
University of Arkansas, Fayetteville
ScholarWorks@UARK

Theses and Dissertations

12-2010

Multi-threshold CMOS Circuit Design
Methodology from 2D to 3D
Ross Josiah Thian
University of Arkansas, Fayetteville

Follow this and additional works at: http://scholarworks.uark.edu/etd

Part of the Digital Circuits Commons, and the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of ScholarWorks@UARK. For more information, please contact scholar@uark.edu, ccmiddle@uark.edu.

Recommended Citation
Thian, Ross Josiah, "Multi-threshold CMOS Circuit Design Methodology from 2D to 3D" (2010). Theses and Dissertations. 52.
http://scholarworks.uark.edu/etd/52

http://scholarworks.uark.edu?utm_source=scholarworks.uark.edu%2Fetd%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/260?utm_source=scholarworks.uark.edu%2Fetd%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.uark.edu%2Fetd%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.uark.edu/etd/52?utm_source=scholarworks.uark.edu%2Fetd%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu,%20ccmiddle@uark.edu

MULTI-THRESHOLD CMOS CIRCUIT DESIGN

METHODOLOGY FROM 2D TO 3D

MULTI-THRESHOLD CMOS CIRCUIT DESIGN

METHODOLOGY FROM 2D TO 3D

A thesis submitted in partial

fulfillment of the requirements for the degree of

 Master of Science in Computer Engineering

By

Ross Thian

Harding University

 Bachelor of Science in Computer Engineering, 2008

Harding University

Bachelor of Science in Computer Science, 2008

December 2010

University of Arkansas

ABSTRACT

 A new and exciting approach in digital IC design in order to accommodate the

Moore’s law is 3D chip stacking. Chip stacking offers more transistors per chip, reduced

wire lengths, and increased memory access bandwidths. This thesis demonstrates that

traditional 2D design flow can be adapted for 3D chip stacking. 3D chip stacking has a

serious drawback: heat generation. Die-on-die architecture reduces exposed surface area

for heat dissipation. In order to reduce heat generation, a low power technique named

Multi-Threshold CMOS (MTCMOS) was incorporated in this work. MTCMOS required

designing a power management unit (to control when and which gates are powered), a

MTCMOS gate library, and a state saving D-Flip-Flop. This thesis demonstrates

converting a traditional 2D chip to a low heat 3D chip design with the use of MTCMOS

technology using industry-standard CAD tools.

This thesis is approved for recommendation

to the Graduate Council.

Thesis Director:

Dr. Jia Di

Thesis Committee:

Dr. Dale R. Thompson

Dr. James P. Parkerson

Dr. Scott C. Smith

THESIS DUPLICATION RELEASE

I hereby authorize the University of Arkansas Libraries to duplicate this thesis when

needed for research and/or scholarship.

Agreed __

 Ross J. Thian

 v

ACKNOWLEDGEMENTS

I thank Dr. Jia Di very much! For his unfailing guidance, direction,

encouragement, and patience! Thank you!

Ahmad Al-Zahrani – Previous MTCMOS work

Alicia Donaghey

Brent Hollosi

Cortney Hart

Clay Pankhurst

Daniel Allen

Jason Horst

Joseph Smeal

Jessica Powviriya

Jonathan Harris

Kevin Smith

Mike Hinds

Rob Mize

Stephanie Clark

Steve Comer

Wiwat Leebhaisomboon

My mom who said just put it down.

Thanks to my Father!

HIM!

 vi

TABLE OF CONTENTS

1. Introduction.. 1

2. Goals.. 5

3. Design progression .. 6

4. Multi-Threshold CMOS (MTCMOS)... 8

4.1 Power Saving Philosophy ... 8

4.2 Multi-Threshold CMOS Design ... 9

4.3 DFF_m Design.. 11

5. Pipeline stages top level design .. 14

6. Power Management Unit.. 15

6.1 Overview... 15

6.2 Overview of components .. 16

6.2.1 The Level-Transition Detection Circuit... 17

6.2.3 The Sleep Trigger Signal ... 20

7. Clock Buffering ... 22

8. Sleep Signal Distribution.. 24

9. 3D Die Partitioning ... 25

9.1 Overview... 25

10. Tezzaron model ... 27

11. 3D Die Seperation ... 29

11.1 Net list from 2D to 3D .. 29

11.1.1 TSV Separation using TSVComponents ... 30

 vii

11.1.2 TSV Partitioning .. 31

11.1.3 Post Partitioning TSV Removal... 33

11.1.4 Duplicate Nets Removal .. 34

11.1.5 Unused Pins Removal .. 36

12. Simulation Results .. 37

12.1 Power Analysis ... 39

13. Final Design ... 41

14. Conclusion ... 43

References .. 44

Appendix A. Steps for Converting 2d netilst to 3d Netlist ... 46

Appendix B. split.py... 49

Appendix C. ByeRandomLines.py ... 55

Appendix D. BPI.py (Buffer Primary inputs) ... 56

Appendix E. PSTR.py (Post split tsv remove)... 61

Appendix F. DR.py (Duplicates Removal)... 66

Appendix G. Replacesigs.py... 67

Appendix H. Example sigs.TXT .. 68

Appendix I. Addpowandgnd.py... 69

Appendix J. Cadenceready.py ... 70

Appendix K. TBES.py (Top Bus Expansion script)... 73

Appendix L.UPR.py (Unused Pin Removal) .. 75

viii

LIST OF FIGURES

Figure 1. 2D Regular CMOS 4-stage pipeline Floating Point Unit Co-processor.............. 7

Figure 2. MTCMOS FPU 4-stage pipeline design with Power Management Unit (PMU) 7

Figure 3. 3D MTCMOS FPU 16-stage pipeline design with Power Management Unit 7

Figure 4.CMOS circuit power equations .. 8

Figure 5. Fine Grained Multi-Threshold CMOS design with HVT and LVT transistors... 9

Figure 6. DFF_m D-Flip-Flop with MTCMOS power gating.. 11

Figure 7. DFF_MTCMOS state saving D-Flip-Flop .. 12

Figure 8. Power management unit and MTCMOS co-processor connection 14

Figure 9. Power Management Unit (PMU) Schematic... 16

Figure 10. Level-Transition Detection Circuit.. 17

Figure 11. Sleep Generation circuit and Reset Enable ... 18

Figure 12. Clock Gating Circuitry .. 19

Figure 13. Sleep trigger signal generation circuit ... 20

Figure 14. Clock distribution between dies .. 22

Figure 15. Partitioning Strategy A .. 25

Figure 16. Partitioning Strategy B .. 26

Figure 17. Tezzaron 3D die placement ... 27

Figure 18. Tezzaron die-to-die connections.. 28

Figure 19. 2D VHDL TSVComponent Placement Locations .. 29

Figure 20. 3D TSV partitioning using Python script removes Die 1 to Die 2 components.

Pins created by wire name to Die 1 to Die 2 component.. 31

ix

Figure 21 Post-partitioning TSV removal and resulting unconnected nets issue. 33

Figure 22 Duplicate nets removal restores unconnected nets. .. 34

Figure 23. Unused Pin Removal Script removes unused pins from top level netlist of

 Die 1 and Die 2. .. 36

Figure 24. Final Simulation Results – 3D 16-stage floating point co-processor 38

Figure 25. Die 2 Top... 41

Figure 26. Die 1 Bottom ... 42

x

LIST OF TABELS

Table 1. Comparison of MTCMOS verses CMOS power consumption in sleep mode. .. 39

1

1. INTRODUCTION

 In very simple terms, 3D chip stacking is very similar to the way a city develops.

People move to a new area and commerce begins to explode. As more and more people

buy land, the land becomes expensive. Instead of buying more land to house their

businesses people develop upwards and skyscrapers emerge. These skyscraper

businesses house all of their workers and each part of the business can communicate with

other parts in the same building. No longer do employees of the business need to travel

from one location to another. Also, all of the business records are accessible from one

location. This business becomes a single efficient design.

 The effect of 3D chip stacking allows for more transistors per chip, therefore,

more processing power. Moore's Law states that the number of transistors per chip will

continue to double every eighteen months [1]. Physically this is impossible because

transistors cannot get smaller than the atomic level and the current level of manufacturing

limits the size of the chip. Also, chips are size limited because fabrication defects

increases as the chips get larger. The idea is similar to wiring a house verses a full mall,

as complexity increases so does the probability for errors. With chip design one mistake

can make for a faulty chip. The alternative is to keep the chips at a producible size and

stack them up [2] [3].

To keep Moore’s Law after approaching the physical limit of reducing transistor

size, IC designers build the chip upwards [4]. One benefit of 3D chips is increased

communication bandwidth. 2D chips have a problem with long wire lengths which cause

increased power consumption and a reduction in usable chip area for placing logic. On

2

the contrary, 3D designs allow logic to be stacked and relocated so that connected logic

areas can be closer to each other. Skyscrapers, for instance, can house small businesses

and rental apartments in one location. Instead of driving from one place to another for

meetings or going home to sleep, a person can save time by staying in the skyscraper and

riding the elevator.

3D chips improve on-chip communication partially because they are composed of

stacked dies. A die is a single-layer logic level of a 3D chip like a floor on a skyscraper.

3D chips communicate to other dies by tunneling metal down to the next die much like an

elevator in a sky scraper. 3D increases the number of connections by allowing horizontal

and vertical communication. 3D communications use through-chip interconnects placed

throughout the die area. Not only is this applied for die-to-die communication but even

more importantly, interconnects increase communication to memory even allowing each

bit to be accessed directly from the die above. Therefore, memory accessing

performance dramatically increases [4] [5]. There is now much more room for memory

on chip, because a separate die for memory can be placed on a 3D package [6].

The traditional 2D metric of Moore’s Law showed a linear increase in

performance based on transistor density alone. It can be expected that 3D power density

would increase faster than 2D [7]. High power density generates excessive heat. Heat

dissipation is much more of a factor with 3D chips because stacked logic is dense and

surrounded by a poor thermal conductor, silicon [8]. Hot spots form at where trapped

heat cannot dissipate and where there are dense active regions of logic. Therefore, one

disadvantage of 3D IC architecture is heat dispersion from increased power density of

3

stacked logic [6]. Reducing heat on a 3D chip is the most important issue to making 3D

chip design unequivocally better than 2D.

There are a few methods proposed for reducing internal heat on a 3D chip. One

method is to use Through Silicon Vias (TSV’s) as thermal conductors that tunnel

vertically through dies and dissipate heat to the surface layers. Another method in

development is to pump liquids through the 3D chip for cooling [3].

Multi-Threshold CMOS (MTCMOS) is implemented in this thesis as a strategy

for reducing power generation. The goal is to turn off logic gates when they are inactive

to facilitate heat dispersion with TSV’s. MTCMOS works by disconnecting the power

source from the logic gates when they are not being used to reduce leakage power. The

target is to reduce idle power consumption when the chip is inactive. Thermally, hot spots

can still occur for low power chips but when combined with thermal via technology, this

methodology should allow for improved hot spot reduction. MTCMOS also allows using

a low power circuit design methodology without the overhead of adding any additional

mechanical structures such as water cooling.

One of the issues associated with 3D MTCMOS synchronous designs is balancing

the clocks on multiple dies. With multiple layers of a 3D chip, the clock needs to be

synchronized across each layer. A clock can be out of synchronization with another die

and cause setup/hold time violations, resulting in circuit malfunction. Clock balancing

among multiple dies in a 3D chip is demonstrated in this thesis.

3D chip design also requires logic partitioning. This is to specify where a logic

block will be placed among several dies. This is like taking a single floor plan and

4

specifying what floors certain offices are on. This thesis demonstrates the steps needed

to partition a 2D design into 3D while tackling the most important issue, 3D heat

dispersion. After mitigating the 3D heat problem it can be expected that not until today’s

limits with 2D designs are reached on 3D designs (such as routability and memory

bandwidth access) that a plateau of increased performance will exist.

5

2. GOALS

3D chip design has heat issues because heat dissipation only occurs on the outer

layers. Some recent research attempts to implement interior heat dissipation using liquid

cooling and heat conducting dummy thermal vias up to the heat sink [4]. This thesis’

approach is to use the Multi-Threshold CMOS low power technique to reduce heat

consumption in 3D chip design [9] [10] [11]. MTCMOS provides a currently attainable

heat reduction technique at design time. The goal is to use the MTCMOS technique for

lower power, which in turn causes reduced heat generation. First, the MTCMOS gates

must be defined. Then, a power management unit needs to be created to control

MTCMOS operation. The next step is the comparison between two methods for

partitioning logic on each die. By relocating the logic the attempt is to determine how

logic partitioning affects hot spot generation. Finally, a methodology is demonstrated to

convert a single 2D netlist into 3D.

6

3. DESIGN PROGRESSION

 The organization of this thesis follows steps taken to design the 3D Multi-

Threshold CMOS 16-stage pipelined floating point unit (FPU) co-processor. The design

started from a 2D Defense Advanced Research Project Agency (DARPA)-sponsored

project using a CMRF8SF IBM 130nm PDK during the summer of 2009 for developing

and demonstrating low power methodologies [12]. The design evolved into a 3D low

heat design during a Tezzaron-sponsored project using a Chartered 130nm Low Power

process [13].

 The 2D Design started from a floating point co-processor which was initially

pipelined in four stages using CMOS logic, as shown in Figure 1. The floating point co-

processor implements the IEEE 754 standard without sticky bit implementation [14].

This co-processor was designed using high threshold voltage gates and low threshold

voltage gates. The next step was to create a MTCMOS design with a power management

unit, as shown in Figure 2. The power management unit turns off gates for saving power

when the circuit is idle. These three designs were compared for speed and power

characteristics for the DARPA project. The final product for the 3D Tezzaron run

demonstrated two different 16-stage MTCMOS pipelined implementations. Figure 3

shows how one of the stages is designed.

7

FPU Logic

Stage 2

FPU Logic

Stage 3

FPU Logic

Stage 4
FPU Logic

Stage 1Inputs Outputs

CLOCK

Figure 1. 2D Regular CMOS 4-stage pipeline Floating Point Unit Co-processor

MTCMOS FPU

Logic

Stage 2

MTCMOS FPU

Logic

Stage 3

MTCMOS FPU

Logic

Stage4
Power Management

Unit (PMU)

Gated Clock

Sleep Signal

CLOCK

Inputs
Outputs

MTCMOS FPU

Logic

Stage 1

Figure 2. MTCMOS FPU 4-stage pipeline design with Power Management Unit (PMU)

Die 2

Die 1

PMU

SLEEP

Inputs Outputs

Figure 3. 3D MTCMOS FPU 16-stage pipeline design with Power Management Unit

8

4. MULTI-THRESHOLD CMOS (MTCMOS)

 In chip design, MTCMOS provides a power saving solution. External devices

that have a low activity factor can save what was once wasted static power. Inactive

gates still draw power in the idle state. This wasted power is called leakage power.

MTCMOS saves power by gating the power-ground path in logic gates during idle state.

4.1 Power Saving Philosophy

leakageDDpeakDDscDDL I VfIVtfV CP ++=
→→ 1010

2

Figure 4.CMOS circuit power equations [15]

 In physics, power is the amount of energy converted over time. Any time energy

is converted from one form to another heat is expended. By using less energy, less heat

is wasted. Therefore to understand how to use less heat it is necessary to realize how

CMOS technology uses power. Figure 4 shows that the CMOS power equation can be

broken into three power consuming components. The first component is dynamic power,

which consumes the most power because it is based on 2

DDV . Frequency represents the

switching activity of the circuit. Therefore, as clock speed increases so does dynamic

power usage due to switching activity. Short-circuit power is consumed during the time

a gate has a direct connection from power to ground. This is dependent on switching

activity because short circuiting only occurs during logic transitions. Leakage power

Dynamic

Power

Short-Circuit

Power

Leakage

Power

9

dominates power consumption when there is limited switching activity [16]. MTCMOS

provides a way to reduce leakage by gating the path between power and ground.

4.2 Multi-Threshold CMOS Design

Figure 5. Fine Grained Multi-Threshold CMOS design with HVT and LVT transistors [9] [10]

 MTCMOS sacrifices a small reduction in speed for a gain in leakage power

savings [17]. Regular CMOS gates consist of single-threshold transistors, i.e., all

NMOS/PMOS transistors have the same threshold voltage, respectively. Depending on

the threshold voltage used, CMOS circuits may either be fast and leaky or less leaky but

slow. On the other hand, Multi-Threshold CMOS uses two kinds of transistors with

different threshold voltages. The high voltage threshold (HVT) transistor requires a

higher voltage to switch. The higher the threshold voltage the less leakage power is

10

allowed to pass. Also, the longer time the transistor will take to switch. Conversely, low

voltage threshold (LVT) transistors operate much faster, but have larger leakage. In

conclusion, Multi-Threshold circuits combine the speed of LVT transistors and the

leakage savings of HVT transistors to form a balance between power savings and speed

[9] [10].

11

 Figure 5 shows how CMOS gates are modified to MTCMOS. HVT transistors

gate the power-ground path in the CMOS logic. A LVT transistor, shown by the heavier

transistor symbol, is used to drive the output to logic 0. When sleep mode is activated

(logic 1 for SLEEP and logic 0 for NSLEEP) both HVT transistors become open circuits.

At this time the LVT output transistor becomes shorted. A disabled sleep mode function

resolves to a logic 0 for SLEEP and logic 1 for NSLEEP. The HVT transistors are shorts

allowing power connection to ground. The output LVT transistor is open and normal

CMOS operation occurs [9] [10].

4.3 DFF_m Design

Figure 6. DFF_m D-Flip-Flop with MTCMOS power gating [18]

 Figure 6 shows the DFF_m schematic. This is a redesigned D-flip-flop that has

the capability to go into sleep mode. The basic operation of this flip-flop is to have two

states: the first is to load new data and the second is to save data. When clock is logic 0,

the first transmission gate passes the input through the first MTCMOS inverter. Then

12

clock rises and the input now present after the first MTCMOS inverter comes back

around through an inverter and passes through a transmission gate to the MTCMOS

inverters input. This saves the state of the D input prior to the clock rising edge. The

logic state at the MTCMOS inverter also passes through the next transmission gate. It

then it gets inverted by the MTCMOS inverter to be present at Q. Next, the clock falls

again and the Q value is inverted and passes through a HVT transmission gate to be

saved. The critical path of the logic goes through four gates: transmission gate to gated

inverter once again to transmission gate to gated inverter. All of these transistors are

LVT design while the other non-critical paths use HVT transistors to reduce leakage

power. This includes the three inverters and the two bottom transmission gates. The

final output is driven low by a HVT transistor.

Figure 7. DFF_MTCMOS state saving D-Flip-Flop [18]

 The DFF_MTCMOS has a similar design to the DFF_m. The function of the

DFF_MTCMOS is the same as DFF_m when sleep is disabled. Additional transistors

13

were added to retain state when in sleep mode while also saving some leakage power.

Figure 7 shows the schematic of the DFF_MTCMOS gate. When sleep mode is activated

the MTCMOS inverters go to sleep but the feedback (FB) transistor stays on keeping the

current state of the MTCMOS inverter. This works by using the value of an inverted

output (FB1 or FB2) to represent the state of the MTCMOS inverter. This state will turn

on one of the HVT feedback transistors in the MTCMOS inverter. It will allow the

transistor needed to connect the correct logic output to either power or ground [18].

14

5. PIPELINE STAGES TOP LEVEL DESIGN

MTCMOS

 FPU Logic

Stage 2

MTCMOS

FPU Logic

Stage 3

MTCMOS

FPU Logic

Stage4
Power Management

Unit (PMU)

Gated Clock

Sleep Signal

CLOCK

Inputs
Outputs

MTCMOS

FPU Logic

Stage 1

D
F
F

D
F
F
_
M

D
F
F
_
M

D
F
F
_
M

D
F
F
_
M

T
C

M
O

S

Figure 8. Power management unit and MTCMOS co-processor connection

 The pipeline model has different registers for improving leakage savings [15].

Maximizing the number of gates of MTCMOS design saves power. Therefore, the

middle DFF_M registers are used to save leakage power by going into sleep mode. In

Figure 8, the first register DFF is a normal register latching all new inputs. The final

register is a DFF_MTCMOS register that retains their logic state during sleep mode.

When sleep is activated the middle stages will lose their data. When sleep is deactivated,

the data will have already been latched to the output of the first register stage. Data will

then propagate though the combinational logic.

15

6. POWER MANAGEMENT UNIT

6.1 Overview

 The Power Management Unit (PMU) provides clock gating and sleep-control for

the MTCMOS co-processor [15] [19]. The PMU functions as a sleep timer counting up

to a specified value before turning off the gates. Input signals to the MTCMOS co-

processor are monitored. When no new input patterns occur, the data set does not need to

be computed and sleep operation can occur. The number of pipeline stages in the

MTCMOS design determines the amount of time left before sleep is activated. This wait-

for value is determined by an external setting dependant on the time required to flush the

pipeline. A timer begins counting up to the wait-for value. Once the counting has been

matched a sleep signal is triggered to the MTCMOS co-processor and clock gating

occurs. Normal operation of the MTCMOS design resumes when inputs change.

16

6.2 Overview of components

RS

TRIGGER

Signal

DETECT_N

Count_E / SLP’

Input X[0]
Detected Inputs

RST_Enable

X[0] Detect

Level-Transition Detection

Circuit

Sleep Generation Circuit

DETECT Signal

SLEEP

D Q

DFF

CLK

RS

LD

RS

LD

CLK

DFFs
LD

RS TRIGGER

RST_Counter

RS

of Stay-Awake

Cycles
I/P

Gated CLK

LD

DETECT

RS

TRIGGER

RST_CLK

Gated CLK

SLP’

RS

SLP’

CLK

Count_Enable

CLK_Enable

CLK

SLEEP

LD_CLKCLK

LD_PMUREG

Q

CLK

D Q

DFF
CLK

RS

DFFs

CLK

RS

Count

Enable

Comparator

Count

Counter

Register

Clock Gating Circuit

Sleep Signal Trigger Circuit

Figure 9. Power Management Unit (PMU) Schematic

17

 Figure 9 shows the full schematic view of the Power Management Unit. The

Level-transition detection circuit detects new input combinations and generates a

transition detection signal for the Sleep Generation circuit. The Sleep Generation circuit

toggles the sleep signal. The Trigger Signal determines when the sleep generator should

activate sleep mode by comparing a counter register and a preloaded register value. The

counter begins when no new signals have occurred and sleep mode is disabled. Clock

gating occurs at the bottom DFF and depends on the current state of Sleep mode. In the

following sections the circuit will be analyzed in their parts.

6.2.1 The Level-Transition Detection Circuit

Figure 10. Level-Transition Detection Circuit

 The Level-Transition Detection circuit compares sequential inputs and produces a

detect signal if the current input is different from the previous value, as shown in Figure

10. A new input arrives at the D input of the DFF and is compared with the value at Q

using an XOR gate. All logic inputs pass through the detection circuit and are combined

18

with OR logic to produce a single detect signal. The CLK input is clock which allows for

the detect signal to be a full-pulse-width. This is a redesign that DETECT signal

returning to the CLK input of the DFF. It was recommended by the previous designer to

make sure that the detect pulse width is long enough to latch new data. In schematic

simulation it was found that the gate delays to produce the DETECT signal was not long

enough to prevent a setup time issue. Glitches would also occur because the detection of

each input did not occur at the same time. The DETECT signal would then be stuck at a

logic state even when new input patters arrived. The solution was using a clock to extend

the DETECT Signal pulse width to prevent these issues.

Figure 11. Sleep Generation circuit and Reset Enable

 The sleep generation circuit controls sleep signal toggling, as shown in Figure 11.

When the DETECT signal is asserted from an input transition and the RST_Enable is

logic 0, SLEEP will be deactivated. Sleep will always be activated when RST_Enable is

logic 1. RST_Enable is activated when the counter register activates the trigger signal or

an external reset signal becomes active. When both the Detect signal and RST_Enable

19

are logic 0, sleep does not change. This circuitry activates the counter register and clock

gating.

6.2.2 Clock gating

Figure 12. Clock Gating Circuitry [19]

 Figure 12 shows the clock gating and reset circuitry. In normal clock gating using

the AND gate is all that is necessary. In contrast, our design gates the clock based on a

sleep signal that changes on a falling edge. This method of clock gating causes one less

clock cycle than desired. The solution is to add a register that delays the inverted sleep

signal (SLP’) for one half clock period. The clock is now gated to the correct number of

clock cycles. The reset logic inverts the clock and resets the gating register after the last

desired clock period.

20

6.2.3 The Sleep Trigger Signal

Figure 13. Sleep trigger signal generation circuit [19]

 The TRIGGER signal is used to activate sleep mode and disable the clock. The

trigger signal is generated from the comparison of two registers: a counter register and a

count-to register (see Figure 13). The first is a counter register that counts upwards. This

circuit relies on two key inputs: the Count_Enable from the Sleep Generation circuit and

a DETECT signal. When Count_Enable is enabled, the counter register begins counting

upwards if the RST_Counter is not resetting the register. The DETECT signal passes

through the RST_Counter OR gate to the RS input of the counter. While detection still

occurring, the counter register is continually being reset to 0. Therefore, counting begins

when Count_Enable is logic 1 and detection is no longer resetting the registers values.

The bottom register stores the number of stay-awake cycles dependant on how

long the clock and sleep signal should be active after new input detection has ceased.

21

This register’s value is specified externally and is latched only when the LD_PMUREG

is enabled. LD_CLK is clock gated by the LD_PMUREG signal. The comparison of this

register and the counter register occurs with XOR to OR logic and produces the

TRIGGER signal.

22

7. CLOCK BUFFERING

To D-Flip Flops

To D-Flip Flops

Die 2

Die 1

CLOCK

Clock Buffering

Clock Buffering

Figure 14. Clock distribution between dies

 Clock distribution is essential to synchronous designs. An unbalanced clock tree

can cause clock skews and other timing-related errors. In a pipeline design with an

unbalanced clock tree, one register stage could receive its clock earlier than another. One

example is having a combinational logic block surrounded by registers. If the preceding

register is clocked slightly earlier then the output register, the new data could propagate

fast enough to be latched by the output register when the previous combinational result

should be latched. With a 3D design, which has lots of die-to-die communication,

additional measures must be taken to ensure clock balancing [20].

 Clock buffering is done by a buffer script written in Python. The buffer script

buffers nets depending on their fan-out. This script is used to buffer the clock and sleep

signals. First, this script will calculate the fan-out for all signals. Then it will utilize a

list of buffer drive strengths to determine which buffers are needed to drive a signal. The

buffer script will build up to the correct buffer strength needed by using a series of

23

inverters. If the fan-out of a net is higher than the maximum buffer drive strength,

branching occurs and multiple buffers are used instead. It is necessary to make sure each

branch has the same logic depth. If otherwise a skew can cause unbalanced signal arrival

for different branches. The buffer script creates the proper branching depth for clock

buffering.

 When buffering a 3D design the clock on each die needs to be balanced. Figure

14 shows the balancing of clock buffering. All external inputs go to Die 1 before going

to Die 2. Therefore some additional balancing is for each die to have the same clock

depth. The solution is to manually add two buffers as the start of the clock tree. These

buffers will be directly connected to the clock and are present on Die 1. One of those

buffers will be connected to Die 2; the other passes to the logic on Die 1. Then the buffer

script is run on both dies separately. The clock should be balanced for both dies at this

point.

24

8. SLEEP SIGNAL DISTRIBUTION

 The sleep signal is distributed to combinational logic and MTCMOS flip-flops.

Each gate requires a sleep and inverted sleep signal. The fan-out for sleep is significantly

larger than clock but can be buffered using the same strategy. The sleep signal is

generated from the PMU on Die 1 and is passed to Die 2. Sleep timing is not as critical

as clock but should be balanced as well. The balancing of the sleep signal should be

implemented the same way as clock balancing demonstrated before. The buffer script

can be run once for both clock and sleep balancing.

25

9. 3D DIE PARTITIONING

9.1 Overview

 In 3D IC design a designer must consider how to partition the logic for each die.

A simple example is a floating point unit which has add, subtract, and multiply

operations, and the designer may place the multiplier on its own die. Partitioning is

important for not only attempting to gain access to a bottom memory layer but also for

minimizing hot spots. The organization of logic on die can cause hotpots particularly if

high active logic areas are stacked on top of each other. Dense active regions are reduced

by using a 16-stage pipeline which segments computational logic into stages Some

regions may still have denser circuits than others when a design is automatically placed

and routed onto a die. However, this should not be as significant as a whole multiplier

stacked on top of another. The goal is to reduce vertically high activity areas by

researching different partitioning strategies.

D
F
F
_
M

D
F
F

D
F
F
_
M

D
F
F
_
M

T
C

M
O

S

D
F
F
_
M

D
F
F
_
M

D
F
F
_
M

D
F
F
_
M

D
F
F
_
M

Figure 15. Partitioning Strategy A

26

Partitioning strategy A distributes the logic by placing odd and even stages on

different dies shown in Figure 15. It is expected that other than the power management

unit, both dies should have about the same amount of logic.

Die 2

Die 1

PMU

SLEEP

Inputs Outputs

SLEEP

Figure 16. Partitioning Strategy B

 Partitioning strategy B has 16 stages but the stages are placed in parallel shown in

Figure 16. Half of external inputs are sent to the DFF register on Die 1 and the other half

to Die 2. Then each combinational logic block is divided in half between dies. Because

of this partitioning strategy, inputs must rejoin through the combinational logic for proper

computation to occur. Therefore, at each combinational logic block, there is cross

communication with the logic on the opposite die.

PMU placement - Both partitioning strategies place the power management unit on

Die 1. This is because inputs arrive to Die 1 and the power management unit must detect

new inputs as early as possible to determine if sleep and gated clock should be activated.

27

10. TEZZARON MODEL

Figure 17. Tezzaron 3D die placement [21]

 Tezzaron Semiconductor specializes in 3D chip stacking on memory. While our

low-heat design does not use the memory layer, other teams on this fabrication run do use

it. We use the Chartered 130 nm low power process [13]. Figure 17 shows how inputs

and outputs are connected to Die 1 and how the different dies are stacked. Die 2 is

placed on top of Die 1 with the pads connected to Die 1.

28

Figure 18. Tezzaron die-to-die connections

 The I/O Pads are placed on the surface of the DRAM Controller Layer as shown

in Figure 18. The DRAM controller layer connects to through silicon vias (TSVs) with

backside metal on Die 1 [5] [21]. The I/O pads and DRAM memory communicate to Die

1 through the TSVs. The TSVs then connect through the bottom silicon to the metal 1

layer on Die 1. Connections from Die 1 to Die 2 are through the metal 6 layer. There are

metal 6 bumps that connect the Die 1 to Die 2. The name “TSV” represented a way to

connect between dies. Therefore, the name “TSV” is used in the 2D to 3D net list

separation section as a connection from Die 1 to Die 2.

29

11. 3D DIE SEPERATION

 In the new area of 3D chip stacking, design tools are not readily available.

Designing a 3D chip requires keeping die-to-die communication in mind. Our approach

is to take a VHDL net list, convert it to a Verilog net list and then use a series of scripts to

convert the design to separate net lists, making them 3D ready.

11.1 Net list from 2D to 3D

The first step is to code the 2D design in VHDL. At this step it is best to take the 2D

VHDL design and simulate functionally.

Figure 19. 2D VHDL TSVComponent Placement Locations

30

11.1.1 TSV Separation using TSVComponents

 The second step is to implement the partitioning strategy by manually inserting

TSVs (die-to-die connections) in VHDL. Separating the 2D net list into two dies of 3D

design (Die 1 and Die 2) requires adding TSVComponents that serve as die segregators.

It is necessary to create place holders where we are going to split the net list. The

TSVComponents are VHDL buffers that output a single input. Figure 19 shows how a

single driver from Die 1, in this case from an AND gate, drives multiple connections in

Die 2. The TSVComponents are placed in the sets of three. The first TSVComponent

driven by the AND gate represents a pin output connection from Die 1. The middle

TSVComponent represents a placeholder for separating Die 1 from Die 2. The right/final

TSVComponent is the Die 2 input pin. To connect in the reverse direction from Die 2 to

Die 1 the TSVComponents are placed in the opposite driving direction. The name Die 1

TSVComponents applies to the TSVComponents directly connected to Die 1, shown

inside the Die 1 box of Figure 19. Likewise Die 2 Components are directly connected to

a Die 2 gate. The middle connection is named Die 1 to Die 2 connection. A reversely

named Die 2 to Die 1 connection is unnecessary because these placeholders will be

removed after splitting the VHDL design into two parts. The final pin names are the

names of the wires connected to the middle Die 1 to Die 2 Component. In the Figure 19,

this component is outside of the Die 1 and Die 2 regions. Renaming is written about in

the next step. Good naming convention is depicted in Figure 20. At the end of this step

the 2D single VHDL net list should be partitioned by TSVComponents.

31

Figure 20. 3D TSV partitioning using Python script removes Die 1 to Die 2 components. Pins created

by wire name to Die 1 to Die 2 component.

11.1.2 TSV Partitioning

 The TSV partitioning step uses a Python script to separate the net list. In order to

do so, first the VHDL 2D partitioned design is converted to a flattened Verilog net list

using Synopsys Design Vision. Here the VHDL net list is loaded into the tool and

resaved as a flattened Verilog net list. Then the TSV partitioning script uses the middle

components to find the die-to-die separation point. The middle components are removed

and a net list for each die is created. The wire names that were connected to the middle

32

components are now replaced by pins. Figure 20 shows the result of partitioning creating

a separate Die 1 and a Die 2 net list. Also, a top level net list that connects both dies is

necessary. To create the top level net list, along with adding the original ports, pins that

are named the same but are on different dies are connected together.

 A connection from Die 1 to Die 2 is actually through metal bumps that contact

from die-to-die. It is believed that the connections between Die 1 and Die 2 require

specific TSV components at the transistor-level schematic design. In turn the

TSVComponents are actually metal connections between dies and are not used in the

final design. The pins themselves are enough to connect dies.

33

11.1.3 Post Partitioning TSV Removal

Die 1 Die 2

Net1_o

Net2_o

Net3_o

Net4_o

Net1_i

Net2_i

Net3_i

Net4_i

Figure 21 Post-partitioning TSV removal and resulting unconnected nets issue.

 After partitioning the dies, we removed the TSVComponents as shown in Figure

21. The TSVComponents were no longer necessary because metal connections between

dies take the form of pins. Post-partitioning TSV removal script finds and replaces each

die’s TSVComponents and the pin name replaces the wire name. Comparing Figure 20

and Figure 21 shows that this post-partitioning TSV removal replaces NetOut with the

name Net1_o. A problem arises when TSVComponents are removed. A wire that drives

multiple TSVs can only connect to one pin. Our schematic simulator Cadence does not

allow multiple pins to be driven by one wire [22]. Each wire that is connected to a pin

34

takes the name of that pin; therefore a single internal wire cannot be connected to more

than one pin. When the next TSVComponent is found, the NetOut wire cannot be

replaced to Net2_o because it has already been replaced to Net1_o. To handle this issue

we store a list of pins that should be replaced for each wire, in this case a list of {Net1_o,

Net2_o, Net3_o, Net4_o} for NetOut. This Script is run on both dies separately and a list

of duplicate nets is generated for each die to be used later. The first wire, Net1_o, is the

only one connected to the original driver; other nets need to be reconnected.

11.1.4 Duplicate Nets Removal

Figure 22 Duplicate nets removal restores unconnected nets.

35

 The previous Figure 21 shows that Net2_i to Net4_i are not connected to a driver.

To reconnect those wires we apply the Duplicate Nets Removal Script. The two Verilog

net lists are processed sequentially along with a text file generated from the opposite die

that has the lists of the duplicates from the Post Partitioning TSV Removal Script. The

first pin always forms a connection to a net. Successive pins need to be connected to the

driver. The unconnected pins on Die 1 correspond to connected pins on Die 2. Die 2

does not know that these are unconnected pins. Thus we use the duplicate text file from

the opposite die to indicate which set of pins is actually connected to a driver. These

pins, which are also wire connections to components, are replaced with the first pin that

is in the list. The result of this Duplicate Nets Removal script is shown in Figure 22.

36

11.1.5 Unused Pins Removal

Figure 23. Unused Pin Removal Script removes unused pins from top level net list of Die 1 and Die 2.

 Post-duplicate net removal leaves the unused pins. To remove these, we run an

Unused Pins Removal Script, Figure 23. This script will find all unconnected pins in Die

1 and Die 2 net lists and remove them. Once the unused pins are found, they are also

removed from the top level Die 1 to Die 2 connection net list. The final results are three

pin-removed net lists that are ready for functional simulation. This concludes the steps

needed to partition a 2D net list into a 3D net list.

37

12. SIMULATION RESULTS

The MTCMOS 16-stage pipeline floating point co-processor design was

simulated in Cadence using the Ultrasim simulator [24]. Figure 24 shows the simulation

waveform output. This waveform shows the proper output when after 17 inactive clock

cycles sleep is activated. The value of the PMU register is set to 11 HEX, which is 17

clock cycles. The MTCMOS design has 16 pipeline stages, which require two registers

around each stage. The reason seventeen clock cycles are used is because there are a

total of 17 registers, and each register requires one clock cycle for data to propagate

through it. Data persistence is demonstrated at sleep activation. Notice that at sleep

activation the data output that was present at Z persists as long as sleep is active. Also,

during sleep the clock ceases to toggle.

38

Figure 24. Final Simulation Results – 3D 16-stage floating point co-processor

39

12.1 Power Analysis

Comparison of Leakage Power between CMOS and MTCMOS Co-
Processors

Speed
(MHz) Design

Average Sleep Mode
Power (mW)

Percent of power saved by
MTCMOS in sleep mode

25 CMOS 2.7693

 MTCMOS 0.1293 95.33%

50 CMOS 5.4736

 MTCMOS 0.0901 98.35%

75 CMOS 8.5594

 MTCMOS 0.2059 97.59%

100 CMOS 11.2422

 MTCMOS 0.7532 93.30%

125 CMOS 14.9665

 MTCMOS 0.2527 98.31%

150 CMOS 16.9857

 MTCMOS 0.1387 99.18%

175 CMOS 19.924

 MTCMOS 0.2519 98.74%

200 CMOS 22.7884

 MTCMOS 0.2925 98.72%

225 CMOS 26.4538

 MTCMOS 0.8161 96.91%

250 CMOS 29.0793

 MTCMOS 0.473 98.37%

Average Power Savings: 97.48%

Table 1. Comparison of MTCMOS verses CMOS power consumption in sleep mode.

 The full MTCMOS core design with PMU was simulated for power against the

same design using CMOS gates without PMU. Power simulation was conducted with

Cadence Virtuoso UltraSim because it provides a fast simulation solution to large designs

[24]. To simulate this design in a reasonable time frame, UltraSim simulator settings

were set to Digital Fast and the aggressive timing mode. These results can be trusted

because simulation in a more accurate simulation mode for UltraSim demonstrated better

40

MTCMOS power savings than that with the fast simulation. Normal operation of the

MTCMOS design will have very long periods of inactivity and the intention is to save

heat and power when sleeping. Therefore, simulation power results were taken from the

average power consumed during sleep mode. Initially there is a surge in power

consumption due to the added switching activity of all MTCMOS gates going into sleep

mode and sleep signal tree switching activity. Since our simulation ran for ten clock

cycles the initial peaks in power would elevate the real average power consumption. At

150 MHz the total initialization sleep mode power was 50 mW that would be around 30

times the average sleep mode power consumption of the CMOS design. The sleep signal

tree accounted for ¼ of the total power consumed when transitioning into sleep mode.

Additionally, the second clock cycle after sleep initialization was not averaged because

the gated clock makes a quick spike to logic 1 before resolving to zero, shown in Figure

24. This causes extra switching activity among the D-Flip-Flops and a slight increase in

power consumption over the mean case. Therefore, power results were taken after the

first two clock cycles of sleep activation until final sleep deactivation to avoid averaging

these power results. Both MTCMOS and CMOS designs were simulated while operating

from 250 MHz down to 25 MHz, with each step as 25 MHz, as shown in Table 1. The

results show that regardless of speed, MTCMOS provides a consistent leakage power

saving over CMOS counterpart. In conclusion, the heat generation of MTCMOS designs

when inactive will be greatly reduced from CMOS designs because MTCMOS saves

97.48% of the power of CMOS.

41

13. FINAL DESIGN

Figure 25. Die 2 Top

Figure 25 shows the final layout of Die 2, the top die. The two designs at bottom

left are the MTCMOS 16-stage floating point co-processors, partitioned using the two

strategies discussed in Chapter 9. This die is placed on top of Die 1 shown in Figure 26.

The Die 1 MTCMOS designs are located at bottom right. Die 1 shows the connection to

the pads with the extra wiring.

42

Figure 26. Die 1 Bottom

43

14. CONCLUSION

In conclusion, this thesis demonstrates a design methodology to implement a 2D

CMOS circuit in 3D Multi-Threshold CMOS circuit for low heat characteristics. The

designs discussed were two partitioning strategies applied to a 16-stage MTCMOS

floating point co-processor. The design proceeded in steps starting with 2D CMOS HDL

code developing into the final 3D design. The low power technique MTCMOS was used

to reduce heat consumption when in sleep mode. A power management unit was used to

control when MTCMOS gates enter sleep mode and activate clock gating. Distributing

the clock and sleep signals require balancing for skew between dies. Next, partitioning of

the logic was done to compare hot spot generation. Additionally, using a series of scripts,

a 2D VHDL design with a 3D partitioning strategy is split into multiple Verilog net lists,

which are 3D ready. The final design was simulated for functionality and power

demonstrating that this 3D partitioning methodology works and MTCMOS produces

lower heat than CMOS designs.

44

REFERENCES

[1] N. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. Hu, M.Irwin, M.

Kandemir, V. Narayanan, "Leakage Current: Moore's Law Meets Static Power,"

Computer, vol. 36, no. 12, pp. 68-75, Dec. 2003

[2] J. A. Cunningham, "The use and evaluation of yield models in integrated circuit

manufacturing," Semiconductor Manufacturing, IEEE Transactions on, vol.3, no.2,

pp.60-71, May 1990

[3] P. Mercier, S. R. Singh, K. Iniewski, B. Moore, P. O'Shea, "Yield and Cost

Modeling for 3D Chip Stack Technologies," Custom Integrated Circuits Conference,

2006. CICC '06. IEEE, vol., no., pp.357-360, 10-13 Sept. 2006

[4] T. Stephen, “A Survey of 3D Circuit Integration” March 14, 2008

[5] K.Takahashi, M.Sekiguchi, “Through Silicon Via and 3-D Wafer/Chip Stacking

Technology,” Symposium on VLSI Circuits Digest of Technical Papers, pp.114-117,

June 2006.

[6] B. Black, M. Annavaram, E. Brekelbaum, J. DeVale, L. Jiang, G.Loh, D.

McCauley, P. Morrow, D. Nelson, D. Pantuso, P.Reed, J. Rupley, S. Shankar, J. Shen,

and C. Webb. “Die Stacking (3D) Microarchitecture,” In Proceedings of MICRO-39,

December 2006.

[7] J.M. Rabaey, Low Power Design Essentials. New York: Springer, 2009. Print.

[8] IBM, “15 Moore’s Years,” IBM Research - Zurich. Web. September 07 2010.

<http://www.zurich.ibm.com/news/10/moore.html>.

 [9] S. Mutoh et. al., “1-V Power Supply High-Speed Digital Circuit Technology with

Multithreshold-Voltage CMOS,” IEEE Journal of Solid-State Circuits, Aug 1995, pp.

847-854.

[10] J. Kao and A. P. Chandrakasan, “Dual-Threshold Voltage Techniques for Low-

Power Digital Circuits,” IEEE Journal of Solid-State Circuits, Vol. 35, NO. 7, July 2000

[11] H. Seongmoo, B. Kenneth, and K. Asanović. “Reducing power density through

activity migration,” Proceedings of the 2003 international symposium on Low power

electronics and design, August 25-27, 2003, Seoul, Korea

45

[12] IBM CMOS8RF (CMRF8SF) Design Manual.

[13] Chartered Semiconductor Manufacturing Ltd. “0.13um CMOS Logic/Mixed

Signal/Rf Technology Design Rules” Version 1R February. 2009

[14] IEEE Std 754-2008, IEEE Standard for Floating-Point Arithmetic.

[15] J. S. Yuan and J. Di, “Teaching Low-Power Electronics Design in Electrical and

Computer Engineering”, IEEE Trans. Education, Vol. 48, no. 1, February. 2005, pp 169-

181.

[16] Z. Chen, M. Johnson, L.Wei, and K. Roy, “Estimation of standby leakage power

in CMOS circuits considering accurate modeling of transistor stacks,” In Proceedings of

the 1998 international Symposium on Low Power Electronics and Design 1998.

[17] B.H Calhoun, F. A. Honore, and A. Chandrakasan, “Design methodology for fine-

grained leakage control in mtcmos” In Proceedings of International Symposium on Low

Power Electronics and Design, 2003

[18] J. Kao and A. Chandrakasan, “MTCMOS Sequential Circuits,” Proc. ESSCIRC

2001, 2001.

[19] A.AL-Zahrani, Design and Analysis of Mulit-Threshold CMOS (MTCMOS)

Techniques In Synchronous and Asynchronous Digital Designs. MS thesis. University of

Arkansas, Fayetteville 2009

[20] Jackson, Srinivasan, Kuh, "Clock routing for high-performance ICs," Design

Automation Conference, pp. 573-579, 27th ACM/IEEE Design Automation Conference

(DAC '90), 1990

[21] MPW 100109 Design Guide Rev 8

[22] http://cadence.com Cadence Design Systems

[24] Virtuoso UltraSim Simulator User Guide November 2006

46

APPENDIX A. STEPS FOR CONVERTING 2D NETILST TO 3D NETLIST

1. VHDL to Verliog.

- Rename all components starting with d1_ on die 1 or d2_ on die 2.

- Then add Add - Seperation Components

i. Name: "TSVd1buff" if the TSV is on die1 and with label ending

with "_die2"

ii. Name: "buffremove" in inbetween with ending label "_remove"

iii. Name: "TSVd2buff" if the TSV on die2 and with label ending

with"_die1"

- New VHDL Modules need to be created: TSVd1buff, buffremove, and

TSVd2buff. They should pass the same input logic to output.

- Label Input Signals from the other die should have ending label "_a_i"

- Label Output Signals from the other die should have ending label "_a_o"

2. Flatten VHDL design to Verilog using synthesis tool such as DesignVision,

Leonardo or etc.

3. Separate TSVs into die1 and die2 files

- Run split.py

- It will ask for a file name give it your verilog netlist.

i. All labels ending with "_die1" are TSVs belonging to die1. The

corresponding component would be TSVd1buff

ii. All labels ending with "_die2" are TSVs belonging to die2. The

corresponding component would be TSVd2buff

iii. All labels ending with "_remove" are buffremove components that

should be deleted.

- Once die1 and die2 files are obtained this way, Verify the inputs and

outputs for each file:

i. In die1 file, all signals ending with "_a_o" are to be made primary

outputs. These signals connect to die2

ii. In die2 file, all signals ending with "_a_o" are to be made primary

outputs. These signals connect to die1

iii. All "_a_o" signals are outputs of TSVs

iv. In die1 file, all signals ending with "_a_i" are to be made primary

inputs. These signals connect from die2

v. In die2 file, all signals ending with "_a_i" are to be made primary

inputs. These signals connect from die1

vi. All "_a_i" signals are inputs of TSVs

4. Simulate functionally using die1 and die2 netlist.

- Form a connecting top level netlist in VHDL. By connecting

complementary tsv signals together.

47

- Simulate the toplevel netlist with the die1 and die2 together.

- Flatten the connecting netlist to verilog if not already done. This will be

used later for cadence simulation.

5. The following steps are ran individually for each die

6. Step1:d1

- Run ByeRandomLines.py this python code formats the verilog text

i. [Post Split Netlist.v]

- Replace all logic 0 and logic 1 (1’b1) signals to vdd and gnd signals in

verilog netlist. Remove signals from module list and port list.

- Run BPI.py This code expands busses and buffers external inputs.

i. [Post Split Netlist_lines.v]

7. Step2:d1

- Run PSTR.py > duplicates.txt Pipes out a list of duplicates.

- No prompt will be shown, type in your netlist name.

8. Repeat Step1:d1 and Step2:d1 for die 2.

9. Step3:d1

- Run DR.py

- [other die dupliactes.txt] *Step 2*

- [netlist name]

i. When a duplicate net is removed from Die 1 All instances of that

net are combined to form one net.

ii. Die 2 still has all the now unused nets. These must be combined to

the same net as well.

iii. d1 duplicates.txt has a list of the one used and all the ones replaced

10. Step4:d1

- Run fan.py

i. Remove vdd and gnd from the fanout file generated.

ii. A clean file and fanout is generated.

- Run buffer.py

i. [filename_clean.v]

ii. [If new cells are used with new input add to regular expression.

Exclude output i.e: .a|.A|.b|B]

11. Step5:d1
- Remove Sleep

i. die1: Find all " dff d1_reg0" remove sleep and nsleep ports.

ii. die2 : repeat for " dff d2_reg0"

- Run ReplaceSigs.py replaces verilog generated gate names for ones used

in schematic simulation.

i. Edit Sigs.txt : ['old','new']

12. Step6:d1
- Run AddPowandGnd.py

i. OutfileName: d1_copPG.v

ii. Check for extra vdd and gnd at module list and portlist

48

- Run CadenceReady.py verilog

13. Step7:d2
- Repeat Step3:d1 to Step6:d1 for die2.

14. Step8: Toplevel netlist: Remove logic1 and 0 from all d1 and d2 netlist.

i. find ".expi1_0(1'b1), .qmulbit_0(1'b0), "

15. Step9: Top
- Run TBES on top level verilog

16. Step10:
- AddPnGTop.py – Same as ADDPOWANDGND.PY with vdd and VDD

switched. Likewise gnd and GND are switched.

i. Adds the VDD and GND connections from top to dies.

17. Step 11:
- Run CadenceClean.py

18. Step12
- Run upr.v unused pin remove

i. Pins left over from tsv removal are wiped.

ii. Check if logic pins are still there

19. Step13
- Import to cadence d1 d2 and top rmport files.

49

APPENDIX B. SPLIT.PY

Author : Mike Hinds
import re

#specify Filename
path = raw_input("File name (TopLvlNetlist.v):")

#clean the input file
def handlewire(item):
 print "wire found"
 wires = item.split(',')
 wirecount = 0
 outline = "wire "
 wires[0] = wires[0].lstrip()
 wires[0] = wires[0].lstrip("wire")
 print wires[0]
 for wire in wires:
 outline = outline + wire+', '
 wirecount = wirecount + 1
 if wirecount == 50:
 outline = outline.rstrip(', ')+';'
 fout.write(outline+'\n\n')
 wirecount = 0
 outline = "wire "
 outline = outline.rstrip(', ')+';'
 fout.write(outline+"\n\n")

findwire = re.compile("\s+wire\s+")
fin = open(path, 'r')
fout = open("clean_bool", 'w')
lines = ''
while fin:
 line = fin.readline()
 if line == '':
 break
 #take care of comments
 if (line.find("//") != -1 or line.find("*/") != -1) or
line.lower().find("endmodule") != -1:
 lines = lines+line.rstrip() + "\n"
 else:
 lines = lines+line.rstrip()

listlines = lines.split(';')
for item in listlines:
 if findwire.match(item):
 handlewire(item)
 else:
 fout.write(item+';\n')

fin.close()
fout.close()

#Separate Components
curblock = -1
findprimmoduledec = re.compile("module")

findwirelist = re.compile("\s*wire\s+")
findcompdecs = re.compile("\s*\S+\s+\S+\s*\(.+\)")

50

findmoduledecs = re.compile("\s*module\s+(\S+)\s*\(.+\)")
findd1component = re.compile("\s*(\S+)\s+d1_\S+\s*\(.*\)")
findd2component = re.compile("\s*(\S+)\s+d2_\S+\s*\(.*\)")

findinput =
re.compile("\.[a|b|c|d|sleep|nsleep|clk]\s*\(\s*(\S*)\s*\)\s*,?")
findoutput = re.compile("\.[z]\s*\(\s*(\S*?)\s*\)")

findprimin = re.compile(".*_a_i")
findprimout = re.compile(".*_a_o")

d1components = []
d2components = []
d1comptypes = []
d2comptypes = []
#make sure I remove duplicates before combining inputs and outputs in
this array
d1sigs = []
d2sigs = []
d1primin = []
d2primin = []
d1primout = []
d2primout = []
d1mods = []
d2mods = []

mod =""
moddie = 0

#open cleaned file
fin = open("clean_bool", 'r')
while 1:
 line = fin.readline()
 if line == '':
 break

 #Determine which block we are in
 if (findprimmoduledec.match(line)) and (curblock == -1):
 curblock = 0
 print "entered primary module declaration..."
 print line

 if (findwirelist.match(line) and curblock == 0):
 curblock = 1
 print "entered wire list..."
 print line

 if (findcompdecs.match(line) and curblock == 1):
 curblock = 2
 print "entered component declarations..."
 print line

 if (findmoduledecs.match(line) and curblock ==2):
 curblock = 3
 print "entered module declarations..."
 print line

 # 0 Primary Module Declaration - determined by the first "module"
declaration
 if curblock == 0:
 a =0

51

 # 1 Wire List - determined by the first "wire" declaration
 if curblock == 1:
 a =0

 # 2 Component Declarations - determined by the first component
declaration
 if curblock == 2:

 #get die1 components
 d1comp = findd1component.match(line)
 if (d1comp):
 d1components.append(line)
 if not(d1comp.group(1) in d1comptypes):
 d1comptypes.append(d1comp.group(1))

 #get input and output signals for the component
 inps = findinput.finditer(line)
 #print line
 for inp in inps:
 if not(inp.group(1) in d1sigs) and
not(findprimin.match(inp.group(1))):
 d1sigs.append(inp.group(1))
 #Check for primary inputs

 if findprimin.match(inp.group(1)) and
not(inp.group(1) in d1primin):
 d1primin.append(inp.group(1))
 #print inp.group(1)

 outps = findoutput.finditer(line)
 for outp in outps:
 if not(outp.group(1) in d1sigs) and
not(findprimout.match(outp.group(1))):
 d1sigs.append(outp.group(1))
 #check for primary outputs
 if findprimout.match(outp.group(1)) and
not(outp.group(1) in d1primout):
 d1primout.append(outp.group(1))
 #print outp.group(1)

 #get die2 components
 d2comp = findd2component.match(line)
 if (d2comp):
 d2components.append(line)
 if not(d2comp.group(1) in d2comptypes):
 d2comptypes.append(d2comp.group(1))

 #get input and output signals for the component
 inps = findinput.finditer(line)
 for inp in inps:
 if not(inp.group(1) in d2sigs) and
not(findprimin.match(inp.group(1))):
 d2sigs.append(inp.group(1))
 #Check for primary inputs
 if findprimin.match(inp.group(1)) and
not(inp.group(1) in d2primin):
 d2primin.append(inp.group(1))
 #print inp.group(1)

 outps = findoutput.finditer(line)
 for outp in outps:
 if not(outp.group(1) in d2sigs):

52

 d2sigs.append(outp.group(1))

 #print outp.group(1)

 if line.find("TSVd1buff") != -1:
 d1components.append(line)

 #get input and output signals for the component
 inps = findinput.finditer(line)
 #print line
 for inp in inps:
 if not(inp.group(1) in d1sigs) and
not(findprimin.match(inp.group(1))):
 d1sigs.append(inp.group(1))
 #Check for primary inputs
 if findprimin.match(inp.group(1)) and
not(inp.group(1) in d1primin):
 d1primin.append(inp.group(1))
 #print inp.group(1)

 outps = findoutput.finditer(line)
 for outp in outps:
 if not(outp.group(1) in d1sigs) and
not(findprimout.match(outp.group(1))):
 d1sigs.append(outp.group(1))
 #check for primary outputs
 if findprimout.match(outp.group(1)) and
not(inp.group(1) in d1primout):
 d1primout.append(outp.group(1))
 #print outp.group(1)

 if line.find("TSVd2buff") != -1:
 d2components.append(line)

 #get input and output signals for the component
 inps = findinput.finditer(line)
 for inp in inps:
 if not(inp.group(1) in d2sigs) and
not(findprimin.match(outp.group(1))):
 d2sigs.append(inp.group(1))
 #Check for primary inputs
 if findprimin.match(inp.group(1)) and
not(inp.group(1) in d2primout):
 d2primin.append(inp.group(1))

 outps = findoutput.finditer(line)
 for outp in outps:
 if not(outp.group(1) in d2sigs):
 d2sigs.append(outp.group(1))
 #check for primary outputs
 if findprimout.match(outp.group(1)):
 d2primout.append(outp.group(1))

 # 3 Module List - determined by the endmodule
 if curblock == 3:
 modmatch = findmoduledecs.match(line)
 if modmatch:
 if moddie == 1:
 d1mods.append(mod)
 mod = ""
 if moddie == 2:
 d2mods.append(mod)

53

 mod = ""
 if moddie == 3:
 d1mods.append(mod)
 d2mods.append(mod)
 mod = ""
 if modmatch.group(1) in d1comptypes and
modmatch.group(1) in d2comptypes:
 moddie = 3
 elif modmatch.group(1) in d2comptypes:
 moddie = 2
 else:
 moddie = 1
 mod = mod + line

#close input file
fin.close()

fout = open('d1_'+path, 'w')
#write module declaration
fout.write("module cop_chip_d1 (")
#write inputs
fout.write("sleepall, x, y, clk, asm, ")
count = 0
for inp in d1primin:
 if (count % 10) == 0:
 fout.write("\n")
 count+=1
 fout.write(inp+', ')
#setup outputs for write
outputs = 'z, '
count = 0
for outp in d1primout:
 if (count % 10) == 0:
 outputs = outputs + '\n'
 count+=1
 outputs = outputs + outp + ', '
#write outputs
outputs = outputs.rstrip(', ')+');\n\n\n'
fout.write(outputs)

#end of module declaration
#These primary i/0's go in the D1 file only
d1primin.append("sleepall")
d1primin.append("[31:0]x")
d1primin.append("[31:0]y")
d1primin.append("clk")
d1primin.append("[1:0]asm")
d1primout.append("[31:0]z")
#write input list
for inp in d1primin:
 fout.write("input "+inp+";\n")
#write output list
for outp in d1primout:
 fout.write("output "+outp+";\n")
#write wire list
fout.write("\n wire ")
#compose wires
wireout = ''
for wire in d1sigs:
 wireout = wireout + wire + ', '
fout.write(wireout.rstrip(', ')+';\n')

54

#place components here
for comp in d1components:
 fout.write(comp + '\n')
fout.write("\nendmodule\n")

#place component declarations here
for mod in d1mods:
 fout.write(mod + '\n')

fout.close()

#Write Die2 File
fout = open('d2_'+path, 'w')
#write module declaration
fout.write("module cop_chip_d2 (")
#write inputs
count = 0
for inp in d2primin:
 if (count % 10) == 0:
 fout.write("\n")
 count+=1
 fout.write(inp+', ')
#setup outputs for write
count = 0
for outp in d2primout:
 if (count % 10) == 0:
 outputs = outputs + '\n'
 count+=1
 outputs = outputs + outp + ', '
#write outputs
outputs = outputs.rstrip(', ')+');\n\n\n'
fout.write(outputs)

#end of module declaration
#write input list
for inp in d2primin:
 fout.write("input "+inp+";\n")
#write output list
for outp in d2primout:
 fout.write("output "+outp+";\n")
#write wire list
fout.write("\n wire ")
#compose wires
wireout = ''
for wire in d2sigs:
 wireout = wireout + wire + ', '
fout.write(wireout.rstrip(', ')+';\n')

#place components here
for comp in d2components:
 fout.write(comp + '\n')
fout.write("\nendmodule\n")

#place component declarations here
for mod in d2mods:
 fout.write(mod + '\n')

fout.close()

55

APPENDIX C. BYERANDOMLINES.PY

Author: Ross Thian
import re, array
filea = raw_input('Type the input file name (cop_chip_d1.v):')
cop_chip = open(filea,'r')
Replaced_o = open(filea.rstrip('\.v')+"_lines.v", 'w')
paranthesis = 0
for linecop in cop_chip:
 if (linecop.find('(') != -1):
 paranthesis = paranthesis + 1;
 if (paranthesis > 1):# inside port maping
 #print x, ' \n'#print each set
 linecop = linecop.rstrip()
 #linecop = linecop.lstrip()
 linecop = linecop.replace(';',';\n')
 pass
 linecop = linecop.replace('(',' (')
 linecop = linecop.replace(' ',' ')
 linecop = linecop.replace(' ',' ')
 linecop = linecop.replace(' ',' ')
 linecop = linecop.replace(' ',' ')
 linecop = linecop.replace(' ',' ')
 linecop = linecop.replace(' ',' ')

 Replaced_o.write(linecop) #cop_chip.seek(location,0)
print ' White space cleaned made, outfile =
'+filea.rstrip('\.v')+"_lines.v"

56

APPENDIX D. BPI.PY (BUFFER PRIMARY INPUTS)

Author : Ross Thian
import re, array
This program finds busses, expands them, then removes brackets from
the netlist.
This program also buffers inputs and outputs excluding tsvs
portname_(a_i|a_o)

def flatten(l, ltypes=(list, tuple)):
 ltype = type(l)
 l = list(l)
 i = 0
 while i < len(l):
 while isinstance(l[i], ltypes):
 if not l[i]:
 l.pop(i)
 i -= 1
 break
 else:
 l[i:i + 1] = l[i]
 i += 1
 return ltype(l)

def handleinput(item):
 NTSVInputs = []
 inputs = item.split(',')

 inputcount = 0
 #outline = "input "
 inputs[0] = inputs[0].lstrip()
 inputs[0] = inputs[0].replace("input ",'')

 for input in inputs:
 input = input.strip().rstrip(';')

 # if append non tsvs to list
 if(input.find("a_o")!= -1 or input.find("a_i")!= -1):
 pass
 else:
 if(input !=''):
 NTSVInputs.append(input)

 return NTSVInputs

def handleoutput(item):
 NTSVOutputs = []
 outputs = item.split(',')

 inputcount = 0

 outputs[0] = outputs[0].lstrip()
 outputs[0] = outputs[0].replace("output ",'')

 for output in outputs:
 output = output.rstrip().rstrip(';')

 # if append non tsvs to list

57

 if(output.find("a_o")!= -1 or output.find("a_i")!= -1):
 pass
 else:
 if(output !=''):
 NTSVOutputs.append(output)

 return NTSVOutputs

findmodule = re.compile("(\s*module\s+\w+\s*\([\w\s,\n]*)")
findbusport =
re.compile("\s*(input|output|inout|tri|wire)\s+\[(\d+):(\d+)\]\s*([_\
\$/A-Za-z0-9-]+)\s;")

findinput = re.compile("\s*input\s+")
findoutput = re.compile("\s*output\s+")

#findmodule = re.compile("(\s*module\s+\w+\s*\()")
a = raw_input("Netlist to Expand Busses (chip.v):")

infile = open(a,'r')

replaces the first item with the second through the entire file

outdoc =""
modport =""
moddef = ""
inModule = "0";flatten
FileStart = "0";

inputList = []
outputList = []
#print 'infile Lines = ', len(infile) ,'\n'

for line in infile:
 #print "hi"
 if findmodule.match(line):
 FileStart ='1'
 mod = findmodule.match(line)
 print mod.group(0)
 print mod.group(1)
 moddef = moddef + line
 inModule = '1'
 elif inModule == '1' and FileStart == '1':
 if line.find(';') != -1:
 inModule = '0'
 moddef = moddef + line

 elif findbusport.match(line) and FileStart == '1':
 m = findbusport.match(line)
 direction = m.group(1)
 start = int(m.group(3))
 end = int(m.group(2))
 port= m.group(4)
 #print m.group(0) ,m.group(1) , m.group(2), m.group(3),
m.group(4)
 #print "found"
 #print direction, start, end, port

58

 #print port

 if start < end:
 end += 1;
 #print 'gt'
 else:
 temp = start
 start = end

 end = temp + 1;
 #print 'lte'

 for x in range(start,end):
 outdoc = outdoc + direction + " " +port+'_'+str(x)
+';\n'
 modport = modport + " "+port +'_'+ str(x) +','
 if (direction.find('input') != -1):
 inputList.append(port +'_'+ str(x));
 elif (direction.find('output') != -1):
 outputList.append(port +'_'+ str(x));
 else:
 pass
 if (direction.find('input') != -1 or
direction.find('output') != -1 or direction.find('inout') != -1):
 print "replace: " + port
 moddef = moddef.replace(port +',',modport)
 moddef = moddef.replace(port +' ',modport)
 moddef = moddef.replace(port +')',modport)

 modport = ""
 #outdoc = outdoc.replace('[','_')
 #outdoc = outdoc.replace(']','')
 inputList = flatten(inputList)
 outputList = flatten(outputList)
 elif findinput.match(line):
 inputList.append(handleinput(line))
 outdoc = outdoc + line
 while (line.find(';') == -1):
 line = infile.next()
 inputList.append(handleinput(line))
 outdoc = outdoc + line
 inputList = flatten(inputList)
 elif findoutput.match(line):
 outputList.append(handleoutput(line)) #0
 outdoc = outdoc + line
 while (line.find(';') == -1):
 line = infile.next()
 outputList.append(handleoutput(line))
 outdoc = outdoc + line
 outputList = flatten(outputList)
 elif FileStart == '1':
 line = line.replace(' [','_')
 line = line.replace('[','_')
 line = line.replace(']','')
 for port in inputList:
 line = line.replace('('+port+')','('+port+'b)')
 line = line.replace('('+port+')','('+port+'b)')
 line = line.replace('('+port+')','('+port+'b)')
 line = line.replace('('+port+')','('+port+'b)')
 for port in outputList:
 line = line.replace('('+port+')','('+port+'b)')

59

 line = line.replace('('+port+')','('+port+'b)')
 line = line.replace('('+port+')','('+port+'b)')
 line = line.replace('('+port+')','('+port+'b)')
 outdoc = outdoc + line
 else:
 pass

 #print line
create bufferd ports

bufflist = ""

print inputList
print outputList
for port in inputList:
 bufflist = bufflist + " BUFX3 InputBuff" + port + " (.A (" + port
+"), .Y (" +port + "b));\n"

for port in outputList:
 bufflist = bufflist + " BUFX3 OutputBuff" + port + " (.A (" +
port +"b), .Y (" +port + "));\n"
print bufflist
add new wires
wires = "wire "
wirecount = 0
for port in inputList:
 wires = wires + port +"b, "
 if(wirecount >= 25):
 wirecount = 0
 wires = wires.rstrip(", ") +";\n wire "
 wirecount = wirecount + 1
for port in outputList:
 wires = wires + port +"b, "
 if(wirecount >= 25):
 wirecount = 0
 wires = wires.rstrip(", ") +";\n wire "
 wirecount = wirecount + 1
wires = wires.rstrip("wire ")
wires = wires.rstrip(";\n wire ")
wires = wires.rstrip(", ") +";\n"
outfile = open(a.rstrip('\.v')+'_BE.v','w')

find first wire to replace
outdoc = outdoc.replace(" wire ", wires + " wire ", 1)

remove ending comma in module list
moddef = moddef.rstrip();
moddef = moddef.rstrip(';').rstrip(')').rstrip().rstrip(',') + ");\n"

add bufferlist
outdoc = outdoc.rstrip().rstrip("endmodule") + bufflist + "endmodule\n"

outfile.write(moddef)
outfile.write(outdoc)
outfile.close()
print "Remember if any constant logic values are defined correct them
now:"

print "BUFX3 OutputBufflogic_0 (.A (gnd), .Y (1'b0));"

60

print "BUFX3 InputBuffexpi1_0 (.A (expi1_0), .Y (expi1_0b));"
print "change expi1_0 to vdd"
print "BUFX3 OutputBufflogic_1 (.A (vdd), .Y (expi1_0b));"
print "change qmulbit_0 to gnd"
print " BUFX3 InputBuffqmulbit_0 (.A (qmulbit_0), .Y (qmulbit_0b));"
do we need to change the input here or before?
here add the vdd and gnd
remove the expi1_0 and qmulbit_0 from the module and ports list.

if a verilog inserted signal is present (1'b1..) replace it with
Logic_1 or Logic_0
The add the port "input Logic_1, Logic_0"
Run this script
Then replace the Logic_0 with gnd
Before BUFX3 InputBuffLogic_0 (.A (Logic_0), .Y (0Logic_0b));
After BUFX3 InputBuffLogic_0 (.A (gnd), .Y (Logic_0b));
do same for vdd. NOTE: AddPowandGnd.py will add vdd and gnd to
modulelist and input list
remove the port from the ports list and module if necessary since vdd
and gnd should be defined

print ' Busses Expanded, outfile = chip_BPI.v '
#print modport
#print wires

#print moddef

61

APPENDIX E. PSTR.PY (POST SPLIT TSV REMOVE)

Author : Mike Hinds
import re

#specify Filename
path = raw_input("File name (d#_cop3b_lines.v):")
path = "cop_chip_d1.v"

#clean the input file
def handlewire(item):
 print "wire found"
 wires = item.split(',')
 wirecount = 0
 outline = "wire "
 wires[0] = wires[0].lstrip()
 wires[0] = wires[0].lstrip("wire")
 print wires[0]
 for wire in wires:
 outline = outline + wire+', '
 wirecount = wirecount + 1
 if wirecount == 50:
 outline = outline.rstrip(', ')+';'
 fout.write(outline+'\n\n')
 wirecount = 0
 outline = "wire "
 outline = outline.rstrip(', ')+';'
 fout.write(outline+"\n\n")

#perform a global replacement of the given signal
def compdecreplace(compdecs, oldsig, replacementsig):
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace(" "+oldsig+" ", " "+replacementsig+"
")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
#perform a single replacement of the given signal (no order determinacy)
def singlecompdecreplace(compdecs, oldsig, replacementsig):
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")",1)
 compdecs = compdecs.replace(" "+oldsig+" ", " "+replacementsig+"
",1)
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")",1)
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")",1)
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")",1)
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")",1)

findwire = re.compile("\s+wire\s+")
fin = open(path, 'r')

62

fout = open("clean_bool", 'w')
lines = ''
while fin:
 line = fin.readline()
 if line == '':
 break
 #take care of comments
 if (line.find("//") != -1 or line.find("*/") != -1) or
line.lower().find("endmodule") != -1:
 lines = lines+line.rstrip() + "\n"
 else:
 lines = lines+line.rstrip()

listlines = lines.split(';')
for item in listlines:
 if findwire.match(item):
 handlewire(item)
 else:
 fout.write(item+';\n')

fin.close()
fout.close()

#Separate Components
curblock = -1
findprimmoduledec = re.compile("module")

findwirelist = re.compile("\s*wire\s+")
findcompdecs = re.compile("\s*\S+\s+\S+\s*\(.+\)")
findcompdefs = re.compile("\s*module\s+(\S+)\s*\(.+\)")
findd1component = re.compile("\s*(\S+)\s+d1_\S+\s*\(.*\)")
findd2component = re.compile("\s*(\S+)\s+d2_\S+\s*\(.*\)")

findinput =
re.compile("\.[a|b|c|d|sleep|nsleep|clk]\s*\(\s*(\S*)\s*\)\s*,?")
findoutput = re.compile("\.[z]\s*\(\s*(\S*?)\s*\)")

#TSV Code
findTSV = re.compile("\s*TSVd\dbuff\s+\S+\s*\((.+\))")
findTSVsigin = re.compile("\.[a|A]\s*\(\s*(\S*?)\s*\)")
findTSVsigout = re.compile("\.[y|Y|z|Z]\s*\(\s*(\S*?)\s*\)")

findprimin = re.compile(".*_a_i")
findprimout = re.compile(".*_a_o")

moduledec = ""
wirelist = ""
compdecs = ""
compdefs = ""

oldsigs = []
replacementsigs = []
duplicatesigs = []
duplicatereplacementsigs = []

#open cleaned file
fin = open("clean_bool", 'r')
while 1:
 line = fin.readline()
 if line == '':
 break

63

 #Determine which block we are in
 if (findprimmoduledec.match(line)) and (curblock == -1):
 curblock = 0
 print "entered primary module declaration..."
 #print line

 if (findwirelist.match(line) and curblock == 0):
 curblock = 1
 print "entered wire list..."
 #print line

 if (findcompdecs.match(line) and curblock == 1):
 curblock = 2
 print "entered component declarations..."
 #print line

 if (findcompdefs.match(line) and curblock ==2):
 curblock = 3
 print "entered component definitions..."
 #print line

 # 0 Primary Module Declaration - determined by the first "module"
declaration
 if curblock == 0:
 moduledec = moduledec + line

 # 1 Wire List - determined by the first "wire" declaration
 if curblock == 1:
 wirelist = wirelist + line

 # 2 Component Declarations - determined by the first component
declaration
 if curblock == 2:
 TSV = findTSV.match(line)
 if TSV:
 #grab input and output signals
 sigin = findTSVsigin.search(TSV.group(1))
 sigout = findTSVsigout.search(TSV.group(1))

 #determine replacement and old signals
 if findprimin.match(sigin.group(1)):
 oldsig = sigout.group(1)
 replacementsig = sigin.group(1)
 else:
 oldsig = sigin.group(1)
 replacementsig = sigout.group(1)

 #check for oldsig duplicates
 if oldsig in oldsigs:
 if oldsig in duplicatesigs:
 #we have a repeat duplicate, so add the
corresponding replacementsig to
 #the appropriate duplicatereplacementsigs
array

 duplicatereplacementsigs[duplicatesigs.index(oldsig)].append(repla
cementsig)
 else:
 #add oldsig to duplicate signal list
 duplicatesigs.append(oldsig)

64

 #get oldsigs index for duplicate value
 x = oldsigs.index(oldsig)

 #add the two corresponding replacement
sigs to duplicatereplacementsigs
 tempdr = []
 tempdr.append(replacementsigs[x])
 tempdr.append(replacementsig)
 duplicatereplacementsigs.append(tempdr)

 #append the signals to the signal list
 oldsigs.append(oldsig)
 replacementsigs.append(replacementsig)
 else:
 compdecs = compdecs + line
 # 3 Module List - determined by the endmodule
 if curblock == 3:
 compdefs = compdefs + line

#close input file
fin.close()

print duplicatesigs
print duplicatereplacementsigs
print oldsigs
#process the signals and components
print len(oldsigs)
i = 0
for oldsig in oldsigs:
 print str(i) + " of " + str(len(oldsigs))
 replacementsig = replacementsigs[i]

 #remove old signals from the wirelist
 wirelist = wirelist.replace(" "+oldsig+",", "")
 wirelist = wirelist.replace(","+oldsig+";", ";")
 wirelist = wirelist.replace(", "+oldsig+";", ";")

 if oldsig == "buffwire0_0enc1_2":
 print oldsig + " found!!!"
 #replace old signals
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace(" "+oldsig+" ", " "+replacementsig+"
")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 compdecs = compdecs.replace("("+oldsig+")",
"("+replacementsig+")")
 #print "looking for "+oldsig+" and replacing it with
"+replacementsig

 i+=1
wirelist = wirelist.replace("wire ;", "")
wirelist = wirelist.replace("wire;", "")
wirelist = wirelist.replace("wire ;", "")
wirelist = wirelist.replace("wire ;", "")

65

wirelist = wirelist.replace("wire ;", "")
wirelist = wirelist.replace("wire ;", "")

#Write output file
fout = open(path.rstrip(".v")+"_TSVrm.v", 'w')
for line in moduledec:
 fout.write(line)
for line in wirelist:
 fout.write(line)
for line in compdecs:
 fout.write(line)
for line in compdefs:
 fout.write(line)
fout.close()

66

APPENDIX F. DR.PY (DUPLICATES REMOVAL)

Author : Ross Thian
This program finds and replaces nets that are duplicated after tsv
removal
When a tsv is removed several connection can actually be connected to
the same net
We combine these nets into one.

import re, array
a = raw_input("Duplicates File name? (duplicates.txt) : ")
duplicates = open(a,'r')
b = raw_input("Post TSV Remove file name (d1_cop3b_TSVrm) : ")
cop_chip = open(b,'r')
DuplicatesRemoved = open(b.rstrip('\.v')+"_ntsv.v",'w')

line = duplicates.readline()
gets to valid arrary of duplicates
while (line.find("entered component declarations...") == -1):
 line = duplicates.readline()
line = duplicates.readline()
 ## 5th list of duplicates
line = duplicates.readline()

#for copline in cop_chip # sDuplicateswitch a_o with a_i
line = line.replace('a_o','a_*')
line = line.replace('a_i','a_o')
line = line.replace('a_*','a_i')

#print 'cop_chip Lines = ', len(cop_chip) ,'\n'
replacements = eval(line)
endofwire = -1
for linecop in cop_chip:
 if((endofwire == -1) & (linecop.find('wire ') != -1)):
 for linecop in cop_chip:
 print linecop
 if (linecop.find('wire ') == -1):
 location = cop_chip.tell()
 print location
 endofwire = 1
 break

 if(endofwire == 1):
 for x in replacements:
 #print x, ' \n'#print each set
 for j in range(1,len(x)):
 #print x[j] , ' ' ,x[0] , ' \n'
 if (linecop.find(x[j]) != -1):
 linecop = linecop.replace(x[j],x[0])
 #print x[j] , ' ' ,x[0] , ' \n'
 DuplicatesRemoved.write(linecop) #cop_chip.seek(location,0)
print ' Cleaned duplicates, outfile = cop_chip_d2_ntsv.v '

##line = duplicates.readline()
##print line +'\n'

67

APPENDIX G. REPLACESIGS.PY

Author : Ross Thian
import re, array
a = raw_input('netlist.v : ')
sigs = open('sigs.txt','r')
cop_chip = open(a,'r')
Replaced_o = open(a.rstrip('\.v') +'r.v','w')

replaces the first item with the second through the entire file

5th list of duplicates
line = sigs.readline()

#print 'cop_chip Lines = ', len(cop_chip) ,'\n'
replacements = eval(line)
for linecop in cop_chip:
 for x in replacements:
 #print x, ' \n'#print each set
 linecop = linecop.replace(x[0],x[1])
 #print x[j] , ' ' ,x[0] , ' \n'
 Replaced_o.write(linecop) #cop_chip.seek(location,0)
print ' Replacements made, outfile = '+ a.rstrip('\.v') +'r.v'

68

APPENDIX H. EXAMPLE SIGS.TXT

[[' dff d1_reg0_',' DFFX4 d1_reg0_'],[' dff d2_reg0_',' DFFX4
d2_reg0_'],[' dff d1_reg16_',' DFF_MTCMOS d1_reg16_'],[' dff ',' DFF_Em
'],[' and2 ',' AND2_Bm '],[' and3 ',' AND3_Bm '],[' and4 ',' AND4_Bm
'],[' nand2 ',' NAND2_Am '],[' nand3 ',' NAND3_Am '],[' nor2 ',' NOR2_Am
'],[' or2 ',' OR2_Bm '],[' or3 ',' OR3_Bm '],[' or4 ',' OR4_Bm '],['
xnor2 ',' XNOR2_Am '],[' nxor2 ',' XNOR2_Am '],[' xor2 ',' XOR2_Am '],['
invs ',' INVX1 '],[' inv ',' INVERT_Bm
'],['.a','.A'],['.b','.B'],['.c','.C'],['.d','.D'],['.sleep','.SLEEP'],[
'.nsleep','.NSLEEP'],['.q','.Q'],['.nq','.QN'],['.qn','.QN'],['.Qn','.QN
'],['.z','.Y'],['.y','.Y'],['.Z','.Y'],['.clk','.CK'],['.Clk','.CK']]

69

APPENDIX I. ADDPOWANDGND.PY

Author Brent Hollosi Modified by Ross Thian
def AddPorts(VerIn, VerOut):
 import re
 count=0
 add = 0
 first = 0
 p = 0
 Fin = open(VerIn, 'r')
 Fout= open(VerOut, 'w')
 FirstInput=False
 InModule=False
 while 1:
 i,l=0,0

 line = Fin.readline()
 if not line:
 break
 l=len(line)
 if(line[i:i+6]=="module"):
 add = 0
 first = 0
 while i < l:
 if(line[i] == '('):
 if(p == 0 and first == 1):
 line=line[:i+1]+" .VDD(vdd), .VSS(gnd),
"+line[i+1:]
 l = l+23
 if(p == 0 and first == 0):
 line = line[:i+1]+" vdd, gnd,"+line[i+1:]
 l = l + 10
 first = 1
 p = p + 1
 if(line[i] == ')'):
 p = p - 1
 if(line[i:i+5]=="input" and add != 1):
 Fout.write(" inout vdd, gnd;")
 add = 1
 i = i + 1

 count=count+1
 Fout.write(line)
 Fin.close()
 Fout.close()

a=raw_input("Input File: ")
b=raw_input("Outpt File: ")
AddPorts(a, b)

70

APPENDIX J. CADENCEREADY.PY

Author Ross Thian
import re
def handleinout(item):

 inouts = item.split(',')
 #inoutcount = 0
 outline = ""
 inouts[0] = inouts[0].lstrip()
 inouts[0] = inouts[0].lstrip("inout")

 for inout in inouts:
 #outline = outline + inout+', '
 outline = outline +"inout "+inout+';\n'
 #inoutcount = inoutcount + 1
 #if inoutcount == 50:
 # outline = outline.rstrip(', ')+';'
 # fout.write(outline+'\n\n')
 # inoutcount = 0
 # outline = "inout "
 #outline = outline.rstrip(', ')+';'
 fout.write(outline+"\n")
def handlemodule(item):

 modules = item.split(',')
 modulecount = 0
 outline = "module"
 modules[0] = modules[0].lstrip()
 modules[0] = modules[0].lstrip("module")

 for module in modules:
 outline = outline + module+', \n'
 #modulecount = modulecount + 1
 #if modulecount == 50:
 # outline = outline.rstrip(', ')+';'
 # fout.write(outline+'\n\n')
 # modulecount = 0
 # outline = "module "
 outline = outline.rstrip(', \n')+';'
 fout.write(outline+"\n\n")
def handleoutput(item):

 outputs = item.split(',')
 #outputcount = 0
 outline = ""
 outputs[0] = outputs[0].lstrip()
 outputs[0] = outputs[0].lstrip("output")

 for output in outputs:
 #outline = outline + output+', '
 outline = outline + "output " +output+';\n'
 #outputcount = outputcount + 1
 #if outputcount == 50:
 # outline = outline.rstrip(', ')+';'
 # fout.write(outline+'\n\n')
 # outputcount = 0
 # outline = "output "
 #outline = outline.rstrip(', ')+';'
 fout.write(outline+"\n")

71

def handleinput(item):

 inputs = item.split(',')
 #inputcount = 0
 outline = ""
 inputs[0] = inputs[0].lstrip()
 inputs[0] = inputs[0].lstrip("input")

 for input in inputs:
 #outline = outline + input+', '
 outline = outline +"input "+ input+';\n'
 #inputcount = inputcount + 1
 #if inputcount == 50:
 # outline = outline.rstrip(', ')+';'
 # fout.write(outline+'\n\n')
 # inputcount = 0
 # outline = "input "
 #outline = outline.rstrip(', ')+';'
 fout.write(outline+"\n")
def handlewire(item):

 wires = item.split(',')
 wirecount = 0
 outline = "wire "
 wires[0] = wires[0].lstrip()
 wires[0] = wires[0].lstrip("wire")

 for wire in wires:
 outline = outline + wire+', '
 wirecount = wirecount + 1
 if wirecount == 50:
 outline = outline.rstrip(', ')+';'
 fout.write(outline+'\n\n')
 wirecount = 0
 outline = "wire "
 outline = outline.rstrip(', ')+';'
 fout.write(outline+"\n\n")
 #fout.write("//endofwire\n\n")

fanoutlist = []

a=raw_input("Create Cadence Clean File from (abcd.v): ")
findwire = re.compile("\s+wire\s+")
findinout = re.compile("\s*inout\s+")
findinput = re.compile("\s*input\s+")
findoutput = re.compile("\s*output\s+")
findmodule = re.compile("module\s+")
findendmodule = re.compile("endmodule")
#findinput =
print "Cadence clean netlist in "+a.rstrip('\.v')+"_Cln.v"
fin = open(a, 'r')

fout = open(a.rstrip('\.v')+'_Cln.v', 'w')

lines = ''
while fin:
 line = fin.readline()
 if line == '':
 break
 lines = lines+line.rstrip()

listlines = lines.split(';')

72

for item in listlines:
 item = item.replace("//endofwire",'')
 if findwire.match(item):
 handlewire(item)
 elif findinout.match(item):
 handleinout(item)
 elif findinput.match(item):
 handleinput(item)
 elif findoutput.match(item):
 handleoutput(item)
 elif findmodule.match(item):
 handlemodule(item)
 elif findendmodule.match(item):
 fout.write("endmodule")
 else:
 fout.write(item+';\n')

fin.close()
fout.close()

73

APPENDIX K. TBES.PY (TOP BUS EXPANSION SCRIPT)

Author Ross Thian
This program works on the toplevel netlist.
It expands busses and replaces them in the module def and component
def.

import re, array

findport =
re.compile("\s*(input|output|inout|tri|wire)\s+\[(\d+):(\d+)\]\s*([_\
\$/A-Za-z0-9-]+)\s;")
findmodule = re.compile("(\s*module\s+\w+\s*\([\w\s,\n]*)")
#findmodule = re.compile("(\s*module\s+\w+\s*\()")
a = raw_input("Netlist to Expand Busses (chip.v):")

infile = open(a,'r')

replaces the first item with the second through the entire file

outdoc =""
modport =""
moddef = ""
compports = []
inModule = "0";
FileStart = "0";
#print 'infile Lines = ', len(infile) ,'\n'

for line in infile:
 #print "hi"
 if findmodule.match(line):
 FileStart ='1'
 mod = findmodule.match(line)
 #print mod.group(0)
 #print mod.group(1)
 moddef = moddef + line
 inModule = '1'
 if line.find(';') != -1:
 inModule = '0'
 elif inModule == '1' and FileStart == '1':
 if line.find(';') != -1:
 inModule = '0'
 moddef = moddef + line

 elif findport.match(line) and FileStart == '1':
 m = findport.match(line)
 direction = m.group(1)
 start = int(m.group(3))
 end = int(m.group(2))
 port= m.group(4)
 #print m.group(0) ,m.group(1) , m.group(2), m.group(3),
m.group(4)
 #print "found"
 #print direction, start, end, port
 #print port

 if start < end:

74

 end += 1;
 #print 'gt'
 else:
 temp = start
 start = end

 end = temp + 1;
 #print 'lte'
 compport = ""
 portreplace = []
 for x in range(start,end):
 outdoc = outdoc +" " +direction + " "
+port+'_'+str(x) +';\n'
 modport = modport + " "+port +'_'+ str(x) +','
 compport = compport + '.'+ port +'_' +str(x)+ '(' +
port +'_' +str(x)+ '), '
 if (direction.find('input') != -1 or
direction.find('output') != -1 or direction.find('inout') != -1):
 print "replace: " + port
 moddef = moddef.replace(port +',',modport)
 moddef = moddef.replace(port +' ',modport)
 moddef = moddef.replace(port +')',modport)

 modport = ""
 portreplace.append('.' + port +'('+port+'),')
 portreplace.append(compport)
 compports.append(portreplace)
 #print portreplace
 #outdoc = outdoc.replace('[','_')
 #outdoc = outdoc.replace(']','')
 elif FileStart == '1':
 line = line.replace(' [','_')
 line = line.replace('[','_')
 line = line.replace(']','')
 outdoc = outdoc + line
 else:
 pass
 #print line
outfile = open(a.rstrip('\.v')+'_BE.v','w')
#print moddef;
#moddef = moddef.rstrip(';').rstrip(')').rstrip(',') + ");\n"
moddef = moddef.rstrip();
moddef = moddef.rstrip(';').rstrip(')').rstrip().rstrip(',') + ");\n"
outfile.write(moddef)

for port in compports:
 outdoc = outdoc.replace(port[0],port[1])
 #print port[0]
 #print port[1]
outfile.write(outdoc)
outfile.close()
print ' Busses Expanded, outfile = ' + a.rstrip('\.v')+'_BE.v'
#print modport
#print moddef

75

APPENDIX L.UPR.PY (UNUSED PIN REMOVAL)

Author Ross Thian
import re

AllInout = []
AllInput = []
AllOutput = []
AllWire = []
d1compdecs = ""
d1wirelist = ""
d1modulelist = ""
d1portlist = ""
d2compdecs = ""
d2wirelist = ""
d2modulelist = ""
d2portlist = ""

def toTSVonly(item):
 onlyTSV = []
 for port in item:
 if port.find("_a_") != -1:
 onlyTSV.append(port)
 return onlyTSV

def flatten(l, ltypes=(list, tuple)):
 ltype = type(l)
 l = list(l)
 i = 0
 while i < len(l):
 while isinstance(l[i], ltypes):
 if not l[i]:
 l.pop(i)
 i -= 1
 break
 else:
 l[i:i + 1] = l[i]
 i += 1
 return ltype(l)

def handleoutput(item):

 outputs = item.split(',')
 #AllOutput.append(outputs)
 outputcount = 0
 outline = "output "
 outputs[0] = outputs[0].lstrip()
 outputs[0] = outputs[0].replace("output ",'')

 for output in outputs:
 output = output.strip().rstrip(';')
 AllOutput.append(output)
 outline = outline + output+', '
 outputcount = outputcount + 1
 if outputcount == 50:
 outline = outline.rstrip(', ')+';'
 outline = outline+'\n\n'
 outputcount = 0
 outline = outline +"output "
 outline = outline.rstrip(', ')+';'

76

 outline = outline.replace('output;','')
 return outline + "\n"
def handleinout(item):

 inouts = item.split(',')
 #AllInout.append(inouts)

 inoutcount = 0
 outline = "inout "
 inouts[0] = inouts[0].lstrip()
 inouts[0] = inouts[0].replace("inout ",'')
 #print inouts[0]

 for inout in inouts:
 inout = inout.strip().rstrip(';')
 AllInout.append(inout)
 outline = outline + inout+', '
 inoutcount = inoutcount + 1
 if inoutcount == 50:
 outline = outline.rstrip(', ')+';'
 outline = outline+'\n\n'
 inoutcount = 0
 outline = outline +"inout "
 outline = outline.rstrip(', ')+';'
 outline = outline.replace('inout;','')
 return outline + "\n"
def handlemodule(item):

 modules = item.split(',')
 modulecount = 0
 outline = "module"
 modules[0] = modules[0].lstrip()
 modules[0] = modules[0].replace("module",'')

 for module in modules:
 outline = outline + module+', \n'
 outline = outline.rstrip(', \n')+';'
 return outline + "\n"

def handleinput(item):

 inputs = item.split(',')
 #AllInput.append(inputs)
 inputcount = 0
 outline = "input "
 inputs[0] = inputs[0].lstrip()
 inputs[0] = inputs[0].replace("input ",'')

 for input in inputs:
 input = input.strip().rstrip(';')

 AllInput.append(input)
 outline = outline + input+', '
 inputcount = inputcount + 1
 if inputcount == 50:
 outline = outline.rstrip(', ')+';'
 outline = outline+'\n\n'
 inputcount = 0
 outline = outline + "input "
 outline = outline.rstrip(', ')+';'
 outline = outline.replace('input;','')

77

 return outline + "\n"
def handlewire(item):

 wires = item.split(',')
 #AllWire.append(wires)
 wirecount = 0
 outline = "wire "
 wires[0] = wires[0].lstrip()
 wires[0] = wires[0].replace("wire ",'')

 for wire in wires:
 wire = wire.strip().rstrip(';')
 AllWire.append(wire)
 outline = outline + wire+', '
 wirecount = wirecount + 1
 if wirecount == 50:
 outline = outline.rstrip(', ')+';'
 outline = outline+'\n\n'
 wirecount = 0
 outline = outline + "wire "

 outline = outline.rstrip(', ')+';'
 outline = outline.replace("wire;",'')
 return outline + "\n\n"
 #fout.write("//endofwire\n\n")

def handlewirelist(wires):
 wirecount = 0
 #AllWire.append(wires)
 outline = "wire "

 for wire in wires:
 wire = wire.lstrip().rstrip()
 AllWire.append(wire)
 outline = outline + wire+', '
 wirecount = wirecount + 1
 if wirecount == 50:
 outline = outline.rstrip(', ')+';'
 outline = outline+'\n\n'
 wirecount = 0
 outline = outline + "wire "
if wirecount != 0:
 outline = outline.rstrip(', ')+';'
else:
 outline = outline.replace("wire;",'')
 return outline + "\n\n"
 #fout.write("//endofwire\n\n")

d1=raw_input("Removed Unused Ports from (cop_chip_d1.v): ")
d2=raw_input("Removed Unused Ports from (cop_chip_d2.v): ")
top=raw_input("Removed Unused Porprint d1portlistts from top Level
(cop_chip_top.v): ")
findwire = re.compile("\s+wire\s+")
findinout = re.compile("\s*inout\s+")
findinput = re.compile("\s*input\s+")
findoutput = re.compile("\s*output\s+")
findmodule = re.compile("\s*module\s+")
findendmodule = re.compile("endmodule")

#findinput =

78

D1in = open(d1,'r')
D2in = open(d2,'r')

#fin = open(a, 'r')
#fout = open(a.rstrip('\.v')+'_rmport.v', 'w')
#f2out = open(a.rstrip('\.v')+'_prt2.v', 'w')

#D1
lines = ''
while D1in:
 line = D1in.readline()
 if line == '':
 break
 lines = lines+' '+(line.rstrip()+' ').lstrip()
 lines = lines.replace('(','(')

listlines = lines.split(';')
D1in.close()

CreateReplaceList = -1

PrimaryPorts = []
PrimaryInputs = []
PrimaryOutputs = []
for item in listlines:
 item = item.replace("//endofwire",'')
 if findwire.match(item):
 d1wirelist = d1wirelist + handlewire(item)
 elif findinout.match(item):
 d1portlist = d1portlist + handleinout(item)
 elif findinput.match(item):
 d1portlist = d1portlist + handleinput(item)
 elif findoutput.match(item):
 d1portlist = d1portlist + handleoutput(item)
 elif findmodule.match(item):
 d1modulelist = d1modulelist + handlemodule(item)
 elif findendmodule.match(item):
 print "endmodule"
 else:
 d1compdecs = d1compdecs + item+';\n'

pinsoutD1 = open(d1.rstrip('\.v')+'pins.v', 'w')
pinoutD1 = []
d1AllInput = []
d1AllInout = []
d1AllOutput = []

AllInput = flatten(AllInput)
AllOutput = flatten(AllOutput)
AllInout = flatten(AllInout)
AllWire = flatten(AllWire)
#print AllWire
for Input in AllInput:
 if(d1compdecs.find('('+Input.lstrip('input').lstrip().rstrip()+')'
) == -1):

79

 Input = Input.lstrip('input').lstrip().rstrip()
 findinput1 = re.compile("\s*"+Input+"\s*,")
 d1portlist = findinput1.sub('',d1portlist)
 findinput2 = re.compile(",\s*"+Input+"\s*;")
 d1portlist = findinput2.sub(';',d1portlist)
 findinput3 = re.compile("input\s*"+Input+"\s*;")
 d1portlist = findinput3.sub('',d1portlist)
 re.compile("\s*"+Input+"\s*,")

 d1modulelist = findinput1.sub('',d1modulelist)
 findinput4 = re.compile(",\s*"+Input+"\s*\)")
 d1modulelist = findinput4.sub(')',d1modulelist)
 pinoutD1.append(Input.lstrip('input').lstrip().rstrip())
 #pinsout.write(Input.lstrip('input').lstrip().rstrip()+'
Input Removed\n')
 else:
 d1AllInput.append(Input)
#print AllInput
#print d1portlist

for Inout in AllInout:
 if(d1compdecs.find(Inout.lstrip('inout').lstrip())== -1):
 Inout = Inout.lstrip('inout').lstrip().rstrip()
 findinout1 = re.compile("\s*"+Inout+"\s*,")
 d1portlist = findinout1.sub('',d1portlist)
 findinout2 = re.compile(",\s*"+Inout+"\s*;")
 d1portlist = findinout2.sub(';',d1portlist)
 findinout3 = re.compile("inout\s*"+Inout+"\s*;")
 d1portlist = findinout3.sub('',d1portlist)

 d1modulelist = findinout1.sub('',d1modulelist)
 findinout4 = re.compile(",\s*"+Inout+"\s*\)")
 d1modulelist = findinout4.sub(')',d1modulelist)

 pinoutD1.append(Inout.lstrip('inout').lstrip().rstrip())
 #pinsout.write(Inout.lstrip('inout').lstrip().rstrip()+'
Inout Removed\n')
 else:
 d1AllInout.append(Inout)
#print d1portlist
for Output in AllOutput:
 if(d1compdecs.find('('+Output.lstrip('output').lstrip().rstrip()+'
)')== -1):
 Output = Output.lstrip('output').lstrip().rstrip()
 findoutput1 = re.compile("\s*"+Output+"\s*,")
 d1portlist = findoutput1.sub('',d1portlist)
 findoutput2 = re.compile(",\s*"+Output+"\s*;")
 d1portlist = findoutput2.sub(';',d1portlist)
 findoutput3 = re.compile("output\s*"+Output+"\s*;")
 d1portlist = findoutput3.sub('',d1portlist)

 d1modulelist = findoutput1.sub('',d1modulelist)
 findoutput4 = re.compile(",\s*"+Output+"\s*\)")
 d1modulelist = findoutput4.sub(')',d1modulelist)
 pinoutD1.append(Output.lstrip('output').lstrip().rstrip())
 #pinsout.write(Output.lstrip('output').lstrip().rstrip()+'
Output Removed\n')
 else:
 d1AllOutput.append(Output)
#print d1portlist
findendmodulerep = re.compile('endmodule ;')

80

d1compdecs = findendmodulerep.sub('endmodule',d1compdecs)

AllInout = []
AllInput = []
AllOutput = []
AllWire = []

#D2
lines = ''
while D2in:
 line = D2in.readline()
 if line == '':
 break
 lines = lines+' '+(line.rstrip()+' ').lstrip()
 lines = lines.replace('(','(')

listlines = lines.split(';')
D2in.close()

CreateReplaceList = -1

PrimaryPorts = []
PrimaryInputs = []
PrimaryOutputs = []
for item in listlines:
 item = item.replace("//endofwire",'')
 if findwire.match(item):
 d2wirelist = d2wirelist + handlewire(item)
 elif findinout.match(item):
 d2portlist = d2portlist + handleinout(item)
 elif findinput.match(item):
 d2portlist = d2portlist + handleinput(item)
 elif findoutput.match(item):
 d2portlist = d2portlist + handleoutput(item)
 elif findmodule.match(item):
 d2modulelist = d2modulelist + handlemodule(item)
 elif findendmodule.match(item):
 print "endmodule"
 else:
 d2compdecs = d2compdecs + item+';\n'

pinsoutD2 = open(d2.rstrip('\.v')+'pins.v', 'w')
pinoutD2 = []

AllInput = flatten(AllInput)
AllOutput = flatten(AllOutput)
AllInout = flatten(AllInout)
AllWire = flatten(AllWire)

d2AllInput = []
d2AllInout = []
d2AllOutput = []
#print AllWire

81

for Input in AllInput:
 if(d2compdecs.find('('+Input.lstrip('input').lstrip().rstrip()+')'
) == -1):
 Input = Input.lstrip('input').lstrip().rstrip()
 findinput1 = re.compile("\s*"+Input+"\s*,")
 d2portlist = findinput1.sub('',d2portlist)
 findinput2 = re.compile(",\s*"+Input+"\s*;")
 d2portlist = findinput2.sub(';',d2portlist)
 findinput3 = re.compile("input\s*"+Input+"\s*;")
 d2portlist = findinput3.sub('',d2portlist)
 re.compile("\s*"+Input+"\s*,")

 d2modulelist = findinput1.sub('',d2modulelist)
 findinput4 = re.compile(",\s*"+Input+"\s*\)")
 d2modulelist = findinput4.sub(')',d2modulelist)
 pinoutD2.append(Input.lstrip('input').lstrip().rstrip())
 #pinsout.write(Input.lstrip('input').lstrip().rstrip()+'
Input Removed\n')
 else:
 d2AllInput.append(Input)
for Inout in AllInout:
 if(d2compdecs.find(Inout.lstrip('inout').lstrip())== -1):
 Inout = Inout.lstrip('inout').lstrip().rstrip()
 findinout1 = re.compile("\s*"+Inout+"\s*,")
 d2portlist = findinout1.sub('',d2portlist)
 findinout2 = re.compile(",\s*"+Inout+"\s*;")
 d2portlist = findinout2.sub(';',d2portlist)
 findinout3 = re.compile("inout\s*"+Inout+"\s*;")
 d2portlist = findinout3.sub('',d2portlist)

 d2modulelist = findinout1.sub('',d2modulelist)
 findinout4 = re.compile(",\s*"+Inout+"\s*\)")
 d2modulelist = findinout4.sub(')',d2modulelist)
 pintoutD2.append(Inout.lstrip('inout').lstrip().rstrip())
 #pinsout.write(Inout.lstrip('inout').lstrip().rstrip()+'
Inout Removed\n')
 else:
 d2AllInout.append(Inout)
for Output in AllOutput:
 if(d2compdecs.find('('+Output.lstrip('output').lstrip().rstrip()+'
)')== -1):
 Output = Output.lstrip('output').lstrip().rstrip()
 findoutput1 = re.compile("\s*"+Output+"\s*,")
 d2portlist = findoutput1.sub('',d2portlist)
 findoutput2 = re.compile(",\s*"+Output+"\s*;")
 d2portlist = findoutput2.sub(';',d2portlist)
 findoutput3 = re.compile("output\s*"+Output+"\s*;")
 d2portlist = findoutput3.sub('',d2portlist)

 d2modulelist = findoutput1.sub('',d2modulelist)
 findoutput4 = re.compile(",\s*"+Output+"\s*\)")
 d2modulelist = findoutput4.sub(')',d2modulelist)
 pinoutD2.append(Output.lstrip('output').lstrip().rstrip())
 #pinsout.write(Output.lstrip('output').lstrip().rstrip()+'
Output Removed\n')
 else:
 d2AllOutput.append(Output)
findendmodulerep = re.compile('endmodule ;')
d2compdecs = findendmodulerep.sub('endmodule',d2compdecs)

82

D1out = open(d1.rstrip('\.v')+'_rmport.v', 'w')
D2out = open(d2.rstrip('\.v')+'_rmport.v', 'w')

d1PortsOut = open('d1_tsv\'s','w')
d2PortsOut = open('d2_tsv\'s','w')

#For brents tsv macro
d1OutPorts = []
d1AllInput = toTSVonly(d1AllInput)
#print d1AllInput
d1OutPorts.append(d1AllInput)
#print 'd1OutPorts'
#print d1OutPorts
d1AllOutput = toTSVonly(d1AllOutput)
d1OutPorts.append(d1AllOutput)

d2OutPorts = []
d2AllInput = toTSVonly(d2AllInput)
d2OutPorts.append(d2AllInput)
d2AllOutput = toTSVonly(d2AllOutput)
d2OutPorts.append(d2AllOutput)

ReplaceToWireD1 = []
ReplaceToWireD2 = []

strd2OutPorts = str(flatten(d2OutPorts))
strd2OutPorts = strd2OutPorts.replace('a_o','a_*')
strd2OutPorts = strd2OutPorts.replace('a_i','a_o')
strd2OutPorts = strd2OutPorts.replace('a_*','a_i')

for pin in flatten(d1OutPorts):
 if (strd2OutPorts.find(pin) == -1):
 ReplaceToWireD1.append(pin)
 pinoutD1.append(pin)

strd1OutPorts = str(flatten(d1OutPorts))
strd1OutPorts = strd1OutPorts.replace('a_o','a_*')
strd1OutPorts = strd1OutPorts.replace('a_i','a_o')
strd1OutPorts = strd1OutPorts.replace('a_*','a_i')

for pin in flatten(d2OutPorts):
 if (strd1OutPorts.find(pin) == -1):
 ReplaceToWireD2.append(pin)
 pinoutD2.append(pin)
d1wirelist = d1wirelist + handlewirelist(ReplaceToWireD1)

inpu problem
for port in ReplaceToWireD1:
 port = port.lstrip().rstrip()
 findport1 = re.compile("\s+"+port+"\s*,")
 d1portlist = findport1.sub('',d1portlist)

83

 findport2 = re.compile(",\s+"+port+"\s*;")
 d1portlist = findport2.sub(';',d1portlist)
 findport3 = re.compile("(input|output|inout)\s+"+port+"\s*;")
 d1portlist = findport3.sub('',d1portlist)
 #re.compile(",\s*"+port+"\s*,")

 d1modulelist = findport1.sub('',d1modulelist)
 findport4 = re.compile(",\s*"+port+"\s*\)")
 d1modulelist = findport4.sub(')',d1modulelist)
inpu problem
#print d1portlist
print ReplaceToWireD1
d1FinalPorts = []
for port in d1OutPorts:
 keep = -1
 for wire in ReplaceToWireD1:
 if wire.find(str(port)) != -1:
 keep == 1
 if keep == -1:
 d1FinalPorts.append(port)

#d1PortsOut.write(str(d1OutPorts))

d2wirelist = d2wirelist + handlewirelist(ReplaceToWireD2)

for port in ReplaceToWireD2:
 port = port.lstrip().rstrip()
 findport1 = re.compile("\s*"+port+"\s*,")
 d2portlist = findport1.sub('',d2portlist)
 findport2 = re.compile(",\s*"+port+"\s*;")
 d2portlist = findport2.sub(';',d2portlist)
 findport3 = re.compile("(input|output|inout)\s+"+port+"\s*;")
 d2portlist = findport3.sub('',d2portlist)
 #re.compile("\s*"+port+"\s*,")

 d2modulelist = findport1.sub('',d2modulelist)
 findport4 = re.compile(",\s*"+port+"\s*\)")
 d2modulelist = findport4.sub(')',d2modulelist)

d2FinalPorts = []
for port in d2OutPorts:
 keep = -1
 for wire in ReplaceToWireD2:
 if wire.find(str(port)) != -1:
 keep == 1
 if keep == -1:
 d2FinalPorts.append(port)

pinsoutD1.write(str(pinoutD1))
pinsoutD1.close()
pinsoutD2.write(str(pinoutD2))
pinsoutD2.close()
d2PortsOut.write(str(d2FinalPorts))

D2out.write(d2modulelist)
#print portlist
D2out.write(d2portlist)
#print wirelist
D2out.write(d2wirelist)

84

#print compdecs
D2out.write(d2compdecs)

d1PortsOut.write(str(d1FinalPorts))

D1out.write(d1modulelist)
#print portlist
D1out.write(d1portlist)
#print wirelist
D1out.write(d1wirelist)
#print compdecs
D1out.write(d1compdecs)
#possibly All inputs ports on d1 are wire names to d2
#possibly all ports to d2 are opposing pins to d1
#in theory we could remove all pins and wires from d1's list
#remove all pins from d2's list

Topin = open(top,'r')
Topout = open(top.rstrip('\.v')+'_rmport.v', 'w')
TopoutFile = ""

print "Replace Top Level Ports"
for line in Topin:
 TopoutFile = TopoutFile + line

for port1 in pinoutD1:
 strport1 = str(port1)
findFinalport1 =
re.compile("\."+strport1+'\('+"\s*"+strport1+"\),")
findFinalport2 =
re.compile(",\s*\."+strport1+'\('+"\s*"+strport1+"\)"+"\s*"+"\)")
findFinalport3 =
re.compile("\(\s*\."+strport1+'\('+"\s*"+strport1+"\)"+"\s*"+"\)")
findFinalport4 = re.compile(strport1+",")
TopoutFile = findFinalport1.sub('',TopoutFile)
TopoutFile = findFinalport2.sub(')',TopoutFile)
TopoutFile = findFinalport3.sub('()',TopoutFile)
TopoutFile = findFinalport4.sub('',TopoutFile)

 findFinalport1 =
re.compile(",\s*\."+strport1+'\('+"\s*"+strport1+"\),")
 TopoutFile = findFinalport1.sub(',',TopoutFile)
 findFinalport2 =
re.compile("\."+strport1+'\('+"\s*"+strport1+"\),")
 TopoutFile = findFinalport2.sub('',TopoutFile)
 findFinalport3 =
re.compile(",\s*\."+strport1+'\('+"\s*"+strport1+"\)"+"\s*"+"\)")
 TopoutFile = findFinalport3.sub(')',TopoutFile)
 findFinalport4 =
re.compile("\(\s*\."+strport1+'\('+"\s*"+strport1+"\)"+"\s*"+"\)")
 TopoutFile = findFinalport4.sub('()',TopoutFile)

 findFinalwire1 = re.compile(",\s*"+strport1+",")
 TopoutFile = findFinalwire1.sub(',',TopoutFile)
 findFinalwire2 = re.compile("wire\s*"+strport1+",")
 TopoutFile = findFinalwire2.sub('wire ',TopoutFile)
 findFinalwire3 = re.compile(",\s*"+strport1+";")
 TopoutFile = findFinalwire3.sub(';',TopoutFile)

#for port1 in pinoutD1:

85

print port1
#strport1 = str(port1)
TopoutFile = TopoutFile.replace(', \n .'+port1+'(','')
TopoutFile = TopoutFile.replace(port1+'),',' \n')
TopoutFile = TopoutFile.replace('.'+port1+'(','')
TopoutFile = TopoutFile.replace(port1+'))',')')

findFinalport1 =
re.compile("\s*\."+strport1+'\('+"\s*"+strport1+"\),")
findFinalport2 =
re.compile(",\s*\."+strport1+'\('+"\s*"+strport1+"\)"+"\s*"+"\)")
findFinalport3 =
re.compile("\(\s*\."+strport1+'\('+"\s*"+strport1+"\)"+"\s*"+"\)")
TopoutFile = findFinalport1.sub('',TopoutFile)
TopoutFile = findFinalport2.sub(')',TopoutFile)
TopoutFile = findFinalport3.sub('()',TopoutFile)

for port2 in pinoutD2:
 strport2 = str(port2)
 strport3 = strport2
 strport3 = strport3.replace('a_o','a_*')
 strport3 = strport3.replace('a_i','a_o')
 strport3 = strport3.replace('a_*','a_i')

 findFinalport6 =
re.compile(",\s*\."+strport2+'\('+"\s*"+strport3+"\),")
 TopoutFile = findFinalport6.sub(',',TopoutFile)
 findFinalport7 =
re.compile("\."+strport2+'\('+"\s*"+strport3+"\),")
 TopoutFile = findFinalport7.sub('',TopoutFile)
 findFinalport8 =
re.compile(",\s*\."+strport2+'\('+"\s*"+strport3+"\)"+"\s*"+"\)")
 TopoutFile = findFinalport8.sub(')',TopoutFile)
 findFinalport9 =
re.compile("\(\s*\."+strport2+'\('+"\s*"+strport3+"\)"+"\s*"+"\)")
 TopoutFile = findFinalport9.sub('()',TopoutFile)

 findFinalwire4 = re.compile(",\s*"+strport2+",")
 TopoutFile = findFinalwire4.sub(',',TopoutFile)
 findFinalwire5 = re.compile("wire\s*"+strport2+",")
 TopoutFile = findFinalwire5.sub('wire ',TopoutFile)
 findFinalwire6 = re.compile(",\s*"+strport2+";")
 TopoutFile = findFinalwire6.sub(';',TopoutFile)
 #print "searching for " + strport2 + " "+ strport3

 #print line
Topout.write(TopoutFile)
print "D1 Ports Cleaned in "+d1.rstrip('\.v')+"_rmport.v"
print "D2 Ports Cleaned in "+d2.rstrip('\.v')+"_rmport.v"
print "Top-Level Ports Cleaned in "+top.rstrip('\.v')+"_rmport.v"

	University of Arkansas, Fayetteville
	ScholarWorks@UARK
	12-2010

	Multi-threshold CMOS Circuit Design Methodology from 2D to 3D
	Ross Josiah Thian
	Recommended Citation

	Microsoft Word - RossThianMS.doc

