
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

12-2011

High Performance Geospatial Analysis on
Emerging Parallel Architectures
Seth Warn
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Systems Architecture Commons

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by
an authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Warn, Seth, "High Performance Geospatial Analysis on Emerging Parallel Architectures" (2011). Theses and Dissertations. 156.
http://scholarworks.uark.edu/etd/156

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.uark.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/156?utm_source=scholarworks.uark.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu




High Performance Geospatial Analysis on
Emerging Parallel Architectures



High Performance Geospatial Analysis on
Emerging Parallel Architectures

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science

By

Seth Warn
Columbia College

Bachelor of Science in Computer Science, 2006

December 2011
University of Arkansas



Abstract

Geographic information systems (GIS) are performing increasingly sophisticated analyses on grow-

ing data sets. These analyses demand high performance. At the same time, modern computing

platforms increasingly derive their performance from several forms of parallelism.

This dissertation explores the available parallelism in several GIS-applied algorithms: view-

shed calculation, image feature transform, and feature analysis. It presents implementations of

these algorithms that exploit parallel processing to reduce execution time, and analyzes the effec-

tiveness of the implementations in their use of parallel processing.



This dissertation is approved for recommendation
to the Graduate Council.

Dissertation Director:

Dr. Amy Apon

Dissertation Committee:

Dr. John Gauch

Dr. Miaoqing Huang

Dr. Jackson Cothren



Dissertation Duplication Release

I hereby authorize the University of Arkansas Libraries to duplicate this dissertation when needed
for research and/or scholarship.

Agreed

Seth Warn

Refused

Seth Warn



Acknowledgements

I would like to thank the following people:

• Barbara Webb, my wife, for supporting me when I said “I think I’ll go back to school,” and

in the years since then.

• Dr. Amy Apon, my advisor, for ceaseless support, encouragement, and advice.

• Stan Bobovych and Wesley Emeneker, for fruitful discussions and help with implementa-

tions and testing.

The work in this paper was supported in part by NSF grants #918970, #947679, and #072265.



Contents

1 Introduction 1
1.1 Geospatial Applications Need Parallel Computing . . . . . . . . . . . . . . . . . . 1
1.2 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Parallel Computing 5
2.1 Shared Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Distributed Memory Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Alternatives to CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Applications of GPGPU . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Hybrid Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Viewshed Analysis 15
3.1 What is Viewshed Analysis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Viewshed Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Brute Force and Approximate Methods . . . . . . . . . . . . . . . . . . . 16
3.2.2 The Planar Sweep Approach . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 A New Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1 Determining Visibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.3 Corrections for Earth’s Curvature and Light Refraction . . . . . . . . . . . 24
3.3.4 Integer Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.5 Planar Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.6 Optimized Status Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.7 Sweep Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.8 Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Parallel Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.3 Offset Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Accelerating SIFT on Hybrid Clusters 40
4.1 What is SIFT? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.2 Feature Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.3 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Parallelizing SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.1 Work Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



4.2.2 Octave File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 GPU Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Pipelined Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Shared and Distributed Memory Scaling . . . . . . . . . . . . . . . . . . . 54
4.3.2 GPU Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Circular Earth Mover’s Distance 63
5.1 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Comparing SIFT Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 More on SIFT Feature Descriptors . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Measuring Feature Dissimilarity . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Implementation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2 Runtime of CEMD and L2 . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.3.3 Initial Design: CPU-INITIAL and GPU-INITIAL . . . . . . . . . . . . . . 74
5.3.4 Using Shared Memory: GPU-SHMEM . . . . . . . . . . . . . . . . . . . 75
5.3.5 Optimizing Global Memory Reads: GPU-MEMOPT . . . . . . . . . . . . 75
5.3.6 Reducing Shared Memory Bank Conflicts: GPU-INDEX . . . . . . . . . . 76
5.3.7 Loop Unrolling: GPU-UNROLL . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.8 Algorithmic Improvements: GPU-FINAL and CPU-FINAL . . . . . . . . 79
5.3.9 Performance Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.10 Streaming Kernel Execution . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.11 Using Multiple GPUs on Multiple Machines . . . . . . . . . . . . . . . . 83

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions 85
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Applicability of Parallel Computing to Given Applications . . . . . . . . . . . . . 86

Bibliography 89



List of Figures

2.1 Shared memory, as it is modeled and implemented . . . . . . . . . . . . . . . . . 6
2.2 A cluster computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A rotational planar sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Visibility between two points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Interpolating heights over a raster DEM . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Component distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Reusing interpolated values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Correcting for Earth’s curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 Ordering of samples around a viewpoint . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 An implicit binary tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 The status structure used in this dissertation . . . . . . . . . . . . . . . . . . . . . 30
3.10 Finding the maximum slope before n in the status structure . . . . . . . . . . . . . 31
3.11 Using the event list and status structure to implement the planar sweep . . . . . . . 33

4.1 Difference of Gaussian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Creating a SIFT descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Image space partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Scale space partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Tile Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Scale-space generation on GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Concurrent task execution in SOHC . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.8 Input image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.9 Performance scaling with numbers of tiles . . . . . . . . . . . . . . . . . . . . . . 55
4.10 How tile size affects processing time . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.11 Execution time of SOHC on a cluster . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Unorganized Block of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Georeferenced Image Mosaic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 SIFT Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4 Descriptor CEMD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Modified CEMD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.6 Time to Complete N Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.7 Throughput of N Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.8 Streaming Execution in CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



List of Tables

2.1 Comparing GPU and CPU performance. . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Viewshed analysis: measured performance . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Viewshed analysis: parallel scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Time to calculate and apply offsets for curvature correction. . . . . . . . . . . . . . 37

4.1 Breakdown of tile processing time . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 GPU-enabled tile processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 CEMD Example with 4-bin Histogram . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Performance of CEMD vs. Euclidean . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 CEMD Kernel Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



Chapter 1

Introduction

1.1 Geospatial Applications Need Parallel Computing

The term geospatial describes information that is spatially located relative to the Earth. This broad

definition includes a wide range of data, such as historical temperature records, aerial and satellite

photography, property records, and more. This data is frequently stored in geographic information

systems, or GIS, which include both the spatially-referenced data as well as the hardware and

software used to store, analyze, and display that data. Geospatial applications analyze this data to

perform a variety of tasks, such as predicting how a disease will spread, or determining the optimal

location for a new cell phone tower.

The increasing capacity of computers to store data, the expanding bandwidth of networks to

transmit data, and the growing number and resolution of sensors collecting data result in an ex-

plosion in the amount of information processed by geospatial applications. Existing applications

designed for serial computer architectures cannot handle this growth in data size, because ad-

vances in computer performance are now based primarily on increasing parallelism [1], rather than

increasing single-thread performance.

Static single-thread performance will not limit the exponential growth of computational power;

for example, single-rack servers capable of petaflop performance will be available in the next five

to ten years [2]. However, this level of performance will be provided by massively multi-core

processors, with hundreds of cores per chip. Existing tools written for serial architectures, or

even tools written for parallel architectures with few cores, must be replaced with algorithms and

software designed to take advantage of these new, massively-parallel computers.

Current multi-core chip architectures essentially replicate a small number of traditional CPU

cores in a single package. However, the massively multi-core processors mentioned above will

1



evolve, at least in part, towards a more data-parallel, task-based parallel architecture [3] that is

currently exemplified by GPU hardware, described in Section 2.3. Writing applications to take

advantage of GPU accelerators provides performance benefits now, while making them compatible

with HPC systems of the future.

1.2 Target Applications

The field of geomatics is concerned with a wide variety of problems. The problems addressed by

this dissertation were chosen primarily because they are immediately useful to ongoing projects at

the University of Arkansas Center for Advanced Spacial Technologies (CAST). Each has proven

amenable to some form of parallelization.

Viewshed analysis: A problem in computational geometry whose answer is useful for a variety

of geospatial research questions. Briefly, it uses a model of a given terrain to answer questions

about line-of-sight for observers within that terrain. It is described further in Chapter 3.

Feature Transformation: A method in computer vision that attempts to convert raw input im-

ages into a list of important “features” which are more amenable to further analysis. This disser-

tation describes a well-known feature transformation algorithm, SIFT, and its implementation in

Chapter 4.

Feature dissimilarity: The high-performance SIFT implementation described in Chapter 4 gen-

erates large amounts of data, consisting of billions of feature descriptions. A common analysis to

perform on those features is to look for similar features derived from other images, which requires

a method of measuring feature similarity. One such method is the Circular Earth Mover’s Distance,

or CEMD. This similarity measurement and its uses are described in Chapter 5.

2



1.3 Contributions

The increase in the size of geospatial data sets requires faster tools to process that data, while the

transition to parallel computer architectures means that existing tools, which are not designed for

the new architectures, are not capable of the required performance. This dissertation describes an

interdisciplinary project to create geospatial software tools capable of utilizing parallel computer

architectures. This encompasses:

1. Examinations of the parallelism available in the three common geospatial applications listed

above.

2. Software implementations of those applications designed to take advantage of the parallel

architectures described in Chapter 2.

3. Evaluations of the effectiveness of said implementations.

These parallel implementations make it possible to use existing techniques on larger data sets, and

enable the creation of new applications by making those techniques practical on a larger scale.

Each of these implementations use novel methods to take advantage of parallel computers. In

addition, the software developed has immediate applications, and is already used in geospatial

research.

Summary of results: Each of the target applications is described in its own chapter; this is an

overview of those results:

• Viewshed analysis is accelerated with novel algorithmic improvements and by exploiting

multi-core architectures. The speed of the resulting implementation, which can calculate a

16k×16k viewshed in 21 seconds on an inexpensive desktop computer, is orders of magni-

tude faster than available viewshed analysis software.

• SIFT feature extraction can benefit from all three forms of parallelism described in the next

chapter: multi-core, cluster computing, and GPUs. The implementation described in Chap-

ter 4 is a framework for SIFT and other scale-space based feature detectors, which uses a

3



novel partitioning and pipeline scheme to exploit these parallel architectures in a flexible

manner. This is the only implementation of SIFT capable of operating directly on the very

large images common in geospatial applications.

• Feature dissimilarity calculation is embarrassingly parallel, making it simple to use cluster

computing for weak scaling. Chapter 5 focuses on the details of extracting performance from

individual GPUs, and the resulting implementation is shown to be nearly optimal. The GPU

code is embedded in an application that uses hybrid clusters to enable CEMD calculation for

large numbers of features.

4



Chapter 2

Parallel Computing

Parallel computing refers to wide variety of computing systems where multiple calculations occur

at the same time. It includes both parallel computer architectures [4], and the programming mod-

els, languages, and APIs (application programming interfaces) used to write software that operates

on parallel architectures. This is an enormous topic, and discussing it is made more difficult by

the insufficiency of accepted terminology, for example Flynn’s Taxonomy [5], to describe modern

parallel systems, as well as disagreement over the definitions of such basic terms as parallel and

concurrent. Therefore, this chapter restricts its description of parallel computing to only those ar-

chitectures and software constructs directly relevant to the applications presented in later chapters.

2.1 Shared Memory Systems

Parallel computers may be divided into two groups, according to the configuration of their memory.

The first group are shared memory computers; as the name suggests, all processing elements have

shared access to the computer’s memory. The most common examples of these are symmetric

multiprocessing, or SMP, computers, where multiple identical CPUs are connected to a common

system memory and controlled by a single operating system. The CPUs may be together in a single

package and share a single motherboard socket, or they may be distributed among several sockets.

Threaded Programming: The canonical method of programming in order to take advantage

of SMP systems is threaded programming. This is not, strictly speaking, a parallel programming

model. Instead, some number of threads, which are sequences of instructions like a serial program,

that share access to resources such as memory, and that execute concurrently: each thread proceeds

independently of the others. This may be implemented by executing instructions from each thread

in an interleaved fashion on a single CPU, or simultaneously executing instructions from multiple

5



memory

CPU CPU CPU CPU

(a) Logical View

socket

CPU

ca
ch
e

CPU

ca
ch
eca
ch
e

m
em
or
y

socket

CPU

ca
ch
e

CPU

ca
ch
e ca
ch
e

m
em
or
y

(b) A possible implementation

Figure 2.1: Shared memory, as it is modeled and implemented

threads on several CPUs. This nondeterminism is managed with a variety of constructs, such as

mutexes, semaphores, and monitors.

POSIX threads [6] are a widely-used C API for threaded programming. Other APIs, such as

Java threads [7], Boost/C++ threads [8], or Windows threads [9], allow similar operations. These

APIs present a very simple abstraction of the underlying architecture, as shown in Figure 2.1(a):

each CPU has equal access to a shared memory pool, thus the physical site of thread execution is

irrelevant. A somewhat more realistic, but still simplified, depiction of an SMP system is shown

in Figure 2.1(b). This system shows how threads may not have equal access to memory resources,

and how thread placement may affect thread execution, for example by sharing cache resources.

The effect on execution time can be significant [10]; libraries such as libNUMA [11] allow control

over these sorts of execution details.

Alternatives to Threads: The threaded programming model mimics the shared-memory archi-

tecture, and is therefore natural, but is often difficult to use correctly [12]. A number of methods

have been designed to make using shared memory systems easier. One of the most widespread

is OpenMP [13], an API for C, C++, and Fortran. Typical OpenMP programs will not explicitly

create a number of threads. Instead, the programmer specifies that some operation, such as a reduc-

tion or the iterations of a loop, should be done in parallel. The OpenMP will distribute this work

to multiple threads to take advantage of multiple CPUs, but this is transparent to the programmer,

who is thus freed from much of the concurrency management required in threaded programming.

A common pattern in threaded programming is the thread pool. In a thread pool, there are

6



a number of threads, typically equal to the amount of physical parallelism available, that is, the

number of CPUs. The parallel application is broken into a number of tasks, which are units of work

than can be performed concurrently. Typically, there are far more tasks than threads, an they will be

stored in queues. Each thread dequeues tasks, completes them, and dequeues another task, until the

pool of tasks is exhausted. Creating and destroying threads typically incurs significant operating

system overhead; task queueing and dequeuing is typically far faster. This allows parallelism to be

specified at a relatively fine level.

Instead of manually implementing thread pools, programmers can take advantage of libraries

and compiler extensions that, like OpenMP, handle implementation details, allowing the program-

mer to simply specify the parallelism in the code. Cilk [14] was an early example of this approach,

now commercialized as Cilk Plus [15]. More recent examples include Intel’s Thread Building

Blocks [16], Apple’s Grand Central Dispatch [17], and Microsoft’s Task Parallel Library [18].

Concurrent languages like Google’s Go [19] allow specification of task-level parallelism with built-

in language constructs.

2.2 Distributed Memory Systems

In contrast to shared memory systems, where all processors have access to the same memory,

distributed memory describes a system where each processor has access to a private memory. In

a distributed memory system, accessing memory other than the processor’s own private memory

requires communication with another processor. A common example of distributed memory is the

computer cluster, shown in Figure 2.2: a collection of computers, typically linked by a high-speed

local network, and working closely together.

The Message Passing Interface [20], or MPI, is the de facto standard for cluster programming.

As with threaded programming, computation is specified as a set of instruction sequences running

concurrently, with a number of mechanisms for synchronization. These sequences are called pro-

cesses; it is usual for each process in an MPI application to be running identical code, so MPI is

sometimes called SPMD, or single-program, multiple-data. Like OpenMP, the programmer typi-

7



computer

CPU

memory

storage

computer

CPU

memory

storage

computer

CPU

memory

storage

NIC NIC NIC

network

Figure 2.2: A cluster computer

cally does not specify a number of processes at compile time; and will instead write partitioning

logic that detects the number of processes at runtime and divides work among them. MPI is an

API that handles the management of, and communication between, these processes.

The division between shared memory systems and distributed memory system is not black-

and-white. In modern clusters, there are multiple CPUs per compute node, which share memory

within the node, but not with CPUs on other nodes. Frequently this is simply ignored; a single

MPI process is created for each CPU, and the underlying MPI runtime may or may not optimize

communications between processes executing on the same node. Shared memory and message-

passing may also be explicitly combined, for example, by launching a single MPI process per node,

then using OpenMP in each process to exploit the multiple CPUs in each node.

Another approach is to represent the collective memory resources of the cluster as a single,

non-uniform memory, called a partitioned global address space, or PGAS. This programming

model is the subject of ongoing research, and is used by a number of languages such as X10 [21]

and Chapel [22].

2.3 GPGPU

Dedicated graphics processing hardware has existed for many years. Computer chips designed

solely to handle graphics are called GPUs, or graphics processing units. GPUs exist in many

forms; they are integrated with CPUs and other hardware in systems-on-chip designed for mo-

8



Table 2.1: Comparing GPU and CPU performance.

NVIDIA GeForce 580 Intel Core i7 950 Intel Core i7 970

GFLOPSa 1581 98.2 154
Priceb $500 $300 $900

TDP 244 W 130 W 130 W
Memory BW 192 GB/s 25.6 GB/s 25.6 GB/s

GFLOPs/$ 3.16 0.33 0.17
GFLOPs/W 6.48 0.76 1.18

a Theoretical peak, single-precision, multiply and add
b As of January, 2011

bile computing, as separate chips on a motherboard, and most commonly as daughterboards that

combine a GPU, dedicated video memory, and video output hardware, called video cards.

The last decade has seen growing interest in the use of these video cards for non-graphical

computation. This usage is now called GPGPU, or general-purpose computing on GPU. The rising

popularity of GPGPU is due to the impressive performance of GPU processors, both in absolute

terms and in relative efficiency. Table 2.1 above shows high-end, consumer-oriented GPU and

CPU parts from NVIDIA and Intel, respectively. This sort of direct comparison ignores many

important details, and even limited GPU–CPU comparisons are notoriously difficult; however, the

order-of-magnitude differences in performance-per-dollar and performance-per-watt have driven

widespread and growing adoption of GPUGPU programming.

2.3.1 CUDA

The Compute Unified Device Architecture, or CUDA, is a parallel architecture [23, 24] and pro-

gramming model [25] designed by the NVIDIA corporation and implemented in their GPU product

line. NVIDIA also provides a language called “C for CUDA” [26], compiler, and libraries used to

program their GPUs; these are often informally referred to as part of CUDA.

Developing CUDA was NVIDIA’s response to an already-active GPGPU programming com-

munity. While instances of using repurposed graphics hardware can be found going back many

years, the current form of GPGPU programming began after 2000 with the addition of programmable

shaders to commodity video cards. Programmers discovered that they could encode non-graphics

9



problems as pixels and shader operations using shader languages like OpenGL’s GLSL or Mi-

crosoft’s HLSL and execute them on a GPU. This proved useful but tedious, and by 2004, several

higher-level languages [27, 28] had emerged. These languages looked more like traditional C or

C++ and were compiled into shader code. NVIDIA released CUDA in early 2007 and has since

release several updates to add features requested by the GPGPU community.

Programming Model: CUDA applications are based on the execution of kernels on the GPU

device. The kernels are defined using C/C++ and are executed many times in parallel; each kernel

instance is called a thread in CUDA, although these threads are not the same as POSIX-style

threads. Like other SPMD models such as MPI, the threads have access at runtime to a unique

identifier, called the “thread ID” in CUDA. The threads are grouped in a programmer-specified

hierarchy, with the hundreds of threads grouped into blocks and potentially thousands of blocks

grouped into a grid.

The thread hierarchy is a convenient way to organize execution: both the blocks and grids can

be one-, two-, or three-dimensional to suit the needs of the application. Thread blocks are also

reflected in CUDA’s execution model and memory hierarchy. First, threads can use lightweight

synchronization mechanisms to cooperate with other threads in the same block, but the blocks

must be able to execute independently. Second, threads have access to a small, fast pool of memory,

called “shared memory,” that is visible to all threads in their block, and only persists for the duration

of the block’s execution.

Shared memory is one of several types of memory in the CUDA model. Global memory is

the other primary memory pool, which is visible to all blocks, and is much larger and slower than

shared memory. While researchers have implemented barriers [29] and work queues [30] at the

grid level, CUDA has no built-in mechanism for grid-level synchronization, so each block will

typically write to a separate region of global memory. Threads may either explicitly copy data

between these memories, or the shared memory can act as a cache. There are another two memory

types, constant and texture memory, that are read-only to threads and are used for more specialized

10



purposes.

The global memory pool is also the only memory accessible to the “host,” the computer running

the CUDA-accelerated application. The typical execution path of a CUDA program involves some

host code execution, copying input data from the host memory into the CUDA device’s global

memory, and launching a kernel. The results of kernel execution are placed back into global

memory, then copied into the host’s memory, which proceeds with normal execution. These copies

typically take place over a PCIe bus, which has far less bandwidth than the memory systems of the

host or device, and minimizing these host–device copies is a primary design concern for CUDA

developers.

Architecture and Optimization: The implementation of CUDA hardware depends heavily on

data parallelism and latency-hiding, which affects how CUDA programs are written. CUDA

GPUs consist of a number of streaming multiprocessors, or SMs, each of which has a number

of instruction-locked processors called “CUDA cores.” Nvida describes the CUDA architecture as

“Single Instruction Multiple Thread,” or SIMT. All threads in a block execute on the same SM;

the instruction-locked cores mean that divergent behavior among threads in a block is simulated

by masking off operations on some cores. This means that avoiding divergence is another design

priority for developers.

The global and shared memory pools have their own quirks, as well. For example, the shared

memory is arranged in a series of 32 banks, each of which can be accessed in parallel. The address

space is striped across these banks in four-byte words; writes to the same bank are serialized. Data

structures and algorithms must be designed to avoid these “bank conflicts.” The global memory

has its own set of rules governing which memory operations can occur in parallel, “coalescing” the

operations into a single memory transaction. The performance penalty associated with suboptimal

memory access patterns means that data structures must be carefully considered when writing GPU

kernels, and additional computational work may be offset if it leads to better access patterns [31].

Typically, far more threads are resident on an SM that are currently executing. Each SM can

11



switch threads without any overhead; this mechanism is used to hide the latency of memory opera-

tions, and even regular instructions [32, 26]. Maximizing the architecture’s ability to hide latency,

by avoiding synchronization instructions and tuning the number of threads in a block, is another

important design consideration for CUDA applications.

2.3.2 Alternatives to CUDA

Currently, CUDA is the most commonly-used GPU framework for high-performance computing.

OpenCL [33] is a popular and growing alternative which defines a language and programming

model similar to CUDA, but is vendor-agnostic. Code written using OpenCL is typically some-

what slower than code using CUDA [34]. Microsoft has also released their own framework, Di-

rectCompute, as part of their DirectX [35] family of APIs. PGI’s CUDA Fortran [36] replaces the

C for CUDA language with a Fortran-based equivalent.

Some alternatives seek to add a level of abstraction above CUDA, rather than replace it. The

Thrust [37] project is a C++ template library that allows the creation of CUDA code using data-

parallel primitives, such as scan, sort, or reduce, with interfaces similar to the C++ STL (standard

template library). The hiCUDA [38] language uses C pragmas and a source-to-source compiler to

automatically handle some CUDA programming tasks. OpenMPC [39] also uses pragmas, building

on OpenMP, to accomplish the same goal. Other alternatives run CUDA on a different underlying

architecture, such as an FPGA [40, 41] (field programmable gate array), or even traditional x86

CPUS [42].

Other threaded, data-parallel architectures have been created in response to flat single-thread

performance. AMD’s Accelerated Parallel Processing (APP) framework [43] for GPGPU is the

closest equivalent to CUDA. IBM’s Cell [44] and Intel’s Larrabee [45] both combine a large num-

ber of simple CPUs with wide vector units. Both AMD and Intel have started producing desktop

CPUs that integrate GPU cores [46, 47], and Intel’s AVX [48] is increasing the SIMD capabil-

ities of their desktop CPUs. Several studies have compared performance among the architec-

tures [49, 50].

12



2.3.3 Applications of GPGPU

Given the high FLOPs (floating point operations per second) capacity of GPUs and their data-

parallel architecture, many have used GPUs for linear algebra and dense matrix operations. CUBLAS [51]

and MAGMA [52] implement a CUDA-accelerated BLAS interface which can be used with HPL [53];

while the raw performance is impressive, the efficiency (measured flops vs. theoretical peak) is

lower than CPU-based clusters [54, 55]. Sparse matrix operations have also been accelerated by

finding data structures that efficiently encode such matrices for GPU processing [56, 57].

GPUs are being used for a wide variety of other applications. These range from sorting [58]

and FFT (fast Fourier transform) calculation [59] to biomolecular simulation [60], sequence align-

ment [29], and quantum chromodynamics [61]. As GPUs become more common, they are also

being used in non-HPC applications such as real-time systems [62] and databases [63].

2.4 Hybrid Clusters

Cluster computers and GPUs are both attractive platforms for high-performance computing due

to their low price/performance ratios. Early GPU-equipped clusters [64] predate CUDA, but are

identical to modern hybrid clusters in configuration. Where a typical cluster is group of commodity

server nodes, frequently connected by a high-performance interconnect, a hybrid cluster attaches

one or more GPUs to each node as daughterboards connected via the PCIe bus.

This model of normal-computer-plus extends to programming these clusters, as well. The

GPUs cannot communicate directly with other GPUs, even on the same node, so hybrid-cluster

applications function essentially identically to other cluster applications. They will typically use

MPI; the individual MPI processes will accelerate selected functions on a GPU. Because moving

data from GPU to GPU must always involve copying from a GPU, to a CPU, then a network

transfer, then another CPU to GPU transfer, minimizing communication and hiding communication

latency are even more important to hybrid applications than other cluster software. MPI libraries

and cluster scheduling software are still largely GPU-agnostic, which causes some difficulties [65],

13



but these systems are being updated to be GPU-aware.

The TSUBAME computers in Japan were some of the first to adopt GPU use for large, produc-

tion compute clusters — TSUBAME 1.2 was the first GPU-equipped cluster on the TOP500 list,

in 2008. Now, TSUBAME 2.0 is one of the three GPU-equipped computers in the of the top five

systems listed by TOP500 [66].

Hybrid clusters are being applied to a range of computing problems, starting with basic tools

such as Linpack [55], and on to N-body simulation [67, 68, 69], molecular dynamics [70], weather

simulation [71], and more. These authors all report that the design considerations of typical

GPGPU programming, such as minimizing PCIe communication, remain important; several also

emphasize the importance of overlapping GPU and CPU computation, so that the considerable

CPU power of these clusters is not wasted.

The term “hybrid clusters” applies not only to GPU-equipped clusters, but to any cluster that

executes code on more than one type of architecture. Like the GPU clusters above, these computers

will usually have CPU-equipped nodes with one or more accelerators. The most well-known is

Roadrunner [72], which use Cell processors in addition to AMD CPUs. Other accelerators have

been used, such as FPGAs [73] and specialized floating-point accelerators from ClearSpeed, which

were also used in TSUBAME.

14



Chapter 3

Viewshed Analysis

This chapter describes a new viewshed analysis algorithm, and a parallel implementation of that

algorithm. Viewshed analysis is described in Section 3.1, while the rest of the chapter describes

the new algorithm; an implementation of it named “pvshed,” made as part of this dissertation; and

the performance of pvshed.

The new implementation described here is orders of magnitude faster than previous viewshed

analysis software. This speedup is partially due to algorithmic improvements; additionally, pvshed

can take advantage of the SMP systems described in Section 2.1. This additional speed is useful,

both to allow current analysis methods to complete in reasonable times on larger data sets, and

to enable the development of new algorithms that require repeated viewshed analysis, which are

impractical with slower viewshed analysis.

3.1 What is Viewshed Analysis?

A viewshed is the terrain visible from a fixed viewpoint: “If I stand here, what can I see?” Viewshed

analysis has many applications: placement of communication [74] or radar facilities [75, 76],

which require good visibility; calculating the “zone of visual influence,” areas where a development

will have a visual impact; designing nature trails for maximum visibility [77, 78]; correcting aerial

or satellite imagery for illumination variances [79]; and finding the fewest required observers to

watch a given terrain [80] are among its uses.

Viewshed analysis processes a digital elevation model, or DEM, to determine the viewshed

from a given viewpoint. DEMs are typically in one of three forms: Triangulated irregular net-

works, or TINs; heightmaps, also called raster or grid DEMs; and contours [81]. Heightmaps

store elevation data for a terrain in a regularly-spaced array of samples, and are more common

in modern geographic information systems (GIS) applications. The expansion of remote sensing

15



technologies is creating ever-growing amounts of DEM data. For example, the National Elevation

Database [82] provides raster DEM data at 30-meter resolution or finer for the entire continental

United States. LIDAR (light detection and ranging) uses laser pulses to measure range to a target;

satellite- or aircraft-mounted LIDAR is now providing DEM data at 1-meter and even sub-meter

resolution.

Strictly speaking, viewshed analysis calculates a boolean answer for each height sample, visible

or obstructed, and may be represented by a matrix of single bits that correspond to the terrain

samples. However, GIS systems are typically interested in not just a boolean answer, but the

maximum obscured height; that is, how tall a pole can be placed at that point on the terrain and

still be unseen from the viewpoint? Because visibility is bidirectional, viewshed analysis can also

be used to answer the converse of the original question: “If I stand here, what can see me?”

3.2 Viewshed Background

The viewshed analysis problem was described at least as early as 1986 [83], and applications of

viewshed analysis were explored over several years [84, 85]. In these papers, TIN models were

preferred. Over time, the heightmap became the preferred form for DEMs. The viewshed for a

grid DEM is as follows: The DEM defines the input terrain and consists of a set of height samples.

Each sample is a three-dimensional point, and the samples are spaced in a regular grid above the

xy plane. The viewshed is the set of all the height samples visible from the viewpoint. There are

varying methods of determining visibility between two points, but in general, a target point T is

visible to a viewpoint V if no part of the terrain intersects the line segment V T .

3.2.1 Brute Force and Approximate Methods

The most straightforward approach to viewshed analysis of heightmaps is simple; visibility for

each sample point is determined by checking all height samples between the viewpoint and the

target sample point. If and only if all intervening samples are below the sightline connecting the

viewpoint and the target, the target is visible. For a terrain S with n× n samples, this is an O(n3)

16



V

Figure 3.1: The planar sweep described by van Krevald. Looking down onto the terrain, a half-line
is rotated around the viewpoint V . Pixels (shown in red) that intersect the line are stored in the
status structure, ordered by distance from the viewpoint.

algorithm: for each of the n2 samples, O(n) intervening samples between the viewpoint and the

target sample must be checked.

Because the brute force approach requires a great of computation time, several authors explored

approximate methods. The Xdraw method [86] was highly influential. It operates by growing a

“ring” of line-of-sight information around the viewpoint; the sightline to a target is determined by

interpolating between the two samples immediately closer to the viewpoint. This approach has

the disadvantage of diffusing irrelevant information — through repeated interpolation, samples far

from the sightline contribute to the line-of-sight determination.

3.2.2 The Planar Sweep Approach

Later, van Krevald described [87] how to perform viewshed analysis in O(n2 lg n) time using the

planar sweep concept from computational geometry. The new approach described later in this

chapter is also based on the planar sweep. Van Krevald considered the height samples as the

centers of square pixels, as shown in Figure 3.1. Conceptually, van Krevald’s algorithm rotates

a half-line around the viewpoint in a full circle. The pixels beneath the sweep line are stored in

a status structure, added as the sweep line first intersects the pixel, then removed as the sweep

line leaves the pixel. The status structure is used to determine the visibility of each pixel; this is

described in more detail, below.

17



The Status Structure: Key to this method is the use of a self-balancing binary search tree, such

as a red-black tree, as a status structure to track the cells pixels under the sweep line. The pixels

are ordered within the tree by their distance from the viewpoint. A node in the tree stores a single

pixel. The tree is augmented by associating an extra number with each node. For the leaf nodes,

this number is the slope from the viewpoint to the height sample represented by the event stored

at that node. For internal nodes, the number stored is the maximum of the two slopes stored by its

two children. These numbers are updated bottom-up after each update, so that internal nodes will

always store the maximum slope of their subtree, and any update takes O(lg n) time.

This augmentation allows van Krevald’s status structure to answer visibility questions inO(lg n)

time. The tree is ordered so that leftmost events are closer to the viewpoint. During tree traversal,

each time the right child is chosen, the left child is the root of a subtree whose members are all

closer to the viewpoint. Each of these left child nodes records the maximum slope of its subtree,

and there will be at most O(lg n) left nodes during tree traversal. The maximum of these values is

the greatest slope between a target point and the viewpoint. This greatest slope can be used to de-

termine visibility: the product of the slope and the horizontal distance to the target is the maximum

obscured height at the location of the target. This is discussed in more detail in Subsection 3.3.1.

The Sweep: Using the status structure, van Krevald describes the sweep algorithm as follows:

1. Each sample is considered the center of a pixel. For each pixel, record three events: an “add”

event at the point when the sweep line first crosses the pixel, a “search” event when the point

when the sweep line crosses the center of the pixel, and a “remove” event at the point when

the sweep line leaves the pixel. There are n2 pixels, which means there are 3n2 events; listing

these events takes O(n2) time.

2. The angle of each event is measured between a line defined by the viewpoint and the event,

and a line parallel to the x-axis intersecting the viewpoint. Sort the events by their angle; sort

events with the same angle by distance from the viewpoint. This has the effect of listing all

events as they appear from the viewpoint, turning counter-clockwise. Sorting the 3n2 events

18



takes O(n2 lg n) time.

3. Simulate the planar sweep by repeatedly removing events from the beginning of the list

and processing them. When processing “add” or “remove” events, the pixel in question is

added or removed from the status structure as described above. Processing a “search” event

corresponds to the sweep line passing directly over the center of a pixel. As the sweep line

crosses the center of pixel P , the status structure stores all the pixels between the viewpoint

and P , and the maximum intervening slope is used to determine the visibility of P . Each

of the 3n2 events requires a O(n2) status structure operation, so the sweep takes O(n2 lg n)

time.

The three phases of the algorithm, listing events, sorting events, and processing events, takeO(n2),

O(n2 lg n), and O(n2 lg n) time, respectively. The combined execution time is also O(n2 lg n).

Van Krevald did not implement his algorithm, and several authors continued to explore alter-

natives, such as approximate methods [88, 89, 90, 91, 92] or GPU acceleration [93]. However,

some work [94, 95, 96] has used the rotational-sweep approach while focusing on minimizing I/O

operations for large DEMs.

3.3 A New Approach

The new viewshed analysis algorithm described in this chapter is based on the planar sweep and

shares the O(n2 lg n) runtime for n×n grid DEMs. However, it uses a number of techniques to in-

crease performance. First, it avoids the use of computationally-expensive trigonometric and square

root functions to determine visibility and for the planar sweep, as described in Subsection 3.3.1

and Subsection 3.3.5, respectively. Second, it uses a status structure, described in Subsection 3.3.6,

which is optimized for for visibility calculations on grid DEMs. Third, it parallelizes the viewshed

computation, as described in Subsection 3.3.8, to take advantage of SMP computers.

19



V

T

x

z

Figure 3.2: Calculating visibility of T from viewpoint V . The original terrain is shown in profile
as a heavy dashed line; the terrain is represented as an array of height samples, shown as black
dots.

3.3.1 Determining Visibility

Approaches to viewshed analysis vary in how they determine the visibility of a target point from

the viewpoint. The method used in this chapter is described below, starting with a simplified

version where the xy-projections of the viewpoint, target, and height samples are all collinear, then

generalizing to visibility over a two-dimensional grid.

Simplified Visibility: Consider determining the visibility of a target point T from a viewpoint

V . Figure 3.2 shows an example where T is not visible from V , because the line segment V T , also

known as the sightline, intersects the terrain between V and T . In general, T will be visible if and

only if all samples between V and T are below the sightline.

This condition can be verified by comparing the slope of V T with the slope from V to the

intervening samples. T is visible from V if and only if

Tz − Vz
Tx − Vx

>
Sz − Vz
Sx − Vx

for all samples S such that Vx < Sx < Tx. To perform this comparison, many viewshed algorithms

will first calculate the angle of the slopes using the arctangent, then compare the values of the

slopes. In effect, this is determining the result of the above comparison by evaluating:

arctan

(
Tz − Vz
Tx − Vx

)
> arctan

(
Sz − Vz
Sx − Vx

)
.

20



However, the arctangent is a computationally expensive function, and there is no need to obtain the

angle of the slope. The approach in this chapter avoids using the arctangent by storing the slopes

as a rational data type; that is, it simply stores the vertical and horizontal differences. Slopes stored

in this fashion can be compared by cross-multiplying:

(Tz − Vz)× (Sx − Vx) > (Sz − Vz)× (Tx − Vx).

The actual angle of the slope is never calculated.

If the maximum of all the intervening sample slopes is known, then visibility can be determined

with a single comparison. If the sightline is above the intervening sample with the greatest slope,

it will also be above all other intervening samples. Also, the maximum intervening slope can be

used to calculate the obscured height at a target; for a maximum slope m, the obscured height h at

Tx is determined by

h = Vz +m× (Tx − Vx)− Tz. (3.1)

Visibility Over a Grid: Computing visibility over a grid of height samples adds complexity,

because the sightline does not usually pass directly over intervening samples. This raises two

questions: what points along the sightline should be checked to see if the obstruct the sightline,

and what height values should be used at those locations? Here, it is useful to compare to van

Krevald’s approach, shown in Figure 3.3(a). He considered each sample point to be the center of

a square cell. If the line segment V T crosses a cell with center P and the slope of V P is greater

than the slope of V T , then T is not visible from V .

In contrast, Figure 3.3(b) illustrates the strategy used in this chapter. It checks for obstructions

where the xy projection of the sightline intersects the sample gridlines. For a given sightline,

only intersections with either x- or y-gridlines are checked, choosing based on which results in

the greater number of checks. Put another way, checks are performed at grid intersection along

the longest axis of the sightline. Where the intersection with a gridline coincides with a sample,

as occurs at P , the sample height is used to check for obstruction. However, in most cases the

21



V

A

B

(a) In van Krevald’s approach, each height
sample is interpreted as a cell. A cell may
obstruct any sightline passing over it. Sight-
line V A is potentially blocked by any of the
red cells; sightline V B can be blocked by
any of the green cells.

V

A

B

P

(b) Top-down view of example sightlines V A
and V B. Intervening values are interpolated be-
tween the pairs of samples marked in red for V A
and green for V B. No interpolation is required
at P , where the sightline passes directly over a
height sample.

Figure 3.3: Interpolating heights over a raster DEM

intersection with a gridline will occur between two samples. In this case, a height is interpolated

based on those two points, which are the nearest neighbors along the gridline. The interpolation

method is discussed in Subsection 3.3.2.

Determining the true slope of a line segment over a grid requires calculating the Euclidean

distance between sample points. Consider Figure 3.4: the slope of V P is

mV P =
Pz − Vz√

(Px − Vx)2 + (Py − Vy)2
.

Comparing mV P and mV T to determine visibility requires multiple uses of the square root func-

tion and is computationally expensive. Since the objective is only to compare the slopes, not to

determine their actual values, only comparing the x- or y-components of the slopes is required.

V

P
T

Figure 3.4: Component distances

22



For example, the x-components of the slopes can be compared using

Pz − Vz
Px − Vx

?

≥ Tz − Vz
Tx − Vx

.

This correctly determines which slope is greater, while using considerably less arithmetic.

3.3.2 Interpolation

When a line of sight passes between two sample points, some form of interpolation is necessary.

This chapter uses one of the simplest possible methods, the minimum function: the height between

two neighbors is considered to be level with the lowest of those neighbors. This has several ad-

vantages. First, determining the minimum is computationally inexpensive, while also obviating

any need to calculate the distance to the neighbors. Figure 3.5 demonstrates the second and more

important advantage: all sightlines passing between two neighbors can reuse the same interpolated

value.

Using minimum-based interpolation may seem like an oversimplification, but it is practical.

Where interpolation occurs far from the viewpoint, or where there is a small difference between

neighbors, the choice of interpolation method will make little difference in the viewshed. Where

there are dramatic differences in elevation near the viewpoint, the interpolation method can make

a large difference, but no interpolation method is guaranteed to be more accurate. The choice of

minimum is meant to be conservative: any point that is found to be hidden is more likely to be

hidden. The maximum function may be used instead, to bias the analysis so that visible points are

B C

V

A

P

Q

Figure 3.5: Sightlines V A, V B, and V C all require an interpolated value between P and Q.
Interpolating using the the minimum of the heights at P and Q, all three can use the same value.

23



V

Figure 3.6: Correcting for Earth’s curvature: The original heights, in red, are relative to the surface
of the Earth. These heights are mapped to new heights, in green, relative to a plane tangent to the
surface of the Earth at the viewpoint.

very likely to be visible. A rough margin of error can be established by performing the analysis

twice, once with each method [86].

3.3.3 Corrections for Earth’s Curvature and Light Refraction

Viewshed as described above considers the input heightmaps as a set of heights above a plane. In

reality, height samples are relative to the curved surface of the Earth. For some applications, the

error introduced by ignoring the Earth’s curvature will be acceptable; the controlling factors are

the accuracy required by the application and the maximum view distance. At one kilometer, the

vertical error is 7.8 cm; at 16 km, the vertical error is 20 m.

For applications where this error is not acceptable, planar viewshed models can still be used.

The heights relative to the surface of the Earth are mapped to height relative to the surface of a

plane tangent to the Earth directly beneath the viewpoint. This is illustrated in Figure 3.6 and uses

several approximations:

• The Earth is modeled as a sphere of radius R, where R = 6371 km. The accuracy of this

approximation is discussed elsewhere and beyond the scope of this paper.

• The distance between samples along the plane is considered equal to the distance along the

surface of the Earth. For a horizontal distance from the viewpoint of 16 km, this translates

to a horizontal error of less than 3.4 cm.

Practically, this process takes an input heightmap and produces a new heightmap where samples

further from the viewpoint are lower, simulating Earth’s curvature. Viewshed calculation can pro-

ceed as if all heights are relative to a reference plane.

24



The adjustment for a given height sample is derived as follows: consider a height sample S, of

height h from the Earth’s surface, and which is a horizontal distance d from the viewpoint V . Let

the angle θ be ∠SEV where E is the center of the Earth, and let R be the radius of the Earth. A

point on the Earth’s surface at θ is R cos θ distant from E along the EV radius, while the Earth’s

surface at V is R along the same radius. Therefore, the surface at V appears to be R − R cos θ

lower than the surface at V . Subtracting this amount from h gives the apparent height h′:

h′ = h− (R−R cos θ). (3.2)

To avoid computationally expensive trigonometric calculations, the cos θ term can be approximated

with the first terms of the Maclaurin series of the cosine, 1− (θ2)/2.

h′ = h−R
(
θ2

2

)
.

The error introduced by this approximation is no larger than the product of R and the next term of

the Maclaurin series, θ4/24. For a distance along the surface of 16 km, this is a maximum vertical

error approximately equal to 0.01 mm. Because θ = d/R, the equation can be rewritten as:

h′ = h− d2

2R
.

Refraction has the effect of making the Earth appear to have less curvature by bending light and

other EMR along the Earth’s surface. This is represented by adding a coefficient n to the previous

equation:

h′ = h− n
(
d2

2R

)
. (3.3)

The value of n varies based on atmospheric conditions and the wavelength of the radiation; the

value of 6/7 is typically used for visible light.

25



3.3.4 Integer Math

An interesting property of this approach to visibility is that it need not use floating-point arith-

metic to maintain precision. The input heights can be represented using fixed-point numbers; for

example, heights can be stored as an integral number of centimeters, rather than fractional meters.

Horizontal distances are measured in terms of integral numbers of grid intervals. Slopes are stored

as the ratio of these values. The output is calculated using Equation 3.1, where division by the de-

nominator of m causes a single loss of precision due to integer division. This loss of precision will

be less than a single unit of height. However, if the curvature correction described in the previous

section is used, floating-point arithmetic may be required.

The implementation described later in this chapter showed little difference in performance

between using fixed- or floating-point arithmetic, and fixed-point is used for the results shown in

Section 3.4. Lack of floating-point arithmetic makes this approach well-suited for systems that

lack FPUs.

3.3.5 Planar Sweep

Like van Krevald’s algorithm, the approach in this chapter is based on a rotational planar sweep.

Conceptually, the viewpoint and input DEM are projected onto the xy-plane, and a half-line is

rotated around the viewpoint. This approach maintains a list of the interpolated values currently

under the sweep line in the status structure. The status structure is updated when the sweep line

crosses over DEM sample points. When the status structure changes, the change is called an event;

the list of all events in the order they will be processed is the event list. The event list, the status

structure, and how they are used, is described in more detail below.

Event List: First, an unsorted list of events is created. There is one event per height sample

in the DEM, and each event is simply the row and column of the sample. Then, the samples

are sorted based on their angle with the viewpoint, as shown in Figure 3.7. As before, avoiding

expensive trigonometric functions will reduce execution time. Again, calculating the actual angle is

26



V 1 2 3 420 19

23 24 25 26 2721 22

14 12 11 9 817 15

13 10 7 6 518 16

Figure 3.7: In the event list, samples in the grid are ordered as they appear from the viewpoint, ro-
tating counter-clockwise. Collinear samples, as with samples 1–4, are sorted by ascending distance
from the viewpoint.

unnecessary. Instead, the cross product
−→
V A×

−−→
V B can be used to determine ordering, by calculating

(Ax − Vx)× (By − Vy)− (Bx − Vx)× (Ay − Vy).

If the result is positive, B is counter-clockwise from A; if the result is negative, B is clockwise

from A.

The cross product alone cannot determine the ordering; there are several special cases to con-

sider. First, the viewpoint divides the surrounding samples into four quadrants. A vector in the

fourth quadrant is clockwise from a vector in the first quadrant, but the quadrants should be swept

in order; that is, all events in the first quadrant should be swept before all events in the second

quadrant, etc. The quadrant of any given sample can be determined by comparing the row and col-

umn indices of the samples with indices of the viewpoint. If they are in different quadrants, there

is no need to calculate the cross product. Second, if the cross product is zero, then the samples are

collinear with the viewpoint. In this case, the sample closer to the viewpoint is first in the event list

ordering. As above, calculating the Euclidean distance, which requires calculating a square root,

can be avoided by using the difference along the x- or y-axis to determine which sample is closer

to the viewpoint.

In pvshed, this ordering logic is encapsulated in a function object, which is an object that can be

called as though it were an ordinary function. In C++, function objects are instances of any class

that overloads operator(). Function objects are frequently called functors, though they should

27



not be confused with the mathematical concept of the same name. The pvshed implementation of

the sort described above uses a functor that stores the location of the viewpoint and can be used to

compare two points to determine their ordering. The C++ STL provides several sorting functions

that allow the use of user-defined functors for comparison, so pvshed is requires no additional

sorting logic beyond that provided in the STL.

The viewshed area can be limited by omitting events from the initial, unsorted event list. One

common example is restricting viewshed to a maximum visual radius. This can be accomplished

by generating events for only the samples within the specified radius of the viewpoint, rather than

for every sample in the input DEM. The rest of the algorithm remains unchanged.

3.3.6 Optimized Status Structure

The status structure holds a dynamically-maintained ordered list of the events as they occur along

the sweep line. In most sweep algorithms, the status structure is some type of self-balancing binary

search tree, such as a red-black tree, which allows updates and queries in logarithmic time. Self-

balancing binary search trees have optimal asymptotic time complexities, but several factors can

reduce the performance observed from real-world implementations of these data structures:

1. They are pointer-based: each node contains data and pointers to child nodes. The pointers

inflate the size of the tree structure, making it less likely to fit into cache. Tree traversal is

based on “pointer-chasing.” It requires dereferencing a series of child pointers.

2. Their self-balancing behavior is not achieved without overhead. Additional data must be

stored at each node to track tree structure, the structure must be checked whenever the tree

is modified, and rebalancing operations occur whenever the tree becomes unbalanced.

3. In most implementations, some kind of allocation or deallocation, such as the C++ new/delete

operations, are performed whenever adding or removing nodes to tree, adding additional

overhead.

The approach to determining visibility described above — checking for obstructions at grid

lines — does not require a self-balancing binary tree. This is for three reasons:

28



1 2 3 4 5 6 7 8

Figure 3.8: An implicit binary tree stores a tree structure in an array. The left child of node n is
node 2n; the right child is node 2n+ 1.

1. The size of the status structure can be determined before the sweep begins. As the sweep

progresses, there will be an event one grid interval from the viewpoint, another event two

grid intervals away, etc., up to the maximum distance from the viewpoint to an edge of

the DEM. The maximum number of intervening points can be determined before the sweep

starts: it will be the greatest component distance from the observer to an edge of the DEM.

For example, given a 500×500 DEM and an observer at (200, 100), there will be at most

400 intervening points to store in the status structure, when the sweep line is oriented in the

positive-y direction.

2. The shape of the status structure never changes. During the sweep, intervening points are

never removed, only updated. Put another way, the position of an intervening point in the

structure never changes. For example, for an intervening point five units aways from the

observer, there will always be four other points between it and the observer.

3. The status structure can use integer keys. Rather than sorting the events based on a real-

valued distance from the viewpoint, they can by sorted based on the number of grid intervals

between them and the viewpoint. This number is always unique for each event, that is, there

is always a single event one interval away, another two away, etc. Unique integer keys map

naturally to array offsets.

For these reasons, a dynamic data structure is not required to handle variable amounts of data,

nor to maintain ordering as points are added and removed. Instead, an implicit binary tree can be

used. As shown in Figure 3.8, in an implicit tree, the location of the nodes determines parent/child

relationships, rather than pointers. Because of this, the structure of the tree cannot change. How-

ever, parent and child nodes can be found with simple integer operations (right and left shift, re-

29



0
8

1
9

2
10

3
11

4
12

0–1
4

2–3
5

4–5
6

5
13

6–7
7

0–3
2

4–7
3

0–7
1

6
14

7
15

Figure 3.9: The new status structure is based on an implicit binary tree. Italic numbers are the
index of the node in the underlying array. Bold numbers are leaf node indices. The internal nodes
store the maximum slope over the indicated range of leaf nodes.

spectively), rather the dereferencing a pointer. Also, the implicit tree is optimally compact, because

the nodes only store data, not keys or pointers.

The new status structure proposed here is built on top of an implicit binary tree is shown in

Figure 3.9. The status structure records the index of the first leaf at initialization time. Notice that

all the leaves are in a contiguous array, so any given leaf can be found by offsetting from the first.

All intervening height samples are stored in the leaves, based on their distance (in grid intervals)

from the viewpoint. Internal nodes store the maximum slope of all nodes in their subtree. Because

is based on an implicit binary tree, the internal nodes must always form a complete binary tree.

For trees with n leaves, there will be between n− 1 and 2n− 3 internal nodes.

Any time a leaf value is modified, the internal nodes must be updated as well. For example,

consider modifying leaf 3. First the leaf value itself is changed at index 11. The slopes at leaves 2

and 3 are compared and the maximum is placed in their parent node at index 5. In the same fashion,

that node is compared with its sibling, and its parent is modified; the process repeats in a bottom-up

fashion until reaching the tree root at index 1. Modifying the tree is an O(lg n) operation.

The internal nodes allow this data structure to act as an online variant of the all-prefix-sums,

or scan operation. The scan operation takes a binary associative operator ⊕ and an ordered list

〈a0, a1, . . . , an−1〉, and returns the ordered list 〈I, a0, (a0⊕a1), . . . , (a0⊕a1⊕· · ·⊕an−2)〉, where

I is the identity element for ⊕. The scan operation is useful for determining visibility [97] where

maximum serves as the ⊕ operation, and the input list is the array of leaf values. The prefix of a

30



1: procedure PREFIX(tree, n)
2: t← I
3: i← 2
4: m← 2k

5: while n ∧ (m− 1) do
6: m← m÷ 2
7: if m ∧ n then
8: t← MAX(t, tree[i])
9: i← i+ 1

10: end if
11: i← i× 2
12: end while
13: return t
14: end procedure

Figure 3.10: Finding the maximum slope before n in the status structure

leaf value is therefore the maximum intervening slope.

For example, to determine the visibility of a target point 6 grid intervals away from the view-

point, the maximum slope of all intervening samples (0–5) is required. Figure 3.9 shows that node

2 holds the maximum slope of leaves 0 through 3, while node 6 holds the maximum of slope of

leaves 4 and 5, so the maximum of values 0 through 5 can be found by taking the maximum of

node 2 and node 6. As with van Krevald’s algorithm, this is considering the left subtree each time

the tree traversal chooses the right child. However, since there are no explicit child links, this is

based on index arithmetic: each “1” in the binary representation of a node index corresponds to

choosing the right child.

Figure 3.10 shows how to find the prefix of an arbitrary leaf n. If the tree is depth k, n has a

k-bit binary representation. Let ∧ be the bitwise-and operation. The main loop examines one bit

of n at a time, corresponding to a single level of the tree. At the beginning of each iteration, index

i is at the left child of a node. The bitmask m is used to determine if the bit for this level is set,

which is equivalent to choosing the right child. If so, the temporary value t is updated with the

maximum of its current value and the left child value, and the index i is moved to the right child.

At the end of the loop, i is moved to next left child. The loop condition at line 5 checks if there are

any further bits set.

31



In line 2 a temporary value t is initialized with the identity element I . However, there is no

identity element for maximum, i.e. there is no smallest slope. Instead, a near-vertical negative slope

— for example the ratio −8000/1 can be used. In practice, this will be lower than any measured

slope. This I value is also used to initialize all internal nodes of the status structure. Note that on

line 3, the index of the first left child is initialized. The algorithm never checks the value at the

root, because the maximum slope of all values in the tree is never required.

In contrast with the disadvantages of self-balancing binary trees listed above, this status struc-

ture is far more compact, has far less overhead during tree traversal, and has no overhead due to

rebalancing or resource allocation. Updates and reads from the status structure are inside the inner

loop of the rotational sweep algorithm described below. The advantages of the new status structure

do not change the asymptotic runtime, but will reduce the measured execution time substantially.

The reduced size of the status structure also means that it will fit in the cache of modern CPUs for

any realistic viewshed problem.

3.3.7 Sweep Algorithm

After the sorted event list is created, viewshed analysis can proceed to the planar sweep. First,

consider sweeping only the points in the octant from zero degrees up to 45 degrees from the

viewpoint. In this octant, interpolation will always occur on y grid lines. Where the input DEM is

w wide, begin by allocating a status structure large enough to hold w − Vx events, the number of

gridlines from the viewpoint to the right edge of the DEM.

Figure 3.11 describes the sweep algorithm. The event listE is a sequence of n events, 〈E0, E1, . . . , En−1〉.

Each event is an (x, y) coordinate. G is the input DEM; the notation G(Ei) is the height recorded

at the grid coordinates specified by Ei. R is the output raster of maximum obscured heights. S

is the status structure. On line 6, the status structure is used to determine the maximum interven-

ing slope. On line 7, the MAX-HEIGHT function uses Equation 3.1 to determine the maximum

obstructed height at the location of Ei from the viewpoint V .

In most cases, when an event is processed corresponding to a height sample at (x, y), interpola-

32



1: procedure SWEEP(V,E,G,R)
2: Initialize status structure S
3: j ← 0
4: for i← 0 to n− 2 do
5: (x, y)← Ei

6: slope← PREFIX(S, x− Vx)
7: R(Ei)← MAX-HEIGHT(Vz, slope)
8: if COLLINEAR(V,Ei, Ei+1) then
9: S[x− Vx]← (G(Ei)− Vz)/(x− Vx)

10: else
11: while j ≤ i do
12: (x, y)← Ej

13: h← MIN(G(Ej), G(x, y + 1))
14: S[x− Vx]← (h− Vz)/(x− Vx)
15: j ← j + 1
16: end while
17: end if
18: end for
19: R(Ei)← MAXHEIGHT(S,G,En−1)
20: end procedure

Figure 3.11: Using the event list and status structure to implement the planar sweep

tion (using the minimum) is performed between that sample and at the sample at (x, y+1). Using

the interpolated height, the slope is calculated and inserted in the status structure at leaf x − Vx.

However, when events are collinear with the viewpoint, for example P in 3.3(b), the sample value

is used without interpolation. Line 8 checks for collinear points. The index j is used to track

the next point requiring interpolation. When a series of collinear events are processed, j will lag

behind; when the next non-collinear event is encountered, the while loop at line 11 will advance j

to i while inserting the interpolated values.

The direction of interpolation depends on the location of the event relative to the viewshed.

For example, events in the the octant between 0 and 45 degrees from the viewpoint will always

interpolate in the positive-y direction as shown in Figure 3.11 and described in the previous para-

graph. However, events in the next octant will interpolate in the negative-x direction. To avoid

determining interpolation direction inside the sweep loop, the event list is partitioned before start-

ing the sweep. Using a binary search, and the same functor used to sort the events, the events are

33



divided into eight octants. Because the events at octant boundaries are collinear, all values from a

previous octant will be replaced at the boundary of a new octant, and the processing of each octant

is completely independent.

The pvshed implementation uses C++ templates to create a family of four nearly-identical

sweep functions, one for each interpolation direction. The correct sweep function is called for each

octant. This avoids checking for interpolation direction, and several other checks. For example, in

each of the sweep functions, the events will always be the same direction from the viewpoint, so

each function can use x − Vx or Vx − x as appropriate, rather than computing the absolute value.

Also, boundary-checking code, which is omitted from the description in Figure 3.11, only needs

to check one direction.

3.3.8 Parallelization

The pvshed implementation takes advantage of multi-core processors by using the Intel Threading

Building Blocks library described in Chapter 2. Task-level parallelism is identified in several areas,

and the TBB runtime handles dividing those tasks among available CPU cores.

The event list sort is a substantial part of pvshed’s execution time. Table 3.2 shows the sort

comprises 47% of the total execution time in a serial implementation. Parallel sort algorithms are

a well-explored topic, and no custom parallel sorting logic is required in pvshed, because TBB

provides a tbb::parallel sort function with the same interface as std::sort from the

C++ STL. The pleasant consequence is that no additional code is required to parallelize the event

list sorting.

The sweep itself is the majority of the remaining execution time. The sweep is already parti-

tioned into independent octants, as described above. TBB provides a function, tbb::parallel invoke,

which launches a number of functions in parallel. The launched functions are required to have no

arguments, so we wrap the sweep function and its arguments in another functor class. After creat-

ing a functor instance for each of the octant sweeps, all of the functors are launched in parallel.

34



Table 3.1: Measured performance.

DEM size pvshed GRASS MATLAB ArcInfoa

(N ×N ) (seconds) (seconds) (seconds) (seconds)

500 0.015 5 10.613 1
1000 0.056 115 30.616 3
2000 0.236 1668 203.294 8
4000 1.041 - 1446.834 26
8000 4.531 - - -
16000 20.992 - - -
19000 34.102 - - -

a Measured on a different machine; see text.

3.4 Experimental Results

The implementation of the viewshed analysis described above is a program called pvshed. It is

written in C++, and the results in this section are based on using the GNU g++ 4.4.3 compiler

and optimization flag -O3. The performance was measured on a computer with an Intel Core i7

930 2.8 Ghz CPU and 6 GB of RAM. Timing was performed with the gettimeofday function.

Reported execution times include only the viewshed processing time; they do not include file I/O.

3.4.1 Performance

Table 3.1 shows the measured performance of pvshed under the “viewshed” column. The perfor-

mance of several widely-available viewshed implementations are also shown:

• GRASS [98] is an open-source GIS which provides a viewshed analysis function named

r.los. Execution times are as reported by the GRASS command interpreter.

• MATLAB has a built-in function viewshed; reported execution times were measured using

the tic and toc functions.

• ArcInfo is a widely-used desktop GIS which provides viewshed analysis. The results for this

application were measured on a different computer, with an Intel Core 2 Q6700 2.66 GHz

CPU and 8 GB of RAM. Execution times are as reported by the ArcInfo software.

35



Table 3.2: Parallel scaling of the viewshed analysis of a 16k×16k DEM using 1–8 threads.

serial
version

parallel threads

1 2 4 8

Event
Sort

time (s) 37.5 38.2 20.2 10.9 8.2
speedup - 0.98 1.86 3.44 4.57
efficiency - 98% 93% 86% -

Planar
Sweep

time (s) 45.6 45.6 23.0 11.8 10.3
speedup - 1.00 1.98 3.86 4.43
efficiency - 100% 99% 96% -

Total
time (s) 85.6 86.3 45.7 25.3 21.1
speedup - 0.99 1.87 3.83 4.06
efficiency - 99% 94% 85% -

Available memory limits the size of the DEM that can be analyzed with pvshed. Both the input

heightmap and the output viewshed use 4n2 bytes: one four-byte integer for each input sample

and output value. The event list also has n2 events, each stored as a pair of integers, and uses 8n2

bytes, bringing the total memory usage to 16n2 bytes. The status structures used by the sweeps

require only O(n) memory and have little impact on overall memory usage. When n = 19000, the

memory usage is 5.8 GB; beyond this size, pvshed uses more memory than is physically available,

and performance drops precipitously. On another system with more memory, pvshed completed

viewshed analysis of a 40000×40000 DEM in 262 seconds.

3.4.2 Parallel Scaling

Table 3.2 shows how pvshed execution time scales with the number of threads used. The third

column, labeled “serial,” shows the execution time of the sort and sweep phases of a serial imple-

mentation of viewshed, as well as the total execution time. This implementation is used as a

baseline for comparison when examining parallel scaling.

The fourth through seventh columns show the execution times of the parallel version of viewshed,

using between one and eight threads. The parallel efficiencies for each phase and the total runtime

are also shown. The single-threaded operation of the parallel code demonstrates the relatively

small overhead incurred by parallelizing pvshed. At four threads, viewshed is utilizing all four

36



Table 3.3: Time to calculate and apply offsets for curvature correction.

DEM size calculation application total
(N ×N ) (seconds) (seconds) (seconds)

1000 0.005 0.001 0.007
2000 0.019 0.005 0.029
4000 0.074 0.022 0.118
8000 0.300 0.086 0.472
16000 1.241 0.341 1.923

cores of the i7 930 CPU used for testing, and shows an overall 85% efficiency.

By default, TBB uses eight threads on the test system, because each of the cores in the i7

processor uses two-way simultaneous multithreading (SMT). This allows each core to execute two

threads at once, and to the operating system, the i7 processor appears to have eight cores. However,

two threads in a core share execution resources, and will not execute as quickly as two threads on

separate cores. Table 3.2 shows that viewshed can take advantage of SMT by using eight threads,

gaining a 17% performance improvement versus four threads.

The viewpoint was located at the center of the input DEM for the tests above, so the octants

were all equal in size. If the viewpoint is not at the center of the calculated viewshed area, the

speedup seen during the sweep phase will be limited by load imbalance. In the worst case scenario,

where the viewpoint is at the corner of a thin, rectangular DEM, most events will fall into a single

octant, and the sweep phase will see little parallel speedup.

3.4.3 Offset Calculation

For applications of viewshed analysis where the curvature of the Earth is relevant, the approach

described in Subsection 3.3.3 provides additional accuracy at the cost of additional execution time.

Table 3.3 shows the additional time required for multiple DEM sizes.

In pvshed, vertical offsets for each sample are calculated and stored. These offsets are the

nd2/2R term from Equation 3.3. The offsets are subtracted from the input DEM heights, after

which viewshed calculation proceeds as usual. Afterwards, the offsets are added back to the re-

sulting heightmap. The time to calculate the offsets is shown in the second column of Table 3.3,

37



and the time to add or subtract them is shown in the third column. The “total” time in the final col-

umn is the total additional time required for curvature correction, based on calculating the offsets

once and applying them twice.

Because the offset calculation in Equation 3.3 is applied individually to each height sample, it

is simple to parallelize. The pvshed code uses OpenMP and eight threads to achieve the results in

Table 3.3.

3.5 Conclusion

Van Krevald described the use of a planar sweep to improve the asymptotic runtime of viewshed

analysis. This chapter describs a refinement of his approach. Determining visibility as described

in Subsection 3.3.1 permits the use of a new static data structure, described in Subsection 3.3.6,

to serve as the sweep status structure. That data structure supports the required insert and prefix

operations with little overhead, and is very compact. Additionally, a number of areas were iden-

tified where computationally expensive operations can be replaced with faster alternatives. This

approach was implemented as pvshed, a viewshed analysis tool that is much faster that currently-

available software, but does not use approximate methods.

Depending on the performance of secondary storage, the time required to read the input DEM

from disk, or to write the results, can exceed the viewshed analysis time. This work does not

address optimizing secondary storage access, but the speed of this viewshed algorithm does make

it particularly well-suited to applications where multiple viewsheds are calculated for a given input.

This includes examples such as determining the region visible from along a path [77], or finding

the optimal arrangement of observers to cover a given terrain [80]. Both of these applications

require calculation of viewshed from multiple viewpoints, and depended on heuristics to reduce

the number of viewshed calculations.

Additional Parallelism: The pvshed tool exploits one type of parallel architecture: SMP sys-

tems. As described in Subsection 3.4.2, it makes efficient use of four CPU cores on a single

38



shared-memory system. Combined with algorithmic improvements, pvshed demonstrates ample

performance for most current applications. However, there are several possible areas of future

work that would allow pvshed to take advantage of additional parallelism:

1. The least efficient use of parallel resources in pvshed is the event sort. In the current im-

plementation, the event list is generated by a single thread before being sorted in parallel.

The even generation requires little time, so parallelizing it would have little direct benefit.

However, the events could be generated so that they are already partially ordered. For exam-

ple, a one thread could generate all the events in the first octant, another could generate the

events in the second octant, etc. All the events generated by the first thread would precede all

the events generated by the second thread, so the threads could generate and sort the events

independently.

2. The current sorting implementation can take advantage of large numbers of CPUs, but the

sweep phase can only take advantage of up to eight, because the sweep is divided into oc-

tants that performed in parallel. Additionally, the octants may be load-imbalanced if the

viewpoint is near an edge of the input DEM. One solution would be to further subdivide the

octants when it would be beneficial. This will add some complexity; the octants are a natural

division, because they share no work. With further subdivisions, multiple partitions of the

sweep will depend on the same events. This can be combined with the future work described

above: with multiple event lists generated in parallel, the same event can appear in more than

one list. Redundant events will add some overhead to the parallel sweep.

3. Taking advantage of distributed memory computers, e.g. clusters, would be more difficult.

The parallel combined event generation and sorting described above removes the event list

as a shared data structure, and would be useful step. Presumably, this use case would be

motivated by a need to process very large DEMs, and each process could load input data for

its events into a local sparse matrix format. However, the partitions and event list change if

the viewpoint changes, which means every new viewshed calculation would be accompanied

by I/O operations, likely negating any parallel speedup.

39



Chapter 4

Accelerating SIFT on Hybrid Clusters

This chapter describes an approach to parallelizing SIFT and other feature transformation algo-

rithms that utilize scale-space approaches. By partitioning the workload in a novel fashion, this

approach can take advantage of all forms of parallelism listed in Chapter 2: the shared-memory

parallelism of threaded programming, the distributed-memory approach of cluster programming,

and GPU-based acceleration.

Also described is an implementation of this approach called SOHC, or SIFT on hybrid clusters,

which can take advantage of hybrid clusters to accelerate the transformation of arbitrarily large im-

ages into sets of features. SOHC is both portable and scalable: it can run on systems ranging from

a desktop without any GPU hardware, to a cluster of multi-GPU nodes, with the only difference

being time to complete the extraction. It is the only implementation of SIFT capable of operating

directly on gigapixel-sized images.

4.1 What is SIFT?

The Scale-Invariant Feature Transform [99, 100, 101], or SIFT, is a popular feature transformation

algorithm. Essentially, the goal of SIFT is to identify important points in an image, then describe

those points in a way such that a computer can identify similar points in other images. Alternatives

such as GLOH [102] and SURF [103] exist, but SIFT remains in wide use.

While SIFT was originally created to facilitate object recognition, by matching features from

an input image to features from an image of a known object. It is also widely used for image

registration. This process establishes a correspondence between two or more images, allowing

them to be aligned, overlapped, and transformed into a common coordinate system. The images

may be photographs of the same scene taken at different times, with different cameras, and from

different viewpoints. Image registration is discussed in more detail in Chapter 5.

40



sub

sub

subIn
cr

ea
si

ng
 G

au
ss

ia
n 

B
lu

r

Gaussian-blurred images Difference of Gaussian 

Figure 4.1: The Difference of Gaussian images are produced by subtracting a Gaussian-blurred
image from the previous, less-blurred image. The red pixel is a potential feature location if its
value is either greater than, or less than, the values of all the green pixels.

SIFT can be broken into two independent phases. During the first phase, feature detection,

the location and scale of the features is identified. During the second phase, feature description,

the features are characterized so that they can be matched with features from other images. These

phases are described in more detail below.

4.1.1 Feature Detection

Scale Space: SIFT’s feature detection mechanism is based on finding extrema in the Difference

of Gaussians, or DoG. This process is depicted in Figure 4.1. The input image, at the bottom of

the stack of images on the left of the figure, is repeatedly blurred by convolution with Gaussian

kernels. The standard deviation of the Gaussian distribution used, σ, controls the level of blur:

a higher σ is more blurred. Gaussian convolution acts as a low-pass filter, repeated convolution

effectively increases σ, lowering the cutoff frequency and discarding more information from the

original image. The series of Gaussian images is called a scale-space representation of the original

image.

The DoG images are created by subtracting a Gaussian-blurred image from the previous, less-

blurred image. Because the Gaussian images are effectively low-pass filtered versions of the orig-

41



inal image, the DoG images are band-pass filtered versions. Intuitively, the progressive blurring is

removing larger features from the image with each step, and the DoG images show when the blur-

ring has completely removed a feature. Extrema in the DoG images are those pixels with a greater

or lesser intensity than all surrounding pixels in the same DoG image and in the two adjacent DoG

images, as shown in Figure 4.1. These extrema show the location of a “removed” feature, and all

such features corresponding to the extrema in a single DoG image will be of roughly the same size,

corresponding to the band-pass frequency of the DoG image. This is used to identify the size, or

scale of the feature.

Pyramid Representation: One way of approximating scale-space is by repeatedly downsam-

pling the input image. Downsampling by a factor of two, which creates an image four times

smaller than the original, is an approximation of doubling σ, or halving of the cutoff frequency.

Each doubling of σ is called an octave. SIFT uses a fixed number of samples per octave, typically

three. This pyramid approach greatly reduces the computational overhead of scale-space represen-

tation for two reasons. First, images higher in scale space are much smaller, and faster to process.

Second, Gaussian kernels with higher σ must be wider, and therefore more expensive to compute;

pyramid representation limits the magnitude of σ.

Filtering: The goal of feature detection is not only to identify these features, but to do so in a re-

peatable way. That is, the feature detection should reliably identify two features that look the same

in two different images. To help accomplish this, features that are less likely to be repeated are

filtered out after the DoG detection. Features found in low-contrast regions are removed because

they tend to look similar to any other feature found in a low-contrast area. Features found along

edges are removed because they are “unstable,” that is, the same feature may be detected elsewhere

along the same edge in different images.

42



(a) An example of a portion of an
image identified as a feature.

(b) The local neighborhood is sized
according the scale of the feature
and subdivided into regions.

(c) Within each region, the domi-
nant gradient is sampled.

Figure 4.2: Creating a SIFT descriptor

4.1.2 Feature Description

For the features that remain, SIFT generates a feature descriptor. The list of points and their

descriptors is the output of the SIFT algorithm. The SIFT feature descriptors are invariant to

rotation, scale, and translation. The are also partially invariant to affine changes such as viewpoint

change, and have been demonstrated to be distinct and robust enough to match features for a wide

range of image transformations [102, 104].

The descriptors characterize the local image neighborhood around a feature. The size and

orientation of the neighborhood are determined by the source image. The size is based on where

in the sequence of DoG images the feature was found. Images later in the sequence are more

blurred, so features found in those images will be larger. A larger feature is described using a larger

neighborhood. The goal is that each feature will be the same size relative to its neighborhood, so a

feature that appears in different images at varying scales will have the same descriptor; this is the

basis of SIFT’s scale-invariance. The rotation of the neighborhood is determined by the dominant

image gradient in the neighborhood. The angles of the orientation histogram described below

are measured relative to the angle of dominant gradient; SIFT uses this mechanism to achieve

rotational invariance.

This local area is divided into subregions; Figure 4.2(b) shows the neighborhood divided into

43



four regions; SIFT uses 16 regions by default. In each subregion, the image gradient is sampled

in a grid pattern. Figure 4.2(c) shows a 2 × 2 sample grid for each region; SIFT uses a 4 × 4

grid by default. The gradient magnitudes are weighted by a Gaussian window centered on the

feature, with the weights falling off with greater distance from the center. Finally, these samples

are accumulated into a single 8-bin histogram for each subregion. Each bin covers a different

forty-five degree sector of orientation; the value in each bin is the sum of the weighted gradient

magnitudes whose orientation falls within that bin.

With an orientation histogram for each of the 16 subregions of the local neighborhood, and

eight bins per histogram, SIFT uses a 16×8 = 128 element vector for each feature descriptor. The

number of gradient samples and bins per histogram are variable, but the values above are the most

common. The full descriptor for each feature consists of the coordinates, scale, orientation angle,

and the 128-element vector describing the feature’s neighborhood.

4.1.3 Implementations

SIFT’s widespread use means there are many existing SIFT implementations. David Lowe’s origi-

nal implementation is only available in binary form [105]. SIFT++ [106] and the newer SIFT code

in VLFeat [107] are commonly-used open-source solutions. Several authors have investigated ac-

celerating SIFT using multi-core architectures [108, 109]. Others have accelerated portions of the

SIFT algorithm using GPGPU [110, 111, 112]; these efforts have focused on computer vision ap-

plications, which emphasize fast throughput of many small images, rather than the larger images

typical in geospatial applications.

4.2 Parallelizing SIFT

To take advantage of hybrid clusters as described in Chapter 2, SOHC addresses several issues:

1. Input images from the target domain are very large, on the order of tens of gigapixels or more.

Therefore, the input images must be partitioned. The partitioning scheme must have good

locality, so that distributed nodes can work on limited areas of the image without frequently

44



Figure 4.3: Dividing the input image into tiles and using SIFT on each tile. A feature in the original
image is lost because its neighborhood (shown whole on the left and divided on the right) is split
across tiles.

communication with other nodes or additional file I/O, which will limit performance. Addi-

tionally, SOHC scales down to a single node, which will typically not have enough memory

to entirely load the input image and its generated scale space and DoG images. Therefore,

the partitioning scheme must accommodate out-of-core processing — that is, it must be able

to stage the work such that it can load smaller portions of the work during execution time.

2. SOHC can use GPUs to accelerate the scale-space generation step of the SIFT algorithm,

while later steps are executed on CPU cores. SOHC runs on a wide variety of architectures,

with one or more distributed memory nodes, each node having varying numbers of CPU

cores and GPU accelerators. SOHC must be specified with sufficient concurrency to run

efficiently on a variety of systems.

SOHC uses a novel partitioning scheme, described in Subsection 4.2.1, to address the first issue. It

uses a pipelined thread pool scheme, described in Subsection 4.2.4, to address the second issue.

4.2.1 Work Partitioning

Both the out-of-core and distributed memory issues can be solved with a partitioning scheme that

divides the SIFT computation into independent tiles. The tiles can be completed serially or in

parallel, allowing SOHC to use multiple CPUs and cluster nodes in parallel. Each tile must be able

to independently load its work and write its results to allow the required out-of-core operation:

to process a tile, a node can load a small portion of the input at a time. This also allows smooth

parallel scaling. The mechanism for independent I/O is described in Subsection 4.2.2.

45



The most straightforward method of input tiling is to simply divide the input image into mul-

tiple pieces. SIFT can run on each sub-image, and the location of generated features corrected

from the coordinates of the sub-image to the coordinates of the original image. This approach has

the drawback [113] of losing features, for the reason illustrated in Figure 4.3. Essentially, features

whose local neighborhoods overlap the boundaries between sub-images will be lost or altered. If

the image is being aligned with another image of similar size, these lost features may not be signif-

icant. However, if the other image is much smaller in scale and located near the tile boundary, this

can prevent correct alignment. This can be mitigated by overlapping the tiles, but the overlap leads

to a duplication in work. Also, overlapping the tiles can never completely remedy the problem of

missing and altered features, as feature neighborhoods grow with the scale of the detected feature,

so there will always be some features missed with any amount of overlap.

Octave Partitioning: Instead of partitioning the input image in its original coordinate space, the

partitioning can occur in scale space. This is shown in Figure 4.4. Instead of a work partition

consisting of all levels of scale space for a subregion of the original image, it consists of a set of

fixed-sized images in a single octave of scale space. For example, in octave 0 no downsampling

has been performed. A partition in octave 0 will be some size n×n; partition sizing is discussed in

further detail below. A partition in octave 1 will also be n× n, so there will be roughly four times

as many partitions in octave 0 as in octave 1, but each partition represents a roughly equivalent

amount of work.

Partitioning in scale space also allows SOHC to get all original features without excessive

overhead. Because each octave has logically increased the scale, rather than physically increasing

it, there is a relatively small maximum neighborhood size for any feature detected in an octave.

The partitions can be overlapped by this maximum neighborhood size to guarantee that all required

information is available in scale space for feature detection and description.

In addition to preserving the neighborhood area itself, maintaining perfect fidelity would also

require overlapping all pixels that contribute to the final value within the neighborhood area. Put

46



Octave 1Octave 0 Octave 2

Figure 4.4: Rather than divide the source image into equally-sized tiles, instead each octave of
scale space can be divided into equally-size regions.

left tile generates scale 
space for these pixels

left tile extracts
features for these pixels

tile overlap

right tile extracts 
features for these pixels

right tile generates scale 
space for these pixels

Figure 4.5: Dividing an octave base into multiple tiles. Both adjacent tiles will generate scale space
for the overlapped region, but each only generates features for half of the region.

another way, tiles would have to be enlarged by the total radii of all Gaussian convolution kernels

used for scale space generation with the octave of scale space. However, the values from the edges

of the filter kernels contribute little to the final value. SIFT further reduces the impact of these

edge values by applying a Gaussian weighting window to the gradient histogram values during

descriptor generation.

Because of these factors, the tiles can be overlapped less than is required for guaranteed fidelity,

with little impact to the final result. Empirical testing showed that an overlap of 40 pixels in the tile

boundaries led to the alteration of less than 0.1% of the generated features. Approximately 50% of

the altered features only differed in one out of the 128 histogram bin values. SOHC uses this value

as its default tile overlap parameter.

47



Figure 4.5 shows how this overlap is implemented. Some overhead is incurred because, as

shown, processing of adjacent tiles involves redundantly generating scale space for overlapped

regions. However, there is no redundant calculation of feature descriptors; half of the overlapped

region will be handled during the processing of each adjacent tile. The overhead of scale space

generation is mitigated by two factors:

1. The tile size can be maximized to reduce overlap as much as possible. The tile size is

primarily limited by available memory: memory on the GPUs for scale space generation,

and system memory which stores scale space, DoG images, and generated features before

they are written to disk. While larger tiles reduce the proportion of overlap, they also increase

the granularity of parallelism available to SOHC and can make less efficient use of system

resources. Tile size selection is discussed further in Subsection 4.3.1

2. SOHC accelerates scale-space generation with GPUs, which can complete this task with high

throughput. It is fast enough that scale-space generation is not a bottleneck in SIFT process-

ing, and because of SOHC’s pipelined design (described below), additional time spent in

this phase of SIFT does not increase the overall runtime of SOHC. This effect is discussed

in more detail in Subsection 4.3.2.

4.2.2 Octave File I/O

As mentioned above, SOHC needs to be able to load work tiles independently. Each octave must

load a base image, which is convolved with Gaussian filters to create the scale space images within

the octave. Octaves beyond the first required downsampled versions of the original image to use

as the base image. The downsampling for each tile could be done independently, but this requires

redundant calculations. For example, to load an n × n tile in octave 3, a 8n × 8n region of the

original image (which is the base of octave 0) would be loaded and downsampled by a factor of 8.

This same region must be downsampled to produce areas of octaves 1 and 2.

To reuse this computation, SOHC adds a pre-processing phase before SIFT feature extraction

begins. It generates a number of temporary files to act as octave bases. SOHC divides the rows of

48



Images and Operations on the GPU 
PCIe

Transfers

1

2

2

2

3

3

3

Images on the Host 

Figure 4.6: Acceleration of scale space generation on the GPU: 1) A tile of the octave base is
transferred to the GPU. 2) Filter kernels are used to generate scale space images in GPU memory.
3) Generated images are copied back to the host.

the input image among the MPI processes, in a granularity of 2o, where o is the highest-numbered

octave. For example, if there are three octaves, each process reads a multiple of four rows, because

there are octaves 0, 1, and 2, and 22 = 4. Each process writes the base of the first octave in parallel

by writing each pixel in floating-point format. Continuing the above example, each process writes

a multiple of four rows. For octave 1, each process downsamples by a factor of two and writes

the new base file. This continues until the last octave, when each process writes a single row. By

reading and writing long, contiguous strips of data, SOHC maximizes file I/O throughput. After

the process is complete, each temporary octave base file can be read independently.

4.2.3 GPU Acceleration

After the reading the base file, SOHC creates the scale-space images for the octave using GPU

acceleration. GPUs are ideal for this type of operation [114], which has excellent data-parallelism.

That work showed that GPUs can perform the Gaussian filtering required for scale-space gener-

ation several orders of magnitude faster than a serial CPU implementation. The primary speed

bottleneck was communication of input and results between the GPU and the host computer.

49



PCIe communication still dominates GPU scale space creation in SOHC, but the effect is min-

imized by generating an entire octave of scale space at once, as shown in Figure 4.6. This reduces

the total number of PCIe transfers versus performing the transfers for each convolution separately,

as in [114]. SOHC uses the GaussianBlur function from the OpenCV library [115] to imple-

ment the GPU-based scale space creation in a way that is both portable and performant.

4.2.4 Pipelined Concurrency

After the MPI processes have built the octave base files, all octave tiles are divided evenly among

the MPI processes, which can begin SIFT processing. The basic steps of processing a tile are:

1. Load the tile input data from the octave base files. The MPI-2 standard includes “MPI-IO,”

a file-handling API that was provided by NASA. SOHC uses MPI-IO because it is portable,

has built-in functionality for reading subarrays from regular files, and can be optimized by

MPI implementations based on the underlying system.

2. Generate scale space using GPU acceleration as described above, or using a CPU-based

implementation. In either case, the result of this step is all scale-space images derived from

the tile’s region of an octave base file.

3. Identify and filter features on the CPU. Identification is based on extrema detection, and

is more difficult to implement efficiently on the GPU than scale space creation. A serial

CPU, examining each pixel sequentially, can short-circuit the check before examining all

26 neighbors and move to the next pixel. This approach can also be used on the GPU,

with each thread checking a pixel; however, the short-circuiting causes thread divergence,

as each pixel may be removed from consideration after examining a different number of

neighbors. Like extrema detection, the feature filtering is unlikely to see the same speedup

as scale-space generation; the scattered nature of detected features prevents regular memory

access patterns required for maximum performance. SOHC uses the feature identification

and filtering implementation from SIFT++ for this step of processing. The result of this step

is a list of feature locations, orientations, and scales.

50



4. Generate descriptors on the CPU. Like the previous step, the pattern of memory accesses due

to the irregularly-distributed nature of detected features makes GPU acceleration difficult,

and SOHC again uses SIFT++ code for this step in SIFT processing. The location and scale

of the resulting descriptors must be corrected based on the location of the tile, both in image

and scale space. For example, a tile with a top left corner of (x, y) in octave 0 will add

that offset to the coordinates of detected features. A tile with the (x, y) top left in octave

3 will multiply the scale of detected features by 4 and add (4x, 4y) to feature coordinates,

translating from the scale and image space of the tile back to those of the original image.

The scale space images are no longer needed after this step and the memory they use can be

released. The result of this step is the completed set of SIFT descriptors for the tile.

5. Write results to disk. After the descriptors generated by the previous step are saved to an

output file, the memory they occupied can be released, which frees all memory resources

allocated while processing the tile. The order of the features is unimportant, but they must

be written atomically — that is, feature descriptors should not be interleaved. SOHC uses

MPI-IO again to write the result file, and all writes are performed by a single thread to

serialize output and prevent interleaving.

In a serial implementation, these steps would be performed sequentially for each tile. Figure 4.7

shows this sequential execution for a single tile in the row labeled “serial processing.”

Figure 4.7 also shows SOHC’s use of a pipeline to parallelize these steps. In MPI program-

ming, it is typical to launch one MPI process per CPU core in the cluster. The fact that some

processes are sharing the same node is abstracted away by the MPI interface, although the under-

lying implementation may take advantage of shared memory to optimize communication between

processes on the same node. With hybrid clusters, this abstraction is less appropriate — processes

will compete for GPU resources. Instead, SOHC launches a single MPI process per node, then

launches threads corresponding with the physical resources of the node: one “gpu worker” thread

per GPU and one “cpu worker” thread per CPU core, as well as one “MPI worker” thread.

51



serial
processing

MPI
thread

GPU
thread

read
tile

scale
space

find
features

generate
descriptors

write
result

read
tile

read
tile

read
tile

read
tile

scale
space

scale
space

scale
space

scale
space

find
features

generate
descriptors

find
features

generate
descriptors

find
features

generate
descriptors

find
features

generate
descriptors

write
result

write
result

write
result

CPU
thread

CPU
thread

Time

Figure 4.7: Concurrent task execution in SOHC. The top row shows serial execution of the tasks
that comprise processing a single tile. The next four rows show four tiles moving through the
SOHC pipeline; tasks for a given tile are all shown in the same color.

The single MPI thread compensates for a software limitation: most current MPI implementa-

tions are not thread-safe. Only one thread — or only one thread at a time — can be performing

MPI operations. In SOHC, all MPI operations are “funneled” into a single thread. This includes

loading tile data and writing the features extracted from tiles to disk. These operations are inde-

pendent and can theoretically be done in parallel. However, serializing them in a single thread is

not overly restrictive, because the MPI-IO operations are all sharing the same underlying network

and storage subsystems. While these can be logically independent, they will naturally slow to

near-serial speed as they contend for network and storage resources.

Once the MPI thread completes step one, loading the tile data, a pointer to the data is passed

via a shared-memory queue to the GPU threads. Any available GPU thread can dequeue the

pointer and generate scale space images. When complete, the scale space images are passed via

another queue to the CPU worker threads, which perform steps three and four. This phase of SIFT

computation is inherently unbalanced. Different regions and levels of scale space will have varying

numbers features, corresponding to areas of the image with varying levels of detail. Given a static

work partitioning, this would lead to load imbalance and inefficient use of the available hardware.

52



Instead, the pipelined thread pool scheme used by SOHC is inherently load-balancing within a

node. Any of the CPU worker threads can dequeue a tile’s scale space images produced by any

of the GPU worker threads. If a given tile requires more processing than average, another CPU

thread will pick up the next tile. After the CPU thread has completed feature extraction on the tile,

the result is passed through a final queue back to the MPI thread, which writes the results.

In addition to balancing varying tile workloads, this pipelined approach also makes the SOHC

application portable across a variety of systems. In any given system, the storage, GPU, or CPU

resources will be a theoretical limiting factor to performance, creating a bottleneck in the pipeline.

Which resource causes the bottleneck will vary depending on the relative capabilities of those

systems. The pipelined thread pool decouples the performance of each stage as much as possible,

allowing them to proceed independently and in parallel, so that the slowest stage will not limit the

performance of other pipeline stages beyond effects of its own throughput.

4.3 Experimental Results

The software implementation of the feature extraction described above is a program called SOHC.

It is written in C++, and the results in this section are based on using the GNU g++ 4.4 compiler

with optimization flag -O3. Two computer systems were used to benchmark SOHC’s performance:

• The “fermi” computer has an Intel Core i7 930 2.8 Ghz CPU, 6 GB of RAM, and two Nvidia

GTX 480 GPU cards.

• The “star” computer is a distributed-memory cluster where each node has two Intel Xeon

E5520 processors, 12 GB of RAM, and two Nvidia GTX295 graphics cards.

Performance measurements were obtained using the unix “time” command and thus include all

program overhead and file I/O time.

The input image used for much of the testing is shown in Figure 4.8. At 758 megapixels, it

is relatively small — some geospatial images are many gigapixels — but it is large enough to

demonstrate the parallelism and out-of-core capability of the SOHC application. It is also large

53



Figure 4.8: The 27552×27504 input image shown on the left was used as input for the results in
this section. The image on the right is a 2750×2750 sample from the center of the input image,
magnified 10×.

enough that traditional SIFT implementations will either exit with errors because they cannot al-

locate enough memory, or demonstrate unacceptably long execution times due to excessive virtual

memory swapping.

4.3.1 Shared and Distributed Memory Scaling

The SOHC application has a number of parameters that can be selected at runtime to control

parallel execution. The most important are:

• The size of the octave space partitions, or tiles. These tiles form the fundamental unit of

work in SOHC: the worker threads always operate on one tile at a time.

• The number and type of worker threads. There is always a single mpi worker thread, but the

number of scale-space threads and feature-extraction threads can be varied.

• The number of “in-flight” tiles. This is the total number of tiles in the pipeline, at any stage.

Multi-Core CPU-only Scaling: The ability of the SOHC application to utilize multi-core com-

puters can be demonstrated by varying the number of in-flight tiles. The results in Figure 4.9 were

obtained on the fermi test system. Because this computer has four cpu cores, SOHC was run with

54



 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  3  4  5  6  7  8

Ti
m

e 
(s

ec
on

ds
)

Number of Tasks in Flight

Figure 4.9: Execution time on a 27552×27504 image for different numbers of in-flight tiles. See
text for execution parameters.

four scale-space and four feature-extraction worker threads. This number insures that there is al-

ways a thread available for all cores, and any extra threads stay blocked and do not add overhead.

The execution time shown is the minimum of several test runs, to minimize the effects of system

noise.

Having a single tile in-flight is equivalent to serial operation: one tile is loaded and passed

to each type of worker thread in turn. That tile’s results are written before the next tile is loaded.

Operating in this fashion, SOHC completes SIFT on the input image in 393.0 seconds. This time is

measured with the unix time command and includes all overhead, including program initialization

and file I/O. Over 305,000 features are generated.

As additional in-flight tiles are added, they are processed in parallel, and execution time de-

creases. At five tiles, the execution time reaches 122.7 seconds, a 3.2× speed-up over the serial

serial execution time. Additional in-flight tiles add only modest gains. Eight tiles reduces the exe-

cution time to 109.8 seconds, a 3.6× speedup. This additional speed is the result of exploiting the

“hyper-threading” capability [116] of the i7 processors in fermi, which can extract some additional

performance from the additional threads.

55



Table 4.1: Breakdown of tile processing time for a 27552×27504 image.a

generate
octave

bases (s)

load tile
data (s)

scale space
generation (s)

feature
extraction (s)

write tile
results (s)

total per tile total per tile total per tile total per tile

29.6 30.5 0.029 264.9 0.255 170.3 0.164 0.231 0.0002
a Tile size is 1000×1000; times are based only on full-size tiles. See text for details.

Execution time by function: Each tile is processed by a stage in the SOHC pipeline. Table 4.1

shows the time spent in each stage. These results were obtained on the fermi computer, with four

scale-space and four feature-extraction worker threads, and a maximum of six in-flight tiles. The

total and per-tile times listed on the table are based only on full tiles. That is, the “total” time does

not include the time spent processing the partial tiles that occur at the right and bottom edges of

the octave images. For the given input image, there are 1039 full-size tiles, and the “average” time

is the average time to process one of these tiles. These times are wall-clock times measured by the

gettimeofday function.

The first column, “generate octave space,” is the time spent reading the original input images

and generating the temporary octave base files. This phase of the program is not part of the pro-

cessing pipeline and does not benefit from multi-threading. The average total execution time was

116.7 seconds, so the octave space generation represents 25.4% of the overall execution time. By

subtracting the octave generation time from the total execution time, the pipelined portion took

363.4 seconds for the serialized run described above and 87.1 seconds for this, parallel run. This

speedup of 4.2× is fully exploiting the available parallelism.

Table 4.1 also shows that the most expensive tile processing stage is the scale-space generation,

at 0.255 seconds per 1000×1000 tile. Feature extraction takes roughly 64% as long, at 0.164

seconds per tile. The final column is deceptive; writing tile results takes longer than the measured

0.2 ms. Instead, this number is a result of the semantics of MPI’s file writing operation. The buffer

to be written to disk, which here is the set of features extracted from a tile, is copied into memory

in a separate MPI process. The timing numbers are based on the execution of the MPI file write

function, which returns immediately after the memory copy, while the results are written to disk

56



 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  1000  2000  3000  4000  5000  6000

Ti
m

e 
(s

ec
on

ds
)

Tile Size (NxN pixels)

real
user

Figure 4.10: How tile size affects the processing time of a 27552×27504 image. The “real” and
“user” lines show wall-clock and user CPU time, respectively; see text for details.

asynchronously.

Effects of Partition Size: The tile size of 1000×1000 used in the previous tests is not an arbitrarily-

chosen value. Figure 4.10 shows how tile size affects execution time. These results were obtained

on the fermi computer, with four scale-space and four feature-extraction worker threads, and a

maximum of six in-flight tiles, using the unix time command.

Tile size selection is influenced by three factors: overhead, granularity, and available resources.

Larger tile size leads to less overhead. In the overlapped region at tile borders, scale space is

generated redundantly for all adjacent tiles. The same features may also be detected redundantly,

though SOHC ensures that the descriptor for a given feature is only calculated in a single tile. As

an example, consider a tile size of 1000 and an overlap of 40 pixels, which are the SOHC default

values. An area 1000×40 pixels at the bottom of the tile is redundant with the tile below, an area

40×1000 is redundant with the tile to the right, and a 40×40 area is redundant with the tile to the

bottom right. In general, with t-sized tiles and r-sized overlap, the ratio of redundant pixels to all

pixels processed is:
t× r + r × t+ r × r

t× t
.

With a fixed r, the numerator increases linearly with t, while the denominator increases quadrati-

57



cally, so increasing tile size reduces the proportion of redundant work — that is, overhead.

The “user” line in Figure 4.10 demonstrates this effect. This is total user CPU time reported

by the unix time command. This is the time spent by all threads in user code (as opposed to in

system calls), and indicates the “total work” done. As tile size is increased, the total work done

decreases. For smaller tile sizes the effect is dramatic, but as the ratio of redundant to all pixels

asymptotically approaches zero, the reduction in real work is more gradual.

The benefits of increased tile size are offset by decreased granularity. Larger tiles suffer from

poorer load-balancing, increase starvation among threads by dividing the work into fewer tiles, and

increases the latency of tile-processing operations. The “real” line in Figure 4.10 shows the total

wall-clock time for SOHC execution. For tile sizes smaller than 1000×1000 pixels, the real time

decreases with decreasing user time. Above this size, the total execution time increases even as

SOHC does less work, because the decreasing granularity limits SOHC’s ability to exploit multiple

cores. The effect is most dramatic at 6000×6000 pixels, where execution is nearly serialized.

Finally, the available resources limit the maximum tile size. The tile size dictates the amount

of memory required to process each tile; this number is multiplied by the number of tiles in flight.

For large tile sizes, SOHC uses more than the available physical memory on fermi. This causes fre-

quent virtual memory swaps to disk, known as “thrashing.” Running with a tile size of 7000×7000,

SOHC execution was manually terminated at 1000 seconds before the program completed.

Cluster Scaling: Figure 4.11 shows how SOHC’s performance scales on a cluster computer.

These results were obtained by running SOHC against the same input image. The serial results

were obtained, as above, by running SOHC with a maximum of one in-flight tile. While this

serializes the execution at each node, each node processes tiles in parallel. The threaded results

were obtained with a maximum of nine in-flight tiles and eight worker threads of each type on

every node, allowing SOHC to fully exploit all CPU resources in the cluster.

SOHC’s use of multiple nodes of the star cluster is not as efficient as its ability to use multiple

cores. With serial execution on each node, it SOHC goes from 464.3 seconds on a single node to

58



 0

 100

 200

 300

 400

 500

 1  2  3  4  5

Ti
m

e 
(s

ec
on

ds
)

Number of Nodes

serial execution
threaded execution

Figure 4.11: Execution time of SOHC using multiple nodes. Serial execution uses a single CPU
core on each node. Threaded execution uses all CPU cores on all nodes.

120.1 seconds on five nodes, a 3.9× speedup. When fully utilizing each node, SOHC completes in

85.8 seconds using a single node, and 34.7 seconds on five nodes, which is only a 2.5× speedup.

This reduced parallelism is due to starvation; the worker threads on each node cannot load tile

data fast enough to keep up with the throughput of the other worker threads. All nodes on star

communicate with a file server via gigabit Ethernet. The interactions of the storage subsystem,

network, and MPI I/O libraries on the star cluster are complex, the speed of gigabit Ethernet

gives an approximate indication of the maximum throughput for tile processing. Processing the

27552×27504 input image results in 1039 full-size 1000×1000 tiles. Each tile is 4 MB; the total

size of the tiles to be loaded is 4.2 GB. That volume of data requires approximately 33 seconds

to transfer at 1 Gbps, which is the same time that the parallel execution time in Figure 4.11 is

asymptotically approaching.

4.3.2 GPU Acceleration

Table 4.2 shows the results of enabling GPU accelerations. These results were obtained on the

fermi computer, with two GPU worker threads and two CPU worker threads, with a maximum of

six tiles in-flight. Comparing with the results in Table 4.1, the time to generate scale space for a

1000×1000 tile is reduced from 255 ms to 15 ms, a 17× speedup. As before, this is measured

59



Table 4.2: Breakdown of tile processing time with GPU-accelerated scale-space generation for a
27552×27504 image.a

generate
octave

bases (s)

load tile
data (s)

scale space
generation (s)

feature
extraction (s)

write tile
results (s)

total per tile total per tile total per tile total per tile

27.3 31.0 0.030 15.7 0.015 152.7 0.147 0.303 0.0003
a Tile size is 1000×1000; times are based only on full-size tiles. See text for details.

wall-clock time, and includes all overhead, notably the time required to transfer data to and from

the GPU across the PCIe bus.

Notably, this speed means that with GPU acceleration, a single scale-space thread can process

66.7 tiles per second. In comparison, the MPI thread can only load 33.3 tiles per second, and a

single CPU thread processes 6.8 tiles per second, while four CPU threads process 27.2 tiles per

second. Using only a single GPU thread, the results in Table 4.2 remain unchanged, because that

GPU thread can process tiles faster than they can be loaded from disk.

A slight decrease from 164 ms to 147 ms per tile can also be observed in the CPU thread

processing time. With six tasks in flight and the hyperthreading architecture of the Core i7 CPU in

fermi, the CPU-only execution sometimes shares resources between the scale-space and feature-

extraction threads, increasing the observed wall-clock time to process a tile. Using GPU-based

scale-space creation, the CPU resources are almost entirely dedicated to the CPU worker threads.

The result of these increases in throughput is that the total runtime of SOHC on the 27552×27504

input image is 73.1 seconds with GPU processing enabled, vs. 114.6 seconds without GPU pro-

cessing, a 1.6× speedup.

4.4 Conclusions

The SOHC application is a demonstration of the partitioning-and-pipeline approach to paralleliz-

ing feature extraction described in Section 4.2. Rather than attempting to accelerate most of the

individual steps involved in feature extraction, the octave partitioning approach processes regions

of scale space in parallel. This has several advantages:

60



• It requires little change to existing feature extraction code, as each “tile” of scale space can

be processed a separate image.

• Scale-space partitioning — versus more straightforward image-space partitioning — doesn’t

affect the extracted features, and adds little overhead.

The scale-space generation itself is a step where more fine-grained parallelism can be exploited

by using GPUs. Results showed the GPU generating scale space 17× faster than a single CPU.

Other limitations prevented this from increasing overall speedup more than 1.6×; these are further

addressed below.

One of these limitations is secondary storage throughput. This proved particularly limiting

on the star cluster computer, where large computational resources quickly saturated the available

storage bandwidth. While SOHC is capable of using GPUs in hybrid clusters, in most cases this

will not result in a decrease in overall run time.

However, SOHC did demonstrate good use of computational resources in a single multi-core

computer, showing effectively linear speedup with the number of CPUs. The pipelined approach

provides load balancing across the CPUs in a single node, and there are no artificial constraints:

the entire system has the throughput of the slowest component.

Other scale-based feature extraction algorithms can make use of the SOHC framework with

little modification to either SOHC or the feature extraction algorithm. In particular, SURF requires

less computation for feature detection and description. The additional work required by SIFT

for these steps means that GPUs are underutilized in SOHC; SURF may be a better fit for GPU-

equipped computers.

4.4.1 Future Work

As noted above in Subsection 4.3.2, the GPUs in fermi computer used for testing were under-

utilized during SIFT processing. With two GTX 480 GPUs, the scale-space generation stage is

capable of processing over 130 1000×1000 tiles per second. At the rates measured in Table 4.2,

the system would require 20 CPU cores for the feature extraction stage to match this speed, assum-

61



ing that feature extraction would scale linearly to that number of cores.

While not all computers will have the high GPU-to-CPU compute ratio of fermi, this suggests

that additional steps of SIFT processing can be profitably moved to the GPU, even if those steps do

not see the same speedup as scale-space generation. One option is to replace SIFT with SURF, as

mentioned above. The OpenCV library includes most steps of the SURF algorithm implemented

on GPU, which can be combined with SOHC’s partition-and-pipeline scheme. Additional testing,

and possibly run-time profiling and tuning, would be needed to ensure both GPUs and CPUs are

close to fully-utilized.

Better use of system resources would require a faster storage system, as well. The secondary

storage on fermi’s is a single SATA drive, and SOHC was limited to loading roughly 33 tiles

per second. More expensive storage solutions, such as RAID arrays or solid-state disks, make

increasing storage throughput relatively straightforward. Another option is to increase the work

done per input file. For example, in addition to SIFT, an application might begin image registration,

generating nearest matches for features to another image during the feature extraction process.

In SOHC, all GPU operations are performed synchronously and serially. The scale-space im-

ages are created, then copied to the host. CUDA supports overlapping these operations; scale space

image n could be copied to the host during the creation of scale space image n + 1. This requires

the use of “pinned” memory: unlike the memory usually provided by allocation requests, pinned

memory describes physical memory resources, not virtual memory. SOHC has facilities for man-

aging a pool of pinned memory resources that can be used in the processing pipeline. This feature

is not used, because additional GPU performance is unnecessary and the asynchronous operation

adds complexity. If the improvements described above are implemented, asynchronous operation

can further improve the GPU processing time.

62



Chapter 5

Circular Earth Mover’s Distance

This chapter describes a tool, gpu-cemd, that runs on hybrid clusters and aids in processing the

SIFT features generated by SOHC, described in Chapter 4. This means that, in contrast with

SOHC, gpu-cemd operates not on image sensor data, but on generated data. SIFT feature extraction

from large images generates an equally large number of features — large satellite images can

generate tens of millions of features. Few of these features can be discarded; the images to be

referenced against these large images may be at a much smaller scale and overlap only a small

number of the features. High-performance analysis of the generated features is therefore a practical

requirement of using SIFT on large images.

The gpu-cemd tool uses the CEMD algorithm, described below, to compare SIFT features.

Written using CUDA, it is is 75× faster than a single-threaded version of the algorithm running

on the CPU. Low-level programming techniques required to fully exploit GPU processors are

discussed, and gpu-cemd is shown to take full advantage of GPU processors — that is, no imple-

mentation of the same algorithm could run significantly faster.

5.1 Image Registration

Image registration establishes a correspondence between two or more images, allowing them to

be aligned, overlapped, and transformed into a common coordinate system. The images may be

photographs of the same scene taken at different times, with different cameras, and from different

viewpoints.

Image registration techniques can be broadly categorized as direct or feature-based [117].

While direct algorithms may attempt to correlate images based on pixel intensity, feature-based

registration requires that images first be transformed into a set of features. As in SIFT, these fea-

tures are typically points in the image, but can be other entities such as edges or gradients. Once

63



Figure 5.1: Unorganized Block of Images

the features in an image are found, feature-based image registration will search for matching fea-

tures from other images, rather than directly comparing the images. If matching features can be

correlated, then the images can be transformed into a common coordinate system.

Matching features across images requires a method of describing those features and a way to

quantify their similarity. The widely-used Scale-Invariant Feature Transform (SIFT), described

in Section 4.1, provides a method of finding and describing image features. The Circular Earth

Mover’s Distance (CEMD), which can be used to measure the similarity of these features, is de-

scribed in Section 5.2.

Georeferencing: One application of image registration is georeferencing, which establishes the

location of an photograph can be determining its relationship to photographs with known geo-

graphical coordinates. Figures 5.1 and 5.2 show an example; Figure 5.1 is a group of overlapping

aerial photos of the same scene, but the relative location of each photo was not recorded. Us-

ing image registration, the photos can be oriented to each other, producing the mosaic shown in

Figure 5.2.

64



Figure 5.2: Georeferenced Image Mosaic

GIS systems can provide a source of reference images. For example, GeoStor [118] is an online

system, maintained by the state of Arkansas, that provides aerial photos of the state with known

locations. A new aerial photo, taken somewhere in the state but with unknown exact coordinates,

could be matched with the GeoStor images to determine its location.

Image georeferencing can require the calculation of many similarity measurements. For exam-

ple, a satellite image may have billions of pixels and generate millions of features. If this satellite

image is a reference image, then registering a new image requires searching those millions of

features for the nearest match to each feature in the new image.

Image Alignment: Aligning the images requires identifying corresponding features in several

images, then estimating the homography, that is, the parameters that transform coordinates in one

image to coordinates in the other. Although SIFT was designed such that images of the same scene

should generate similar features, the actual features generated will rarely be identical for many

reasons:

1. Differences in scale and orientation mean that while images may overlap, only a subregion

65



of each image records the same scene. Features from outside these subregions will not be

matched.

2. Some portions of the scene may be obscured, such as by clouds, smoke, or flood waters.

This means that even otherwise-identical images may not share all features.

3. Environmental differences such as lighting and atmospheric conditions change the recorded

image, and different sensors — that is, different kinds of cameras — also affect the recorded

image.

Given a number of corresponding features, estimating the homography is straightforward, but iden-

tifying those corresponding features can be difficult in the face of the problems listed above. Pairs

of possibly-corresponding features, sometimes called putative matches, are identified by using

various measures of similarity, described further in Section 5.2. The “most similar” features will

identified as putative matches. Filtering is applied based on the uniqueness of the match: if a

feature is roughly similar to several features from the other image, that feature is ignored.

Even with that filtering, not all of the putative matches are actual matches. The random sample

consensus, or RANSAC [119] algorithm is used to identify the actual matches. RANSAC is an

iterative method, applied to feature-based image registration with the following steps:

1. Seven putative matches are chosen at random. These matches are called hypothetical inliers;

they are assumed to be actual matches and used to generate a homography.

2. The other putative matches are evaluated according to the homography. In other words,

features from one image are translated according to parameters of homography. If the trans-

lated features are located closely to their putative match in the other image, that match is

considered an inlier.

3. If the model is sufficiently good, i.e. if there is a sufficient proportion of inliers, the homog-

raphy is fitted to the set of all inliers. Otherwise, the model is discarded.

These steps are repeated a fixed number of times, generating a number of homographies with each

repetition of the final step. The homography with the least error is identified as the correct image

alignment.

66



(a) A single SIFT feature, with
four gradient samples per subre-
gion

0

1

10

1

01

0 0

1

01

0

01

1

1

0

10

1

01

0 1

0

01

0

10

1

(b) Each subregion is divided
into eight bins. Each gradient
sample is added to a bin based
on its direction.

1 0 0 1 0 1 1 0

0 1 0 0 1 1 1 0

1 0 1 1 0 1 0 0

0 1 1 0 1 0 0 1

(c) The histogram bin values
for all subregions are recorded
as a set of arrays.

Figure 5.3: Translating the subregion sampling of a SIFT feature neighborhood into a descriptor.

5.2 Comparing SIFT Features

5.2.1 More on SIFT Feature Descriptors

SIFT was described earlier in Section 4.1. It transforms an input image into a set of features; these

features have a location and size in the input image, as well as a descriptor to characterize them.

The SIFT feature descriptors are invariant to rotation, scale, and translation. The are also partially

invariant to affine changes such as viewpoint change, and have been demonstrated to be distinct

and robust enough to match features for a wide range of image transformations [102, 104].

The earlier description of SIFT described how the descriptors characterize the local image

neighborhood around a feature. This local area is divided into subregions, and the gradients within

each subregion are sampled as shown in Figure 5.3(a).The number of subregions can be varied.

The figure shows four subregions, but the SIFT default and the value used in the implementation

in this chapter 4×4 subregions. The sampling density is another SIFT parameter; the figure shows

2× 2 samples per region, while gpu-cemd assumes 4× 4 samples, which is commonly used.

The orientation of the neighborhood is determined by the dominant image gradient within the

area of the neighborhood. The positive x-axis of the neighborhood is rotated to match the dominant

gradient. Put another way, the dominant gradient is considered to be angle 0. This is the mechanism

that SIFT uses to achieve rotation invariance.

67



The gradient magnitudes are weighted by a Gaussian window centered on the feature, with the

weights falling off with greater distance from the center. Finally, these samples are accumulated

into a single histogram for each subregion, as shown in Figure 5.3(b). The number of bins is also

variable; the implementation uses and the figure shows the SIFT default of eight. Each of the eight

bins in the histogram corresponds to a different forty-five degree orientation. The value in each bin

is the sum of the weighted gradient magnitudes whose orientation falls within that bin.

The circular histograms for each subregion are unrolled and stored sequentially for each fea-

ture, as shown in Figure 5.3(c). Each bin value is stored as a single byte, with a value from 0 to

255. With an orientation histogram for each of the 16 subregions of the local neighborhood, and

eight bins per histogram, SIFT uses a 16× 8 = 128 element vector for each feature descriptor.

5.2.2 Measuring Feature Dissimilarity

The dissimilarity between two feature descriptors is commonly measured with distance metrics

such as the Euclidean or Manhattan distance [120, 121, 122]. The distance metric is used in a

nearest-neighbor search for each feature from an input image among all the features in a reference

image. The nearest neighbor is considered a match if it is closer than the second nearest neighbor

by a specified ratio, often 40–60% [99]. The dissimilarity measurement used to find the nearest

neighbors has a significant effect on the matching process [123].

It is straightforward to use this type of bin-to-bin comparison to measure dissimilarity between

SIFT descriptors. However, these comparisons fail to account for the structure of SIFT descriptors,

whose elements are not orthogonal dimensions, but orientation histograms. Consider three, eight-

bin orientation histograms a, b, and c, where

a = (0, 0, 0, 0, 0, 0, 0, 10), b = (0, 0, 0, 0, 0, 0, 5, 5), c = (0, 0, 0, 5, 0, 0, 0, 5).

Using the Euclidean distance, Distance(a, b) = Distance(a, c) =
√
50. However, a intuitively

seems closer to b than to c, because a and b have more closely-aligned gradient orientations. The

68



Earth Mover’s Distance [124, 125] (EMD) gives a more reasonable result. For the above example,

EMD(a, b) = 0.625 and EMD(a, c) = 2.5, agreeing with the intuition that a is closer to b than it is

to c.

The distance EMD(a, b) can be thought of as the minimum work required to change distribution

a into distribution b. If both distributions are imagined as piles of dirt, one pile can be transformed

into the other pile by pushing some of the dirt. The work done is the product of the amount of dirt

moved and how far it had to be pushed.

The EMD defines the cost of moving a unit of dirt from bin i to bin j as c(i, j), where i and j

are in a one-dimensional histogram with N bins and

c(i, j) =
|i− j|
N

. (5.1)

For example, the cost to move five units from bin 6 to bin 7 in the example above is 5×|6−7|/8 =

5/8. Given this definition of the cost function, the EMD can be efficiently computed using

EMD(a, b) =
1

N

N∑
i=1

|A[i]−B[i]|, (5.2)

where A and B are the cumulative histograms of a and b.

The EMD is defined between histograms, but SIFT descriptors are a collection of 16 his-

tograms. The EMD can be used to define the difference between descriptors by summing the

EMD for each pair of corresponding pair of histograms in the descriptors.

While the EMD is an improvement over the Euclidean distance, it still fails to account for the

periodic nature of SIFT descriptors. Each histogram in the descriptor is circular. As shown in

Figure 5.3(b), each bin corresponds to a different forty-five degree orientation segment. The last

bin is adjacent to the first bin.

The Circular Earth Mover’s Distance (CEMD) is a variation on EMD that takes into account

the periodic nature of SIFT descriptor histograms [123]. Essentially, it connects the first bin to the

last bin, allowing dirt to be pushed directly between them. More formally, it alters the cost function

69



shown in (5.1) to

c(i, j) = min
{
|i− j|
N

, 1− |i− j|
N

}
. (5.3)

In other words, it costs 1/N to move a single unit of dirt to an adjacent bin. Because the bins are

now circular, the maximum distance dirt will be moved is N/2, and the maximum result of c(i, j)

is 1/2.

As shown in (5.2), the EMD can be calculated by generating a cumulative histogram X for

each input histogram x. The CEMD instead uses N cumulative histograms X0, . . . , XN−1, defined

as

Xj[i] =



i∑
k=j

x[k] if i ≥ j,

N−1∑
k=j

x[k] +

j∑
k=1

x[k] if i < j.

(5.4)

Essentially, the cumulative histogramXj begins at index j of the input histogram and wraps around

to finish at index (j − 1). Given these cumulative histograms, the CEMD can be calculated as

CEMD(a, b) = min
j∈{0,1,...,N−1}

{
1

N

N−1∑
i=0

|Aj[i]−Bj[i]|

}
. (5.5)

An example for two four-bin histograms is shown in Table 5.1. Intuitively, three units in v1 should

be moved from bin 0 to bin 1 at a cost of 3× (1/4), and another two units should be moved from

bin 0 to bin 3, at a cost of 2 × (1/4), for a total cost of 5/4. The table shows how four pairs of

cumulative histograms are generated, one starting at each index. The differences between each pair

of cumulative histograms are summed. The minimum sum for this example is five, and N for this

example is four, so CEMD(v1, v2) = 5/4.

Research has shown that CEMD is better than many other dissimilarity measures (Euclidean,

Manhattan, χ2) for SIFT feature matching [123, 126]. Because CEMD takes into account the

structure of the data, comparisons between SIFT descriptors are more likely to return meaningful

results than Euclidean or Manhattan distances.

CEMD is computationally expensive compared to these other measures, requiring significantly

70



Table 5.1: CEMD Example with 4-bin Histogram

Starting v1 1 9 2 4
Index v2 6 6 2 2

v1 Cumulative Histogram 1 10 12 16

0 v2 Cumulative Histogram 6 12 14 16

Absolute Difference 5 2 2 0

v1 Cumulative Histogram 16 9 11 15

1 v2 Cumulative Histogram 16 6 8 10

Absolute Difference 0 3 3 5

v1 Cumulative Histogram 7 16 2 6

2 v2 Cumulative Histogram 10 16 2 4

Absolute Difference 3 0 0 2

v1 Cumulative Histogram 5 14 16 4

3 v2 Cumulative Histogram 8 14 16 2

Absolute Difference 3 0 0 2

more computation to find the difference between two vectors. When viewed from a computational

cost perspective, the CEMD is a poor choices for comparing image features. However, the ad-

vantage of CEMD is that neighboring bins in a histogram are given consideration in the distance

calculation.

5.3 Implementation and Discussion

Registering the new image requires searching those millions of features, and possible features from

other images, for matches. The CEMD has been shown to perform well, but is computationally

expensive.

CEMD is a good candidate for GPU acceleration. Where there are two sets of features n and

m, a single thread can be assigned to calculate each CEMD(ni,mj), using C code very similar to

a CPU implementation. Where n and m are too large to calculate all results with a single kernel

launch, the |n|× |m| comparisons can be tiled into multiple kernel launches. This can also be used

to split the comparison among multiple GPUs and even multiple cluster nodes. The results have

71



no interdependencies, and thus should see linear speedup with the number of GPUs used.

This section describes the initial implementation and several refinements of a CEMD kernel in

CUDA. A summary of the results is shown in Table 5.3. All refinements of the kernel share the

same basic form:

1. The input consists of two arrays of descriptors, A and B. These descriptors are in the default

SIFT format: they consist of 16 histograms, each having 8 bins. Each bin is stored as an

unsigned byte, so each descriptor is 128 bytes. Before the CEMD kernel can execute, A

and B must be copied from the host’s memory into the device’s global memory. For the

results shown in Table 5.3, A and B each have 2048 descriptors, and each uses 256 KiB1 of

memory.

2. The output is a two-dimensional array D, where

D[I][J ] = CEMD(AI , BJ)

After the GPU kernel has computed all results, D must be copied from device memory to

host memory. For the results reported in Table 5.3, D holds 4× 220 results and uses 16 MiB

of memory. This copy is the dominant source of overhead in the CEMD kernel.

3. The kernel executes in blocks of 16× 16 threads. Each thread has an index (i, j) within the

block and an index (I, J) within the grid of all threads. Thread (I, J) calculates the CEMD

between AI and BJ , writes the result to D[I][J ] in global memory.

5.3.1 Experimental Setup

All performance results were obtained on a computer with the following specifications:

• Two Intel Xeon E5520 processors

• 12GBytes 1333Mhz DDR3 RAM

• Two NVIDIA GTX295 graphics cards (compute capability 1.3)

11 KiB = 210 bytes; 1 MiB = 220 bytes

72



Require: a and b are feature descriptors
Require: a and b are each composed of H histograms

function DESCRIPTORDISTANCE(a, b)
distance← 0
for h from 0 to H do

distance← distance+ CEMD(ah, bh)
end for
return distance

end function

Require: x and y are circular histograms
Require: x and y are each composed of B bins

function CEMD(x, y)
memd←∞
for i from 0 to B do

accx ← 0; accy ← 0; d← 0
for k from i to B, from 0 to i do

accx ← accx + xk
accy ← accy + yk
d← d+ |accx − accy|

end for
memd← min(memd, d)

end for
return memd

end function

Figure 5.4: Descriptor CEMD Algorithm

The software used in development and testing is:

• Rocks 5.2 (Based on CentOS 5.2)

• GNU g++ 4.1.2 (code compiled with -O2 flag)

• CUDA Toolkit 2.3 (code compiled with -O2 and -arch=sm 13)

• NVIDIA Display Driver 190.53

5.3.2 Runtime of CEMD and L2

The initial algorithm used to calculate CEMD on both the CPU and GPU is shown in Figure 5.4.

Calculating the CEMD between two descriptors requires more work than computing the Euclidean

distance between the same descriptors. Table 5.2 illustrates the resulting difference in runtime

73



Table 5.2: Performance of CEMD vs. Euclidean

secondsa meas/secb

CEMD 12.8 328 K
Euclidean 2.78 1.51 M

a Time to compute 4× 220 difference measurements
b The number of difference measurements made per second

Table 5.3: CEMD Kernel Performance

kernela totalb kernelc totald

seconds seconds meas/sec meas/sec

CPU-INITIAL - 12.8 - 328 K
CPU-FINAL - 5.82 - 720 K
GPU-INITIAL 1.61 1.69 2.61 M 2.48 M
GPU-SHMEM 0.444 0.527 9.45 M 7.95 M
GPU-MEMOPT 0.429 0.510 9.77 M 8.22 M
GPU-INDEX 0.535 0.619 7.85 M 6.78 M
GPU-UNROLL 0.0843 0.166 49.8 M 25.2 M
GPU-FINAL 0.0771 0.165 54.4 M 25.5 M

a The kernel execution time on the GPU to calculate 4× 220 measurements with the CEMD algorithm
b The wall clock time with all overhead of GPU kernel execution, including copying input data from the host to

the device, actual kernel run time, and copying the results back to the host
c The amortized number of measurements made every second, i.e. 4× 220 divided by column 2
b The amortized number of measurements made every second, including overhead costs

speed. Both the CEMD and the Euclidean algorithms in this benchmark were implemented without

heavy optimizations.

Note that the CEMD algorithm in Figure 5.4 does not normalize with the number of bins as

shown in Equation 5.5. Its results will be larger by a constant factor equal to the number of bins

per histogram.

5.3.3 Initial Design: CPU-INITIAL and GPU-INITIAL

Both the initial CPU and GPU implementations use the CEMD algorithm shown in Figure 5.4.

The CPU implementation serves as a basis of comparison for the GPU kernel performance and is

also used to confirm the correctness of GPU kernel results. The performance of this CPU imple-

mentation is shown as CPU-INITIAL in Table 5.3.

The first GPU implementation of CEMD includes the copies between device and host memory

74



described above, and is otherwise a direct port of the CPU code. A thread tI,J reads in descriptors

AI and BJ directly from global memory, calculates CEMD(AI , BJ), and writes the result to D.

Its performance is shown as GPU-INITIAL in Table 5.3. This version of the GPU kernel shows a

7.96× speedup as compared to the reference CPU code.

5.3.4 Using Shared Memory: GPU-SHMEM

CUDA kernels can operate on data in several memory spaces. GPU shared memory is on-chip and

has 100× lower latency than the off-chip global memory. However, shared memory is local to a

thread block and is limited to 16 KiB.

Using shared memory is the first refinement to the GPU kernel. Recall that thread blocks for

this kernel are 256 threads arranged in 16 rows of 16 columns. For this version of the kernel, the

16 threads (i, 0) each load a descriptor AI into shared memory, then the 16 threads (0, j) each load

a descriptor BJ into shared memory. To ensure the reads are complete before proceeding, they are

followed by a barrier (the CUDA function syncthreads()). Then, the threads calculate the

CEMD as before, but now operating on the descriptors stored in shared memory.

The results of using shared memory are shown in Table 5.3 as GPU-SHMEM. This version of

the kernel shows a 3.62× speedup as compared to the initial GPU implementation.

5.3.5 Optimizing Global Memory Reads: GPU-MEMOPT

Global memory performance can vary substantially based on the access pattern of memory reads.

Memory operations with the right pattern can be coalesced into a single transaction, and can

achieve a bandwidth roughly an order of magnitude faster than non-coalesced operations.

The global memory reads of GPU-SHMEM are not coalesced. Each thread copying a de-

scriptor from global to shared memory loads one bin at a time, performing 128 consecutive load

operations. As thread ti is reading bin b from descriptor Bi, thread ti+1 is reading bin b from de-

scriptor Bi+1. These loads are separated by the 128-byte length of a descriptor, preventing them

from being coalesced.

75



The reads can be coalesced with a straightforward change to the copy procedure. The subarrays

of 16 descriptors to be read from each input array are cast as arrays of 512 4-byte words. Each

thread ti in the thread block reads two words, i and i + 256. This guarantees that consecutive

threads read consecutive words, and the global memory accesses are fully coalesced.

The result of this optimization is shown in Table 5.3 as GPU-MEMOPT. This refinement pro-

duces a 1.03× speedup versus the previous kernel, GPU-SHMEM. Only a small benefit is ob-

tained because the CEMD kernel is not bound by memory bandwidth. The memory requirements

of CEMD are as follows:

• Each block of threads computes 256 descriptor distances.

• Each block reads 32 descriptors, for a total of 4 KiB, so the kernel reads 16 bytes for each

distance computed.

• At 9.77 million distances computed per second, the kernel is reading 156 MB per second.

• The GTX 295 has a 448-bit memory interface to 1 GHz GDDR3 memory. This provides a

theoretical 112 GB/second of bandwidth.

Because the GPU kernel is only using a small fraction (0.14%) of the global memory bandwidth,

optimizations in this area have little effect.

5.3.6 Reducing Shared Memory Bank Conflicts: GPU-INDEX

Shared memory on the GTX 295 is divided into 16 banks. Each bank holds successive 4-byte

words. That is, bank 0 holds words 0, 16, 32. . . , bank 1 holds words 1, 17, 33. . . , etc. Operations

on different banks can be serviced simultaneously, as can multiple reads of the same data in a

single bank. However, reads from multiple locations within a single bank are referred to as a bank

conflict and must be served sequentially, increasing shared memory latency.

The shared memory reads of GPU-MEMOPT generate many bank conflicts. While a given

thread ti is reading bin b from descriptor An, thread ti+1 is reading bin b of descriptor An+1 at

the same time. Recall that these descriptors are 128 bytes in length, so these two reads are 128

bytes apart, or 32 4-byte words apart. Since there are 16 banks and 32 mod 16 = 0, both reads are

76



coming from the same bank and generate a bank conflict. As long as consecutive threads read the

same bin from consecutive descriptors at the same time, all of the bin reads create bank conflicts.

This was verified by using the CUDA profiler, which counts the warp serialization events that

occur during bank conflicts. A single run of GPU-MEMOPT causes more than 156 million warp

serializations.

The GPU-INDEX kernel avoids these warp serializations. GPU-INDEX is modified from the

original CEMD algorithm by a change to the starting bin and histogram for each thread. When a

thread is in column j within its thread block, it starts with bin b of histogram h, where

h = j/2 and b = (j mod 2)× 4

For CUDA devices of compute capability 1.x, shared memory requests are batched by half-warps,

or groups of 16 threads. Changing the starting index of CEMD computation as shown above

reduces the bank conflicts between threads in a half-warp.

While GPU-INDEX shows many fewer bank conflicts—the profiler records 31 million serial-

ization events—its performance is slightly slower, as shown in Table 5.3. This result indicates that

the SIMT CUDA architecture is successfully hiding the shared memory latency in the previous

kernel refinement, GPU-MEMOPT. For compute capability 1.3 devices,

• All threads within a block execute on the same streaming multiprocessor (SM). More than

one block of threads can be resident in an SM at one time.

• There are 16384 32-bit registers per SM. These are shared among all thread blocks currently

resident on the SM.

• GPU-MEMOPT threads use 31 registers, so a 256-thread block uses 7936 registers. The

CUDA architecture allocates registers to thread blocks in multiples of 512, so this value is

rounded up to 8192.

• At 8192 registers per block, two blocks can be executing on an SM at the same time. This

is a total of 512 threads, 50% of the maximum of 1024 resident threads. This percentage is

77



referred to as the thread “occupancy.”

• The SM has 8 scalar processors (SP). This means that, of the 512 threads resident on the

SM, 8 can execute at the same time. If a thread cannot execute, for example because the

next instruction has an operand that has not yet arrived from memory, the SM can execute

instructions from any of the 504 other resident threads. This mechanism is used to hide the

latency of any operation, including shared memory loads.

The additional calculations to compute h and b only add overhead, so this refinement to the kernel

was discarded.

5.3.7 Loop Unrolling: GPU-UNROLL

Experience with GPU-INDEX shows that eliminating instruction overhead is a potential optimiza-

tion target. The Scalar Processor (SP) cores in the GT200 chip that powers the GTX 295 can benefit

greatly from loop unrolling. The maximum size of a CUDA kernel is 2 million instructions, enough

capacity for significant loop unrolling.

For the GPU-UNROLL kernel a combination of C++ template and preprocessor metaprogram-

ming is used to manually unroll the CEMD algorithm. After unrolling, there is a single loop that

executes 16 times for each distance calculated, once per histogram. The two levels of nested loops

below this, to calculate cumulative histograms starting at an index and to repeat that process for

each bin in a histogram, are completely flattened. This approach is very effective at reducing the

computation time. The results are shown in the GPU-UNROLL line of Table 5.3. The unrolling

produces a 5.10× speedup as compared to the GPU-MEMOPT kernel.

This large speedup was not entirely the result of unrolling. Profiling shows that only 20 million

warp serializations occur during the execution of GPU-UNROLL—almost 8× less than GPU-

MEMOPT. This surprising result occurs because of compiler optimizations that only occur after

loop unrolling. Consider that for each pair of 8-bin histograms, CEMD calculates 8 cumulative

histograms. Each bin value is read once per cumulative histogram, but the bin values do not

change. After unrolling, the compiler recognized the redundant reads and eliminates them by

78



keeping the bin values in registers.

After this refinement, it is unlikely that further changes can greatly accelerate the execution

of this algorithm. With the redundant reads eliminated as described above, and 16-histogram

descriptors with 8 bins per descriptor:

• There are 16 load instructions per pair of histograms

• There are 8 subtractions, 8 absolute values, and 21 additions per cumulative histogram.

• There are 8 cumulative histograms and 7 minimum operations to find the smallest of them,

requiring 319 operations per histogram.

• Each descriptor distance has 16 pairs of histograms and 15 add instructions. Ignoring the

overhead of the histogram loop, there are 5119 operations per descriptor distance.

• The 4× 220 distance calculations performed by the kernels in Table 5.3 require 21.47 billion

operations, ignoring some overhead such as the global to shared memory reads.

• The GT200 chip in the GTX 295 has 240 processors running at 1.24 GHz, for a total of

297.6 billion instructions per second. The minimum time to complete the test calculations is

21.47/297.6 = 0.072 seconds

The measured time of 0.084 seconds indicates that this kernel is operating at roughly 85% of

the theoretical maximum based only on the time required to issue instructions; i.e., ignoring all

instruction latency. This means that the SIMT execution model is hiding most of that latency, and

this algorithm is unlikely to see substantial further speedups.

5.3.8 Algorithmic Improvements: GPU-FINAL and CPU-FINAL

Further speedups require a better CEMD algorithm. Consider the definition of CEMD labeled

Equation 5.5. It requires repeated summation of the elements of Dj for 0 ≤ j < N , where N is

the number of bins per histogram and

Dj[i] = Xj[i]− Yj[i]

79



function CEMD(x, y)
accx ← 0; accy ← 0
for i from 0 to B do

accx ← accx + xi
accy ← accy + yi
c[i]← accx − accy

end for
memd←∞
for i from 0 to B do

d← 0
for k from i to B do

d← d+ |c[i]− c[k − 1]|
end for
for k from 0 to i do

d← d+ |c[i]− c[k − 1] + c[B − 1]|
end for
memd← min(memd, d)

end for
return memd

end function

Figure 5.5: Modified CEMD Algorithm

To find the values of Dj , the original CEMD algorithm, shown as MEMDISTANCE in Figure 5.4,

calculates each histogram Xj and Yj for 0 ≤ j < N .

However, only the initial cumulative histograms X0 and Y0 need to be calculated. These can

be subtracted to find D0, and further difference-of-cumulative values Dk for k > 0 can be derived

from D0 with

Dk[i] =


D0[i]−D0[k − 1] if i ≥ k,

D0[i]−D0[k − 1] +D0[B − 1] if i < k.

The updated function MEMDISTANCE in Figure 5.5 uses this method to calculate the CEMD, and

is similar to the implementation described in [123].

As mentioned above, the original function requires 319 operations per histogram. The new

function only requires 210, leading to the performance shown as GPU-FINAL in Table 5.3. This

is a 1.09× speedup as compared to the GPU-UNROLL kernel. Given the 34% reduction in work

done, the limited 9% increase in performance indicates that the GPU-FINAL kernel is being limited

80



 0.01

 0.1

 1

 10

 100

 1000

0 20 40 60 80 100 120 140 160

Ti
m

e 
(s

ec
on

ds
)

Number of Measurements (Millions)

CPU
GPU

Figure 5.6: Time to Complete N Measurements

105

106

107

108

0 20 40 60 80 100 120 140 160

Th
ro

ug
hp

ut
(c

om
pa

ris
on

s/
se

co
nd

)

Number of Comparisons (Millions)

GPU
GPU with overhead

CPU

Figure 5.7: Throughput of N Measurements

by another bottleneck, such as shared memory latency.

Loop unrolling and the improved algorithm can be profitably used in the CPU implementa-

tion of the CEMD kernel as well. After updating the CPU function to incorporate the improved

algorithm and loop unrolling, the performance is shown as CPU-FINAL in Table 5.3. The final

optimized version of the GPU kernel is 75.56× faster than the final optimized version of the CPU

kernel.

81



5.3.9 Performance Scaling

The figures in Table 5.3 all show the time to complete about four million CEMD calculations. The

performance of the final CPU and final GPU implementations on larger input sizes is shown in

Figure 5.6. The largest problem size shown is 151 million comparisons, which requires a 576 MiB

result array in addition to the storage required for the input descriptor arrays. The GTX 295 has

896 MiB available to each GPU, which limits the problem size that can be computed in a single

kernel invocation.

GPU-FINAL is consistently 70–75× faster than CPU-FINAL for all problem sizes. The same

results in terms of calculations per second are shown in Figure 5.7. Both the CPU and GPU kernels

have very consistent performance. Figure 5.7 has an additional line showing the performance of

the GPU kernel including overhead costs. The primary source of overhead are the transfers of

input data to the GPU and the CEMD results back to host memory.

For a given launch, there is O(|n|+ |m|) input data transferred and O(|n| × |m|) computations

performed, so the overhead of data input becomes negligible for large enough data sets. However,

there are O(|n| × |m|) results to transfer back to the host, so the output time remains relatively

important for all data set sizes. For larger problem sizes, the throughput including overhead is

13% slower than the GPU kernel alone. For smaller problem sizes, including the size shown in

Table 5.3, the input data transfer time, and constant factors such as kernel invocation time, are

relevant. These can reduce the throughput by up to 50%.

5.3.10 Streaming Kernel Execution

If the sum total of memory required by the input arrays of descriptors and the output array of results

is larger than device memory, result calculation must be broken into multiple kernel launches.

There is no dependence between the results, so the result array can be broken into tiles and one

kernel can be launched to calculate the results in each tile. For each tile, a subset of the input arrays

are copied to the device, and the results are copied out.

Devices with compute capability 1.1 or higher can overlap the execution of a kernel with a

82



copy 
in
i

copy 
out
i - 2

Stream 0

Time

copy 
in

i +2

copy 
out
i

copy 
in

i +1

copy 
out
i - 1

kernel i - 1

kernel i

kernel i +1

Stream 1

Figure 5.8: Streaming Execution in CUDA

single device-host memory operation. Figure 5.8 shows the typical flow of execution. While a

kernel is executing, the results of the last kernel are copied to the host, and the input to the next

kernel is copied to the device. This double-buffering imposes several restrictions:

1. Because memory must be allocated for two kernel launches at a time, each kernel launch is

limited to calculating a smaller number of results.

2. Asynchronous operation requires page-locked or “pinned” host memory. Systems make a

limited amount of this memory available, possibly further limiting buffer size, especially in

multi-GPU systems.

This style of concurrent execution was utilized in a cluster-based system, and is described below.

5.3.11 Using Multiple GPUs on Multiple Machines

The GPU kernel was used as part of a cluster-based implementation of gpu-cemd. This system can

use multiple nodes, each with several GPU devices, to quickly calculate many CEMD results. Each

node was managed by a single MPI process, and was responsible for comparing the complete set of

input features to a subset of the reference features. The nodes use OpenMP to create a management

thread for each GPU. The comparisons to be performed by the node were divided among the

GPUs, then further divided into a number of kernel launches which were then dispatched in two

overlapping streams to each GPU. Because there are no dependencies between CEMD calculations,

the throughput of those calculations scales linearly with the number of GPUs in the cluster. With

24 GPUs in six nodes, the test cluster performed over 1.2 billion comparisons per second.

83



5.4 Conclusion

The gpu-cemd implementation of the CEMD measurement for SIFT feature descriptors is the first

to use GPUs for this purpose. Given the large number of features generated from geospatial images,

and the computational expense of CEMD relative to simpler measurements, high-performance

tools are needed to make CEMD practical in geospatial applications.

The instruction throughput of gpu-cemd, versus the theoretical peak of the GPU it runs on,

indicates that gpu-cemd is taking full advantage of the SIMT hardware of the GPU — no im-

plementation of CEMD on the GPU can be faster. This results in over a 70× speedup over a

single-threaded CPU implementation of the same algorithm. However, the process of developing

gpu-cemd, or any GPU kernel, is not straightforward because the CUDA platform exposes a large

design space to developers.

Where there can be data reuse, developers should always utilize the shared memory pool. Sim-

ple use of shared memory lead to a 3.6× speedup for the GPU CEMD kernel. Note that the GPU

kernel was 8× faster than the CPU without using shared memory, so effective use of the shared

memory space may not be prerequisite to seeing significant gains with a GPU accelerator. While

virtually all GPU kernels should implement shared memory usage, the utility of other optimizations

will vary widely between different kernels. Coalescing global memory access can have dramatic

effects on bandwidth-limited algorithms, but had little effect on the CEMD kernel.

Instead, loop unrolling was one of the most useful refinements for the CEMD implementation.

Because CUDA uses a toolchain based on C/C++, this loop unrolling was implemented using

a combination of C preprocessor and C++ template metaprogramming. This type of rigorous,

manual loop unrolling is more likely to be useful in GPU programming than with traditional CPU

programming. In general, identifying useful useful approaches to performance optimization of

GPU code requires knowledge of the GPU architecture and the use of profiling and timing to

confirm the efficacy of various optimizations.

84



Chapter 6

Conclusions

6.1 Results

The work described in this dissertation has a number of useful results:

• The “prefix tree” data structure described in Chapter 3 uses an implicit binary tree to store

the intermediate calculations of a traditional parallel prefix operation. This allows online

updates to parallel prefix result in logarithmic time with very low overhead.

• Carefully-chosen methods of calculating line-of-sight over a rasterized height map allows

the use of the prefix tree data structure to be used in place of a traditional binary tree for

viewshed analysis with a planar sweep approach.

• The planar sweep can be partitioned radially to facilitate parallel calculation on multi-core

computers. Combined with the low memory usage of the prefix tree, this currently allows

essentially linear speedup with up to eight CPUs.

• The three items above are implemented in a software application called “pvshed” which is

orders of magnitude faster than available viewshed analysis software.

• Scale-spaced based feature extraction algorithms can be partitioned in scale space, rather

than in image space, as described in Chapter 4. This allows the algorithm to exploit multi-

core and cluster computers with minimal change to the algorithm itself, and little change to

the results.

• By processing the scale space partitions in a thread-pool-based pipeline, feature extraction

can accommodate a wide variety of underlying hardware. This also facilitates out-of-core

processing, decoupling the maximum input image size from the available amount of system

memory.

• The previous two items are implemented in a software application named SOHC. This is

85



the first SIFT implementation capable of processing arbitrarily large images, and it can take

advantage of GPU-based systems as well as multi-core and cluster computers.

• A GPU-based implementation of the CEMD algorithm which greatly accelerates feature dis-

similarity calculations using the algorithm. The implementation, gpu-cemd, makes nearly-

optimal use of the GPU hardware.

These results have already been used as the basis for further geospatial applications. The Center

for Advanced Spatial Technologies at the University of Arkansas has used pvshed as the basis of

an interactive web-based viewshed analysis application, which would be difficult or impossible to

develop with previous viewshed algorithms. The gpu-cemd code was used in research attempting

to modify SIFT for better multi-modal performance, where its speed made parameter sweeps more

practical. Finally, SOHC is planned for use in future research on object tracking in large images.

6.2 Applicability of Parallel Computing to Given Applications

Multi-core Computing: Both pvshed and SOHC make efficient use of multi-core architectures.

In general, the spatial nature of their input data should make it possible to partition geospatial

applications to take advantage of the coarse-grained parallelism of multi-core computers, while the

shared memory of these systems means that locality is not as great a concern as with distributed-

memory systems. Increasing input size and the recent ubiquity of multi-core processors will drive

most geospatial applications to utilize this type of parallelism. Most of these applications will also

be able to use the task-based approach to concurrent programming demonstrated by libraries and

frameworks such as TBB, which was used in pvshed, to avoid the traditional difficulties of using

threaded programming to utilize multi-core computers.

GPU Computing: The gpu-cemd software makes great use of GPUs, and other applications

that process large arrays of SIFT or other generated features will likely be able to use this sort

of parallel computer. Locality of computation is even more important for hybrid clusters than

other distributed-memory systems, because the GPUs have no direct access to network resources,

86



increasing the overhead of communication.

Viewshed analysis is unlikely to benefit from GPU acceleration. The radial partitions around

the viewpoint can be swept in parallel, and thus are a good fit for multi-core parallelism. However,

the sweep of each partition is inherently sequential, because updates to the status structure for a

single event must be performed sequentially, and events must be processed in order, as well. The

sweeps also exhibit non-regular data access patterns as they process the event list. This presupposes

an approach based on a planar sweep; other approaches might achieve faster speeds if they are a

better match to the GPU architecture.

Because SOHC’s partitioning approach allows it to use mostly-unchanged feature extraction

algorithms, it can also take advantage of efforts by the computer vision community to accelerate

those algorithms with GPUs. The data-parallel nature of these algorithms makes this a likely-

fruitful avenue of research.

Cluster Computing: In general, cluster computers are useful for applications where there is a

high ratio of computation to data, and good locality. Simulations of fluids or particles are good

examples, because an initial state is loaded, then an arbitrary number of simulation iterations can

be performed, based on mostly local interactions.

In contrast, feature extraction involves a fixed amount of computation for given inputs. The

computational power of a cluster computer, for these problems, quickly exceeds the aggregate

secondary storage bandwidth of a cluster. With enough network bandwidth, SOHC might take

advantage of cluster in a “capacity computing” fashion; that is, by simultaneously processing many

jobs, with input images loaded directly to node-resident secondary storage. For viewshed analysis,

data can be reused many times for the calculation of multiple viewsheds. However, there is poor

locality: the computation is divided radially around the viewpoint; these partitions change with

each viewshed calculation. Much like SOHC, the gpu-cemd application could also operate in a

capacity-based fashion with enough aggregate storage bandwidth.

Given these factors, distributed-memory clusters are the most difficult parallel computing plat-

87



form to use effectively in geospatial applications.

88



Bibliography

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patter-
son, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape of parallel
computing research: A view from Berkeley,” University of California at Berkeley, Tech.
Rep. UCB/EECS-2006-183, Dec. 2006.

[2] P. Kogge et al., “Exascale computing study: Technology challenges in achieving exascale
systems,” Sep. 2008.

[3] V. Sarkar et al., “Exascale software study: Software challenges in extreme scale systems,”
Sep. 2009.

[4] R. Duncan, “A survey of parallel computer architectures,” Computer, vol. 23, no. 2, pp.
5–16, Feb. 1990.

[5] M. J. Flynn, “Some computer organizations and their effectiveness,” Computers, IEEE
Transactions on, vol. C-21, no. 9, pp. 948–960, Sep. 1972.

[6] POSIX.1c, Threads extensions, IEEE Std. 1003.1c, 1995.

[7] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, 3rd ed.
Addison-Wesley Longman, 2005.

[8] A. Williams, “The Boost thread library,” http://boost.org/libs/thread, 2008.

[9] “Microsoft developer’s network: Processes and threads,” http://msdn.microsoft.com/en-us/
library/ms684841.aspx, 2011.

[10] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter, “Characterization of sci-
entific workloads on systems with multi-core processors,” IEEE Workload Characterization
Symposium, vol. 0, pp. 225–236, 2006.

[11] A. Kleen, “A NUMA API for linux,” White Paper, Novell, Apr. 2005.

[12] E. A. Lee, “The problem with threads,” University of California at Berkeley, Tech. Rep.
UCB/EECS-2006-1, Jan. 2006.

[13] The OpenMP API specification for parallel programming. [Online]. Available: http:
//openmp.org/wp/

[14] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou,
“Cilk: An efficient multithreaded runtime system,” in Proceedings of the fifth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, ser. PPOPP ’95.
New York, NY, USA: ACM, 1995, pp. 207–216.

[15] R. Geva, “Elemental functions: Writing data-parallel code in C/C++ using Intel Cilk Plus,”
White Paper, 2011.

89

http://boost.org/libs/thread
http://msdn.microsoft.com/en-us/library/ms684841.aspx
http://msdn.microsoft.com/en-us/library/ms684841.aspx
http://openmp.org/wp/
http://openmp.org/wp/


[16] T. Willhalm and N. Popovici, “Putting Intel threading building blocks to work,” in Proceed-
ings of the 1st International Workshop on Multicore Software Engineering. New York, NY,
USA: ACM, 2008, pp. 3–4.

[17] (2011) Grand Central Dispatch (GCD) reference. Apple. [Online]. Avail-
able: http://developer.apple.com/mac/library/documentation/Performance/Reference/GCD
libdispatch Ref/Reference/reference.html

[18] (2011) Parallel computing. Microsoft. [Online]. Available: http://msdn.microsoft.com/
en-us/concurrency/default.aspx

[19] (2011) The go programming language. Google. [Online]. Available: http://golang.org/

[20] MPI: A Message Passing Interface, Message Passing Interface Forum Std. 2.2, 2009.

[21] K. Ebcioglu, V. Saraswat, and V. Sarkar, “X10: Programming for hierarchical parallelism
and non-uniform data access,” in Proceedings of the International Workshop on Language
Runtimes, OOPSLA, 2004.

[22] B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programmability and the Chapel
language,” in International Journal of High Performance Computing Applications, vol. 21,
Aug. 2007, pp. 291–312.

[23] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A unified graphics
and computing architecture,” IEEE Micro, vol. 28, pp. 39–55, 2008.

[24] “NVIDIA’s next generation CUDA compute architecture: Fermi,” White Paper, NVIDIA,
Jul. 2010.

[25] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with
CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[26] CUDA C Progamming Guide 3.2, NVIDIA, 2010.

[27] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan,
“Brook for GPUs: Stream computing on graphics hardware,” ACM Trans. Graph., vol. 23,
pp. 777–786, Aug. 2004.

[28] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule, “Shader algebra,” ACM Trans.
Graph., vol. 23, pp. 787–795, Aug. 2004.

[29] S. Xiao, A. M. Aji, and W. chun Feng, “On the robust mapping of dynamic programming
onto a graphics processing unit,” Parallel and Distributed Systems, International Conference
on, vol. 0, pp. 26–33, 2009.

[30] T. Aila and S. Laine, “Understanding the efficiency of ray traversal on GPUs,” in HPG ’09:
Proceedings of the Conference on High Performance Graphics 2009. New York, NY, USA:
ACM, 2009, pp. 145–149.

90

http://developer.apple.com/mac/library/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://developer.apple.com/mac/library/documentation/Performance/Reference/GCD_libdispatch_Ref/Reference/reference.html
http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://msdn.microsoft.com/en-us/concurrency/default.aspx
http://golang.org/


[31] A. Gharaibeh and M. Ripeanu, “Size matters: Space/time tradeoffs to improve GPGPU ap-
plications performance,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’10). Washing-
ton, DC, USA: IEEE Computer Society, 2010, pp. 1–12.

[32] D. Tarjan, J. Meng, and K. Skadron, “Increasing memory miss tolerance for SIMD cores,”
in SC ’09: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis. New York, NY, USA: ACM, 2009, pp. 1–11.

[33] (2010) OpenCL. Khronos Group. [Online]. Available: http://www.khronos.org/opencl/

[34] K. Karimi, N. G. Dickson, and F. Hamze, “A performance comparison of CUDA and
OpenCL,” Computing Research Repository, vol. abs/1005.2581, 2010.

[35] (2010) DirectX developer center. Microsoft. [Online]. Available: http://msdn.microsoft.
com/en-us/directx/default

[36] (2011) CUDA fortran programming guide and reference. The Portland Group. [Online].
Available: http://www.pgroup.com/doc/pgicudaforug.pdf

[37] J. Hoberock and N. Bell, “Thrust: A parallel template library,” 2010. [Online]. Available:
http://www.meganewtons.com/

[38] T. D. Han and T. S. Abdelrahman, “hiCUDA: A high-level directive-based language for
GPU programming,” in Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units. New York, NY, USA: ACM, 2009, pp. 52–61.

[39] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP programming and tuning for
GPUs,” in Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’10), 2010, pp. 1–11.

[40] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and W.-M. Hwu, “FCUDA:
Enabling efficient compilation of CUDA kernels onto FPGAs,” in IEEE 7th Symposium on
Application Specific Processors (SASP ’09), Jul. 2009, pp. 35–42.

[41] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J. Cong, and W.-M. W. Hwu,
“High-performance CUDA kernel execution on FPGAs,” in Proceedings of the 23rd inter-
national Conference on Supercomputing (ICS ’09). New York, NY, USA: ACM, 2009, pp.
515–516.

[42] “PGI CUDA-x86: CUDA programming for multi-core CPUs,” PGI Insider, The Portland
Group, Nov. 2010.

[43] (2010) AMD accelerated parallel processing (APP) SDK. AMD. [Online]. Available:
http://developer.amd.com/gpu/amdappsdk

[44] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle,
A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Stasiak, M. Suzuoki, M. Wang,
J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa, “The design and im-
plementation of a first-generation CELL processor,” ISSCC, 2005.

91

http://www.khronos.org/opencl/
http://msdn.microsoft.com/en-us/directx/default
http://msdn.microsoft.com/en-us/directx/default
http://www.pgroup.com/doc/pgicudaforug.pdf
http://www.meganewtons.com/
http://developer.amd.com/gpu/amdappsdk


[45] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan, “Larrabee: A
many-core x86 architecture for visual computing,” ACM Trans. Graph., vol. 27, no. 3, pp.
1–15, Aug. 2008.

[46] N. Brookwood, “AMD fusion family of APUs,” White Paper, AMD, Mar. 2010.

[47] (2010) Intel microarchitecture codename sandy bridge. Intel. [Online]. Available:
http://www.intel.com/technology/architecture-silicon/2ndgen/index.htm

[48] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo, “Intel AVX: New frontiers in perfor-
mance improvements and energy efficiency,” White Paper, Intel, May 2008.

[49] S. Kang, D. A. Bader, and R. Vuduc, “Understanding the design trade-offs among current
multicore systems for numerical computations,” Parallel and Distributed Processing Sym-
posium, International, vol. 0, pp. 1–12, 2009.

[50] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish, M. Smelyan-
skiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey, “Debunking the 100X GPU
vs. CPU myth: An evaluation of throughput computing on CPU and GPU,” SIGARCH Com-
put. Archit. News, vol. 38, no. 3, pp. 451–460, 2010.

[51] (2010, Aug.) CUBLAS library. NVIDIA. [Online]. Available: http://developer.download.
nvidia.com/compute/cuda/3 2 prod/toolkit/docs/CUBLAS Library.pdf

[52] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek,
and S. Tomov, “Numerical linear algebra on emerging architectures: The PLASMA and
MAGMA projects,” in Journal of Physics: Conference Series, vol. Vol. 180. Innovative
Computing Laboratory, University of Tennessee, 2009.

[53] A. Petitet, C. Whaley, J. Dongarra, and A. Cleary. (2008) HPL - a portable implementation
of the high-performance linpack benchmark for distributed-memory computers. [Online].
Available: http://www.netlib.org/benchmark/hpl/

[54] M. Fatica, “Accelerating linpack with CUDA on heterogenous clusters,” in Proceedings of
2nd Workshop on General Purpose Processing on Graphics Processing Units. New York,
NY, USA: ACM, 2009, pp. 46–51.

[55] T. Endo, A. Nukada, S. Matsuoka, and N. Maruyama, “Linpack evaluation on a super-
computer with heterogeneous accelerators,” in Proc. IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS 2010), Atlanta, Apr. 2010, pp. 1–8.

[56] N. Bell and M. Garland, “Implementing sparse matrix-vector multiplication on throughput-
oriented processors,” in SC ’09: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis. New York, NY, USA: ACM, 2009, pp. 1–11.

[57] M. Hussein and W. Abd-Almageed, “Efficient band approximation of gram matrices for
large scale kernel methods on gpus,” in SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. New York, NY, USA: ACM,
2009, pp. 1–10.

92

http://www.intel.com/technology/architecture-silicon/2ndgen/index.htm
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUBLAS_Library.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUBLAS_Library.pdf
http://www.netlib.org/benchmark/hpl/


[58] D. Merrill and A. Grimshaw, “Revisiting sorting for GPGPU stream architectures,” Univer-
sity of Virginia, Department of Computer Science, Charlottesville, VA, USA, Tech. Rep.
CS2010-03, 2010.

[59] A. Nukada and S. Matsuoka, “Auto-tuning 3-D FFT library for CUDA GPUs,” in SC ’09:
Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis. New York, NY, USA: ACM, 2009, pp. 1–10.

[60] S. S. Hampton, S. R. Alam, P. S. Crozier, and P. K. Agarwal, “Optimal utilization of het-
erogeneous resources for biomolecular simulations,” in Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’10). Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.

[61] R. Babich, M. A. Clark, and B. Joó, “Parallelizing the QUDA library for multi-GPU calcu-
lations in lattice quantum chromodnamics,” in Proceedings of the 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis (SC
’10). Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.

[62] G. A. Elliott and J. H. Anderson, “Real-time multiprocessor systems with GPUs,” In sub-
mission, Jun. 2010.

[63] P. Bakkum and K. Skadron, “Accelerating SQL database operations on a GPU with CUDA,”
in Proceedings of the Third Workshop on General-Purpose Computation on Graphics Pro-
cessing Units, Mar. 2010.

[64] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU cluster for high performance
computing,” in Proceedings of the 2004 ACM/IEEE Conference on Supercomputing (SC
’04). Washington, DC, USA: IEEE Computer Society, 2004, pp. 47–.

[65] V. Kindratenko, J. Enos, G. Shi, M. Showerman, G. Arnold, J. Stone, J. Phillips, and W. mei
Hwu, “GPU clusters for high-performance computing,” in Cluster Computing and Work-
shops, 2009. CLUSTER ’09. IEEE International Conference on, Sep. 2009, pp. 1–8.

[66] (2011) Top500 supercomputing sites. TOP500 Project. [Online]. Available: http:
//top500.org

[67] T. Hamada and K. Nitadori, “190 TFlops astrophysical n-body simulation on a cluster of
GPUs,” in Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC ’10). Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1–9.

[68] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kalé, and T. R. Quinn, “Scaling hierarchical
N-body simulations on GPU clusters,” in Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’10).
Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.

[69] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,
A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros, “A massively parallel adap-
tive fast-multipole method on heterogeneous architectures,” in SC ’09: Proceedings of the

93

http://top500.org
http://top500.org


Conference on High Performance Computing, Networking, Storage, and Analysis. New
York, NY, USA: ACM, 2009, pp. 1–12.

[70] J. C. Phillips, J. E. Stone, and K. Schulten, “Adapting a message-driven parallel application
to GPU-accelerated clusters,” in SC ’08: Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–9.

[71] T. Shimokawabe, T. Aoki, C. Muroi, J. Ishida, K. Kawano, T. Endo, A. Nukada,
N. Maruyama, and S. Matsuoka, “An 80-fold speedup, 15.0 tflops full GPU acceleration
of non-hydrostatic weather model ASUCA production code,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC ’10). Washington, DC, USA: IEEE Computer Society, 2010, pp.
1–11.

[72] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J. C. Sancho, “En-
tering the petaflop era: The architecture and performance of Roadrunner,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing (SC ’08). Piscataway, NJ, USA:
IEEE Press, 2008, pp. 1:1–1:11.

[73] S. Craven and P. Athanas, “Examining the viability of FPGA supercomputing,” EURASIP
J. Embedded Syst., vol. 2007, no. 1, pp. 13–13, 2007.

[74] E. Boci, S. Sarkani, and T. Mazzuchi, “Optimizing ADS-B RF coverage,” in Integrated
Communications, Navigation and Surveillance Conference (ICNS), May 2009, pp. 1–10.

[75] J. Lubczonek, “Application of GIS techniques in VTS radar stations planning,” in Radar
Symposium, 2008 International, May 2008, pp. 1–4.

[76] A. Xiao, H. Bertoni, C. Chrysanthou, and J. Boksiner, “Fast prediction of scattering in
mountainous terrain using commonly visible surfaces,” in Sarnoff Symposium, 2010 IEEE,
Apr. 2010, pp. 1–5.

[77] M. Lu, J. Zhang, P. Lv, and Z. Fan, “Max/min path visual coverage problems in raster
terrain,” in Computer-Aided Design and Computer Graphics, 2007 10th IEEE International
Conference on, Oct. 2007, pp. 497–500.

[78] J. He, Y. Tian, X. Ming, and Y. Xu, “The optimal path planning based on landscape ecology
and health science: A case study of JinYun Mountain in ChongQing, China,” in Geoinfor-
matics, 2010 18th International Conference on, Jun. 2010, pp. 1–4.

[79] Y. Iikura, “Precise evaluation of topographic effects in satellite imagery for illumination
correction,” in Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE
International, vol. 3, Jul. 2008, pp. 1091–1094.

[80] S. V. G. Magalhães, M. V. A. Andrade, and W. R. Franklin, “An optimization heuristic for
siting observers in huge terrains stored in external memory,” in Hybrid Intelligent Systems
(HIS), 2010 10th International Conference on, Aug. 2010, pp. 135–140.

94



[81] J. P. Wilson and J. C. Gallant, Terrain Analysis: Principles and Applications. Wiley, 2000,
ch. 1.

[82] D. B. Gesch, Digital Elevation Model Technologies and Applications: The DEM Users
Manual, 2nd ed., American Society for Photogrammetry and Remote Sensing, Bethesda,
Maryland, USA, 2007.

[83] L. De Floriani, B. Falcidieno, C. Pienovi, D. Allen, and G. Nagy, “A visibility-based model
for terrain features.” in Proceedings of the Second Interational Symposium on Spatial Data
Handling, 1986, pp. 235–250.

[84] R. Cole and M. Sharir, “Visibility problems for polyhedral terrains,” J. Symb. Comput.,
vol. 7, pp. 11–30, Jan. 1989.

[85] J. Lee, “Analyses of visibility sites on topographic surfaces,” International Journal of Geo-
graphical Information Science, vol. 5, no. 4, pp. 413–429, 1991.

[86] W. R. Franklin and C. K. Ray, “Higher isn’t necessarily better: Visibility algorithms and
experiments,” in Advances in GIS Research: Sixth International Symposium on Spatial Data
Handling, 1994, pp. 751–770.

[87] M. van Kreveld, “Variations on sweep algorithms: Efficient computation of extended view-
sheds and class intervals,” in Proc. 7th Int. Symp. on Spatial Data Handling, 1996, pp.
15–27.

[88] B. Kaučič and B. Zalik, “Comparison of viewshed algorithms on regular spaced points,” in
SCCG ’02: Proceedings of the 18th Spring Conference on Computer Graphics. New York,
NY, USA: ACM, 2002, pp. 177–183.

[89] D. Izraelevitz, “A fast algorithm for approximate viewshed computation,” Photogrammetric
Engineering and Remote Sensing, vol. 69, no. 7, pp. 767–774, Jul. 2003.

[90] L. Liu, L. Zhang, C. Chen, and H. Chen, “An improved LOS method for implementing visi-
bility analysis of 3D complex landscapes,” in Computer Science and Software Engineering,
2008 International Conference on, vol. 2, Dec. 2008, pp. 874–877.

[91] Y. Shen, L. Lin, M. Yang, and G. Yurong, “Viewshed computation based on LOS scanning,”
in Computer Science and Software Engineering, 2008 International Conference on, vol. 2,
Dec. 2008, pp. 984–987.

[92] Z.-Y. Xu and Q. Yao, “A novel algorithm for viewshed based on digital elevation model,” in
Information Processing, 2009. APCIP 2009. Asia-Pacific Conference on, vol. 2, Jul. 2009,
pp. 294–297.

[93] Y. Xia, Y. Li, and X. Shi, “Parallel viewshed analysis on GPU using CUDA,” in Compu-
tational Science and Optimization (CSO), 2010 Third International Joint Conference on,
vol. 1, May 2010, pp. 373–374.

95



[94] M. Magalhães, S. Magalhães, M. Andrade, and J. Filho, “An efficient algorithm to com-
pute the viewshed on DEM terrains stored in external memory,” Brazilian Symposium on
GeoInformatics, pp. 183–194, 2007.

[95] H. Haverkort, L. Toma, and Y. Zhuang, “Computing visibility on terrains in external mem-
ory,” J. Exp. Algorithmics, vol. 13, pp. 1.5–1.23, 2009.

[96] J. Fishman, H. Haverkort, and L. Toma, “Improved visibility computation on massive grid
terrains,” in Proceedings of the 17th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems (GIS ’09). New York, NY, USA: ACM, 2009,
pp. 121–130.

[97] G. E. Blelloch, “Prefix sums and their applications,” School of Computer Science, Carnegie
Mellon University, Tech. Rep. CMU-CS-90-190, Nov. 1990.

[98] GRASS Development Team, Geographic Resources Analysis Support System (GRASS
GIS) Software, Open Source Geospatial Foundation, 2010. [Online]. Available:
http://grass.osgeo.org

[99] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Jour-
nal of Computer Vision, vol. 60, pp. 91–110, 2004.

[100] ——, “Object recognition from local scale-invariant features,” in Proc. Seventh IEEE Inter-
national Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157.

[101] ——, “Method and apparatus for identifying scale invariant features in an image and use of
same for locating an object in an image,” U.S. Patent 6,711,293, Mar., 2004.

[102] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp. 1615–1630, 2005.

[103] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),”
Comput. Vis. Image Underst., vol. 110, no. 3, pp. 346–359, 2008.

[104] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir,
and L. V. Gool, “A comparison of affine region detectors,” Int. J. Comput. Vision, vol. 65,
no. 1-2, pp. 43–72, 2005.

[105] D. G. Lowe. (2011) Keypoint detector. [Online]. Available: http://www.cs.ubc.ca/∼lowe/
keypoints

[106] A. Vedaldi. (2009) SIFT++ source code and documentation. [Online]. Available:
http://www.vlfeat.org/∼vedaldi/code/siftpp.html

[107] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of computer vision
algorithms,” http://www.vlfeat.org/, 2008.

[108] H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and characterization of SIFT on
multi-core systems.” in IISWC, D. Christie, A. Lee, O. Mutlu, and B. G. Zorn, Eds. IEEE,
2008, pp. 14–23.

96

http://grass.osgeo.org
http://www.cs.ubc.ca/~lowe/keypoints
http://www.cs.ubc.ca/~lowe/keypoints
http://www.vlfeat.org/~vedaldi/code/siftpp.html
http://www.vlfeat.org/


[109] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “SIFT implementation and optimization for multi-
core systems,” in IEEE International Symposium on Parallel and Distributed Processing
(IPDPS 2008), Apr. 2008, pp. 1–8.

[110] S. Heymann, K. Muller, A. Smolic, B. Froehlich, and T. Wiegand, “SIFT implementation
and optimization for general-purpose GPU,” in WSCG’07, 2007.

[111] C. Wu, “SiftGPU: A GPU implementation of scale invariant feature transform (SIFT),”
http://cs.unc.edu/∼ccwu/siftgpu, 2007.

[112] S. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature tracking and matching in video
using programmable graphics hardware,” Machine Vision and Applications, Mar. 2007.

[113] S. Bobovych, W. Emeneker, S. Warn, J. Cothren, and A. Apon, “Parallelization of the scale
invariant feature transform (poster),” in International Conference for High Performance
Computing, Networking, Storage, and Analysis, 2010.

[114] S. Warn, W. Emeneker, J. Cothren, and A. Apon, “Accelerating SIFT on parallel architec-
tures,” in IEEE International Conference on Cluster Computing and Workshops (CLUSTER
’09), Sep. 2009, pp. 1–4.

[115] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library.
O’Reilly, Oct. 2008.

[116] L. Chao, “Hyper-threading technology,” Intel Technology Journal, vol. 6, no. 1, Feb. 2002.

[117] R. Szeliski, “Image alignment and stitching: A tutorial,” Found. Trends. Comput. Graph.
Vis., vol. 2, no. 1, pp. 1–104, 2006.

[118] (2010) GeoStor: Arkansas’ official GIS platform. [Online]. Available: http://www.geostor.
arkansas.gov/

[119] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography,” Commun. ACM, vol. 24,
pp. 381–395, June 1981.

[120] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algorithm
configuration,” in International Conference on Computer Vision Theory and Applications,
2009.

[121] H. Jegou, H. Harzallah, and C. Schmid, “A contextual dissimilarity measure for accurate
and efficient image search,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR ’07), Jun. 2007, pp. 1–8.

[122] Q. Wang and S. You, “Fast similarity search for high-dimensional dataset,” in ISM ’06:
Proceedings of the Eighth IEEE International Symposium on Multimedia. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 799–804.

[123] J. Rabin, J. Delon, and Y. Gousseau, “Circular earth mover’s distance for the comparison of
local features,” in International Conference on Pattern Recognition, Dec. 2008.

97

http://cs.unc.edu/~ccwu/siftgpu
http://www.geostor.arkansas.gov/
http://www.geostor.arkansas.gov/


[124] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distributions with applications to
image databases,” in ICCV ’98: Proceedings of the Sixth International Conference on Com-
puter Vision. Washington, DC, USA: IEEE Computer Society, 1998, p. 59.

[125] ——, “The earth mover’s distance as a metric for image retrieval,” International Journal of
Computer Vision, vol. 40, pp. 99–121, 2000.

[126] J. Rabin, J. Delon, and Y. Gousseau, “A statistical approach to the matching of local fea-
tures,” SIAM Journal on Imaging Sciences, vol. 2, no. 3, pp. 931–958, 2009.

98




	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	12-2011

	High Performance Geospatial Analysis on Emerging Parallel Architectures
	Seth Warn
	Recommended Citation


	1 Introduction
	1.1 Geospatial Applications Need Parallel Computing
	1.2 Target Applications
	1.3 Contributions

	2 Parallel Computing
	2.1 Shared Memory Systems
	2.2 Distributed Memory Systems
	2.3 GPGPU
	2.3.1 CUDA
	2.3.2 Alternatives to CUDA
	2.3.3 Applications of GPGPU

	2.4 Hybrid Clusters

	3 Viewshed Analysis
	3.1 What is Viewshed Analysis?
	3.2 Viewshed Background
	3.2.1 Brute Force and Approximate Methods
	3.2.2 The Planar Sweep Approach

	3.3 A New Approach
	3.3.1 Determining Visibility
	3.3.2 Interpolation
	3.3.3 Corrections for Earth's Curvature and Light Refraction
	3.3.4 Integer Math
	3.3.5 Planar Sweep
	3.3.6 Optimized Status Structure
	3.3.7 Sweep Algorithm
	3.3.8 Parallelization

	3.4 Experimental Results
	3.4.1 Performance
	3.4.2 Parallel Scaling
	3.4.3 Offset Calculation

	3.5 Conclusion

	4 Accelerating SIFT on Hybrid Clusters
	4.1 What is SIFT?
	4.1.1 Feature Detection
	4.1.2 Feature Description
	4.1.3 Implementations

	4.2 Parallelizing SIFT
	4.2.1 Work Partitioning
	4.2.2 Octave File I/O
	4.2.3 GPU Acceleration
	4.2.4 Pipelined Concurrency

	4.3 Experimental Results
	4.3.1 Shared and Distributed Memory Scaling
	4.3.2 GPU Acceleration

	4.4 Conclusions
	4.4.1 Future Work


	5 Circular Earth Mover's Distance
	5.1 Image Registration
	5.2 Comparing SIFT Features
	5.2.1 More on SIFT Feature Descriptors
	5.2.2 Measuring Feature Dissimilarity

	5.3 Implementation and Discussion
	5.3.1 Experimental Setup
	5.3.2 Runtime of CEMD and L2
	5.3.3 Initial Design: CPU-INITIAL and GPU-INITIAL
	5.3.4 Using Shared Memory: GPU-SHMEM
	5.3.5 Optimizing Global Memory Reads: GPU-MEMOPT
	5.3.6 Reducing Shared Memory Bank Conflicts: GPU-INDEX
	5.3.7 Loop Unrolling: GPU-UNROLL
	5.3.8 Algorithmic Improvements: GPU-FINAL and CPU-FINAL
	5.3.9 Performance Scaling
	5.3.10 Streaming Kernel Execution
	5.3.11 Using Multiple GPUs on Multiple Machines

	5.4 Conclusion

	6 Conclusions
	6.1 Results
	6.2 Applicability of Parallel Computing to Given Applications

	Bibliography

