pertur-

bation is likely to have a topological origin. The famous gedanken experiment by

Laughlin[18] shows that if the 2-D Hall manifold has a cylinder geometry, one can

thread magnetic fluxes through the cylinder along the longitudinal axis. By gauge

invariance the system should be the same before and after adiabatic threading of a

single flux quantum. One can follow the spectral flow of the single particle orbitals

during this adiabatic process. At the end of the process the spectrum returns back

to the intial configuration, implying an integer number of particles pumped from one

edge to the other, leading to the integer Hall conductivity. Even in the presense of

disorder that affects the details of the spectral flow, the initial and final configuration

has to be identical by gauge invariance. By the argument that one cannot make small

changes to quantities that are integers, the integer Hall conductivity has to be robust

against disorder.
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The topological nature of the QHE was further illustrated by the work of

TKNN[19], and later substantiated by Niu et.al[21], with the Kubo formula devel-

oped by the linear response theory on a lattice. The single particle wavefunctions

on a lattice can be viewed as a section of a U(1) fiber bundle, where the periodic

momentum space is the base space. It was shown for a fully occupied conduction

band, the Hall conductivity is the first Chern number of the U(1) fiber bundle over

the Brillioun zone. This was later generalized to Chern insulators first introduced by

Haldane[22], whereby the filled valence band structure has none zero Chern number

even when the net magnetic field per unit cell is zero. This observation has ignited a

flurry of research in symmetry protected topological insulators both in two and three

dimensions[23].

In contrast to the IQHE, the fractional quantum Hall effect (FQHE) is primarily

due to strong interactions between electrons, where the single particle dynamics is

ignored in the limit of a strong magnetic field. The incompressibility of the FQH fluid

at certain fractional filling factors results from intricate interplay between interactions

and the truncated Hilbert space defined by the filling factor. Theoretical understand-

ing of the FQHE was initiated by Laughlin’s many-body trial wavefunctions[15] for

the ground states of odd-denominated fractional filling factors, followed by the model

Hamiltonians[16, 17] with a gapped spectrum, such that Laughlin’s trial wavefunc-

tions are exact ground states.

An interesting fact about these trial wavefunctions is that as long as rotational

invariance is assumed, no variational parameters are typically necessary to optimize

these trial wavefunctions within the lowest Landau level (LLL): they are intrinsically

good model wavefunctions. Following this line, the study of the FQHE via model

wavefunctions and model Hamiltonians has been a very fruitful endeavor. At filling

factors ν = 1
m

, where m is odd, wavefunctions of ground states and charged (quasi-

electrons and quasiholes) excitations can be written down in nice analytic forms, and
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the model Hamiltonians are just two-body intereactions with judiciously selected Hal-

dane pseudopotentials[16]. While at even m the FQHE state is generally forbidden

because of the fermionic statistics of electrons, at m = 2 a pairing mechanism is

introduced to explain the experimental observation of the ν = 5/2 plateaux[27], or

ν = 1/2 state in the 1st Landau Level (1LL). The ground state can be written down

analytically as a Pfaffian[20] multiplying the Jastrow factor. Charged excitations can

also be written down following the similar procedure of flux insertion introduced by

Laughlin. The model Hamiltonian is the three-body interaction that allows pairing of

electrons but penalizes the congregation of three electrons. This is physically possible

in higher LLs, where the effective two-body interaction has nodes, allowing particles

to stay close to each other.

It is thus natural to formally generalize to (k + 1)-body interactions that allow

clustering of k electrons but penalizes congregation of k + 1 electrons. This leads to

the Read-Rezayi (RR) series[30] of the single component FQH states. The k = 1 case

of the RR series is the Laughlin state, while the k = 2 case is the MR state. The

set of the many-body wavefunctions from the FQHE are themselves quite fascinating

objects. Even with explicit analytic forms, they are quite complex. The simplest case

of the Laughlin wavefunctions has the following form:

ψl =
∏
i<j

(zi − zj)m e−
1
2

∑
i |zi|2 (1.1)

where the holomorphic variables are used with zi = 1√
2
(xi + iyi), and i is the particle

index. Though it has a compact analytic form, there is no closed expression for its

normalization constant as a function of the number of particles. The Moore-Read

ground state at half filling is a bit more complicated[28]:

ψmr = Pfaff

(
1

zi − zj

)∏
i<j

(zi − zj)q e−
1
2

∑
i |zi|2 (1.2)
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The Pfaffian is defined by

Pfaff (Mij) =
1

2N/2(N/2)!

∑
σ∈SN

sgnσ

N/2∏
k=1

Mσ(2k−1),σ(2k) (1.3)

for an N × N antisymmetric matrix Mij, and Sn is the permutation group on n

indices. In Eq.(1.2), q is even for fermions, and q = 2 at ν = 1/2. To tackle these

wavefunctions analytically, there are efforts to reinterpret them in more revealing

ways. It was first noticed by Laughlin[15] that the norm of Eq.(1.1) describes a system

of a two-dimensional one-component plasma (2DOCP) with logarithmic Coulomb

interactions and a neutralizing background. The physical picture of 2DOCP, which

is well studied in plasma physics, lends insight on charged excitations in the FQHE,

as well as possible ground state phase transitions from a fluid state to a symmetry

breaking Wigner crystal state. It also allows effective use of Monte-Carlo techniques

in calculating wavefunction overlaps and correlation functions[29]. In Chapter 4 and 5

a set of model wavefunctions for the neutral collective excitations in the FQHE will be

introduced both from a numerical perspective[32] and an analytical perspective[38].

The latter extends the way we understand the FQHE via the plasma analogy to

include the neutral bulk excitations. It seems the analogy between the FQHE and

the 2DOCP is not only limited to the Hilbert space, but also includes the energy

spectrum as well.

Almost parallel to the development of the Pfaffian wavefunctions, it was realized

that many trial wavefunctions in the FQHE can be written as correlators in 2-D

conformal field theory (CFT)[40]. On first sight, one would be surprised to think

that CFT, which describes quantum critical systems with gapless excitations, would

play a role in gapped systems like the FQHE. On the other hand, the FQHE is gapless

when an edge is present. It was shown by Wen[9] that while the bulk of the FQHE

can be described by an effective Chern-Simons theory, the requirement of the gauge

8



invariance for a system with a boundary predicts gapless neutral edge excitations that

can be described by CFT. From a more formal perspective, the connection between

CFT and the topological field theory (TFT) was previously established by Witten[41].

A microscopic interpretation of the edge and bulk excitations of the FQHE in the

framework of W∞ algebra will be presented in Chapter 5, where the analogy between

edge excitations and CFT is made explicit.

The conformal block description of the FQHE wavefunctions has the practical use

of calculating the statistics of quasiparticle excitations with much ease. In principle,

the anyonic statistics of quasiparticles in the Laughlin FQHE, and the non-abelian

braiding statistics of those in the MR states are entirely encoded within the ex-

plicit first quantized wavefunctions. While it is relatively straightforward to show

the anyonic statistics of the quasiparticle excitations of the Laughlin state[42], the

non-abelian statistics of the RR series with k > 1 is much harder to prove. It is

only until recently a rigorous proof was presented in [43] for the Moore-Read state at

k = 2.

The plasma analogy and the CFT connections are very limited in describing the

dynamics of FQHE, since in both cases the Hamiltonians are not explicitly involved.

For many physical systems, the ground state does contain information about the low-

lying excitations in the spectrum (e.g. the Goldstone modes of the symmetry-breaking

ground state). It is thus hopeful that the FQHE ground state will yield information

about some part of the excitation spectrum, even though there is no symmetry-

breaking for the quantum Hall fluid, and the bulk is gapped. The entanglement

spectrum of the bulk ground state has been found to yield information on the gapless

edge modes[12], and the connection to CFT plays a significant role here[48]. The bulk

neutral excitation is known to depend on the guiding center Hall viscosity and the

ground state structure factor at least in the long wavelength limit[49], and recently

9



the relationship between the entire branch of the neutral excitations and the ground

state has been made much clearer with an explicit set of analytic wavefunctions[38].

The single component FQHE given by the RR series (including Laughlin and MR

states) cannot explain all the experimentally observed plateau at fractional filling

factors. Haldane and Halperin[52, 53] introduced a hierarchy picture where additional

plateau can be explained as incompressible QH states of the quasiholes/quasiparticles.

Later on Jain introduced the composite fermion picture whereby the “elementary

particles” in the FQHE are taken as electron-vortex composite, instead of bare

electrons[94]. These composite particles obey fermionic statistics. It is conjectured

that the FQHE can be mapped into the IQHE of composite fermions forming its own

“Landau levels” (also refered to as the “Λ levels) in an effective magnetic field, leading

to the “Jain hierarchy” that is very successful in explaining most plateau observed

experimentally. The composite fermion picture is also very useful in numerically

generating model wavefunctions for these hierarchical states, including both charged

and neutral excitations.

The hierarchical states can be described as multi-component FQH states, where

different types of Hall fluids coexist. This is the place where TFT becomes very

efficient in characterizing various types of FQH states. For the FQHE descended from

the Abelian Laughlin states, both single component and multicomponent Abelian

states can be expressed in a unified way by the K-matrix formulation[56]. For the

RR series with k > 1, which are non-abelian FQHE due to the braiding statistics of

the quasiparticle excitations, there are efforts in formulating effective field theory by

introducing Majorana fermion fields[57], and it is still a field of active research.

Numerical analysis has been an indispensible tool in studying the FQHE, given the

inherent difficulty in characterizing strongly correlated systems analytically. Histori-

cally Laughlin justified the validity of his model wavefunctions by their large overlap

with the ground state of Coulomb interaction found by exact diagonalization. It is a
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remarkable fact that even for system sizes as small as a few electrons, exact diago-

nalization can reveal the physics of the FQHE quite clearly. Haldane developed the

numerical formalism for the FQH systems on the sphere and torus geometry[52, 58].

These compact geometries do not have boundaries, making them especially convenient

for studying the bulk properties of the finite FQH fluid. Other common geometries

include disk[44] and cylinder geometry[46], where the edge physics of FQH can be

explored.

Recently, many model wavefunctions of the FQHE are identified with Jack

polynomials[59], which substantially enhances the capability of numerically gen-

erating wavefunctions at various FQH filling factor. While model wavefunctions

have compact analytic forms, most finite-size calculations require explicit knowledge

of the coefficients of expansions in terms of the orbital occupation basis. These

coefficients are geometry dependent. With model Hamiltonians this information can

be obtained via exact diagonalization, an expensive numerical procedure that grows

exponentially with the system size. In comparison, the Jack polynomials have rich

algebraic structures[61] and can be generated numerically via a recursive procedure,

and one can adapt them onto different geometries just by proper single particle

normalization, as long as these geometries have genus zero. A brief discussion about

the Jack polynomials can be found in Chapter 4.

There has been a recent effort in understanding the FQHE, and QHE in general,

from a geometric point of view[62]. Formally, a magnetic field perpendicular to a

2D Hall manifold maps a four dimensional phase space for each electron onto two

sets of 2D real space coordinates - the cyclotron coordinates and the guiding center

coordinates. In the limit of strong magnetic field, the incompressibility of the IQHE

is governed by the dynamics of the cyclotron coordinates, which depends on the

single particle kinetic energy[35]. On the other hand, the FQHE is governed by the

dynamics of the guiding center coordinates only, from the many-body interaction.
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Thus the IQHE and the FQHE exist in two different Hilbert spaces; in each of the

Hilbert space, the spatial coordinates do not commute with each other, leading to

quantum fluctuations of their respective metric. The fluctuation of the cyclotron

metric is suppresed by strong magnetic field, while the fluctuation of the guiding

center metric plays an important role on the bulk neutral excitations in the long

wavelength limit.

Closely related to the geometric aspects of the FQHE is a topological quantity

called the Hall viscosity[64, 65]. The formal definition of the Hall viscosity will be

presented in Chapter 3. From a heuristic hydrodynamic point of view, the Hall

viscosity induces a force in the fluid proportional to the gradient of the velocity field;

unlike the common dissipative viscosity, this force is perpendicular to the velocity

field, thus it does not lead to any energy dissipation. It is only present in systems

where time reversal symmetry is broken, such as in the QH system. In fact the Hall

viscosity is related to the average angular momentum per particle in the fluid; for a

rotationally invariant system it is defined with a metric, and is quantized just like the

angular momentum.

The guiding center Hall viscosity is an important quantity in the FQHE, because

the filling factor as a topological index does not fully characterize the FQHE[56]. The

Hall viscosity, or the average angular momentum per particle, is another topological

index differentiating between different phases, and is stable against perturbations that

do not close the gap, as long as rotational invariance is preserved[64, 65].

Phenomenologically, the FQHE can be viewed as consisting of fluids of particle-

flux composites with a finite areal extension on the order of the square of the magnetic

length. Different types of composite particles define different topological orders, and

each composite particle carries a charge. Since both the particle and the flux carries

angular momentum, each composite particle also carries a “spin” relating to the Hall

viscosity -thus the composite particles are “topological” objects. On the sphere where
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the Hall manifold is curved, the spin of the composite particles will couple to the

curvature of the manifold, resulting in a shift - an O(1) correction to the number of

states available due to the Berry phase of the coupling[66]. This shift is also quantized

by the Gauss-Bonnet theorem and is basically the same quantity as the Hall viscosity.

The finite areal extension of the composite particles requires a metric to define

its shape (as well as its spin). Thus even on a flat Hall manifold, the adiabatic

deformation of the shape will couple to the guiding center spin in a non-trivial way.

This interesting interplay between the topology and geometry in the FQHE was first

emphasized by Haldane[62], who conjectured the quantum fluctuation of the metric

of the composite particle and its coupling to the guiding center spin captures the

dynamics of the FQHE, or its collective mode, at least in the long wavelength limit.

The collective modes in the FQHE are neutral excitations completely dictated by

the dynamics of the guiding center degrees of freedoms, which defines the incompress-

ibility of the topological phase. It is the less well-known part of the FQHE spectrum,

as compared to charged excitations like quasiparticles and quasiholes. The neutral

excitations were first studied by Girvin, Macdonald and Platzman[49] using single

mode approximation (SMA) within the LLL. The collective mode is similar to the

roton-modes in the Helium-4 superfluid[50]. It has a roton minimum at momentum

around the inverse of the magnetic length, hence the name “magneto-roton mode”.

Unlike the collective mode in the Helium-4 superfluid, in the long wavelength limit

the magneto-roton mode is gapped. Thus the roton-minimum defines the gap of the

FQHE. Experimental realization of the FQH phases requires a much better under-

standing of these neutral excitations. With the recent discovery of fractional Chern

insulators on the lattice and their apparent connections to the FQHE[24, 25, 26],

there is a pressing need to understand the collective modes better. Since the collec-

tive modes are neutral, the term ”neutral excitations” will also be used in this thesis

to refer to the collective modes in the FQHE in Chapter 4 and 5.
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1.2 Formalism of the Quantum Hall Problems

A magnetic field perpendicular to the two-dimensional Hall surface leads to the min-

imal coupling of the kinetic momentum with the in-plane vector potential ~A with

∇× ~A = B, where B is the strength of the magnetic field. The length scale is thus

defined by the magnetic length lB =
√

1/eB, where e is the effective charge of the

particles and we set ~ = 1. For a Hall surface of an area A the total number of

the magnetic flux is given by Nφ = A
2πl2B

. Normally, we pick a gauge for the vector

potential and solve the single particle Hamiltonian to get the wavefunctions for the

eigenstates. For a rotationally invariant system the convenient gauge is the symmetric

gauge, and the single particle wavefunctions are coherent states of electrons under-

going cyclotron motion about the origin. For translationally invariant systems the

Landau gauge is often used, where the single particle wavefunctions are plane waves

in one direction, and confined Gaussian packages in the other direction.

This chapter aims to give a very general treatment of the formalism of the QHE,

without recourse to explicitly picking a guage for the external vector potential. In this

way, the algebraic structure of the Hilbert space of the two-dimensional Hall surface

is fully exploited with explicit gauge invariance. Unlike most previous literature,

the geometric aspect of the quantum Hall problem is emphasized by requiring real

space coordinates to have the upper indices and the covariant momentum vectors

to have lower indices. Einstein summation convention is assumed unless otherwise

stated. Metric dependence of various quantities are shown explicitly, without the

assumption of rotational invariance, allowing the existence of several metrics with

different physical origins. The notations of this thesis will also be fixed in this section.
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Figure 1.4: The density of an electron coherent state is smeared out within a single LL.
The real coordinates of the electron can be separated into the cyclotron coordinates
~̃
R and the guiding center coordinates ~R. The shaded area represents the Gaussian
package where most of the electron density is concentrated.

1.2.1 Algebra and Hilbert space

The phase space of the 2D Hall surface is four-dimensional for each particle, with

spatial coordinates ra and momentum coordinates Pa = −i∂a satisfying commutation

relations [ra, Pb] = iδab . With a perpendicular uniform magnetic field, the covariant

momentum is given by πa = Pa−eAa. We choose a new basis for the four-dimensional

phase space by writing ra = R̃a +Ra with R̃a = −l2Bεabπb and the following algebra :

[R̃a, R̃b] = il2Bε
ab [Ra, Rb] = −il2Bεab, [R̃a, Rb] = 0 (1.4)

Physically, while ra gives the location of the particle in the real space, we can separate

ra into the cyclotron coordinates R̃a and the guiding center coordinates Ra. Now the

phase space is mapped onto two copies of 2D real spaces, with transparent physical

meanings in the two-dimensional Hall manifold (See Fig.(1.4)).
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The generator of translations can be separately defined for the cyclotron and

guiding center coordinates as follows:

T̃ = eiqaR̃
a

, T̄ = eiqaR
a

(1.5)

T̃ R̃aT̃ † = R̃a + l2Bε
abqb, T̄RaT̄ † = Ra − l2Bεabqb (1.6)

The generator of rotation can be defined similarly. Note the definition of angular

momentum operator requires a unimodular metric gab with det g = 1. Taking ẑ =

r̂1 × r̂2 we have Lz = ~r × ~P = εabr
agbcPc. To separate it into the cyclotron and

guiding center parts, we define Λ̃ab = 1
2
{R̃a, R̃b},Λab = 1

2
{Ra, Rb}; the cyclotron and

the guiding center angular momentum operators are

L̃ =
1

2
g̃abΛ̃

ab, L =
1

2
ḡabΛ

ab (1.7)

eiθL̃R̃ae−iθL̃ = cos θR̃a + sin θεabg̃bcR̃
c

eiθLRae−iθL = cos θRa − sin θεabḡbcR
c (1.8)

Now the cyclotron and guiding center angular momentum operators are defined with

their respective metric: the cyclotron metric g̃ab, and the guiding center metric ḡab.

This is possible because the two angular momentum operators act on different Hilbert

spaces. Rotational invariance in the real space asserts g̃ab = ḡab, which is a special

case generally adopted in the literature for technical convenience.

For systems with more than one particle, the density operator is given by ρq =∑
i e
iqarai =

∑
i e
iqaR̃ai eiqaR

a
i , where i is the particle index. The cyclotron density

operators can be defined as:

ρ̃q =
∑
i

eiqaR̃
a
i , [ρ̃q1 , ρ̃q2 ] = −2i sin

(
l2B
2
~q1 × ~q2

)
ρ̃q1+q2 (1.9)
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while the guiding center density operators can be defined as

ρ̄q =
∑
i

eiqaR
a
i , [ρ̄q1 , ρ̄q2 ] = 2i sin

(
l2B
2
~q1 × ~q2

)
ρ̄q1+q2 (1.10)

The algebra in Eq. (1.9) and Eq.(1.10) is also called the Girvin-Macdonald-Platzman

(GMP) algebra in their respective Hilbert space, which is isomorphic to the W∞

algebra. To show that, let us factorize the unimodular metric tensor by a set of

complex vectors ωa satisfying the constraint iεabω∗aωb = −1. Explicitly we have

gab = ωaω
∗
b + ω∗aωb (1.11)

These complex vectors are useful in constructing the ladder operators from non-

commuting coordinates. As an example, from the guiding center coordinates we can

define b† = ω∗aR
a, b = ωaR

a such that [b, b†] = 1. Taking Wm,n =
(
b†
)m+1

bn+1 with

m,n ≥ −1, the W∞ algebra[51] is given by

[Wm,n,Wk,l] =

Min(n,k)∑
s=0

(n+ 1)! (k + 1)!

(n− s)! (k − s)! (s+ 1)!
Wm+k−s,n+l−s − (m↔ k, n↔ l) . (1.12)

That the W∞ algebra is isomorphic to the density operator algebra can be seen with

the wavelength expansion of the density operators in their respective coordinates.

Let us illustrate this by the expansion of the guiding center density operators. The

procedure for the cyclotron density operators is exactly the same.

The regularized guiding center density operator is given by

δρ̄q = ρ̄q − 〈ρ̄q〉0 (1.13)
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where 〈· · · 〉0 is the ground state expectation value. We thus have 〈δρ̄q〉0 = 0. The

regularized guiding center density operator still obeys the algebra

[δρ̄q, δρ̄q′ ] = 2i sin
q × q′l2B

2
δρ̄q+q′ . (1.14)

Before expansion, we formally define

Λ̄a1,a2,··· ,an
i = (−i)ne−

i
2
qaR̄ai

(
∂qa1

∂qa2
· · · ∂qane

iqaR̄ai

)
e−

i
2
qaR̄ai

= lim
q→0

(−i)n
(
∂qa1

∂qa2
· · · ∂qane

iqaR̄ai

)
(1.15)

The expansion of the guiding center density operator is thus given by

δρ̄q =
∑
n=1

in

n!
qa1qa2 · · · qan

∑
i

Λ̄a1a2···an
i (1.16)

The reason for this notably elaborate definition is that in general the operators Ra
i

are not bounded in the thermodyamic limit. On the other hand, δρ̄q is well-defined

when the periodic boundary condition is chosen. In this case only discrete values

of q are allowed, but in the thermodynamic limit the partial differential is properly

defined. Less formally we can write

Λa1a2···an
i =

1

n!
A[Ra1

i R
a2
i · · ·R

an
i ] (1.17)

where A[· · · ] anti-symmetrizes over the upper indices. Since in the FQHE the cy-

clotron coordinates are bounded, the cyclotron counter-part defined in the form of

Eq.(1.17) has no problem at all.
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The expansion in Eq.(1.16) reveals two useful sub-algebras[89]. Writing Pa =

εab
∑

i Λ
b
i , we have

[P a, P b] = 0 (1.18)

[Λab,Λcd] = −i
(
εacΛbd + εadΛbc + εbdΛac + εbcΛad

)
(1.19)

Note in Eq.(1.18) the extensive part proportional to the number of particles is reg-

ularized, and P a is none other than the generator of center-of-mass translation. Λ̄ab

is the generator of area-preserving deformation. Explicitly for any symmetric tensor

αab, we can define a unitary operator U(α) = eiαabΛ
ab

, which gives us

R̄′ai = U(α)Ra
iU(−α) = e−2εacαcbR̄b

i (1.20)

with [R̄′ai , R̄
′b
j ] = −iεabδij. The deformation in Eq.(1.20) is equivalent to a Bogoli-

ubov transformation of the guiding center ladder operators b, b†, where αab can be

reparametrized as

gabαab = k cosh 2θ, αabω
aωb =

1

2
k sinh 2θe2iφ (1.21)

here k parametrizes the overall phase of the Bogoliubov transformation, and is phys-

ically irrelevant.

1.2.2 Hamiltonian and Dynamics

For simplicity, only the QHE of a single species of (spin polarized) fermions is con-

sidered here. The full Hamiltonian of the many-body QH system is given by

H0 = h0 + V (1.22)
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where h0 is the single particle Hamiltonian and V contains the many-body interac-

tions. In principle V can contain k- body interactions for any integer k > 1. Here

only the physical case of the two-body Coulomb interaction is considered. However,

this is in no way reducing the generality of the effective Hamiltonian for the FQHE,

since the k > 2 interactions physically result from LL mixing, as we shall see later.

The single particle Hamiltonian is special because the minimal coupling of the

external magnetic field to the kinetic momentum implies that h0 is a function of only

the cyclotron coordinates. Assuming inversion symmetry, the most general form of

h0 is given by

h0 =
∑
i

∞∑
n=1

1

(2n)!l2nB
ωa1,a2,···a2nR̃

a1
i R̃

a2
i · · · R̃

a2n
i (1.23)

where ωa1,a2,···a2n are the fully symmetric tensors. In general h0 does not have Galilean

or rotational invariance. Physically the QHE is realized on a lattice system, where

Galilean and rotational invariance can only emerge in the weak field limit lB � a,

where a is the lattice constant. The energy spectrum of h0 are generalized Landau

levels, each with macroscopic degeneracy generated by the guiding center coordinates,

because h0 commutes with Ra
i . If we do have rotational invariance for h0, every

ωa1,a2,···a2n can be expressed as a function of a single metric - the cyclotron metric g̃ab.

The general form of h0 will be simplified to

hr0 =
∑
i

∞∑
n=1

cn
(2n)!l2nB

(
1

2
g̃abR̃

a
i R̃

b
i

)n
=
∑
i

∞∑
n=1

cn
(2n)!l2nB

L̃n (1.24)

In this case, the eigenstates are labeled by the cyclotron angular momentum. A

familiar example is the massless Dirac fermions with the single particle Hamiltonian

hr0 =
√

1 + L̃. For free electrons confined in two-dimensions, we have Galilean invari-

ance and the cyclotron metric is given by the effective mass tensor. In this case the

LLs are equally spaced, and we can also define a cyclotron frequency ωc = eB/m and
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the single particle Hamiltonian reduces to:

hg0 =
ωc
2l2B

∑
i

R̃a
i R̃

b
i (1.25)

The Galilean term is the leading term of the expansion in Eq.(1.23), and in most

cases it defines the energy scale of the single particle Hamiltonian εs ∼ ~ωc ∼ B.

The interaction term V depends on the real space coordinates of particles rai .

Even though the Coulomb interaction is universal, the details of effective interaction

between electrons confined in a two-dimensional manifold depends on the LL form

factor and the experimental conditions, such as the single particle wavefunction in

z direction (perpendicular to the Hall manifold), which depends on the thickness of

the sample and the profile of the confinement potential. Denoting Vq the Fourier

component of the effective two-body interaction potential we have

V =

ˆ
d2ql2B
(2π)2

Vqρqρ−q (1.26)

The only length scale is given by the magnetic length lB, thus the typical energy scale

of the interaction is given by εint ∼ e2/lB ∼
√
B, which is subleading to εs. In the

limit of strong magnetic field, one is allowed to treat V as a small perturbation, and

we use this to organize the many-body Hilbert space. Formally, we write

H(λ0) = h0 + λ0V (1.27)

In the limit of λ0 → 0, there is a subspace Hλ0 spanned by eigenstates of H(λ0)

that are degenerate with the ground state. If the filling factor ν is an integer, this

subspace only contains the ground state, and the non-degenerate perturbation theory

can be applied straightforwardly. This is the way we understand the IQHE. When

partially filled LLs are present in the ground state, one has to apply the degenerate
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pertubation theory, which becomes intractable when the degeneracy is macroscopic

in the thermodynamic limit. This is the case of the FQHE, which is formally treated

by defining a projection operator P =
∑

n

(
|ψ̄n〉〈ψ̄n|

)
for all |ψ̄n〉 ∈ Hλ0→0. The

interaction Hamiltonian can thus be written as

V = PV P +O(ε) (1.28)

where ε ∼ εint/εs ∼ B−
1
2 . The projected interaction Hamiltonian V̄ = PV P has the

spectrum

V̄ |ψ̄n〉 = ε̄n|ψ̄n〉 (1.29)

In this projected Hilbert space, the kinetic energy of each particle is just a constant,

the dynamics is dictated by the interaction alone.

The leading order of Eq.(1.28) is the two-body interaction within a single par-

tially filled LL (the case with more than one partially filled LLs is technically more

cumbersome but conceptually the same). Terms of O(ε) contain LL mixing induced

by the interaction, and can be calculated perturbatively[67]. The perturbation does

not just renormalize the effective two-body interaction; the first order perturbation

also gives effective three-body interactions, while higher-order perturbations lead to

four-body interactions and more.

Formally, Eq.(1.28) can be written as a general effective Hamiltonian including

k−body interactions for k ≥ 2. The Hilbert space is still within a single LL, but the

coefficients of every term in the Hamiltonian can be expanded in powers of ε. Thus

the FQHE can be completely described by the physics within a single LL even when

LL mixing is included. Theorists can tune the coefficients of k−body interactions at

will to realize different models of the FQHE; this makes numerical analysis a very

powerful tool. Perturbative calculations from realistic physical interactions, on the
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other hand, suggest that the effect of LL mixing is quite small, even though ε itself

is not very small (∼ 0.3) under most experimental conditions[67]. Thus a model of

two-body interaction is sufficient in realizing most FQH states.

1.3 Organization of the Thesis

In Chapter 2, an overview of the numerical techniques in the FQHE is presented,

focusing on the fact that the Hamiltonian matrix can be numerically constructed in a

purely algebraic way that is manifestedly gauge invariant. The chapter also contains

three examples that illustrate the power of the numerical analysis. The first example

presents the entanglement spectrum of the FQH ground state on the sphere, with

a notably new partition of the Hilbert space leading to a clear entanglement energy

separation between the topological and the non-universal part of the entanglement

spectrum. This new partition can be potentially useful for DMRG application. In the

second example a numerical definition of the guiding center metric for the FQH fluid

without rotational invariance is presented. In the last example, possible transitions

from the incompressible FQH phase to compressible bubble/stripe phases are studied

in the higher Landau levels, especially when the rotational invariance is broken.

In Chapter 3, the geometric aspect of the QHE is illustrated with microscopic

calculations of the linear response to spatially varying electromagnetic fields. In

particular, the term “Hall viscosity” will be introduced in this chapter, which is an

important quantity in the electromagnetic response, and is universal with rotational

invariance. The Hall viscosity bridges the geometry of the QHE with its topological

aspect, and also determines the gap of the neutral excitations in the long wavelength

limit, as will be shown in Chapter 4 and 5.

In Chapter 4 a numerical scheme for the construction of neutral excitation model

wavefunctions in the Laughlin and Moore-Read state is presented. These model

23



wavefunctions are compared with both the exact diagonalization and the single mode

approximation. The dynamics of the long wavelength part of the magnetoroton mode

is revealed to be both dependent on the Hall viscosity and the energy cost of the shear

deformation of the ground state guiding center metric.

With numerical results from Chapter 4 at hand, the analytic wavefunctions for

the neutral excitations are presented in Chapter 5. These analytic wavefunctions are

shown to be a generalization of the Laughlin and Moore-Read ground state wave-

functions, with no tuning parameters and transparent physical interpretations. The

analytic calculations of the long wavelength neutral excitation gap in the thermody-

namic limit reveals interesting connections to the dynamics of the two-dimensional

plasma picture, where the energy gap of the quadrupole excitation is related to the

free energy cost of the fusion of charges in the plasma. A lattice diagramatic represen-

tation of the model wavefunctions for the neutral excitations is also presented in this

chapter, leading to a fresh point of view of the nature of quantum Hall many-body

wavefunctions.
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Chapter 2

Numerical Studies of the FQHE

Numerical calculation is an indispensible tool in studying the FQHE. It is remarkable

that in many cases the physics of the FQHE in the thermodynamic limit can be

revealed with the numerical calculation of systems containing only a few particles.

The Hilbert space of the FQHE is tractable once the system is projected into a single

Landau level, with the proper boundary conditions. Effects of different cyclotron

form factors in different LLs, modifications of the interaction by finite thickness, etc.

can be modeled with a suitable choice of a set of the Haldane pseudopotentials for the

two-body interactions. The effects of LL mixing, on the other hand, can be modeled

by adding three (or even more) body interactions within a single LL.

In contrast to common practices in the FQHE numerical calculations, where one

has to pick a gauge to specify the single particle wavefunctions, the numerical method

presented in this chapter is based on the algebra of the FQH Hilbert space, and is

manifestedly gauge invariant. This is both conceptually and technically advanta-

geous over the use of real space wavefunctions of the single particle orbitals. While

this chapter does not give a detailed guide for implementing numerical calculations

and optimizations based on symmetry, it emphasizes the universal features of the nu-

merical analysis in different geometries, from which the Hamiltonian matrix is built
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for exact diagonalization or DMRG analysis. For simplicity only spin polarized FQH

systems are considered. The three examples in the chapter illustrate how numerical

techniques can be implemented in spherical and torus geometry, to analyze both the

ground state properties and the dynamics involving the entire energy spectrum.

2.1 Landau Level Projection

It is convenient to introduce the second-quantized formalism when doing numerical

calculations. The density operator is given by

ρsq =
∑

MN,mn

〈M,m|eiqara |N, n〉ξ†MmξNn (2.1)

where the upper-case indices are LL indices, and the lower-case indices are the guiding

center orbital indices. ξ†Mm creates a particle in the Mth LL and the mth intra-LL

orbital, and {ξ†Mm, ξNn} = δMNδmn. Projection into the Nth LL means only particles

with LL index N are included in the Hilbert space. Writing eiqar
a

= eiqaR
a
eiqaR̃

a
, we

have

〈N,m|eiqara|N, n〉 = FN(q)〈m|eiqaRa|n〉 (2.2)

where FN(q) = 〈N |eiqaR̃a |N〉 is the LL form factor, completely determined by the

single particle kinetic energy Hamiltonian h0. If h0 is rotationally invariant, i.e.

containing only a single metric g̃ab, we can define the spectrum generating LL ladder

operators a = ωaR̃
a, a† = ω∗aR̃

a such that a†a|N〉 = N |N〉 (where the complex vectors

ωa are defined in Eq.(1.11)). An explicit calculation gives FN(q) = LN(q2l2B/2)e−
1
4
q2l2B ,

where LN(x) is the N th Laguerre polynomial. For the purpose of numerical calcu-

lations, we are only going to deal with a rotationally invariant h0, and the density
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operator is written as

ρq = FN(q)
∑
mn

〈m|eiqaRa |n〉ξ†mξn (2.3)

The LL index for the creation and annihilation operators are omitted without ambigu-

ity. For numerical calculations on a flat surface, Eq.(2.3) is the general implementation

for the LL projection.

2.2 Two-Body and Three-Body Interactions

The general Hamiltonian for the two-body interaction is given by

H2bdy =

ˆ
d2q

(2π)2
Vqρ̄qρ̄−q =

ˆ
d2q

(2π)2
Vq
∑
i<j

eiqa(R
a
i−Raj ) (2.4)

where ρ̄q =
∑

i e
iqaRai =

∑
mn〈m|eiqaR

a |n〉ξ†mξn is the guiding center density operator

and i is the particle index. Comparing to Eq.(2.1), the form factor is absorbed into Vq,

the Fourier component of the two-body interaction. Different ways of organizing the

single particle orbitals within a single LL is analogous to picking a gauge. Choosing an

arbitrary complex vector ua we can define R = uaR
a. Coherent states with R|m〉 =

m|m〉 is one way of labeling the single particle orbitals. If rotational invariance exists

with metric gab = ωaω
∗
b + ω∗aωb, where ωa is defined in Eq.(1.11), we can let ua = ωa

so R = b is the ladder operator. In this case a more natural way is to label the single

particle orbital by its guiding center angular momentum. The single particle orbital

is labeled by |m〉 with b†b|m〉 = m|m〉. Writing z = ωar
a, and in an infinite plane

such states are given by

〈z|m〉 ∼ zme−
1
2
|z|2 (2.5)
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which is analogous to the case when an explicit symmetric gauge is picked. The

coherent state for a general ua is given by

〈z|m〉 ∼ e
1

uaωa
(mz− 1

2
uaωa∗z2)e−

1
2
zz∗ (2.6)

Choosing ua to be a real vector is analogous to picking a “Landau gauge”, where

Eq.(2.6) is extended in the direction perpendicular to the vector ua, and confined

in the direction parallel to ua. If the single particle wavefunction needs to satisfy

certain boundary condition (e.g. periodic boundary condition on torus), Eq.(2.6)

is mathematically more complicated, and one is forced to pick a gauge for the vec-

tor potential. On the other hand, numerical calculations do not require us to deal

with wavefunctions explicitly; they can be done algebraically with various different

boundary conditions, as we shall see in the next section.

Since for two-body interactions only the relative coordinates are involved in the

Hamiltonian, we write Rij = 1√
2
ua
(
Ra
i −Ra

j

)
, R̄ij = 1√

2
ua
(
Ra
i +Ra

j

)
. The two-body

eigenstates are given by |M,m〉 = ξ†M,m|vac〉, where M is the index for R̄ij, and m is

the index for Rij.

The Hamiltonian is thus given by

H2bdy =

ˆ
d2q

(2π)2
Vq

∑
M,m,m′

〈M,m|eiqa(Ra1−Ra2)|M,m′〉ξ†M,mξM,m′ (2.7)

If Vq is rotationally invariant, we can expand it in the basis of Laguerre polynomials

with Vq =
∑

n cnVn and:

Vn = Ln(q2)e−
1
2
q2

(2.8)

This is because the Laguerre polynomials Ln(q2) are orthogonal when integrated with

the measure e−
1
2
q2

. Vn is called the nth Haldane pseudopotential. If we label the single
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particle orbitals by its guiding center angular momentum, i.e. ua = ω∗a. This leads to

〈M,m|eiqa(Ra1−Ra2)|M,m′〉 = δm,m′e
− 1

2
l2Bq

2Lm(q2l2B). Due to the orthogonality between

the Laguerre polynomials, Eq.(2.7) is simplified to

H2bdy =
∑
M,m

cmξ
(2)†
M,mξ

(2)
M,m (2.9)

Thus cm is the energy cost of a pair of particles having relative angular momentum m.

The generalization to k−body interactions with k > 2 is presented in [54]. Here we

are going to use the Jacobi coordinates to generalize the Haldane pseudopotentials.

For three-body interactions the Jacobi coordinates are given by:

Raij =
1√
2

(
Rai −Raj

)
, Raij,k =

1√
6

(
Rai +Raj − 2Rak

)
, Raijk =

1√
3

(
Rai +Raj +Rak

)
(2.10)

Defining Rij = uaR
a
ij, Rij,k = uaR

a
ij,k, Rijk = uaR

a
ijk, the three-body Hilbert space is

given by |M,m,m′〉 = ξ†M,m,m′ |vac〉, where M is the eigenstate index for Rijk, m is

the eigenstate index for Rij,k and m′ is the eigenstate index for Rij. The most general

three-body Hamiltonian is given by

H3bdy =

ˆ
d2q1d

2q2
(2π)4

Vq1,q2
∑

Mm1m2m′
1m

′
2

〈Mm1m
′
1|eiq1aR

a
12eiq2aR

a
12,3 |Mm2m

′
2〉ξ

(3)†
Mm1m′

1
ξ
(3)
Mm2m′

2
(2.11)

With rotational invariance we can do a similar expansion of the interaction with the

basis of the Laguerre polynomials:

Vq1,q2 =
∑
nn′

cnn′Ln(q2
1l

2
B)Ln′(q2

2l
2
B)e−

1
2(q2

1+q2
2)l2B (2.12)

Again labeling the single particle orbitals by their guiding center angular momentum

we have

H3bdy =
∑

Mm1m′1

cm1m′1
ξ

(3)†
Mm1m′1

ξ
(3)

Mm1m′1
(2.13)
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This is how the Haldane pseudopotentials for two-body interactions are generalized.

The scheme can be naturally extended to k− body interactions for k > 3 with the set

of coefficients cm1,m2···mk−1
; Eq.(2.8) and Eq.(2.12), and the physics of the coefficients

of expansions, are completely general and independent of the geometry or topology

of the Hall surface. The numerical study of the FQHE is tantamount to exploring

the family of model Hamiltonians in the parameter space {cn1 , cn1n2 , · · · }.

2.3 Disk, Cylinder and Torus

From an experimental point of view, the quantum Hall droplet is realized on a two-

dimensional plane of a finite size with electrons confined by an external potential.

The details of the confinement potential perpendicular to the two-dimensional plane

modifies the single particle wavefunction in the perpendicular direction, which in

turn modifies the effective two-body interaction. Numerically, this can be modeled

by tuning the different components of the pseudopotentials. The simplest geometry

is the disk geometry with open boundary conditions; in this geometry both the bulk

and edge excitations can be explored numerically[44, 45]. We can also make the

boundary condition open in one direction and periodic in the other; this gives a

cylinder geometry with two chiral edges[46, 47]. If we make both directions periodic,

we have the torus geometry[58]. Torus geometry has no edge, which is convenient for

exploring the bulk excitations. It also has a different topology (with genus 1), which

is essential in studying the ground state degeneracy of different topological phases[10].

On the disk, rotational invariance is present and we can use Eq.(2.9) and Eq.(2.13)

directly. The two-particle creation operators can be expanded in terms of the single-
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particle creation operators:

ξ†M,m = 2−
1
2

(M+m)
a,b=M,m∑
a,b=0

(−1)a+b

√
(M +m− a− b)!(a+ b)!

M !m!

 M

a


 m

b

 ξ†M+m−a−bξ
†
a+b

(2.14)

The numerical implementation is thus straightfoward, and the Hamiltonian will

be block-diagonal with total angular momentum M +m as a good quantum number.

The finite size system consists of a finite number of particles Ne, and in principle

there is no restriction of the number of orbitals, or the size of the disk. If a confining

potential from the background positive charges is present, additional on-site single

particle potential term will be added to the Hamiltonian[44, 45]. One can also impose

a sharp cut-off by restricting the number of orbitals, and thus truncating the Hilbert

space in which the diagonalization is performed.

In Fig.(2.1) the energy spectrum of a typical Laughlin state is plotted. What is

interesting is the bottom half of the diagram, where we zoom into the bulk excitation

part of the spectrum below the multi-roton continuum. Except for the big circular

plot, each many-body state contains both bulk and edge excitations. The five different

colors represent five different branches of the neutral excitations below the multi-

roton continuum (except for the blue color at the lower right corner, where different

branches mix and there is not enough resolution of the plot to differentiate between

them). In each branch, the state with the big circular plot is the highest weight bulk

state (with no edge excitations) corresponding to those on the sphere or the torus. In

each branch the counting of the states follows the Virasoro algebra (see Chapter 5),

and the small circular plots are the highest weight states. Just like the ground state,

each bulk neutral excitation is the highest weight primary field where the Kac-Moody

edge modes are generated.
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Figure 2.1: The top graph is the energy spectrum of ten electrons on the disk at
filling factor ν = 1/3. There is no restriction in the number of orbitals for exact
diagonalization. The states with the lowest fifty energies in each angular momentum
sector is plotted. The bottom graph is the zoom into the bulk excitation part of the
disk spectrum (One should compare that with Fig.(2.3) and Fig.(2.4), where only
bulk neutral excitations are present.)
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The cylinder geometry does not have rotational invariance. Let the cylinder to be

periodic along the y-axis with the circumference L and open along the x-axis, we can

pick ux = 1, uy = 0 and the single particle orbitals are given by Rx|m〉 =
2πl2Bm

L
|m〉.

We thus have

eiqxR
x|m〉 = ei

2πl2Bqxm

L |m〉, eiqyR
y |m〉 = |m+ k〉 (2.15)

where qy = 2π
L
k is discrete for integer k, and qx is a continuous variable. We can thus

pick m to be an integer as well. In the second quantized form the guiding center

density operator is given by

ρ̄q =
∑
m

eiqx(m+ 1
2
k)ξ†m+kξm (2.16)

Thus the two-body and three-body interaction Hamiltonians are given by

H2bdy =

ˆ
dqxlB

2π

∑
kmn

Vqe
i
2πl2Bqx

L
(m−n)ξ†m+kξ

†
n−kξmξn (2.17)

H3bdy =

ˆ
dq1xdq2xl

2
B

4π2

∑
k1k2m1m2m3

Vqaqbe
iπl2B
L

(q1xk2+q2xk1) ·

e
2πiq1x
L

(m1−m3)e
2πiq2x
L

(m2−m3)ξ†m1+k1
ξ†m2+k2

ξ†m3−k1−k2
ξm1ξm2ξm3 (2.18)

where in Eq.(2.18) we have qa = 1√
2

(
q1 + 1√

2
q2

)
, qb =

√
3
2
q2.

The torus geometry is periodic in both directions. Unlike the disk and cylinder

geometry, the torus is a compact manifold. To respect the boundary conditions, the

total number of fluxes going through the surface has to be an integer[58]. This implies

the total area of the torus to be 2πl2BNφ, where the integer Nφ is the number of fluxes.

Let the torus be defined by two principal vectors ~L1 = (L1, 0), ~L2 = (L2 cos θ, L2 sin θ),

so that ~L1, ~L2 forms a parallelgram, and the periodic boundary conditions require

opposite sides of the parallelgram to be identified. The flux quantization condition is
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Figure 2.2: The entire energy spectrum of six electrons on the cylinder at filling factor
ν = 1/3 and aspect ratio equal to one, with no cut-off of orbitals. The degenerate
manifold of zero energy states can be seen across all momentums due to translational
invariance along the cylinder. The gapped neutral excitations are more complicated
because of the presense of two chiral edges.(Plot courtesy: Sonika Johri).

given by

L1L2 sin θ = 2πl2BNφ (2.19)

The periodic boundary conditions fix a discrete set of allowed momentum vectors

forming the reciprocal lattice, with primitive vectors ~q1 = L2

l2BNφ
(sin θ,− cos θ, 0) , ~q2 =

L1

l2BNφ
(0, 1, 0). There are in total N2

φ allowed vectors within the Brillouin zone, with

~q = k1~q1 + k2~q2 for k1, k2 = 0, 1, · · · , Nφ − 1.

The single particle orbitals can be defined in the same way as the case for the

cylinder in Eq.(2.15), with additional periodic boundary conditions. Writing Rx|m〉 =
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Figure 2.3: This is the entire energy spectrum obtained on the torus geometry with
exact diagonalization. On the left, the filling factor is ν = 1/3, with V1 pseudopo-
tential interactions. On the right, the filling factor is ν = 1/2, with the three-body
model Hamiltonian and quartered Brillouin zone[70]. The ground state with zero en-
ergy is set to have zero momentum, and a branch of magneto-roton modes can be seen
clearly both for the Laughlin and the Moore-Read state, reaching the roton-minimum
at klB ∼ 1.7 for both cases, and merges into the multi-roton continuum in the long
wavelength limit. For the Moore-Read state, the neutral fermion modes can also be
seen to reach minimum gap at klB ∼ 1. (Plot courtesy: F.D.M. Haldane).

2πl2Bm

L2 sin θ
|m〉, with qx = L2 sin θk1

l2BNφ
, qy = L1k2

l2BNφ
for integers k1, k2, we have

eiqxR
x|m〉 = e

i
2πk1m
Nφ |m〉, eiqyR

y |m〉 = |m+ k2〉, |m+Nφ〉 = |m〉 (2.20)

It is thus straightforward to rewrite Eq.(2.17) and Eq.(2.18) in terms of discrete sums

over the reciprocal lattice momentum vectors:

H2bdy =
∑

k1k2mn

Vk1k2e
2πik1
Nφ

(m−n)
ξ†m+k2

ξ†n−k2
ξmξn (2.21)

H3bdy =
∑

k1k2k3k4m1m2m3

Vk1k2k3k4e
2πi
Nφ

(k3k2+k4k1) ·

e
4πik3
Nφ

(m1−m3)
e

4πik4
Nφ

(m2−m3)
ξ†m1+k1

ξ†m2+k2
ξ†m3−k1−k2

ξm1ξm2ξm3 (2.22)

where in Eq,(2.21) we have Vk1k2 = Vq, ~q =
(
L2 sin θk1

l2BNφ
, L1k2

l2BNφ

)
; in Eq.(2.22) we have

Vk1k2k3k4 = Vqaqb , ~qa =
(
L2 sin θ
l2BNφ

(
k3√

2
+ k4

2

)
, L1

l2BNφ

(
k3√

2
+ k4

2

))
, ~qb =

√
3
2

(
L2 sin θk4

l2BNφ
, L1k2

l2BNφ

)
.
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2.3.1 Spherical Geometry

Another geometry with no boundary is the spherical geometry, with a magnetic

monopole sitting at the center of the sphere so that a total of 2S fluxes radiate

through the surface[52]. By Dirac’s quantization condition, 2S has to be an integer,

and the single particle orbitals are spinors of total spin S+N , where N is the Landau

level index. Thus atN th LL the total number of states/orbitals is 2S+2N+1. One can

Figure 2.4: The spectrum of 1656 multiplets (50388 states) of the Ne = 7 electrons,
2S = 18 flux quanta system with Coulomb interactions, grouped by total angular
momentum L. Energies (in units of e2/4πεlB) are shown relative to the incompressible
(ν = 1

3
) isotropic (L = 0) ground state. Note the neutral excitations at the bottom

of the spectrum, where the roton minimum occurs at around L = 4.[73]

explicitly pick a gauge ~A = (S/eR)× ~φ cot θ, where R is the radius of the sphere, φ is

the azimuth angle and θ is the polar angle. In the LLL the 2S+1 states have the wave-

functions expressed in terms of spinor coordinates u = cos
(

1
2
θ
)
e
i
2
φ, v = sin

(
1
2
θ
)
e−

i
2
φ:

ψm = uS+mvS−m (2.23)
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where m is the Lz component of the spinor which ranges from −S to S. This directly

corresponds to single particle orbitals on the disk with the guiding center angular

momenta ranging from 0 to 2S. We can explicitly use the stereographic mapping

by taking z = 2Rv/u, where R is the radius of the sphere. The single particle

wavefunction of Eq.(2.23) can be written as ψm = zm/ (1 + zz∗/4R2)
1+Nφ/2. Thus the

Hamiltonian on the disk from Eq.(2.9) can be directly transcribed onto the sphere,

where ξ†M,m is the creation operator of a pair of particles on the sphere with relative

Lz = m and total Lz = M . For particles in the N th LL, the states are given by

spinors |S + N,m〉. Let the total spin of two particles be L and the total azimuthal

spin be M , the two-particle state is given by |L,M〉. The change of basis is given by

|L,M〉 =
∑
m1,m2

CS+N,L,M
m1,m2

|S +N,S +N,m1,m2〉 (2.24)

where CS+N,L,M
m1,m2

are the familiar Clebsch-Gordan coefficients. On the sphere, the lth

pseudopotential is equivalent to the projection into a two-particle state with relative

total angular momentum 2(S + N − l). Thus the form of Eq.(2.9) on the sphere is

given by

H2bdy =
∑
l,m

clξ
†
S+N−l,mξS+N−l,m (2.25)

and Eq.(2.14) on the sphere is given by

ξ†l,m =
∑
m1,m2

CS+N,l,m
m1,m2

ξ†m1
ξ†m2

(2.26)

The Hamiltonian matrix thus can be built up numerically in exactly the same way

as the case for the disk geometry.
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2.4 Example A: Entanglement Spectrum of Spher-

ical FQHE Ground State

A major reason why we need to use numerics to solve FQH problems is because

the many-body wavefunctions of the FQHE is intrinsically not simple. One way to

quantify the complexity of a many-body state is to look at its entanglement. To do

that, the Hilbert space of a many-body system H is partitioned into two sub-Hilbert

spaces

H = HA ⊗HB (2.27)

The partition can be done in real space, momentum space, particle space, or in any

other more abstract ways, and a wavefunction |Ψ〉 ∈ H can be expanded as

|Ψ〉 =
∑
mn

cmn|ψAm〉 ⊗ |ψBn 〉 (2.28)

where we have |ψA(B)
m 〉 spanning HA(B). Since |Ψ〉 is a pure state, the density matrix

is one-dimensional ρ = |Ψ〉〈Ψ|. One can then define a reduced density matrix for the

subsystem A

ρA = TrBρ =
∑
k

(
I ⊗ 〈ψBk |

)
ρ
(
I ⊗ |ψBk 〉

)
(2.29)

This is an NA × NA square matrix, where NA is the dimension of HA. Similarly we

can also have ρB = TrAρ, an NB ×NB square matrix with NB the dimension of HB.

For a local operator ÔA(B) that acts entirely within HA(B), its expectation value is

given by

〈ÔA(B)〉 = 〈Ψ|ÔA(B)|Ψ〉 = TrA(B)

(
ρA(B)ÔA(B)

)
(2.30)
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While the information about the part which is traced out is completely lost, the

reduced density matrix retains all the information about the un-traced part. If the

two parts of the Hilbert space are entangled, a local experimental measurement on

a pure state is equivalent to a measurement of a mixed state represented by the

reduced density matrix. This quantum-statistical correspondence is the hallmark of

non-locality.

Quantitatively we can define the entanglement entropy, or the Von-Neumann en-

tropy as

S = −TrρA ln ρA = −TrρB ln ρB (2.31)

The von Neumann entropy is a unique measure of the bipartite entanglement in

the following senses[83]. 1). S is invariant under local unitary operations. 2). S

is a continuous function of the state in the Hilbert space[84]. 3). S is additive:

S(|ψ1〉⊗|ψ2〉) = S(|ψ1〉)+S(|ψ2〉). If A and B are not entangled, the reduced density

matrix is calculated from a product state, and S = 0. Eq.(2.31) is well-defined because

the non-zero part of the spectrums of ρA and ρB are identical. This can be shown

with a singular value decomposition (SVD) of the NA by NB matrix (C)mn = cmn

from coefficients in Eq.(2.28):

C = UΛV ∗ (2.32)

where U, V are unitary square matrices of dimensions NA and NB respec-

tively, and Λ is an NA × NB diagonal matrix with non-negative real numbers

λi, i = 1, · · ·min{NA, NB} on the diagonal. Writing |ψAi 〉 =
∑

m Umi|ψAm〉, |ψBi 〉 =∑
n V

∗
in|ψBn 〉, Eq.(2.31) can be converted into the diagonal form:

|Ψ〉 =
∑
i

λi|ψAi 〉|ψBi 〉 (2.33)
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which leads to ρA(B) =
∑

i λ
2
i |ψ

A(B)
i 〉〈ψA(B)

i | and S = 2
∑

i λ
2
i lnλi. Normalization of

the state requires
∑

i λ
2
i = 1.

The entanglement entropy measures the minimal amount of the information

needed to fully characterize the state. While it is a very important quantity that

can contain topological signatures[11], Li and Haldane[12] pointed out that the

entire spectrum of ρA(B), or the entanglement spectrum, contains additional im-

portant information as well. One can rewrite Eq.(2.33) as |Ψ〉 =
∑

i e
− εi

2 |ψAi 〉|ψBi 〉,

where εi = −2 lnλi is the so-called entanglement energy. In this way, the reduced

density matrix resembles the partition function of a quantum system at a “pseudo-

temperature” equal to unity. If any state is missing in the entanglement spectrum,

its entanglement energy goes to infinity.

To explore the real space entanglement of a quantum state, a partition of the

Hilbert space in real space is usually performed. For the FQHE a real space cut

involves both the cyclotron and guiding center coordinates[85], which is technically

more demanding, and not desirable if one wants to explore the entanglement involving

only the guiding center degrees of freedom. The alternative is to perform an orbital

cut. With spherical geometry and a monopole of strength 2S sitting at the center,

there are in total 2S+1 orbitals in the LLL. The Hilbert space for each orbital is two-

dimensional (occupied or un-occupied). One can thus separate these orbitals into two

groups, the Hilbert space of each is the direct product of the single particle Hilbert

space for all orbitals in that group.

The entanglement entropy calculated from the reduced density matrix of the

ground state depends on how strongly correlated these two subgroups are. In [12],

the cut is made near the equator of the sphere, so the dimension of the reduced den-

sity matrix is maximized. Two most important observations can be summarized as

follows:
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• The virtual cut that separates the Hilbert space resembles a physical cut that

separates the sphere into two hemispheres with real edges. The low-lying part

of the entanglement spectrum has the same counting as the physical edge states

of the FQHE, as predicted by the conformal field theory

• The entanglement spectrum of the model wavefunction (e.g. the Laughlin wave-

function or Moore-Read Pfaffian) has significantly fewer states than the dimen-

sion of the sub-Hilbert space, i.e. many basis elements in the sub-Hilbert space

do not participate in the ground state. When the model Hamiltonian is adi-

abatically tuned towards the Coulomb interaction, the missing states appear

with a small but finite weight. As long as the FQH phase persists, these non-

universal basis elements remain partially gapped from the universal ones in the

entanglement spectrum

Apart from being used as a diagnostic tool for the topological phases of many-

body ground states, the entanglement spectrum also has practical applications for

numerical techniques like the density matrix renormalization group (DMRG)[88]. It

is clear that the eigenstates in the entanglement spectrum contribute differently to

the ground state; the presence of the entanglement gap further indicates that most

of the probabilistic weight is carried by the basis elements below the gap (remem-

ber the entanglement energy is the negative logarithmic function of the probability

amplitude). This is particularly appealing for DMRG, which uses the entanglement

spectrum to judiciously truncate away the unimportant part of the Hilbert space.

While DMRG does not generally perform well for two-dimensional systems due to

the exponential growth of the entanglement entropy with the system size, it can be

more useful for systems with gapped topological phases. We will now illustrate the

idea of the entanglement spectrum for the FQHE ground state with a different par-

tition of the Hilbert space (See Fig.(2.6)), as compared to the work in Fig.(2.5). In

their work a single cut at the equator is employed, and there does not exist a unique
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Figure 2.5: Entanglement spectrum for the N = 11 bosons, Nφ = 20, ν = 1/2
Coulomb state on the sphere. The cut is such that lA = 10 orbitals and NA = 5
bosons. (a) Standard normalization on the quantum hall sphere. The inset show the
remainder part of the spectrum where the entanglement levels exceed ξ = 24. (b)
Conformal limit (CL) normalization. The CL separates a set of universal low-lying
energy states, which allows an unambiguous definition of the entanglement gap over
all LAz subsectors as the minimal difference between the highest energy CFT state
and lowest generic state. The inset in (b) shows the the finite size scaling of the
entanglement gap for the Coulomb state, which remains finite in the thermodynamic
limit.[87]

entanglement energy that separates the topological part of the spectrum from the

non-universal part. From the DMRG point of view, this makes selection of “good

42



Figure 2.6: The Hilbert space of the sphere is partitioned into two parts: the top part
consists of two caps of the north and the south pole; the bottom part is the rest of
the sphere around the equator.

basis” difficult. Here instead of just one cut, two cuts are performed on the sphere

that are parallel and symmetric about the equator. The two resulting subsystems

(one including two “caps” around the north and south pole, the other including the

bulk around the equator) have equal number of orbitals. In general, more cuts imply

greater entanglement entropy between the two subsystems, which tends to disfavor

such partitions; on the other hand, almost all the topological part of the spectrum

are below the non-universal part, making the truncation of the unimportant Hilbert

space less ambiguous.

From Fig.(2.7) the counting of the low-lying states come from the two branches of

the edge excitations. We can form the projection operator from the reduced density

matrix of the model wavefunction, and it faithfully projects out the non-universal part
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Figure 2.7: Entanglement spectrum of the FQHE ground state obtained from exact
diagonalization with ten particles at filling factor ν = 1

3
. The blue plots are en-

tanglement spectrum from the Coulomb interaction. The red plots come from the
model wavefunction of the same system. As we can see the entanglement spectrum of
the model wavefunction is mostly below the non-universal part of the entanglement
spectrum obtained from the Coulomb ground state (Compare Fig.(2.5)).

of the entanglement spectrum calculated from the coulomb interaction, as shown in

Fig.(2.8):

The very small entanglement energy overlap between the non-universal states and

the “topological” states is advantageous for DMRG: instead of generating projection

operators from diagonalizing intermediate Hamiltonians, one can obtain them directly

from Jack polynomials (see Chapter 4). This presents a new approach for DMRG

on the FQH states. One should note however be aware that the increase of the

entanglement due to the presence of two edges of the partition leads to a larger

number of low lying states. It is thus not yet clear which factor outweighs the other.

Before closing the section let us look at the entanglement spectrum of the partition

with two edges in the conformal limit[87](also defined in the caption of Fig.(2.5)), and

compare it with Fig.(2.5). The spectrum before and after stripping away the single

particle normalization looks pretty much the same, suggesting the new partition is
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Figure 2.8: The entanglement eigenstates from the model wavefunction projects out
the non-universal part of the entanglement spectrum from the Coulomb interaction.
The total system size is 8 electrons at filling factor ν = 1

3
. The yellow plots are

from the entanglement spectrum of the Coulomb ground state; the red plots are from
the entanglement spectrum of the Laughlin model wavefunction. The basis elements
of the red plots are used to form the projection operator, and the purple plots are
the eigenstates of the reduced density matrix of the Coulomb ground state after the
application of the projection operator.

Figure 2.9: The entanglement spectrum calculated in the conformal limit, with the
same system size as the one in Fig.(2.7)
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less prone to the finite size effect that tends to introduce environmental errors in the

DMRG procedure.

2.5 Example B: Guiding Center Metric In FQHE

It was first pointed out by Haldane that the rotational invariance is not required to

protect the topological phases of the FQHE. From previous chapters we know that

the rotational invariance only exists if the cyclotron metric and the guiding center

metric are congruent: g̃ab = ḡab. This is not necessarily the case in many physical

situations. For Galilean invariant systems, the cyclotron metric is defined by the

effective mass tensor. Microscopically the effective mass tensor depends on the band

structure of the underlying lattice model, which is anisotropic in materials like ALAs

many-valley semiconductors, or Si in the presence of uniaxial stress[76]. For a Hall

surface with finite thickness, we can also tune the effective mass tensor by tilting the

magnetic field[69, 39].

On the other hand, the interaction part of the Hamiltonian generally contains

an independent metric. For Coulomb interaction, this metric is defined by the di-

electric tensor, which has the shape of equipotential lines around a charged particle.

Explicitly, the Fourier component of the effective interaction is given by

Vq =
1

|q|c
FN(|q|2m)2 (2.34)

where |q|c =
√
gabc qaqb and |q|m =

√
gabm qaqb with gabc from the dielectric tensor and

gabm from the effective mass tensor. Once again if gabm = gabc , we have ḡab = g̃ab, and

rotational invariance is preserved. Notice here the definition of rotational invariance

allows anisotropy where ḡab = g̃ab 6= δab. Physically, only the relative difference

between different metrics matters. Thus without loss of generality, the dielectric

tensor is always taken to be isotropic; the rotational invariance is broken when the
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Figure 2.10: Energy spectrum in units of e2/εlB as a function of anisotropy α for the
square unit cell and n = 0 LL Coulomb interaction at ν = 1/3. The system is Ne = 7
electrons and φ = 0. Due to the square unit cell, the spectrum is symmetric under
α→ 1/α.

effective mass tensor is anisotropic, which is given in the following form:

gabm ∼

 cosh 2θ + sinh 2θ cos 2φ sinh 2θ sin 2φ

sinh 2θ sin 2φ cosh 2θ − sinh 2θ cos 2φ

 (2.35)

A unimodular metric only has two free parameters, where θ parametrizes squeezing

of the metric, and φ parametrizes the rotation. The anisotropy parameter is given by

α = cosh 2θ + sinh 2θ. The point of isotropy is given by α = 1.

In the LLL, exact diagonalization shows that the incompressibility is quite robust

against anisotropy of gabm . In Fig. 2.10, the energy spectrum of the Coulomb interaction

at ν = 1/3 as a function of anisotropy is plotted, and the ground state is always
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gapped. Level-crossing only occurs among the excited states. On the other hand the

isotropic Laughlin wavefunction no longer gives good overlap with the ground state.

Since the FQHE depends on the Landau level form factor, the distortion of the

effective mass tensor induces a change of the guiding center metric, a purely ground

state property which can be viewed as a hidden variational parameter of the FQHE

state. For model wavefunctions, one can define a family of generalized Laughlin

wavefunctions parametrized by the guiding center metric ḡab = ω̄∗aω̄b+ ω̄aω̄
∗
b , with the

guiding center ladder operators given by bi = ω̄aR
a
i , b
†
i = ω̄∗aR

a
i . In the plane geometry

the generalized Laughlin state is given by

|Ψν=1/m
ḡ 〉 =

∏
i<j

(b†i − b
†
j)
m|0〉. (2.36)

where the vacuum is defined as bi|0〉 = 0. The ladder operators are now explicitly

metric dependent, and bi(g), b†i (g) with different metrics are related to each other by

a Bogoliubov transformation. Equivalently, the wavefunction can be expressed by

a unitary transformation ΨL(g) = exp(−iξαβΛαβ)Ψ0
L, where ξαβ is a real symmetric

tensor and Λαβ = 1
2

∑
i{Ra

i , R
b
i} is the generator of area-preserving diffeomorphism,

and Ψ0
L is isotropic. The model Hamiltonian of Eq.(2.36) is given by

H(ḡ) =

ˆ
d2ql2B
(2π)2

m−2∑
n=1

Ln(|q|2)e−
1
2
|q|2 ρ̄qρ̄−q (2.37)

where we have |q|2 = ḡabqaqb. Thus for finite systems Eq.(2.36) can be generated

numerically by exact diagonalization. Similarly, the ground state |Ψν=1/m
gm,gc 〉 with-

out rotational invariance can be obtained numerically by diagonalizing the following

Hamiltonian

H =

ˆ
d2ql2B
(2π)2

1

|q|c
FN(|q|m)2ρ̄qρ̄−q (2.38)
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ϕ

α

Figure 2.11: Overlap between the Coulomb ground state at ν = 1/3 for fixed
anisotropy α0 = 2, φ0 = 0 and the family of Laughlin states parametrized by varying
α, φ. The system is Ne = 9 electrons on a hexagonal torus.

where Vq is given by Eq.(2.34). One can thus define the guiding center metric of

|Ψν=1/m
gm,gc 〉 as the ḡab that maximizes the overlap |〈Ψν=1/m

gm,gc |Ψ
ν=1/m
ḡ 〉|2, treating ḡab as the

variational parameter. In Fig.(2.11), the exact diagonalization is done on the torus

with periodic boundary conditions. The ground state of the Coulomb interaction has

fixed mass anisotropy α0 = 2, φ0 = 0 (the metric of the dielectric tensor is implicitly

assumed to be α = 1, φ = 0), and we evaluate the overlap with a family of Laughlin

states generated by varying α, φ. The overlap |〈Ψα,φ
L |Ψ

α0=2,φ0=0
C 〉| is plotted as a

function of α and φ. The principal axis of the Laughlin state is aligned with that of

the Coulomb state (maximum overlap occurs for φ = φ0 = 0). Notably, the maximum

overlap occurs for some value of the anisotropy that is a “compromise” between the

dielectric α = 1 and a cyclotron one α = 2. The value of the anisotropy that

defines the intrinsic metric depends linearly on the band mass anisotropy (Fig. 2.12).
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Figure 2.12: Dependence of the intrinsic metric α on the mass metric αm (Coulomb
metric is set to δab).

This result illustrates the ability of the Laughlin state to optimize the shape of its

fundamental droplets and maximize the overlap with a given anisotropic ground state

of a finite system.

The guiding center metric obtained by minimizing the wavefunction overlap

is purely a ground state property. The structure factor of |Ψν=1/m
gm,gc 〉 is thus also

anisotropic with the same guiding center metric. One would ask if the guiding

center metric could be used to characterize the Hamiltonian Eq.(2.38), where excited

states in the energy spectrum is involved. The elementary neutral excitations of

the FQHE is given by the magneto-roton mode, so an alternative way to obtain the

intrinsic metric is to analyze the shape of the two-dimensional momenta of the roton

minimum. In a rotationally-invariant case, this mode has a minimum at |k| ∼ `−1
B .

In the presence of anisotropy, the minima occur at different |k| in the different

directions (Fig. 2.13). This leads to an alternative definition of the intrinsic metric

based on the shape of the roton minimum in the 2D momentum plane. In Fig. 2.13
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Figure 2.13: Energy spectrum of Ne = 9 electrons at ν = 1/3 with the effective mass
anisotropy αm = 2 along the x-axis. When plotted as a function of

√
k2
x + k2

y (green
crosses), two branches of the magneto-roton mode are present (blue dotted lines are

guide to the eye). If the spectrum is plotted as a function of
√
gabkakb, the two

branches collapse onto the same curve.

the energy spectrum of an anisotropic Coulomb interaction at ν = 1/3 is plotted as

a function of the rescaled momentum
√
gabkakb, where g is the guiding center metric

that maximizes the overlap with the family of Laughlin wavefunctions (Fig. 2.12).

With the usual definition of the momentum |k|, the magnitudes of the roton minima

are now direction dependent. Different magneto-roton branches collapse onto the

same curve if we plot them as a function of
√
gabkakb. This is reasonable, because the

magneto-roton mode is well approximated by the single mode approximation (SMA)

up to the roton minimum [32], and the SMA can be calculated entirely in terms of

the properties of the ground state (See Eq.(4.2)). The anisotropy of the peak of the

ground state structure factor dictates the position of the roton minima.
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2.6 Example C: Phase Transition in Second Lan-

dau Level

In the LLL (N = 0, whereN is the LL index) the incompressible phase is quite robust

against anisotropy of the effective mass tensor. In higher LLs, due to a number of

nodes in the single-particle wavefunction, the region of the phase diagram where

incompressible states occur becomes increasingly narrower, and compressible phases

such as stripes and bubbles take over. In this section we briefly present some results

on the effects of anisotropy on FQH states in higher LLs, focusing on fillings ν = 1/3

and 1/2. A more detailed analysis of the issue can be found in[38].

2.6.1 Stripes and Bubbles in N ≥ 2

For N ≥ 2 the ground state is generally compressible with stripes and bubbles phases,

and these phases are enhanced by anisotropic effective mass tensor. In Fig. 2.14 the

energy spectrum (in units of e2/ε`B) is shown as a function of the anisotropy α (the

angle φ is set to zero). Energies are plotted relative to the ground state at each α. As

we see on the right panel of Fig. 2.14, the increase in α leads to a more pronounced

quasi-degeneracy of the ground-state multiplet, and an increase of the gap between

this multiplet and the excited states. Level crossing occurs for even larger α, but that

could be due to finite size effect, which is more pronounced when the effective mass

tensor is highly distorted.

In case of ν = 2 + 1/3 state, one expects a two-dimensional CDW order at α = 1

known as the bubble phase [72]. A bubble differs from a stripe in having a larger

degeneracy and a two-dimensional mesh of (quasi)degenerate ground-state wavevec-

tors (as opposed to the one-dimensional array in case of a stripe). The spread of

the quasidegenerate levels was also found to be somewhat larger than in the case of

stripes. From Fig.2.14 (left) for α = 1. The bubble phase remains stable to some
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Figure 2.14: Energy spectrum of ν = 1/3 (left) and ν = 1/2 filled n = 2 LL (right):
mass anisotropy establishes and reinforces the stripe order.

extent when α is reduced; for very small α it is eventually destroyed and replaced by

a simple CDW. On the other hand, when α is increased, a smaller subset of momenta

becomes very closely degenerate with some of the excited levels. This second-order

(or weakly first order) transition results in a stripe phase. As for the ν = 1/2 case,

this stripe becomes enhanced as α is further increased. Therefore, in n ≥ 2 LLs

mass anisotropy generally produces stripes, even when isotropic ground states have

a tendency to form a bubble phase.

2.6.2 Incompressible to Compressible Transitions in N = 1

For pure Coulomb interaction in N = 1, early numerical calculations found the

ground state to be at the transition point between compressible and incompressible

phases [74]. An experimentally incompressible phase does exist at N = 1, which is

believed to be stabilized by the finite thickness of the two-dimensional electron gas,

which renormalizes the Coulomb interaction.

53



Figure 2.15: Spectrum of Ne = 8 electrons at ν = 1 + 1/3 with thickness w = 2`B.
Inset: same spectrum plotted relative to the ground state at each α. Unit cell has a
rectangular shape with aspect ratio 3/4.

Numerically, varying the V1 pseudopotential leads to the following outcomes: (i)

generically, for δV1 < 0, the system is pushed deeper into a compressible phase;

(ii) for δV1 > 0, finite-size calculations on systems up to Ne = 9 electrons permit

the existence of two regimes: for 0 < δV a
1 < δV1 < δV b

1 , the ground state is in

the Laughlin universality class, but the lowest excitation is not the magneto-roton;

for δV1 > δV b
1 , the ground state and the excitation spectrum is the same as in the

LLL. For smaller systems, δV b
1 is estimated to be around 0.1e2/ε`B, while δV a

1 is

around 0.04e2/ε`B. Larger systems suggest that these two points might merge in the

thermodynamic limit, when only a small modification of the interaction might be

needed for the Laughlin physics to appear at ν = 1/3 in n = 1 LL. Alternatively,

we can consider the Fang-Howard ansatz that mimicks the finite-width effects. In

this case, the width of `B or smaller is sufficient to drive a phase transition between
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Figure 2.16: Guiding-center structure factor S0(q) for ν = 1/3 state in n = 1 LL
with thickness w = 2lB and anisotropy α = 0.4 (a). For comparison, we also show
S0(q) for the state with α = 1.3 which is in the Laughlin universality class (b). Two
peaks in the response function (a) represent the onset of compressibility and CDW
ordering.

the compressible state and the Laughlin-like state, in agreement with results on the

sphere and using an alternative finite-width ansatz [75].

In Fig. 2.15 we plot the energy spectrum as a function of anisotropy. One notices

that the isotropy point (α = 1) does not bear any special importance – indeed, the

system appears more stable in the vicinity of it where it can lower its ground state

energy or increase the neutral gap. On either side of the isotropy point, however, the

system remains in the Laughlin universality class; e.g. at α = 0.8 and α = 1.3 the

maximum overlap with the Laughlin state is 75% and 80%, respectively (these over-

laps, although modest compared to the standards of n = 0 LL, can be adiabatically
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further increased by tuning the V1 pseudopotential). Note that the quoted maximum

overlaps are achieved by the Laughlin state with α′ somewhat different from α of the

Coulomb state, analogous to Fig.2.11.

The new aspect of Fig.2.15 is the transition to a compressible state with CDW

ordering for α ≤ 0.4. In that region of the parameter space, the system is very

sensitive to changes in the boundary condition – the sharp degeneracies seen in the

rectangular geometry in Fig.2.15 are not obvious in case of higher symmetry, square

or hexagonal, unit cell. As an additional diagnostic tool for the compressible states,

it is useful to consider a guiding-center structure factor,

S0(q) =
1

Nφ

∑
i,j

〈eiq·Rie−iq·Rj〉 − 〈eiq·Ri〉〈e−iq·Rj〉, (2.39)

where the expression for the Fourier components of the guiding-center density, ρ(q) =∑N
i e

iq·Ri , has been used. Note that S0(q) is normalized per flux quantum rather than

(conventional) per particle [77]. In Fig.2.16(a) we show the plot of S0(q) evaluated

for the state with α = 0.4 in Fig.2.15. Two sharp peaks in the response, similar to

those previously identified in n ≥ 2 LL states [78], are the hallmark of the CDW

order. They are to be contrasted with the smooth response in case of an anisotropic

state in the Laughlin universality class for α = 1.3, Fig.2.16(b).

As a second example in n = 1 LL, we consider half filling where the Moore-Read

Pfaffian state [20] is believed to be realized in some regions of the phase diagram.

This state has a non-Abelian nature, which is reflected in the non-trivial ground

state degeneracy [79] when subjected to periodic boundary conditions. For ν = 1/2,

the eigenstates of any translationally-invariant interaction possess a twofold center-

of-mass degeneracy [80]. On top of this, Moore-Read state has an additional threefold

degeneracy. Conventionally, the many-body Brillouin zone is defined for p = 1,q = 2

and has a size N2 (N being the GCD of Ne and Nφ), which forces the degenerate
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Figure 2.17: Spectrum of Ne = 14 electrons at ν = 1 + 1/2 with thickness w = 2lB,
as a function of anisotropy α. Energies are plotted relative to the ground state at
each α, and the unit cell has a rectangular shape with aspect ratio 3/4.

groundstates to belong to a Brillouin zone corner K = (N/2, N/2) and centers of the

sides, K = (0, N/2); (N/2, 0).

In Fig.2.17 we plot the spectrum of the Coulomb interaction as a function of

anisotropy (states belonging to K sectors where the Moore-Read state is realized,

are indicated). As earlier, we assume finite width of w = 2`B in order to instate

the Pfaffian correlations [82]. With two-body (Coulomb) interaction, therefore in

each finite system the Moore-Read state will mix with its particle-hole conjugate

pair, the anti-Pfaffian [81]. The mixing between the two states can be controlled by

including higher LLs [71]. For 0.5 ≤ α ≤ 1.3, we find a three-fold quasi-degenerate

multiplet, suggesting the presence of the Moore-Read state at the isotropy point and
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in the neighborhood of it. In finite systems, there is some splitting of the degeneracy

that might be reduced upon tuning the V1, V3 pseudopotentials. Also, upon tuning

the anisotropy around α = 1, there are crossings within the multiplet of degenerate

ground states without apparent closing of the gap. The region of the Moore-Read

state is defined by sharp transitions towards crystal phases. These transitions are

likely second order because they do not appear to involve any level crossing, but

rather lifting of the degeneracy within a ground-state multiplet.
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Chapter 3

Geometry and Linear Response in

FQHE

The interplay between topology and geometry in the FQHE is a fascinating subject

that is recently gaining more attention. Wen and Zee first studied the fact that the

finite-size QHE realized on spherical geometry does not have the same filling factor

as the one in the thermodynamic limit[66]. Instead the general relation between the

number of fluxes Nφ and the number of particles Ne at various incompressible phases

is given by

Nφ = ν−1Ne + S (3.1)

where ν is the filling factor in the thermodynamic limitNe →∞, and S is the so-called

“shift”, an O(1) correction thought to be distinctive for different topological phases.

For IQHE with ν = N , the shift S = N is positive. For FQHE, on the other hand,

the shift is negative. For Laughlin states at ν = 1/m the shift is given by S = 1−m.

Indeed, if we ignore S in Eq.(3.1) when performing numerical diagonalizations for the

FQHE, the spectrum will no longer be incompressible. For model Hamiltonians the
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null space (spanned by the zero energy states) is a degenerate manifold of quasihole

states.

The shift is topological because it is quantized and stable against perturbations

that preserve rotational symmetry, as long as the system remains gapped. Micro-

scopically, a particle with a non-zero spin accumulates a phase when going around

a loop in curved real space. This phase is analagous to the Aharonov-Bohm phase

of a charged particle moving in a magnetic field. In the QHE the wavefunction of a

particle on the sphere can always be viewed as a coherent state with the SU(2) sym-

metry of a spinor; its orbital angular momentum is effectively its spin. The coupling

of the angular momentum (either internal or orbital) to the curvature can be viewed

as a result of an additional effective magnetic field, therefore increasing/decreasing

the total number of available orbitals. This is the origin of the shift in the QHE. The

shift is quantized to integers or half-integers on the sphere because of this observation:

a spinning particle going around the equator can pick up the Gaussian curvature of

either the northern hemisphere or the southern hemisphere; the phase ambiguity will

be 4π times the shift, which has to be an integer multiple of 2π.

On a flat Hall surface, the quantity closely related to the shift is the Hall

viscosity[64, 65]. In this chapter, the microscopic origin of the Hall viscosity will

be presented. The Hall viscosity of the FQHE is characteristic of its topological

phase, which couples to the geometry of the FQH system resulting from both the

quantum fluctuation and the external perturbation. A thorough overview of the

linear response to a spatially varying electromagnetic perturbation is given in this

chapter, starting with the most general case where neither Galilean invariance nor

rotational invariance is assumed. The role of the Hall viscosity is highlighted to

illustrate the necessary condition for such a quantity to be measured experimentally.
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3.1 Hall Viscosity : A Formal Definition

The Hall viscosity arises in studies of the stress tensor σαβ in a continuum medium.

Any deformation of the continuum media from its equilibrium state generates stress,

and for a small deformation the stress tensor is a linear response to the strain uαβ ,

and the rate of strain u̇αβ . Denoting the displacement of the elements from their

equilibrium position to be uα(r, t), the strain tensor is given by

uαβ =
1

2

(
∂uα

∂rβ
+
∂uβ

∂rα

)
(3.2)

If at equilibrium the local metric is given by gab, the strain tensor gives the local

deformation of the metric to the lowest order: δgab = gacubc. The linear response of

the stress tensor gives

σαβ = λαγβδu
δ
γ − η

αγ
βδ u̇

δ
γ (3.3)

Here λαγβδ is the elastic modulus tensor and ηαγβδ is the viscosity tensor. The elastic

modulus tensor is symmetric under the following exchange: α ↔ β, γ ↔ δ, {αβ} ↔

{γδ}. The viscosity tensor is symmetric under the following exchange: α↔ β, γ ↔ δ.

For exchange between {αβ} ↔ {γδ} the viscosity tensor can be separated into the

symmetric and anti-symmetric part:

η̃αγβδ =
1

2

(
ηαγβδ + ηγαδβ

)
(3.4)

η̄αγβδ =
1

2

(
ηαγβδ − η

γα
δβ

)
(3.5)
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We can also separate out the traceless part of the strain tensor by writing uαβ =(
uαβ − 1

2
δαβu

µ
µ

)
+ 1

2
δαβu

µ
µ. Thus Eq.(3.3) can be rewritten as

σαβ = λ̃αγβδ

(
uαβ −

1

2
δαβu

µ
µ

)
+

1

2
λ̄αγβδ 2δαβu

µ
µ −

(
η̃αγβδ + η̄αγβδ

)
u̇δγ (3.6)

Here, λ̃αγβδ is the pure shear modulus, and λ̄αγβδ is the bulk modulus. Classically the

shear modulus vanishes for a fluid, which is made of point particles with no internal

structure. However as we shall see in Eq.(4.14) of Chapter 4, a uniform deformation

of the guiding center metric of the FQH fluid does cost energy. Phenomenologically

the FQH fluid is made of particle-flux composite with internal structures. The shear

modulus comes from the deformation of the shape of these composite particles, and

is purely a quantum effect. The shear of the cyclotron metric (i.e. the effective mass

tensor for Galilean invariant systems) induces LL mixing and also costs energy. In

the limit of strong magnetic field the LL mixing can be ignored; it is only in this sense

the IQH fluid has vanishing shear modulus.

The bulk modulus for a classical incompressible fluid is infinity. For the case

of the QHE, the gapped QH fluid can transmit force by gapless chiral edge modes,

but not through the bulk. A spatially varying force (i.e. induced by the gradient

of the electric field) induces a locally varying cyclotron/guiding center metric. This

will modulate density as will be shown in Eq.(3.72). The internal structure of the

coherent state/composite particles will again lead to finite bulk modulus which only

vanishes in the long wavelength limit (i.e. with a spatially uniform force).

For a dissipationless fluid, η̃αγβδ has to vanish. On the other hand, η̄αγβδ is non-zero

only if time-reversal symmetry is broken. This term is the so-called Hall viscosity.

For gapped quantum fluids with broken time-reversal symmetry, the Hall viscosity

dominates the response at low temperature.
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Quantum mechanically, the total stress tensor over the entire volumn, induced by

a uniform strain is given by

ˆ
dV σαβ = 〈ψ| ∂H

∂uαβ
|ψ〉 =

∂E

∂uαβ
+ Im〈∂αβψ|∂γδψ〉u̇γδ (3.7)

where H is the Hamiltonian and E is the energy of the eigenstate |ψ〉, with |∂αβψ〉 =

∂
∂uαβ
|ψ〉. Comparing Eq.(3.7) with Eq.(3.3), the Hall viscosity is the Berry curvature

when the Hamiltonian is adiabatically deformed. Thus Eq.(3.7) can be taken as the

quantum mechanical definition of the Hall viscosity[64].

3.2 The Geometry of the Hilbert Space

Let us look at a physical state |ψ〉 that depends on a set of external parameters

{µ, ν, · · · }. Notice all states in the Hilbert space has a U(1) gauge invariance so that

the physics is not affected by the following transformation

|ψ〉 → eiα|ψ〉 (3.8)

The phase α can now depend on the external parameters, but local gauge invariance

in the parameter space should be preserved; the set of |ψ(µ, ν, · · · )〉 form a U(1) fiber

bundle over the manifold of the external parameters. The gauge invariant derivative

of |ψ〉 in the parameter space is given by[77]

|Dµψ〉 = |∂µψ〉 − |ψ〉〈ψ|∂µψ〉 (3.9)
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This allows us to define the gauge invariant quantum metric Gµν and the Berry phase

Fµν :

〈Dµψ|Dνψ〉 =
1

2
(Gµν + iFµν) (3.10)

Gµν = 〈∂µψ|∂νψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉+ µ↔ ν (3.11)

iFµν = 〈∂µψ|∂νψ〉 − µ↔ ν (3.12)

If |ψ〉 is a non-degenerate eigenstate of a Hermitian operator (which could be the

Hamiltonian) h, there is useful way to express Eq.(3.10) in terms of h:

Gµν =
∑
n

〈ψ|∂µh|ψn〉〈ψn|∂νh|ψ〉+ µ↔ ν

(ε− εn)2 (3.13)

iFµν =
∑
n

〈ψ|∂µh|ψn〉〈ψn|∂νh|ψ〉 − µ↔ ν

(ε− εn)2 (3.14)

where the summation is over all states in the Hilbert space defined by h that are

orthogonal to |ψ〉, and ε, εn are eigenvalues of |ψ〉, |ψn〉 respectively. While Eq.(3.11)

and Eq.(3.12) suggest the Berry curvature and the quantum metric are both the

properties of a single state, Eq.(3.13) and Eq.(3.14) explicitly shows how the entire

Hilbert space is required for the two quantities to be well-defined. This is especially

important when the Hilbert space is physically truncated, and Eq.(3.13) and Eq.(3.14)

are the proper ways to calculate the Berry curvature and the quantum metric. These

two equations are also advantageous for numerical calculations for the quantum metric

and the Berry phase, because one does not have to worry about random phases of the

ground state obtained from exact diagonalizations at different points in the parameter

space.
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3.2.1 Single-Particle Case: Coherent States

The coherent states are defined by ladder operators with commutation relations

[a, a†] = 1. The family of coherent states can be parametrized by the “center of

mass” position in the phase space, i.e. a complex number k such that a|k〉 = k|k〉.

The definition of a coherent state in the phase space requires a metric, and explic-

itly let us have a = ω∗aR
a, a† = ωaR

a, where ωa is the usual complex vector with the

unimodular metric gab = ω∗aωb+ωaω
∗
b (Eq.(1.11)) and [Ra, Rb] = −iεab. One can iden-

tify Ra as the guiding center coordinates in quantum Hall systems with lB = 1, but

in general for any one-dimensional harmonic oscillators, Ra is the non-commutative

coordinates in the phase space. The auxillary Hamiltonian is given by

h = gab(z)(Ra − ka(z))(Rb − kb(z)) (3.15)

where z denotes the set of parameters upon which the Hamiltonian can vary adiabat-

ically, and a, b = 1, 2. Thus the unique ground state of h is a coherent state located

at k = ωak
a in the complex plane with its shape determined by gab(z). Defining

Λab = 1
2
{Ra, Rb}, the Lie algebra of translation and area-preserving deformation is

given by

[Ra, Rb] = −iεab (3.16)

[Ra,Λbc] = −iεabRc − iεacRb (3.17)

[Λab,Λcd] = −iεacΛbd − iεadΛbc − iεbdΛac − iεbcΛad (3.18)

To adiabatically drag a state around and deform it at the same time, we define the

following unitary operator

U(qa, αab) = eiqa(z)Ra+iαab(z)Λ
ab

(3.19)
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For infinitesmal parameters δqa and the symmetric tensor δαab we have

UhU † = h+ [iδqaR
a + iδαabΛ

ab, h]

= ḡab
(
Ra − k̄a

) (
Rb − k̄b

)
(3.20)

ḡab = gab + 2gbdε
cdδαac + 2gadε

cdδαbc (3.21)

k̄a = ka + εabδqb + 2εabδαbck
c (3.22)

Only linear orders of infinitesmal parameters are kept, and constants are dropped

since they are irrelevant. There is no one-to-one relationship between δαab and δgab

due to a physically insignificant phase (see Eq.(1.21) and the comments below), the

most convenient choice is to write δαab = 1
4
εbcg

cdδgda, where δgab is the infinitesmal

change of the metric. The infinitesmal translation of the coherent state is given by

δka = εabδqb + 2εabδαbck
c (3.23)

Going back to Eq.(3.13) and using ∂µh = [i∂µqaR
a + i∂µαabΛ

ab, h] = [Aµ, h] we have

Gµν = −〈ψ0(z)|{Aµ,Aν}|ψ0(z)〉+ 2〈ψ0(z)|Aµ|ψ0(z)〉〈ψ0(z)|Aν |ψ0(z)〉(3.24)

iFµν = −〈ψ0(z)|[Aµ,Aν ]|ψ0(z)〉 (3.25)

Defining Λ̃ab = 1
2
{Ra − ka, Rb − kb}, we have 〈ψ0(z)|Λ̃ab|ψ0(z)〉 = 〈Λ̃ab〉0 = sgab(z),

where s = 〈a†a〉+ 1
2

is the orbital spin in the phase space, and 〈Ra〉0 = ka. Identifying

the parameter space with the real space by qµ = εµνk
ν and with a bit of algebra one

obtains the following results

Gµν = 2sgµν +
1

16

(
s2 +

3

4

)(
gacgbd − εacεbd

)
∂µgab∂νgcd (3.26)

iFµν = −iεµν −
is

4
εacgbd∂µgab∂νgcd (3.27)

66



The orbital spin is related to the Hall viscosity η by η = s
4
. Time reversal symmetry

in the phase space is always broken, since momentum is odd under time-reversal.

For particles with a non-zero orbital spin, the quantum metric is well-defined and

proportional to the phase space metric, as shown by the first term of Eq(3.26). If the

phase space is not flat, there is an additional correction coming from the second term

of Eq.(3.26). The first term of Eq.(3.27) is the Aharanov-Bohm phase of dragging the

coherent state around in the phase space with an effective uniform magnetic field. For

the QHE where the phase space is mapped to the real space, the Aharanov-Bohm

phase results from the external magnetic field. Additional phase from the second

term of Eq.(3.27) comes from the coupling of the single particle orbital spin to the

U(1) curvature of the underlying geometry Bf = 1
8
εµνεacgbd∂µgab∂νgcd. Note unlike

the shift of a spinor, this U(1) curvature is only one part of the Gaussian curvature

given as follows:

K = Bf −
1

2
∂a∂bg

ab (3.28)

Eq.(3.28) is only valid for a unimodular metric gab, and is the curl of the spin

connection[66]. The second term of Eq.(3.27) gives an additional effective magnetic

field when the particle is dragged in a loop with a non-trivial geometry of the phase

space. For the QHE, the phase space is mapped to the real space, so the U(1) cur-

vature of the real space will modify the number of orbitals available for the single

particle state.

3.2.2 FQH State: Thermodynamic Limit and Edge Effect

The analysis for a single particle state can be generalized to a many-body ground

state as long as the ground state is non-degenerate. In this section we focus on the

ground state of the FQH Hamiltonian at filling factor ν on the disk geometry, the
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most natural geometry from an experimental point of view. To make the ground

state unique, one can impose a hard-wall boundary condition, whereby the Hilbert

space is restricted to a finite number of orbitals; the alternative is to impose a soft

confining potential. The latter is more realistic, but the analysis in the following does

not depend on the details of the Hamiltonian H for Ne particles. We only need to

assume the many-body ground state is non-degenerate.

The disk geometry has rotational invariance, thus H is parametrized by a metric

gab. To adiabatically vary the metric of the Hamiltonian, the generator for area-

preserving deformation is given by Λab = Λ̃ab + Λ̄ab, where Λ̃ab =
∑

i
1
2
{R̃a

i , R̃
b
i} only

depends on the cyclotron coordinates and Λ̄ab =
∑

i
1
2
{R̄a

i , R̄
b
i} is the guiding center

analog. The two parts can be evaluated separately.

Since the ground state |ψ0〉 only involves a single LL (which we label as the N th

LL), the cyclotron part can be easily evaluated. Its Berry curvature and quantum

metric contributions are given by

iF̃µν = ∂µαab∂ναcd〈ψ0|[Λ̃ab, Λ̃cd]|ψ0〉

=
iNes̃

4
εacgbd∂µgab∂νgcd (3.29)

G̃µν = ∂µαab∂ναcd

(
〈ψ0|{Λ̃ab, Λ̃cd}|ψ0〉 − 2〈ψ0|Λ̃ab|ψ0〉〈ψ0|Λ̃cd|ψ0〉

)
=

Ne

16

(
s̃2 +

3

4

)(
gacgbd − εacεbd

)
∂µgab∂νgcd (3.30)

Both are extensive quantities obtained by summing up single particle contributions,

where s̃ is the cyclotron spin. The evaluation of the guiding center contribution

requires more care. Replacing Λ̃ab with Λ̄ab in Eq.(3.29) and Eq.(3.30), the quantity

of interest we need to evaluate are:

PabcdA = 〈[Λ̄ab, Λ̄cd]〉0 =
∑
n>0

〈Λ̄ab〉0n〈Λ̄cd〉n0 − {ab} ↔ {cd} (3.31)

PabcdS =
1

2
〈{Λ̄ab, Λ̄cd}〉0 − 〈Λ̄ab〉0〈Λ̄cd〉0 =

∑
n>0

〈Λ̄ab〉0n〈Λ̄cd〉n0 + {ab} ↔ {cd} (3.32)
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where 〈O〉mn = 〈ψm|O|ψn〉, and |ψn〉 for n > 0 are excited states of H. Since H is

rotationally invariant, we can define bi = ωaR̄
a
i , b
†
i = ω∗aR̄

a
i , and |ψn〉 is an eigenstate

of
∑

i b
†
ibi, Eq.(3.31) and Eq.(3.32) can be written in a more illuminating form by

defining PabcdA = i
2

(
gacεbd + gbdεac

)
QA,PabcdS = 1

4

(
gacgbd + gadgbc − gabgcd

)
QS:

QA =
∑
ij

∑
n

〈b2
i 〉0n〈

(
b†j

)2

〉n0 − 〈
(
b†i

)2

〉0n〈b2
j〉n0 (3.33)

QS =
∑
ij

∑
n

〈b2
i 〉0n〈

(
b†j

)2

〉n0 + 〈
(
b†i

)2

〉0n〈b2
j〉n0 (3.34)

Physically, 1
Ne
QA is the guiding center Hall viscosity, and 1

Nφ
QS is the O(q4) coefficient

of the guiding center structure factor defined in Eq.(2.39). It is instructive to first

calculate Eq.(3.33) and Eq.(3.34) for a droplet of IQH fluid at filling factor ν = 1

with Ne = Nφ. The ground state |ψ0〉 is a Slater determinant of all single particle

orbitals given by

〈{zi}|ψ0〉 =
Ne∏
i<j

(zi − zj) e−
1
2

∑
i |zi|2 (3.35)

The second term of Eq.(3.33) and Eq.(3.34) vanishes. A simple calculation shows

QA = QS = 2N2
e , and both are super-extensive. We know that for the bulk of the

IQH fluids there is no guiding center degrees of freedom, so both the guiding center

spin and the guiding center structure factor should vanish. The super-extensive part is

coming from the edge of the droplet, where electrons in the outermost two orbitals can

hop into un-occupied orbitals. Note this process is forbidden on a compact geometry

like the sphere or the torus. Thus to calculate the bulk contributions to QA and QS

on the disk, one needs to exclude the edge modes when summing over the excitation

spectrum in Eq.(3.33) and Eq.(3.34); in particular, one cannot just rewrite Eq.(3.33)

as the ground state expectation value of a commutator, even in the thermodynamic

limit Ne →∞.
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For FQHE at ν = 1/m, the ground state is the Laughlin state. Without removing

the edge modes, QA = 1
2
mN2

e + s̄Ne, where s̄ = 1−m
2

is the coefficient of the extensive

part. The analytic expression for QS is unknown, but it also contains both the

extensive and super-extensive part. The removal of the edge modes of the FQH fluid

on the disk is a tricky issue. The first term of Eq.(3.33) and Eq.(3.34) couples the

ground state to the excited states in the momentum sector δL = 2, where the ground

state is taken as δL = 0. Since
∑

i(b
†
i )

2|ψ0〉 is another zero energy state, it only

coupled to the two-dimensional manifold of zero energy edge states (the counting of

the zero energy edge modes will be explained in Chapter 5). For finite size systems,

this will give both an extensive and a super-extensive part.

The second term of Eq.(3.33) and Eq.(3.34) couples the ground state to the highest

weight excited states in the momentum sector δL = −2 (by definition, the highest

weight state is annihilated by
∑

i bi). In this sector, there are bulk excitations, as

well as states containing both bulk and edge excitations (see Fig.2.1); because of

the presence of the latter, this term also contains both extensive and super-extensive

part. In the thermodynamic limit, the bulk and edge excitations are independent.

Projecting out the gapless edge excitations will remove the super-extensive part of

both Eq.(3.33) and Eq.(3.34). It is conjectured that for maximally chiral FQHE[62]

we have |QA| = |QS| and both are given by the guiding center Hall viscosity. This

implies in the thermodynamic limit the first term of Eq.(3.33) and Eq.(3.34) is purely

super-extensive. Numerical calculation on compact torus geometry was performed to

show the Hall viscosity is the extensive part of Eq.(3.33) when the system is large

enough[65], both for the Laughlin and Moore-Read state.

From now onwards we will only focus on the bulk properties of FQHE, so gapless

edge modes will be projected out whenever Eq.(3.33) and Eq.(3.34) are used. In
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particular, from Eq.(3.31) we have:

PabcdA = 〈[Λ̄ab, Λ̄cd]〉0 =
is̄Ne

2

(
gacεbd + gbdεac

)
(3.36)

which is the regularized result that will be used in the following section.

3.3 Hall Viscosity and Long Wavelength Limit of

the Linear Response

In this section, the formalism developed in previous sections will be applied to calcu-

late quantities that can be potentially measured experimentally. The linear response

of the quantum Hall fluid to a uniform electric field is known to be a topological index

equal to the filling factor. It has been first noticed by Hoyos and Son [90] that the

Hall viscosity constitutes the universal part of the long wavelength corrections to the

Hall conductivity, when a spatially varying electric field is present. The result was

derived by requiring the effective Chern-Simons (CS) theory for integer and fractional

quantum Hall fluids to satisfy diffeomorphism invariance, with the implicit assump-

tion of Galilean and rotational invariance. Later on, a Kubo formula for the Hall

viscosity is developed by Bradlyn et al.[91], from which the long wavelength limit of

the Hall conductivity can be derived for Galilean invariant IQH fluids.

An intriguing fact of the above analysis is that the only FQH contribution to the

O(q2) part of the Hall conductivity is the guiding center Hall viscosity, a topological

quantity independent of the details of the interaction. The intra-Landau level dy-

namics, on the other hand, does not play a significant role, as long as the system is

gapped. This is certainly not explicit from the effective Chern-Simons theory, in which

the Galilean invariance is assumed even for the FQHE. Galilean invariance generally

requires quadratic dispersion of the elementary excitations. Numerical evidences(See
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Chapter 2) clearly indicate no explicit Galilean invariance of the intra-Landau level

dynamics. More importantly, the argument in [90] does not work if no Galilean

invariance is assumed even for the IQH fluids.

In this section, a general account of the various response functions in quantum

Hall fluids is presented, in which Galilean invariance and rotational invariance are

only treated as special cases. In this way, the roles played by different metrics in the

systems are made explicit, and contributions from the intra-Landau level dynamics

can also be separated explicitly. The response functions allow us to compute the

linear response to a spatially varying external electromagnetic perturbation, which is

of experimental interest. On a more formal ground, we can also compute the density

response to a spatially varying deformation of the effective mass tensor. Through-

out our calculation the limit of strong magnetic field is taken. When the Galilean

or the rotational invariance is lacking, the corrections to the transport coefficients

are important when comparing the theory to experiments, where situations are al-

most always less ideal. Conceptually, it is important to understand that even though

the Hall conductivity with a uniform electric field is robust from topological argu-

ments (requiring no special symmetry), for the Hall viscosity, the relationship to the

experiemental measurement is much less universal. In addition, while rotational in-

variant perturbations do not alter the Hall viscosity as long as the gap is not closed,

the quantization of the Hall viscosity to rational values is generally destroyed once

rotational invariance is broken by the perturbation.

3.3.1 Model and Algebra

The full Hamiltonian of the many-body system in this section is given by

H = h0 + V + δV (3.37)
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where the single particle Hamiltonian h0 only depends on R̃a
i and satisfies inversion

symmetry. The most general form is given by Eq(1.23). V is the translationally

invariant k-body interaction term for k ≥ 2. δV is the external perturbation. The

density operator is given by J0
q =

∑
i e
iqarai . The cyclotron part of the density operator

is given by J̃0
q =

∑
i e
iqaR̃ai , while the guiding center part is given by J̄0

q =
∑

i e
iqaRai

The gauge invariant current density operator Ja(x) is defined as

δH = −
ˆ
d2xJa(x)δAa(x). (3.38)

where a = 1, 2 and Aa is the external vector potential. Up to O(q2) the Fourier

component of the current density operator is given by

Jaq =
1

Nφ

∑
i

eiqaR
a
i e

i
2
qaR̃ai v̂ai (q)e

i
2
qaR̃ai (3.39)

v̂ai (q) = i[H, rai ]−
iqbqc
24

[[[H, rai ], r
b
i ], r

c
i ] +O(q4) (3.40)

We can divide the current into the longitudinal and transverse part:

Jaq = i
(
[h0, J

a
q,‖] + εabqbJq,⊥

)
(3.41)

The divergence of the longitudinal part gives the electron density: qaJ
a
q,‖ = J0

q , while

the transverse part is divergenceless. Given that the energy scale of h0 is much larger

than the energy scale of V , it is also conceptually useful to separate the current density

operator into the cyclotron (J̃aq ) and guiding center (J̄aq ) part by writing h0 = H0−V

and Jaq = J̃aq + J̄aq with

J̃aq = i
(
[H0, J

a
q,‖] + εabqbJq,⊥

)
(3.42)

J̄aq = −i[V, Jaq,‖] (3.43)
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Here J̃aq contains the energy scale on the order of LL spacing, and one has to be

careful not to ignore the LL mixing induced by many-body interactions. We will also

see in later sections that for a rotationally invariant h0, J̄aq is well-defined within the

projected Hilbert space, and is a function of only the guiding center coordinates.

Treating δV as a small perturbation up to the first order, the ground state (of H)

expectation value of Jaq is as follows

(
Jaq , δV−q

)
0
≡
∑
n>0

〈Jaq 〉0n〈δV−q〉n0 + 〈δV−q〉0n〈Jaq 〉n0

ε0 − εn
(3.44)

and 〈A〉mn = 〈ψm|A|ψn〉, where |ψm〉 are eigenstates of H0 with unperturbed eigen-

values εn. δVq is the Fourier component of δV , with translational invariance imposed.

One has to include counter-terms to impose gauge invariance if [rai , δV ] 6= 0. This

gives an additional term for the current density operator:

δJaq =
∑
i

eiqaR
a
i e

i
2
qaR̃ai δ̂vai (q)e

i
2
qaR̃ai (3.45)

δv̂ai (q) = i[δV, rai ]−
iqbqc
24

[[[δV, rai ], r
b
i ], r

c
i ] +O(q4) (3.46)

While the counter-term is important, one can always ignore it first and deal with

it at the end of the calculation, where gauge invariance can be restored by general

argument or explicit subtractions. Leaving out the counter-term, Eq.(3.44) gives:

(
Jaq , δV−q

)
0

= i〈[Jaq,‖, δV−q]〉0 + iεabqb (Jq,⊥, δV−q)0 − i
(
[V, Jaq,‖], δV−q

)
0

(3.47)

where 〈· · · 〉0 is the expectation value of the ground state of H0. Thus the first term

of Eq.(3.47) only depends on the ground state. The third term only depends on V ,

so we can just evaluate it with the projected Hilbert space defined in Eq.(1.29), at

the cost of introducing an error of O(λ0), which we can ignore in the limit of large

magnetic field.

74



It is also useful to define the change of the operator O with respect to the rescaling

of the magnetic field to be dO. For single particle Hamiltonian h0 that only depends

on the cyclotron coordinates, and the projected interaction Hamiltonian V̄ that only

depends on the guiding center coordinates, we have

dh0 = − l
3
B

2

∑
i

∂lBh0(l−1
B R̃a

i ) =
i

4
εab
∑
i

{R̃a
i , [R̃

b
i , h0]} (3.48)

dV̄ = − l
3
B

2

∑
i

∂lB V̄ (l−1
B Ra

i ) =
i

4
εab
∑
i

{Ra
i , [R

b
i , h0]} (3.49)

For the un-projected interaction V that depends on rai , one can define a dilatation

operator D = iεab
∑

iR
a
i R̃

b
i , and we have:

dV = − l
3
B

2

∑
i

∂lBV (l−1
B rai ) =

1

2
[D, V ] (3.50)

3.3.2 Response Functions

The relevant response functions considered here are charge-charge, charge-current

and current-current response functions, defined as χµνq =
(
Jµq , J

ν
−q
)

0
(following the

notations of Eq.(3.44)), where µ, ν = 0, 1, 2. By gauge invariance we have

χ00
q =

1

A

(
J0
q , J

0
−q
)

0
= O(q2) (3.51)

χa0
q =

1

A

(
Jaq , J

0
−q
)

0
= iσH(q)εabqb (3.52)

χabq =
1

A

(
Jaq , J

b
−q
)

0
= χm(q)εacεbdqcqd (3.53)

where A is the area of the Hall surface. Here σH is the local Hall conductivity

which is now q dependent, while χm is the “magnetic Hall conductivity”, defined as

the coefficient of the current response to the local curl of the magnetic field. From

Maxwell’s equation χm(0) is the gradient of the local magnetization density. One

would like to evaluate these response functions in the long wavelength limit. The
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incompressibility of the FQHE ensures[49]

〈ψ̄0|J̄0
q |ψ̄n〉 = −1

2
qaqb〈ψ̄0|Λab|ψ̄n〉+O(q3) (3.54)

On the other hand, the cyclotron coordinates are bounded operators as the ex-

citations to higher LLs are energetically suppressed. Similarly defining Λ̃a1a2···an
i =

1
n!

∑
i Sa1···anR̃

a1
i · · · R̃

an
i , we have

Jaq,‖ =
∑
i

eiqaR
a
i

(
R̃a
i +

i

2
qbΛ̃

ab
i −

1

6
qbqcΛ̃

abc
i

)
+O(q3) (3.55)

Jq,⊥ =
∑
i

eiqaR
a
i

(
dhi +

i

3
qa{R̃a

i , dhi}
)

+O(q3) (3.56)

J̄aq = −1

2

∑
i

[V̄ , qbΛ
ab
i ] +

iεabqb
2

[V,D] +O(q2) (3.57)

The average angular momentum per particle can be calculated from the ground

state: 1
A

∑
i〈Λ̃ab

i 〉0 = nes̃
2
g̃ab, 1

A

∑
i〈Λab

i 〉0 = nes̄
2
ḡab, where ne = Ne/A is the electron

density and Ne is the number of electrons; g̃ab, ḡab are the cyclotron and guiding

center metrics. s̃, s̄ are the cyclotron and guiding center spin, which are related to

the cyclotron and guiding center part of the Hall viscosity by η̃ = nes̃/4, η̄ = nes̄/4[90]

respectively. From Eq.(3.55) to Eq.(3.57) we have

χa0
q = iνεabqb

(
1− qcqd

(
η̃

3ne
g̃cd +

η̄

ne
ḡcd
))
− iεabqbqcqd

2A

(
dh0,

∑
i

Λ̃cd
i + Λcd

i

)
0

+
iεabqbqcqd

3A

∑
ij

(
{R̃c

i , dh0}, R̃d
j

)
0
− iεabqbqcqd

4A

∑
i

(
[V,D],Λcd

i

)
0

+O(q5) (3.58)

χab
q =

1

A
εacεbdqcqd

(
(dh0, dh0)0 + 〈d2h0 + dh0〉0

)
+O(q4) (3.59)

While the current-current response function is relatively simple due to gauge in-

variance, the charge-current response requires a bit of explanation. The first line of

Eq.(3.58) is universal, though the Hall viscosities do not have to be quantized in any

way when rotational invariance is absent. The second line shows the Hall viscosities,

cyclotron metric and guiding center metric are renormalized by dh0. This part actu-
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ally vanishes when h0 has rotational invariance, as we will see in the next section. The

third line is the non-universal part that depends on the LL index, and the last line is

the contribution from the intra-Landau level dynamics. Eq.(3.58) and Eq.(3.59) are

the most general expressions for response functions.

To make explicit connection to possible transport experiments, a small periodic

perturbation of the external electrostatic potential with wavelength q is given by

δVq = λ
2

(
J0
q + J0

−q
)
, where λ is a small parameter. Thus the linear current and

density response is given by

δJµq =
λ

2
χµ0
q (3.60)

For a periodic external perturbation of the magnetic field δB = εabλaqb sin qar
a in-

duced by the change in the vector potential δAa = λa cos qar
a, where λa are small, we

have δVq = − e
4
λa
(
Jaq + Ja−q

)
. The linear current and density response is given by

δJµq = −e
4
λaχ

µa
q (3.61)

Using Eq.(3.52) and Eq.(3.53), the explicit expressions for the coefficients of the Hall

conductivity and magnetic Hall conductivity can be extracted from Eq.(3.60) and

Eq.(3.61):

σH(q) = ν

(
1− qcqd

(
η̃

3ne
g̃cd +

η̄

ne
ḡcd
))
− qaqb

2A

(
dh0,

∑
i

Λ̃ab
i + Λab

i

)
0

+
qaqb
3A

∑
ij

(
{R̃a

i , dh0}, R̃b
j

)
0
− qaqb

4A

∑
i

(
[V,D],Λab

i

)
0

+O(q4) (3.62)

χm(q) =
1

A
〈d2h0 + dh0〉0 +

1

A
(dh0, dh0)0 +O(q2) (3.63)

In this most general case, the Hall conductivity up to O(q2) does depend on the

intra-Landau level dynamics, as can be seen in the last term of Eq.(3.62). On the
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other hand, in the long wavelength limit the magnetic Hall conductivity is completely

independent of the details of the interaction.

3.3.3 Rotationally Invariant h0

We now specialize to the case where the inversion symmetric h0 contains only one

metric. In this case the cyclotron angular momentum operator is given by L̃z =

1
2
gab
∑

i R̃
a
i R̃

b
i and we have[h0, L̃z] = 0. Such rotationally invariant h0 with metric gab

can be generally expressed as

h0 =
∑
i

∞∑
n=1

cn
(2n)!l2nB

(
gabR̃

a
i R̃

b
i

)2n

(3.64)

The energies of LLs depend on the expansion coefficients cn and without Galilean

invariance, they are not evenly spaced. The LL wavefunctions, on the other hand,

does not depend on cn. They are well-defined by ladder operators ai = l−1
B ωaR̃

a
i with

[ai, a
†
j] = δij, where ωa is a complex vector given in Eq.(1.11). With a little algebra

one can show that the guiding center current density operator in Eq.(3.43) can be

written as

J̄aq = [V̄ , J̄aq,‖] +
i

4
εabqbJ̄⊥ (3.65)

J̄aq,‖ = −1

2
qb
∑
i

Λab
i (3.66)

J̄⊥ =
∑
i

gab[R
a
i , [R

b
i , V̄ ]] + 4dV̄ (3.67)

where we define the longitudinal and transverse part of the current operator in

Eq.(3.66) and Eq.(3.67) respectively. Note Eq.(3.65) is defined entirely in terms of

the projected operators within the projected Hilbert space.
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From Eq.(3.64) we also have [dh0, h0] = 0, which greatly simplifies the transverse

part of the current. In particular, the magnetic Hall conductivity is given by

χm(q) =
1

A
〈d2h0 + dh0〉0 +O(q2) (3.68)

which is just the spatial derivative of the magnetization density. The expression for

the Hall conductivity is a bit more complicated:

σH(q) = ν

(
1− qcqd

(
η̃

3ne
gcd +

η̄

ne
ḡcd +

1

8Ne

∑
i

(
J̄⊥,Λ

cd
i

)
0

))

− 1

3A
gcdqcqd

∑
i

(
ni ·

(dh)ni + (dh)ni−1

εni − εni−1

+ (ni + 1) · (dh)ni+1 + (dh)ni
εni − εni+1

)
(3.69)

Here, ni is the LL index of the ith electron, and (dh)ni = 〈ni|dh0|ni〉. Without Galilean

invariance the contribution of each LL to the Hall conductivity is different.

It is also interesting to look at the linear response to small deformation of the

metric gab → gab(r) = gab + δgab(r) in h0. A periodic deformation of the met-

ric is given by δgab(r) = δαab cos qar
a, and the perturbation is given by δVq =

i
4
δαbcgadε

ab
(
∂cq̃J

d
q − ∂cq̃Jd−q

)
, where ∂cq̃ is the q derivative that does not differentiate

eiqaR
a
, i.e. it only takes the derivative of the cyclotron momentum. The density

response is given by

δJ0
q =

η̃

12ne
δαab

(
εacεbd − gacgbd

)
qcqd +

i

16A
δαabgcdε

acqeqf
∑
i

(
Λef
i , [R

b
i , [R

d
i , V ]]

)
0

− 1

12A
δαabqcqd

(
gabgcd + gacgbd

)∑
i

(
ni ·

(dh)ni
+ (dh)ni−1

εni
− εni−1

+ (ni + 1) · (dh)ni+1 + (dh)ni

εni
− εni+1

)
(3.70)

Interestingly, if we assume that the deformation of the metric preserves area, e.g.

det g(r) = 1, then up to lowest order in δgab(r), the second term of Eq.(3.70), or the

guiding center contribution, vanishes. Thus the intra-Landau level dynamics does not

contribute, regardless of whether or not the system has full rotational symmetry. It
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is more useful to look at the response in the real space, which gives us

δJ0(r) = −

(
η̃

3ne
+

1

6A

∑
i

(
ni ·

(dh)ni
+ (dh)ni−1

εni − εni−1
+ (ni + 1) · (dh)ni+1 + (dh)ni

εni − εni+1

))
∂a∂bδg

ab(r)

(3.71)

It is well-known that the Gaussian curvature of a spatially varying unimodular

metric is given by K = −1
2
∂a∂bg

ab(r) up to the linear order in metric deformation,

thus the induced electron density is locally proportional to the Gaussian curvature

for small metric deformation. It is instructive to look at the case where h0 is Galilean

invariant, and Eq.(3.71) simplifies to a nice formula

δJ0(r) =
2η̃

ne
K +O(δg2) (3.72)

Galilean invariance plays an important role in the universality of the coefficient in

front of the Gaussian curvature, which is the cyclotron Hall viscosity. It is also

interesting to see if the guiding center density also has a similar relationship with the

Gaussian curvature of the guiding center metric. While analytical calculation seems

intractable, the issue can be explored numerically and is part of the on-going research.

3.3.4 Galilean Invariant h0

We can impose Galilean invariance on h0 by keeping just the quadratic term in the

expansion of Eq.(3.64). In this case we can define the cyclotron frequency as ωc =

eB/mc with an effective mass m. With Galilean metric gab we have

h0 =
∑
i

1

2ml2B
gabR̃

a
i R̃

b
i (3.73)
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In this special case there is a nice relationship between σH and χm:

σH(q) = ν

(
1−

(
ml2B

χm(0)

ν
gab − η̃

ne
gab − η̄

ne
ḡab
)
qaqb

)
+

1

4A

(
J̄⊥, J̄

0
−q
)

0
+O(q4)

(3.74)

Note the third term in Eq.(3.74) only depends on the intra-Landau level dynamics,

and without further symmetry is non-vanishing even at the order O(q2)

(
J̄⊥, J̄

0
−q
)

0
= −1

2
qaqb

∑
i

(
J̄⊥,Λ

ab
i

)
+O(q4) (3.75)

The transverse part of the guiding center current operator renormalizes the guid-

ing center spin in a non-universal way depending on the details of the interac-

tion. However if we impose full rotational symmetry so that ḡab = gab, the interac-

tion Hamiltonian V̄ commutes with the guiding center angular momentum operator

L̄z = 1
2
gab
∑

i Λ
ab
i =

∑
i

(
b†ibi + 1

2

)
, where bi = l−1

B ω∗aR
a
i . From Eq.(3.67) it is easy to

see that [J̄⊥, L̄z] = 0, so J̄⊥ only connects the ground state to excited states in the

same L̄z sector. On the other hand we have

∑
i

Λab
i = gabL̄z +

∑
i

(
ωaωbbibi + ωa∗ωb∗b†ib

†
i

)
(3.76)

As the ground state is an eigenstate of L̄z,
∑

i Λ
ab
i only connects the ground state to

excite states |ψn〉 of a different L̄z sector (with 〈ψn|L̄z|ψn〉n = ±2). Thus with full

rotational invariance, Eq.(3.75) vanishes up to O(q2) and Eq.(3.74) is reduced to the

same expression first obtained by Hoyos and Son[90].

Numerical tests [65] from Laughlin model wavefunctions have confirmed that the

guiding center Hall viscosity at filling factor ν = 1/m is η̄ = 1. The same pa-

per presents a few arguments to show that rotational invariant perturbation of the

Hamiltonian does not change the Hall viscosity. To complement those arguments,
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we can easily see from Eq.(3.76) that as long as the perturbation δV does not break

rotational invariance, i.e. [L̄z, δV ] = 0, it will not change the ground state expecta-

tion value of
∑

i Λ
ab
i , up to any order of perturbation. This argument only works if

the perturbation theory is applicable, i.e. the perburtation does not close the gap

of the FQH state. In particular for Laughlin states, the guiding center spin will not

change when we adiabatically move from the model Hamiltonian with pseudopoten-

tial interactions to a physically realistic Coulomb interaction, if rotational invariance

is preserved.

3.4 Summary

In this chapter, the geometry aspect of the FQHE is illustrated with both the Berry

phase and the quantum metric induced by area-preserving deformation of the metric

characterizing the quantum fluid. Both single particle wavefunctions and strongly

correlated many-body wavefunctions are considered. For many-body wavefunctions

that describe a droplet of FQH fluids, the edge contribution has to be carefully re-

moved in order to obtain the bulk contributions. The bulk contribution to the Berry

phase leads to an important quantity called the “ guiding center Hall viscosity”, which

for rotationally invariant systems is a topological invariant constituting the universal

part of various eletromagnetic linear responses of the QH fluids in the long wavelength

limit.

The geometric aspect of the FQHE will also be reflected in the next two Chapters,

where we will focus on the collective neutral excitations. For the topological phase

of the FQHE to be stabilized, the system has to be incompressible. We shall see

the bulk neutral gap in the long wavelength limit, or the so-called “quadrupole gap”,

is inversely proportional to the guiding center Hall viscosity, and is proportional to

the stiffness of the FQH droplet against the guiding center metric deformation. In
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particular as a sanity check, when the guiding center Hall viscosity approaches zero

(i.e. for IQHE), the intra-Landau level dynamics is frozen by Landau level projections,

and the gap of the neutral excitations goes to infinity.
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Chapter 4

Model Wavefunctions for the

Neutral Excitations

The neutral excitations, or the collective modes of the FQHE defines the incompress-

ibility of the bulk of the topological phase. Experimentally these neutral excitations

were explored by several groups[33, 34, 36, 37]). They can be probed numerically by

exact diagonalizations on geometries without boundary (e.g. sphere or torus geom-

etry, see Fig.(2.3) and Fig.(2.4)). For the Laughlin state, there is only one branch

of the low-lying neutral excitations: the magneto-roton mode, first studied with the

single mode approximation (SMA) within the projected Hilbert space. Starting from

the Laughlin ground state |ψ0〉, the SMA model wavefunctions are constructed as

density wave excitations:

ψq〉 = δρ̄q|ψ0〉 (4.1)

where δρ̄q = ρ̄q − 〈ρq〉0 is the regularized guiding center density operator satisfying

the GMP algebra in Eq.(1.10). In this way, the model wavefunctions are orthogonal

to the translationally invariant ground state 〈ψ0|ψq〉 = 0, and the variational energy
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is given by

εq =
〈ψ0|δρ̄−qHδρ̄q|ψ0〉
〈ψ0|δρ̄−qδρ̄q|ψ0〉

=

´∞
0
dωωS(ω, q)´∞

0
dωS(ω, q)

=
1

S(q)

ˆ
d2q′l2B
(2π)2

Vq′ (S(q′ + q) + S(q′ − q)− 2S(q′))

(
2 sin

q × q′l2B
2

)2

(4.2)

where in the first line the variational energy is given in terms of the ground state

dynamical structure factor S(ω, q), thus εq can be thought of as the average energy

of the excitations that couple to the ground state via density fluctuations. In the

second line, the two-body interaction Vq is shown explicitly, and S(q) is the ground

state static structure factor. Thus εq depends on S(q′) for the entire range of q′, even

in the limit of q → 0. Details of the SMA can be found in [49].

The SMA model wavefunctions give an upper bound for the energies of the neutral

excitations. However, they are only reasonably good up to the roton-minimum, at

the momentum which is of order l−1
B (see Fig.(2.3)). For the rest of the section we will

try to understand why SMA fails, and present a numerical scheme that constructs the

model wavefunctions of the neutral excitations for the entire range of the momenta,

based on the formalism of Jack polynomials and clustering properties of many-body

wavefunctions.

4.1 Jack Polynomials and Clustering Properties

We first review some basic properties of the Jack polynomials, which are members

of the vector space spanned by symmetric monomials. Each symmetric monomial is

characterized by two numbers: number of variables Ne, and the total degree N, which

is the sum of the powers of all variables in the monomial.

The two numbers do not uniquely determine the monomial; we also need to specify

how the total degree is distributed among different variables. There are two schemes
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to represent each monomial with a string of non-negative integers. In the first scheme,

the monomial is represented by [λ1, λ2 · · · ], 0 ≤ λi,
∑

i λi = Ne, which is called the

“occupation basis”. The string is a partition of Ne; λi gives the number of variables

with power (i − 1) in the monomial. In relation to FQH wavefunctions on the disk,

where the variables are zj with j = 1, 2, · · ·Ne, the subscript of λi is the orbital index.

Thus the wavefunction for the ith orbital is given by zi−1. For example, [2,0,0,1] gives

z3
1 + z3

2 + z3
3 , [1,1,0,1] gives z1(z3

2 + z3
3) + z2(z3

1 + z3
3) + z3(z3

1 + z3
2). We can thus label

each monomial by its corresponding partition λ so that all monomials are denoted as

ms
λ.

In the second scheme, the monomial is represented by [n1, n2 · · ·nNe ] =

S
(
zn1

1 zn2
2 · · · z

nNe
Ne

)
, and now the subscript of ni is the particle index, same as

the subscript of zi; but the symmetrization S is only over the particle indices of zi. In

this chapter, the monomials will be represented in the first scheme unless otherwise

stated.

Within the vector space of symmetric monomials there is a non-hermitian Laplace-

Beltrami operator:

HLB = K + V

K =
∑
i

(zi
∂

∂zi
)2

V =
1

α

∑
i<j

zi + zj
zi − zj

(zi
∂

∂zi
− zj

∂

∂zj
)

The operator conserves Ne and N. The kinetic term K is diagonal in the monomial

basis, while V ms
λ =

∑
µ c

α
λµm

s
µ. Partitions λ, µ have the same total degree, but µ is

squeezed from, or dominated by λ. Explicitly by squeezing we mean

µ = [µ1, µ2, · · · ] = [λ1, · · · , λi − 1, · · · , λi+n + 1, · · · , λj−n + 1, · · · , λj − 1] (4.3)
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for 2n < j − i and an integer n > 0. We write µ � λ and mathematically there is a

dominance rule that µ � λ if and only if
∑

i µi ≥
∑

i λi for all i. The set of basis mµ

with µ � λ is a partially ordered set. The property of K and V allows us to recursively

construct the eigenvectors of HLB in the monomial basis. These eigenvectors are

called Jack polynomials (or Jacks). We denote such polynomials as Jαλ (z1, · · · zNe),

and its expansion in the monomial basis is given by Jαλ = ms
λ +

∑
κ<λ c

α
λκm

s
κ, where

the coefficient of ms
λ is normalized to one, and all ms

κ are dominated by ms
λ: κ � λ.

The coefficients of expansion are given by

cαλκ =
2/α

ρλ(α)− ρκ(α)

∑
κ≤µ<λ

((κi + t)− (κj − t))cαµκ

where κ = [κ1, · · ·κi, · · · , κj, · · · ], µ = [µ1, · · ·µi + t, · · · , µj − t, · · · ], and

ρλ(α) =
∑
i

λi(λi − 1− 2

α
(i− 1))

Thus after fixing Ne and N , the Jack polynomial is characterized by a root configu-

ration λ, and it consists of only basis squeezed from λ, with coefficients determined

by α through Eq.(4.4). In the limit α→ 0 the Jack polynomials reduce to the mono-

mials of the root configuration: limα→0 J
α
λ = ms

λ, which are orthogonal to each other.

When α is non-zero, the Jack polynomials deform into the squeezed basis, and they

are in general not orthogonal anymore (Note Eq.(4.3) is not Hermitian).

The coefficients cαλκ are highly structured. It can be shown from the recursion

relation that it has a product rule[93]. While in principle α can be complex, here we

only consider the case when α is real. When α is positive, the coefficients of Jacks

are well-defined. On the other hand, the wavefunctions for FQHE are all constructed

with negative α. When α is negative, it is not always true that all of the coefficients

of expansions are well-defined.
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It was shown in[59] that for negative rational α = −k+1
r−1

, with k, r integers and

(k + 1, r − 1) coprime, Jαλ is well-defined if λ is (k, r,N) admissible: there are no more

than k “particles” in r consecutive “orbitals” in the root configuration. These Jack

polynomials form a basis for the space of symmetric polynomials with the clustering

property that it vanishes when k + 1 variables coincide.

The criterion shown above does not exhaust all well-defined Jack polynomials for

negative α[60]. Define a partition [n00s(r−1)n(λk,r)] to be (k,r,s,N) admissible when

n0 = (k + 1)s − 1 and n(λk,r) is (k, r,N − n0) admissible. Denote the partition

by λk,r,s and Jαλk,r,s is well-defined. Moreover, Jαλk,r,s satisfies HW condition when

λk,r = [k0r−1k0r−1k · · · ].

This new set of Jack polynomials corresponds to symmetric polynomials with new

clustering properties reflected in the root configuration (the result is not proven but

checked numerically):

1) The polynomial vanishes when s clusters of k + 1 particles are formed, but

remains finite when only s− 1 or fewer clusters of k + 1 particles are formed.

2) The polynomial is finite when (k + 1)s − 1 particles are at the same point

(but vanishes for more particles because of the first clustering property). Letting

z1 = z2 · · · z(k+1)s−1 = Z, we have Jαλk,r,s ∼
∏N

i=s(k+1)(Z − zi)(r−1)s+1.

Unlike (k,r,N) admissible states, (k,r,s,N) states do not span the space of sym-

metric polynomials with the above clustering properties.

Before ending this short introduction of Jack polynomials, one should note that

the Jack polynomials are symmetric with the particle indices, which is appropriate for

bosonic FQHE wavefunctions. To obtain fermionic FQHE wavefunctions, one uses the

fact that for any symmetric monomial ms
λ(z1, · · · , zn), there is a one-to-one mapping

to an antisymmetric monomial ma
λ(z1, · · · , zn) =

∏n
i<j(zi − zj)m

s
λ(z1, · · · , zn): the

multiplication of the Vandermonde (given by
∏

i<j(zi − zj)) is all that is needed.

Thus throughout this chapter, an “antisymmetric Jack polynomial” is always obtained
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from multiplying the Vandermonde determinant to the symmetric Jack polynomial,

parametrized by the same α.

4.2 Numerical Construction of Neutral Excita-

tions

In this section, we only treat fermionic FQHE wavefunctions, while the correspond-

ing bosonic FQHE wavefunctions can be trivially obtained by dividing the factor

of the Vandermonde determinant. The wavefunctions will be expanded in terms of

the occupation basis. A typical occupation basis is a string of binary numbers like

[1001001001], where λi now can only be either 1 (occupied) or 0 (unoccupied). The

total degree N now corresponds to the total angular momentum of the wavefunction

(where the vaccum is set to have zero angular momentum). For example, a state

|1001001001〉 with four particles has a total angular momentum 0 + 3 + 6 + 9 = 18.

An example of the mapping between the monomial wavefunctions and occupation

basis is shown as follows:

z3
i − z3

2 ∼ |1001〉, z2
1z2 − z1z

2
2 ∼ |0110〉 (4.4)

For the ground state and quasihole states of the Read-Rezayi series (including the

Laughlin and Moore-Read states), the model wavefunctions are Jack polynomials.

Quasielectron states, on the other hand, are more complicated [60] because they

contain local defects where electrons are forced to get closer to each other than allowed

in the ground state. The same difficulty arises in neutral excitations which consist

of quasielectron-quasihole pairs. However, we do assume the excitations are local

defects of the ground state root configuration, and each model wavefunction for the

neutral excitations can be expanded into its root configuration and the corresponding
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squeezed basis. This defines the Hilbert space of each model wavefunction; the next

step is to determine the coefficients of these squeezed basis.

4.2.1 Magneto-roton Mode at ν = 1/3

The explicit set of root configurations for the magneto-roton mode is shown as follows:

1.1.00
˚

0
˚

01001001001001 · · ·L = 2

1.1.00
˚

0100
˚

01001001001 · · ·L = 3

1.1.00
˚

0100100
˚

01001001 · · ·L = 4

1.1.00
˚

0100100100
˚

01001 · · ·L = 5

1.1.00
˚

0100100100100
˚

01 · · ·L = 6

... (4.5)

The states are labeled by their total angular momentum L on the sphere, though

once the single particle normalization is removed the wavefunctions are suitable for

any genus-0 manifold (e.g. sphere/disk/cylinder[63]). In Eq.(4.5) the black dot

schematically indicates the position of a quasielectron, while the white dot that of a

quasihole. To determine the position of a quasiparticle, one can look at any three

consecutive orbitals in the root configurations above, and count the number of elec-

trons to see if it violates the ground state clustering property. In this particular

case, if there is more (less) than one electron in every three consecutive orbitals, we

have a quasielectron (quasihole), which is located right below the middle of the three

consecutive orbitals.

From the root configuration we can see that in the long wavelength limit, i.e. when

L is small, the quasihole merges with the quasielectrons at the north pole (to the left

of the root configuration), creating a quadrupole excitation. Note the ground state
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is in the sector of L = 0, and the neutral excitations start at L = 2, thus in the long

wavelength limit the quadrupole excitation can be viewed as a “spin-2 graviton”.

Due to rotational invariance on the sphere, we impose the highest weight condition

on the wavefunctions |ψLλ 〉 to single out from the degenerate states the one with

quasiparticles piled up at the north pole. On the disk this also means picking out a

state with no center-of-mass rotation:

L+|ψLλ 〉 = 0,

|ψLλ 〉 =
∑
µ�λ

aµmµ (4.6)

where mµ is the monomial with partition µ [59]. The summation is over all partitions

µ that can be squeezed from the root configuration λ. The constraints in Eq.(4.6)

substantially reduce the Hilbert space dimension (e.g., the basis dimension is less than

20 for 10 particles. A formal explanation of this issue will be presented in Chapter 5).

The L = 1 state actually vanishes, when we impose the constraints to generate the

coefficients of expansions. For now we take it as a numerical observation; more insight

will be shed on this issue in Chapter 5. The resulting lowest-energy eigenstates of the

Hamiltonian, restricted to this Hilbert space, are very good approximations to the

exact magneto-roton mode.

Instead of exact diagonalization within the restricted Hilbert space, we follow the

spirit of Jack polynomials and impose the following constraint:

V̂1c1c2|ψLλ 〉 = 0. (4.7)

Here V̂1 is the operator corresponding to the first Haldane pseudopotential of which

the Laughlin state is the exact zero energy state, and ci annihilates an electron at the

ith orbital. This additional constraint renders |ψLλ 〉 unique by enforcing the following
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Table 4.1: The overlap of the approximate model wavefunctions constructed from
product rules and the true model wavefunctions.
No. of electrons 9 10 11 12
L=2 89.83% 90.13% 90.31% 90.42%
L=3 86.42% 86.99% 87.37% 87.63%
L=4 83.63% 84.59% 85.23% 85.69%

clustering property: the wavefunction is vanishing only when two or more clusters of

two particles coincides in the real space.

The resulting implementation is numerically much less expensive, with variational

energies only slightly above the lowest energy state obtained in the Hilbert space

defined by only constraints Eq.(4.6), and improving with the increase in system size.

Two features of the resulting wavefunction is worth noting: firstly, when the geometric

normalization factors of the single particle orbitals on the sphere are removed, the

coefficients of the decomposition in the Fock space are integers, with the coefficient of

the root configuration normalized to one; secondly, there is a “product rule” [92, 93]

if the first five orbitals are treated as one “big” orbital, which allows us to generate a

large subset of coefficients recursively. An approximation to |ψLλ 〉 can be built from the

product rules; the overlap between the approximate and exact model wavefunctions

is high and increasing with system size (see Table I). The approximate state is thus

used as the seed state, or the initial trial state for the Lanczos procedure that imposes

the highest weight condition. The use of the approximate state as the seed state can

reduce the computing time by a factor of four.

To check how good our model wavefunctions are, we can evaluate their variational

energies and compare them with exact diagonalization. In Fig. 4.1, the variational

energies are plotted versus momentum k = L/
√
S, where Norb = 2S + 1 is the

number of orbitals in the LLL. This is how the linear momentum is obtained from

the angular momentum on the sphere. We include the data for a number of system

sizes and rescale the magnetic length `B by a factor
√
S/Norb to minimize the finite
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Figure 4.1: The variational energy of the model wavefunctions defined by Eqn (2)
and (3), against V1 (left axis, arbitrary units) and Coulomb Hamiltonian (right axis,
in units of e2/ε`B), plotted as a function of momentum. The data is generated from
system sizes ranging from 6 to 12 electrons (the inset shows the same plot for the
bosonic Laughlin state).

size effects. For the model V1 Hamiltonian and Coulomb Hamiltonian, the dispersion

obtained using the model wavefunction is in excellent agreement with the results from

exact diagonalization, both in small k and large k regime. The model wavefunctions

compare favorably with the exact diagonalization eigenstates, with 99% overlap for

10 electrons.
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4.2.2 Neutral Excitations at ν = 1/2

The same approach can be used to construct the neutral excitation wavefunctions

for the entire Read-Rezayi series, once the root configuration is identified. For the

magneto-roton mode of the Moore-Read state at filling factor ν = 1/2, the root

configurations are given by

In addition to the magneto-roton mode, there is another branch of neutral ex-

citations for MR state due to its non-abelian nature. This is the so called neutral

fermion mode[79, 98], which can be physically interpreted as the breaking of paired

particles in the ground state. The root configurations of the neutral fermion mode

thus contain an odd number of particles, and are shown as follows:

The Moore-Read ground-state root configuration is given by 2 electrons in 4 con-

secutive orbitals [59]. Similarly to the Laughlin state, any deviation from the uniform

background density yields the position of the quasihole/quasielectron. Unique model

wavefunctions can be constructed by imposing the constraint Eq.(4.6), and in addi-

tion a modified constraint Eq.(4.7) that reads H3bc1c2c3|ψMR
λ 〉 = 0, where H3b is the

Moore-Read three-body model Hamiltonian. Their variational energies are plotted in

Fig. 4.2.
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Figure 4.2: The variational energy of the model wavefunctions for the magneto-
roton (MR) mode and the neutral fermion (NF) mode, evaluated against the 3-body
Hamiltonian. The data is generated from system sizes ranging from 5 to 17 electrons,
where the odd number of electrons contribute to the NF mode, and the even number
of electrons contribute to the magneto-roton mode. (The inset shows the same plot
for the bosonic Moore-Read state)
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It should be emphasized that for both the Laughlin and Moore-Read case, the

neutral excitations enter the multi-roton continuum in the long wavelength limit. The

continuum starts at the energy that is double the energy gap of the roton minimum.

While this makes exact diagonalization ambiguous, the root configurations give clear

physical interpretations for the modes for the entire momentum range. Again, the

L = 1 state (and L = 1/2 state for the neutral fermion mode) vanishes with the set

of constraints we impose. Thus in the long wavelength limit, the NF mode can be

identified as a spin-3
2

“gravitino”, or the “supersymmetric partner” of the “graviton”

in the magneto-roton mode.

4.3 Validity of SMA

It is very instructive to compare the model wavefunctions gerenated in the previous

section with SMA wavefunctions obtained from the ground state |ψ0〉 by the guiding

center density modulation in Eq.(4.1). The SMA yields excitation energies manifestly

depends on the guiding center structure factor the ground state. On the sphere, the

ground state has the total angular momentum L = 0, and the SMA wavefunction

with total angular momentum L is obtained by boosting one electron with orbital

angular momentum L. The projection into the LLL is equivalent to the projection

of the boosted single-particle state into the sub-Hilbert space of the total spin S.

Formally we have

|ψSMA
LM 〉 =

∑
i

ĈS,L,S
mi+M,M,mi

|ψ0〉, (4.8)

where i is the electron index, and ĈS,L,S
m′,M,m is defined by its action on the single electron

state ĈSLS
m′Mm|m〉 = CSLS

m′Mm|m′〉, where CSLS
m′Mm = 〈m′|Ŷ LM |m〉 are the Clebsh-Gordon

coefficients, and Ŷ LM are the spherical harmonics. This is a result of the Wigner-

Eckart Theorem, and due to rotational invariance we can set M = L in Eq.(4.8).
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Figure 4.3: (Color online). The variational energies for the SMA model wavefunctions
compared to our model wavefunctions for Laughlin state at ν = 1/3 filling. (The inset
shows the same comparison for the magneto-roton mode of the Moore-Read state)

The dispersion of the SMA wavefunctions is plotted in Fig. 4.3 along with that of our

model wavefunctions.

For small momenta the variational energies of the two classes of wavefunctions

agree very well, while the SMA mode evidently becomes invalid for momenta larger

than the magneto-roton minimum. Note that at L = 2, 3 the SMA wavefunctions

only involve the elements of the basis squeezed from the same root configuration that

defines our model wavefunctions. Taking the Laughlin 1/3 as an example, we now

prove the SMA wavefunctions are actually identical to the model wavefunctions at
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L = 2, 3. By the product rule of the Jack polynomial, we can write

|ψ0〉 ∼ Jαλ1
⊗ Jαλ2

+ Jαλ3
⊗ Jαλ4

+ |ψ̄0〉, (4.9)

where the relative coefficients between different terms are ignored because they are

unimportant for the proof. The partitions λ1 = [10010], λ2 = [01001001 · · · ], λ3 =

[10001], λ4 = [10001001 · · · ], and |ψ̄0〉 involves the rest of the squeezed basis. It is

easy to check that c1c2

∑
i Ĉ

S,L,S
mi+L,L,mi

|ψ̄0〉 = 0. We thus have

V̂1c1c2|ψSMA
LL 〉 ∼ V̂1[0000]⊗ (Jαλ2

+ tJαλ4
) = 0 (4.10)

Again, the coefficients are suppressed in Eq.(4.10), and t = 0 for L = 2. Thus the

SMA wavefunctions satisfy exactly the same constraints as the model wavefunctions,

which makes them identical. Note that for L > 3 the SMA wavefunctions contain

unsqueezed basis components with respect to the root configurations used in our

model wavefunctions, and the proof breaks down.

It is also clear from the construction of the model wavefunctions why SMA ceases

to give good upper-bound for the neutral excitations at large momenta. The nature

of the neutral excitations at large momenta is characterized by a dipole excitation

of a quasihole-quasielectron pair. The separation of the quasihole and quasielectron

is proportional to the momentum. Heuristically, this is because the Lorentz force on

the opposite charges is proportional to the momentum and tends to pull them apart.

In SMA the momenta of the neutral excitations are given by the boost of a single

particle. The construction in the previous section shows the neutral excitations are

actually many-body excitations, whereby the momentum of the state is shared by

particles between the quasihole-quasielectron pair. At large momenta the number of

particles involved in the neutral excitations is also large, making SMA an increasingly

bad approximation.
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4.4 Geometric Interpretation in the Long Wave-

length Limit

From Eq.(4.2) the variational energy of the SMA in the long wavelength limit is given

by

εq→0 =
Gabcdqaqbqcqd
Γabcdqaqbqcqd

(4.11)

Gabcd = −
ˆ
d2q′d2q′′

(2π)4
V (q′)(S(q′′)− S∞)eiq

′×q′′εagεbhεceεdfq′eq
′
fq
′′
gq
′′
h (4.12)

Γabcd = N−1
φ

(〈
{Λab,Λcd}

〉
− 2

〈
Λab
〉 〈

Λcd
〉)

) (4.13)

Here Nφ is the total number of flux quanta. Eq.(4.13) is the O(q4) coefficient of

the guiding center structure factor[89], which we know is the guiding center spin.

Thus the guiding center spin controls the gap of the neutral excitations in the long

wavelength limit. In particular, the guiding center spin of the IQHE is zero, and the

gap goes to infinity. This should be the case, since the guiding center dynamics are

frozen in the IQH.

The area-preserving diffeomorphism generator Λab defined in Eq.(1.19) can also

be used to deform the guiding center metric with a unitary operator U(α) as shown

in Eq.(1.20). In the limit of small deformation, we have λcd = δcd + εacαad, and the

variational energy is:

〈ψα|H|ψα〉 =
1

2
Gabcdεeaε

f
dαecαfd (4.14)

This is precisely the energy gap as q → 0, when Eq.(4.14) is given by an infinitesmal

uniform deformation of the guiding center metric (which defines the shape of the

FQH droplets). The four tensor Gabcd can thus be interpreted as the “guiding center

shear modulus ”. Since we know the SMA describes neutral excitations exactly in
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the long wavelength limit, one can now understand the quadrupole excitation as the

energy cost of deforming the guiding center metric. It is gapped from the ground

state because of the zero-point quantum fluctation from the non-commutivity of the

guiding center coordinates. This reinforces the idea that the quadrupole excitation

can be identified as a “spin-2” graviton, with its dynamics controled by the geometry

of the FQH droplets.

4.5 Summary

This Chapter presents a numerical scheme to generate the model wavefunctions for the

neutral bulk excitations in both the Laughlin and Moore-Read state. The high overlap

between the model wavefunctions with those obtained with exact diagonalization

suggests the physics of the neutral excitations both for the magneto-roton mode and

the neutral fermion mode is well captured by the root configurations of the model

wavefunctions. The comparison of the model wavefunctions with the single mode

approximation (SMA) shows that SMA gives the correct model wavefunctions only

in the long wavelength limit. With that insight the quadrupole gap can be shown to

be related to the energy cost of a uniform deformation of the guiding center metric.

Note the model wavefunctions generated in the chapter are not exact eigenstates

of any known model Hamiltonians (in particular, they are not the exact eigenstates

of the model Hamiltonians of the Read-Rezayi series). One should, however, think

of these model wavefunctions as the prefered basis in describing the dynamics of the

FQHE, since physical interactions in a two-dimensional system is non-universal and

dependent on many experimental conditions (unlike in high energy physics where the

presence of Lorentz invariance strongly constrains the physical systems, leading to

“much cleaner” theories as compared to condensed matter physics). The magneto-

roton mode and the neutral fermion mode can be treated as the “elementary exci-
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tations” of the FQHE that in the long wavelength limit merges into the multi-roton

continuum. The interaction Hamiltonian (either Coulomb interaction or the more ar-

tificial pseudopotential interactions) will cause these elementary excitations to scatter

and decay, but it is conjectured based on both numerical and analytic (see next chap-

ter) evidences that they have appreciable lifetime in the thermodynamic limit for

physically realistic systems, as long as the FQHE incompressible phase persists.
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Chapter 5

Analytical Wavefunctions for the

Collective Modes

The model wavefunctions numerically generated in the previous chapter lead to sev-

eral interesting observations. Firstly, the model wavefunctions for both the magneto-

roton mode and the neutral fermion mode seem to agree exactly with those generated

in [94, 95, 97]. In the latter, the neutral excitations of the FQHE are mapped to the

excitons of the IQHE made of composite fermions (CF). The many-body wavefunction

of an exciton in the IQH is given by

φ(z1, z2, · · · , zN , z∗1 , · · · z∗N) = A[z0
1z

1
2 · · · zl−1

l

(
z∗l+1z

m+l+1
l+1

)
zl+1
l+2 · · · z

N−1
N ] (5.1)

where we have N − 1 particles in the LLL and one particle in the first Landau level

(1LL), and the exciton has total angular momentum L = m relative to the ground

state. To form the composite fermion wavefunction at ν = 1/k, k − 1 fluxes are

attached to each particle:

φCF = φ
∏
i<j

(zi − zj)k−1 (5.2)
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The model wavefunctions for the magneto-roton mode are obtained by projection into

the LLL:

φL=m = PLLL[φCF] (5.3)

For the mangeto-roton mode and neutral fermion mode of the MR state, a bipartite

CF picture is employed[95], but the scheme is essentially the same. The resultant

wavefunctions are numerically found to be identical to those generated in the previous

chapter. This is an intriguing fact, as the underlying physical pictures for these two

approaches are quite different.

The numerical comparison between the two sets of model wavefunctions are made

easy because of the second interesting fact about these model wavefunctions: if we

strip away the single particle normalizations of the many-body wavefunctions ex-

panded in the occupation basis, followed by normalizing the coefficient of the root

configuration to unity, all the coefficients of the neutral excitations are integers for

the Laughlin states, and integers or rational numbers for the MR states. This is

generally characteristic of Jack polynomials, where all coefficients are essentially gen-

erated via combinatorics. However, as is emphasized in the previous chapter, model

wavefunctions for the neutral excitations are not Jack polynomials.

The last interesting observation is the existence of a product rule very similar to

Jack polynomials, as shown in the previous chapter. One would then conjecture these

wavefunctions are very similar to the Jack polynomials. Just as the ground states

and charged excitations of the FQHE, there are natural ways of writing down wave-

functions for the neutral excitations requiring no variational parameters whatsoever.

This is indeed the case, as will be illustrated in the next few sections.
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5.1 Algebraic Structures of the Edge Neutral Ex-

citations

It is instructive to first explore the algebraic properties of the edge neutral excitations.

The edge neutral excitations correspond to the bulk charged quasihole excitations;

both are obtained by inserting fluxes into the ground state of the quantum Hall fluid.

Labeling the edge excitations by δL, with the ground state taken as δL = 0, the

number of edge excitations in each momentum sector is given by the number of ways

of inserting quasiholes in the bulk. Thus the counting of the edge states at δL = N

is given by the partition number P (N). For finite systems, the counting is only valid

for N ≤ Ne, where Ne is the number of particles. Let us take the Laughlin state as an

example. For model Hamiltonians, the subspace of the edge modes in each momentum

sector is spanned by Jack polynomials satisfying the admission conditions[59]. The

root configurations for a few momentum sectors are listed as follows:

δL = 1 : · · · 10010010010010001

δL = 2 : · · · 100100100100100001

· · · 100100100100010010

δL = 3 : · · · 1001001001001000001

· · · 1001001001000100010

· · · 1001001000100100100 (5.4)

The counting of Laughlin edge states is 1, 1, 2, 3, 5, 7, 11 · · · and all Jack polyno-

mials in Eq.(5.4) are in the null space of the model Hamiltonian. They are therefore

gapless excitations at the edge. The counting also matches that of the Virasoro

algebra of U(1) bosons in the conformal field theory (CFT). This is not merely a
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coincidence. The W∞ algebra in Eq.(1.12) has a Virasoro sub-algebra

[Wm,0,Wn,0] = (n−m)Wm+n,0 (5.5)

One should note, though, that the negative modes of the Virasoro algebra is missing

(so Eq.(5.5) is also called the Witt algebra). Nevertheless, it is easy to show for the

model Hamiltonian H, if Hψ0 = 0, then HWm,0ψ0 = 0. This is because in real space

b†i ∼ zi, bi ∼ ∂zi . Taking ψ0 as the Laughlin ground state, the edge states with δL = N

are given by
∏

iW
si
ni,0

ψ0 with
∑

i(ni − 1)si = N , each of them has zero energy and is

a linear combination of the appropriate Jack polynomials (which themselves are not

orthogonal).

The edge states generated by acting “Virasoro operators” Wm,0 on the ground

state is complete. This is the microscopic connection of the chiral edge modes to

the chiral CFT. To see the connection of the edge mode to the bulk mode, one

notice that Wm,−1 also generates the complete edge modes given by Wm,−1ψ0. This is

related to the Kac-Moody algebra that describes the edge states[68, 102, 103]. With

translational invariance we have [H,W0,−1] = [H,W−1,0] = 0, thus each state has

an infinite degeneracy associated with the center-of-mass rotation. If this “trivial

degeneracy” is removed, the space of edge states at δL = N is spanned by

ψen1,n2,··· ,s1,s2,··· =
∏
i

W si
ni,−1ψ0,

∑
i

si(ni − 1) = N, ni > 1 (5.6)

The states in Eq.(5.6) are linearly independent but not orthogonal. The edge mode

space for each δL = N is spanned only by the highest weight states, once the center

of mass degeneracy is removed. The counting of such edge modes for N ≥ 1 is given

by 0, 1, 1, 2, 2, 4, 4, 7, · · ·

The canonical conjugate of Wm,−1 is given by W−1,m. Since the ground state ψ0

is the highest weight state, we have W−1,0ψ0 = 0, while W−1,mψ0 are also the highest
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weight state. In analogy to the edge modes, at δL = −N there is a subspace of

highest weight states spanned by

ψbn1,n2,··· ,s1,s2,··· =
∏
i

W si
−1,ni

ψ0,
∑
i

si(ni − 1) = N, ni > 1 (5.7)

One can diagonalize the Hamiltonian within the highest weight subspace spanned by

states in Eq.(5.7) in δL = −N sector. The ground state in each momentum sector is

a good trial wavefunction for the magneto-roton mode. In particular at N = 1, the

highest weight subspace is empty, so the L = 1 elementary neutral excitation does

not exist.

One should note the edge modes generated by Virasoro operators or Kac-Moody

operators are the U(1) charge sector of the edge excitations, which in CFT is obtained

by inserting the U(1) current into the ground state correlator. For the Laughlin

state only the charge sector is present, so the scheme above generates all the edge

excitations. For the non-abelian MR state, there is an additional statistical sector

from the fermionic majorana mode, and the counting of the edge modes are thus

different. The details of this subtelty can be found in [68] and the references therein,

and will not be pursued further in this thesis.

5.2 Magneto-roton modes in Laughlin State

Let us start by presenting the wavefunctions of the neutral excitations for the

fermionic Laughlin state at filling factor ν = 1/m in the LLL, where m is odd. On

the sphere the ground state is the Laughlin wavefunction in total angular momentum

L = 0 sector, or the fermionic Jack polynomial J−m+1
1001001···[61]. By stripping away the

single particle normalization factor, the Laughlin ground state is given by Eq.(1.1).
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The model Hamiltonian in Eq.(2.4) can be written as V =
∑

i<j Vij, with

Vij =

ˆ
d2ql2B

2π

m−1∑
n=0

Ln(q2l2B)e−
1
2
q2l2Bei~q·(

~Ri−~Rj) (5.8)

To make comparison with the wavefunctions in the previous chapter, the family of

neutral excitations at δL = −N sector (we omit the exponential part of the wave-

function, which is irrelavent in the LLL) is labeled by the corresponding total angular

momentum L = N on the sphere:

A[(z1 − z2)m−2
′∏

i<j

(zi − zj)m] L = 2

A[(z1 − z2)m−2(z1 − z3)m−1
′∏

i<j

(zi − zj)m] L = 3

A[(z1 − z2)m−2(z1 − z3)m−1(z1 − z4)m−1
′∏

i<j

(zi − zj)m] L = 4

... (5.9)

Here A indicates antisymmetrization over all particle indices, and
∏′

i<j means

products of only pairs {ij} that do not appear in the prefactors to the left of it. Thus

the L = 2 state, which is the quadrupole excitation in the thermodynamic limit[32], is

obtained from the ground state by reducing the power of one pair of particles (which

we can choose arbitrarily as particle 1 and 2 due to the antisymmetrization) by two,

followed by antisymmetrizing over all particles. This scheme naturally forbids an

L = 1 state by pair excitation, since if we reduce the power of one pair of particles

by one, antisymmetrization kills the state.

The L = 3 state is generated by pairing particle 1 with another particle (which

we arbitrarily label as particle 3) and reducing their pair power by one. It is now

clear how the modes in other momentum sectors are generated. Naturally for a total

of Ne particles, the family of the neutral excitations ends at L = Ne, agreeing with
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the numerical scheme in the previous chapter. Indeed all wavefunctions here satisfy

the highest weight condition, and the states relax to the ground state far away from

the excited pairs; these are exactly the conditions we used to numerically generate

the unique model wavefunction in each momentum sector.

5.3 Magneto-roton Mode and Neutral Fermion

Mode in MR State

The same scheme applies to the MR state. It is instructive to first see how the

MR ground state is obtained. The Laughlin wavefunction at half filling is given by

J−2
1010101···(zi) =

∏
i<j(zi−zj)2. For fermions this is not a valid state; instead the ground

state was constructed by a pairing mechanism[20], which is also a Jack polynomial

J−3
1100110011···. The pairing reduces the power of each pair of particles by one. For 2n

particles, the antisymmetrization reproduces the Pfaffian up to a constant as follows:

∏
i<j

(zi − zj)2 → A[(z1 − z2)(z3 − z4) · · · (z2n−1 − z2n)

′∏
i<j

(zi − zj)2]

= Pf

(
1

zi − zj

)∏
i<j

(zi − zj)2 (5.10)

where the last line of Eq.(5.10) is the familiar Pfaffian for the MR ground state. The

explicit use of antisymmetrization instead of the Pfaffian allows us to naturally extend

to the case with an odd number of particles: starting from the Bosonic Laughlin

wavefunction at half filling, every two particles form a pair except for just one particle.

Naturally the “ground state” of the neutral fermion mode is given by

∏
i<j

(zi − zj)2 → A[(z1 − z2)(z3 − z4) · · · (z2n−1 − z2n)

∏
k<2n+1

(z2n+1 − zk)2
′∏
i<j

(zi − zj)2] (5.11)
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Note both i, j in
∏′

i<j runs from 1 up to 2n + 1, with pairs appearing before
∏′

i<j

excluded. Though we can no longer represent Eq.(5.11) as a Pfaffian, comparing the

antisymmetrized products we can see Eq.(5.11) is really the same as that of Eq.(5.10),

only with an odd number of particles. For the model three-body Hamiltonian, this

is a zero-energy abelian quasihole state J−3
1100110011···0011001 in the angular momentum

sector L = 1
2
(Ne − 1). The magneto-roton mode and the neutral fermion mode are

obtained from Eq.(5.10) and Eq.(5.11) respectively by reducing the powers in the

Jastrow factor the same way as what is done for the Laughlin state.

5.4 A Generalized Formal Scheme

To write down the analytic wavefunctions in a more formal way, we define Pij = 1
zi−zj .

Notice the Pfaffian for 2n particles can be written as Pf
(

1
zi−zj

)
∼ A[P(2n)], where

P(2n) = P12P34 · · · P2n−1,2n. The magneto-roton mode for the Laughlin state is given

by

ψL=k+2
l =

Ne∏
i<j

(zi − zj)mS[P2
12P13 · · · P1,2+k] (5.12)

where S is the symmetrization over all particle indices. From the bosonic Laughlin

wavefunction at filling factor 1/2 we can impose pairing to obtain

ψmr =
Ne∏
i<j

(zi − zj)2A[P(2n)] (5.13)

For an even number of electrons we have Ne = 2n and Eq.(5.13) is the MR ground

state. The magneto-roton modes are given by

ψL=k+2
mr =

Ne∏
i<j

(zi − zj)2A[P(2n)P2
13P15 · · · P1,3+2k] (5.14)
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For an odd number of electrons we have Ne = 2n+1 and Eq.(5.13) is the MR quasihole

state of Eq.(5.11). The neutral fermion modes are given by

ψ
L= 3

2+k
mr =

Ne∏
i<j

(zi − zj)2A[P(2n)P2
Ne,1PNe,3 · · · PNe,1+2k] (5.15)

In this way, the class of ground state model wavefunctions are generalized to

include neutral excitations under a universal scheme.

5.5 A Lattice Diagram Representation

An intuitive way to visualize the family of the neutral excitations is to map the

particles onto a lattice, where each lattice site represents a particle. Since for the

FQHE we have a quantum fluid instead of a solid, every two lattice sites interact

with each other. The number of bonds between each pair of lattice sites equal to the

power of the pair of particles in the wavefunction. As an example we consider the

simpliest Laughlin state at ν = 1/3, so for the ground state every two lattice sites are

connected by three bonds, as shown in Fig. 5.1.

Figure 5.1: For Ne particles, the lattice can be viewed as an Ne-gon, with three bonds
connecting every pair of vertices

The neutral excitations are obtained by breaking the bonds between lattice sites,

as shown in Fig. 5.2. We can view the entire family of the neutral excitations as ele-

mentary excitations centered around a single red lattice site. Note the lattice pattern

uniquely defines the many-body wavefunction, and different types of “elementary ex-
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citations” can be identified with different patterns of bond-breaking around a single

lattice site.

Figure 5.2: Neutral excitations from L = 2 to L = 5, where the change of bonds are
highlighted with red color.

This suggests lattice representation of the MR state and its magneto-roton mode

with the same scheme, as shown in Fig. 5.3. The representation of the MR quasihole

state and those of the neutral fermion modes are given in Fig. 5.4.

Figure 5.3: The lattice configuration of the ground state L = 0 and the first neutral
excitation at L = 2. Consecutive neutral modes can be obtained by breaking one of
the double bonds connecting the red lattice site to some other site.
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Figure 5.4: The lattice configuration of the zero mode quasihole state L = 1
2

(Ne − 1)
and the first two neutral fermion modes at L = 3

2
and L = 5

2
. Consecutive neutral

fermion modes can be obtained by breaking one of the double bonds connecting the
red lattice site to some other site.

5.6 Quadrupole Gap in the Thermodynamic Limit

The analytic wavefunction is useful in calculating the magneto-roton mode energy

gap in the long wavelength limit. For the Laughlin state, the energy gap is given by

εq→0 = lim
Ne→∞

〈ψL=2
l |V |ψL=2

l 〉
〈ψL=2

l |ψL=2
l 〉

(5.16)

We already know from [32] that in L = 2 and L = 3 sector, SMA is exact for the

magneto-roton model wavefunctions. Writing the Laughlin wavefunction as ψl and

using the guiding center ladder operators b†i = zi, bi = ∂zi , we have

ψL=2
l =

1

2m(m− 1)

∑
i

(bi)
2ψl (5.17)
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In the thermodynamic limit, the normalization constant of Eq.(5.17) is thus related

to the long wavelength expansion of the ground state guiding center structure factor,

as shown in Eq.(3.34), which leads to

〈ψL=2
l |ψL=2

l 〉 = − s̄Ne

2m2(m− 1)2
(5.18)

The numerator of Eq.(5.16) can be calculated using the plasma analogy. Note in

Eq.(5.9), before antisymmetrization the term only has one pair of particles with rel-

ative angular momentum smaller than m. We thus have

〈ψL=2
l |V |ψL=2

l 〉 =
Ne(Ne − 1)

2N 2
〈ψ̄l|P2

12V12P2
12|ψ̄l〉 (5.19)

where N is the normalization constant of the Laughlin state. We note that V12

projects out states with relative angular momentum (z1− z2)m−2, which can be inte-

grated over. The numerator is thus equivalent to evaluating the norm of the following

wavefunction:

ψ̄ =

Ne−1∏
i=2

(
1√
2
z1 − zi

)2m ∏
1<i<j<Ne−1

(zi − zj)m (5.20)

which can be evaluated as the free energy of a two-dimensional one-component plasma

(OCP) on the disk with radius R2 = mNe
2

and elementary charge e = 2
√
πmkBT ,

where particle 1 interacts with the rest of the particles with charge 2e. We thus

obtain

εq→0 = −2mm(m− 1)2

πs̄
e
−F2−F

kBT (5.21)

Both F2 and F are free energies of OCP in the thermodynamic limit (Ne → ∞),

where F is for Ne particles, each with charge e and interacting with lthe ogarithmic
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two-body interaction together with a neutralizing background of radius R; for F2, we

have the same neutralizing background with Ne− 2 particles of charge e, and exactly

one particle with charge 2e. Thus F2−F is the free energy cost of fusing two particles

of charge e to create a particle of charge 2e, which is an O(1) effect.

Similar calculations can be carried out for the magneto-roton mode in the MR

state. Analogous to Eq.(5.17) we have ψL=2
mr = 1

24

∑
i b

2
iψmr, and in the long wave-

length limit we have

εmr
q→0 = − 24

πs̄mr

e
−F3−FII

kBT (5.22)

where s̄mr = −2 is the guiding center spin for the MR state, and FII is the standard

two-component plasma free energy for the MR ground state[43]. The charge for the

interaction between the two components is given by Q1 = ±
√

3kBT , while the charge

for the interaction between one of the components and the neutralizing background

is given by Q2 = 2
√
kBT . F3 −FII is the free energy cost of fusing three particles to

create one particle for each component with charge 3Q2 but with the same ±Q1.

The evaluation of the long wavelength gap of the neutral fermion mode is less

transparent. The difficulty lies with evaluating the normalization constant of ψ
L= 3

2
mr .

There is no SMA for the neutral fermion mode, and it is not known if in the ther-

modynamic limit the gap should be inversely proportional to the guiding center spin.

On the other hand 〈ψL= 3
2

mr |V3bdy|ψ
L= 3

2
mr 〉 can be mapped to a two-component plasma as

well, and we obtain

ε̄mrq→0 ∼ e
− F̄3−F̄II

kBT (5.23)

Here F̄II is the free energy of the 2-component plasma similar to that of FII

with only one difference: there is exactly one more particle carrying charge Q2 that

interacts with the neutralizing background, and its Q1 charge is zero. This is how an

114



unpaired fermion in the MR state is interpreted in the plasma analogy. Furthermore,

F̄3 − F̄II is the energy cost of fusing the unpaired fermion with one pair of two other

fermions, creating a particle with charge Q2 = 6
√
kBT but again with zero Q1.

5.7 Summary

The numerical results from the previous chapter help to identify the analytic wave-

functions constructed in this chapter. From a practical point of view, these compact

analytic forms are useful, because now the energy gap of the quadrupole excitation in

the thermodynamic limit can be related to the free energy cost of the fusion of charges

in the plasma energy, and is inversely proportional to the guiding center spin which

characterizes its topological order. This is the first time that the plasma analogy is

extended to the neutral excitations of the FQHE, and the analogy not only applies

to the wavefunctions, but also to the energy spectrum as well. Since the neutral

excitations in the long wavelength limit is buried in the multi-roton continuum, it is

important to calculate the decay rate of these neutral modes. Numerical calculation

has been performed to show that even in the continuum the decay rate of the neu-

tral modes is very small[96]. This opens up the possibility of experimental detection

of these modes. A more detailed analysis of the decay rate of the neutral modes is

currently research in progress.

The neutral excitations in the single component FQHE can now be understood

in several coherent frameworks, at least for the Laughlin and Moore-Read states,

with possible generalization to the entire Read-Rezayi series. The composite fermion

picture maps the FQHE to the IQHE of the particle-vortex composite, and in this

framework the neutral excitations are excitons of composite fermions. The Jack

polynomial formalism enables us to describe the wavefunctions of the ground states,

the quasihole and quasiparticle states, as well as the neutral excitations in a unified
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way with root configurations and squeezed basis constrained by clustering proper-

ties. It is now satisfactory to see that compact analytic real space wavefunctions in

electron coordinates, which initiated the theoretical understandings of the FQHE,

can now be extended from ground states and charged excitations to include neutral

bulk excitations. One could still ask if the neutral excitations proposed so far com-

pletely describes the energy spectrum of the FQHE. Experimental measurements on

the Laughlin state[99] suggest a splitting of the neutral modes in the long wavelength

limit, with theoretical explanations proposed from a hydrodynamic point of view[100],

and the composite fermion point of view[101]. It would be interesting to see if the

lattice diagram can be generalized to produce suitable analytic wavefunctions that

describes the multi-roton excitations and the splitting of the neutral modes as well.

It is well-known in the literature that the wavefunctions of the gapless edge exci-

tations on the disk can be obtained by multiplying the ground state with symmetric

polynomials. With model Hamiltonians these are the zero energy states in the posi-

tive δLz angular momentum sectors[102, 103]. For the Moore-Read state, in addition

to the charge sector generated by the symmetric polynomials, there are also edge

excitations obtained from the statistical sectors via inserting Majorana fermions[85].

The analytic wavefunctions of these states are known explicitly. One can also gener-

ate wavefunctions by similar operations not only on the ground state, but also on the

bulk neutral excitations obtained in this paper. These wavefunctions describe states

such that each contains both bulk and edge excitations. We call these roton-edge

excitations, which explain the gapped low-lying multitude of states below the multi-

roton gap in disk geometry. Recent studies show[?] that for the Laughlin state, each

bulk neutral excitation generates a branch of quasi-degenerate roton-edge excitations

with the same Virasoro counting as the zero-energy edge states (See Fig.(2.1)). For

the Moore-Read state, however, the counting of the roton-edge states seem different
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because of the lack of the linear independence between states in the same momentum

sector, possibly due to the non-abelian nature of the FQH fluid.
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Chapter 6

Summary and Outlook

In this thesis, I explored the physics of the fractional quantum Hall effect from a

geometric point of view, where the dynamics are governed by the guiding center

coordinates with non-commutative spatial components. The recognition of the ge-

ometric aspect of the FQHE leads to a better understanding of the guiding center

Hall viscosity, which is a topological index that defines the energy gap of the neutral

excitations in the long wavelength limit. The guiding center Hall viscosity also cap-

tures the universal part of the transport coefficients, when the FQH fluid is perburbed

by a spatially varying electromagnetic field. It is also shown that the experimental

measurement of the guiding center Hall viscosity as proposed by Son and collabo-

rators requires both Galilean and rotational invariance. The microscopic calculation

presented in this thesis include all general corrections when those symmetries are

absent, with different geometric dependence made explicit.

The neutral excitations of the FQHE in the Laughlin state and the Moore-Read

state are presented both from a numerical perspective and a more general analytic

construction. Using the formalism of Jack polynomials, the model wavefunctions for

the neutral excitations are constructed for the entire range of momenta, improving

earlier attempts with the single mode approximation. The numerical construction
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with the root configurations allows us to identify the long wavelength limit of the

neutral excitations as “spin-2 gravitons” (with “spin 3/2 gravitino” as the super-

partner in the Moore-Read case). It is also proven that the single mode approximation

gives exact “graviton” wavefunctions, which allows us to understand the neutral gap

in the long wavelength limit as the energy cost of area-preserving deformation of the

ground state guiding center metric, and is inversely proportional to the guiding center

Hall viscosity as a result of zero-point quantum fluctuation of the non-commuting

coordinates in the projected Hilbert space.

The analytic wavefunctions for both the magneto-roton modes and the neutral

fermion modes presented in this thesis unify previous numerical constructions of the

neutral excitation model wavefunctions, including the one presented in the thesis, as

well as the other scheme from the perspective of the composite fermions. The analytic

wavefunctions have simple representations in terms of lattice diagrams, and allow

analytic computation of the dynamics of the neutral excitations in the long wavelength

limit. It was shown that the usual plasma picture for the Laughlin and Moore-Read

state, which was previously only applicable to the ground state wavefunctions, has

interesting connections to the FQHE neutral excitations. The energy cost from area-

preserving deformation of the guiding center metric can be viewed as the free energy

cost of fusing charged particles with a neutralizing background in the plasma analogy.

It would be interesting to see how to experimentally measure the guiding center

Hall viscosity, which is a result of strong correlation between electrons and is sensi-

tive to rotational invariance as well as the edge effects. Additional theoretical work

is needed to fully understand the quantization of the guiding center Hall viscosity

when the interaction moves away from the model Hamiltonians where the Laughlin

and Moore-Read model wavefunctions are exact. Numerically, one good way of prob-

ing the guiding center Hall viscosity is to locally deform the guiding center metric

and measure the guiding center density response, and there are ongoing works on
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cylinder geometry with DMRG technique[104]. This calculation is complementary to

the work on torus, where the Hall viscosity is measured by deforming the periodic

boundary condition. In addition to that, it can also shed light on the formulation of

the geometric effective field theory of the FQHE, where the guiding center dynamics

are determined by the coupling of the composite boson guiding center spin to the

fluctuation of the guiding center metric.

For neutral excitations in the FQHE, there are unanswered questions on the sta-

bility and life-time of the neutral excitations, especially in the long wavelength limit

where the quadrupole excitation merges into the continuum of multi-roton excita-

tions. With a better understanding of the entire branch of the neutral excitations,

one can investigate the tunability of the energy of the mode from a dynamic point

of view. For the Moore-Read state with both the magneto-roton mode and the neu-

tral fermion mode, it is interesting to see if in the long wavelength limit this pair of

“super-partners” converge to the same energy. There are interesting questions on the

transition of the FQHE from an incompressible phase to a fermi liquid or nemetic

phase[105]; the thermodynamic gap can be closed either by the roton minimum going

soft, or the quadrupole excitation going soft. For the latter, it is also interesting to

see if one can bring the quadrupole excitations below the multi-roton minimum by

tuning the Hamiltonian, so it can be probed experimentally.
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