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ABSTRACT 

Experimental modal analysis (EMA) of bridges and other civil structures can be used to acquire 

quantitative data describing their condition, and enhance opportunities for structural health 

monitoring and related fields. The use of EMA on civil structures has been limited by the high 

cost of the excitation devices that are required for the best data quality. The objective of the 

research reported herein is to evaluate a low-cost excitation system for multiple-input, multiple-

output (MIMO) EMA, enabling the production of accurate estimates of the global behavior of in-

service bridges.  

The prototype excitation system is composed of consumer entertainment devices, namely tactile 

transducers and subwoofer amplifiers, which are capable of providing excitation in the range of 5 

Hz to 200 Hz. The use of these devices in vibration testing is unprecedented, and their low cost 

allows approximately 30 structural degrees-of-freedom to be excited for the price of a single 

purpose-built laboratory shaker device. Methods are developed to systematically characterize the 

operational performance of the devices. Research and testing are also performed to optimize the 

techniques by which the system can be used for MIMO EMA of bridges.    

The excitation system is then validated for MIMO EMA by dynamically characterizing a large-

scale laboratory structure and comparing the results to those from traditional excitation methods. 

The system is then deployed on an in-service highway bridge, representing the first time that 

more than two shakers have been used in MIMO EMA testing of a bridge. The identification 

results using MIMO EMA are shown to be superior to those found using traditional excitation 

methods.  



  

Finally, the identified modal parameters of the in-service bridge are used in load rating. Direct 

use of the modal properties of a bridge for load rating is unprecedented, and a relatively simple 

method to use measured modal flexibility to help determine live load demand is developed 

herein. The bridge load ratings calculated from the new method are compared to traditional 

methods. 

In summary, a low-cost excitation system is optimized and systematically evaluated for MIMO 

EMA testing of civil structures, and the use of the system is validated in the laboratory and in the 

field. A new method to improve bridge rating reliability is then developed using the high quality 

modal parameters found via the optimized testing process.    
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1 CHAPTER ONE 

   INTRODUCTION 

1.1 MOTIVATION AND RESEARCH CONTEXT 

The work of this thesis is motivated by two complimentary goals. The first goal is to develop a 

new methodology to better obtain reliable modal flexibility of bridges by using experimental 

modal analysis. The second goal is to develop a new method by which modal flexibility can be 

used to enhance evaluation and management of real-world bridge structures. A brief introduction 

to the state-of-the-art in modal analysis and in bridge condition evaluation are provided in the 

following in order to frame the research presented herein. 

1.1.1 Overview of Modal Analysis in Testing of Civil Structures 

Experimental modal analysis (EMA) is a process in which measurable dynamic excitation is 

applied to a system and the response is recorded. The input-output relationship provides 

significant knowledge about the system. With the assumption of linear structural dynamics, the 

relationship between the input and the output reveals various modal parameters such as the 

natural frequencies, mode shapes, damping ratios, modal scaling, modal flexibility, etc. of the 

structure.  

Modal analysis of rotating machinery, aerospace, and automotive systems has been successfully 

used for decades. In these industries, the work is usually performed in a controlled laboratory 

setting with the test subject well isolated from ambient inputs. Both the input forces applied to 

the structure and the outputs (velocities, accelerations, strains, etc.) of the test subject are 

measured and the desired modal properties are determined. The modal parameters extracted from 
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testing of mechanical structures are used for a variety of purposes: reduction of vibration, 

calibration of numerical models, damage and defect identification, etc.   

Vibration testing of civil structures accelerated in the early 1980’s, usually with the purpose of 

determining natural frequencies for the purposes of seismic and wind analyses. More recently, 

research into modal analysis of civil structures has been focused on structural health monitoring 

(SHM) and damage detection. In these subjects, the identified modal parameters of a structure 

are used to try to detect, localize, and quantify damage. This work coincides with the trend to 

continuously monitor important infrastructure systems via the application of modern technology. 

The availability of (relatively) inexpensive sensors, computers, and communications gear has 

enabled this research thrust; however, there are fundamental issues in the modal testing of civil 

structures that remain unresolved.  

1.1.1.1 Discussion of Modal Analysis Excitation Methods 

One of the most significant fundamental challenges is to adequately excite massive structures of 

the scale of typical civil works. Cunha and Caetano (2006) present a selection of large and very 

expensive excitation devices that were built to excite dams and long span bridges. Not only are 

these devices rare and costly, but their use typically interferes with the normal operation of the 

structure under test. Because of the high cost and limited availability of such devices, researchers 

have explored many other means of excitation. The range of excitation methods attempted is 

very broad – everything from shooting a structure with a bolt gun to suspending and suddenly 

releasing a barge from a bridge has been tried. None of these various methods have proven 

suitable for widespread use in research or practice. 
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Because of the difficulty of adequately exciting civil works with controlled inputs, vibration 

testing of civil structures has largely transitioned to output-only analysis methods in which the 

input excitation is not measured. This testing method is commonly known as operational modal 

analysis (OMA). With OMA, no attempt is made to purposely excite the structure. Instead, 

excitation is provided by naturally occurring environmental processes and only the structural 

outputs are recorded. With the assumption that the input is stationary, broadband, uncorrelated to 

prior system responses (Giraldo et al. 2009), and spatially uniformly distributed (Chauhan et al. 

2008), the modal parameters can be extracted from the output measurements.  

There are three main drawbacks to the use of OMA. First, although the various algorithms that 

have been developed have different levels of sensitivity to these underlying assumptions, 

significant errors can be made in the modal parameter estimation when the input is not 

stochastic. The nature of the environmental inputs typically makes them nearly impossible to 

record and analyze, and thus the stochastic assumption cannot readily be validated. The 

algorithms and processing methods have steadily become more elaborate to deal with this 

uncertainty so that the utility of the results is not reduced. 

Second, without knowledge of the input forces, modal scaling cannot be directly calculated from 

the output measurements (Gul and Catbas 2008). Without modal scaling, modal flexibility also 

cannot be calculated. Some researchers have attempted to overcome this limitation by calibrating 

finite element models of the tested structure and using the model to provide modal scaling. 

Parloo et al. (2005) attempt to use a sensitivity based technique to estimate modal scaling in 

OMA testing by adding significant mass to the structure under test. Although the results of this 

technique were encouraging, the difficulty of significantly modifying the mass of civil structures 

seems to have discouraged its adoption. 
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Third, the low level of excitation provided by OMA often makes it difficult to identify higher 

frequency modes. The literature provides a few examples in which OMA and EMA testing are 

both performed on the same civil structure. Doebling et al. (1997) tested a bridge with a type of 

EMA known as multiple reference impact testing (MRIT) and with OMA. They found more 

modes of the structure and tighter confidence intervals on the modal parameters with EMA. 

Aktan et al. (2005) tested a large-scale laboratory bridge model with MRIT and OMA, and they 

identified many more modes with EMA. Deckers et al. (2008) notes that “In practice, however, it 

occurs that not all modes are well excited by the ambient forces and the application of an 

artificial excitation is necessary.”     

However, most researchers are willing to accept the limitations of OMA since imparting 

significant measurable excitation appears to be so onerous. An excerpt from Sohn (1998, 3) is 

indicative of the general consensus of researchers today: 

The size of civil structures does not permit the instrumentation of a large number 
of sensors and actuators, and the excitation of higher modes. Furthermore, the 
application of forced vibration tests, which are commonly used for system 
identification, is difficult for civil structures in service because of the economic 
and social ramifications caused by service interruption due to road closure and 
evacuation of buildings. Ambient vibration tests are more suitable for civil 
structures since the tests can be conducted under normal operation of structures 
and can be easily repeated to collect additional modal data sets. 

Unfortunately, SHM and damage detection applications require very accurate identification of 

the modal parameters since localized damage only causes small changes to these that are difficult 

to detect. Significant effort is being expended in an effort to develop algorithms that can 

accurately identify such small changes in the presence of noise and environmental variations 

common to civil structures. The questionable quality of modal parameters determined from 

OMA testing makes the advancement of SHM all the more difficult. Chauhan et al. (2008) 
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demonstrated analytically that the bias error known as leakage is difficult to avoid with OMA, 

and that modal damping estimates suffer when the ambient excitations are partially correlated. 

Parloo et al. (2005) noted that the inability to directly identify modal scaling restricts the success 

of OMA for some particular damage identification techniques, dynamic structural response 

prediction, force identification, and vibro-acoustic applications. Aktan et al. (2005) stated, 

“Whether output-only modal analysis alone may serve for reliable health monitoring should be 

questioned.” 

Overall, testing of structures using EMA has been very successful in the mechanical engineering 

field, and is known to provide more reliable modal parameters than OMA. However, the 

difficulty of imparting adequate controlled excitation to civil structures has limited the use of 

EMA, and OMA is currently the dominant method by which vibration testing is carried out in the 

civil engineering field.  

1.1.1.2 Discussion of Multiple Input Excitation 

In the testing of structures using EMA, the input excitation is usually classified as single-input, 

multiple-output (SIMO) or multiple-input, multiple-output (MIMO). With SIMO, only a single 

point on a structure is subject to dynamic input at any given time, whereas with MIMO, 

excitation is simultaneously applied to more than one location. MIMO testing has several 

advantages in comparison to SIMO testing. Vold et al. (1982) developed the first algorithm that 

simultaneously used all of the redundant information that multiple inputs generate, which 

allowed the identification of closely spaced modes and repeated roots. Allemang et al. (1983) 

performed the first reported real-world MIMO testing of a structure by using three shakers on an 

aircraft. They noted that the MIMO approach gives better energy distribution, enhances data 

consistency, and reduces testing time. Zimmerman and Hunt (1985) also noted that MIMO 
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provides less distortion of measurements by noise and nonlinearities, and that increased average 

excitation improves signal-to-noise ratio (as compared to SIMO). Avitabile (2011a) noted that a 

significant advantage of MIMO testing is that an array of shakers allows a lower power input 

signal which diminishes excitation of nonlinearities. 

The mechanical engineering industry routinely uses MIMO testing for these reasons; however, 

true MIMO testing of civil structures has rarely been performed. Only two examples of MIMO 

testing of civil structures in the field are found in the literature. First, Schwarz and Richardson 

(2001) analyzed data from testing of a highway bridge that was excited by two shakers. This 

bridge was also tested with OMA and with MRIT (which is a SIMO method), and the best modal 

parameters were extracted from the MIMO data. Second, Miskovic et al. (2009) used four APS 

shakers (expensive, laboratory grade devices) to test floor slabs in an office building. SIMO 

testing of civil structures with a single, large shaker or by MRIT is more prevalent than MIMO 

testing, but is not nearly as common as the use of OMA. Representative examples of bridge 

testing with single large shakers can be found in Shelley et al. (1995) and in Maas et al. (2012). 

A representative example of bridge testing with MRIT can be found in Catbas et al. (1998). 

Overall, in the performance of EMA, MIMO testing is known to be superior to SIMO testing. 

However, dynamic testing of civil structures is almost never performed using MIMO EMA 

because of the historic difficulty and expense of obtaining, installing, or using multiple shaker 

devices.  

1.1.2 Bridge Evaluation Overview 

The aged and deteriorated condition of transportation infrastructure is a well-publicized issue 

facing the United States. National data on vehicular bridges are often cited to substantiate this 
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statement, and current reports indicate that 17,340 bridges are structurally deficient out of a total 

of 292,085 state and federally owned bridges (Barbaccia 2011). When bridges owned by 

counties and townships are included, 59,719 are structurally deficient out of a total of 602,091 

bridges. The difficulty of maintaining the bridge population is compounded by limited funding 

for repair or replacement. The national concern regarding the budget deficit, the impasse in 

Congress, and the strong push in Washington to cut costs wherever possible also impacts the 

ability of transportation agencies to adequately care for their bridge structures. Therefore, it is of 

the utmost importance that the limited available funding be spent on bridges that have the 

greatest need for structural improvement. 

It is difficult for bridge owners to determine which of their bridges are the most in need of repair 

or replacement because the data they have available is the result of subjective biennial 

inspections. The data is qualitative for a variety of reasons. The greatest limitation is that the 

inspection process is almost always limited to visual identification and characterization of 

localized defects. Additionally, bridge inspections performed for any given agency are carried 

out by a variety of consultants and in-house personnel, and thus the assessment is colored by the 

experience and background of the individual performing the inspection. The data provided by 

these inspections is highly useful for certain purposes. For instance, the condition of the paint 

system, the deck joints, and the various safety features can be established with great certainty.  

However, the inspection does not indicate the actual load carrying capacity of the bridge or the 

remaining useful life. Despite the best efforts of owners to provide guidance to inspectors, it is 

impossible to consistently provide a qualitative value for the condition of a single type of 

structural component, no less to the condition of an entire bridge.   
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From an operational perspective, the value of a highway bridge simply lies in its ability to carry 

vehicular loads. Therefore, load ratings have been calculated for every bridge by mandate, and 

the ratings are supposed to be reviewed during each inspection cycle so that deterioration 

identified in the field can be incorporated into the rating calculations. However, the rating 

calculations are almost always based on analytical assumptions and significant simplifications. 

The outcome is an indication of the load capacity that is almost always conservative, but to an 

unknown extent. The real carrying capacity of the structure is not known. This results in a highly 

qualitative system wherein the operating agency has both inspection and rating data of which 

neither is especially useful for prioritizing bridge work across a broad inventory of structures.   

A quantitative determination of the real load carrying capacity is highly useful then, since it 

indicates if the subject bridge can do the job it is meant to do. Quantitative methods for 

establishing the load carrying capacity of bridges do exist but are seldom used in practice. These 

AASHTO accepted methods are load testing and dynamic testing (AASHTO 2008, Article 

8.1.2). Both types of testing are typically performed in a manner that captures the global 

behavior of the structure. Load testing is the application of stationary or moving loads to the 

bridge. A proof load test can be used to show that a bridge can at least carry a load as large as the 

proof load. More commonly, deflections or stresses are measured for smaller loads and the 

results are extrapolated to indicate the bridge capacity. Load testing is uncommon due to its cost 

and the operational issues that it causes (e.g. bridge closure during the testing).  

Dynamic testing is a quantitative, global method that can also be applied to bridges. It is the 

process of measuring the time-varying response of a structure relative to input dynamic 

excitation. Typically, the measured acceleration responses from different locations on the bridge 

are used to identify the modal characteristics. The identified modal characteristics usually 
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include the natural frequencies, mode shapes, and damping ratios. These characteristics are 

system properties of a structure and are a function of mass, stiffness, and damping. Changes in 

the structure due to damage, deterioration, and environmental effects are reflected by changes in 

the dynamic properties. Although not commonly used in industry, it is often easier and more 

economical to globally characterize a bridge with dynamic testing than it is to characterize it 

using load testing. 

It is also recognized that load rating is an exceptionally important application of bridge 

management. The load capacity ratings are the single item that inform the operating agency of 

the ability of each structure to carry legal truck loads, and the ratings have a broad and consistent 

meaning to engineers. The calculation of load ratings include estimating the capacity, dead load 

stress, and live load stress of structural elements, and these calculations all include uncertainty 

that is not easily eliminated. However, the estimation of live load stress is the single most 

difficult part of the rating process and relies the most heavily on simplifying analytical 

assumptions. Therefore, reduction of the uncertainty in this portion of the bridge evaluation by 

use of measured physical responses is desirable. 

1.2 FOCUS OF THESIS  

In response to the various issues discussed, it is recognized that an inexpensive, easily 

deployable, spatially distributed excitation system that can provide measurable force input to 

civil structures is needed. Such a system could help spur advances in SHM and damage detection 

by providing high quality modal parameters and obviating the need for the unvalidated 

assumptions inherent to OMA. 
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Dr. Kirk Grimmelsman instigated the idea that an array of low cost linear actuators can be used 

to provide the measurable input that most easily enables dynamic analysis. The novel idea is to 

greatly reduce costs by using a consumer product that has real price competition as the dynamic 

excitation device. The product type that is proposed can be described as a ‘bass shaker’ or a 

‘tactile transducer’, and is a device used in home theater applications to shake the floor or 

furniture during deep rumble noises in movies and games. The tactile feel of the shaking 

enhances the experience by more deeply immersing the viewer’s senses in the media.  

The costs of such devices generally range from $50 to $1,000. One brand of transducer that is 

considered in this study costs about $250 and provides an estimated 30 pounds of peak force. It 

is estimated that the cost per unit including a power supply, amplifier, and shaker is on the order 

of $1,000. A review of the literature shows that the use of such an approach for controlled 

dynamic testing of civil infrastructure has never been attempted. Many researchers have used 

purpose-built, commercial shakers as excitation devices for EMA testing of laboratory and full-

scale structures. A commonly used shaker from APS Dynamics costs on the order of $13,000 for 

a device that can impart 30 pounds of dynamic force. A similar shaker that can provide 100 

pounds of dynamic force costs about $18,000. Thus, many tactile transducers could be deployed 

on a structure for less than the cost of a single, purpose-built device. 

The contribution of the research presented herein is summarized as: 

• Develop and implement a testing protocol for evaluating shakers and amplifiers for use in 

EMA of civil structures. 

• Develop a framework for characterizing shaker and amplifier uniformity across a 

population of devices. 
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• Determine an optimized excitation technique for MIMO EMA of civil structures. 

• Validate the ability of the tactile transducer based excitation system for MIMO EMA in a 

laboratory environment via comparison to results from accepted means and methods. 

• Perform the first real-world MIMO EMA bridge testing utilizing more than two shakers 

simultaneously. 

• Perform the first real-world MIMO EMA bridge testing using determinate excitation 

signals. 

• Validate the ability of the new excitation system for MIMO EMA on a real-world bridge 

via comparison to results from state-of-the-art methods. 

• Evaluate the deterministic multisine signal for use in EMA of civil structures. 

• Develop a new method to more directly use modal parameters for bridge capacity 

evaluation. 

Characterization of the system components is necessary in order to select the most appropriate 

devices from which to construct the full excitation system. Also, the operational characteristics 

of these devices must be established so that best practices for their use can be determined. The 

characterization process is carried out in the laboratory via the design and implementation of a 

large number of tests. 

After the system components are well understood, research and testing is performed to determine 

the optimal manner in which the system can be used for MIMO EMA. Excitation signal types, 

output force levels, and spatial arrangement of inputs are some issues that are considered. Data 

distillation and modal parameter extraction algorithms appropriate to MIMO EMA are also 
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evaluated for use. Particular data processing methods are selected, coded in Matlab, and tested 

with analytically generated data. 

Laboratory testing of a large-scale model structure is then undertaken to validate that the novel 

excitation system does allow the capture of accurate modal parameters via MIMO EMA. 

Traditional dynamic testing and static testing of the model structure is also performed to provide 

a baseline for evaluation of the success of the new methods. 

Field testing of an in-service highway bridge using MIMO EMA is also performed using a 

maximum of eight tactile transducers operating simultaneously. This testing is the first time that 

MIMO EMA using more than two shakers is ever successfully executed. Results from the new 

methodology are compared against results using OMA and MRIT excitation paradigms.  

Finally, a simple methodology is developed by which measured modal flexibility can be used to 

improve the bridge load rating process. As noted, many researchers are currently working to 

detect damage and to continuously monitor for structural changes; however, few are attempting 

to provide a more straightforward and rational estimate of load capacity. Bridge owners 

understand and utilize ratings, and thus are more likely to adopt a testing process that provides 

them with load ratings. 

Overall, the goal of this thesis is to evaluate the suitability of a novel excitation system for 

MIMO EMA dynamic characterization of bridges. Since the body of knowledge related to 

MIMO EMA of civil structures is very limited, this approach and the optimal design 

considerations for application to bridges must first be systematically evaluated and validated. An 

additional goal is to develop a simple method by which the identified modal parameters can be 

used to improve the bridge load rating process.  
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1.3 ORGANIZATION OF THE TEXT 

The chapters of this manuscript are organized in chronological order of the system 

characterization and validation of the novel excitation system. This is followed by the application 

of the modal parameters to the calculation of bridge load ratings. A chapter-by-chapter overview 

of the text is provided as: 

Chapter 1 

Frames the subject matter of the work, highlights the original contributions, and clarifies the 

organization of the text. 

Chapter 2 

Presents a testing and evaluation program that was developed to systematically evaluate and 

characterize the components of the novel excitation system, including various alternate 

components.  

Chapter 3 

Presents in-depth characterization of the tactile transducer and power amplifier selected for use 

in the system. These characterization studies investigated the available force output across 

various frequencies, the ability to reproduce signals used in modal testing, the level of distortion 

of signals, and the level of uniformity across a population of the devices. 

Chapter 4 

Provides background and selection criteria for excitation techniques. Various signal types, force 

levels, and spatial distribution of input are discussed. Best practices to use with the array of 
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tactile transducers are enumerated. This provides the basis for the manner in which testing of a 

laboratory structure and then a real-world bridge proceeds. 

Chapter 5 

Discusses various data collection, reduction, and processing methods. These methods can 

significantly affect the quality of the modal parameters to be extracted, and justification for the 

processes selected are provided. Also, the detailed equations used in the selected processing 

algorithms are provided, and assumptions inherent to these algorithms are discussed. 

Chapter 6 

Laboratory testing of a model structure is undertaken and the results are presented. Several 

baseline tests are performed using standard methods. Results using tactile transducer excitation 

are presented and compared to the baseline modal parameters. Lessons learned in this testing are 

applied to the subsequent field testing. 

Chapter 7 

Field testing of an in-service highway bridge is undertaken using an array of the tactile 

transducer excitation devices and the results are presented. Comparison is made to results from 

prior testing by other University of Arkansas researchers. The results demonstrate that the tactile 

transducer based excitation system produces superior results to other available approaches. 

Chapter 8 

Bridge load rating is performed for the in-service bridge tested in the field. Baseline load ratings 

are developed using standard industry practice. A method by which the measured modal 
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flexibility matrix can be used to improve the load rating process is developed, and ratings based 

on this process are calculated. The load ratings from the new process are compared to those 

based on standard practices. 

Chapter 9 

Overall conclusions are presented for the entirety of the work. 
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2 CHAPTER TWO 

CHARACTERIZATION AND SELECTION OF TACTILE TRANSDUCER AND 
POWER AMPLIFIER 

2.1 INTRODUCTION 

This chapter presents a laboratory testing and evaluation program that is undertaken in order to 

establish the operating and performance characteristics of several commercially available tactile 

transducer (TT) shaking devices and subwoofer amplifiers to drive the TTs. The objective of the 

evaluation program is to validate the selection of a transducer-amplifier pair for use in MIMO 

EMA testing of short to medium-span bridges. To be of use, the devices must provide acceptable 

excitation force amplitudes in the frequency range of interest, and reliably reproduce the 

deterministic and stochastic signals that are typical for modal testing of bridges. Therefore, the 

TTs are tested to reveal the force that they can develop over a range of frequencies, and the 

amplifiers are tested to determine their gain. Tests are also performed on both the amplifiers and 

the TTs to determine how much distortion they impart to deterministic and stochastic signal 

types.  

Since researchers and practitioners in the field of vibration testing typically use purpose-built 

shaker devices, the operating parameters of the devices are either supplied by the manufacturer, 

or the devices are custom-built to meet the required parameters. The TTs and amplifiers 

evaluated herein are not designed to meet the high expectations of the vibration testing 

community, and their operating characteristics and responses to various excitation signals are not 

documented. Since shakers of this type have never before been adapted for use in vibration 

testing, the literature does not provide any framework for a characterization program. Therefore, 
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the tests devised and undertaken herein contribute to the body of knowledge by providing 

methods that can be used evaluate other excitation devices in the future.    

2.2 SHAKER TESTING 

2.2.1 Devices Evaluated 

The TTs surveyed for this study are small-scale, electrodynamic shaker devices that are intended 

to make theater and gaming experiences more immersive.  Low frequency sounds from movies 

or video games are sent to the TTs and they create a rumbling sensation. This is accomplished by 

attaching the transducers to the underside of floors or furniture so that the low frequency rumble 

can be felt by the audience. The devices are widely and commercially available for use in home 

theater applications, 4D amusement park rides, and traditional theaters. There are a number of 

manufacturers that market these devices, and as a result, their cost is competitive. The market 

includes a variety of product sizes, power ratings, packaging options, and price ranges, but a 

point of commonality is that practically all TTs use a voice coil as the principal motive system. 

In the parlance of vibration testing, these shakers are of the electrodynamic type. 

Three different TTs were evaluated. Selection of the devices evaluated in this study was based on 

price and manufacturer specifications of power handling. The specific devices evaluated in this 

study are referred to as Shaker 1, 2, and 3 and they are shown in Figure 2.1 (trade names are 

intentionally withheld at this time). It should be noted that the largest of the devices tested 

measures less than 6 inches in any dimension and weighs only 10 pounds. The devices’ small 

size would allow many of them to be easily deployed by hand on structures such as bridges and 

buildings. 
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Figure 2.1. Shakers evaluated for use in MIMO EMA. (Photo by EVF, dynamics lab, 

9/14/12)  

Shaker 1 and Shaker 2 are similar in style and represent the most common type of TT. They 

consist of a rugged metal housing with integral cooling fins and all moving parts are located 

within the enclosure. Unlike a traditional shaker used for laboratory modal analysis, there is no 

armature and no method to directly monitor the position, velocity, or acceleration of the moving 

mass. These two shakers are produced by different manufacturers and have significantly 

different specified power handling capabilities per manufacturer literature. Shaker 1 can be 

operated continuously at 400 Watts RMS, whereas Shaker 2 can only handle 50 Watts. As a 

result, Shaker 2 is about a quarter the cost of Shaker 1. 

Shaker 3 is of a different style and is more similar to a typical laboratory shaker. This device 

does not have a moving mass contained within a rugged packaging, and instead features a load 

table that is intended to support the leg of a chair or couch to impart the dynamic excitation. The 

load table is equivalent to an armature and this enables measurement of the shaker movements. 

Shaker 2 

APS 
Dynamics 

113HF 

Shaker 3 Shaker 1 



 19 

Additionally, the load table allows the addition of mass which provides the ability to modify the 

force output and natural frequency of the shaker. This device can handle 30 Watts RMS. 

An APS Dynamics 113-HF shaker paired with an APS 145 amplifier is also subject to the same 

shaker tests. This electrodynamic shaker system is representative of the types of high-quality and 

expensive laboratory shakers used in vibration and modal testing. Reaction masses of 20 pounds 

are attached to the shaker for all tests, and the APS amplifier is operated in voltage mode for all 

tests. The APS shaker results are presented as a point of comparison for the TTs. Table 2.1 

summarizes various nominal specifications of the devices tested. 

Name Price Rated RMS 
Power 

Nominal 
Impedance Weight 

Shaker 1 $200 400 W 4 Ohm 10 lb 
Shaker 2 $40 50 W 4 Ohm 3 lb 
Shaker 3 $500 30 W 6 Ohm 4 lb 

APS 113HF $12,940 w/amp 600 W 2 Ohm 103 lb 

Table 2.1. General information for tested shakers. 

2.2.2 Testing Criteria 

TTs are essentially audio components and the manufacturers provide specifications that are 

generally aligned with traditional subwoofer characteristics. These specifications are generally 

not the same as those provided by the makers of shakers for vibration and modal testing. As 

such, a controlled laboratory testing program must be devised and performed to establish the 

operational and performance characteristics of the TTs in a systematic manner. The first step in 

this process is to establish what characteristics will be most important for MIMO EMA testing of 

bridges. These important characteristics can then be used as selection criteria for choosing the 

best device for a MIMO testing system. 
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The most important characteristic of the shakers for bridge testing is the force output in the 

frequency range of interest. Bridges and other civil structures are massive, and a significant 

amount of input force is needed to adequately excite such structures beyond the ambient input 

level (noise floor). These large structures also typically have low frequency modes which are 

best excited by low frequency input. Thus, the maximum force that can be produced at various 

frequencies, and especially at low frequencies, is tested and evaluated. 

Another important characteristic is the ability of the shaker to accurately reproduce input signals 

that are typical to modal testing. These signals often include swept-sine (determinate) and burst-

random (stochastic). For testing the reproduction of sinusoidal signals, the periodogram is used 

to measure the energy content at both the input frequency and at other frequencies, and the signal 

to noise ratio (SNR) is calculated for the measured outputs from the devices. To evaluate the 

reproduction of a broadband random input signal, the energy content at all frequencies within the 

range of interest is compared. 

2.2.3 Test Methods, Results, and Discussion 

The subsections below describe the specific test methods that are employed and discuss the 

outcome of each test for all shakers. The results are considered in relation to the potential use of 

these devices in a MIMO array for dynamic testing of civil structures. The tests/criteria 

subsections are: 

1. Shaker Force Output 

2. Shaker Sinusoid Reproduction 

3. Shaker Burst-Random Reproduction 
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For all tests, the signals are generated by an Agilent 33220A Arbitrary Waveform Generator and 

data is acquired by a National Instruments PXI 4472B DAQ card. All data processing is 

performed in MATLAB. 

2.2.3.1 Shaker Force Output 

As stated previously, the most important characteristic for the shakers is their ability to provide 

adequate excitation force over the frequency band of interest, which is taken as 0 to 100 Hz. This 

test is performed by attaching each shaker to an aluminum plate that is supported on three 

dynamic force transducers in a tripod arrangement (Figure 2.2). Sinusoidal signals are sent to 

Amp 1 and from there to the shaker. The power draw of the shaker is also monitored. With a 

sinusoidal signal input at a discrete frequency, the amplitude of the input is increased until the 

shaker “bottoms out” due to its stroke being exceeded or until the maximum recommended RMS 

power is reached, whichever comes first. The output from the three force transducers is then 

summed and the total force is recorded for four seconds. The mean RMS value of this measured 

force is taken as the maximum RMS force available at the frequency under consideration. 

 

ோெௌܨ ൌ ඩ
1
ܰ

෍ሾܨሺݐሻଶሿ
ே

௜ୀଵ

 Equation 2.1.

Where: 

ோெௌܨ ൌ the root-mean-square force (lbf). 

ܰ ൌ the number of discrete measurements. 

ሻݐሺܨ ൌ the discrete measured force (lbf). 
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(a)    (b)    (c) 

Figure 2.2. Force measurement apparatus. (a) - aluminum plate with tripod of force 
transducers. (b) – plate orientation for testing. (c) – typical testing setup. (Photo by 

EVF, dynamics lab, 9/14/12) 

Figure 2.3 illustrates the maximum RMS force that each shaker produces over the frequency 

range. The APS shaker is capable of producing 50 lbf at a frequency of 4 Hz in voltage mode. 

The force gradually falls off to a low of about 30 lbf at 50 Hz before peaking at 100 lbf (off 

graph) at the natural frequency of the shaker. The shape of the APS force response demonstrates 

the highly nonlinear nature of force output in relation to frequency. The factors that limit the 

force also change depending on frequency. The force is limited by the shaker stroke length up to 

about 3 Hz, and this particular shaker has a long 6.25-inch stroke. Above 3 Hz the force is 

limited by the amplifier power. It is clear that the APS shaker can produce significantly more 

force than any of the TTs that were evaluated. 

 
Figure 2.3. RMS force output for subject shakers in the frequency range of interest. 
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Of the three different TTs evaluated, Shaker 1 provides the highest level of force at low 

frequencies. The force rises nearly linearly from zero at 1 Hz to about 20 lbf RMS at 29 Hz and 

then gradually decreases with increasing frequency. The TTs all have a short stroke and this 

limits the low frequency force they can produce without bottoming out (Tustin 1991). Shaker 1 is 

limited by its stroke up to 25 Hz, and above 25 Hz the force is limited by the power of the 

amplifier. Compared to the other TTs, Shaker 1 has a much broader peak in the vicinity of its 

natural frequency and can provide much greater force across the range of 30 to 80 Hz. 

Shaker 2 produces the least force of all of the shakers across the entire frequency range. The 

force is stroke-limited below 5 Hz and is limited by the 50 Watt shaker power capacity above 

this. This shaker provides very little force at low frequencies with less than 2 lbf RMS at 20 Hz. 

The force has a strong peak at the 27 Hz shaker natural frequency and then quickly drops down 

to about 3 lbf RMS at higher frequencies.  

Shaker 3 differs in its construction from the other two shakers in that it has a load plate and is 

meant to carry additional mass. This allows a broad range of experiments to understand how the 

force output varies with increments of additional mass and how the reproduction quality varies 

simultaneously. The results shown are with an added mass of 2.26 pounds of aluminum disks 

(the powerful fixed magnets in the shaker preclude the use of ferrous metals for added mass). 

The shaker force is generally stroke limited at frequencies near and below the peak force (at 20 

Hz), and is limited by the shaker power capacity at higher frequencies. The added mass allows 

high forces to be generated relative to power consumption, and the magnitude of the mass allows 

the peak to be adjusted to particular frequencies. However, the force falloff is significant away 

from the sharp peak at the natural frequency of the shaker/mass system.  
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Overall, the short stroke lengths of the TTs preclude them from producing high forces at low 

frequencies without bottoming out. Of the three transducers tested, Shaker 1 provides the largest 

force at low frequencies and provides the most consistent force response across the frequency 

band of interest. Shaker 3 provides the unique ability to have its peak force output tuned to a 

particular frequency by adding mass, and provides a high level of force given its low power 

input. Shaker 2 and Shaker 3 both provide a very consistent level of force at higher frequencies.  

Several observations are made from these tests. First, two ‘identical’ shakers do not produce 

exactly the same force trace, and the results shown are based on testing of one individual shaker. 

The variance between ‘identical’ shakers is far less than the variance between the different 

shaker types, and this can be seen in the subsequent chapter in which multiple Shaker 1 samples 

are compared. Second, power consumption by the shakers was not measured directly. The RMS 

voltage across each shaker was measured and the manufacturer’s stated nominal impedance was 

used to calculate a presumed power. This is inexact since the actual impedance across a coil 

varies depending on frequency, and the impedance can be significantly higher than the nominal 

value resulting in power consumption less than presumed and below the limit (Lang 1997). 

However, an actual power draw less than the manufacturer’s stated limit is not considered to be a 

significant issue in this testing since the stated limits are fairly arbitrary and are inconsistent 

across the devices.  

2.2.3.2 Shaker Sinusoid Reproduction 

A signal to noise ratio (SNR) measurement is now used to characterize how well each shaker can 

convert a voltage input to a force output. A sinusoidal signal at a particular frequency is 

generated, amplified by Amp 1, and then sent to the subject shaker. A sinusoid at a single 

frequency line is generated for 6 seconds and then the next higher frequency is generated. The 
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signal input to the shaker and the force output are continuously recorded during this process. In 

data processing, the first 2 seconds of data at each frequency line are ignored so that the minor 

transient that occurs at frequency changes is excluded from the results, and the remaining four 

seconds of data are transformed to the frequency domain. The mean RMS value of the response 

away from the input frequency is then found and divided into the response at the input frequency 

to determine SNR.  

 
ܴܵܰ ൌ 10 log ൤ ௦ܲ௜௚

௡ܲ௢௜௦௘
൨ Equation 2.2.

 

 
௡ܲ௢௜௦௘ ൌ ௧ܲ௢௧௔௟ െ ௦ܲ௜௚

ܰ
 Equation 2.3.

Where: 

௦ܲ௜௚ ൌ the power at the discrete input frequency ( ݈ܾ݂ଶ ⁄ݖܪ  ).  

௡ܲ௢௜௦௘ ൌ the average power at all other frequencies ( ݈ܾ݂ଶ ⁄ݖܪ  ).   

௧ܲ௢௧௔௟ ൌ the power at all frequencies ( ݈ܾ݂ଶ ⁄ݖܪ  ). 

ܰ ൌ the number of discrete frequency lines in the periodogram.  

 

The power is found by taking the one-sided periodogram of the vector of force measurements. 

The power at the input frequency is taken as the periodogram value at that single frequency line, 

and the power of the noise is taken as the average value of all other frequency lines. For these 

experiments, the bandwidth of the periodogram was from 0 Hz to 250 Hz.  

As a baseline, the APS shaker provides very good reproduction at low frequencies with an SNR 

of 70 dB at 3 Hz (Figure 2.4). As frequencies increase, the measured noise increases but the 

signal is still far more powerful than the noise. It is recognized that the degradation at higher 
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frequencies is partly due to a constant data acquisition rate of 1000 Hz, which causes increased 

aliasing in the Fourier transform as signal frequencies increase.  

 
Figure 2.4. SNR for subject shakers in the frequency range of interest. 

As expected, all of the TTs perform poorly at lower frequencies due to their limited strokes. To 

illustrate this point, Figure 2.5 shows the time data force recording for Shaker 1 operating at 5 

Hz, and Figure 2.6 shows the time data for 20 Hz. It is visually obvious that low-frequency 

reproduction is not as good as that at higher frequencies. Of all of the TTs, Shaker 1 performs the 

best with a SNR of about 30 dB at 1 Hz. The signal reproduction then improves up to the natural 

frequency of Shaker 1 and then gradually declines in general except for a segment of poor 

reproduction in the vicinity of 80 Hz.  

0 20 40 60 80 100
0

20

40

60

Frequency (Hz)

Si
gn

al
 to

 N
oi

se
 R

at
io

 (d
B)

 

 

APS 113HF
Shaker 1
Shaker 2
Shaker 3



 27 

 
Figure 2.5. Shaker 1 force output with 5 Hz sinusoidal input. Note high noise content. 

 
Figure 2.6. Shaker 1 force output with 20 Hz sinusoidal input. Note better performance. 

Shaker 2 provides low SNR below 3 Hz but then steadily improves to the point that this shaker 

provides the cleanest response above about 35 Hz. Shaker 3 has very poor SNR up to about 10 

Hz, and is generally the worst at reproducing lower frequency signals up through about 30 Hz. 

This shaker then has a fairly constant SNR which is in the same range as the APS shaker and 

Shaker 1. Shaker 3 has the shortest stroke of all of the devices tested, and this significantly 

impacts its ability to reproduce low frequencies while producing any appreciable force.  

Overall, the SNR values are negatively impacted at low frequencies due to the stroke limit of the 

TTs. Shaker 1 has the longest stroke and is the least limited. At higher frequencies, all of the 
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transducers do a good job of producing a force signal that is predominantly sinusoidal with little 

noise. A SNR value of 40 dB corresponds to an RMS value of the signal that is 10,000 times 

greater than the RMS value of the noise, and all of the transducers exceed this threshold at higher 

frequencies except Shaker 1 at 80 Hz.  

2.2.3.3 Shaker Burst-Random Reproduction 

The test method for burst-random shaker testing begins by generating Gaussian white noise in 

MATLAB. This signal is then modified with a 5th order low-pass Butterworth filter using a 

cutoff frequency of 100 Hz. The resulting signal is 128 seconds long with 500 points per second. 

This signal is amplified by Amp 2 and sent to the shaker, and the force output is recorded as 

before. The measured time data for the signal from the amplifier and for the force output are then 

transformed to the frequency domain for analysis. The high resolution (0.008 Hz) causes 

excessive visual noise in the graphical output, and this is diminished by reducing the resolution 

to 1 Hz by averaging.  

The outcome of this testing is presented in Figure 2.7 with the ‘Input’ curve representing the 

power content of the signal that is output by the amplifier. The other four curves are the power 

content of the force signal measured from each shaker. The results generally show that the TTs 

reproduce random shaking to the same levels that they reproduce sinusoidal signals since the 

shape of the response over the frequency range is essentially the same as in Figure 2.3. 
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Figure 2.7. Reproduction of burst-random signal by subject shakers. 

At low frequencies, stroke length is still the limiting factor. The APS shaker has very good low 

frequency response due to its long stroke, and all of the TTs have difficulty providing force at 

low frequencies due to their relatively short strokes. Shaker 1 again does the best with essentially 

full response available at 10 Hz. Shaker 2 performs the most poorly with a power output that is 

less than 1/10th of what it should be all the way up to 20 Hz with full response not available until 

30 Hz. Shaker 3 only performed marginally better than Shaker 2 but still far worse than Shaker 

1. 

The APS shaker and all of the TTs again produce maximum power at their own natural 

frequencies. As the input frequency increases above the natural frequency of the shaker, the 

power falls off with a shape that is consistent with the force output graphs. The conclusion can 

thus be drawn that these devices respond to burst-random signals in a manner that is predictable 

based on the response of the shaker to pure sinusoidal inputs. This is the expected outcome. 
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2.3 AMPLIFIER TESTING 

2.3.1 Devices Evaluated 

An intrinsic and cost-plus component of any shaker system is the power amplifier. Three 

inexpensive commercial audio amplifiers are evaluated in conjunction with the shakers for this 

testing program, and they are referred to as Amp 1, 2, and 3 (Figure 2.8 and Table 2.2). Amp 1 is 

a single channel device with an output power of 500 Watts RMS, which pairs well with Shaker 

1. Amp 2 is a similarly powerful device but has two channels and a different manufacturer. Amp 

3 is much less expensive and less powerful at 70 Watts and pairs with Shaker 2 or Shaker 3. 

Most amplifiers used for vibration testing can be set up to provide either a voltage output 

(voltage mode) or a current output (current mode) in proportion to the input signal. The 

subsequent velocity of the moving mass is proportional to voltage, and the acceleration (and 

force) is proportional to the current. Audio amplifiers do not have the capability to operate in 

current mode and thus voltage mode is used throughout this study.  

 
Figure 2.8. Amplifiers evaluated. (Photo by EVF, dynamics lab, 9/14/12) 

 

 

Amp 1 Amp 2 Amp 3 
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Name Price Rated RMS 
Power Channels Weight 

Amp 1 $150 500 W x 1 6.9 lb 
Amp 2 $120 480 W x 2 8.4 lb 
Amp 3 $50 70 W x 1 5.6 lb 

Table 2.2. General information for tested amplifiers. 

2.3.2 Testing Criteria 

The performance of the amplifier impacts the shaker performance and thus amplifier testing is 

performed to establish the characteristics of these devices as well. These tests include gain across 

the frequency range of interest, reproduction of determinate signals, and reproduction of 

stochastic signals. These criteria essentially mirror the criteria for shaker selection. 

2.3.3 Test Methods, Results, and Discussion 

The subsections below describe the specific test methods that are employed and discuss the 

outcome of each test for all amplifiers. The tests/criteria subsections are: 

• Amplifier Gain 

• Amplifier Sinusoid Reproduction 

• Amplifier Burst-Random Reproduction 

For all tests, the signals are generated by an Agilent 33220A Arbitrary Waveform Generator and 

data is acquired by a National Instruments PXI 4472B DAQ card. All data processing is 

performed in MATLAB. 

2.3.3.1 Amplifier Gain 

Gain is a measure of how many times higher an output signal is than the input signal; however, 

gain is typically not consistent across the frequency spectrum for several reasons. First, the entire 
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spectrum of frequencies cannot be amplified by a single amplifier circuit, and thus the incoming 

signal is split into frequency windows which are separately amplified, and these signal segments 

are then added back together at the output. Thus the amplification within each frequency window 

can be different. Also, in the design of audio components, engineers often take advantage of the 

fact that humans typically cannot hear frequencies below about 20 Hz or above about 20 kHz. 

The audio amplifier may then be more economically designed to encompass the frequencies that 

humans hear best. For these reasons, it was important to test the gain of the various amplifiers to 

ensure they do not cut off low frequencies that are essential for dynamic testing of many civil 

structures.  

Amplifier gain is tested at discrete frequencies while both the amplifier input and output voltage 

are monitored. All three amplifiers have a gain dial and this is set to maximum. Six seconds of 

data are captured at each frequency and the first two seconds are discarded as before. The RMS 

level of the output is then divided by the RMS level of the input to calculate gain at each tested 

frequency line. During all amplifier testing, a load of four shakers is powered by Amp 1 and 

Amp 2, and a load of a single shaker is attached to the less powerful Amp 3. For Amp 2, only a 

single channel is used. The results of gain testing are shown in Figure 2.9. 
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Figure 2.9. Amplifier gain. 

Amp 1 does not provide much gain at low frequencies, especially below 5 Hz. The gain at 2 Hz 

is only about 8% of the maximum gain, and the gain at 4 Hz is about a third of the maximum. 

The gain rises to 71% of the maximum by 10 Hz and essentially reaches a stable plateau at 20 Hz 

and extending to the maximum frequency of interest. Amp 2 provides superior response at low 

frequencies with a gain at 2 Hz that is 61 % of the maximum and a gain at 4 Hz that is 87% of 

the maximum. The response is then essentially flat beyond 10 Hz. Amp 3 has very poor response 

at low frequencies, essentially low-pass filtering the signal below 10 Hz. At 20 Hz, the gain is 

still only 39% of the maximum gain and a plateau is finally reached at 30 Hz.     

Both Amp1 and Amp 2 provide gain that is acceptable for use with the tested shakers. The low 

gain at low frequencies does not limit the force production of the shakers since they are stroke 

limited in this range. The flat, full response of both amps beyond 20 Hz then aligns well with the 

frequency range where the shakers are not stroke limited and can use their full power potential. 

The very poor response of Amp 3 below 10 Hz when considered in conjunction with its low 

maximum power output suggests that this amplifier is not well suited to bridge testing. However, 
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at its low cost it could still have potential use in testing lighter structures with higher 

fundamental natural frequencies. 

2.3.3.2 Amplifier Sinusoid Reproduction 

Next, an SNR measurement for the amplifiers is undertaken in exactly the same manner as that 

used for characterization of the shakers, except the signal input and voltage output from the 

amplifier are recorded and analyzed. The findings are shown in Figure 2.10 with the SNR of the 

input signal also shown for reference.   

 
Figure 2.10. Amplifier signal to noise ratio. 

Both Amp 1 and Amp 2 reproduce the input signals with high fidelity and introduce very little 

noise. Amp 1 is not as good at the lowest frequencies which relates to its reduced gain in this 

range. Amp 3 is far below the other two with significant noise introduced. It is noted that the 

gradual downward trend in SNR for Amps 1 and 2 is caused by a gradually decreased resolution 

of the input signal at higher frequencies. The SNR of the input signal is also shown on the figure 

to demonstrate that the decrease is caused by aliasing which is measured as noise. 
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2.3.3.3 Amplifier Burst-Random Reproduction  

This test is also performed in exactly the same manner as the shaker testing, again with a filtered 

burst-random signal used as the input to the amplifiers. Both the input and output voltages are 

measured and the data is transformed to the frequency domain. Figure 2.11 shows how well each 

amplifier reproduced the frequency content of the input signal, and is normalized to a maximum 

value of 1.0 for each signal to generally remove the effect of gain.  

 
Figure 2.11. Reproduction of burst-random signal by subject amplifiers. 

Amp 2 is again the best of the lot and provides output that is nearly identical to the input except 

below about 5 Hz. Amp 1 is as good as Amp 2 above 20 Hz, but does not reproduce the lowest 

frequencies as well. Amp 3 does not reproduce the random signal well, significantly reducing the 

power up to about 50 Hz, and essentially low-pass filtering the signal below 15 Hz.   

2.4 QUALITATIVE CHARACTERISTICS OF SHAKERS AND AMPLIFIERS 

In addition to the laboratory testing results, cost, perceived durability, and ease of use are also 

important characteristics to consider in the performance evaluation of the system components. 

The cost of the components is a major consideration since one of the main objectives in the 

development of this system is that there should be a low cost per channel, enabling the use of 
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many shakers in MIMO testing. Durability is also a serious consideration since the expectation is 

that these devices will frequently be deployed in the field where items are routinely dropped and 

where dirt and moisture cannot be avoided. Ease of use is important as it applies to quick and 

simple setup. Field deployment of the excitation system demands rapid setup and reliable 

connection characteristics. 

The performance of Shaker 1 was the best from the laboratory studies; however, it costs nearly 

five times more than Shaker 2 while only providing about twice the force. Shaker 1 also requires 

more power input per pound of force output, necessitating a larger amp and increased power 

generation capacity. From a consideration of durability, Shaker 1 has a rugged housing, but air 

vents near the base could allow moisture and detritus to enter the unit. This shaker is very easy to 

connect with integral posts that accept either a bare wire or a banana plug. Overall, Shaker 1 is 

somewhat costly, but seems reasonably rugged and is easy to use. 

Shaker 2 is significantly less expensive than any other device and can be paired with Amp 3 

since this shaker has low power requirements. The cost of this combo per channel would be 

about $90. Additionally, Shaker 2 has a rugged housing with no air vents or other penetrations 

making it the most likely to have a high resistance to the rigors of repeated field use. Finally, 

Shaker 2 has posts that accept bare wire connections so setup is as fast as Shaker 1. Overall, 

Shaker 2 provides the best cost, seems the most rugged, and is easy to use. 

Shaker 3 does not compare well relative to the other TTs. The cost of this shaker is more than 

twelve times greater than Shaker 2, it does not have a housing to protect it, and it has a delicate 

load plate system that can easily be damaged by the application of lateral loads (per the 

manufacturer). It appears as if it is intended for a laboratory environment. Also, the need to add 
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mass plates requires more items to be taken to the field and makes installation more complicated. 

This shaker also has an integral lead wire that requires addition of a connector for speedy field 

setup. Overall, Shaker 3 is expensive and is not a good choice for field use. 

Amp 1 and Amp 2 are both very similar units in that they have a comparable size, similar 

controls and connections, and comparable power ratings (per channel). However, Amp 2 

provides a much better cost in that a single unit can drive two shakers with separate signals 

whereas Amp 1 can only handle one excitation signal. This results in a cost per input location of 

$60 for Amp 2 compared to $150 for Amp 1. Amp 3 is of a different form than the other two and 

cannot compete with their power output. However, paired with Shaker 2, Amp 3 has an 

opportunity to provide a very low cost array of shakers for excitation of structures with 

fundamental frequencies greater than about 15 Hz.   

2.5 CONCLUSIONS 

The laboratory tests and other device attributes discussed herein were intended to characterize 

various alternative components for the TT-based excitation system and evaluate the suitability 

for field testing in a quantitative manner. In the final analysis, low frequency response is the 

most important segment of the spectrum for the intended bridge testing. As such, Shaker 1 and 

Amp 2 are the best choice since they have the best signal reproduction of the tested devices at 

low frequencies. Shaker 1 not only provides the highest forces at low frequencies, it also has the 

flattest force peak around its own natural frequency, and imparts low noise to determinate and 

stochastic signals. Both Amp1 and Amp 2 are powerful enough to drive the selected shaker, but 

Amp 2 has better gain at low frequencies, imparts less noise at low frequencies, and is far less 

expensive. Price, perceived durability, and ease of use are also considered and also support 
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selection of Shaker 1 and Amp 2. These devices are evaluated in subsequent chapters for MIMO 

EMA characterization of a large-scale laboratory model and a full-scale highway bridge. 
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3 CHAPTER THREE 

IN-DEPTH CHARACTERIZATION OF SHAKER AND AMPLIFIER 

3.1 INTRODUCTION 

One major objective of this thesis is to optimize the multi-shaker excitation system for MIMO 

EMA of short to medium-span bridges. The previous chapter quantified the operating and 

performance characteristics of proposed system components. In this chapter, additional testing of 

the best shaker and amplifier combination is undertaken. The primary goal of the testing program 

presented herein is to determine if a dedicated force transducer is required at each input location 

for MIMO EMA. Ideally, the force output could be adequately characterized through controlled 

testing in the lab; however, this hypothesis must be systematically evaluated to determine if force 

transducers can be neglected. A secondary goal is to determine if the selected shakers and 

amplifiers are uniform enough across their population that they can be used interchangeably. 

To maintain a low system cost, it is desirable that force transducers not be used at each shaker 

location. The use of force transducers not only requires the purchase of at least one transducer 

per shaker, but each transducer also requires a data acquisition channel. Additionally, field setup 

of the system is more complex if transducers are needed since an additional cable must be run for 

each shaker location. However, the force input at each shaker location must be known in order to 

calculate modal scaling and thus find modal flexibility. It is theorized that if the shakers and 

amplifiers operate in a highly consistent manner, then the force output for a given input signal 

can be measured in the laboratory and then assumed to be the same in field testing operations. 

The literature on using shakers of various types in structural testing is diverse; however, the 

literature on testing and documenting the operation of shakers is scarce. Lang (1997) provides 
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significant discussion on the complexities of the interactions between the changing magnetic 

field and the motions of the armature in electrodynamic shakers, including equations for the 

change in impedance depending on frequency and load. Lang also provides test methods for 

determining the natural frequency, damping, and armature mass for shakers with accessible 

armatures. Rao (1987) builds on the efforts of several researchers in an effort to explain the 

phenomenon of shaker force drop off when the natural frequency of a structure is reached. He 

provides some recommendations on minimizing the issue during testing. Varoto and Oliveira 

(2002) provide further theoretical developments for the interactions that occur between a shaker 

and the object being excited. They note that the force drop off of the shaker is exacerbated by the 

use of voltage mode, which is the mode that all audio amplifiers use. Tustin (1991) discusses 

how shakers are limited by their available stroke and provides equations for estimating how 

much stroke is needed for a desired frequency. None of these authors provide guidance on 

whether force output can be considered to be deterministic since in practically all previous 

applications, the use of a force transducer was simply assumed. Therefore, a process is 

developed herein to establish the necessity of using force transducers with the novel MIMO 

EMA system.    

A testing framework is developed and undertaken to establish if the force developed by a shaker 

can be known without recording the force during every use. The tests establish how consistently 

each shaker and an each amplifier reproduce a given signal, how uniform a population of 

‘identical’ shakers and amplifiers is, and if the force output varies depending on the behavior of 

the structure or on the input location on the structure. A variety of tests are performed and the 

results are reported in subsequent subsections.  
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First, the selected shaker is subject to several tests to understand how uniformly a single shaker 

can repeatedly reproduce a signal:  

• Uniformity of force output for a single shaker - 3.2.1 

• With a deterministic signal - 3.2.1.1 

• With a stochastic signal - 3.2.1.2 

Second, a population of the shakers is tested to determine how uniformly these ‘identical’ 

devices operate: 

• Uniformity of force output for a population of shakers - 3.2.2 

• With a deterministic signal - 3.2.2.1 

• With a  stochastic signal - 3.2.2.2 

Third, the effect of shaker-structure interaction on the uniformity of force output for a given 

input signal is evaluated: 

• Uniformity of force output with the effects of shaker-structure interaction - 3.2.3 

Similar testing of the selected amplifier is also carried out: 

• Uniformity of signal output for a single amplifier - 3.3.1 

• Uniformity of signal output for a population of amplifiers - 3.3.2 

• Uniformity of signal output with the effects of both amplifier channels loaded - 3.3.3 

Finally, an effort is made to model the response of the system components by use of 

deterministic equations: 

• Use of a deterministic equation to model response of components - 3.4.1 
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• Equation development for amplifier - 3.4.1.2 

• Equation development for shaker - 3.4.1.3 

3.2 SHAKER TESTING 

The following tests are undertaken to first determine how uniform the force output of a single 

shaker is, and how similar the output of a population of shakers is. This testing also explores if 

the response of a structure affects the force output measurement. 

3.2.1 Shaker Force Output Uniformity 

The first issue explored is whether a single shaker consistently produces the same force output 

for a given input signal. This is of utmost importance because if the force output has significant 

variation from data set to data set, then a force transducer would have to be used for every shaker 

during every run. The testing is performed using two types of input signals that are expected to 

be commonly used in bridge testing. These are swept-sine and burst-random signals, and the 

issue is explored separately for each of these two signal types. 

3.2.1.1 Shaker Stepped-Sine Signal Reproduction Uniformity 

3.2.1.1.1 Test Method 

The first test consists of checking the force output given a variety of frequencies of sinusoidal 

input. A shaker is mounted to a test plate which is in turn mounted to the relatively massive and 

very stiff steel pylon (Figure 3.1). The force output is measured by three force transducers as 

described in the previous chapter. Both the input signal to the shaker and the force output are 

recorded at a 1,000 Hz sampling rate. The input signal consists of sinusoids at twenty discrete 

frequency lines ranging from 6 Hz to 44 Hz at 2 Hz steps. Each frequency line is individually 

excited for a duration of six seconds, and the signal then transitions directly to the next frequency 
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without any pause or delay. The amplitude of the input signal at the various frequencies is 

selected with the intent that the shaker operate at about 80% of its capacity. For frequencies up to 

20 Hz, the amplitude is limited so that the shaker does not bottom out. For frequencies above 20 

Hz, the amplifier output limit of approximately 30 volts is used. The input signal is shown in 

Figure 3.2 and it is referred to as the stepped-sine signal throughout this chapter. This 120-

second long input signal is sent to each shaker three times, and three output data files are 

recorded.  

             
 

Figure 3.1. Photographs of shaker testing setup on steel pylon. (Photos by EVF, dynamics 
lab, 11/20/12) 

This testing is undertaken in a manner such that everything is uniform from run to run so that 

only the differences due to the shaker response and due to random noise are expected to impact 

the output. The signal input file was created and loaded onto the Agilent Arbitrary Signal 

Generator. The signal is amplified by a single channel of an  amplifier and then input into a 

single shaker. This testing is performed on a population of twelve shakers.  
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Figure 3.2. Plot of stepped-sine input signal showing lower amplitudes at lower frequencies 

to limit stroke. 

3.2.1.1.2 Analysis and Results 

The three sets of data captured for an individual shaker are scrutinized to understand how 

uniform the force output is with the same shaker reproducing the same signal three times in a 

row. First, the three sets are averaged and then the difference between each set and the average is 

found. Then, the RMS value of this difference is calculated for the 6,000 data points within each 

frequency line for each of the three sets. Finally, the resulting values are divided by the RMS 

value of the average force output per frequency line to normalize the result. The following 

equations illustrate this concept. 
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 Equation 3.4.

 

Where: 

݊ ൌ the number of sets of data. 

ܵ݅݃ሺܽሻ = the force recording data set, set ‘a’. 

ܮ ൌ the number of data points within a single excited frequency line. 

 

The outcome is illustrated in Figure 3.3 where the results are shown for four representative 

shakers. The significant variance in force output represented by shakers A and B occurs in four 

of the twelve shakers. The more uniform results shown for shakers H and I are representative of 

the remainder of the 12 shaker sample. Based on these initial results, it is clear that the data must 

be considered in more depth to understand why the variation is so great for some of the shakers. 
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Figure 3.3. Normalized variance in RMS force output amplitude for three sets of stepped-

sine input. Representative results for four shakers shown.   

Next, in an effort to drill down to the cause of the large variation in force output, the force data is 

viewed directly. Considering the variance for Shaker A, Figure 3.3 shows good agreement 

between the three sets at the 20 Hz frequency line and poor agreement at the 26 Hz frequency 

line. To understand how this looks in the time domain force recording, representative samples of 

the three data sets are considered. Figure 3.4 shows two cycles of the three sets at 20 Hz and it is 

clear that the force is highly consistent in both phase and amplitude. Figure 3.5 shows two cycles 

of the three sets at 26 Hz and the difference compared to the 20 Hz data is immediately apparent. 

The figures demonstrate that the primary signal is both in-phase and consistent in amplitude for 

the case of low variance and for the case of high variance. This shows that the high variance 
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calculated for the time domain force signal is caused by the noise present in the sample, not by 

any significant difference in the force response of the shaker to the input signal. It is noted that a 

natural frequency of the support apparatus is excited in the vicinity of 26 Hz as is audibly 

apparent during testing, and thus the variance is high at this frequency for all shakers. 

 
Figure 3.4. Representative segment of force output for three sets of data for Shaker A 

operating at 20 Hz. Note the excellent agreement. 

 
Figure 3.5. Representative segment of force output for three sets of data for Shaker A 

operating at 26 Hz. Note the increased noise. 

The preceding demonstrates that time domain measures of variance in the force signal are not 

especially informative as to the homogeneity of the shaker output. Therefore, frequency domain 

methods will be considered. The benefit of transforming the data to the frequency domain is that 
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the primary signal will be separated from the noise constituents. This will enable a more direct 

comparison of the amplitude and phase variation of the part of the signal that is at the intended 

frequency.    

Thus, the data is transformed to the frequency domain by performing a fast Fourier transform. 

Again, the three sets of force measurements for Shaker A at 20 Hz and 26 Hz are inspected to 

understand the general agreement between the data sets.  

Figure 3.6 shows the result for the 20 Hz data, and it is clear that the power at the input 

frequency is far greater than at any other frequency. Harmonic distortion appears to be 

responsible for the predominance of the noise with power spikes visible at the next few multiples 

of 20 Hz; however, the power at these harmonics is less than a tenth of the power at the intended 

frequency. The consistency of the three data sets is such that it is difficult to distinguish any 

differences. Figure 3.7 shows the results for the 26 Hz data, and although the time domain 

analysis and plots clearly indicate more noise, the frequency domain plot provides a good 

indicator of how minor that noise is in relation to the power of the intended signal. Figure 3.8 

shows a close-up plot of the peaks at 20 Hz and 26 Hz for the three sets with the phase angle also 

labeled. The scale is the same for both plots which illustrates that the variance in force is much 

greater at 26 Hz than at 20 Hz, just as was noted in the time domain plots.  
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Figure 3.6. Frequency domain plot of force output for three sets of data for Shaker A 

operating at 20 Hz. Sets are indistinguishable.  

 
Figure 3.7. Frequency domain plot of force output for three sets of data for Shaker A 

operating at 26 Hz. Sets are indistinguishable. 
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Figure 3.8. Close-up of peaks at 20 Hz (left) and 26 Hz (right). Scale of two plots is identical 
and illustrates the greater variance at the 26 Hz frequency line. (Phase angle shown in 

legend) 

Finally, proceeding with frequency domain analysis of the shaker uniformity, Fourier transforms 

are performed for all frequency lines. At a given frequency line for a single shaker, the amplitude 

and phase angle for each of the three data sets is recorded. Next, the mean of these three 

amplitudes and phases is found, and then the average variance from the mean is found for force 

amplitude and for phase angle. Finally, the mean variance in force is normalized by dividing by 

the mean force, and the mean variance in phase angle is normalized by dividing by the 180-

degree range of possible phases. 

Overall, this data analysis shows that an individual shaker is not perfectly consistent in how it 

reacts to a sinusoidal input signal, but that the consistency is quite high. Figure 3.9 shows the 

average variation in magnitude and Figure 3.10 shows the variation in phase angle for each 

excited frequency line. This data is displayed for each of the twelve shakers with three shakers 

shown per plot for clarity. The variation in amplitude across the frequency range follows a very 

consistent shape for all twelve shakers, with more variance at low frequencies and less at higher 

frequencies. Below about 16 Hz, the variance reaches a maximum of about 2% of the RMS 
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amplitude of the force. Above 16 Hz, the variance does not exceed 1% for any of the shakers. 

The phase angle results indicate that the lower the frequency, the more consistent the phase. For 

nine of the shakers, the normalized variance in phase angle never exceeded 1% for any tested 

frequency line; however, three of the shakers have a variance that is about three times as great, 

reaching 3%.    

 
Figure 3.9.  Normalized variance in force amplitude for twelve shakers. 
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Figure 3.10. Normalized variance in phase angle for twelve shakers. 

The data analysis indicates that an individual shaker can be relied upon to react to a sinusoidal 

input in a fairly consistent manner time after time. In general, the force amplitude does not vary 

by more than 2% from one run to the next, and the phase angle does not vary by more than 3%. 

The maximum mean normalized variance is approximately 1% for the population of 12 shakers. 

3.2.1.2 Shaker Random Signal Reproduction 

3.2.1.2.1 Test Method 

The second test is checking the force output given a random input signal. Similar to the sinusoid 

testing, the signal is loaded onto the Agilent Arbitrary Signal Generator and amplified by a single 

channel of an  amplifier. A single shaker is tested while mounted to the test apparatus described 
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previously. The test is repeated three times for each of the twelve shakers and the data is then 

processed in MATLAB. 

The random input signal is generated in MATLAB starting with 60,000 random numbers 

selected from the normal distribution with an RMS value of unity. The intent is to convert this 

vector into a filtered random signal that will have a duration of 120 seconds with 500 points 

defining the shape of the signal per second. High frequency content is not desired and is reduced 

using a fifth order Butterworth filter with a cutoff frequency of 50 Hz. It is also desirable to 

reduce the signal amplitude at frequencies below 20 Hz where the shakers are stroke limited. 

This will allow the full duration of the signal to be input to the amplifier at a higher amplitude 

without having the shakers bottom out. Thus a second order high pass filter is applied with a 

cutoff frequency of 20 Hz. The unfiltered signal is shown in Figure 3.11 and the filtered signal is 

shown in Figure 3.12. The resulting filtered signal is used repeatedly in the testing described in 

this chapter and it is referred to as the random signal. 

 
Figure 3.11. Random signal in frequency domain prior to filtering. 
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Figure 3.12. Random signal in frequency domain after filtering. 

3.2.1.2.2 Analysis and Results 

The three sets of data captured for an individual shaker are processed to understand how uniform 

the force output is with the same shaker reproducing the same signal three times in a row. Figure 

3.13 shows a representative segment of the three sets of time domain data for Shaker L. The 

agreement between the sets appears to be excellent.    

 
Figure 3.13. Representative segment of force output for three sets of data for Shaker L with 

random input. 
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from the mean is found for force amplitude. Finally, the variance in force output is normalized 

by dividing by the mean force.  

The outcome for two representative shakers is shown in Figure 3.14. The data analysis shows 

that an individual shaker is not perfectly consistent in how it reacts to a random input signal, but 

that the uniformity is quite high. The variation in amplitude across the frequency range follows a 

very consistent shape for all twelve shakers, with more variance at low frequencies and less at 

higher frequencies, similar to the outcome for the sinusoidal input testing. Below about 16 Hz, 

the variance reaches a maximum of about 2% of the force amplitude. Above 20 Hz, the variance 

typically does not exceed 1%. It is worth noting that the force decreased as each successive run 

occurred. The pattern shown in the figure is consistent for all twelve shakers, with the first data 

set providing the highest force, the second set producing a reduced force, and the third set even 

less force. It is theorized that the force decrease is due to the increase in temperature of the voice 

coil during the testing. A temperature increase would increase the resistance which would 

decrease the current in the coil. Electrical current in a voice coil is directly proportional to force 

output. A simple solution that would reduce variance is to run the shakers for several minutes to 

bring them up to operating temperature, and then immediately transition to testing.  

An experiment is undertaken to test this theory in which Shaker J is allowed to warm up by using 

a 25 Hz sinusoid for three minutes prior to recording four new data sets. The results are shown in 

Figure 3.15, and the difference in force from set to set is reduced but is not eliminated. The force 

still decreases for each run performed. This indicates that a longer use is required to adequately 

warm the devices in preparation for testing.  
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Figure 3.14. Normalized variance in force amplitude for three sets of random input. 
Representative Shaker B (left) and Shaker J (right) shown. 

 
Figure 3.15. Normalized variance in force amplitude for four sets of random input, Shaker 

J. Shaker warmed up prior to this test. 
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2%, and it is likely that a portion of the variance in all of the tests is due to the shaker coil 

increasing in temperature during testing.   

3.2.2 Shaker Interchangeability 

The second issue of concern is whether the shakers can be used interchangeably or if they must 

be considered as individual units. If the force output for a given input is highly consistent across 

a population of shakers, then the shakers can be deployed in testing without regard for which 

shaker is put in what location on a structure. This type of interchangeability would greatly 

simplify field testing since no special care would be needed for placing the shakers and 

documenting their individual positions. On the other hand, if the shakers are highly individual 

then a unique force output must be developed and stored for each shaker for each input signal 

used. This would add significant effort in using these devices for testing. The ability of the 

shakers to be interchanged is explored using both the stepped-sine and random input signals 

already discussed.   

3.2.2.1 Shaker Interchangeability Testing with Stepped-Sine Signal 

3.2.2.1.1 Test Method 

This test was undertaken in order to understand how similar the force output is from twelve 

individual shakers for a range of sinusoidal inputs frequencies. The data used is the same as that 

captured for the testing performed in Section 3.2.1.1. Thus, the test method and data collection 

provided in that section are pertinent here. To restate the test method, a range of twenty 

frequencies were used consecutively with a six-second duration for each. This signal was 

repeated three times for each shaker and the force output was recorded by three force transducers 

with the shaker mounted on the steel pylon.  
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3.2.2.1.2 Analysis and Results 

The force output recorded for all twelve shakers is first considered in the time domain. Figure 

3.16 shows the force trace for four shakers at 14 Hz and Figure 3.17 shows the same but at 20 

Hz. These two frequencies are selected for visualization since the previous section indicates that 

amplitude variance is relatively high at 14 Hz and relatively low at 20 Hz. For each shaker, the 

force trace shown is the mean of the three data sets.  

The two force traces clearly show that there is more amplitude variation from shaker to shaker 

than was found between sets for a single shaker. It is also clear that phase differences are minor. 

It is of note that the twelve shakers were purchased in small quantities over a time range of about 

one year. The first four shakers purchased consistently provide less force than those acquired 

later, and are also 180 degrees out of phase compared to the later models (the phase flip was 

corrected prior to plotting). Thus, it can be inferred that the manufacturer updated the model 

between production runs. Since these types of changes are likely to occur in the future as well, 

interchangeability will be a difficult issue to resolve as new shakers are added to the testing 

system or old shakers are replaced. 

 
Figure 3.16. Representative segment of force output signal for four shakers operating at 14 

Hz. 
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Figure 3.17. Representative segment of force output signal for four shakers operating at 20 

Hz. 

Next, the variation in force and phase angle between shakers is analyzed in the frequency domain 

as was done in the previous section. A Fourier transform is performed for each frequency line for 

each shaker and the amplitude and phase are recorded. Since the sample size is twelve for this 

analysis, the mean and variance are calculated assuming a t-distribution. The 90% confidence 

interval is then calculated at each frequency line as an indicator of the variability in the data. The 

t-distribution equations used are shown. 
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݊ ൌ the number of samples. 

ଶݏ ൌ the sample variance. 

ܣ ൌ 1.796 for a 90% confidence interval. 

 

Figure 3.18 shows the values of mean force output for the twelve shakers as well as the 90% 

confidence interval for the mean at each tested frequency line. The results indicate that there is a 

fairly wide spread in the force output of the various shakers. Figure 3.19 shows the values of the 

mean phase angle and the 90% confidence interval. The mean variance for the amplitude is about 

7% at lower frequencies and about 6% above 30 Hz. For the phase angle, the mean variance is 

about 1% for the full range of tested frequencies.  

 
Figure 3.18. Mean force output of twelve shakers at various frequencies with 90% 

confidence interval shown. 
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Figure 3.19. Mean phase angle of twelve shakers at various frequencies with 90% 

confidence interval shown. 

Overall, the phase angle is highly consistent between shakers for a sinusoidal input; however, the 

amplitude is not as uniform.   

3.2.2.2 Shaker Interchangeability Testing with Random Signal  

3.2.2.2.1 Test Method 

This test is undertaken in order to understand how similar the force output is from twelve 

individual shakers for a random input signal. The data used is the same as that captured for the 

testing performed in Section 3.2.1.2. Thus, the test method and data collection provided in that 

section are identical for this section. To briefly restate the method, a random signal from a 

normal distribution is generated and then band-pass filtered. The signal has a duration of 120 

seconds, and is played three times through each shaker. The force output is recorded by three 

force transducers with the shaker mounted on the steel pylon. 

3.2.2.2.2 Analysis and Results 

First, the data is considered in the time domain. The three sets of data captured for an individual 

shaker are averaged and this resultant mean force is then processed to understand how consistent 

the force output is across the population of twelve shakers. Figure 3.20 shows a representative 
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segment of the force output for all twelve shakers. The consistency between the sets is similar to 

what was seen for the stepped-sine reproduction in that the phase matches quite well but the 

amplitude has more variation. 

 
Figure 3.20. Representative segment of force output data for all twelve shakers with 

random input signal. 

Next, the mean time domain data is transformed to the frequency domain. Averaging in the 
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normalized by dividing by the mean force. Figure 3.21 shows the results of the frequency 

domain analysis. In general, the data shows that the average shaker has a force amplitude 
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variance is in agreement with the results of the stepped-sine testing. 
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Figure 3.21. Normalized variance in force amplitude for twelve shakers with random input 

signal. 

3.2.2.3 Shaker Interchangeability Conclusion 

The ability of the population of shakers to produce a uniform force output for a given signal 

input was tested. Both stepped-sine and random signals were used and the force output was 

recorded and analyzed. The results are that the population of twelve shakers operate fairly 

similarly to each other, but not identically. With the stepped-sine input signal, the variance in the 

output force amplitude is typically about 7%. With the random input, the variance in force output 

is also typically about 7%. Therefore, the shakers cannot be used in an interchangeable manner 

in MIMO testing.  

3.2.3 Shaker Force Uniformity on Laboratory Bridge Model 

The next issue of concern is whether the force output varies depending on the response of the 

structure that the shaker is exciting (shaker-structure interaction). The testing of Section 3.2.1 

suggests that the force output of a single shaker is uniform within 1% to 2% from one run to the 

next. In those tests, the shakers were mounted to a stiff steel pylon; however, it must be shown 

that the stiffness and dynamic response of the structure does not cause significant variation in the 

force. In this testing, the University’s steel grid bridge model is used as the recipient of the 
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excitation force, and both the stepped-sine and random signals are again used. This testing is 

conducted with the shaker positioned at two different spatial locations on the model structure, 

namely the span third-point and the span mid-point along the north fascia girder. These points 

are selected since the mid-point excitation is then at a node point for the second bending and 

torsional modes of the model whereas the third-point excitation is not at a modal node for any 

mode in the frequency range tested. Again, force output needs to be uniform for the use of force 

transducers to be avoided. 

The laboratory bridge model is a steel grid structure composed of W8 shapes. The model is 

supported on steel rollers and has three beams and a span length of 24’-0”. The model has 

previously undergone modal testing by a variety of methods, and some natural frequencies that 

are of import to the following discussions are listed below. These are approximations of the 

natural frequencies reported by Herrman (2011, 144).  

Mode No. Approx. Freq. Mode Description 

1 9.6 Hz Bending 1 

2 10.9 Hz Torsion 1 

3 34.7 Hz Bending 2 

4 39.0 Hz Torsion 2 

Table 3.1. Natural frequencies of laboratory bridge model. 

3.2.3.2 Test Method 

This testing is performed in a very similar manner to the tests described previously. A single 

shaker is bolted to an aluminum plate that has three force transducers connected to it and this 

apparatus is clamped to the bridge model as shown in Figure 3.22. The shaker is powered by a 

single channel of an  amplifier which has a signal input from the Agilent Arbitrary Signal 

Generator. The same stepped-sine signal described in Section 3.2.1.1.1 is used as is the random 
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signal described in Section 3.2.1.2.1. Each signal is played three times per shaker, per spatial 

location. A population of twelve  shakers are tested. 

 
Figure 3.22. Photograph of shaker testing setup on laboratory bridge model. (Photo by 

EVF, dynamics lab, 11/20/12) 

3.2.3.3 Analysis and Results 

3.2.3.3.1 Shaker at Span Third-Point with Stepped-Sine Signal  

Three sets of data are captured for each shaker with the stepped-sine input signal and the 

uniformity between these sets is analyzed. The time domain analysis indicates that the force 

output is more consistent at some frequencies than others. A representative segment of the time 

domain signal for Shaker B is shown at 22 Hz in Figure 3.23 and at 40 Hz in Figure 3.24.  It is 

visually apparent that the consistency from set to set is excellent at 22 Hz but less so at 40 Hz. 

The bridge model has a natural frequency for its fourth mode at 39 Hz and this is partially 

excited by the 40 Hz signal, increasing the apparent noise in the system. 
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Figure 3.23. Representative segment of force output for three sets of data for Shaker B 

operating at 22 Hz. Note the excellent agreement. 

 
Figure 3.24. Representative segment of force output for three sets of data for Shaker B 

operating at 40 Hz. Note the increased noise. 

Next, the data is transformed to the frequency domain. Frequency domain analysis is used to 

analyze the variance in force amplitude for all of the shakers. Again, the three sets of force 

measurements for Shaker B at 22 Hz and 40 Hz are inspected to understand the general 

agreement between the data sets.  

Figure 3.25 shows the frequency domain result for the 22 Hz data, and it is clear that the power 

at the input frequency is far greater than at any other frequency. The uniformity of the three data 

sets is excellent. It is also noted that harmonic distortion is responsible for most of the noise with 
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small peaks visible at 44 Hz and 66 Hz. Figure 3.26 shows the results for the 40 Hz data sets. 

This plot shows that much of the noise is caused by several known modes of the bridge model 

being excited: mode 3 at 34 Hz, mode 4 at 39 Hz, mode 5 at 73 Hz, and mode 8 at 88 Hz. The 

force amplitude at 40 Hz is reduced.   

 
Figure 3.25. Frequency domain plot of force output for three sets of data for Shaker B 

operating at 22 Hz. Sets are indistinguishable.  

 
Figure 3.26. Frequency domain plot of force output for three sets of data for Shaker B 

operating at 40 Hz. Sets are indistinguishable but significantly more noise is present.  

As before, the normalized variance in force amplitude at the intended frequency is found for each 

of the twenty tested frequency lines and for each of the twelve shakers. As with the stepped-sine 

testing of the shakers mounted to the steel pylon, the uniformity for a shaker is quite good from 
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one set to the next as is seen in Figure 3.27. Also, the variance is practically identical to that for 

the pylon testing (Figure 3.9), but with slightly more noise consistently showing up at the 38 Hz 

frequency line which is near a natural frequency of the structure.  

 
Figure 3.27. Normalized variance in force amplitude for twelve shakers with spatial 

position at bridge model third-point. 

3.2.3.3.2 Shaker at Span Mid-Point with Stepped-Sine Signal 

Three sets of data are also captured for each shaker spatially located at the mid-point of the 

bridge model with the stepped-sine input signal. The results are very similar to what is seen for 

the shaker at the third-point, and thus only the normalized variance for all twelve shakers is 

shown herein. Figure 3.28 shows this variance and it is seen that it is not noticeably affected by 

the spatial location except at 38 Hz. When the shaker was located at the third-point of the span, it 

excited the second torsional mode of the structure which has a natural frequency near 39 Hz. 
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With the shaker positioned at the mid-point, the force input occurs at a node point in the mode 

shape and so the amplified structural response did not occur and did not increase force variance.   

 
Figure 3.28. Normalized variance in force amplitude for twelve shakers with spatial 

position at bridge mid-point. 
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collected at a single location for a single shaker. A representative time domain comparison is 

shown in Figure 3.29 for Shaker I operating at 12 Hz. The force output measured during the 
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pylon testing is also shown as a baseline. It is visually obvious that there is very little difference 

in force output between the spatial locations given this input frequency. However, Figure 3.30 

shows the force output at 40 Hz and the difference is significant. The phase angle is not greatly 

affected, but the measured force amplitude is far less at the third-point than at the span mid-

point. This is due to the structure’s response near this particular natural frequency.   

 
Figure 3.29. Representative segment of mean force output for Shaker I operating at 12 Hz 

for three different input locations. 

 
Figure 3.30. Representative segment of mean force output for Shaker I operating at 40 Hz 

for three different input locations. 
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the force output is definitely impacted by the response of the structure. The mean force 

amplitude for representative Shaker I is shown, with a curve for each of the various mounting 

positions. The first bending and first torsional modes are around 10 Hz and 11 Hz respectively, 

and there is no indication that these modes affect the force output since the measured force is 

consistent with the pylon testing. The second bending mode and second torsional mode of the 

bridge model are around 35 Hz and 39 Hz respectively. The mid-point shaker position is at a 

modal node, and thus the force output is not affected by the modal motions. However, the force 

output with the shaker at the model third-point is significantly affected by both of these modes 

and the measured force is alternately reduced or increased depending on the phase. This 

phenomenon is expected per the literature (Rao 1987; Varoto and Oliveira 2002).   

 
Figure 3.31. Force output of Shaker I at various frequencies for shaker mounted on model 

third-point, model mid-point, and on pylon.  

It is shown that the amplitude of the force being introduced into the structure is sometimes 

affected by the modal movements of the structure. The significant change in measured force is a 

paramount concern in whether the force output must be measured at each shaker for all testing. 
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3.2.3.3.4 Shaker at Span Third-Point with Random Signal 

Three sets of data are also captured for each shaker at the third-point of the bridge model with 

the random input signal. The data appears to have very good uniformity based on time domain 

review. The force measurements are also in excellent agreement with the force from the pylon 

testing (Figure 3.13). The data is now processed in the same manner as in Section 3.2.1.2.2. The 

force records are transformed to the frequency domain, averaging is used to diminish the 

resolution, and the normalized variance in the force amplitude at each frequency line is 

calculated. Representative results are shown for Shaker F and Shaker I in Figure 3.32. It is noted 

that the variance is essentially the same as that found for testing on the steel pylon (Figure 3.14) 

except for in the vicinity of the bridge model natural frequency at 39 Hz. This indicates that the 

structural response increases the amount of noise in the force output with random testing. 

 
 

Figure 3.32. Normalized variance in force amplitude for three sets of random input at 
bridge model third-point. Shaker F (left) and Shaker I (right) shown. 
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domain data and representative results are shown in Figure 3.33, again for Shaker F and Shaker 

I. As with the stepped-sine input analysis, the scale of the variance is essentially unchanged, but 

the noise in the vicinity of 39 Hz is not seen at the mid-point. Again, this can be attributed to this 

spatial location being a node point for the particular torsional mode that is excited at 39 Hz.  

 
Figure 3.33. Normalized variance in force amplitude for three sets of random input at 

bridge model mid-point. Shaker F (left) and Shaker I (right) shown. 
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Figure 3.34. Representative segment of mean force output for Shaker I for three different 

input locations. 

The mean force data is now transformed to the frequency domain.  As in the previous sections, 

the resolution is decreased by averaging. The force output for the two bridge model shaker 

locations is normalized against the force output measured on the pylon and the result is shown in 

Figure 3.35. With far greater frequency resolution than the stepped-sine testing, the results 

clearly indicate that all of the structure’s natural frequencies significantly alter the force input 

measurement. The first bending and first torsional modes impact both shaker locations as seen by 

the approximately 50% variance in force at 9 Hz and 11 Hz. The second bending mode at 35 Hz 

and the second torsional mode at 39 Hz both have a nodal point at the span mid-point, and thus 

the shaker force output is not affected by these two modes when the shaker is located at the nodal 

point. However, when the shaker is located at the third-point, the increase in measured force 

approaches 100% at the frequency of the second torsional mode. The impact of the first two 

modes was not seen in the stepped-sine testing since the 2 Hz steps between tested frequencies 

just happened to align with and thus hide the first bending mode and first torsional mode. 

0 50 100 150 200 250 300
-20

-10

0

10

20

Data Point Number)

M
ea

n 
Fo

rc
e 

(lb
f)

 

 

Third-Pt
Mid-Pt
Pylon



 75 

 
Figure 3.35. Normalized variance in force amplitude for Shaker I for two bridge model 

input locations normalized to pylon force amplitude. 

3.2.3.4  Summary of Shaker Force Uniformity on Bridge Model 

Various experiments were undertaken to understand if the force output from a shaker is uniform 

in various situations. The results indicate that for a given input signal, an individual shaker 

produces nearly identical output time after time with a variance that rarely exceeds 2%. 

However, the results also show that the force output can be significantly altered by the behavior 

of the structure to which the shaker is attached. When a shaker is operating at a frequency that is 

near a natural frequency of the structure being tested, the force measured between the shaker and 

the structure can be increased or decreased by as much as 100% compared to the force output 

when a mode is not excited. Rao (1987) provides some guidance to decrease the effect of this 

phenomenon, but it cannot be eliminated. Per the literature, this shaker-structure interaction is 

diminished when the modal mass of the test subject greatly exceeds the shaker mass. Therefore, 

this issue may be greatly reduced in real-world testing of a massive bridge. 

3.3 AMPLIFIER TESTING 

Each shaker requires a power amplifier to magnify the signal produced by a waveform generator. 

The amplifiers selected for the subject system are relatively inexpensive subwoofer amplifiers 
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that are intended for aftermarket use in automobiles. Similar to the purpose for the shaker testing 

performed in the previous sections, it must be known if the various amplifiers are uniform in 

gain across the range of frequencies that are anticipated for use in bridge testing. The uniformity 

is considered first as the ability of an individual amplifier to produce the same output signal with 

repeated sets of a particular input signal. This type of repeatability is important so that the force 

output does not have to be measured at each shaker location during bridge testing. Second, the 

uniformity across a group of ‘identical’ amplifiers must be tested. If the amplifiers are truly close 

to identical in output then they can be used interchangeably; however, if the gain varies 

significantly then each amplifier must be treated as a unique individual during bridge testing if 

force transducers are not used.  

3.3.1 Amplifier Single Channel Uniformity 

The first issue considered is whether or not an individual channel of an individual amplifier can 

repeatedly produce the same output signal for a given input signal.  

3.3.1.1 Test Method 

The test method for exploring this issue is nearly identical to the shaker testing discussed in the 

preceding sections. An input signal is repeatedly sent to one channel of an  amplifier and the 

output voltage is monitored. A shaker is connected to the amplifier channel as a load and the 

same shaker is used throughout testing. Three sets of data are collected for each channel, and six 

amplifiers with two channels each are used as the population. The input signals are the stepped-

sine signal shown in Figure 3.2 and the random signal shown in Figure 3.12.  
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3.3.1.2 Analysis and Results 

The data for the stepped-sine signal appears to be quite uniform across the population of 

amplifiers. Figure 3.36 shows a representative segment of the three sets of voltage output for the 

left channel of Amp 1. The three curves are visually indistinguishable, and this level of 

uniformity is typical for all frequency lines and for all of the tested amplifiers.    

 
Figure 3.36. Representative segment of voltage output for three sets of data for Amp 1 

operating at 18 Hz (sets are nearly indistinguishable). 

The stepped-sine data is transformed to the frequency domain and the normalized variance in 

voltage amplitude is calculated as described in Section 3.2.1.1.2. The results for the left and right 

channels of three amplifiers are shown in Figure 3.37. The variance is consistently less than 

1/10th of a percent indicating that the output for an individual amplifier is extremely uniform for 

a given input. It is noted that significant heating of the amplifiers occurred during this testing, 

and it can be concluded that such heating did not affect the output.  
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Figure 3.37. Normalized variance in voltage amplitude for left and right channels of Amps 
1, 2, and 3. ‘L’ and ‘R’ indicate left and right amplifier channels. 

Next, the voltage output using the random input signal is analyzed. A time domain segment for 

the three sets of voltage output using the left channel of Amp 1 are shown in Figure 3.38. As 

with the stepped-sine test, the data sets are visually indistinguishable and this is typical for all 

twelve tested amplifier channels.  

 
Figure 3.38. Representative segment of voltage output for three sets of data for Amp 1 (sets 

are nearly indistinguishable). 

The data is transformed to the frequency domain and the normalized variance in voltage 

amplitude is calculated as before. Representative results for the left channel of Amp 1 and the 

left channel of Amp 5 are shown in Figure 3.39. The variance is generally close to zero with 
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localized higher variance of about 0.5% below 10 Hz. The higher normalized variance at low 

frequencies is due to a low signal amplitude. 

 
 

Figure 3.39. Normalized variance in voltage amplitude for three sets of random input. 
Representative Amp 1 (left) and Amp 5 (right) shown. 

Overall, the tests demonstrate that each  amplifier provides excellent uniformity in output for set 

after set of identical input.   

3.3.2 Amplifier Interchangeability 

The issue to be tested is whether the amplifiers can be used without regard for which one is used 

to drive a given shaker. This type of interchangeability would simplify field testing by reducing 

the number of items that must be arranged in a particular manner and by reducing the level of 

documentation (in the case that force transducers can be avoided).  

3.3.2.1 Test Method 

Interchangeability is explored by providing the same input signal to each channel of each 

amplifier and comparing the voltage output from each. Six two-channel amplifiers are tested. 

Both the stepped-sine and random signals are again used, and three sets of data for each signal 
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type are collected. The mean of the three data sets is found and then compared for the twelve 

tested amplifier channels.  

3.3.2.2 Analysis and Results 

As a first step in understanding the uniformity of the output across the population of amplifier 

channels, a segment of time domain data is shown in Figure 3.40. The figure illustrates the high 

similarity between four different amplifier channels operating at the 20 Hz frequency line of the 

stepped-sine signal.  

 
Figure 3.40. Representative segment of voltage output data for four amplifier channels 

operating at 20 Hz. 

The output data for the stepped-sine input signal is transformed to the frequency domain and the 

amplitude at each frequency line is found for each of the twelve amplifier channels. A t-

distribution is assumed and the mean amplitude and 90% confidence interval is found for each 

frequency line as in Section 3.2.2.1.2. The result is displayed in Figure 3.41 and it is clear that 

the amplitude variation between amplifier channels is quite small. 
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Figure 3.41. Mean voltage output of twelve amplifier channels at various frequencies with 

90% confidence interval shown. 

The outcome using the random signal is similar. Figure 3.42 shows a segment of time domain 

data for all twelve amplifier channels and the uniformity appears to be very good. The time 

domain data is useful for visual inspection, but frequency domain analysis is more complete. 

 
Figure 3.42. Representative segment of voltage output data for all twelve amplifier 

channels with random input. 

The mean voltage output for each of the twelve channels is now transformed to the frequency 

domain. The mean and variance of the twelve channels are found and the variance is normalized 

via division by the mean. The result is plotted in Figure 3.43 and the normalized variance in 

voltage output is essentially constant at about 2%. 
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Figure 3.43. Normalized variance in voltage output amplitude for twelve amplifier channels 

with random input.  

Overall, the uniformity between amplifiers is very good with an average variance in output 

voltage of about 2% for both stepped-sine and random input signals. It is likely that this will 

allow the amplifiers to be used interchangeably without regard to which amplifier is driving 

which shaker. 

3.3.3 Amplifier Consistency with Simultaneous Channel Operation 

Another issue of concern with the two-channel  amplifiers is whether operating both channels 

simultaneously affects the output voltage of a single channel. The testing performed to this point 

was carried out using a single channel while the amplifier’s other channel was not in use. It is 

possible that adding a load to the second channel will affect the voltage output of the first 

channel, and this must be evaluated. 

3.3.3.1 Test Method 

This test is performed on Amp 1 with each of its two channels powering a single shaker. The left 

channel powers Shaker I, which is attached to the force measuring apparatus mounted on the 

steel pylon. The right channel simultaneously powers Shaker L, and the stepped-sine signal is 

sent to both channels at the same amplitude as in the Section 3.2.1.1.1 testing. Thus the input 
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amplitude varies for frequencies below 22 Hz so that the shaker does not bottom out. For the 

range of frequencies from 22 Hz to 44 Hz the input amplitude is constant at 0.4 volts peak. The 

force output of Shaker I is recorded as before and is compared to the force output when only the 

left channel is in use. Three sets of data are collected for each condition. 

3.3.3.2 Analysis and Results 

The mean of the three data sets is calculated and then the mean is transformed to the frequency 

domain. The amplitude at each frequency line is shown in Figure 3.44 with and without the 

second channel in use. The plot clearly illustrates that when the total load is higher, the amplifier 

reduces the power output to a single channel. For instance, the force output is reduced by 9% at 

the 28 Hz frequency line. This behavior is a significant issue and thus additional testing is 

performed to understand if the reduction can be avoided.  

 
Figure 3.44. Force output of Shaker I with and without a load on the second amplifier 

channel. Amplifier input = 0.4 volts. 

A follow-up experiment is conducted in which the amplitude of the input signal is varied. The 

stepped-sine signal is used and the force output of a single shaker is recorded. During one run of 

the signal, only a single channel is used. During a second run of the signal, the second amplifier 
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channel is connected to a second shaker. Eight amplitudes were tested ranging from 0.14 volts to 

0.30 volts peak.  

It was found that at and below 0.22 volts input amplitude, the force output is the same whether 

one or both channels have a load. At higher input voltages the force diverges for the two 

experimental conditions. This is illustrated in Figure 3.45. It is noteworthy that input amplitudes 

above 0.22 volts barely provide higher output voltages (and thus force) since the amplifier’s limit 

seems to be reached. Thus, the force output from the shaker is already nearly at the maximum 

that the amplifier can provide. Therefore, the issue illustrated by Figure 3.44 is really not an 

issue at all. With careful selection of the input voltages, a high force output can be maintained 

that is independent of the number of channels in use.  

 
 

Figure 3.45. Force output of Shaker I with and without a load on the second amplifier 
channel and with various input voltages. 
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3.4 FORCE TRANSDUCER REQUIREMENT 

In classical EMA of structures, FRFs are developed from measurements of both the excitation 

forces and structural vibrations. Measuring the excitation force at a single input location requires 

the use of a force transducer and a data acquisition channel. The excitation system evaluated in 

this research will ideally use many shakers operating simultaneously; however, it is desirable to 

avoid the use of force transducers (and the requisite data channels) if possible since they increase 

both the cost and complexity of the testing system.  

One proposed method to circumvent the use of transducers is to develop deterministic equations 

that relate the signal input to the amplifiers to the force output from the shakers. Testing of the 

shakers for stepped sine and random signals earlier in this chapter demonstrated that the force 

output curve in the frequency domain had a uniform shape for both signal types. Thus, it is 

theorized that the signal gain and phase change caused by the amplifier and by the shaker may be 

deterministically related to the frequency. Equations of this type would be the best solution to 

avoiding force transducers since the output force could be predicted for any input signal type. To 

succeed, this approach requires that the hardware components are stable and the force output will 

be totally repeatable. Such equations would essentially attempt to fit the transfer function of the 

excitation system.   

If deterministic equations fail to work, then a second method that is more cumbersome may still 

be effective. This method would require the force input for a given signal to be measured once 

for each shaker location on the structure under test. Assuming a single force transducer, this 

process would need to be performed separately at each input location. After the measurement of 

all force inputs, production testing would commence and it would be assumed that the force does 
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not vary during these subsequent runs of the same signal. This process would add significant 

effort to the testing of a structure, but would reduce equipment costs.  

3.4.1 Deterministic Equation Development 

In this section, an attempt is made to develop deterministic equations that relate the shaker force 

response to the input signal. This is done in two steps that correspond to the signal change due to 

the amplifier and the signal change due to the shaker. Also, the amplitude and phase change are 

handled separately, and a diagram of the system model is shown in Figure 3.46. 

 
Figure 3.46. Diagram of system model. 

The modeling of the system response proceeds by developing an equation for gain and phase 

change for each component: 

• Development of amplifier model - 3.4.1.2 

• Development of shaker model - 3.4.1.3 

Next, the equations developed to model the response of the components are evaluated for a broad 

range of frequencies and input amplitudes in subsection 3.4.2.1. 

Finally, the effect of shaker-structure interaction is revisited as it applies to the proposed use of a 

system model to predict force output in subsection 3.4.2.2. 
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3.4.1.2 Development of Amplifier Model 

The objective of this testing is to fit a deterministic equation to the output of the amplifier for any 

given input signal. Based on previous testing, it is expected that the input frequency is the only 

independent variable. 

3.4.1.2.1 Test Method 

The test consists of measuring signals into and out of the amplifier so that a relation can be 

developed. Testing is performed using a stepped-sine input signal that consists of twenty discrete 

frequency lines ranging from 6 Hz to 44 Hz at 2 Hz steps. The amplitude at each frequency is 

limited either by the amplifier capacity or the shaker stroke. For frequency lines below 20 Hz, 

the amplitude is selected so that the shaker does not bottom out. For 20 Hz and above, the input 

is set at 0.18 volts peak to stay below the maximum amplifier threshold as established in Section 

3.3.3.2. Each frequency is input for six seconds and the amplifier input and output are recorded. 

The left and right channels of six amplifiers are tested separately, and the stepped-sine signal is 

used three times per channel to enable averaging.   

3.4.1.2.2  Analysis and Results 

First, it is assumed that the change in amplitude and the change in phase are functions of 

frequency. The basic formulation is shown in the following equations and the data is analyzed to 

find equations for the functions of frequency. 
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For amplitude: 

 
݃ܽ݅݊ ൌ

ሺܣଵሻ
ሺܣ௢ሻ ൌ ݂ሺ݂ݍ݁ݎ. ሻ Equation 3.8.

 

and therefore: 

 ሺܣଵሻ ൌ ሺܣ௢ሻ כ ݂ሺ݂ݍ݁ݎ. ሻ Equation 3.9.
 

For phase: 

 ሺ߮ଵሻ െ ሺ߮௢ሻ ൌ ݈ܽ݃ ൌ ݃ሺ݂ݍ݁ݎ. ሻ Equation 3.10.
 

and therefore: 

 ሺ߮ଵሻ ൌ ሺ߮௢ሻ ൅ ݃ሺ݂ݍ݁ݎ. ሻ Equation 3.11.
 

Where: 

௢ܣ ൌ the amplitude of the input signal. 

 .ଵ = the amplitude of the output signalܣ

߮଴ = the phase of the input signal. 

߮ଵ = the phase of the output signal. 

 

The amplitude is considered first. Figure 3.47 shows the gain for the twelve amplifier channels 

across the frequency range of interest. The shape of the curves is fairly uniform, but the level of 

the gain varies across the population. Thus, an equation must be developed for each amplifier. 
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Figure 3.47. Gain for twelve amplifier channels. 

The shape of the curves suggests that a 1/x function may provide a good fit. Matlab is used to 

perform a least squares curve fit optimization for each amplifier channel using the following 

basic formulation: 

ଵܣ  ൌ ௢ܣ ൬ܥଵ ൅
ଶܥ

݂஼య
൰ Equation 3.12.

 

Where: 

݂ = the frequency line (Hz). 

,ଵܥ ,ଶܥ ଷܥ ൌ constants that may vary for each amplifier channel. 

 

The value of each constant was found for each amplifier channel. As an example, the value of 

the constants for the left channel of amplifier 1 are 197.8, -163.3, and 1.36 respectively. The fit 

of the equation is demonstrated in Figure 3.48, and the result is very good. 
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Figure 3.48. Curve fit of gain for Amplifier 1, left channel. 

Next, the phase change is considered. Figure 3.49 shows the lag for the twelve amplifier 

channels and it is noted that the uniformity across the population is excellent. Thus, a single 

equation will be found and used for all of the amplifiers.  

 
Figure 3.49. Phase lag for twelve amplifier channels. 

The shape of the curves again suggests a 1/x function. Using the same formulation as for the 

amplifier gain, the values of the constants are found to be 0.689, 205.8, and 1.0 respectively. The 

excellent fit of the equation against the mean phase lag of the twelve amplifier channels is 

demonstrated in Figure 3.50.  
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Figure 3.50. Curve fit of phase lag for twelve amplifiers. 

In summary, the response of the amplifiers to an input signal appears to be well estimated by the 

deterministic equations given below.  

For amplitude: 

ଵܣ  ൌ ௢ܣ ൬ܥଵ ൅
ଶܥ

݂஼య
൰ Equation 3.13.

 

For phase: 

 
߮ଵ ൌ ߮௢ ൅ 0.012 ൅

3.592
݂

 Equation 3.14.

Where: 

߮ = the phase (radians). 

All other elements as defined previously. 

 

3.4.1.3 Development of Shaker Model 

This is carried out in the same manner as for the amplifiers. The input and output to a shaker are 

recorded and an attempt is made to fit a deterministic equation to the gain and phase change that 

occurs. 
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3.4.1.3.1 Test Method 

The test consists of measuring signals into and out of the shaker so that a relation can be 

developed. Testing is performed using the stepped-sine input signal. Four shakers are tested, and 

each is mounted to the pylon for this experiment.   

3.4.1.3.2 Analysis and Results 

The same assumptions are made as in the amplifier testing. It is assumed that the gain and phase 

lag are only a function of frequency. The amplitude is considered first. Figure 3.51 shows the 

gain for the four shakers across the frequency range of interest. The shape of the curves is fairly 

consistent, but the level of the gain varies across the population. Thus, an equation must be 

developed for each shaker. 

 
Figure 3.51. Gain characteristics of four shakers. 
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The shape of the curves suggests that a function as shown below may provide a good fit. Matlab 

is used to perform a least squares curve fit optimization for each shaker using the following basic 

formulation: 

ଶܣ  ൌ ଵܣ כ ݂ߨ2 כ ൬ܥଵ ൅ ଶܥ כ sin ൬
െߨ כ ଷܥ

݂ଶ ൅ ଷܥ
൅ ߨ ൅ .ସ൰൰ Equation 3.15ܥ

 

Where: 

ଵܣ ൌ the amplitude of the signal from the amplifier (volts). 

 .ଶ = the amplitude of the force output from the shaker (lbf)ܣ

݂ = the frequency line (Hz). 

,ଵܥ ,ଶܥ ସܥ,ଷܥ ൌ constants that may vary for each shaker. 

 

The value of each constant was found for each of the four shakers. As an example, the value of 

the constants for shaker G are 0.0018, 0.0085, 67.1, and 8.82 respectively. The fit of the equation 

is demonstrated in Figure 3.52, and the result is fairly reasonable. 

 
Figure 3.52. Curve fit of gain for Shaker H. 
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Next, the phase change caused by the shaker is considered. Figure 3.53 shows the lag for the four 

shakers and it is noted that the uniformity across the population is very good. Thus, a single 

equation will be fit to the average of the four shakers.  

 
Figure 3.53. Phase lag for four shakers. 

The shape of the curves again suggests a 1/x function. Using the same formulation as for the 

amplifier phase lag, the values of the constants are solved. The fit of the resulting equation 

against the mean phase lag of the four shakers is demonstrated in Figure 3.54. The curve fit is 

fair but not as good as for the amplifier. 

 
Figure 3.54. Curve fit of phase lag for four shakers. 
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In summary, the response of the shakers to an input signal appears to be reasonably well 

estimated by the deterministic equations given below.  

For amplitude: 

ଶܣ  ൌ ଵܣ כ ݂ߨ2 כ ൬ܥଵ ൅ ଶܥ כ sin ൬
െߨ כ ଷܥ

݂ଶ ൅ ଷܥ
൅ ߨ ൅ .ସ൰൰ Equation 3.16ܥ

 

For phase: 

 ߮ଶ ൌ ߮ଵ ൅
ߨ
2

െ 5.89 ൅
9.72
݂଴.ଶଽ Equation 3.17.

Where: 

߮ଵ = the phase of the signal from the amplifier (radians). 

߮ଶ ൌ the phase of the force output from the shaker. 

All other elements as defined previously. 

 

Deterministic equations have now been developed that represent each of the processes that 

transform an input excitation signal into a force output signal. The four equations can easily be 

combined for any given amplifier and shaker pairing. Thus, it is not necessary to explicitly find 

the intermediate phase and amplitude that occurs after the amplifier but before the shaker. Also, 

using complex numbers, the phase and amplitude could be operated on in a single step. 

3.4.2 Deterministic Equation Applicability Check 

In the previous subsection, deterministic equations were developed that transform input signals 

into output signals based on the behavior of the  amplifiers and the shakers. The equations were 

developed using a stepped-sine input signal that was limited to twenty frequency lines and to a 

single amplitude per frequency line. Additionally, the force measurement was performed on the 

steel pylon. In this subsection, the validity of the developed equations will be checked with 
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broadband signals at various input amplitudes. Also, the force output will be measured on the 

steel bridge model to see if the force drop off at structure natural frequencies can be reduced. 

3.4.2.1 Input Amplitude Examination 

In the production of the deterministic equations, it was assumed that at any given frequency line, 

the output amplitude is directly proportional to the input amplitude and the output phase is a 

constant offset from the input phase. It is known that for both the amplifier and the shaker, this 

can only be true within some range of input amplitudes. For example, the  amplifiers have a 

limited output of about 30 volts. As the input signal amplitude is increased, there is no longer a 

corresponding increase in the output beyond this 30 volt ceiling. Similarly, for the shaker, large 

amplitudes at low frequencies cause the mass to exceed the available stroke and thus the force 

cannot be increased beyond the limits of the stroke. Thus, the range of applicability of the 

assumed linear relation between input and output amplitude must be established by testing. The 

phase relation may also be limited and will also be studied. 

3.4.2.1.1 Test Method 

This testing is performed using only the left channel of Amplifier 1 and only Shaker H. A 

broadband signal is sent from the Agilent signal generator to the amplifier. The amplifier drives 

the shaker, which is mounted to the pylon via the force transducer tripod. The Agilent output, the 

amplifier output, and the shaker force output are all simultaneously recorded so that the 

amplitude and phase changes can be analyzed.  

The broadband signal selected for the experiment is a multisine having energy content at 0.1 Hz 

steps from 6 Hz to 44 Hz. The signal is 10 seconds long and has amplitude shaping such that the 

shaker does not bottom out at lower frequencies. The FFT of the signal is shown in Figure 3.55. 
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During testing, this signal is run six times consecutively at a particular maximum input level. 

During processing, the first run is ignored since it contains a non-periodic transient, and the other 

five runs are averaged in the time domain to reduce the effects of noise. This is performed for 

each input amplitude test. 

The Agilent signal generator output amplitude is varied over twenty voltages from 0.01 volts to 

0.20 volts at 0.01 volt steps. Therefore, in the time domain, the multisine signal has a maximum 

amplitude of 0.01 volts in the first test and a maximum amplitude of 0.20 volts in the twentieth 

test. For reference, the plot of Figure 3.55 is for a time domain maximum amplitude of 1.0 volt.  

 
Figure 3.55. Multisine signal in frequency domain showing results of amplitude shaping at 

low frequencies. 

3.4.2.1.2 Analysis and Results 

The purpose of this testing is to establish the range of input amplitudes over which the 

deterministic equations developed for gain and phase lag are valid. The desirable outcome is for 

the shape of the response along the frequency axis to be constant over a wide swath of input 

voltages. This should preferably be true for both gain and phase lag.  
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First, the total gain is analyzed, including the amplitude change due to both the amplifier and the 

shaker. To enable visualization, a three dimensional plot is produced, and Figure 3.56 shows the 

gain relative to both input frequency and input amplitude. The input amplitudes are normalized 

to a minimum value of 1.0 (i.e. 0.01 volts actual input equals a normalized value of 1). The plot 

shows some interesting characteristics that were not noted during the stepped sine testing. First, 

there is significant variability in the gain of the system depending on the input amplitude, 

especially within the frequency range of 10 Hz to 20 Hz. Also, there is a ripple in the plot near 

30 Hz and across all input amplitudes that may be a characteristic of the shaker or of the physical 

test setup.  

 
 

Figure 3.56. Total gain relative to input frequency and to input signal amplitude. 
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developed based on a relative input amplitude of 18, and thus the equation best fits the displayed 

data for an amplitude of 19.  

This high variability in gain over various input levels is not desirable. It is possible that an 

equation could be developed that incorporates both changes in frequency and in input amplitude, 

but this is not warranted based on other issues that are subsequently discussed. Overall, the 

complex behavior of the amplitude change through the system suggests that the use of force 

transducers will be required. 

 
Figure 3.57. Total gain relative to input frequency for four input signal amplitudes and for 

deterministic equation. 

Next, the total phase change is analyzed, including the change due to both the amplifier and the 

shaker. A three dimensional plot is produced, and Figure 3.58 shows the phase lag relative to 

both input frequency and input amplitude. The input amplitudes are again normalized to a 

minimum value of 1.0. The plot shows that the uniformity is much better than for gain. 
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Figure 3.58. Total phase lag relative to input frequency and to input signal amplitude. 

Again, to further illustrate the variability across input levels, Figure 3.59 shows the same data, 

but on a two dimensional plot and only for four input amplitudes (4, 9, 14, and 19) along with the 

result of the deterministic phase lag equations. This shows that the phase lag is quite consistent 

across the various input levels. Also, the deterministic equations that were developed fit the 

displayed data fairly well. Overall, the phase change seems to be predictable. 

 
Figure 3.59. Total phase lag relative to input frequency for four input signal amplitudes 

and for deterministic equation. 
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3.4.2.2 Shaker-Structure Interaction 

The next step in validating the deterministic equations is to examine whether they are valid in the 

presence of force drop off. The phenomenon of force drop off in shaker output has been analyzed 

by several authors. Rao (1987) developed equations based on the electro-mechanical 

construction of shakers that explain why force drop off occurs. Essentially, for lightly damped 

structures vibrating at a natural frequency, the velocity of the structure approaches the velocity of 

the moving mass and thus a reduction in the force transmitted occurs. Varoto and Oliveira (2002) 

revisit the issue and include effects due to the natural frequency of the shaker. They also consider 

the difference between an amplifier in voltage or current mode and validate that using current 

mode ameliorates the force drop. Davis et al. (2011) examined this issue while testing if it is 

better to measure input via the acceleration of the moving mass or with a force transducer. Due 

to force drop off, a force transducer provides the better measurement. They also found that the 

greater the difference between the mass of the structure and the mass of the shaker, the less the 

force drop. This is logical since a more massive structure will have much smaller displacements 

relative to the moving mass. 

Overall, the literature indicates that the force drop off phenomenon is worst with lightly damped 

structures, amplifiers operating in voltage mode, and with less massive structures. Unfortunately, 

all three of these problems are unavoidable for the laboratory model structure. The inexpensive 

audio amplifiers only operate in voltage mode, and the steel bridge model is a light structure that 

is very lightly damped. However, Rao suggests that lower force input may diminish the 

phenomenon, and so a test is conducted on the bridge model to evaluate if the force input 

approaches the deterministic values at low excitation levels. 
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3.4.2.2.1 Test Method  

This testing is essentially identical to the input amplitude testing, except that the shaker is placed 

on the bridge model third-point instead of on the pylon. Only the left channel of Amplifier 1 and 

only Shaker H are used. A multisine signal is sent from the Agilent signal generator to the 

amplifier. The amplifier drives the shaker, which is mounted to the bridge model via the force 

transducer tripod. The Agilent output, the amplifier output, and the shaker force output are all 

simultaneously recorded so that the amplitude and phase changes can be analyzed. The multisine 

signal is the same as shown in Figure 3.55 and is again run six times consecutively at each 

particular input level. During processing, the first run is eliminated since it contains a non-

periodic transient, and the other five runs are averaged in the time domain to reduce the effects of 

noise. This is performed for each of twenty tested input amplitudes which again vary from 0.01 

volts to 0.20 volts. 

3.4.2.2.2 Analysis and Results 

The results indicate that lower excitation levels have no discernible effect on the force drop off. 

Figure 3.60 shows the normalized output force for four levels of input amplitude. The values are 

normalized by dividing by the force measured on the steel pylon, which highlights the spikes in 

the plot at the structure natural frequencies. Note that the excitation level of 4 (0.04 volt input to 

amplifier) is near the lower limit of the operating capability of the shakers. Below this level, the 

magnetic force generated by the coil is less than the static friction of the mass, and no shaking 

force is produced. Thus, the curves on this plot represent nearly the full range of excitation level 

that the tactile transducer can provide. 
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Figure 3.60. Normalized variance in force amplitude for four levels of excitation at the 

bridge model third-point. 

3.4.3 Deterministic Equation Summary 

An attempt was made to model the behavior of the amplifiers and the shakers with deterministic 

mathematical equations. Equations that described the amplitude and phase change of signals 

caused by the devices were developed, and were fit via a least squares process to experimental 

data. The resulting equations were then evaluated over a range of signal input frequencies and 

amplitudes, and on a physical structure. 

The result is that the phase of the output force can be predicted; however, the amplitude of the 

output force is not easily predicted. Both the amplifier and the shaker have nonlinear gain 

responses to changes in input amplitude. The gain could potentially be fit to more variables to 

improve the prediction of output amplitudes, but this has little value since other issues exist. To 

wit, the force drop off phenomenon significantly violates the predictions of the deterministic 

equations, further reducing their utility. The force drop off will be different on every tested 

structure, and thus there is no way to incorporate this affect.   
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Overall, the attempt to the use deterministic equations to transfer an input signal to a force output 

signal failed. The output is structure specific and spatial location specific. However, it may still 

be possible to use pre-recorded force outputs to reduce the need for force transducers.   

3.4.4 Alternative Approaches for Measuring Excitation Force 

Although the use of deterministic equations failed to accurately predict the force output of the 

shakers, a more cumbersome method to avoid the use of a force transducer at every shaker may 

still be effective. This method would require the force output for a given signal to be measured 

once for each amplifier-shaker pair. Because of force shaker-structure interaction, the force 

output would have to be measured at each spatial location on the structure to be tested. After the 

measurement of all force inputs, production testing would commence and it would be assumed 

that the force does not vary during these subsequent runs of the same signal. Later, frequency 

response functions would be calculated using the actual output measurements and the assumed 

input measurements. 

Although theoretically possible, this method has a number of shortcomings that make it 

undesirable. First, this method limits the number of unique signals that can be used. Realistically, 

only a small number of unique signals could be used on a given day since each signal must be 

recorded separately for each shaker, and this takes time. Certainly, it would be impossible to use 

any signals with a random component for testing since these signal types require many 

realizations. This includes true random, burst-random, pseudo-random, or periodic random 

signals. Additionally, only a few examples of a deterministic signal could be used. This limits the 

ability to use different amplitudes of a signal, or to perform sweeps over narrow frequency 

bands. However, in the context of long-term testing in which the shakers are placed on a 

structure for months or years, this method could be utilized. 
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Second, it would take significant time to measure the force input at each spatial location even 

with a small number of signals. The force transducer apparatus would need to be installed, 

several runs of each proposed input signal would occur so that averaging could be utilized, and 

then the apparatus would need to be removed and relocated. Not only does this elapsed time cost 

money, it also reduces the consistency of the data and thus reduces the accuracy of the 

characterization. Although it is assumed that the structures are time invariant, this is not the case 

and elapsed time between recording the force input and the structure output provides significant 

opportunities for weather or other factors to alter the structure’s response. 

A third issue is bookkeeping. During the recording of the various signals at the various input 

locations, great care would have to be taken to document these items. This is undesirable since 

there is always a time crunch during testing, with many people performing various activities 

simultaneously, and with a resultant increase in probability of mistakes. Also, if a piece of 

equipment such as a shaker or an amplifier malfunctions during testing and a replacement is 

used, the force output must be recorded again but only used for data sets subsequent to the 

replacement. 

Finally, if the force input is not measured directly at each shaker during all testing, other errors 

occur. For instance, it has been noted that the force output changes by as much as 5% depending 

on the temperature of the shaker coil. There is also variance in the amplifier gain, and the phase 

output for the amplifiers and the shakers. If the force is recorded during testing, then these issues 

have no affect on the results of the structure characterization. However, if the force is not 

recorded, then the variability of these items results in errors in the characterization of the 

structure.  
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Overall, this method is attempted in subsequent testing, and is referred to as ‘roving force 

transducers.’ Despite the many potential issues, a long-term goal is to use many shakers (20+), 

and measuring all force input simultaneously would require a DAQ channel for each shaker. On 

the other hand, roving five (for example) force transducers would greatly reduce costs. 

3.5 CONCLUSION 

3.5.1 Shaker and Amplifier Testing Summary 

This chapter focused on additional testing and characterization of the shakers and  amplifiers for 

use in modal testing. To reduce the cost and complexity of MIMO testing using the multi-shaker 

excitation system, it is desirable to avoid the use of force transducers. Also, if the shakers and 

amplifiers operate in a uniform manner, then they can be used interchangeably. Therefore, tests 

were devised to validate the variability in shaker force output and amplifier gain. 

• In subsection 3.2.1, the uniformity with which a shaker reproduces a force output for a 

repeated input was tested first. The result is that the force output is highly repeatable, 

with an individual shaker’s output varying by only 1% to 2% for both a stepped-sine and 

random input signal. Also, a significant portion of the variance is caused by the increase 

in the temperature of the shaker voice coil during use. The affect of this can be reduced 

by operating the shakers for several minutes immediately prior to performing testing. 

• In subsection 3.2.2, the uniformity of a population of shakers was tested. The outcome is 

that the shakers have an average variance in force amplitude of about 7%, but the phase 

angle has a lower variance of about 3%. The twelve shakers were purchased at different 

times and the testing results clearly show that the manufacturer changed the product since 

the first four shakers acquired operate differently than those acquired later.  
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• In subsection 3.2.3, the uniformity of shaker force output was tested on a laboratory 

bridge model to evaluate shaker-structure interaction. The shakers were located at two 

spatially distinct locations on the model and the affect of the structure response on the 

force measurement was analyzed. The results of this testing are that the force output is 

significantly affected by both the reaction of the structure and by the spatial location of 

the shaker on the structure. Force output varied by up to 100% for frequencies in the 

vicinity of a natural frequency of the bridge model; however, forces were uniform away 

from bridge model natural frequencies. 

• In subsection 3.3.1, the uniformity of an amplifier’s voltage output for a given input 

signal was also tested. The result is that the  amplifiers produce highly repeatable output 

with the output voltage signal varying by less than 0.1% for both stepped-sine and 

random input signals.  

• In subsection 3.3.2, the uniformity of a population of amplifiers was tested. The outcome 

of the testing shows that the amplifiers’ output voltage amplitude varies by about 2% on 

average. 

• Finally, in subsection 3.3.3, the output of a single channel of an amplifier was tested to 

determine whether it was affected by loading of the amplifier’s other channel. The result 

is that for unnecessarily high input voltages, the output amplitude is reduced by as much 

as 10%. However, it was found that more careful selection of input voltage eliminated 

this issue, and that the force output was then not affected by the use of a single or both 

amplifier channels.  

Overall, the testing showed that uniformity in force output of an individual shaker is generally 

within 2% of force amplitude, and that the consistency for an individual amplifier is generally 
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within 0.1% of voltage amplitude. The testing also indicates that the shakers must be considered 

as individuals since there is a large variance in force output, and since newer shakers may be 

added and older shakers may be replaced at any time. The amplifiers must also be considered as 

individuals since their gain is variable. 

3.5.2 Force Transducer Requirement Summary 

Ideally, money is no object and unlimited force transducers and data acquisition channels would 

be available. The reality for the work reported herein is that budget constraints do not permit the 

simultaneous measurement of force input for the number of shakers that are available. Thus, it is 

desirable to avoid the use of a force transducer at every input so that more DOFs can be 

simultaneously excited. The idea of fitting deterministic equations to the excitation system was 

explored, but the variability in force output due to several sources introduces excessive error.  

First, every shaker operates as a unique individual and each amplifier does as well. This could 

possibly be overcome with careful bookkeeping, however, the use of force transducers allows the 

amplifiers and shakers to be used completely interchangeably with no regard for which one is 

used where. This greatly reduces the potential to get incorrect results due to a setup mistake. 

Second, force drop off near the natural frequencies of a structure under test significantly impacts 

the force input. Third, the excitation force can potentially change during testing due to a myriad 

of reasons. The shaker coil temp, the time variance of the structure, any test setup change, any 

accidental modification of the equipment or apparatus, etc. will all vary the force input as testing 

proceeds. Thus, force transducers should always be used for reliable results to be captured. 

A less-desirable alternative that allows simultaneous excitation of more DOFs than the number 

of available force transducers is to rove the transducers. Roving incorporates the variability due 
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to non-uniform amplifiers and shakers, and incorporates force drop off, but does not take into 

account any input changes that occur during the testing time. The use of roving force transducers 

also increases testing time and complexity; however, due to budget limitations, using roving 

force transducers is tested later in this thesis. 
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4 CHAPTER FOUR 

EXCITATION TECHNIQUES 

4.1 INTRODUCTION 

This chapter considers the important choice of excitation signal type, force level, and spatial 

location for the MIMO experimental modal analysis of bridge structures using multiple shakers. 

The quality of the measured frequency response functions (FRFs) is directly related to the 

parameters of the excitation. Although MIMO EMA is common in the mechanical and aerospace 

fields, only two examples are reported in the literature for civil structures (Schwarz and 

Richardson 2001 and Miskovic et al. 2009 as noted previously). Neither of these papers provide 

details on optimization of the input.  

Thus, it is necessary to determine the best techniques for MIMO EMA excitation of short to 

medium-span bridges. This is performed in the following steps: 

• The available literature is reviewed for context of the problem 

• Issues that affect the measurements of FRFs in regards to the methods of usage of various 

signal types are discussed 

• The variety of alternate input signal types are discussed and compared 

• Methods to determine the optimal input force level are discussed 

• Methods to determine the optimal spatial distribution of input are discussed 

• Finally, the best signals are selected for MIMO EMA with tactile transducers, and the 

manner in which force level and spatial distribution will be determined for any tested 

structure is documented.  
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4.2 BACKGROUND AND CONTEXT 

Because of the importance of the input signal in the accurate estimation of modal parameters, 

literally hundreds of papers and many books have been written on the subject by researchers and 

practitioners in the mechanical and aerospace fields. A brief literature review that provides a 

sampling of commonly cited papers is presented to provide some historic perspective on the 

subject and to frame the selection of excitation techniques for the research presented herein.  

Prior to the availability of the digitally implemented fast Fourier transform (FFT), modal testing 

was performed with slowly swept sinusoidal input and a tracking filter. By the early 1970’s, 

hardware was available that allowed the excitation of test objects with arbitrary waveforms 

consisting of a broadband spectrum. The switch from using a single frequency at a time to 

broadband input allowed a significant reduction in testing time, and this encouraged researchers 

to explore the use of a wide variety of signal types. 

Allemang, et al. (1983) advanced the idea of multiple-input, multiple-output (MIMO) 

experimental modal analysis. Prior work by others had formulated the theoretical basis, but 

experimental work was lacking. In this paper, several experimental advantages that could be 

expected with the successful implementation of MIMO were mentioned, but the main advantage 

touted was in the great reduction of required testing time. A major concern noted was the 

correlation of inputs, and so only random signal types were considered. An airplane was tested 

with three inputs and a single output with continuous-random, periodic-random, and burst-

random signals. The burst-random signal was shown to produce the best FRFs in this testing. 

Zimmerman and Hunt (1985) took the idea of MIMO testing with random signals further. They 

tested three aircraft with burst-random and continuous-random signals and concluded that burst-
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random was far superior primarily due to the reduction of leakage error. They also listed out 

eight reasons why MIMO testing is superior to single-input testing, although they did not 

validate these reasons with experimentation. They still had concerns with correlation of the 

signals, worrying that the forces may be correlated by the response of the structure.   

Hunt (1987) was one of the first to report on using determinate excitation for MIMO testing. To 

avoid issues with correlation, the inputs were simply made out of phase with each other. He 

noted that hardware had to be developed to make this possible. Experiments were performed on 

rocket motor bodies, and the results indicated that the method is superior to using single-input 

determinate excitation. Unfortunately, this paper did not directly compare burst-random with 

determinate testing. 

Many other researchers promoted different signal types for various testing situations, and 

eventually Schoukens, et al. (1988) set out to determine which signal type was best. In this paper, 

the writers developed a mathematical measure of the quality of a signal, which they called the 

time factor. This measure incorporated signal to noise ratio (SNR), peak factor, and averaging 

requirements. They then determined the value of the time factor for ten signal types, and 

summarily promoted the use of multisine signals since this excitation type had a low time factor. 

They also showed that the common belief that random signals average out nonlinearities is not 

true. However, this belief persists to this day.    

Hunt and Brillhart (1991) summarized a great amount of the testing community’s results of the 

preceeding decade using random excitation. They touted MIMO and discussed the benefits of 

using more exciters. They also wrote about selecting an appropriate force input level and 

recommended a qualitative method in which the force level that gives the smoothest FRFs is 
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used. Finally, they continued to recommend using burst-random excitation in testing of lightly 

damped structures. 

In an effort to assist the testing community in selecting good locations for shakers, Imamovic and 

Ewins (1997) attempted to create a mathematical method that would quantitatively indicate the 

locations that should be excited. The method required a-priori knowledge of the mode shapes, 

but then did allow the calculation of a number that represents the relative value of exciting at a 

particular spatial location. This method does not seem to have been adopted by others. 

In a further effort to evaluate the merits of random as the excitation signal of choice, Pintelon 

and Schoukens (1998) mathematically proved that continuous-random, burst-random, and 

multisines all provide the same linear approximation of nonlinearities. Despite this, other 

researchers do not seem to have adopted the use of multisine signals.  

Guillaume, et al. (2001) also wrote about the benefits of multisines and discussed various 

methods for optimizing the crest factor of the signal. The authors statistically show that the FRFs 

are best estimated by use of a maximum likelihood estimator as opposed to the traditional H1 

estimator. They also show the optimum application of multisines to MIMO testing by using a 

Hadamard matrix to force the testing realizations to be orthogonal. However, this requires that 

the number of inputs is a power of two. 

Solomou and Rees (2003) presented work on developing the best linear estimate of slightly 

nonlinear systems using multisines. They encouraged the use of a crest factor optimization 

algorithm known as ܮஶwhich enables this best linear estimate. 
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Dobrowiecki, et al. (2006) set out to determine the optimum method for using multisines in 

MIMO testing. The authors noted several reasons why all forms of random excitation are inferior 

to multisines in the estimation of FRFs. They then compare three different methods of using 

multisines in MIMO testing with the point of not only avoiding any issues with correlation, but 

providing nearly orthogonal excitation realizations for any number of inputs.        

Overall, a great deal has been written on selecting excitation signals for various types of modal 

testing of mechanical and aerospace systems. The signal types and testing procedures have 

changed over time as new research has been performed, and as new hardware and software have 

been developed. However, the literature does not demonstrate how this knowledge should be 

adapted to EMA of civil structures. 

Therefore, for the work of this thesis, the information that exists is considered in the context of 

bridge testing. The optimal signal must be compatible with MIMO testing, should minimize 

leakage and other errors, should minimize testing time, and would preferably enable testing to 

proceed with the use of roving force transducers. Seven signal types are analyzed and compared 

herein. 

4.3 DEFINITION OF TERMS AND DISCUSSION OF ISSUES IN SIGNAL SELECTION 

This section introduces the issues that are important in selecting an appropriate excitation signal 

for the testing proposed in this thesis. It also describes and defines common procedures and 

terms used in testing so that the later comparison of signal types can be readily understood.    

4.3.1 Overview and Issues 

Excitation signals include any type of force input that is intended to produce a response in a 

structure under test. Four major categories of excitation exist: ambient; impact; relaxation; and 
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shaker. Ambient inputs are the unmeasurable excitations from the surrounding world. This 

ambient input can be used as the only excitation if some assumptions about the frequency 

content are made; however, modal flexibility cannot be calculated without a known force input, 

and thus ambient excitations are not adequate for the work of this thesis. Impacts are also often 

used to excite structures. The impact force can be applied with devices ranging from small 

hammers to massive drop weights. However, impact excitation has many drawbacks and is not 

fit for MIMO testing of bridges. Relaxation is an excitation method wherein a structure is 

deformed by a force which is then suddenly released. The free vibration of the structure after 

release is measured. This type of excitation is similar to impact in many ways, but is far more 

difficult to actually perform in the field.  

Finally, mechanical shaking devices can be used to impart signals of any duration or character. 

Mechanical shakers can generally be divided into three groups. Eccentric mass shakers have a 

rotating mass (or masses) that is eccentric and thus generates sinusoidal signals. Reaction mass 

shakers position an actuation device between the structure under test and a massive object (such 

as the earth), and the force applied to the structure can usually be of any character. Linear mass 

shakers use hydraulic or electro-magnetic actuation to move a mass, resulting in an output force 

that can usually be of any character. The tactile transducers are linear mass shakers, and thus the 

signal types discussed herein are those that are commonly used with this style of shaker.   

Three major issues must be considered in the selection of the best excitation signal for this 

research. First, the signal must minimize the bias error known as leakage. Second, the signal 

must be usable in a MIMO environment. Finally, to enable the use of roving force transducers, 

the signal should be deterministic (not a unique realization of a probability distribution). Each of 

these three issues is discussed in more detail below.  
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4.3.1.1 Leakage Error 

The types of signals commonly used in testing are largely a result of the requirements of the fast 

Fourier transform (FFT). For the transform to give best results, the time domain input and output 

signals must meet one of two requirements. One requirement is that the entire time history is 

captured. The other requirement is that the captured signals are periodic and thus could extend in 

exactly the same manner infinitely into the future and past. Otherwise, a type of error known as 

leakage occurs. 

An example of a periodic signal and its FFT are shown in Figure 4.1, and an example of a non-

periodic signal and its FFT are shown in Figure 4.2. It is clear that the amplitude of the non-

periodic signal gets ‘smeared’, or leaked, into the adjacent frequency lines. This error affects 

both the transform of the input signal and the output signal. For the output, peaks exist at natural 

frequencies, and these peaks are made shorter and wider if leakage occurs. This has a large affect 

on calculated damping and modal scaling values. 

Leakage can be avoided by the choice of testing procedure. One procedure is to use an excitation 

that is periodic in the observation window, and capture a simultaneous response that is also 

periodic in the window. A second procedure is to use a transient excitation signal that is 

completely observed in the window, and capture a simultaneous response that is also completely 

observed.     
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Figure 4.1. Signal that is periodic in the transform window; time and frequency domain. 

 
 

Figure 4.2. Signal that is half a period short of being periodic in the transform window; 
time and frequency domain.  

4.3.1.2 MIMO Signal Requirements 

The use of simultaneous multiple excitation creates some added requirements if frequency 

response functions (FRFs) are to be found. FRFs are simply a ratio of the output to the input. 

Several common formulations that can be used with multiple inputs exist depending on the 

nature of the input signal, but they all require dividing the output measurement by the measured 

inputs. The problem is demonstrated below at a single discrete frequency line for a system that 

has two inputs and two outputs. The definition of the transfer function is: 
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 ൜ ଵܺ
ܺଶ

ൠ ൌ  ൤ܪଵଵ ଵଶܪ
ଶଵܪ ଶଶܪ

൨ ൜ܨଵ
ଶܨ

ൠ Equation 4.1.

Where: 

௜ܺ ൌ the output at DOF i. 

௜௝ܪ ൌ the transfer function or FRF for output i due to input j. 

௝ܨ ൌ the input at DOF j. 

 

It is clear from the formulation that there are four unknown FRF values but only two equations. 

This requires that a second experiment be conducted so that additional input and output pairs can 

be measured. If the force inputs between the two experiments, experiments ‘a’ and ‘b’, are 

linearly independent, then the four unknown FRF values can be directly solved with the four 

independent equations: 

 ൜ ଵܺ௔
ܺଶ௔

ฬ ଵܺ௕
ܺଶ௕

ൠ ൌ  ൤ܪଵଵ ଵଶܪ
ଶଵܪ ଶଶܪ

൨ ൜ܨଵ௔
ଶ௔ܨ

ฬܨଵ௕
ଶ௕ܨ

ൠ Equation 4.2.

 

The transfer function can now easily be found by using any appropriate algorithm that solves the 

general linear algebra problem of ݔܣ ൌ ܾ. However, if the two forcing functions are linearly 

correlated at any frequency line, then the force matrix will be singular at that frequency line, and 

a solution cannot be found.  

Thus it is seen that for FRFs to be found in MIMO testing, two requirements must be met. First, 

the experiment must be realized at least ௜ܰ  times, where ௜ܰ is the number of input DOFs. Second, 

there must be at least ௜ܰ force inputs, none of which are perfectly correlated at any frequency 

line. It must also be recognized that even close correlation can cause numerical issues in the 

solution of ݔܣ ൌ ܾ.  
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4.3.1.3 Roving Force Transducer Use 

As has been mentioned in earlier chapters, it is desirable to minimize the cost and the logistical 

complexity of the testing system. Thus, the use of roving force transducers is considered. In the 

best case, the force output from each shaker in a given setup, and for a given signal, can be 

measured once and can then be considered to be a known quantity whenever that signal is used 

again. In this way, force vectors would not have to be measured for every data set. The selection 

of an excitation signal type impacts the potential need for the transducers.  

If a deterministic signal is used for each required testing realization, then the use of roving force 

transducers is enabled. However, if stochastic signals are used, force transducers will be difficult 

to avoid. The primary issue is not the number of realizations that are required for solution of 

ݔܣ ൌ ܾ, the issue is that stochastic signals require many realizations to ensure that all frequency 

lines are adequately excited. Due to the large number of unique signals, it would take an 

unreasonable amount of time to record the response of each shaker, and it would also be difficult 

to keep track of which signal is used for which shaker in each testing realization. Thus, stochastic 

signals are not desirable if roving force transducers is to be attempted.     

4.3.2 Averaging Methods 

Averaging is the most commonly used tool for reducing stochastic errors that are present in all 

measurements. The two main types are cyclic averaging and power spectral averaging.  

4.3.2.1 Cyclic Averaging 

The cyclic averaging of data sets is a commonly used method for improving the quality of FRF 

measurements with periodic signals. Cyclic averaging is linear and requires that the sets to be 

averaged are periodic in the observation window, and that each set is due to the same input 
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function. As such, this averaging is most useful with deterministic signals. This type of 

averaging cannot be used with any true random signals since each data set would be unique. 

However, it is possible to use a single realization of a random signal and apply it in a periodic 

manner so that time domain averaging can be used to reduce the effect of noise on the output. In 

this way, some of the benefits of this averaging technique can be extended to random, burst-

random, and periodic-random signals. 

Cyclic averaging can be used in the time or frequency domain with equivalent results. However, 

cyclic averaging is typically performed in the time domain so that the FFT is performed on fewer 

data records, reducing computation time. There are two primary benefits to this type of 

averaging. First and foremost, the averaging reduces the random noise that is part of every real 

measurement. The second benefit is data reduction. If averaging is performed as each set of data 

is collected, then the storage requirements for the data can be greatly reduced. This was more 

important in the past when electronic storage was relatively expensive, whereas now 

experimenters are seldom limited by hard drive space. Cyclic averaging does not reduce leakage 

error. 

The main benefit of cyclic averaging is in reduction of the random noise. Figure 4.3 shows a 

multisine signal that white noise has been added to. The noise has an RMS amplitude equal to 

50% of the RMS amplitude of the original signal. Figure 4.4 illustrates the benefit of averaging 

by showing the FFT result without averaging, and with an average of five realizations of the 

noise. It is clear that in the presence of random noise, cyclic averaging is a good method for 

reduction its effects. 
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Figure 4.3. Multisine signal example in the time domain with random noise added. 

 
Figure 4.4. Multisine signals in the frequency domain showing the benefit of cyclic 

averaging in reduction of noise. 

4.3.2.2 Power Spectral Averaging 

Power spectral averaging is a commonly used method for improving the quality of FRF 

measurements with stochastic signals. The averaging is performed on the cross power and auto 

power spectra prior to calculation of the FRFs. Data sets are converted to the frequency domain, 

the auto and cross power spectra of each data set are calculated, and then linearly averaged 

together. After averaging, the FRFs are calculated.  

This frequency domain averaging is necessary for random signals. In practical testing, relatively 

short periods are used for each observation window. Thus, a single realization of a random signal 
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is likely to have low energy at some frequencies. This is an issue in the calculation of the FRFs 

due to division by the force input. If the force input is very small and noise exists in the output, 

then the division can result in a large FRF magnitude that may be incorrectly interpreted as a 

system pole.  

The probability that all frequencies have been adequately excited improves as more samples are 

collected; however, the samples cannot be averaged in the time domain since the mean value of a 

random signal tends to zero. Also, averaging the frequency domain signals causes the same 

issue. Thus, the averaging must be performed after calculation of the auto and cross power 

spectra. This averaging of the power spectra not only allows the combination of random signals, 

but also reduces the variance due to noise in the samples. Bias errors such as leakage are not 

reduced by use of power spectral averaging. Thus, leakage must be addressed by the choice of 

signal type. 

An example of the benefits of power spectral averaging is illustrated. A numerical model of a 

cantilever beam is excited with a burst random input at a degree of freedom (DOF) that is at the 

tip of the beam, and the acceleration of the beam is also recorded at that DOF. White noise with 

an RMS amplitude of 10% of the RMS amplitude of the output signal is added to the output 

signal. The left half of Figure 4.5 shows the resulting FRF with the use of a single realization of 

the burst random signal. Spurious peaks are seen in the magnitude plot and the phase plot is very 

noisy. The right half of the figure shows the resulting FRF with the use of ten averages of the 

power spectra. The averages are the result of ten realizations of the force input signal and the 

noise on the output. The magnitude plot very clearly indicates the first six natural frequencies of 

the beam and the phase plot is also improved. 
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Figure 4.5. FRF magnitude and phase plots for a virtual cantilever beam. One power 

spectral average on left and ten averages on right. 

4.3.3 Testing Time 

Given any testing situation, it is beneficial to minimize the required testing time for a few 

reasons. First, less time spent is equivalent to less cost. Second, bridge structures are not truly 

stationary, and longer testing times give worse modal results due to non-stationarity decreasing 

the consistency of the measurements. Thus, it is desirable to select a signal that can provide equal 

quality of results in the least time. However, the required testing time is difficult to predict in 

general since it is a combination of several elements. 

For periodic signals, the testing time is defined by four elements. First is the signal length. For 

some deterministic signals, the length is determined by the frequency content, but for others the 

length is selected for a desired resolution. The next element is the structure settling time. The 
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settling time is how long it takes for the transient response to decay so that the response is then 

periodic. The third element is the number of cyclic averages desired for reduction of noise. The 

final element of testing time is the number of multiple inputs. Each input requires a realization of 

the test process so that the transfer function can be determined. 

For stochastic signals, the testing time is defined by only three elements. Two of the elements are 

the signal length and the number of inputs, the same as for deterministic signals. The final 

element is the number of power spectral averages required. This requirement can be controlled 

by either the need to reduce noise, or the need to ensure that all frequency lines have been 

adequately excited. 

It is clear that the actual testing time for a given structure will be dependent on the level of noise, 

number of inputs, and frequency range of interest. However, it is possible to normalize the 

needed time to reach a given level of accuracy for a single frequency line. Schoukens, et al. 

(1988) provided a survey of excitation signals wherein they developed a measure called the time 

factor (TF). They defined a TF of unity as the time required to reach a selected level of FRF 

accuracy with a pure sine wave input. The time factor includes all of the contributing elements 

discussed previously except for settling time. The time factors that were found by these authors 

are reported within the discussion of each signal type. A lower TF is better.  

4.4 SIGNAL TYPES FOR DYNAMIC TESTING 

The goal of this section is to provide a description of all of the commonly used excitation signals, 

compare the pros and cons, and select the best signal type to use for the MIMO EMA testing of 

bridge structures. Seven signal types are discussed in detail, the main properties are summarized 

in a table, and then a signal is chosen. 
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4.4.1 Slow Swept Sine 

The slow swept sine signal consists of sinusoidal input at discrete frequency lines over some 

frequency band of interest. Also referred to as stepped-sine, this signal type only has energy at a 

relatively small number of frequencies. In practice, a single frequency is input for a long enough 

time that any transient response of the structure decays prior to the start of data recording. After 

the desired length of data is collected, the next frequency line is tested. Sets of data for the 

different input frequencies are then added together in the frequency domain prior to the 

calculation of frequency response functions. A simple example of this type of signal is shown in 

Figure 4.6 after transformation to the frequency domain, and the discrete nature of the excitation 

is clear.  

 
Figure 4.6. Slow swept sine example in the frequency domain.  

When using the stepped-sine, leakage is controlled by the testing procedure. The recorded data 

blocks of both the excitation and the structural response are chosen to have a length such that 

they are periodic, minimizing leakage in the FFT. Also, the FFT resolution and excitation 

frequencies are selected so that each excitation is at one of the discrete frequencies represented in 

the transform. 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Frequency (Hz)

A
m

pl
itu

de



 126 

Since the recorded data is periodic, cyclic averaging in the time domain can be used to reduce the 

effects of noise. Time domain averaging also reduces leakage caused by the non-periodic noise. 

MIMO testing can be performed with pure sinusoidal signals. Correlation is avoided by merely 

altering the phase angle of inputs from one testing realization to the next. For instance, with two 

input locations, the first test can be performed with both input sinusoids starting each observation 

window at a phase of zero radians. A second test can then be performed with one of the input 

sinusoids starting at a phase of ߨ radians. However, if a large number of test realizations are 

desired to reduce variance on the FRFs, then the phase difference between realizations will 

become small. This is a problem for the H1 FRF estimator, but not for other algorithms such as 

the maximum likelihood FRF estimator (MLE).        

This type of signal has a few other advantages. First, the frequency content can be completely 

controlled, which allows excitation of one mode while explicitly not exciting another. Second, 

the TF is very good at 1.0. Finally, the use of discrete frequencies allows structural nonlinearities 

to be characterized.   

However, the discrete frequency content causes testing using the stepped-sine to suffer from a 

choice of two drawbacks. One testing option is to use a large number of frequency lines so that 

all modes of interest are likely to be adequately excited. This option results in testing taking a 

very long time, potentially longer than the available time. This is because of settling time being 

required for each frequency change. The other testing option is to only test narrow frequency 

bands around the modes of interest, but this requires prior knowledge of estimated natural 

frequencies of the structural modes.  
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4.4.2 Periodic Chirp 

The periodic chirp signal is composed of a sinusoid whose frequency is constantly varying from 

a selected minimum to a selected maximum value. This means that all frequencies in the selected 

band are excited to an equal amplitude. In practical testing, the chirp is typically repeated 

multiple times in a row and each repetition is considered as a periodic data block. This is a 

deterministic signal and the equation that describes a chirp signal is shown. A simple example of 

this signal type is shown in Figure 4.7 with the sinusoid starting at 3 Hz and finishing at a 

frequency of 9 Hz.  

 
ሻݐሺݕ ൌ ܣ · sin ቈ2ߨ ቆ ௠݂௜௡ · ݐ ൅

݇ · ଶݐ

2
൅ ߮௢ቇ቉ Equation 4.3.

 

 
݇ ൌ ௠݂௔௫ െ ௠݂௜௡

݁݉݅ݐ
 Equation 4.4.

 

Where: 

ሻݐሺݕ ൌ the discrete time chirp signal. 

ܣ ൌ the signal amplitude. 

௠݂௜௡ ൌ the frequency at the start of the chirp. 

௠݂௔௫ ൌ the frequency at the end of the chirp. 

݇ ൌ the rate of change of the frequency. 

߮௢ ൌ the phase angle at the start of the chirp. 

݁݉݅ݐ ൌ the total duration of the chirp. 
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Figure 4.7. Chirp example in the time domain. 

The frequency domain transform of two chirp signals are shown in Figure 4.8. This figure 

illustrates how the chirp provides excitation to a select range of frequencies while providing very 

little energy to other frequency lines. Two curves are shown to illustrate the benefits of longer 

chirp durations. The upper curve is for a chirp duration of 5 seconds and the lower curve is for a 

duration of 25 seconds. It is clear that the longer the time, the sharper the roll off at the ends of 

the band and the smoother the input amplitude within the band. This is largely a result of the 

number of oscillations within the time domain signal such that less time is needed at higher 

frequencies than at lower frequencies to get an equally smooth response. Since bridge testing 

requires generally low frequency input, chirp signals will need to be relatively long. 
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Figure 4.8. Chirp example in the frequency domain showing improvement with longer 

duration signal. 

Leakage is reduced by the testing procedure when using a chirp. The chirp is input repeatedly 

and data collection begins after the transient response decays. The desired number of periodic 

data sets are then recorded. The periodicity of the input and output data minimizes leakage. 

However, since the chirp excites all frequencies, there is leakage in the FFT of the chirp that 

comes from between the excitation of frequencies that are between the discrete frequency lines 

that are represented in the FFT. Since the input amplitude is typically flat, this type of leakage is 

usually not an issue. 

Since the chirp signal is periodic, cyclic averaging in the time domain can be used to reduce the 

noise and the leakage caused by the non-periodic noise. 

MIMO testing with a chirp is the same as testing with a stepped-sine. The phase of the signal 

must be varied for each testing realization so that correlation is avoided. This can impact the 

choice of FRF algorithm as discussed for stepped-sine. 

There are several other advantages to the chirp signal. First, the frequency content can be 

controlled such that desired bands can be excited while other bands are largely excluded. Second, 
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all frequencies within the excitation band are guaranteed to be excited for a true analog signal. 

For a discrete digital signal, it is necessary to select a time step in signal generation that is small 

enough to provide the desired resolution of excitation. Third, since the signal is deterministic, it 

is possible to characterize structural nonlinearities. Finally, the TF ranges between 1.5 and 4. 

One disadvantage of the chirp signal is that for low frequency excitation, the signal may need to 

have a long duration to provide reasonably smooth frequency input amplitude (and thus the 

higher end of the TF is reached). Alternately, with prior estimates of the natural frequencies of 

the structure under test, high resolution narrow band chirps can be used.   

4.4.3 Random 

The pure random signal (i.e. continuous-random) is a collection of random numbers selected 

from a probability distribution, and the signal is described by the statistical underpinnings of the 

distribution. Any time domain sample generated for a given definition of a random signal would 

thus be theoretically unique and would have energy at all frequencies. For vibration testing, the 

random signals used are stationary and ergodic. Stationary mean that the probability distribution 

of the signal is the same at all times, and ergodic means that the statistical properties of the 

distribution can be deduced from any sufficiently long sample of the signal. 

Figure 4.9 shows a sample of a random signal that was generated from Gaussian white noise. 

The definition of the signal is that it has a normal distribution, a mean of zero, and a standard 

deviation of one.  
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Figure 4.9. Pure random signal example in the time domain. 

A random signal has several issues for use in modal testing. First, the energy content at each 

frequency line is highly variable and is not improved by extending the duration of the signal. 

Figure 4.10 shows the frequency domain results for a random signal that has a duration of 1 

second and for a signal that has a duration of 5 seconds. It is seen that the resolution of the 

transform is increased by five times, however, the variability in the signal amplitude at discrete 

frequency lines is not improved. To reduce the variability, averaging must be used. This is 

illustrated in Figure 4.11 for 10 averages and for 100 averages. In both cases, the duration of 

each data set was 1 second, and it is clear that the amplitude of the frequency content is 

significantly improved by averaging more sets. 
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Figure 4.10. Pure random signals of different durations in the frequency domain. 

 
Figure 4.11. Pure random signals with different numbers of averages in the frequency 

domain. 

Leakage is a major problem when using a pure random signal. The excitation is not periodic in 

the observation window, nor is it a completely observed transient. Traditionally, a Hanning 

window was applied to both the excitation and response time histories to reduce the leakage by 

forcing the data to zero at both ends of the window. Unfortunately, the Hanning window causes 

other bias errors. Since a random signal also excites all frequencies, leakage from between the 

discrete frequencies lines also occurs, and can cause issues since a single realization has 

significant peaks and valleys. 
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Averaging of the data is complicated by the continuous random signal. Time domain averaging 

cannot be used since the mean of a random signal is zero. Frequency domain averaging also 

cannot be used since the amplitude will still approach zero. Therefore, the averaging for the 

random signals is undertaken by averaging the auto-power and cross-power spectra of the inputs 

and outputs. The disadvantage of averaging in this manner is that more data storage is required 

and more computation time is consumed. 

Random signals are desirable for MIMO testing. Since each realization of the input signal is 

unique, correlation of the signals if not a major concern. Typically, many realizations are 

performed so that all frequencies are likely to be excited, and this provides a high probability that 

an adequate number of uncorrelated signals exist. However, a unique realization is required at 

each input location, not just for each test. Also, the pure random signal has a good TF of 1.5. 

4.4.4 Burst-Random 

The burst-random signal is also a stationary, ergodic signal, but varies from the pure random 

signal in that the signal is set to a deterministic value of zero after a portion of the sampling time 

elapses. This is done so that the response of the structure under test has time to decay and thus 

both the signal and the response are almost totally captured in the observation window.  An 

example of a burst-random signal is shown in Figure 4.12. 
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Figure 4.12. Burst-random signal example in the time domain. 

The burst-random signal exists as a result of researchers attempting to reduce the leakage error 

while keeping the benefits of a random signal. Leakage can be nearly eliminated if the excitation 

ends early enough in the observation window that the structural motion has time to practically 

decay to zero. However, since a random signal excites all frequency lines, leakage from between 

the discrete frequencies represented in the FFT still occurs. As with the continuous random 

signal, this leakage can be significant since a single realization of the burst-random signal is 

likely to have peaks and valleys. 

Averaging of many data sets is required to ensure that all frequency lines have been adequately 

excited. As with the continuous random signal, the averaging must occur after response spectra 

are calculated, increasing data storage and computation time.  

The burst-random signal is the most commonly used excitation method for MIMO testing. Each 

realization is unique, so correlation is not an issue so long as many sets are collected. As with the 

continuous random signal, any number of test realizations can be performed, but a unique 

excitation realization is needed for each input location. 
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The TF for burst-random is dependent on the length of the signal portion that is set to zero. The 

longer the duration of no input, the worse the signal to noise ratio, and thus the worse the TF. For 

a reasonable burst that is 80% of the length of the window, the TF would be about 1.7.  

4.4.5 Pseudo-Random 

The pseudo-random input signal is also stationary and ergodic like the pure random signal; 

however, the frequency content is controlled such that there is energy input at only frequency 

lines that will exist in the FFT, and the amplitude is constant while the phase angle is random. 

An example of a pseudo-random signal is shown in Figure 4.13. The absolute value at each 

frequency line is shown since the random phase angle causes the amplitude to be spread between 

the real and imaginary parts. This signal is then transformed to the time domain using the inverse 

FFT and the result is shown in Figure 4.14 where it is clear that the amplitude is constant and the 

phase angle is random. The contributing sinusoids were separated for illustrative purposes. The 

actual signal is the superposition of the three sinusoids. 

 
Figure 4.13. Pseudo-random signal example in the frequency domain (absolute value). 
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Figure 4.14. Pseudo-random signal transformed to the time domain with contributing 

frequencies shown separately. Note constant amplitude but random phase. 

Control of the frequency content eliminates the leakage that occurs from between the discrete 

lines when all frequencies are excited. The test procedure is used to eliminate the leakage error 

that is due to nonperiodicity. In practice, the signal is input repeatedly. After the decay of the 

transient response, the input and output are periodic. In this way, a periodic input and response 

are captured in the observation window and leakage is theoretically eliminated. This testing 

method requires the repeated use of a single realization of the pseudo-random signal; i.e. the 

phase angle is not randomized on each repeated input of the signal.  

Since this signal is periodic, cyclic averaging in the time domain can be used to reduce the noise 

and the leakage caused by the non-periodic noise. The application of deterministic amplitudes to 

the desired frequency lines eliminates the need for averaging of the power spectra. 

This signal is a good candidate for MIMO testing. Correlation issues can be reduced by the use 

of random phases in many realizations. Random phases are also required for each shaker within 

each test. 
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The TF for pseudo-random signals is generally between 2 and 4.5. Since the phases are random, 

the superposition of the various frequency sinusoids can cause large peaks (in the time domain) 

in a particular realization, and this uneven input amplitude makes the TF worse. 

4.4.6 Periodic-Random 

A variation of the pseudo-random signal is the periodic-random signal. This is exactly the same 

as pseudo-random except that the amplitude at each frequency is random instead of the phase. 

This signal is less desirable than the pseudo-random since many averages are required so that 

adequate excitation can be expected at all frequencies. The TF is also worse at 4.5. 

4.4.7 Multisine 

The multisine signal has been the subject of much more recent research than the other signal 

types. Although there are several versions of multisine signals, they typically consist of a 

selection of sinusoids that are added together and whose phases and amplitudes are controlled in 

a manner that optimizes particular properties depending on the testing situation. The signal can 

also selectively be designed to optimize the ratio of the peak amplitude to the RMS amplitude. 

This significantly improves signal to noise ratio, which decreases variance on the FRF (by 

reducing the effect of small denominator values). 

There are several methods in the literature that provide low peak to RMS ratios (Guillaume et al. 

2001). A simple method for selecting the phases is known as the Schroeder multisine and is 

shown below. This method is used in the production of Figure 4.15 and it is apparent that the 

amplitude is fairly constant throughout the signal length. 

 



 138 

 
ሻݐሺݕ ൌ ෍ ௞ܣ

ி

௞ୀଵ

· cosሺ2ߨ · ݇ · ݂ · ݐ ൅ ߮௞ሻ Equation 4.5.

 

 
߮௞ ൌ െ

ߨ · ݇ሺ݇ െ 1ሻ
ܨ

 Equation 4.6.

 

Where: 

ሻݐሺݕ ൌ the discrete time multisine signal. 

ܨ ൌ the total number of frequency lines in the signal. 

௞ܣ ൌ the amplitude for the k-th frequency line. 

݂ ൌ the step size between frequency lines. 

߮௞ ൌ the phase angle for the k-th frequency line. 

 

 
Figure 4.15. Multisine signal example in the time domain. Note consistent peak amplitudes. 
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Figure 4.16. Multisine signal example in the frequency domain.  

All multisines are designed to eliminate leakage on the input by using sinusoids at integer 

multiples of the FFT resolution. Using f as the step size between frequency lines, the period is 

chosen as T = 1/f. This period eliminates leakage on the input since all of the sinusoids will be 

periodic in the observation window and all of the frequency lines will match a frequency line of 

the FFT. To minimize leakage on the output, the multisine signal can be used either as a burst, 

or, more commonly, in a repeating fashion such that the initial transient decays out and then the 

response becomes periodic. An example of the multisine signal in the frequency domain is 

shown in Figure 4.16 and the lack of leakage and the consistent amplitude over the excitation 

range are clear. As with the other periodic signals, cyclic averaging can be performed in the time 

domain to reduce noise.  

For MIMO testing, correlation of the inputs becomes a concern. Simple methods exist that will 

theoretically eliminate correlation, although the actual physical responses of a structure may 

introduce some correlation. One simple method is to choose frequency lines for the different 

shakers that are interleaved. For example, using the basic case of two inputs, in the first test 

realization one shaker excites even frequency lines and the other would excite odd frequency 

lines. In a second test realization, the inputs would be reversed. Other methods are available such 
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as using a Hadamard matrix to ensure the test realizations are orthogonal. The Hadamard matrix 

requires the number of inputs to be a power of two, but other methods are available so the signals 

can be nearly orthogonal for any number of inputs (Dobrowiecki et al. 2006).  

The multisine signal has a good time factor between 1 and 1.5 depending on which  method is 

used to select the phases. Thus, this signal provides the same level of FRF accuracy in less time 

than most of the other signals discussed.   

4.4.8 Summary of Signal Types 

The seven signals discussed are summarized in Table 4.1, and it is clear that the multisine signal 

should give the best results and it is selected for use in this work. However, the burst-random 

signal is commonly employed in the literature and has been used far more than multisine. 

Therefore, burst-random is also used in testing. 

Signal Type Leakage Error MIMO 
Compatibility 

Allows Roving 
Transducers Time Factor 

Slow Swept Sine None Fair Yes 1.0 

Periodic Chirp Minor Fair Yes 1.5 - 4 

Random Significant Best No 1.5 

Burst-Random Minor Good No 1.7 - 2.5 

Pseudo-Random None Good No 2 – 4.5 

Periodic Random None Good No 4.5 

Multisine None Good Yes 1 – 1.5 

Table 4.1. Comparison of Signal Characteristics. 
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4.5 SIGNAL INPUT FORCE LEVEL 

The quality of the FRFs is impacted by the force level selected for the excitation input. This 

subject has been commented on by many authors (Allemang et al. 1983; Hunt and Brillhart 1991; 

Schoukens et al. 1988), and the consensus is that the force should not be too low or too high. 

This qualitative statement is based on the idea of balancing two conflicting issues. The first issue 

is that a high force level is desired so that the SNR of the measurements is maximized. The 

second issue is that high force levels cause noise in the structural response.   

Considering a highway bridge as a test subject, noise exists in the structure due to wind, 

microtremors, water currents, etc. Whether these inputs are stochastic or not, the response of the 

structure will be magnified at natural frequencies, and thus the response due to the noise input 

may not be eliminated by averaging methods. If the forced excitation is not much more energetic 

than the ambient excitation, then the response at natural frequencies will be significantly 

exaggerated by the ambient inputs and the calculated modal parameters will be less accurate. As 

the SNR increases, the effect of the noise is reduced. Thus, increasing the force input is 

beneficial.   

As force input to a structure increases, three problems develop that reduce the accuracy of the 

measurements. First, large motions of the structure cause noise to develop. This noise is due to 

the rattling of attachments, the opening and closing of microcracks, undesirable movement of 

supports, etc. Second, the response of structural nonlinearities are greatly exacerbated with larger 

movements. The excitation of nonlinearities and the extraneous noise both reduce the accuracy 

of FRFs. Finally, a phenomenon known as force drop out (Rao 1987) causes the force input to be 

significantly reduced at natural frequencies of the structure. With smaller input forces, the 

motions of the structure are small compared to the motions of the excitation mass, and force drop 
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out is not significant. As the magnitude of the structural response increases, the velocity of the 

structure can be similar to the velocity of the mass and the imparted force is greatly reduced. 

This phenomenon reduces the accuracy of FRFs at the natural frequencies of the structure, which 

are the most important parts of the FRFs.  

It is obvious then that for any given structure, there is a ‘sweet spot’ where the force is high 

enough to provide good SNR, but low enough that undesirable structural responses are not 

created. Hunt and Brillhart (1991) have recommended that testing of a structure should start with 

a ‘force level survey’ during which a number of brief runs are conducted at increasing force 

levels. FRFs are calculated and their general smoothness is visually inspected. The force level 

that provides the smoothest FRFs is then selected for production testing. With a lack of better 

options reported in the literature, this method will be used for the physical structural testing of 

this thesis. 

4.6  SPATIAL DISTRIBUTION OF INPUT 

The quality of the FRFs is also impacted by the spatial location and direction of the input forces. 

If a force input is imparted at a location on a structure that does not excite a particular mode well, 

then the quality of the FRF will be poor at frequencies near that mode. Locations near a nodal 

point of a mode should be avoided, and imparting force in a direction that is orthogonal to a 

mode should also be avoided.  

This issue can be quite complicated for three dimensional structures, especially those with sub-

assemblies. Fortunately, in the proposed bridge testing, only vertical modes are desired since 

these are the modes that contribute to the vertical elements of modal flexibility. Thus, a bridge 

will be considered as a flat plate and all shakers can be oriented to impart force in a vertical 
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direction. Thus, only modal nodes need to be avoided when selecting input locations. However, 

FRFs will be of the highest quality when shaker locations are near the point of maximum 

response of a particular mode. This objective represents a challenge for even simple structures.  

Considering a structure that is a one-dimensional beam. The first mode will have maximum 

response at midspan, as will all other odd numbered modes. However, all even numbered modes 

will have a modal node at midspan. Thus, midspan is the best excitation location for half of all 

modes and the worst excitation location for the other half of the modes. Some authors have 

attempted to develop functions and algorithms for the selection of the optimum excitation 

locations (Imamovic and Ewins 1997), but the high complexity and limited applicability of these 

methods makes them relatively undesirable. A simple and common method for selecting 

excitation locations is to sketch the locations of modal nodes and then qualitatively select 

locations that are away from nodes but still near points of maximum response.   

For an irregularly shaped structure, it is unlikely that the mode shapes can be predicted in 

advance, and thus it is not possible to select good exciter locations in advance of testing. In this 

situation, the best results are obtained if an excitation survey is performed. The survey consists 

of briefly exciting the structure from a large number of input locations (one at a time), and 

analyzing the results. This process will provide rough estimates of the mode shapes and 

experimental FRFs, both of which can then be used to select good excitation locations. 

It is obvious that the larger the number of excitation locations, the greater the probability that all 

modes will be adequately excited. Thus, the issues with selecting shaker locations are reduced by 

the research herein that aims to emply many shakers that are spatially well-dispersed on the 

structure.  
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For the research of this thesis, the structures to be tested are rectangular and are thus symmetric 

in two directions. This makes it possible to predict the more powerful lower mode shapes with 

confidence. The excitation locations are then qualitatively selected to be near maximum response 

points while avoiding many nodal locations. 

4.7 CONCLUSION 

This chapter focused on the importance of excitation signal type, force level, and spatial location 

in the performance of experimental modal analysis. The quality of the FRFs, and thus the 

accuracy of all calculated modal properties, are significantly impacted by these three parameters. 

Therefore, the many commonly used signal types were discussed and compared, and the issues 

that complicate the selection of force level and input location were introduced.  

The choice of excitation signal type needs to balance several needs of the proposed structural 

testing. The signal needs to be compatible with MIMO testing, should minimize leakage and 

other errors, should minimize testing time, and would preferably enable testing to proceed with 

roving force transducers. Out of seven signal types analyzed, multisine excitation is chosen as 

the signal type that best satisfies these criteria. However, burst-random will also be used since it 

is well accepted in the field of modal testing. 

The excitation force level needs to be selected as high as possible to maximize SNR, but not high 

enough to cause unwanted structural responses to develop. An effective way to choose the force 

level for any structure is to perform testing at several force levels and analyze the smoothness of 

the resulting FRFs.  

Finally, the excitation input locations for a structure need to be chosen so that modal nodes are 

avoided while points of maximum response are selected. For testing that involves many exciters, 
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the probability that all modes will be adequately excited is high and less care is required for 

locating the shakers. However, for testing that uses only several shakers, the locations of modal 

nodes and maximum responses will be assumed if possible, and input DOFs will be selected 

from this mapping. Also, symmetric placement will be avoided on structures with obvious 

symmetry. 

The exact excitation selections are unique to each unique structure. Thus, the multisine 

frequency range and resolution, force input level per frequency line, and input locations are 

noted in this thesis as part of the testing procedure for each tested structure. 
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5 CHAPTER FIVE 

DATA PROCESSING AND ANALYSIS METHODS  

5.1 INTRODUCTION 

This chapter describes the procedures that are used to extract modal parameters of structures 

from the measurements of inputs and outputs. The final result of the processing is the production 

of a modal flexibility matrix that can be used to assist in the strength evaluation of a bridge. 

There are many potential pitfalls in data collection and processing, and many of these are 

discussed in detail, and best practices are introduced. 

Common problems relating to data collection and preprocessing are discussed in detail, as are the 

methods by which these problems can be minimized or avoided. Serious data collection issues 

include quantization, inadequate frequency resolution, aliasing, and leakage. The various types 

of averaging that can be used to reduce variance due to noise are also discussed. 

Next, the methods by which transfer functions are assembled from the data are described. 

Several FRF algorithms that are appropriate to different averaging methods are discussed, and 

the best algorithms for the work of this thesis are selected. The assembly of the transfer function 

is also demonstrated for systems with single force input locations (SIMO) and for systems with 

multiple simultaneous input locations (MIMO). 

System identification procedures are also reviewed. System identification is the process of 

extracting the modal properties from the transfer function, and many different algorithms and 

commercial packages exist for this analysis step. The basis of these algorithms is shown from the 
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form of several mathematical models. A system identification algorithm is then selected for this 

work and the details of the system identification process using that algorithm are provided.  

Finally, the method by which modal flexibility is synthesized from the identified modal 

parameters is shown. Subsequent chapters validate the entire data processing routine by 

comparing the outcome from physical testing to analytical results.   

5.2 THEORETICAL BACKGROUND 

This section introduces the theoretical development that connects the physical properties of a 

structure to measured dynamic force inputs and measured structure responses. First, it is assumed 

that the properties of the structure do not vary with time. Second, it is assumed that the 

structure’s response is linear. Finally, it is assumed that the properties of the geometrically 

continuous structure can be ‘lumped’ into a finite number of representative degrees-of-freedom 

(DOFs). Based on these assumptions, the classical dynamic equation for the time domain 

response at any DOF to some time-varying force input(s) is given by: 

 ሾܯሿሼݔሷሺݐሻሽ ൅ ሾܥሿሼݔሶሺݐሻሽ ൅ ሾܭሿሼݔሺݐሻሽ ൌ ሼܨሺݐሻሽ Equation 5.1.
Where: 

ሾܯሿ ൌ the mass matrix for the system. 

ሾܥሿ ൌ the damping matrix for the system. 

ሾܭሿ ൌ the stiffness matrix for the system. 

ሼܨሺݐሻሽ ൌ the force vectors for the system. 

ሼݔሷ ሺݐሻሽ ൌ the acceleration of the system DOFs. 

ሼݔሶ ሺݐሻሽ ൌ the velocity of the system DOFs. 

ሼݔሺݐሻሽ ൌ the displacement of the system DOFs. 
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The Laplace transform can be used to solve this differential equation. The definition of the 

Laplace transform is: 

 ሼܺሺݏሻሽ ൌ ࣦሼݔሺݐሻሽ · ݏ ൌ න ݁ି௦௧ݔሺݐሻ݀ݐ
ஶ

଴
 Equation 5.2.

Where: 

ݏ ൌ ߪ ൅ ݆߱ , a complex number. 

 

Interpreting the transform as a conversion of steady state response from the time domain to the 

frequency domain, the displacement, velocity, and acceleration components are: 

ሻݐሺݔ  ൌ ሼܺሺݏሻሽ Equation 5.3.
 

ሻݐሶሺݔ  ൌ ݏ · ሼܺሺݏሻሽ െ .ሺ0ሻ Equation 5.4ݔ
 

ሻݐሷሺݔ  ൌ ଶݏ · ሼܺሺݏሻሽ െ ݏ · ሺ0ሻݔ െ .ሶሺ0ሻ Equation 5.5ݔ
 

And assuming initial conditions of zero displacement and zero velocity, the transforms reduce to: 

ሻݐሶሺݔ  ൌ ݏ · ሼܺሺݏሻሽ Equation 5.6.
 

ሻݐሷሺݔ  ൌ ଶݏ · ሼܺሺݏሻሽ Equation 5.7.
 

The transform is evaluated along the frequency axis, and thus ߪ ൌ 0. Therefore, substituting with 

ݏ ൌ ݆߱ gives: 

ሻݐሺݔ  ൌ ሼܺሺ݆߱ሻሽ Equation 5.8.
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ሻݐሶሺݔ  ൌ ݆߱ · ሼܺሺ݆߱ሻሽ Equation 5.9.
 

ሻݐሷሺݔ  ൌ െ߱ଶ · ሼܺሺ݆߱ሻሽ Equation 5.10.
 

Which are the expected results for converting displacement to velocity and to acceleration in the 

frequency domain. Substituting these results into Equation 5.1 transforms the time domain 

system to: 

 െ߱ଶሾܯሿሼܺሺ݆߱ሻሽ ൅ ݆߱ሾܥሿሼܺሺ݆߱ሻሽ ൅ ሾܭሿሼܺሺ݆߱ሻሽ ൌ ሼܨሺ݆߱ሻሽ Equation 5.11.
 

And rearranging gives the definition of the frequency response function (FRF). When multiple 

input or output locations are considered, this is also called the system transfer function. 

 ሼܺሺ݆߱ሻሽ
ሼܨሺ݆߱ሻሽ ൌ

1
െ߱ଶሾܯሿ ൅ ݆߱ሾܥሿ ൅ ሾܭሿ ൌ ሾܪሺ݆߱ሻሿ Equation 5.12.

Where: 

ሼ௑ሺ௝ఠሻሽ
ሼிሺ௝ఠሻሽ ൌ the frequency response functions for the various DOFs where inputs and/or 

outputs were measured. 

ሾܪሺ݆߱ሻሿ = the transfer function for the MDOF system. 

 

If this equation is evaluated at the frequency ߱ ൌ 0, then the result simplifies to: 

 ሾܪሺ0ሻሿ ൌ
1

ሾܭሿ ൌ ሾ݂ሿ Equation 5.13.

Where: 

ሾ݂ሿ ൌ the flexibility matrix for the system 
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This is logical since the equation of motion has reduced to the definition of flexibility of a static 

system. Thus, for a static load, the flexibility is the measured displacement divided by the 

applied load.  

Unfortunately, some additional complexity is introduced when using real-world dynamic 

measurements. First, both the measured force input and structure response are contaminated with 

noise and errors. This issue is best addressed by taking multiple sets of measurements and 

applying an appropriate FRF algorithm that minimizes the contamination. Second, the 

measurements are typically made with accelerometers, and thus there is no possible 

measurement at ߱ ൌ 0. Therefore, flexibility cannot be directly found from the transfer function 

and other modal information will have to be manipulated to estimate flexibility. Both of these 

issues are discussed in detail in the following sections of this chapter. 

5.3 DATA COLLECTION AND PREPROCESSING 

The methods by which the applied forces and the resulting responses are measured has a large 

effect on the accuracy of the estimated FRFs, and thus on the accuracy of calculated modal 

parameters. There are many steps involved in the capture and preprocessing of the data, and 

many papers have been written on best practices for each step. It is not the intent of this thesis to 

reexamine every possible way that measurements can be compromised; however, a few issues 

with regards to data collection deserve special attention. These issues are quantization, frequency 

resolution, aliasing, averaging, and use of the FFT. Each of these subjects is discussed in detail 

below. 
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5.3.1 Quantization 

Quantization is an error that affects digital electronics. In digital devices, there are a preset 

number of values that any element of data must conform to (i.e. quanta). The number of preset 

values is defined by the number of bits that are available for representation of the data. For 

instance, with a single bit only two values can be represented, whereas two bits allows four 

unique values to be represented. For ‘n’ bits, there are 2௡ possible values, and thus it is obvious 

that the more bits, the more discrete values that can exist.  

An example of quantization is shown in Figure 5.1. A smooth (analog) sine wave is shown as 

well as the signal after digitization using 21 quanta and using 9 quanta. The alteration of the data 

in the time domain is clear. Next, these three signals are transformed to the frequency domain 

and the result is shown in Figure 5.2. The error introduced is less obvious, but a closer inspection 

shows that the result of quantization is that there is now energy at many higher frequency lines. 

Also, the amplitude at the dominant frequency is reduced.  

 
 

Figure 5.1. Example of quantization error in the time domain. 
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Figure 5.2. Example of quantization error in the frequency domain. 

Quantization is an issue of importance with both digital sensors and analog-to-digital converters 

(ADCs), and the topic of dynamic range is closely related. Dynamic range is the ability of a 

device to reallocate the finite number of possible response levels to fit between an arbitrarily 

selected lower and upper bound. This allows the relatively limited number of response levels to 

be scaled for larger or smaller values, or to be shifted. Dynamic range is only available on some 

devices, has a cost associated with it, and is limited in its ability to scale or shift to a desired 

input range.   

Many sensors are analog, and thus theoretically, have an infinite number of possible responses 

between their minimum and maximum values. Other sensors are digital and may have 

quantization issues. Digital sensors are unlikely to have any dynamic range, and thus the possible 

output levels are permanently fixed. The issue occurs when accelerometers are selected that have 

a high enough range to measure hammer impacts (for example) but low level vibrations must 

also be detected with good resolution. If the sensor has 16 bits (~65,000 quanta), it may be able 
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(~4000 quanta) cannot. Thus it is important to know the limitations of any digital sensors and 

plan the testing with respect to these limitations.    

Quantization is a potential issue with all ADCs. Older ADCs may have 8 or 12 bits, whereas 

newer versions generally have 16 or 24 bits. Most ADCs have dynamic range and this can be set 

prior to an experiment to maximize the number of possible levels that are actually in the range of 

the input. Setting the dynamic range is very important with older systems but less so with newer 

systems.  

Consider a 24 bit ADC which has about 17,000,000 available quanta that is being used to 

measure a voltage that only ranges from 0 to 0.1 volts. If the ADC is set to a range of 0 to 10 

volts, only about 1% of the available quanta will actually be used to measure the input. However, 

even if the noise in the system being measured is at the very low level of 1% of the signal 

amplitude, the ADC still provides about 1,700 quanta just for the noise amplitude. Another way 

to consider this example is to say that system noise dominates the measurement at input levels 

that are three orders of magnitude higher than quantization errors. If dynamic range had been 

used to set the ADC to read from 0 to 1 volt, then the noise would be four orders of magnitude 

larger than any potential quantization errors, and thus the change in range would not have 

improved the measurement in any way. If this same example were considered for a 16 bit system 

then the noise would be at the same order of magnitude as the quantization and thus the use of 

dynamic range might improve the measurement.  

In summary, for any ADC with less than 16 bits, quantization must be carefully considered as 

part of the experiment planning process. Also, any digital sensor must be used with caution and 

the range and accuracy of the output must be evaluated. 
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5.3.2 Frequency Resolution 

The frequency resolution of a measurement is the size of the gap between frequency lines that 

are represented in the FFT. For any recorded signal, the resolution in the frequency domain is 

just the inverse of the length of the signal in the time domain. Therefore, the signal length must 

be selected to provide the desired frequency resolution, but there are several issues to consider 

when making this choice. The benefits of greater resolution are that the probability of finding all 

natural frequencies increases, the accuracy of the curve fit for modal parameters is improved, and 

closely spaced modes can be differentiated. The drawback of higher frequency resolution is that 

the testing takes longer, with an order of magnitude greater resolution taking an order of 

magnitude longer. Thus the benefits must be balanced against the required testing time. 

Consider a signal that consists only of energy at 2 Hz and at 3 Hz. If the signal is sampled for 0.5 

seconds, then the resolution in the frequency domain will be 2 Hz, and the energy at 3 Hz will 

not be properly represented. This is illustrated in Figure 5.3 and it is shown that the energy from 

the 3 Hz frequency line has leaked to the nearby frequency lines that are represented. If the 

sampling period is increased to 5 seconds then the resolution is more than adequate to accurately 

identify the energy at 3 Hz as shown in Figure 5.4. This simple example demonstrates that 

inadequate frequency resolution not only worsens leakage, but can also make it more difficult to 

identify natural frequencies by suppressing the corresponding peaks. 
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Figure 5.3. Example of the effect of inadequate frequency resolution for a signal with 
energy at only 2 Hz and 3 Hz.  

 
 

Figure 5.4. Example of adequate frequency resolution for a signal with energy at only 2 Hz 
and 3 Hz. 
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good estimates of the natural frequencies and damping of the structure, it will be unknown if 

there are closely spaced modes.  

In the absence of specific knowledge, initial testing must be conducted to select an appropriate 

frequency resolution for any structure. The initial testing should be set up with a few signals of 

significantly differing lengths, perhaps resulting in frequency resolutions of 1/50th, 1/100th, and 

1/500th of the base natural frequency. Only a small number of averages would be used such that 

the initial testing time is limited. The natural frequencies and mode shapes should then be 

compared and the usefulness of the extra resolution can be evaluated. A resolution to use for the 

production testing can then be selected. This process is used in the testing reported in this thesis. 

5.3.3 Aliasing    

Aliasing is an issue that is caused by discretizing a continuous signal, and it decreases the 

accuracy of modal testing. If too few points in time are chosen when discretizing, then the shape 

of the resulting digital signal will not closely match the original signal and the frequency content 

found by the FFT will be altered. The recording frequency (sampling rate) of the data acquisition 

system (DAQ) is the variable that determines the amount of aliasing. Theoretically, any 

component of the signal that has a frequency less than the Nyquist frequency will be free of 

aliasing in the FFT (Stiltz 1961, 89). The Nyquist frequency is simply half of the data collection 

frequency, implying that a sinusoid represented by greater than 2.0 samples per period will have 

no aliasing. However, in the presence of noise, the identification of signal components is more 

accurate when the data collection frequency is higher, and thus more digitized points per period 

represent the particular signal component. 
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Aliasing can be practically eliminated by sampling at a high rate; however, this has costs 

associated with it. The primary cost is that the recording equipment must be able to handle the 

data rate. The DAQ, the busses or network, and the computer hardware and software must all 

have adequate bit rates, memory buffers, data write speeds, etc. The second issue is data file size 

as it relates to hard disk usage and to data processing time.  

Consider a test setup with 15 channels of force input and 30 channels of acceleration output. For 

a resolution of 0.02 Hz, a 50-second signal is needed. Assume 10 averages in the time domain, 

15 unique runs of the inputs for MIMO processing (discussed later in this chapter), and 5 

experiments for reducing variance on the transfer function. At a data collection rate of 200 Hz 

and double precision, the data will occupy 2.7 GB. If 1000 Hz is used to reduce aliasing, then 

13.5 GB of hard disk space are required to store the data. While these values are not especially 

daunting given the proliferation of terabyte hard drives, it is apparent that collecting data at an 

unnecessarily high rate can easily result in a volume of data that is unwieldy. Computation time 

and RAM space can also become an issue due to high data rates. 

In summary, the data collection rate must be chosen for each structure to be tested. The rate must 

be more than two times greater than the highest natural frequency of interest, but results are more 

reliable with rates significantly in excess of this minimum. However, to reduce issues that can be 

caused by storing excess data, the collection rate should not be excessively high. Similar to the 

selection of resolution, the selection of an appropriate data rate must be based on some initial 

testing of the structure that indicates what the highest frequency of interest is.  
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5.3.4 Averaging   

In modal testing, many types of averaging are used to improve measurements in various 

situations. Three types of averaging are applicable to the type of testing proposed herein. 

Namely, these are asynchronous averaging, synchronous averaging, and cyclic averaging 

(Allemang 1999, 4_46-48). Each of these methods relies on the idea that redundant data is 

collected during testing. The redundant data is produced by conducting an experiment several 

times over, and then the best estimate of the results is found by averaging information from each 

separate experiment. How the experiments relate to each other generally defines which averaging 

method can be used. Each of the averaging methods is discussed in detail below. 

Asynchronous averaging is used to reduce the variance on the measurement of FRFs when the 

data sets from the separate experiments are expected to be unrelated. This is the case when a new 

realization of a random input is used for each experiment, when the duration of the input is 

varied for each experiment, or when different signal types are used for each experiment. In any 

of these situations, neither the time domain nor frequency domain signals can be averaged since 

the phase will vary between experiments. However, power spectra can be averaged since the 

unique phase information is canceled out by the calculation of the spectra. Consider an input 

signal for an experiment that has an amplitude of one and a phase of zero degrees at the 10 Hz 

frequency line. If the subsequent experiment has an input signal with an amplitude of 1 but a 

phase of 180 degrees at 10 Hz, then the average of the inputs for the two experiments will 

indicate that there was no energy at 10 Hz in either experiment. Asynchronous averaging is most 

applicable to stochastic signals, but can also be used for deterministic signals of any type.  

If the same input signals are used in each experiment, then synchronous averaging can be used to 

reduce the variance on the measurement of FRFs. Synchronous averaging not only requires that 
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the inputs be consistent from experiment to experiment, but that the recorded data sets be 

synchronized. The data sets from different experiments can either be synchronized by use of an 

electronic trigger that starts the input signal and the data logging simultaneously, or the sets can 

be aligned during processing. With synchronous data, the phase information will be consistent 

between experiments and the averaging can thus be carried out in the time domain or the 

frequency domain without the calculation of power spectra. Synchronous averaging is most 

appropriate with deterministic signals. 

Cyclic averaging is a special form of averaging that specifically helps eliminate leakage error. 

For cyclic averaging to be used, the same input signal must be used successively without any 

elapsed time between recurrences. The transient response of the structure that occurs due to the 

initiation of the input will decay during the first few runs of the input signal. These runs are 

called ‘delay blocks’ and will be discarded. After the transient decays, the response of the 

structure is completely periodic in relation to the duration of the input signal and several 

repetitions will be recorded. The recorded runs are called ‘capture blocks’. Since the response of 

the structure is periodic in the capture block, each frequency that is contributing to the total 

response is also periodic in the capture block. Since each frequency is periodic and the capture 

block has a set duration, then the response of the structure has been filtered such that only 

frequencies that will be represented in the FFT are active, and leakage has thus been eliminated.  

The capture blocks from an experiment that utilizes cyclic averaging will still be contaminated 

by noise. The variance due to the noise can be reduced by using synchronous or asynchronous 

averaging on the collection of capture blocks from one or many experiments. Cyclic averaging is 

most commonly used with deterministic signals, but can be used with stochastic signals as well. 

For use with any type of stochastic signal, the same realization of the signal is repeated until the 
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structure response is periodic and then capture blocks are recorded. This process is then repeated 

with additional realizations until all frequency lines have been adequately excited. Asynchronous 

averaging is then used to combine capture blocks resulting from different input realizations. 

Figure 5.5 illustrates the benefits of asynchronous averaging. Ten unique realizations of burst-

random input were used to excite a numerical model of a cantilevered beam, and random noise 

was added to the input and response signals. An FRF was then found for a single experiment and 

is compared to an FRF found using asynchronous averaging of all ten experiments. The 

averaging benefits the FRF by reducing the variance caused by the added noise, and by 

improving the excitation of all frequency lines. 

 
 

Figure 5.5. FRF for a cantilever beam with burst-random excitation illustrating 
asynchronous averaging. One average at left and ten averages at right. 

Figure 5.6 illustrates the benefits of synchronous averaging. A multisine signal was used to 

excite a numerical model of a cantilevered beam, and random noise was again added to the data. 

An FRF was found for a single experiment and is compared to an FRF found using synchronous 

averaging of ten experiments. The noise is clearly reduced by the averaging. It is also noteworthy 

that a single average with the multisine signal provides a much better FRF than ten averages with 
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the burst random signal. The reason for this is that by design, the multisine signal evenly excites 

every frequency line in the FFT, whereas the burst random signal requires many realizations to 

do this.  

 
 

Figure 5.6. FRF for a cantilever beam with multisine excitation illustrating synchronous 
averaging. One average at left and ten averages at right. 

Finally, Figure 5.7 illustrates the use of cyclic averaging on the cantilevered beam. A multisine 

signal is used five times successively and an FRF is found by using the first and fifth 

recurrences. The transient structural response causes the FRF from the first recurrence to suffer 

from leakage, as is evident by the wider, flatter peak near 17 Hz in the left plot. The right plot 

shows the FRF from only the fifth recurrence and the improvement is significant.  
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Figure 5.7. FRF for a cantilever beam with multisine excitation illustrating cyclic averaging 
at right compared to measurement without cyclic averaging at left.  

Overall, averaging is the method by which variance is reduced in the measurement of FRFs. The 

method of averaging that can be utilized is limited by the types of excitation signals used during 

testing, and by the experimental process. Asynchronous and synchronous averaging are two 

methods for using the results of multiple experiments to reduce the measurement variance due to 

noise. Cyclic averaging is a related experimental method that practically eliminates leakage 

errors.  

5.3.5 Fast Fourier Transform 

The Laplace transform was used to simplify the equation of motion from a differential equation 

in the time domain to an algebraic equation in the frequency domain. Because of this, time 

domain data that is collected during testing must be transformed to the frequency domain. 

Various methods exist for performing this transformation, but the fast Fourier transform (FFT) is 

the most commonly used. The definition of the transform can be found in any text and is shown, 

but the algorithms that are actually used in commercial software use a variety of different 

solution procedures to enable a very fast computation. 
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ሺ߱ሻܨ ൌ න ݂ሺݔሻ · ݁ି௝ఠ·௫ ݔ݀

ஶ

ିஶ
 Equation 5.14.

 

Use of the FFT can result in a poor frequency domain representation of the data, especially in 

consideration of leakage errors, aliasing, and inadequate frequency resolution as discussed 

previously. Assuming that each of these items has been appropriately handled by the testing 

procedure, then the transformed data can be used further. However, the result of the transform 

may be presented in different forms depending on the software being used. The details of using 

the data after a transformation in MATLAB are discussed. 

In MATLAB, the command for performing the FFT on time domain data is ݂݂ݐሺ݀ܽܽݐሻ where 

 is a vector of ܰ measurements taken at discrete, but consistent, time intervals. The result of ܽݐܽ݀

this command is a vector of complex numbers that is the same length as the input vector. The 

complex numbers provide phase and amplitude information for each of the discrete frequency 

lines that are represented. The number of frequency lines represented is equal to 1 ൅ ܰ/2 when 

ܰ is even, and 1.5 ൅ ܰ/2 when ܰ is odd. Although not precisely true, the vector will be 

considered as two halfs: the first element in the vector is the frequency content at 0 Hz, and each 

successive element is the content at uniformly increasing frequency lines at consistent intervals 

up to the middle of the vector. The second half of the vector is just a mirror image of the first 

half with each element being the complex conjugate of the corresponding element in the first 

half. As such, the amplitude information at a frequency line is divided evenly between the first 

half and second half of the vector.  

During the calculation of the FFT by Matlab, the amplitude is scaled by the length of the vector 

(ܰ) and this needs to be divided back out of the data to preserve the correct amplitude. 
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Considering an element from the first half of the vector that is of the form ܽ ൅ ܾ݅, the total 

amplitude at that frequency line is 2/ܰ · √ܽଶ ൅ ܾଶ and the phase is tanିଵሺܾ ܽ⁄ ሻ.           

5.4 TRANSFER FUNCTION ESTIMATION 

The transfer function is the collection of FRFs that describe the input-output behavior of a 

structure. The estimation of an accurate transfer function is critical to the estimation of modal 

parameters. Since the transfer function is composed of FRFs, the consistent and accurate 

estimation of FRFs is needed. As discussed previously, the methods of data collection and 

processing have a significant effect on the FRFs, and proper selection of several key criteria will 

lead to the highest quality data within the constraints of the testing equipment. The proper 

assembly of the FRFs into the transfer function is the next step in the data processing procedure.     

At its most basic, the transfer function at some discrete frequency ߱ is calculated as ܪሺ߱ሻ ൌ

ܺሺ߱ሻ ⁄ሺ߱ሻܨ . This is identical to the formulation of the FRF when there is a single input location, 

a single output location, and a single realization of the experiment. However, the assembly of the 

transfer function becomes more complicated when multiple inputs, multiple outputs, and 

multiple experiments are used. Thus, the manner in which the transfer function is found will be 

explained in detail for three increasing levels of complexity. First, the formulation will be 

described for one realization of an experiment using a single input but multiple outputs 

(commonly referred to as ‘SIMO’). Second, the required experimental process and transfer 

formulation will be described for a single realization of an experiment using multiple inputs and 

multiple outputs (commonly referred to as ‘MIMO’). Finally, the added complexity of using 

multiple realizations of the experiment will be discussed. 
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5.4.1 Transfer Function Calculation With SIMO Testing 

A SIMO experiment consists of providing an exciting force at a single location on a structure 

while recording the response at multiple locations. An FRF will exist for each output location, 

and these are collected together to form the transfer function. At a discrete frequency line, the 

transfer function is defined as (and dropping the ሺ߱ሻ notation): 

 ሾܪሿ ൌ ሾܺሿሾܨሿିଵ Equation 5.15.
 

Given a test setup with a single input and three outputs, the full equation for solution of the 

transfer function at a discrete frequency line becomes: 

 
൥
ଵଵܪ
ଶଵܪ
ଷଵܪ

൩ ൌ ൥
ଵܺ

ܺଶ
ܺଷ

൩ ሾܨଵሿିଵ Equation 5.16.

 

Thus, the transfer function consists of a column of three FRFs that are calculated by dividing the 

response at each location by a scalar. There is no matrix inversion in this case. However, 

computational issues can still occur if the force is nearly zero at any frequency line. This is a 

common issue with random and burst-random input signals and is the reason why averaging of 

many realizations is required to get smooth FRFs.  

In structural testing, it is often desirable to have the input occur at multiple locations, but 

commonly only one excitation device is available. The typical solution is to perform a SIMO test 

for each desired input location and then to assemble a larger transfer function. The transfer 

function gets augmented by one new column of FRFs for each input location. This type of testing 

is sometimes referred to as MRIT (multiple reference impact testing) when the input is caused by 
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an impact, and is often erroneously called MIMO when other input excitation signals are used. In 

any case, the new column of the transfer function is found as shown below: 

 
൥
ଵଶܪ
ଶଶܪ
ଷଶܪ

൩ ൌ ൥
ଵܺ

ܺଶ
ܺଷ

൩ ሾܨଶሿିଵ Equation 5.17.

 

This type of testing has a significant issue in that the columns of data are often inconsistent. This 

inconsistency can be caused by several problems. First, positioning the force input device in 

various places on the structure, or attaching it to different locations alters the response of the 

structure. Second, time elapses during the testing, and it is often several hours from the time the 

first location is excited until the final location is excited. Ideally, the structure under test is time-

invariant; however, in practical testing, environmental factors typically cause bridge structures to 

vary over time. Thus, the data is inconsistent because of changes that occur during testing. The 

consistency of the data can be improved by exciting many inputs at once, and thus collecting the 

data for multiple columns of the transfer function simultaneously. 

5.4.2 Transfer Function Calculation With MIMO Testing    

A MIMO experiment consists of providing simultaneous exciting forces at multiple locations on 

a structure while recording the response at multiple locations. An FRF will exist for each input-

output pair, and these are collected together to form the transfer function. Given a test setup with 

two inputs and three outputs, the equation for calculation of the transfer function at a discrete 

frequency line is shown. The force input is moved to the left side of the equation to make some 

issues with calculation that are discussed subsequently more obvious: 

 
൥
ଵଵܪ
ଶଵܪ
ଷଵܪ

ଵଶܪ
ଶଶܪ
ଷଶܪ

൩ ൤ܨଵ
ଶܨ

൨ ൌ ൥
ଵܺ

ܺଶ
ܺଷ

൩ Equation 5.18.
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This formula has six unknown FRF values but only three independent equations, and thus cannot 

be solved. Physically, this indicates that for a measured structural response, there is no way to 

distinguish what portion of the response was caused by either input force. In order to solve, a 

second experiment must be run. The subscripts ‘a’ and ‘b’ are now introduced to indicate the 

measurements from the first experiment and from the second experiment respectively. 

 
൥
ଵଵܪ
ଶଵܪ
ଷଵܪ

ଵଶܪ
ଶଶܪ
ଷଶܪ

൩ ൤ܨଵ௔ ଵ௕ܨ
ଶ௔ܨ ଶ௕ܨ

൨ ൌ ൥
ଵܺ௔

ܺଶ௔
ܺଷ௔

ଵܺ௕
ܺଶ௕
ܺଷ௕

൩ Equation 5.19.

 

By running a second experiment, there are now six equations and six unknowns. So long as all 

six equations are linearly independent, the six FRF values can be solved for. To ensure that this 

stipulation is satisfied, the force inputs must not be completely correlated between the two 

experiments. If they are, then the determinant of the force matrix will be zero and an inverse will 

not exist.  

As more input locations are included, more experiments are required. In general, MIMO testing 

requires that for ௜ܰ input locations, ௜ܰ experiments must be run so that the transfer function can 

be solved. It should be noted that various FRF algorithms use different methods to combine the 

data from additional experiments, however, the basic principle remains. Guillaume, et al. (2001) 

show that the optimal experimentation scheme is the one in which the force vectors are all 

mutually orthogonal. In practical experiments, this can be accomplished by using a single 

deterministic excitation signal and applying a gain of 1 or -1. For instance, if the number of 

inputs is a power of two, then a Hadamard matrix provides values of 1 or -1 to apply to the input 

signals so that the columns of the force matrix are orthogonal. For the example of two inputs and 

three outputs, the transfer function would thus be found from: 
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൥
ଵଵܪ
ଶଵܪ
ଷଵܪ

ଵଶܪ
ଶଶܪ
ଷଶܪ

൩ ቂ1 · ܨ 1 · ܨ
1 · ܨ െ1 · ቃܨ ൌ ൥

ଵܺ௔
ܺଶ௔
ܺଷ௔

ଵܺ௕
ܺଶ௕
ܺଷ௕

൩ Equation 5.20.

 

In practice, MIMO testing is often performed in a manner similar to SIMO testing. Consider a 

test that requires eight input locations but with only two shakers available for excitation. In this 

situation, two columns of the transfer function are found simultaneously, but four total testing 

setups are still required to find all eight columns of the transfer function. This again introduces 

issues with data consistency. If many shakers are available, then the testing setup does not need 

to be varied to find the entire transfer function. The benefit of this is that inconsistency is greatly 

reduced and more accurate modal properties can be determined. Another benefit is a reduction of 

testing time.   

5.4.3 Transfer Function Calculation With Redundant Information 

Measurements are inherently affected by noise. If there is reason to believe that the noise is 

random in nature, then averaging of multiple measurements will result in the noise approaching 

zero as the number of measurements approaches infinity. Actual testing will result in a number 

of data sets that is not nearly infinity, but increasing the number of averages still decreases the 

variance that is caused by random noise. Therefore, whether SIMO or MIMO is used, multiple 

measurements are typically made so that the variance can be reduced. These multiple 

measurements cause redundant information to be available during data analysis, and one of 

several different methods can be selected for best utilizing this redundant information. Six 

methods will be described below and the formulation and implementation of each will be shown.  
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 ૚ Algorithmࡴ 5.4.3.1

The ܪଵ algorithm was the first method for utilizing the data from redundant experiments and still 

remains popular. In the formulation of this algorithm, it is assumed that noise exists on the 

measurements of system response, but that no noise exists on the measurement of force inputs. A 

least-squares approach is then used to minimize the effect of the noise on the responses 

(Leuridan and Vanderauweraer 1986). The equation is shown below. 

 
ሾܪଵሿ ൌ

ଵ
ெ

∑ ቀൣܺሺ௠ሻ൧ൣܨሺ௠ሻ൧
כ
ቁெ

௠ୀଵ
ଵ
ெ

∑ ሺሾܨሺ௠ሻሿሾܨሺ௠ሻሿכሻெ
௠ୀଵ

 Equation 5.21. 

Where: 

ܯ ൌ the number of redundant experiments. 

ܺሺ௠ሻ ൌ the measured response for the mth experiment. 

ሺ௠ሻܨ ൌ the measured input for the mth experiment. 

ሾെሿכ ൌ the complex conjugate transpose. 

 

From the formulation, it is clear that the ܪଵ algorithm cancels out the phase information during 

the calculation of the cross-power spectra, ܺ כ ܨ ,and the auto-power spectra ,כܨ כ  This .כܨ

allows the algorithm to be used for unrelated realizations of experiments, which is very useful for 

random signal inputs. The drawback of the ܪଵ algorithm is that it does not account for noise (or 

leakage error) on the input measurements. Thus, the transfer function will suffer from bias error 

in the presence of input noise.  

For SIMO testing, the implementation of the ܪଵalgorithm is demonstrated below. In this 

example, it is assumed that there are three outputs and that two experiments are run. Again using 
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‘a’ and ‘b’ to denote the two experiments, the transfer function for a discrete frequency line is 

found as: 

 
൥
ଵܪ
ଶܪ
ଷܪ

൩ ൌ ൭൥
ଵܺ௔

ܺଶ௔
ܺଷ௔

൩ ଵ௔ܨ
כ ൅ ൥

ଵܺ௕
ܺଶ௕
ܺଷ௕

൩ ଵ௕ܨ
כ ൱ ሺܨଵ௔ · ଵ௔ܨ

כ ൅ ଵ௕ܨ · ଵ௕ܨ
כ ሻିଵ Equation 5.22.

 

As described previously for MIMO testing, a number of experiments with uncorrelated inputs 

equal to the number of input locations is required. With the ܪଵ algorithm, the information from 

the additional experiment(s) is incorporated just by averaging the power spectra. Since many 

more than the minimum number of experiments may be desired to reduce variance, random 

excitations are most commonly used with ܪଵ. In this way, it can reasonably be expected that 

there will be no difficulty with inverting the force auto-power spectra due to a lack of unique 

force inputs.  

Since the spectra are averaged, the calculation of ܪଵ for MIMO testing is practically identical to 

SIMO. Keeping all else the same but using two force inputs, the implementation of ܪଵ is shown 

below: 

൥
  ଵଵܪ
  ଶଵܪ
  ଷଵܪ

ଵଶܪ
ଶଶܪ
ଷଶܪ

൩ ൌ ൭൥
ଵܺ௔

ܺଶ௔
ܺଷ௔

൩ ൤ܨଵ௔
ଶ௔ܨ

൨
כ

൅ ൥
ଵܺ௕

ܺଶ௕
ܺଷ௕

൩ ൤ܨଵ௕
ଶ௕ܨ

൨
כ
൱ ൬൤ܨଵ௔

ଶ௔ܨ
൨ ൤ܨଵ௔

ଶ௔ܨ
൨

כ
൅ ൤ܨଵ௕

ଶ௕ܨ
൨ ൤ܨଵ௕

ଶ௕ܨ
൨

כ
൰

ିଵ

 

  Equation 5.23.
 

 ૛ Algorithmࡴ 5.4.3.2

The ܪଶ algorithm is similar to ܪଵ, except that noise is assumed to exist on the input 

measurements but not on the response measurements. A least-squares approach is again used to 

minimize the effect of the noise on the inputs (Allemang 1999). The formulation is shown below. 
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ሾܪଶሿ ൌ

ଵ
ெ

∑ ቀൣܺሺ௠ሻ൧ൣܺሺ௠ሻ൧
כ
ቁெ

௠ୀଵ
ଵ
ெ

∑ ሺሾܨሺ௠ሻሿሾܺሺ௠ሻሿכሻெ
௠ୀଵ

 Equation 5.24. 

 

The formulation again shows that phase information is canceled out, allowing this algorithm to 

be used with unique experiments. The denominator also indicates that a square matrix will only 

exist if the number of inputs is equal to the number of outputs. Thus, for the usual situation in 

which the number of inputs does not equal the number of outputs, the transfer function cannot be 

directly found. It may be possible to use the Moore-Penrose pseudoinverse to solve for the 

transfer function; however, it is likely that the problem will be ill-conditioned at some frequency 

lines. This is especially true for random inputs in which some frequency lines may not have been 

well excited. Additionally, it is uncommon to assume that the output noise is zero but that the 

input noise is significant. As such, the ܪଶ algorithm is not commonly used. 

 Algorithm ࢜ࡴ 5.4.3.3

The ܪ௩ algorithm uses a total least squares approach to minimize the effect of noise on the inputs 

and the outputs. It has been shown that the transfer function determined from ܪ௩ is always 

bracketed by the results of ܪଵ and ܪଶ, and the result is thus more accurate in the presence of 

noise on the inputs and the outputs (which is always the case) (Vold et al. 1984, 38). However, 

the ܪ௩ algorithm performs best when the input and output noise are similar in magnitude and are 

uncorrelated. Also, the ܪ௩ algorithm is more computationally intensive than the others in that it 

requires an eigenvalue decomposition to be performed at every frequency line. 

The process for using the ܪ௩ algorithm begins by calculating a matrix of power spectra. For the 

SIMO case, at each frequency line the following is assembled for each output location (output 

location ‘1’ shown): 



 172 

 ሾܨܨܩ ଵܺሿ ൌ ൤ܨଵܨଵ
כ

ଵܺܨଵ
כ

ଵܨ ଵܺ
כ

ଵܺ ଵܺ
 .൨ Equation 5.25כ

 

This 2x2 matrix is then subject to eigenvalue decomposition, and the eigenvector associated with 

the minimum eigenvalue is selected. The eigenvector must then be normalized to conform to the 

following: 

 ሾ ଵܸሿఒ೘೔೙ ൌ ቂܪଵ
െ1 ቃ Equation 5.26. 

 

Again, the subscript of ‘1’ indicates that this calculation is being performed for output location 

‘1’. This process must then be repeated for each output location in order to assemble a column of 

the transfer function. The process is nearly identical for the MIMO case, except that the power 

spectra matrix, ܨܨܩ ଵܺ, will include all of the inputs but still just a single output. Thus, the 

normalized eigenvector will provide an entire row of the transfer function.  

The ܪ௩ algorithm is also not commonly used for a few reasons. First, the extra computational 

effort can be a significant factor for large data sets. Second, in the common case where the 

output noise has a significantly larger magnitude than the input noise, the ܪ௩ algorithm will not 

noticeably outperform the simpler ܪଵ algorithm. Finally, if the input and output noise are 

partially correlated, then other algorithms discussed below will outperform ܪ௩ by providing 

more consistent results. 

5.4.3.4 EIV Algorithm 

The EIV algorithm uses an errors-in-variables formulation to minimize the effect of noise on the 

inputs and on the outputs (Pintelon and Schoukens 2001).  
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ሾܪாூ௏ሿ ൌ

ଵ
ெ

∑ ൫ൣܺሺ௠ሻ൧൯ெ
௠ୀଵ

ଵ
ெ

∑ ሺሾܨሺ௠ሻሿሻெ
௠ୀଵ

 Equation 5.27. 

 

It is clear from the formulation that the frequency domain data from each experiment is being 

linearly averaged and thus phase information is preserved. Because of this, only synchronized 

deterministic signals can be used as the inputs since any phase differences would cause the 

averages to tend to zero.  

For SIMO testing, the implementation of the EIV algorithm is demonstrated below. It is assumed 

that there are three outputs and that two experiments are run. Again using ‘a’ and ‘b’ to denote 

the two experiments, the transfer function for a discrete frequency line is found as: 

 
൥
ଵܪ
ଶܪ
ଷܪ

൩ ൌ ൭൥
ଵܺ௔

ܺଶ௔
ܺଷ௔

൩ ൅ ൥
ଵܺ௕

ܺଶ௕
ܺଷ௕

൩൱ ሺܨଵ௔ ൅  .ଵ௕ሻିଵ Equation 5.28ܨ

 

For MIMO testing, this algorithm functions differently than those that use power spectra. A 

number of experiments, ܯ, equal to the number of inputs, ௜ܰ, must be undertaken for each 

average of the EIV algorithm. This is demonstrated for the case of two inputs with lower case 

letters again used to denote the experiment: 

൥
  ଵଵܪ
  ଶଵܪ
  ଷଵܪ

ଵଶܪ
ଶଶܪ
ଷଶܪ

൩ ൌ ൭൥
ଵܺ௔

ܺଶ௔
ܺଷ௔

  
ଵܺ௕

ܺଶ௕
ܺଷ௕

൩ ൅ ൥
ଵܺ௖

ܺଶ௖
ܺଷ௖

  
ଵܺௗ

ܺଶௗ
ܺଷௗ

൩൱ ൬൤ܨଵ௔
ଶ௔ܨ

ଵ௕ܨ  
ଶ௕ܨ

൨ ൅ ൤ܨଵ௖
ଶ௖ܨ

ଵௗܨ  
ଶௗܨ

൨൰
ିଵ

 

  Equation 5.29.
It is seen that the experiments must be arranged into groups so that a square matrix results for the 

inversion. Within each group, the input vectors must not be completely correlated; however, 

since the measurements are synchronous, each group of measurements should use the exact same 
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inputs as every other group. This property enables averaging of many experiments while still 

using deterministic inputs.  

An additional benefit of the EIV algorithm is that it provides more consistent estimates of the 

FRFs than the power spectra algorithms if there is correlation between the input and output 

errors, and also in cases where there is a difference in the magnitude of the input and output 

errors (Pintelon and Schoukens 2001; Guillaume et al. 2001). The drawback of using EIV is that 

testing equipment must be available that enables accurate synchronization of experiments. 

5.4.3.5 ARI Algorithm 

The ARI algorithm uses an arithmetic mean formulation to minimize variance on the estimate of 

the transfer function:  

 
ሾܪ஺ோூሿ ൌ

1
ܯ

෍
ሾܺሿሺ௠ሻ

ሾܨሿሺ௠ሻ

ெ

௠ୀଵ

 Equation 5.30. 

 

With the ARI algorithm, the phase is canceled by the division prior to the summation, which 

again allows the combination of unique experiments. However, with MIMO testing, care must be 

taken such that each experiment within a group is linearly independent. This can be noted by 

inspection of the example implementation given below for the case of two inputs and four total 

experiments: 

൥
  ଵଵܪ
  ଶଵܪ
  ଷଵܪ

ଵଶܪ
ଶଶܪ
ଷଶܪ

൩ ൌ ൭൥
ଵܺ௔

ܺଶ௔
ܺଷ௔

  
ଵܺ௕

ܺଶ௕
ܺଷ௕

൩ ൤ܨଵ௔
ଶ௔ܨ

ଵ௕ܨ  
ଶ௕ܨ

൨
ିଵ

൅ ൥
ଵܺ௖

ܺଶ௖
ܺଷ௖

  
ଵܺௗ

ܺଶௗ
ܺଷௗ

൩ ൤ܨଵ௖
ଶ௖ܨ

ଵௗܨ  
ଶௗܨ

൨
ିଵ

൱ 

  Equation 5.31.
The ARI estimator is similar to the popular ܪଵ algorithm in that the phase information is 

canceled out and thus stochastic excitation can be used. ARI has the benefit that it is more 
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accurate in the presence of input errors than ܪଵ. However, ܪଵ can be expected to be more stable 

during the inversion of the force matrix since, for ܪଵ, there are typically many unique 

realizations averaged prior to the inversion. ARI requires an inversion for each group of ௜ܰ 

measurements with a correspondingly greater probability that the stochastic inputs are correlated 

at some frequency line. Thus, for ARI, the calculation process should be monitored to ensure that 

force matrices that are nearly singular are not included in the transfer function calculation. 

5.4.3.6 GEO Algorithm 

The GEO algorithm uses a geometric mean formulation to minimize variance on the estimate of 

the transfer function (Pintelon and Schoukens 2001): 

 
ሾீܪாைሿ ൌ ൭ෑ

ሾܺሿሺ௠ሻ

ሾܨሿሺ௠ሻ

ெ

௠ୀଵ

൱

ଵ ெ⁄

 Equation 5.32. 

 

This algorithm is essentially the same as the arithmetic mean algorithm since no matter the 

magnitude of the inputs, the FRF will always be of the same magnitude. Since a geometric mean 

is typically used in the case of combining values of different magnitude, it is no more attractive 

than the ARI algorithm for the work of this thesis. In fact, since the root of a matrix must be 

found, use of the geometric mean can be considered to be less attractive than the arithmetic mean 

due to computational difficulty. 

5.4.3.7 Coherence Functions 

Coherence is an indication of how much of the measured output power of the system is caused 

by the measured input power, per frequency line. A coherence value of unity indicates that all of 

the output is coherent with the input, whereas a value less than unity generally indicates that 

unmeasured sources also contributed input to the system. However, low coherence can also be 
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caused by measurement errors, such as quantization, and by data processing errors, such as 

leakage. 

For the case of SIMO, the ordinary coherence function between the single input location, ݍ, and 

a particular output location, ݌, is calculated as: 

 
௣௤ܪܱܥ ൌ

∑ ൫ܺሺ௠ሻܨሺ௠ሻכ൯ெ
௠ୀଵ ∑ ൫ܨሺ௠ሻܺሺ௠ሻכ൯ெ

௠ୀଵ
∑ ሺܨሺ௠ሻܨሺ௠ሻכሻெ

௠ୀଵ ∑ ሺܺሺ௠ሻܺሺ௠ሻכሻெ
௠ୀଵ

 Equation 5.33. 

Where: 

ܯ ൌ the number of redundant experiments. 

ܺሺ௠ሻ ൌ the measured response at location ݌ for the mth experiment. 

ሺ௠ሻܨ ൌ the measured input at location ݍ for the mth experiment. 

ሾെሿכ ൌ the complex conjugate. 

 

For the case of MIMO, ordinary coherence functions can be calculated between any input and 

output, but the multiple coherence function is deemed to be the most useful. Multiple coherence 

indicates how much of a measured output is caused by the summation of all of the measured 

inputs. Again, a value of unity indicates that all of the output is coherent with the inputs. The 

equation for calculating multiple coherence for a particular output location, ݌, due to all 

measured inputs is taken from Allemang (1999), and is shown below: 

 
௣ܪܱܥܯ ൌ ෍.

ே

௤ୀଵ

෍
௣௧ܪ௤௧ܨܨܩ௣௤ܪ

כ

௣௣ܺܺܩ

ே

௧ୀଵ

 Equation 5.34. 

Where: 

ܰ ൌ the number of measured inputs. 

௣௤ܪ ൌ the FRF for output ݌ and input ݍ. 
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௣௧ܪ ൌ the FRF for output ݌ and input t. 

௤௧ܨܨܩ ൌ the cross-power spectrum between output ݍ and input t. 

௣௣ܺܺܩ ൌ the auto-power spectrum for output ݌. 

ሾെሿכ ൌ the complex conjugate transpose. 

 

5.4.3.8 Summary 

Six algorithms for utilizing the data from multiple experiments to reduce variance on FRFs have 

been discussed. If many realizations of random input are to be used, then the ܪ௩ algorithm 

provides the best results. However, the ܪଵ algorithm is often preferred since it is much easier to 

implement and is only marginally inferior to ܪ௩ when errors on the input measurements are 

much smaller than errors on the output measurements (a common assumption). If testing 

equipment is available that enables synchronization of the measurements over multiple 

experiments, then the EIV algorithm should be used. The EIV algorithm allows the use of 

deterministic signals so that leakage can be practically eliminated, and provides consistent FRF 

estimates even when the input and output errors are somewhat correlated. For these reasons, the 

 ଵ algorithm is used when random excitations are selected for testing performed in the work ofܪ

this thesis, and the EIV algorithm is used when deterministic excitation signals are selected. The 

calculation of coherence in this thesis always uses the ordinary coherence function for SIMO 

testing and the multiple coherence function for MIMO testing, independent of the input signal 

types.  
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5.5 SYSTEM IDENTIFICATION BACKGROUND AND ALGORITHM SELECTION 

System identification is the process of extracting the modal properties of the tested structure 

from the measured FRFs. These modal properties are the natural frequencies, modal damping, 

mode shapes, and modal scaling. Over the last thirty years, many algorithms have been 

developed for this purpose, with many commercial software packages now available. Along with 

this multitude of algorithms, there have been many attempts to compare and contrast them with 

the point of determining which is best. Unfortunately, most of the work in this realm is not 

especially useful since the comparisons were made in respect to a single specific situation. Also, 

it is possible that the authors of some of these comparisons may be biased by their relative 

amount of experience with particular algorithms. In any case, the algorithms are all equally valid 

from a theoretical standpoint. However, a system identification algorithm that is robust in the 

case of MIMO bridge testing must be selected.  

The selection process begins by discussing the formulation of the mathematical models that are 

used in system identification. The models relate the measured data to the identifiable modal 

properties, and the three most common formulations are known as partial fraction, matrix 

fraction, and state space. The partial fraction model is used in the work of this thesis, and is thus 

developed in detail. The other two models are also described. 

After these formulations are presented, some of the historically most popular algorithms are 

briefly discussed, including the CMIF algorithm which is then selected. The details of how this 

selected algorithm determines the modal properties are then provided.    
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5.5.1 Partial Fraction Model 

One mathematical model that relates the physical properties of the structure to the measured data 

is the partial fraction model (Richardson 1977). This formulation begins with Equation 5.12, but 

remaining in the Laplace domain provides: 

 ܺሺݏሻ
ሻݏሺܨ

ൌ ሻݏሺܪ ൌ
1

ܯଶݏ ൅ ܥݏ ൅ ܭ
 Equation 5.35.

Where: 

ܺሺݏሻ = the response of the DOF. 

 .ሻ = the force input to the DOFݏሺܨ

 .ሻ = the transfer functionݏሺܪ

 .the mass that is assumed lumped at the DOF = ܯ

 .the damping that is associated with the DOF = ܥ

 .the stiffness that is associated with the DOF = ܭ

ݏ ൌ ߪ ൅ ݆߱ , a complex number. 

 

The goal is to use this equation to derive an expression that relates the transfer function to modal 

properties. The derivation of the partial fraction model is illustrated below, assuming a single 

degree of freedom (SDOF) system. First, dividing through by the mass gives: 

 
ሻݏሺܪ ൌ

1 ⁄ܯ
ଶݏ ൅ ܥሺݏ ⁄ሻܯ ൅ ሺܭ ⁄ܯ ሻ

 Equation 5.36.

 

Next, the roots of the denominator are found. This is done by setting the denominator equal to 

zero and using the quadratic equation to solve. The roots are thus:  
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ݏ ൌ

െܥ
ܯ2

േ ඨ൬
ܥ

ܯ2
൰

ଶ
െ ൬

ܭ
ܯ

൰ Equation 5.37.

 

Now define critical damping, ܥ௖, as the damping that makes the radical equal to zero. By setting 

the radical equal to zero and solving for the critical damping, and by noting that ඥܭ ⁄ܯ  is the 

definition of the undamped natural frequency: 

௖ܥ  ൌ ܭඥܯ2 ⁄ܯ ൌ .Ω Equation 5.38ܯ2
Where: 

Ω = the undamped natural frequency. 

 

And defining the damping ratio as: 

ߞ  ൌ .௖ Equation 5.39ܥ/ܥ
 

This allows the variables in Equation 5.37 to be replaced as follows: 

ܥ 
ܯ2

ൌ Ωߞ
K
M

ൌ Ωଶ Equation 5.40.

 

And now substituting gives: 

ݏ  ൌ െߞΩ േ ඥሺζΩሻଶ െ Ωଶ Equation 5.41.
 

The damped natural frequency and damping can be combined on the complex plane, and the 

undamped natural frequency and the damping ratio can be found as: 

 
Ω ൌ ට߱௡

ଶ െ σଶ Equation 5.42.
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ߞ ൌ െߪ ට߱௡

ଶ ൅ ଶൗߪ  Equation 5.43.

Where: 

߱௡ = the damped natural frequency. 

 .the damping factor = ߪ

 

Substituting these expressions into Equation 5.41 results in a final expression for the roots, which 

are also the poles of the SDOF system: 

ݏ  ൌ ߪ േ ݆߱௡ Equation 5.44.
 

ߣ  ൌ ߪ ൅ ݆߱௡ Equation 5.45.
 

כߣ  ൌ ߪ െ ݆߱௡ Equation 5.46.
 

Therefore, Equation 5.36 can now be rewritten as: 

 
ሻݏሺܪ ൌ

1 ⁄ܯ
ሺݏ െ ݏሻሺߣ െ .ሻ Equation 5.47כߣ

 

This expression can be modified by writing it in terms of partial fractions as: 

ሻݏሺܪ  ൌ
ܿଵ

ሺݏ െ ሻߣ ൅
ܿଶ

ሺݏ െ .ሻ Equation 5.48כߣ

 

Setting Equation 5.48 equal to Equation 5.47 and solving for the new variables results in: 

 
ܿଵ ൌ

1 ⁄ܯ
ሺߣ െ ሻכߣ ൌ

1 ⁄ܯ
ሺߪ ൅ ݆߱௡ሻ െ ሺߪ െ ݆߱௡ሻ

ൌ
1 ⁄ܯ
2݆߱௡

 Equation 5.49.

 

 
ܿଶ ൌ

1 ⁄ܯ
െ2݆߱௡

ൌ ܿଵ
.Equation 5.50 כ

 



 182 

These expressions for ܿଵ and ܿଶ are commonly referred to as the residue and are typically 

denoted by the variable ܣ. Evaluating the expression along the ݆߱ axis since this is where the 

FRFs are measured results in the final partial fraction equation below: 

 
ሺ߱ሻܪ ൌ

ܣ
ሺ݆߱ െ ሻߣ ൅

כܣ

ሺ݆߱ െ .ሻ Equation 5.51כߣ

 

For systems that have multiple DOFs, the development of the partial fraction equation is 

identical, except that the transfer function is a summation of the contribution from each mode, 

and there is one mode for each DOF. Also, for an SDOF system, each variable in Equation 5.51 

is a scalar, whereas for an MDOF system with ܰ DOFs, ܪ and ܣ will be matrices of size ܰܰݔ. 

Thus, for an MDOF system, the partial fraction expression becomes: 

 
ሾܪሺ߱ሻሿ ൌ ෍

ሾܣሿ௥
ሺ݆߱ െ ௥ሻߣ

ே

௥ୀଵ

൅
ሾAכሿ୰

ሺ݆߱ െ ௥ߣ
כ ሻ Equation 5.52.

Where: 

 the mode number = ݎ

ܰ = the total number of DOFs 

௥ߣ ൌ ௥ߪ ൅ ݆߱௡௥ = pole of mode r 

 

For Equation 5.52, the values within each residue matrix, ሾܣሿ௥, become far more complicated to 

derive than those shown for an SDOF system in Equations 5.49 and 5.50. However, this is not an 

issue since the residue matrix is directly related to the mode shapes (also referred to as modal 

vectors). The relationship between the residues and the modal vectors is developed below. 

First, starting with Equation 5.12, but in the Laplace domain: 
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 ሾܤሺݏሻሿ ൌ 1 ሾܪሺݏሻሿ⁄ ൌ ሿܯଶሾݏ ൅ ሿܥሾݏ ൅ ሾܭሿ Equation 5.53.
Where: 

ሾܤሺݏሻሿ = the system impedance matrix. 

 

And it is known that: 

 ሾܤሺݏሻሿሾܤሺݏሻሿିଵ ൌ ሾܫሿ ൌ ሾܤሺݏሻሿሾܪሺݏሻሿ Equation 5.54.
Where: 

ሾܫሿ = the identity matrix. 

 

Substituting Equation 5.50 into Equation 5.52 for ሾܪሺݏሻሿ gives: 

 
ሾܫሿ ൌ ෍

ሾܤሺݏሻሿሾܣሿ௥
ሺݏ െ ௥ሻߣ

ே

௥ୀଵ

൅
ሾܤሺݏሻሿሾAכሿ୰

ሺݏ െ ௥ߣ
כ ሻ  Equation 5.55.

 

Now pre-multiplying both sides of the equation by ሺݏ െ  :௥ሻ givesߣ

 
ሺݏ െ ሿܫ௥ሻሾߣ ൌ ෍ሾܤሺݏሻሿሾܣሿ௥

ே

௥ୀଵ

൅
ሺݏ െ ሿ୰כሻሿሾAݏሺܤ௥ሻሾߣ

ሺݏ െ ௥ߣ
כ ሻ  Equation 5.56.

 

And evaluating at ݏ ൌ  :௥ results in the following expression for each modeߣ

 0 ൌ ሾܤሺߣ௥ሻሿሾܣሿ௥ Equation 5.57.
 

The columns of ሾܤሺߣ௥ሻሿ are all proportional to modal vector ݎ (denoted by ߰௥ሻ. Thus, each 

column of the residue matrix for mode ݎ must be proportional to ߰௥. It can also be shown that 

the residue matrix must have the same structure as ሾܤሺߣ௥ሻሿ. Thus, the following equation can be 

written: 
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 ሾܣሿ௥ ൌ ܳ௥ሼ߰ሽ௥ሼ߰ሽ௥
் Equation 5.58.

Where: 

ܳ௥ = the modal scaling factor for mode ݎ. 

ሼ߰ሽ௥ = the scaled modal vector (mode shape) for mode ݎ. 

 

This allows Equation 5.50 to be rewritten as: 

 
ሾܪሺ߱ሻሿ ൌ ෍

ܳ௥ሼ߰ሽ௥ሼ߰ሽ௥
்

ሺ݆߱ െ ௥ሻߣ

ே

௥ୀଵ

൅
ܳ௥

ሼ߰ሽ௥ሼ߰ሽ௥כ
்

ሺ݆߱ െ ௥ߣ
כ ሻ  Equation 5.59.

 

This equation demonstrates that the measured FRFs can be modeled as a superposition of the 

system properties at each mode. These system properties are the modal scaling, modal vector, 

damping ratio, and damped natural frequency. A number of algorithms solve for the system 

properties from this formulation.  

5.5.2 Matrix Fraction Model 

The matrix fraction model is another common formulation that is used to extract modal 

properties from measured data. This derivation starts with Equation 5.35 which is repeated here: 

 ܺሺݏሻ
ሻݏሺܨ

ൌ ሻݏሺܪ ൌ
1

ܯଶݏ ൅ ܥݏ ൅ ܭ
 Equation 5.60.

 

The transfer function can also be expressed as: 

 
ሻݏሺܪ ൌ

1
ܯଶݏ ൅ ܥݏ ൅ ܭ

ൌ ሺܩሺݏሻሻିଵ ൌ
ሻݏ௔ௗ௝ሺܩ
|ሻݏሺܩ|  Equation 5.61.

Where: 

 .ሻ = the dynamic stiffnessݏሺܩ

 .ሻ = the adjoint matrixݏ௔ௗ௝ሺܩ
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 .ሻ| = the determinantݏሺܩ|

 

For an MDOF system, this can be rewritten as: 

 

ሻݏሺܪ ൌ
ሻݏሺܤ
ሻݏሺܣ

ൌ

቎
ሻݏଵ,ଵሺܤ ڮ ሻݏଵ,ேሺܤ

ڭ ڰ ڭ
ሻݏே,ଵሺܤ ڮ ሻݏே,ேሺܤ

቏

ሻݏሺܣ
 

Equation 5.62.

Where: 

ܰ = the total number of DOFs. 

 

The numerator is composed of a matrix of polynomials in ݏ of order 2ሺܰ െ 1ሻ, and the 

denominator is a single polynomial in ݏ of order 2ܰ. From this point, various algorithms solve 

for the system poles in ܣሺݏሻ in different ways. 

5.5.3 State Space Model 

The third model for extracting modal parameters uses a state space relationship. The formulation 

begins with Equation 5.1 which is shown again:  

 ሾܯሿሼݔሷሺݐሻሽ ൅ ሾܥሿሼݔሶሺݐሻሽ ൅ ሾܭሿሼݔሺݐሻሽ ൌ ሼܨሺݐሻሽ Equation 5.63.
 

This can be reformulated as: 

 ൤ݔሶሺݐሻ
ሻ൨ݐሷሺݔ ൌ ቂ 0 ܫ

െିܯଵܭ െିܯଵܥቃ ൤ݔሺݐሻ
ሻ൨ݐሶሺݔ ൅ ቂ 0

ଵቃିܯ .ሻ Equation 5.64ݐሺܨ

 

The state vector is defined as: 

ሻݐሺݕ  ൌ ൤ݔሺݐሻ
.ሻ൨ Equation 5.65ݐሶሺݔ
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The output and the direct input-output transmission matrices (ܥ and ܦ respectively) are defined 

as: 

ܥ  ൌ ሾܫ 0ሿ ܦ ൌ ሾ0ሿ Equation 5.66.
 

From this, a state space description of the system is given: 

ሻݐሶሺݕ  ൌ ܣ · ሻݐሺݕ ൅ ܤ · ሻݐሺܨ ൅ .ሻ Equation 5.67ݐሺݓ
 

ሻݐሺݔ  ൌ ܥ · ሻݐሺݕ ൅ ܦ · ሻݐሺܨ ൅ .ሻ Equation 5.68ݐሺݒ
Where: 

 .the dynamic system matrix, size 2N x 2N = ܣ

 .the input matrix = ܤ

 .ሻ = a model for noise on the inputݐሺݓ

 .ሻ = a model for noise on the outputݐሺݒ

 

The state space description represents the response of the structure at any time to a known input 

signal. The poles are found from the eigensolution of the dynamic system matrix. The mode 

shapes are then found from the ܥ matrix, and the modal participation factors are found from the 

 .matrix ܦ

The state space formulation can also be developed in the frequency domain. With the noise terms 

set to zero, the formulation becomes: 

ሻݏሺܪ  ൌ ݏሾܥ · ܫ െ ܤሿିଵܣ ൅ .Equation 5.69 ܦ
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5.5.4 Overview of System Identification Algorithms 

Some historically important and popular algorithms that solve for the modal properties based on 

the mathematical models are discussed below. In general, each of the algorithms described has 

several variants and the naming is not always consistent from different references. Also, over 

time, more general models have been developed that have been shown to incorporate several of 

the listed algorithms in a consistent mathematical format. References for this overview include 

Maia and Silva (2001), Zhang (2004), and Avitabile et al (2005).   

The Peak Picking (PP) algorithm was one of the earliest frequency domain approaches. Peaks in 

the plots of the FRFs are assumed to be natural frequencies. Curve fitting is then applied to each 

peak to estimate the damping, and mode shapes are estimated directly from a column of FRFs at 

the assumed natural frequencies. This method will provide incorrect estimates of damping when 

closely spaced or repeated modes exist. Also, this method is difficult to use in the presence of 

noise since the peaks will be more difficult to identify. 

The Ibrahim Time Domain (ITD) method is a low order time domain algorithm that uses the 

state space model formulation. For FRF data, the inverse FFT is used to produce free response 

(decay) functions. These functions are then reformulated into an eigenvalue problem and solved 

to find the natural frequencies, damping, and mode shapes. Modal scaling cannot be found since 

free response functions are used.  

The Eigensystem Realization Algorithm (ERA) is a first order time domain algorithm that uses 

the state space formulation. The noise vectors are assumed to equal zero, and the minimum 

realizations of the system matrices are found. For FRF data, the inverse FFT is used to produce 

impulse response functions which are assembled into a block Hankel matrix. This matrix is then 
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decomposed using singular value decomposition (SVD) to find the system poles, damping, and 

modal vectors. ERA-FD is an equivalent algorithm formulated in the frequency domain. The 

FRFs are formed into a block matrix and SVD is again used to solve. Both methods produce a 

large number of computational poles, requiring that various strategies be used to determine 

which are real system poles and which are not. 

The Autoregressive Moving Average (ARMA) is another popular time domain method. This 

algorithm has a large number of variants including frequency domain incarnations. This method 

uses a low polynomial order of the matrix fraction model, which results in large matrix 

coefficients. A drawback of this method is that it also produces many computational poles. 

The Least Squares Complex Exponential (LSCE) algorithm is a high order time domain method 

that uses impulse response functions (IRFs) and the matrix fraction model. The coefficients of 

the denominator characteristic equation are computed and then the roots are found, which are the 

system poles. The mode shapes are found in a second step. This method also generates many 

computational poles and determination of the real modes is required. In the presence of noise, 

determining the real modes can be difficult. The Polyreference Time Domain (PTD) algorithm is 

a MIMO version of LSCE.  

The Frequency Domain Direct Parameter Identification (FDPI) method uses the state space 

model to solve for the modal properties. This method can only locate a number of modes equal to 

or less than the number of output measurements within any frequency band. Also, this method is 

computationally and memory intensive. 
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The Rational Fraction Polynomial (RFP) is a frequency domain algorithm that also has many 

variations, including the Matrix Fraction Description (MFD). These algorithms attempt to 

minimize the error between the measured and the modeled transfer function. 

The Complex Mode Indicator Function (CMIF) is a frequency domain algorithm that uses SVD 

of the transfer function to indicate the location of modes and to provide estimates of the mode 

shapes (Shih et al 1989). In a second step, the partial fraction model is used to estimate the modal 

parameters. A significant benefit of CMIF is that computational poles are not needed in order to 

enable a good fit to the data.  

5.5.5 Complex Mode Indicator Function 

CMIF is selected for the work of this thesis for two main reasons. First, CMIF does not require 

the inclusion of computational poles. This is important in bridge testing since bridges are time-

variant structures. In laboratory testing of mechanical systems, the ambient conditions (such as 

temperature and humidity) and the support conditions can be carefully maintained. This provides 

excellent data consistency and allows stabilization diagrams to accurately sort the computational 

modes from the actual modes. For time variant structures, it is far more difficult to sort out 

computational modes since the actual modes will drift in the stabilization diagram due to data 

inconsistency (Lembregts et al 1987). The second reason CMIF is selected is purely pragmatic. 

CMIF is a relatively simple algorithm to code and implement. Thus, CMIF is used and the 

process of extracting modal parameters with this algorithm is described in detail below.     

Like many system identification algorithms, CMIF uses a two stage process. In the first stage, 

modal vectors are estimated and are then used to filter the transfer function into what are 

essentially a collection of SDOF systems. These filtered FRFs are referred to as enhanced 
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frequency response functions (eFRFs). In the second stage, the pole and modal scaling are found 

from each SDOF system. Of course, the actual implementation of these two stages is somewhat 

more complicated and thus the entire process is described in detail below. 

5.5.5.1 Step 1 – Perform Singular Value Decomposition 

Singular value decomposition (SVD) is a common matrix factorization that is useful in many 

applications. In the CMIF algorithm, SVD is used to provide estimates of the modal vectors 

(mode shapes) of the system. To use SVD, it is first necessary to rewrite the mathematical model 

in a form that more closely relates to the form of the decomposition. From before, the partial 

fraction model of the transfer function can be derived as:   

 
ሾܪሺ߱ሻሿ ൌ ෍

ܳ௥ሼ߰ሽ௥ሼ߰ሽ௥
்

ሺ݆߱ െ ௥ሻߣ

ே

௥ୀଵ

൅
ܳ௥

ሼ߰ሽ௥ሼ߰ሽ௥כ
்

ሺ݆߱ െ ௥ߣ
כ ሻ  Equation 5.70.

 

If the complex conjugate terms are now included in the first term of the summation, and the limit 

of the sum is thus increased to 2ܰ, then the equation may be rewritten as: 

 
ሾܪሺ߱ሻሿ ൌ ෍

ܳ௥ሼ߰ሽ௥ሼ߰ሽ௥
்

ሺ݆߱ െ ௥ሻߣ

ଶே

௥ୀଵ

 Equation 5.71.

 

Now defining the modal participation factor as the transpose of the modal vector multiplied by 

the modal scaling, per mode: 

 ሼܮሽ௥ ൌ ܳ௥ሼ߰ሽ௥
் Equation 5.72.

 

Substituting Equation 5.72 into Equation 5.71 gives: 
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ሾܪሺ߱ሻሿ ൌ ෍

ሼ߰ሽ௥ሼܮሽ௥
ሺ݆߱ െ ௥ሻߣ

ଶே

௥ୀଵ

 Equation 5.73.

 

It is now possible to reorganize this equation into the completely equivalent form shown below 

which eliminates the summation (with the assumption of normal modes): 

 
ሾܪሺ߱ሻሿ ൌ ෍

ሼ߰ሽ௥ሼܮሽ௥
ሺ݆߱ െ ௥ሻߣ

ଶே

௥ୀଵ

ൌ ሾΨሿሾΛሿሾܮሿ Equation 5.74.

 

Where each column of the matrix ሾΨሿ contains a modal vector as shown below (up to 2ܰ 

modes): 

 ሾΨሿ ൌ ሾሼ߰ଵሽ ሼ߰ଶሽ ڮ ሼ߰ଶேሽሿ Equation 5.75.
 

And the matrix ሾΛሿ is a diagonal matrix containing the poles (with a size of 2ܰ2ܰݔ): 

 

ሾΛሿ ൌ

ۏ
ێ
ێ
ێ
ۍ

1
݆߱ െ ଵߣ

0
0
0

  

0
1

݆߱ െ ଶߣ
0
0

  
0
0
ڰ
0

  

0
0
0
1

݆߱ െ ےଶேߣ
ۑ
ۑ
ۑ
ې
 Equation 5.76.

 

And where each row of the matrix ሾܮሿ contains a modal participation factor vector: 

 

ሾLሿ ൌ ൦

ሼܮሽଵ
ሼܮሽଶ

ڭ
ሼܮሽଶே

൪ Equation 5.77.

 

Singular value decomposition (SVD) of the transfer function at each frequency line provides a 

very similar structure as the mathematical model of Equation 5.74: 
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 ሾܪሺ߱ሻሿ ൌ ሾUሺωሻሿሾΣሺωሻሿሾܸሺ߱ሻሿ Equation 5.78.
Where: 

ሾܷሺ߱ሻሿ = the left singular vectors, a unitary matrix. 

ሾΛሺ߱ሻሿ = a diagonal matrix of singular values that are real and non-negative. 

ሾܸሺ߱ሻሿ = the right singular vectors, a unitary matrix. 

 

From basic dynamics, it is known that the mode shapes are eigenvectors of the system equation. 

As such, finding the eigenvectors of a transfer function at some discrete frequency will provide 

the mode shapes that are most dominant at that frequency (up to the size of the system matrix). 

The SVD is closely related to the eigenvalue decomposition, and can be used in place of it. The 

eigenvalue decomposition of the transfer function is given as: 

 ሾܪሺ߱ሻሿሾܪሺ߱ሻሿכ ൌ ሾΨሺωሻሿሾΛሺωሻሿሾΨሺ߱ሻሿכ Equation 5.79.
Where: 

ሾΨሺ߱ሻሿ = the eigenvectors. 

ሾΛሺ߱ሻሿ = the eigenvalues. 

 

The eigenvalue decomposition can also be written in terms of the SVD terms as (and dropping 

the omegas): 

 ሾܪሿሾܪሿכ ൌ ሾUሿሾΣሿሾܸሿכሾܸሿሾΣሿכሾUሿכ ൌ ሾUሿሺሾΣሿሾΣሿכሻሾUሿכ Equation 5.80.
 

From inspection of Equations 5.79 and 5.80, it is obvious that the left singular vectors are the 

eigenvectors, and that each singular value is the square root of each eigenvalue. The right 

singular vectors can also be shown to be eigenvectors by reformulated Equation 5.80 as ሾܪሿכሾܪሿ. 

Thus, the SVD provides the same basic information as an eigenvalue decomposition would. 
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The SVD is used in place of eigenvalue decomposition for computational purposes. First, the 

matrix product of the transfer function is not required when using SVD. Also, the SVD algorithm 

is computationally more efficient than eigenvalue decomposition.  

Some important properties of the SVD are noted. First, the singular values are unique, but the 

singular vectors are not. If the transfer function is generally complex, than the singular vectors 

may also be generally complex (Fladung et al 1997). It is also important to understand the shape 

of the various matrices and how many elements each will contain. The equation below indicates 

the dimensions of the various matrices, and these dimensions are correct regardless of the 

number of input locations or output locations. 

 ሾܪሺ߱ሻሿே೚௫ே೔ ൌ ሾUሺωሻሿே೚௫ே೚
ሾΣሺωሻሿே೚௫ே೔

ሾܸሺ߱ሻሿே೔௫ே೔ Equation 5.81.
Where: 

௢ܰ = the number of output measurement locations. 

௜ܰ = the number of input measurement locations. 

 

5.5.5.2 Step 2 – Select CMIF Peaks and Extract Modal Vectors 

The purpose of the SVD was to capture estimates of the mode shapes. However, the singular 

vectors provide the best estimate of a mode shape at frequency lines that are near the natural 

frequency corresponding to the mode shape of interest. Thus, it is necessary to select 

approximate natural frequencies of the system so that good estimates of the mode shapes can be 

selected. 

To enable selection of natural frequencies, the singular values are plotted against frequency, and 

this is referred to as a CMIF plot. Peaks in the CMIF plot are selected as potential natural 
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frequencies. Considering Equation 5.73, it is noted that the numerator is a constant for each 

mode, but the denominator varies with ߱. The denominator is a minimum when ݆߱ ൌ  ௥, andߣ

thus a local maxima will occur in the CMIF plot. Given perfect data, each peak would be at a 

frequency line that is nearest to a damped natural frequency.  

Selection of peaks near natural frequencies is trivial in the case of clean data, and this is 

illustrated in Figure 5.8. This figure shows a CMIF plot for a numerical model of a cantilevered 

beam with three natural frequencies in the frequency band. The asterisks on the plot indicate the 

peaks that were automatically selected. The frequency resolution of the CMIF is 0.1 Hz for this 

example, and all three selected peaks are at a frequency line that is immediately adjacent to the 

theoretical natural frequency.  

 
Figure 5.8. CMIF plot showing peak selection near natural frequencies with very low noise. 

In the presence of noise, the peaks may be jagged and the highest point may not be at the 

frequency line closest to the damped natural frequency. This is not typically an issue since the 

mode of interest will be dominant anywhere in the vicinity of the peak. However, the variance in 

the mode shape can be reduced by averaging the modal vectors from several adjacent lines of the 

CMIF (Leurs et al 1993). In the case where there are closely spaced modes, the mode shapes to 

10 20 30 40 50 60
10

-3

10
-1

10
1

Frequency (Hz)

M
ag

ni
tu

de
 (g

/lb
)



 195 

be averaged must be inspected to ensure they are consistent. Also, using only the imaginary 

portion of the transfer function in the calculation of the SVD provides better discrimination 

between closely spaced modes (Allemang and Brown 2006). The SVD of purely imaginary 

values returns purely real valued modal vectors. 

A more serious issue in the presence of noise is that false peaks may be selected. This is 

especially an issue with the use of random inputs if there are an inadequate number of averages. 

Peaks are then likely to exist at any frequency that was not well excited. To avoid selection of 

these peaks, the modal vectors near the peak are inspected to ensure they are consistent with the 

mode shape at the peak. 

Figure 5.9 illustrates a CMIF plot in the presence of noise. This plot was prepared using the same 

numerical cantilevered beam model as before, but adding 5% noise to the inputs and 20% noise 

to the outputs. Also, the SVD was performed only on the imaginary part of the transfer function. 

It is noteworthy that the magnitude of the peak singular values are not affected by operating on 

only the imaginary part, but the singular values away from the peaks are affected. This figure 

also shows that although the noise is significant, it does not have a large effect in the vicinity of 

the peaks, validating that CMIF is a robust algorithm. 
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Figure 5.9. CMIF plot showing peak selection in the presence of noise.  

The mode shapes are also affected by the noise. Figure 5.10 shows the mode shape for the first 

bending mode of the cantilever beam. The mode shape from the left singular vector at the 

frequency line of the peak singular value is shown in the central plot. The two plots on the left 

side are from the two frequency lines prior to the peak, and the two plots on the right side are 

from the two frequency lines after the peak. The mode shapes are practically identical for any 

frequency line near the peak since the modes are widely spaced and since there is very low noise. 

Figure 5.11 shows the same mode shape plots, but for the noisy data. The mode shape is 

noticeably affected by the noise. 
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Figure 5.10. Plot of mode shapes in the vicinity of the first CMIF peak with very low noise.   

 
Figure 5.11. Plot of mode shapes in the vicinity of the first CMIF peak in the presence of 

noise. 

Figure 5.12 illustrates how mode shapes in the vicinity of a peak can be used to help evaluate if 

the peak is due to a natural frequency or not. This figure again illustrates the mode shapes for 

two frequency lines before and after a selected peak. The mode shapes are not consistent, and 

this indicates that the peak is not due to a mode. 
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Figure 5.12. Plot of mode shapes in the vicinity of a false peak. Note inconsistent mode 

shapes.   

If the testing was well planned and the data was properly collected, then the FRFs should be 

fairly smooth. Given good FRFs, the CMIF plot will also be reasonably smooth, and the 

selection of peaks and modal vectors can be confidently carried out.  

5.5.5.3 Step 3 – Generate Enhanced Frequency Response Functions 

With good estimates of the mode shapes, the FRFs can be transformed from physical coordinates 

to modal coordinates. This transformation is done by using the modal vectors as a basis. If the 

modes are orthogonal, then a transformed FRF will only be due to a single mode, and will be 

referred to as an enhanced FRF (eFRF). The eFRF is essentially the FRF for an SDOF system, 

and the purpose of this transformation is to enable the poles and modal scaling to be easily 

extracted. The eFRF is defined as shown below: 
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௥ሺ߱ሻܨܴܨܧ  ൌ
ܳ௥

ሺ݆߱ െ ௥ሻߣ
 Equation 5.82.

Where: 

ܳ௥ = the modal scaling factor for mode ݎ. 

௥ߣ ൌ ௥ߪ ൅ ݆߱௡௥ = pole of mode ݎ. 

 

To get the transfer function into this form requires a few steps. First, starting with Equation 5.71 

and pre and post-multiplying both sides by a basis for the transformation (e.g. a modal vector) 

gives: 

 
ሼ߮௥ሽ்ሾܪሺ߱ሻሿሼ߮௥ሽ ൌ ሼ߮௥ሽ் ෍

ܳ௞ሼ߰௞ሽሼ߰௞ሽ்

ሺ݆߱ െ ௞ሻߣ

ଶே

௞ୀଵ

ሼ߮௥ሽ Equation 5.83.

Where: 

߮௥ = a column vector that is representative of mode ݎ. 

 

Assuming orthogonal modes, the contribution from any mode ݇ that is not mode ݎ will equal 

zero because of the vector product: 

 ሼ߮௥ሽ்ሼ߰௞ሽ ൌ 0 ݂݅ ݇ ് .Equation 5.84 ݎ
 

In actual testing, the modes may not be completely orthogonal since only a small number of 

spatial locations are sampled. This is usually not important since only the eFRF information near 

a peak is used in estimating the modal properties, and the contribution from other modes will 

thus be orders of magnitude less than the contribution of the mode of interest in this vicinity. 

Assuming the contribution from other modes is nearly zero, Equation 5.83 reduces to: 

 
ሼ߮௥ሽ்ሾܪሺ߱ሻሿሼ߮௥ሽ ൎ ሼ߮௥ሽ் ܳ௥ሼ߰௥ሽሼ߰௥ሽ்

ሺ݆߱ െ ௥ሻߣ
ሼ߮௥ሽ Equation 5.85.
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The contribution due to the conjugate pole, כߣ, is neglected. This contribution is equal to 50% of 

the eFRF magnitude at ߱ ൌ 0, and reduces at a rate proportional to 1/ߣ. Thus, at very low 

frequencies, neglecting this term leads to large errors. However, the error in the magnitude of the 

eFRF at ω = 1 Hz is 0.8% (assuming 1% damping). At ω = 5 Hz the error is 0.16%, and the error 

is 0.08% at 10 Hz. Thus, for structures with fundamental frequencies in the range that can be 

excited by the TTs, neglecting the conjugate pole is satisfactory. 

Moving terms from Equation 5.85 to the left side results in: 

 ሼ߮௥ሽ்ሾܪሺ߱ሻሿሼ߮௥ሽ
ሼ߮௥ሽ்ሼ߰௥ሽሼ߰௥ሽ்ሼ߮௥ሽ ൌ

ܳ௥
ሺ݆߱ െ ௥ሻߣ ൌ .௥ሺ߱ሻ Equation 5.86ܨܴܨܧ

 

Thus the eFRFs can be found from the transfer function so long as good estimates of the mode 

shapes exist and so long as the mode shape estimates are essentially orthogonal.  

Equation 5.86 is general, and needs to be slightly adapted for the CMIF algorithm. Using CMIF, 

the modal vectors are estimated as the left singular vectors taken at a frequency that is near a 

natural frequency of the system. In general, the left singular vectors, like eigenvectors, are not 

unique and may be scaled by some complex number. As a first step, all of the singular vectors 

that have been selected as modes of the system must be commonly scaled. After a modal scaling 

method is selected and applied to each modal vector, then the modal scaling factor that relates 

the residues to the scaled mode shapes can be calculated. Three common methods of scaling the 

modal vectors are described below. 

A simple and common scaling method is to set the largest absolute value in the modal vector 

equal to one and to scale the other values proportionally. This is known as ‘unity modal 
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coefficient’ scaling. A second method is to set the vector length equal to one. This is known as 

‘unity modal vector length’ and consists of dividing each element in the modal vector by the 2-

norm. Finally, if the modal scaling factor is set equal to the inverse of 2݆߱, then the modal mass 

will be calculated equal to one. This is ‘unity modal mass’ scaling, and is only applicable when 

the modal masses are extracted prior to the modal vectors. Unity modal coefficient scaling is 

used in this thesis since it is easily implemented. The scaling can be represented as: 

 
ሼ߰ሽ௥ ൌ

ሼݑሽ௥

௜ݑ
 Equation 5.87.

Where: 

ሼ߰ሽ௥ = the scaled modal vector for mode ݎ, which is real and has maximum value of 1.0. 

ሼݑሽ௥ = the left singular vector selected as the estimate of the mode shape. 

 .ሽ௥ that has the largest absolute valueݑ௜ = the scalar from ሼݑ

 

It must also be recognized that ሾܪሺ߱ሻሿ has a size of ௢ܰݔ ௜ܰ and thus the mode shape vector on 

the left side must have length ௢ܰ and the mode shape vector on the right side must have length 

௜ܰ. The left singular vector has length ௢ܰ and so the scaled modal vector does as well, and can be 

used on the left side. However, the vector on the right side must be a subset of the modal vector 

that only represents the spatial locations of the inputs. While it is possible to simply use the 

appropriate coefficients from the modal vector, in CMIF it is preferred to use the right singular 

vectors instead, which already have a length of ௜ܰ.  

To use the right singular vectors, they must be scaled in a consistent manner with the modal 

vector (Catbas et al 2004). For perfect data, there is merely a linear relation between the elements 

of the left singular vector and the right singular vector. In the presence of noise, this is not true 
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and a linear least-squares estimate is used to find a scale factor for the right singular vector. 

Assuming the following relation for the vectors selected at a single mode: 

 ߰పതതത ൌ ܥ · ௜ݒ ൅ .௜ Equation 5.88ߝ
Where: 

 .a constant = ܥ

ప߰തതത = the element of the scaled mode shape that corresponds to the spatial location of ݒ௜. 

 .௜ = the ith element of the right singular vectorݒ

 .௜ = the error on the ith elementߝ

  

And the least-squares solution for the constant is then: 

 
ܥ ൌ

∑ ሺݒ௜߰పതതതሻ௡
௜ୀଵ

∑ ൫ݒ௜
ଶ൯௡

௜ୀଵ
 Equation 5.89.

 

In practical coding, the pseudo inverse is often used to find the solution to linear least-squares 

problems. Thus, for any mode, the calculation of the constant can be equivalently represented as: 

௥ܥ  ൌ ሼݒሽ௥
ାሼ ത߰ሽ௥ Equation 5.90.

Where: 

ሼݒሽ௥
ା = the pseudo inverse of the left singular vector for mode ݎ. 

ሼ ത߰ሽ௥ = the elements of the scaled mode shape that correspond to the input locations. 

 

The right singular vectors can now be properly scaled in relation to the scaled modal vectors: 

 ሼݒ௦௖ሽ௥ ൌ ௥ܥ · ሼݒሽ௥ Equation 5.91.
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Substituting the modified left and right singular vector data into Equation 5.86 provides the final 

equation that is used to calculate the eFRFs: 

 
௥ሺ߱ሻܨܴܨܧ ൌ

ሼ߰ሽ௥
்ሾܪሺ߱ሻሿሼݒ௦௖ሽ௥

ሼ߰ሽ௥
்ሼ߰ሽ௥ሼݒ௦௖ሽ௥

்ሼݒ௦௖ሽ௥
 Equation 5.92.

 

Equation 5.92 is effective at filtering the transfer function such that an eFRF will primarily be 

composed of the contribution from a single mode. However, with modal vectors that have low 

spatial resolution, and in the presence of noise, the filtering will be imperfect and more than one 

mode may noticeably contribute to a single eFRF. This is not usually an issue since only a few 

points near the peak of the eFRF are used to estimate the poles and modal scaling.  

5.5.5.4 Step 4 – Extract Poles and Modal Scaling 

5.5.5.4.1 Least-Squares Local DOF Method 

The eFRFs are essentially the transfer functions for SDOF systems, and thus SDOF methods can 

be used to extract the poles and modal scaling from the eFRFs (Allemang 1999). Since the poles 

and modal scaling are constants, the eFRF provides a highly overdetermined set of equations 

from which to solve for these paramaters. Starting with the SDOF Equation 5.82: 

௥ሺ߱ሻܨܴܨܧ  ൌ
ܳ௥

ሺ݆߱ െ ௥ሻߣ
 Equation 5.93.

 

Using a least-squares formulation, a number of points along the eFRF are selected. The points 

are selected in the vicinity of the peak since this is where the eFRF should be least affected by 

other modes. The exact number of points to use depends on balancing two criteria: using more 

points reduces the variance due to noise; selecting points away from the peak reduces accuracy 

due to the contribution of other modes. A method is developed for use in this work to select a 
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‘good’ number of points, and is discussed later. To solve for the modal scaling and the pole for a 

single mode, Equation 5.93 is rearranged (and dropping the ݎ notation):     

 ݆߱௜ · ௜ܨܴܨܧ െ ߣ · ௜ܨܴܨܧ ൌ ܳ Equation 5.94.
 

And further rearranging to: 

 ݆߱௜ · ௜ܨܴܨܧ ൌ ሾܨܴܨܧ௜ 1ሿ ൤ߣ
ܳ൨ Equation 5.95.

 

Which can finally be expressed as: 

 ൤ߣ
ܳ൨ ൌ

1
ሾܨܴܨܧ௜ 1ሿ · ݆߱௜ · .௜ Equation 5.96ܨܴܨܧ

 

And using the pseudo inverse to find the least-squares solution: 

 

൤ߣ
ܳ൨ ൌ ൦

ଵܨܴܨܧ 1
ଶܨܴܨܧ 1

ڭ
௡ܨܴܨܧ

ڭ
1

൪

ା

൦

݆߱ଵ · ଵܨܴܨܧ
݆߱ଶ · ଶܨܴܨܧ

ڭ
݆߱௡ · ௡ܨܴܨܧ

൪ Equation 5.97.

Where: 

݊ = the number of points along the eFRF selected for the solution. 

ሾ·ሿା = the pseudo inverse. 

  

It must be noted that the least-squares formulation does not return the complex conjugate poles, 

although an eigenvalue formulation would. However, the conjugate poles are assumed to exist 

and are applied when the modal properties are used to synthesize FRFs and when modal 

flexibility is calculated.  
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Figure 5.13 shows the result of using least squares to fit a solution for the pole to the noisy 

numerical cantilevered beam model data. The thick black line shows the SDOF FRF synthesis 

over the range of points that were used to solve for the pole. The thin line is the eFRF, and it is 

clear that the extracted natural frequency and damping ratio match the data.   

 
Figure 5.13. eFRF plot showing curve fit of modal parameters. 

The undamped natural frequencies and damping ratios can be calculated directly from the poles 

by using Equation 5.42 and Equation 5.43 respectively. At this point, the mode shapes, damping 

ratios, natural frequencies, and modal scaling are all known and the CMIF algorithm is complete. 

5.5.5.4.2 Selection of Portion of eFRF for Least-Squares 

The selection of the number of points from the eFRF to use in the least-squares solution to 

Equation 5.97 is not often discussed in the literature, and anecdotal evidence suggests that a 

constant number of points is often selected a-priori and used for all parameter extraction. 

Experimentation within this work demonstrated that the number of points used can significantly 

affect the solution for damping and modal mass if the subject eFRF peak is affected by noise. 

Therefore, an algorithmic method by which a ‘good’ number of points is automatically selected 

is developed. 
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First, it is recognized that in the absence of noise, the few points closest to the eFRF peak are the 

least affected by the contribution of other modes. Second, it is recognized that if the peak is 

affected by noise, then additional points should be used to increase the probability that the noise 

will be ‘averaged’ out. Therefore, the algorithm works as follows: 

• The peak eFRF point and the closest points to either side (3 points total) are selected and 

 .and ܳ are calculated ߣ

• This is repeated with 5 total points and 7 total points so that three values of ߣ and ܳ exist. 

• If the value of ܳ varies by less than 5% amongst these three samples, then the ߣ and ܳ 

values using five points are selected. 

• If the value of ܳ varies by more than 5%, then the algorithm proceeds by adding two 

additional points in each iteration. 

• If the value of ܳ varies by less than 5% amongst the three most recent samples, then the ߣ 

and ܳ values of the second most recent iteration are selected. 

• If a local minima in ܳ is found, and the last three values vary by less than 10%, then the 

 .and ܳ values at the minima are selected ߣ

• If a local maxima in ܳ is found, and the last three values vary by less than 10%, then the 

  .and ܳ values at the maxima are selected ߣ

• If the value of ܳ does not adequately stabilize by the 10th iteration (21 total points in 

least-squares calculation), then the algorithm stops and the ߣ and ܳ values of the 10th 

iteration are selected. 
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Using this method provided much more consistent values of modal mass across various 

experiments, and it is used for all laboratory bridge model and field bridge testing data 

processing. 

5.5.5.5 Step 5 – Evaluate Results 

The final step of the system identification process is to verify that the extracted modal 

parameters accurately represent the system. The most common method to check the validity of 

the parameters is to synthesize FRFs from the parameters. The synthesized FRFs can then be 

plotted on the measured FRFs and the fit can be evaluated. A second method for checking for 

errors is to use reciprocity. Per Maxwell’s reciprocity theorem, the response at DOF ‘B’ to a 

force at DOF ‘A’ is equal to the response at DOF ’A’ for the same force at DOF ‘B’. This 

implies that the FRF for input location ‘A’ and output location ‘B’ should be identical to the FRF 

for input location ‘B’ and output location ‘A’. 

FRFs are synthesized using the partial fraction model as shown below. Because the transfer 

function is usually not square due to a different number of inputs and outputs, a subset of the full 

modal vector must be used as before. The transfer function is synthesized as: 

 ሾܣሿ௥ ൌ ܳ௥ሼ߰௥ሽሼ߰௥തതതതሽ் Equation 5.98.
Where: 

ሾܣሿ௥ = the residue matrix for mode ݎ. 

ሼ߰௥തതതതሽ = the subset of modal vector ݎ for the DOFs at driving point locations. 

 

 
௦௬௡ሺ߱ሻ൧ܪൣ ൌ ෍

ሾܣሿ௥
ሺ݆߱ െ ௥ሻߣ

ே

௥ୀଵ

൅
ሾכܣሿ௥

ሺ݆߱ െ ௥ߣ
כ ሻ Equation 5.99.

Where: 
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ܰ = the number of modes captured. 

ሾכܣሿ௥ = the complex conjugate of each term of the residue matrix. 

 

For the common situation in which a single FRF is synthesized at a time, the equation is 

simplified as: 

 
௣௤ሺ߱ሻܨܴܨ ൌ ෍

ܳ௥ · ߰௣௥
· ߰௤

כ
௥

ሺ݆߱ െ ௥ሻߣ

ே

௥ୀଵ

൅
ቀܳ௥ · ߰௣௥

· ߰௤
כ

௥
ቁ

כ

ሺ݆߱ െ ௥ߣ
כ ሻ  Equation 5.100.

Where: 

 .the output DOF number = ݌

 .the input DOF number = ݍ

߰௣௥
 = the scalar value of modal vector ݎ at DOF location ݌. 

߰௤
כ

௥
 = the complex conjugate of the scalar value of modal vector ݎ at DOF location ݍ. 

 

Figure 5.14 and Figure 5.15 illustrate the use of synthesized FRFs for solution validation. These 

figures use the noisy data from the numerical cantilevered beam model, and the black line is the 

FRF that has been synthesized from the extracted modal properties. The first plot illustrates the 

magnitude of the FRF, and the fit is reasonable, especially at the peaks. The second plot 

illustrates the phase angle of the FRF, and the fit is reasonable. The significant apparent noise in 

the measured FRF below 15 Hz is due to the selected limits of the ‘y’ axis. Since the FRF should 

have a value near -180 degrees, values that are slightly less than -180 are plotted as positive 

values, causing the plot to appear noisier than it actually is in this region. This can be greatly 

improved by choosing different limits for the axis as is shown in Figure 5.16. This is a common 

problem with phase plots.  
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Figure 5.14. Magnitude plot - synthesized FRF overlay on measured FRF in the presence of 

noise. 

 
Figure 5.15. Phase angle plot – synthesized FRF overlay on measured FRF in the presence 

of noise. 

 
Figure 5.16. Phase angle plot – revised y-axis reduces apparent noise below 15 Hz. 
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Reciprocity is also checked by overlaying the FRFs synthesized for any pair of DOFs. However, 

the overlays will be perfectly aligned so long as an error was not made in the calculation of the 

synthesized FRFs. This is apparent by inspection of Equation 5.100, in which it is clear that the 

exact same modal properties are used to calculate the pair of FRFs that can exist between two 

points. It is noted that reciprocity is more commonly used to check for nonlinearities during the 

testing stage by comparing the measured FRFs between a pair of DOFs. 

5.6 MODAL FLEXIBILITY ESTIMATION 

After the modal properties have been estimated from experimental data for some number of 

identifiable modes, it is possible to calculate an estimate of modal flexibility. From before, if the 

transfer function is evaluated at ߱ ൌ 0 then the Newtonian equation of motion in the Laplace 

domain reduces to:  

 ሾܪሺ0ሻሿ ൌ
1

ሾܭሿ ൌ ሾ݂ሿ Equation 5.101.

 

Since the transfer function can be synthesized from the estimated modal properties, modal 

flexibility can also be synthesized. Using the partial fraction model of the transfer function from 

before: 

 
ሾܪሺ߱ሻሿ ൌ ෍

ܳ௥ሼ߰ሽ௥ሼ߰ሽ௥
்

ሺ݆߱ െ ௥ሻߣ

ே

௥ୀଵ

൅
ሺܳ௥ሼ߰ሽ௥ሼ߰ሽ௥

்ሻכ

ሺ݆߱ െ ௥ߣ
כ ሻ  Equation 5.102.

 

Evaluating the partial fraction model at a frequency of ߱ ൌ 0 gives: 

 
ሾܪሺ0ሻሿ ൌ ෍

ܳ௥ሼ߰ሽ௥ሼ߰ሽ௥
்

ሺെߣ௥ሻ

ே

௥ୀଵ

൅
ሺܳ௥ሼ߰ሽ௥ሼ߰ሽ௥

்ሻכ

ሺെߣ௥
כ ሻ ൌ ሾ݂ሿ Equation 5.103.
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All of the modal parameters needed for the solution of Equation 5.103 have now been estimated 

by the system identification process. It is noteworthy that in the synthesis of the transfer 

function, the size is not limited to the ௢ܰݔ ௜ܰ size of the measured transfer function. Using the 

full length of the modal vectors results in a flexibility matrix of size ௢ܰݔ ௢ܰ.  

From a theoretical standpoint, the modal flexibility is exactly equal to the static flexibility. 

However, in actual testing, only some modes will be found and thus the calculated flexibility will 

be less than the real value. This issue is known as modal truncation, and it is important to 

evaluate its effect. The method used to determine if enough modes have been included is to 

check if the flexibility is converging as more modes are included in the summation. Typically, a 

unit load vector is applied to the flexibility matrix and deflections are used as a proxy for the 

convergence of flexibility.  

This is illustrated for the case of a numerical model of a two-span continuous beam. Figure 5.17 

shows the convergence by using the mean of the deflected shape. A deflection profile is found 

using a unit load vector applied to the modal flexibility matrix found with the inclusion of all 

identified modes. Then, deflection profiles are found starting with only the first mode included, 

and repeatedly as the contribution of each mode is added to the modal flexibility matrix. The 

mean of the absolute value of the deflected shapes is found. Then, the mean with all modes 

included is used to normalize the mean from the cases with less modes. These normalized values 

are plotted as shown, and it is clear for the two-span beam that the second mode is responsible 

for nearly 100% of the modal flexibility. Not surprisingly, the shape of the second mode is 

closely matched to the deflected shape. 
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Figure 5.17. Convergence of modal flexibility for a 2-span continuous beam. 

Convergence can also be assessed by the direct use of the measured deflections. Figure 5.18 

shows the deflected shape as modes are added. The curves for two modes, three modes, and four 

modes are almost right on top of each other since the second mode has such a dominant 

contribution. It is noted that the second mode alone is responsible for 99% of the analytical 

maximum deflection. For real world structures, the major contributions to flexibility are usually 

shared amongst several modes, and thus the evaluation of modal truncation is more critical. 

 
Figure 5.18. Deflection profile illustrating convergence of modal flexibility for a 2-span 

continuous beam. 

Another issue that must be discussed in regards to modal flexibility is the topic of units. Modal 

flexibility has a real physical meaning and is measured in absolute units of distance per force. 
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However, data is usually collected in units of acceleration and force. Also, there are many 

opportunities during data processing to inadvertently scale the data improperly. Thus, care must 

be taken to convert units properly and to carry them through calculations. The following 

illustrates appropriate units for the various steps during data processing, and the proper 

conversions. 

Assuming the typical situation of a force input measurement in pound-force units, and an output 

measurement of acceleration in units of the constant ݃, then the correct units and conversions are 

as follows:    

Initial Units:  

݈ܾ݂ = units of input measurement. 

݃ = units of output measurement. 

 

Perform FFT: 

 .units of input measurement = ݖܪ/݂ܾ݈

 .units of output measurement = ݖܪ/݃

 

Calculate FRFs (acceleration / force): 

݃/݈ܾ݂ = outputs divided by inputs for any FRF algorithm. 

 

Convert FRFs from ݃/݈ܾ݂ to ݂ݐ/݈ܾ݂ ·  :ଶݏ

ܨܴܨ כ ݂ܾ݈/ݐ݂ ଶ = converted FRF in units ofݏ/ݐ݂ 32.2 ·  .ଶݏ
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Convert FRFs from receptance to dynamic compliance: 

 .݂ܾ݈/ݐ݂ ଶ߱ଶ = FRF in terms of݆/ܨܴܨ

 

The SVD portion of the CMIF algorithm may be performed on the FRFs in any units since only 

unitless mode shapes result from this calculation. The eFRFs must be found from the FRFs that 

are in terms of distance per force so that modal scaling is correct. The eFRFs will then have the 

same units as the FRFs, and then the units of the poles and of modal scaling will be:  

 .݂ܾ݈/ݐ݂ ௥ when found from eFRF that is in terms ofߣ units of = ݏ/݀ܽݎ

݂ܾ݈/ݐ݂ ·  .݂ܾ݈/ݐ݂ units of ܳ௥ when found from eFRF that is in terms of = ݏ

 

Finally, modal flexibility is calculated: 

 .units of modal flexibility = ݂ܾ݈/ݐ݂

 

The modal mass can also be found from modal scaling as is shown below.  

௥ܯ  ൌ
1

2݆Ω௥ · ܳ௥
 Equation 5.104.

Where: 

 .௥ = the modal mass in units of ݈ܾ݉ (equally represented by ݈ܾ݂/݃)ܯ

Ω௥ = the undamped natural frequency in units of ݏ/݀ܽݎ. 

Q୰ = the modal scaling in units of  ݂ݐ/݈ܾ݂ ·  .ݏ
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5.7 CONCLUSION 

This chapter provided the methods by which measurements of force signal inputs and structure 

vibration outputs can be used to determine the modal parameters of a structure. From the context 

of bridge testing, it was shown how modal flexibility can be calculated, which can then be used 

for evaluating the structure. 

Common problems relating to data collection and preprocessing were discussed in detail, as were 

the methods by which these problems can be minimized or avoided. The issue of quantization 

can be minimized by the proper selection of sensors, and by the use of dynamic range on analog 

to digital converters. Errors due to inadequate frequency resolution can be avoided by 

performing initial testing on a structure, and evaluating the necessary resolution based on the 

frequency and spacing of the modes of interest. The different methods by which data can be 

averaged to reduce variance due to noise were discussed. For deterministic signals, the best 

averaging method is synchronous averaging, whereas stochastic signals require the use of 

asynchronous averaging methods. Finally, the bias errors that can be introduced by using the 

FFT to transform the data to the frequency domain were discussed. Leakage is a significant issue 

that can be greatly reduced by the choice of excitation signal and by using cyclic averaging. 

The methods by which transfer functions are assembled from FRF data were described. In modal 

testing, it is standard to collect many repeated sets of data. The sets of data from the repeated 

experiments can be combined together in a variety of ways to reduce the variance on the 

measurements. It was shown that the ܪଵ algorithm is a good choice when stochastic input signals 

are used, and that the EIV algorithm is a good choice when deterministic signals are used. The 

methods by which the transfer function is assembled were also illustrated for the cases of SIMO 

and MIMO testing. 
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System identification was also reviewed. This is the process of extracting the modal properties 

from the transfer function, and many competing algorithms and commercial packages exist. The 

broad categories of algorithm formulation were described, and some of the most popular 

algorithms were briefly mentioned. The CMIF algorithm was selected for the system 

identification needs of this thesis due to its robust identification of modes even in the presence of 

inconsistent data, and since the algorithm can be implemented in-house. The explicit details of 

how the system identification is performed using CMIF were then illustrated. 

Finally, the method by which modal flexibility is synthesized from the identified modal 

parameters was shown. The issue of modal truncation was also discussed, and methods to assess 

the convergence of modal flexibility were given. It is noted that although deflections converge 

with the inclusion of several modes (typically), the modal flexibility matrix will still be statically 

incomplete (Doebling 1997), and the effects of this issue are addressed in Chapter 8. Subsequent 

chapters also validate the entire data processing routine by comparing the outcome to analytical 

results.   
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6 CHAPTER SIX 

LABORATORY BRIDGE MODEL TESTING 

6.1 INTRODUCTION 

The overarching goal of this research is to evaluate the use of an array of tactile transducers for 

experimental modal analysis (EMA) of bridges and to determine the optimal experimental 

procedures for such testing. This chapter discusses various experiments that are undertaken to 

determine if the TTs will provide an EMA characterization of a large-scale bridge model that is 

comparable to using a more conventional excitation device. This testing is important since EMA 

is a totally different use for the shakers than the manufacturer intended. Thus, these shakers have 

never been validated for this use by the maker or by any other researcher. The various tests 

reported herein are designed to use the TTs in the same manner that purpose-built shakers are 

typically used, enabling the functionality of the TTs to be evaluated in realistic situations. The 

laboratory setting is used for this work so that experiments are more repeatable, variability and 

uncertainty from environmental factors are reduced, test setup changes can be quickly executed, 

and required manpower is minimized.   

All experiments are performed on a steel bridge model. The TTs are used in single input, 

multiple output (SIMO) and multiple input, multiple output (MIMO) test setups with burst-

random and multisine excitation signals. The use of roving force transducers is also tested. 

Baseline system identification is performed with conventional APS SIMO testing to provide a 

point of comparison for the tactile transducer results. Additionally, static load testing of the 

bridge model is performed to provide an accurate static flexibility matrix against which all modal 

results can be compared. The organization of the chapter is summarized in Figure 6.1: 
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Figure 6.1. Organization of bridge model testing chapter. 

6.2 PREPARATIONS FOR TESTING 

This section describes the physical preparation of the laboratory bridge model, sensors, shakers, 

and data collection system. Each of these elements impacts the quality of the results, and thus 

careful attention is paid so that the best possible data is obtained. 

6.2.1 Bridge Model Preparation 

The bridge model is intended to represent a relatively simple structure so that correct results are 

easily identified. The model is nominally doubly symmetric and is a single span, simply 

supported on rollers. The model was previously used for a variety of tests by other students and 

was in a particular configuration (Figure 6.2). The previous results indicated that the model 

essentially acted as a plate structure due to the significant stiffness provided in the lateral 

direction by the seven lines of diaphragms. Consideration was given to decreasing the lateral 

stiffness so that the three beam lines act more independently, and thus three lines of diaphragms 
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were removed to decrease the ability of the structure to distribute loads laterally (Figure 6.2). 

Many tests with the APS shaker and with the TTs were carried out, and the results were 

generally poor. Local modes of the individual beams dominated the response of the model, and 

consistent values for modal mass and modal flexibility could not be attained due to the local 

modes interacting with the more important global modes. Thus, the model was reconstructed to 

its original arrangement with seven diaphragm lines, and the testing reported herein was 

undertaken. The structure dimensions and member sizes are provided in Figure 6.3.   

The bridge model has bolted joints at all diaphragm lines. Noise and nonlinearities can occur in 

the model due to loose connections, and thus all 712 bolts are tightened. Also, many cables are 

attached to the structure for strain gauges and accelerometers, and all cables are checked to 

ensure they are tight to the structure and cannot cause much noise due to swinging and bumping. 

The structure is supported on steel rollers at both ends, and the east end also has bolts near the 

rollers to provide lateral restraint (Figure 6.4). All six rollers are reset into their proper alignment 

by jacking up the ends of the bridge. Overall, all obvious potential causes of noise in the 

structure are minimized. 

      
Figure 6.2. Photographs of bridge model. Original and final arrangement at left and failed 

trial arrangement at right. (Photos by EVF, dynamics lab, 7/9/13) 
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Figure 6.3. Bridge model plan view sketch. 

      
Figure 6.4. Photographs of bridge model bearings. ‘Pinned’ at left and ‘roller’ at right. 

(Photos by EVF, dynamics lab, 7/9/13) 

6.2.2 Sensor Preparation and Data Acquisition Setup 

Similar to the preparation of the bridge model, the sensors, wiring, and data acquisition are setup 

to provide the best possible testing results.  

6.2.2.1 Accelerometers 

For all dynamic testing, the structure output is captured by accelerometers. Each accelerometer is 

factory calibrated by back-to-back testing with a high-quality accelerometer of known response. 

However, the available accelerometers have all been used for a variety of tests over several 

years, and thus the calibration of each must be rechecked. The factory calibration process is 

repeated in the lab by back-to-back method as shown in Figure 6.5. A special calibration 
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accelerometer (the reference sensor or REF) is attached to the APS shaker, and the sensor under 

test (SUT) is attached directly to the calibration accelerometer. A 100 Hz sine wave is input to 

the APS shaker, and the output of both accelerometers is recorded. After 20 seconds of settling 

time elapses, 10 seconds of data are collected, and the RMS acceleration of both the REF sensor 

and SUT are recorded.  

      
Figure 6.5. Photographs of accelerometer calibration setup. (Photos by EVF, dynamics lab, 

7/9/13) 

The sensors return a voltage that is proportional to the acceleration they undergo. The sensitivity 

is reported in units of mV/g, and thus the sensitivity of the SUT is simply found as the sensitivity 

of the REF multiplied by the ratio of the SUT RMS voltage to the REF RMS voltage. The 

calibration process discovered three accelerometers that were no longer functional and several 

others that were several percent off of the factory value. For the bridge model testing, the factory 

sensitivity value is used if the lab calibration result is within 1.5%, and the lab calibration result 

is used otherwise. Fifteen accelerometers, all supplied by PCB Piezotronics, are used in the lab 

testing, and the sensitivity and other information for each is reported in Table 6.1. 

SUT 

REF 
REF Signal 
Conditioner APS 

113HF 
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Grid Loc. Type Serial No. Sensitivity 
(mV/g) Range (g) Range (Hz) 

1B 393B05 24706 10269 ±0.5 450 
1C 393C 23502 1081 ±2.5 800 
1D 393C 23606 1057 ±2.5 800 
1E 393C 23526 1070 ±2.5 800 
1F 393B05 28707 9654 ±0.5 450 
2B 393C 23752 1073 ±2.5 800 
2C 393C 23525 1081 ±2.5 800 
2D 393C 23443 1096 ±2.5 800 
2E 393C 23499 1092 ±2.5 800 
2F 393B05 25409 9951 ±0.5 450 
3B T393B05 22839 9862 ±0.5 450 
3C 393C 23522 1070 ±2.5 800 
3D 393C 23523 1089 ±2.5 800 
3E 393C 23500 1097 ±2.5 800 
3F 393B05 28696 9928 ±0.5 450 

 

Table 6.1. Accelerometer information for devices used in laboratory testing. 

6.2.2.2 Force Transducers 

Also for the dynamic testing, the force input to the structure by a shaker is measured with a 

dynamic force transducer. These devices return a voltage that is proportional to the average 

tensile or compressive force that they are subjected to. All force transducers are also supplied by 

PCB, and the relevant data for the four available transducers is provided in Table 6.2. 

Type Serial No. Sensitivity 
(mV/lbf) Range (lbf) Range (Hz) 

208C02 LW36746 47.87 ±100 36,000 
208C02 LW36262 49.94 ±100 36,000 
208C02 LW36271 51.29 ±100 36,000 
208C02 LW36231 49.13 ±100 36,000 

 

Table 6.2. Force transducer information for devices used in laboratory testing. 
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6.2.2.3 Displacement Transducers 

Static load testing is also performed on the bridge model to capture its static flexibility. 

Displacement transducers are used to measure the vertical deflection of the structure under static 

loads. The inner workings of these devices are based on the use of strain gauges, and thus the 

sensitivity is measured in units of mV/cm per applied excitation voltage. The twelve available 

devices are all model number CDP-25 manufactured by Tokyo Sokki Kenkyujo Company and 

all have identical properties. The available stroke is 25 mm and the sensitivity is 0.25 mV/V/mm. 

A 0.5 V excitation was provided in all testing with these devices, and thus the sensitivity 

becomes 0.125 mV/mm. A photograph of all the sensor types used is provided in Figure 6.6.    

 
Figure 6.6. Photograph of sensors used in laboratory testing. (Photo by EVF, dynamics lab, 

7/9/13) 

6.2.2.4 Wiring and Data Acquisition 

For dynamic testing, a National Instruments (NI) PXI-1042Q controller with four NI PXI-4472B 

data acquisition (DAQ) cards is used to simultaneously capture all force transducer and 

accelerometer readings. Each PXI-4472B card provides eight dynamic input channels with 24-bit 

resolution. A laptop computer running NI Labview Signal Express software is used to control the 

DAQ system.  
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Signals are generated for dynamic excitation by a NI 9264 card with 16 output channels, each 

with 16-bits. This is a USB device that is also controlled by the Signal Express software running 

on the laptop. These excitation signals are input to a power amplifier to drive the shakers. An 

APS-145 amp is used when driving the APS shaker, and the two-channel subwoofer amps are 

used when driving the TTs. A schematic wiring diagram is provided in Figure 6.7 illustrating the 

interconnectivity of the various devices for dynamic testing. 

 
Figure 6.7. Schematic of devices used for dynamic testing.  

For static load testing, a NI SCXI-1001 controller with three NI SCXI-1314 terminal blocks 

attached to NI SCXI-1520 DAQ cards are used to capture all displacement transducer inputs. 

Each SCXI-1520 card provides eight dynamic input channels. Labview Signal Express software 

running on a laptop is again used to control the DAQ system. A schematic wiring diagram is 

provided in Figure 6.8 illustrating the static testing setup. 
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Figure 6.8. Schematic of devices used for static testing. 

6.2.3 Shaker Setup 

The method of connection from the shakers to the force transducers and from the force 

transducers to the structure impacts the accuracy of the force measurement and can cause 

improper excitation of the structure. Over time, numerous papers have been written on best 

practices for dynamic excitation of structures when using shakers (Mitchell and Elliot 1984; 

Cloutier et al. 2009 for example). Most such publications are focused on excitation of 

mechanical devices such as airframes and automobiles wherein the structure can be well isolated 

and the shakers can be mounted separate from the item being tested. The first recurring theme of 

such writings is to only apply excitation axial to the force transducer so that all of the input is 

accurately measured. The method most commonly used is to apply the force through a long, thin 

rod that has a low ability to transfer moments or shears along its length. This rod is referred to as 

a ‘stinger’. The second recurring theme is to mount the force transducer on the structure end of 

the stinger so the force that actually enters the structure is measured, without being affected by 

losses in the stinger. For testing of the bridge model with the APS shaker, these methods are 

applied as is shown in Figure 6.9.  
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Figure 6.9. Photographs of APS shaker setup and stinger arrangement. (Photos by EVF, 

dynamics lab, 7/9/13) 

Using the TTs for dynamic excitation is more complicated than using the APS shaker for several 

reasons. First, the TTs do not have an armature for connection of a stinger and the resulting 

isolation of the mass of the shaker body from the structure. The moving mass of the TTs is 

housed within the closed body and the body itself is used to transmit the shaking force. Thus, the 

entire TT must be connected to the structure and supported by it. This increases the mass of the 

structure, nominally for a real-world bridge but perhaps significantly for the light laboratory 

model. The effect of the shaker mass is offset in the lab testing by preloading the model with 

steel plates. When a TT is attached to the structure, an equivalent amount of mass is removed 

from that location so that the total structure mass remains the same. The mean weight of twelve 

TTs was found to be 10.007 pounds, and thus 10-pound steel plates are used as offset masses 

(Figure 6.10).  

APS Amp 

APS 
Shaker 

Stinger 

208C02 

10-24 Steel 
Stinger 



 227 

 
Figure 6.10. Photograph showing added masses to offset TT shaker weight. (Photo by EVF, 

dynamics lab, 7/9/13) 

The second issue with use of the TTs is to accurately measure the force input to the structure. 

Each force transducer costs about twice as much as a shaker, and each requires an input DAQ 

channel, which is even more expensive. Thus, the goal is to only use one force transducer per 

shaker. It was initially theorized that a tripod arrangement could be used for the purpose of 

transferring force to the structure while accurately measuring it. Figure 6.11 shows a tripod setup 

with each leg of the tripod consisting of a force transducer. The tripod was aligned with the 

center of the shaker and the expectation was that each leg would carry an equal third of the total 

force. If this was proven true, then the intent was to only use a transducer at one leg of the tripod 

(Figure 6.11). 
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Figure 6.11. Photograph showing three-transducer tripod (left) and one-transducer tripod 

(right). (Photo by EVF, dynamics lab, 7/9/13) 

Testing of the tripod demonstrated that the force carried by the legs varied significantly. Figure 

6.12 shows a portion of the results of a swept-sine test. This plot shows the force recorded by 

each transducer over a small frequency band, and it is noted that the transducers carry 

significantly different forces and that the portion of the force carried by each also varies with 

frequency. It was deduced that this was partially due to moment transfer through the transducer 

body. A simple change was made in which one end of the transducers was not attached to the 

load plate and only a round screw head could transfer force, eliminating moment transfer. 

Testing showed that this system was an improvement, but that the force was still not equal in the 

three transducers. Rocking of the shaker was determined to be the cause, and no obvious way to 

eliminate this effect while using a tripod was identified.  
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Figure 6.12. Force measurements for three transducers in a tripod arrangement under a 

single TT. Note poor agreement in force carried by each leg. 

Finally, a new setup was proposed that emulates the use of a stinger (Figure 6.13). The TT is 

suspended by a single thin rod, and a single force transducer is mounted along the rod. The 

single support eliminates the issues due to rocking, and the thin rod reduces the ability of the 

system to transfer non-axial forces into the structure. The limitation with this arrangement is that 

the shakers must be attached to the underside of the structure. This attachment method is used for 

all testing reported herein. 

For test cases that do not use a transducer, a setup as shown in Figure 6.13 is used so that the 

force input from the shaker can be assumed to be nearly identical to that measured when a 

transducer is present. The transducer is simply replaced by a sleeve nut. 
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Figure 6.13. Suspended force transducer and TT with stinger type setup (left) and 
arrangement without force transducer (right). (Photo by EVF, dynamics lab, 7/9/13) 

6.2.4 Tactile Transducer Beating Phenomenon 

An unusual phenomenon was observed with use of the TTs. When using deterministic signals 

that gradually vary in frequency, the force output would quickly oscillate (Figure 6.14). This 

phenomenon had been observed by Napolitano and Linehan (2009), and those researchers called 

the phenomenon ‘beating’. Unfortunately, they mistakenly identified the cause as interference 

between several shakers operating in a MIMO environment, and diminished the apparent affect 

by decreasing frequency resolution until the beating could no longer be detected in the frequency 

domain. The phenomenon actually occurs even when using a single shaker, and the variation in 

force is detected by the accelerometers in the structure output. Variations of the input force level 

and the signal length were explored, but the ‘beating’ was not reduced. Further testing revealed 

that the APS shaker also demonstrates the issue, although the ‘beating’ has about 1/10th the 

amplitude compared to the TT. It is theorized that the ‘beating’ is caused by feedback between 

the shaker and the amplifier as the frequency is gradually varied, since the phenomenon is not 

detected when using stochastic signals. 
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Figure 6.14. Sample of ‘beating’ phenomenon on force measurement in frequency domain. 

Since the ‘beating’ is detected by both the force transducers and the accelerometers, the effect is 

properly canceled out in the calculation of FRFs in frequency ranges where the data is not very 

noisy. Unfortunately, the ‘beating’ has a relatively small amplitude and is significantly affected 

by noisy measurements. In frequency ranges with more noise, the FRFs are significantly 

worsened by the phenomenon and subsequent identification of modal properties fails.  

To alleviate this issue, the FRFs were subject to a low-pass filter which effectively removes the 

‘beating’ while maintaining resolution and essentially preserving the true FRF shape. An 

example of an FRF with and without filtering applied is shown in Figure 6.15. For testing of the 

bridge model, the FRFs calculated from deterministic signals are all filtered. It is noted that 

‘beating’ was detected in the subsequent field testing, but to a lesser degree, and filtering was not 

necessary. 
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Figure 6.15. Sample of FRF with ‘beating’ phenomenon and the same FRF with ‘beating’ 

filtered out. 

6.3 TESTING PROCEDURES 

Many different tests are performed while changing system variables such as number of shakers, 

excitation signal type, shaker spatial locations, input force amplitude, and shaker type. The 

specifics of each test setup are reported in this section. Several other parameters should be kept 

constant throughout all testing and the selection of these values is discussed as well. 

6.3.1 Determine Consistent Testing Parameters 

Several parameters that will be used during production testing must initially be selected by 

experimentation. These parameters are input force amplitude, data acquisition frequency, and 

frequency resolution. The methods by which these parameters are selected are described below. 

6.3.1.1 Force Amplitude Selection 

The best input force amplitude is a balance between providing high signal to noise ratio while 

not exciting nonlinearities, rattles, etc. Selection of the amplitude is performed by trying various 

levels and then subjectively choosing the one that gives the smoothest FRFs (Hunt and Brillhart 
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1991). A multisine signal is used for this purpose since it has a fairly uniform amplitude and 

causes essentially no leakage (and thus cleaner FRFs). The APS shaker and amplifier are also 

used since they provide the cleanest input force. 

The gain of the APS amp is set to its approximate midpoint and the input amplitude from the 

signal generator is varied. Peak force values of approximately 1, 5, 10, 15, and 20 lbf are dialed 

in with the APS shaker providing input at DOF 3E. The data is recorded with one delay block 

and three capture blocks per force level, the FRFs are calculated, and the smoothness compared. 

The FRF between input DOF 3E and output DOF 3E is shown in Figure 6.16 for the five input 

levels.  

 
 

Figure 6.16. FRFs for input DOF 3E and output DOF 3E for five different force levels. 

Figure 6.16 shows three interesting features. First, the apparent stiffness of the structure 

decreases with increasing force level and the damping increases with increasing force level for 

the first bending mode (between 8 and 9 Hz) and the first torsion mode (between 10 and 11 Hz). 
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Second, the ‘beating’ phenomenon is worse with increasing force. Finally, the lowest force 

produces the smoothest and sharpest peaks except at the second torsion mode at 39 Hz.  

Overall, the 1-pound force level produces the best FRFs; however, the TTs have difficulty 

overcoming their own internal friction at this low of an output. Thus, the 5-pound force level is 

selected and is used for multisine excitation. For burst-random, the standard deviation of the 

normal distribution from which the signal is generated is set to 50% of the multisine force level. 

This input level provides an RMS force that is generally similar to that of the multisine signal.   

6.3.1.2 Data Acquisition Frequency 

The DAQ recording frequency is a balance between providing enough data points to prevent 

aliasing while not wasting electronic storage with unnecessary information. In the absence of 

noise, the discrete Fourier transform to the frequency domain is essentially perfect for all 

frequencies below the Nyquist frequency, which is half of the acquisition frequency. In the 

presence of noise, higher acquisition frequencies are beneficial. The bridge model has modes of 

interest up to about 170 Hz, and thus the minimum acceptable data collection rate is 340 Hz. 

However, a rate of 1000 Hz is selected for use since this is the minimum data rate of the data 

acquisition cards used. During data post-processing, the frequency is reduced to 500 Hz using 

Matlab’s ‘decimate’ function to reduce data storage and to expedite later processing steps.  

6.3.1.3 Frequency Resolution (Signal Length) 

The selection of frequency resolution is also a balance of two opposing criteria. First, the 

excitation signal length is inversely proportion to the resolution, and thus greater resolution 

comes at the cost of longer testing times. Second, higher resolution allows better identification of 

closely spaced modes. Adequate resolution is a function of the density of modes. For this 
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structure, it is known that some modes are closely spaced, and thus a relatively high resolution 

may be needed, although the testing time will be increased.  

The necessary resolution is evaluated by initial experimentation using a multisine signal. Three 

lengths of signal are tested: 20, 50, and 100 seconds (0.05, 0.02, 0.01 Hz resolution respectively). 

The first two modes of the structure are the most closely spaced and they are used to analyze the 

effect of resolution. The lowest resolution that provides good results is selected. The testing is 

again performed using one delay block and three capture blocks. A 5-pound input force level is 

used with the APS shaker and amplifier. 

 
Figure 6.17. Enhanced FRFs for Mode 1 using three different signal lengths. 

Figure 6.17 shows the enhanced FRFs (eFRFs) for the first bending mode of the bridge model 

using the various frequency resolutions. Again, there is a frequency shift due to more force being 

applied with higher resolutions. Although all three signals are input at the same force level, the 

extra frequency lines excited by a longer signal effectively provides more total force within a 

frequency window of equal width. Visually, the eFRF plot does not indicate a best resolution. 

However, the modal identification based on fitting the eFRFs does change due to the resolution. 
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The identified damping of the second mode decreases by 10% for the 20-second signal as 

compared to the other two signals (which are nearly equal). This change in damping is a result of 

using points farther from the modal peak in the least-squares solution for the pole. These farther 

points are more affected by other modes and thus the solution accuracy is diminished. The higher 

resolution of the 50-second and 100-second signals reduces the effect of other modes. Overall, 

the 50-second signal is selected as the shortest signal that allows a good identification of these 

two closely spaced modes. This signal length is used for both multisine and burst-random 

production testing. 

6.3.2 Single Input, Multiple Output Testing 

Single Input, Multiple Output (SIMO) testing is undertaken using both the APS and the TT 

shakers. SIMO is a relatively simple testing procedure that is commonly used on civil structures 

when only one input device is available. The process consists of applying input force at a single 

DOF, recording outputs at all DOFs, and then moving the shaker to another DOF and repeating 

until input has been applied to all DOFs (or some desired subset). In post-processing, the FRFs 

developed for a single input location provide a single column of the transfer function. The details 

of the SIMO testing procedure for the laboratory bridge model are provided below. 

6.3.2.1 SIMO Testing Using APS Shaker 

The APS shaker is known to provide very clean input over the frequency range of interest. Thus, 

the results from APS testing can be used as a baseline for evaluating the TT results. The APS 

shaker is connected to the first DOF using the stinger as illustrated in Figure 6.9. Both burst-

random and multisine signals are used with equal testing time allotted to each. The shaker is then 

moved to the next DOF and the testing is repeated. This process was undertaken for 15 DOFs of 

the structure. The six support DOFs were not excited. 
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For multisine testing, a 50-second signal with a Schroeder crest factor was used that excited 

frequencies from 4 Hz to 170 Hz. The APS amplifier gain was adjusted to provide approximately 

a 5-pound peak excitation force. To eliminate leakage, the same signal was input seven times 

without pause between sets (cyclic averaging), and the first and last set were discarded resulting 

in five capture blocks. The exact same multisine signal is used for all input locations. 

For burst-random testing, relatively equal excitation of all frequency lines requires the averaging 

of multiple realizations of random signals. Thus, five unique realizations are used at each input 

location. This allows five asynchronous power spectra averages to be used in post-processing. 

The realizations are generated by Signal Express for each run, and thus they are also unique for 

each input location.  

For burst-random, it is also of great importance that the structure’s response is almost totally 

damped out by the end of the data set. For the lightly damped bridge model, the burst-random 

signal is set to zero for the final ten seconds of the capture window. Several seconds of additional 

settling time is allowed before the next set is started. 

6.3.2.2 SIMO Testing Using a Tactile Transducer Shaker 

SIMO testing with a TT was intended to proceed exactly the same as the APS SIMO testing. 

However, multiple issues were discovered including the tripod / stinger issue and the ‘beating’ 

phenomenon issue discussed previously. Other problems included inconsistent force production 

over some frequency ranges, high noise levels at higher frequencies, and poor performance by 

older versions of the TT. These issues caused more noticeable effects on multisine testing than 

on burst-random testing, and significant effort was expended to understand and troubleshoot 
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these problems. The analysis section of this chapter provides details, but the various 

experimental procedures are reported here. 

For multisine testing, a 50-second signal with a Schroeder crest factor is prepared, and then the 

amplitude is modified over several frequency ranges as shown in Figure 6.18. This signal is input 

seven times without pause and the first and last sets are discarded resulting in five capture 

blocks.  

 
Figure 6.18. Multisine signal used for TT SIMO testing, frequency domain. 

For burst-random testing, the procedure is identical to that described for the APS MIMO testing. 

TT shaker ‘Oscar’ is used throughout the SIMO testing, and is supported by the stinger apparatus 

shown in Figure 6.13. 

6.3.3 Multiple Input, Multiple Output Testing 

Multipe Input, Multiple Output (MIMO) testing is undertaken using TTs. The MIMO testing 

process consists of applying input force at several DOFs simultaneously while recording outputs 
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Spatial Setup A and Spatial Setup B respectively. Second, the possibility of using roving 

transducers is explored with four shakers arranged in Spatial Setup A. Finally, testing is 

conducted using eight shakers and roving transducers in Spatial Setup C (Figure 6.21). 

 
Figure 6.19. Spatial Setup A for MIMO testing with four TTs. 

 
Figure 6.20. Spatial Setup B for MIMO testing with four TTs. 
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Figure 6.21. Spatial Setup C for MIMO testing with eight TTs. 

An added level of complexity exists with MIMO testing in that a number of unique input sets 

equal to or greater than the number of inputs must be collected to enable calculation of FRFs. 

This requirement is handled differently for multisine and burst-random testing as described in the 

following subsections. 

6.3.3.2 MIMO Testing With All Inputs Recorded  

6.3.3.2.1 Burst-Random 

Burst-random testing requires that all inputs be recorded since each realization generates a 

unique excitation signal. With the four input locations of Setup A and Setup B, a minimum of 

four sets of data with unique signals must be collected so that the matrix of force values at any 

frequency line is not singular. In practice, far more than the minimum number of sets are 

collected, which allows asynchronous averaging and greatly reduces the chance of attempting to 

divide by an ill-conditioned matrix. For this testing, 20 burst-random sets are collected. Each set 

is 50 seconds long and leakage is reduced by setting the first 0.5 seconds and the last 10 seconds 

of each random signal equal to zero. Several additional seconds of settling time are allowed 

between each set. 
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6.3.3.2.2 Multisine 

For multisine testing, the exact same signal is used at all input locations. In order to ensure that 

the force matrix is invertible, the polarity of select signals is reversed so that the force matrix 

consists of orthogonal columns. Since the number of inputs is a power of two, a Hadamard 

matrix is used to determine which signals to reverse in each set. A Hadamard matrix of size eight 

is shown in Figure 6.22, and the top left quarter is used for four input locations. 

Cyclic averaging with the multisine signal is also used. As in the MIMO testing, the signals are 

input seven times without pause and five capture blocks are recorded to minimize leakage and to 

reduce noise. Next, the polarity of the inputs is altered per the Hadamard matrix, and then seven 

more sets are input with five captured. The process proceeds until a number of columns of the 

Hadamard matrix equal to the number of inputs have been used. 
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Figure 6.22. Hadamard matrix of size eight.  

6.3.3.3 MIMO Testing Using Roving Force Transducers 

Due to the expense of force transducers and a lack of funding, only four are available for this 

work. However, it is desirable to use more than four shakers in the testing of a real-world bridge. 

As such, it is explored whether good system identification can occur if the force transducers are 

used in a roving manner. This testing consists of two parts as described in the following 

paragraphs.  
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In the first part, four shakers are used in a MIMO setup, and all inputs are recorded. Then, the 

force transducers at input locations 1 and 2 are replaced with sleeve nuts as shown in Figure 

6.13, and the experiment is performed again. Next, the transducers are reinstalled at inputs 1 and 

2, and the transducers at input points 3 and 4 are removed before performing the experiment 

again.  Finally, all transducers are reinstalled and the experiment is run a last time. This process 

allows all input locations to be disturbed, which may affect the force input. Since all four input 

locations are recorded before and after the disturbance, the input data can be compared to 

evaluate what effect the disturbance has. It is noted that two channels of force data are missing 

from the second and third experiments. Thus, these two experiments must be combined to allow 

FRF calculation. This combination requires an implicit assumption that the force input is the 

same whether a force transducer or a sleeve nut was used. The accuracy of this assumption is the 

most important part of this testing.  

In the second part, eight shakers are used in a MIMO setup. An experimental run is performed 

with the first four input locations outfitted with force transducers. Next, the transducers are 

moved to the last four input locations and the experiment is run again. Each experiment uses a 

50-second long multisine signal, repeated seven times as described previously. Also, eight 

variations of polarity using the Hadamard matrix of Figure 6.22 must be used for each of the two 

experiments. Therefore, this testing produces 80 capture blocks of data (5 capture blocks per 

polarity setting x 8 polarity settings x 2 experiments). It is obvious that this type of testing using 

roving force transducers can only be performed with deterministic signals since stochastic 

signals would produce a different force for every realization. 

An issue with data file alignment was found during this testing. It was initially assumed that the 

Labview software begins the data recording process at the same elapsed time after the software 
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begins the excitation for any experiment. The data was processed using this assumption, and the 

FRFs appeared to be nothing but noise. Investigation of the issue showed that a variable and 

unpredictable amount of time passes after the software begins the excitation step but before it 

starts recording the force and acceleration data. This means that data sets from separate 

experiments are not aligned. An algorithm was written that finds the best alignment of separate 

experiments by shifting the data of the second experiment until the total difference between all 

data points is minimized. The acceleration outputs that are common to all experiments are used 

by the algorithm to find the proper alignment. Figure 6.23 shows unaligned force data for input 

DOF 1B from the MIMO shaker testing using eight inputs, and Figure 6.24 shows the same data 

after being aligned by the algorithm. 

 
Figure 6.23. Force input data for DOF 1B that is not aligned. 
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Figure 6.24. Force input data for DOF 1B after alignment.  

6.3.4 Static Load Testing 

The bridge model is also subject to static load testing so that an accurate flexibility matrix can be 

acquired. This testing is performed by suspending 410 pounds from a single DOF and measuring 

the displacement at all DOFs (Figure 6.25). This provides a single column of the flexibility 

matrix. The load is moved to each DOF in turn, and the displacements are measured with the 

load suspended, and then again immediately after release of the load. Loading each DOF creates 

a full flexibility matrix that corresponds to the same DOFs that were used in the dynamic testing.  

The testing uses the 12 available CDP-25 displacement transducers, arranged as is shown in 

Figure 6.26. Since there are not enough of these devices for all 15 unsupported DOFs, the 

flexibility coefficients for DOF columns E and F are found by interpolation using a cubic spline.  
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Figure 6.25. Photographs of suspended load and displacement transducers used for static 

load testing. (Photos by EVF, dynamics lab, 7/9/13) 

 
Figure 6.26. Setup of displacement transducers for static load testing. 
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6.4 ANALYSIS AND RESULTS 

6.4.1 Introduction 

The analysis and results are presented in several subsections with a different experimental 

technique validated in each. These subsections relate to the following: 

• Ability of  a TT to produce accurate modal parameters when used in SIMO testing.  

• Ability of the TT shaker system to produce accurate modal parameters when used in 

MIMO testing. 

• Validation of the use of multisine excitation signals by comparison to results acquired 

with burst-random excitation. 

• Evaluation of the use of roving force transducers in MIMO testing.  

A variety of mode shapes were frequently captured by the various testing methods, and are 

presented in this single location for reference (Figure 6.27). The description of each mode shape 

is provided as well as an abbreviated description that is used in various tables to conserve space. 
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Figure 6.27. Bridge model mode shapes captured by various testing methods. 

6.4.2 Validation of Tactile Transducer for Experimental Modal Analysis  

The primary goal of the laboratory bridge model testing is to demonstrate that the TTs and 
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(EMA). If there is good agreement between the results found using the new testing approach and 

those from accepted approaches, then the feasibility of the new approach will be considered to be 

supported by the laboratory testing. A common and accepted testing method is to use an APS 

shaker and amplifier, a burst-random excitation signal, and a SIMO procedure. As such, the TT 

SIMO results are compared to the baseline APS SIMO results for validation of the new 

excitation device. 

For a proper comparison, it is important that as many variables as possible are held constant 

between the baseline APS testing and the experimental TT testing. A list of commonalities 

between the two tests are: the bridge model is unchanged between tests; the same sensors are 

used in the same locations; the same wiring, DAQ, and software are used; the same signal types 

are used; and the data processing methods are identical. Some minor variations are unavoidable: 

the temperature in the laboratory varies by a few degrees from day to day; each realization of 

burst-random signals is unique; the multisine signal amplitude over some frequencies is altered 

to enable better TT performance; and the input force level between the two shaker types cannot 

be made exactly equal.  

The performance of the TT system is evaluated by comparison of the modal properties identified 

to those found with the APS testing. The modal properties to be evaluated are: 

• Natural Frequencies 

• Modal Damping 

• Modal Mass 

• Modal Vectors (mode shapes) 

• Modal Flexibility 
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Modal mass is typically found as a complex number with an angle of nearly zero degrees. As 

such, the real part is only slightly different than the magnitude. The magnitude of modal mass is 

thus reported herein as a more easily understood and compared value than a complex number is. 

6.4.2.1 Natural Frequencies, Modal Damping, and Modal Mass 

The CMIF algorithm is used to identify the existence of modes, and then SDOF methods are 

used to estimate values for the natural frequencies, damping, and modal mass of each mode. The 

comparison of these parameters from the APS and the TT experiments is made in Table 6.3 for 

burst-random excitation and in Table 6.4 for multisine excitation. 

Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g) 
Desc. APS TT Diff. APS TT Diff. APS TT Diff. 

B1 8.9 9.0 1% 0.86 0.58 47% 21.4 23.4 9% 
T1 10.2 10.3 1% 0.57 0.58 2% 13.0 11.6 11% 
B2 32.6 32.7 0% 0.62 0.67 6% 27.3 27.2 1% 
T2 36.8 37.1 1% 0.40 0.42 4% 16.3 15.5 5% 
B3 67.9 68.2 0% 1.09 1.08 1% 16.5 18.6 11% 

BU1 73.9 74.3 1% 0.47 0.61 23% 14.1 15.1 7% 
T3 76.3 79.0 3% 0.75 0.70 7% 19.0 16.8 13% 

BU2 82.3 82.5 0% 0.66 0.80 17% 18.9 17.4 8% 
BU3 105.7 107.8 2% 1.64 0.72 128% 14.7 21.6 32% 
B4 110.7 112.5 2% 1.00 1.46 31% 18.5 27.5 33% 
T4 131.5 131.8 0% 1.76 1.43 24% 18.7 21.9 14% 

B4/G3 139.4 139.3 0% 1.24 1.08 14% 115.6 117.2 1% 
B4/G1 141.2 148.4 5% 0.74 0.78 6% 81.1 60.1 35% 
BU4 156.3 156.1 0% 0.74 0.62 20% 22.9 26.5 14% 

 

Table 6.3. Comparison of natural frequencies, damping, and modal mass found from APS 
SIMO and TT SIMO testing using burst-random excitation.  
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Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g) 
Desc. APS TT Diff. APS TT Diff. APS TT Diff. 

B1 8.8 8.9 1% 1.05 0.77 36% 21.7 22.9 5% 
T1 10.1 10.2 1% 0.92 0.67 38% 14.2 11.7 22% 
B2 32.6 32.7 0% 0.61 0.72 14% 28.3 26.0 9% 
T2 36.8 37.1 1% 0.35 0.42 17% 18.2 15.1 21% 
B3 67.8 68.0 0% 1.07 1.12 5% 17.6 19.2 8% 

BU1 73.8 74.4 1% 0.62 0.56 11% 13.5 16.5 18% 
T3 76.1 79.0 4% 1.73 0.86 103% 11.8 14.3 18% 

BU2 82.2 82.5 0% 0.75 0.80 6% 21.5 17.0 26% 
BU3 105.9 107.5 2% 1.43 0.85 69% 16.7 18.5 10% 
B4 110.7 110.7 0% 0.98 1.35 27% 19.3 19.1 1% 
T4 131.5 131.8 0% 1.58 0.92 72% 20.9 35.3 41% 

B4/G3 * * -- * * -- * * -- 
B4/G1 140.9 * -- 0.71 * -- 84.2 * -- 
BU4 156.3 156.1 0% 0.73 0.57 28% 22.8 29.9 24% 

* Mode not found.    

Table 6.4. Comparison of natural frequencies, damping, and modal mass found from APS 
SIMO and TT SIMO testing using multisine excitation. 

The tables show that the natural frequencies found using the TT shaker are always within a few 

percent of those found using the APS shaker. For the multisine testing, the B4/G3 and B4/G1 

local modes are more difficult to identify than with burst-random. These two modes are closely 

spaced, and the B4/G1 mode still dominates at the frequency where the B4/G3 mode is expected 

to exist for the APS testing. For the TT multisine testing, neither local mode can be identified 

and the T4 mode is dominant throughout this frequency range. The burst-random signal may 

allow easier identification of these local modes since ‘beating’ does not occur for the stochastic 

input.  

The damping ratio is far more sensitive than the natural frequency, and the variability is high 

between the values found with the TT and with the APS shaker. The damping is found as the real 

part of the pole divided by the magnitude of the pole. Since the damping is very low for this 

structure, the angle (or phase) of the pole is very close to 90 degrees. Thus, a small inaccuracy in 
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the phase angle results in a large change in the damping ratio. For example, if the true damping 

ratio is 1% but the phase is off by 1% (0.9 degrees), then the damping will be found as 2.6%. 

However, if the true damping is 10% but the phase is off by 1%, then the damping will be found 

as 11.6%. Thus, the magnitude of the change is consistent, but the percent error is greatly 

increased for low damping values. Because of this, the damping ratio is not considered to be very 

important in comparisons of modal data for lightly damped structures. 

The modal mass values are in relatively good agreement for many modes. In a number of cases, 

three of the four values found are in good agreement and only a single value differs from the 

others. For mode T2, the APS multisine value is 16% higher than the mean of the other three 

values of modal mass. For mode B4, the TT burst-random value is 45% higher than the mean of 

the other three. For mode T4 and mode BU4, the TT multisine values are 72% and 24% higher 

respectively than the mean of the other three values. Since these variations are not consistent to 

one signal type or to one shaker type, there is little evidence that modal mass is estimated worse 

due to any single testing parameter. However, the poor values of modal mass found with TT 

multisine testing for modes T4 and BU4 are due to incomplete removal of the ‘beating’ 

phenomenon.  

Considering the consistency of modal mass values found from APS testing (burst-random versus 

multisine) and TT testing, the TT values have less spread for seven of the first eight modes. For 

the four higher modes that were captured by both shakers, the APS shaker outperforms the TT 

shaker. The better APS performance at higher frequencies is expected since the force output is 

quite consistent whereas the TTs produce significantly less force as frequency increases.  
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Some error in modal mass value is always expected with EMA since the modal mass is inversely 

proportion to the value of the eFRF at the modal frequency. Thus, if a mode other than the mode 

of interest is contributing height to the modal peak due to imperfect modal filtering, then the 

modal mass will be directly affected. Modal filtering is always imperfect due to limited spatial 

resolution of the mode shapes. If there is a powerful mode or a closely spaced mode that is not 

adequately removed from the eFRF by filtering, then inaccuracies in the calculation of modal 

mass will result. This is a difficult problem to solve for any system with closely spaced and 

similarly shaped modes, and the bridge model is no exception. In the discussion of modal vectors 

below, it is noted that the local modes have some similarity to global shapes, resulting in the 

greater variation in modal mass for the higher modes.  

Overall, the natural frequencies and modal masses found demonstrate that the TT shaker is 

capable of adequately exciting the modes and producing results similar to those found by use of 

the APS shaker. 

6.4.2.2 Modal Vectors 

The modal vectors are taken as the columns of [U] from the singular value decomposition of the 

transfer function. In the vicinity of a peak in the CMIF, the corresponding column of [U] is 

dominated by the mode shape that has a natural frequency nearly equal to the frequency at the 

CMIF peak. General examples of the mode shapes for the bridge model found from the testing 

are shown in Figure 6.27, however, the exact shapes found for each testing method are not 

identical. The level of similarity between mode shapes found from different experiments can be 

compared by calculating a value known as the modal assurance criteria (MAC) (Allemang 2003). 

The MAC value is found using the following equation, and a value of unity represents an exact 
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match, whereas a value of zero indicates that the modes are orthogonal. The agreement between 

mode shapes found using the TT shaker and the APS shaker are compared using MAC values. 

 
ܥܣܯ ൌ

ሺ்ܣ כ ்ܤሻሺܤ כ ሻܣ
ሺ்ܣ כ ்ܤሻሺܣ כ .ሻ Equation 6.1ܤ

Where: 

ܣ ൌ a vector representing a mode shape  

ܤ ൌ a vector representing a different mode shape  

 

For comparison of the mode shapes found by the two different test methods, all modes found by 

both methods are compared to each other and a bar graph is used to display the results in Figure 

6.28 for burst-random and Figure 6.29 for multisine excitation.  

 
Figure 6.28. MAC values for comparison of mode shapes found from APS SIMO and TT 

SIMO testing using burst-random excitation.  
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When analyzing Figure 6.28, it is noted that the best result is for all values on the diagonal to be 

unity and all off-diagonal terms to be zero. The values of unity would indicate perfect agreement 

between the APS and TT modal vectors, and the values of zero would indicate that all other 

modes are orthogonal. Considering the diagonal terms first, the figure shows that for the burst-

random excitation, the modal vectors found using the TT are in excellent agreement with the 

APS modal vectors. Most of the modes have MAC values that are nearly unity. The sixth mode 

(BU1) and the eighth mode (BU2) have MAC values of approximately 0.8, indicating that the 

TT results vary somewhat from that of the APS. The thirteenth mode (B4/G1 local) also has a 

low MAC value between the two shaker types.   

Considering the off-diagonal terms, the first six modes are essentially orthogonal to all other 

modes. The seventh TT mode (T3) has about 10% correlation with the eighth APS mode (BU2), 

indicating that the modal vector from [U] was somewhat contaminated by the BU2 mode. For the 

highest five modes, there is significant correlation between the vectors. For the local modes (12 – 

B4/G3 and 13 – B4/G1) there is significant similarity to modes 10, 11 and 14 (B4, T4, and BU4 

respectively). The existence of actual local modes is supported by the fact that these two modes 

are identified from many different experiments, and the inclusion of these modes improves the 

accuracy of synthesized FRFs. The correlation between the two local modes and the nearby 

global modes is largely due to the arrangement of the sensors and the resulting lack of adequate 

spatial resolution to fully discern the mode shapes. The high correlation is also somewhat due to 

these modes both being strongly excited at similar frequencies, causing the identified shapes to 

be a combination of two modes that are actually orthogonal.  
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Other non-zero terms in the figure are probably due to a lack of spatial resolution and noise. 

These terms are generally between modes that are spaced farther apart in frequency and are thus 

unlikely to be related in any real way.   

  
Figure 6.29. MAC values for comparison of mode shapes found from APS SIMO and TT 

SIMO testing using multisine excitation. 

Figure 6.29 shows the MAC values using multisine excitation with the APS and TT shakers. The 

terms on the diagonal are generally nearly unity, indicating excellent agreement between the 

modal vectors captured by use of the two excitation devices. The seventh mode (T3) has a MAC 

value of about 0.7 indicating some difference between the vectors. Considering Table 6.4, mode 

T3 is found at frequencies that differ by about 3 Hz between the two shaker types. The twelfth 

mode captured using the APS shaker (B4/G1) is not captured with the TT, and thus there should 

be no agreement. However, as noted before, the local mode is correlated with the nearby global 

modes.  
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The off-diagonal terms of Figure 6.29 are generally nearly zero. However, the seventh APS 

mode (T3) is correlated to both the sixth and seventh TT modes (BU1 and T3). Also, as noted 

before, the local mode (twelfth APS mode) is correlated with the nearby global modes. 

Overall, the modal vectors captured for the global modes of the bridge model using a single TT 

shaker are in excellent agreement with the baseline vectors from the APS testing. The MAC 

analysis also indicates that the selected modes are essentially orthogonal, except for the B4/G1 

and B4/G3 local modes. 

6.4.2.3 Modal Flexibility 

6.4.2.3.1 Overview 

Modal flexibility is found by extrapolating the results of dynamic testing to a forcing frequency 

of 0 Hz. The resulting modal flexibility matrix is square with a length equal to the number of 

DOFs. For the bridge model, the number of DOFs is equal to the number of accelerometers used, 

which is 15. A common method used to enable visualization of a flexibility matrix is to plot a 

deflected structural shape that is found by applying a load vector to the flexibility matrix. Most 

commonly, a unit load is applied to every DOF, and the global deflected shape that is roughly 

equivalent to applying a uniform load to the entire structure is thus produced. For civil structures, 

this deflected shape is useful since most engineers can immediately identify if it ‘looks wrong’.  

The shortcoming of using the global deflected shape as a proxy for validating the accuracy of the 

modal flexibility matrix is that the lowest few modes dominate the result. For the subject bridge 

model with a unit load at all DOFs, the maximum deflection is altered by less than 1% if none of 

the modes except B1 are included. However, even the inclusion of the highest captured mode 

(BU4 at ~156 Hz) changes some elements of the modal flexibility matrix by 5%. The inclusion 
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of the second butterfly mode (BU2 at ~82 Hz) alters some elements of the matrix by more than 

20%. Thus, the commonly used comparison of deflected shapes with unit loading is not the best 

method to assess the agreement between a pair of flexibility matrices.  

A better way to compare two matrices is to consider the difference between each element, and 

then to report a single number that represents the difference of all elements. With a flexibility 

matrix, some elements differ in scale by orders of magnitude and so it is also important to scale 

the gross difference by the magnitude of the element. The Frobenius norm is then used to collect 

the difference of all of the elements into a single number. The equation below illustrates the 

method by which two flexibility matrices are compared in this thesis. In this formulation, ݂1 is 

considered to be the more accurate flexibility matrix. For the data reported in this chapter, the 

static flexibility matrix is considered to be the most accurate result and is always used as ݂1 

unless otherwise specified. 

 

ܦ ൌ ඩ෍ ෍ ቆ
݂1௜,௝ െ ݂2௜,௝

݂1௜,௝
ቇ

ଶ௡

௝ୀଵ

௡

௜ୀଵ

 Equation 6.2.

Where: 

ܦ ൌ the value representing the overall difference between two matrices. 

݊ ൌ the size of the square matrix. 

݂1 ൌ the flexibility matrix considered to be more accurate. 

݂2 ൌ the flexibility matrix being compared. 

 

A final consideration for comparing flexibility matrices is that the accuracy is expected to be best 

for DOFs spatially close to each other, and worse for DOFs that are farther apart. Thus, the most 

accurate elements in the matrix should be those on the diagonal, and the least accurate should be 
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those the farthest from the diagonal. For the DOF numbering system and the method of assembly 

of the matrix for the bridge model, the first element in the flexibility matrix represents the 

vertical deflection at DOF 1B for a unit load at DOF 1B. This element should be less affected by 

noise and measurement inaccuracies than off-diagonal elements. The element in the first column, 

fifteenth row represents the deflection at DOF 3F for a unit load at DOF 1B, and since these 

DOFs are far apart, it is expected that noise and other errors would have a greater impact on the 

accuracy of this value.  

Large differences between two flexibility matrices are likely to occur at some off-diagonal terms, 

and this can significantly affect the value of ܦ. Thus, a second measure of the agreement 

between two flexibility matrices is also proposed that only considers the elements on the main 

diagonal (equation shown below). Both the value of ܦ and the value of ܦௗ are reported herein so 

that a more complete comparison is presented.  

 

ௗܦ ൌ ඩ෍ ቆ
݂1௜,௜ െ ݂2௜,௜

݂1௜,௜
ቇ

ଶ௡

௜ୀଵ

 Equation 6.3.

Where: 

ௗܦ ൌ the value representing the difference between two matrix main diagonals. 

 

An example that illustrates the preceding discussion is shown in Figure 6.30. This figure 

graphically depicts the deflected shape of the structure due to unit loading at each DOF using the 

static flexibility matrix and using the modal flexibility matrix found from the TT SIMO testing 

with burst-random excitation. The graph depicts that the deformed shapes appear similar, but that 

in general, the static result is more flexible than the modal result. The ܦ and ܦௗ values provide a 
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numerical representation of the size of the difference, which is more easily compared over a 

broad variety of testing methods. 

 
Figure 6.30. Illustration of the use of deflected shapes for comparison of flexibility 

matrices. 

6.4.2.3.2 Analysis 

The modal flexibility matrices derived from the APS SIMO testing and from the TT SIMO 

testing are compared as discussed above, and the results are shown in Table 6.5. In all cases, ܦ 

and ܦௗ are calculated using the static flexibility matrix as a baseline. 

Desc. Static 
Load 

Burst-Random Multisine 
APS TT APS TT 

D   3.032 2.757 6.328 2.280 
Dd   0.501 0.555 0.550 0.492 

DOF 1D* 1.65 1.72 1.54 1.80 1.58 
DOF 3D* 1.89 1.74 1.63 1.84 1.71 

* Displacement at DOF due to 1 kip load at all DOFs (inches) 

Table 6.5. Comparison of modal flexibility found from APS SIMO and TT SIMO testing. 
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The modal flexibility results show that in most cases the structure appears stiffer in modal testing 

than in static testing (bottom two rows of table). Recalling Figure 6.16, the stiffness appears to 

decrease as the shaking force is increased. For this testing, a low input force level was selected to 

minimize noise in the FRFs, and a higher apparent stiffness is one outcome of this choice.  

Considering the agreement of all modal flexibility matrix elements to the static flexibility matrix, 

the TT shaker has lower (and thus better) ܦ values than the APS shaker for both signal types. 

However, ܦௗ values are similar in all cases. This indicates that the TT provides better excitation 

than the APS shaker to DOFs that are farther from the driving point. A possible explanation for 

this is that the TT provides more force than the APS shaker at low frequencies, and many of the 

matrix elements are predominantly controlled by the first two modes.  

The poor value of ܦ for the APS multisine testing is surprising. A closer analysis shows that the 

modal flexibility elements that relate girder 1 to girder 3 are significantly worse for the APS 

multisine testing than for any other case, and this drives the high value of ܦ. No single mode is 

responsible for the poor results, instead, slight inaccuracies in modes B1 and T1 cause the 

problem. Since the matrix elements of concern are always small values compared to those closer 

to the diagonal, slight changes to the powerful modes have a large impact. In this case, the 

elements of interest nearly cancel out when modes B1 and T1 are added together. This result 

helps justify comparing values of both ܦ and ܦௗ to get a full understanding of the overall 

accuracy of the flexibility matrix.   

The purpose of analyzing flexibility is to validate that the TT results are similar to the APS 

results, and they are. For both input signal types, the TT shaker provides lower ܦ values than the 

APS shaker. For the elements on the diagonal, the APS shaker provides better results than the TT 
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shaker for burst-random, but worse results for multisine. The displacement values show that the 

APS shaker is slightly better than the TT for both signal types. Overall, the TT provided modal 

flexibility accuracy that is similar to that provided using the APS shaker.  

6.4.2.4 Summary of Tactile Transducer Shaker Validation 

The preceding subsections considered the results of experimental modal analysis using a single 

TT to excite the laboratory bridge model. The purpose of the testing was to assess whether the 

TT can provide system identification results similar to those found with a purpose-built shaker. 

Thus, the system identification results were compared to those acquired using an APS shaker, 

which is a device commonly used by many researchers for EMA. The comparisons demonstrate 

that accurate modal properties can be identified using the TT shaker as the system excitation 

device.  

All of the global modes of the bridge model found with the APS shaker were also found with the 

TT shaker, and the natural frequencies and mode shapes are in close agreement. The damping 

and modal mass values did not agree well for all modes, but these parameters are quite sensitive 

to noise and to imperfect filtering caused by poor discrimination for some local modes. Modal 

flexibility found using the TT was as good as that found with the APS shaker.  

However, the TT is inferior to the APS shaker in some regards. First, a phenomenon known as 

‘beating’ can cause identification to fail in some frequency ranges, requiring the FRFs to be 

filtered. Second, the TTs have a short stroke and thus the amplitude of the input signal at low 

frequencies must be adjusted to prevent bottoming out. Third, the TTs provide excessive force in 

the vicinity of 100 Hz when they reach their own natural frequency, and care must be taken to 
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avoid over-ranging the sensors. Thus, the TTs require the user to exercise more care for accurate 

system identification to occur. 

6.4.3 Validation of Tactile Transducer Shakers in MIMO Array for EMA 

The SIMO testing discussed above was undertaken to demonstrate that a single TT can provide 

input similar to the industry-standard APS shaker. However, there is no intent to use single TTs 

for any real-world testing. The goal of this work is to demonstrate that a large array of TTs can 

be used with MIMO testing. MIMO testing is superior to SIMO testing for many reasons, but the 

high cost of shakers like the APS is prohibitive for most researchers. The low-cost TTs enable 

many spatially distributed inputs to be used simultaneously, and this application is tested herein. 

An array of four TTs is used for MIMO testing of the laboratory bridge model, and modal 

parameters are captured as before. The APS SIMO testing results are again used as a baseline, 

and the various modal properties are compared. The use of an array of TTs is considered to be 

validated if the results are comparable to the APS results.     

6.4.3.1 Natural Frequencies, Modal Damping, and Modal Mass 

As before, peaks in the CMIF plot indicate potential modes of the structure, and mode shapes are 

taken as the left and right singular vectors of the SVD. The mode shapes are used to filter the 

FRFs, resulting in eFRFs. SDOF methods are then used to estimate values for the natural 

frequencies, damping, and modal mass of each mode. The parameters found using TT MIMO 

excitation are compared to the baseline APS SIMO values in the following tables: burst-random 

in Table 6.6; multisine in Table 6.7. 
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Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g)
Desc. APS TT Diff. APS TT Diff. APS TT Diff.

B1 8.9 9.0 1% 0.86 0.65 25% 21.2 29.3 38%
T1 10.2 10.4 2% 0.57 0.65 13% 13.1 13.8 6%
B2 32.6 33.0 1% 0.62 0.64 2% 27.2 27.4 0%
T2 36.8 37.8 3% 0.40 0.42 5% 16.3 17.4 7%
B3 67.9 68.3 1% 1.09 1.03 5% 16.5 13.1 21%

BU1 73.9 75.2 2% 0.47 0.50 6% 14.1 16.2 14%
T3 76.3 79.5 4% 0.75 0.79 5% 19.0 9.2 51%

BU2 82.3 83.7 2% 0.66 0.57 14% 18.9 15.2 19%
BU3 105.7 106.9 1% 1.64 1.05 36% 14.7 7.0 53%
B4 110.7 110.6 0% 1.00 0.89 11% 18.5 9.3 50%
T4 131.5 144.8 10% 1.76 0.57 68% 18.7 89.3 377%

B4/G3 139.2 137.7 1% 1.15 0.82 29% 124.5 8.7 93%
B4/G1 141.2 * -- 0.74 * -- 81.1 * --
BU4 156.3 162.1 4% 0.74 0.64 14% 22.9 21.9 4%
* Mode not found.   

Table 6.6. Comparison of natural frequencies, damping, and modal mass found from APS 
SIMO and TT MIMO testing using burst-random excitation. 

Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g)
Desc. APS TT Diff. APS TT Diff. APS TT Diff.

B1 8.8 8.8 1% 1.05 0.61 42% 21.7 27.2 25%
T1 10.1 10.2 1% 0.92 0.76 18% 14.2 20.6 45%
B2 32.6 32.9 1% 0.61 0.60 3% 28.3 29.4 4%
T2 36.8 37.6 2% 0.35 0.83 139% 18.2 14.4 21%
B3 67.8 68.4 1% 1.07 0.92 13% 17.6 14.4 18%

BU1 73.8 75.1 2% 0.62 0.73 18% 13.5 13.9 3%
T3 76.1 79.5 4% 1.73 0.61 65% 11.8 10.2 13%

BU2 82.2 83.7 2% 0.75 0.55 26% 21.5 14.8 31%
BU3 105.9 107.4 1% 1.43 0.23 84% 16.7 18.1 9%
B4 110.7 110.4 0% 0.98 0.53 46% 19.3 13.3 31%
T4 131.5 144.9 10% 1.58 0.48 70% 20.9 103.7 395%

B4/G3 * 137.7 -- * 1.04 -- * 6.0 --
B4/G1 140.9 * -- 0.71 * -- 84.2 * --
BU4 156.3 162.2 4% 0.73 0.36 50% 22.8 33.6 48%
* Mode not found.    

Table 6.7. Comparison of natural frequencies, damping, and modal mass found from APS 
SIMO and TT MIMO testing using multisine excitation. 
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The tables show that for almost all modes, the frequencies found with TT MIMO testing are 

slightly higher than with APS SIMO testing. Since the bridge model’s mass was constant for all 

testing, the frequency increase suggests that the model appears to be stiffer for MIMO testing. A 

possible explanation for this is that the shakers are operating out of phase with each other 75% of 

the time in the case of multisine, and 50% of the time with burst-random, producing added 

resistance to the model moving in any particular natural mode shape.  

For the burst-random signal, the damping found with the TT MIMO testing is in good agreement 

with the APS SIMO testing. For the multisine signal, the damping from TT MIMO testing varies 

more widely than for burst-random. However, as discussed, the damping estimates are very 

sensitive and are not relied upon. 

For both burst-random and multisine, the modal mass is in good agreement for many of the 

modes. For mode B1, the TT modal mass is high for both signal types, indicating that the eFRF 

magnitude is lower than it should be. This is probably due to the mode not being excited as well 

when the shakers operate out of phase with each other.  

For mode T4, the modal mass found from the TT MIMO testing with either signal type is far too 

high. The frequency at the peak is also significantly different than what was found with APS 

SIMO testing. All MIMO testing finds the T4 mode at approximately 145 Hz, and all SIMO 

testing finds the T4 mode at approximately 132 Hz. Also, the MAC value between the SIMO and 

MIMO mode shape is low, indicating that these are not actually the same mode. It is theorized 

that the spatial arrangement used for the MIMO testing is poor for exciting the T4 mode, and the 

actual mode is not found. The peak selected at 145 Hz is not near the natural frequency, but the 
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T4 mode is still more dominant at this frequency than any other mode. The eFRF magnitude is 

low since the true peak is not found and the modal mass is therefore far too high.  

Overall, the natural frequencies and modal masses found demonstrate that the TT MIMO testing 

produces results similar to those found using baseline APS SIMO testing. However, the high 

frequency modes are not identified as well as the low frequency modes.  

6.4.3.2 Modal Vectors 

The modal vectors found with TT MIMO testing are again compared to the vectors from APS 

SIMO testing using MAC values. 

 
Figure 6.31. MAC values for comparison of mode shapes found from APS SIMO and TT 

MIMO testing using burst-random excitation. 

The MAC values for the first nine modes are generally nearly unity on the diagonal of Figure 

6.31, indicating very good agreement between the mode shapes identified by the two testing 
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methods. Mode 7 (T3), mode 9 (BU3), and mode 10 (B4) have MAC values of about 0.8, 

indicating some difference between the shapes. Mode 11 (T4) has poor agreement with a MAC 

value of about 0.6. Inspection of the mode shapes reveals that the T4 shape from the TT MIMO 

burst-random testing is inferior to the APS shape, with girder 2 somewhat in phase with girder 3. 

Mode 12 (B4/G3) also has a low MAC value, and this is because in the TT MIMO mode, girder 

3 has a smaller amplitude than the mode from APS testing. For mode 13 (BU4), inspection of the 

mode shapes again shows that the APS testing produced a better estimate.  

For values off of the diagonal of Figure 6.31, the correlation between mode shapes is generally 

nearly zero as expected. However, there is correlation between the local modes (APS modes 11 

and 12, TT mode 12) and the nearby global modes. This was noted and discussed for the TT 

SIMO testing in subsection 6.4.2.2.  

 
Figure 6.32. MAC values for comparison of mode shapes found from APS SIMO and TT 

MIMO testing using multisine excitation. 
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Considering Figure 6.32, the diagonal terms are nearly unity in most cases. The diagonal 

elements with lower MAC values are the same as in Figure 6.31 and the same explanations 

apply. Again, the shapes found from the APS testing are superior to those found with the TT 

MIMO excitation for modes 11 and 13. 

Most terms off of the diagonal of Figure 6.32 are nearly zero. However, the local modes are 

again correlated with the global T4 and BU4 modes. Other modes with some correlation off of 

the diagonal are most likely due to spatial aliasing and noise. 

Overall, the modal vectors captured via TT MIMO testing are generally in good agreement with 

those from the baseline APS SIMO testing. The analysis also shows that the modes are nearly 

orthogonal, except for the high frequency local modes. In a few cases at higher frequencies, the 

TT MIMO testing provided mode shapes that are inferior to the APS shapes. 

6.4.3.3 Modal Flexibility 

The modal flexibility matrices derived from the TT MIMO testing and from the APS SIMO 

testing are compared in Table 6.8. 

Desc. Static 
Load 

Burst-Random Multisine 
APS TT APS TT 

D   3.032 3.760 6.328 8.722 
Dd   0.501 0.829 0.550 0.981 

DOF 1D* 1.65 1.72 1.23 1.80 1.43 
DOF 3D* 1.89 1.74 1.37 1.84 1.56 

* Displacement at DOF due to 1 kip load at all DOFs (inches) 

Table 6.8. Comparison of modal flexibility found from APS SIMO and TT MIMO testing. 

For the burst random testing, the maximum values of deflection at DOFs 1D and 3D are an 

average of 25% less for TT MIMO than the values for APS SIMO. Also, both the ܦ and ܦௗ 
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values are worse than the APS values. The high value of 0.829 for ܦௗ indicates that some 

diagonal terms of the TT MIMO flexibility matrix are especially poor. These results are not 

surprising since the modal mass found for mode B1 is poor.   

For the multisine testing, the TT MIMO results are also poor. The maximum deflection values 

are an average of 13% less than the deflections from the APS testing, and the ܦ and ܦௗ values 

are also significantly worse than the APS values. A check of the modal flexibility matrix shows 

that the terms relating the DOFs of the first girder to those of the third girder are especially poor, 

resulting in the high value of ܦ. The high modal mass of mode B1 is driving much of the trouble 

with ܦ, whereas the high modal mass of mode T1 is causing the high value of ܦௗ. 

6.4.3.4 Summary of MIMO Validation 

Overall, the MIMO testing with four TTs identified all global modes that the SIMO testing with 

the APS shaker identified. Natural frequencies and mode shapes were generally in very good 

agreement between the two excitation methods. However, modal mass and modal flexibility 

were not as good with the MIMO testing as with the SIMO testing.  

The less accurate modal mass and modal flexibility results are due to only exciting four DOFs 

with MIMO testing as opposed to exciting fifteen DOFs with SIMO testing. The SIMO testing 

thus provided fifteen columns in the transfer function and a better average estimate of the eFRF 

for each mode. With only four columns in the transfer function from MIMO testing, less 

redundant information is available and the eFRF quality suffers. This can be improved by using 

more shakers simultaneously or by relocating the shakers and performing a second experiment. 

However, exciting the additional DOFs with SIMO testing required far more testing time. 

Considering the multisine experiments, the SIMO testing required 82 minutes of excitation plus 
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about two hours for moving the shaker from DOF to DOF. The MIMO testing required about 30 

minutes of setup and then 23 minutes of excitation for a total testing time that is only 25% of the 

SIMO testing time. This time savings is one of the significant benefits of MIMO testing on a 

real-world structure, especially in the presence of non-stationarity due to environmental changes 

over the course of a test. Also, more shakers are intended for use on real-world structures, and 

thus more redundant information will be available for system identification. Therefore, even 

though the MIMO results were not as good as the SIMO results on the laboratory structure, the 

opposite is expected on real-world structures. 

6.4.4 Validation of Multisine Excitation  

Another goal of the laboratory bridge model testing is to validate that the somewhat novel 

multisine signal gives system identification results that are as good as the very popular burst-

random signal. This is important for use of the TTs since fewer force transducers are available 

than shakers. To use more than four shakers (given the current funding constraints), roving 

transducers must be used and thus deterministic signals must be used.  

As previously discussed, the multisine signal has several theoretical advantages over burst-

random signals. The multisine signal is defined to excite each selected frequency evenly, there is 

no leakage when an experimentation process that incorporates cyclic averaging is used, and 

orthogonal signals can be used for MIMO testing, greatly reducing the number of averages 

required. Also, deterministic signals possibly allow some shakers to be operated without a force 

transducer, whereas force transducers are absolutely required if burst-random signals are used. 

In practice, it was found that the TTs provide a good reproduction of the multisine signal, but 

that the excitation to each frequency line is not equal due to the characteristics of the amplifiers 
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and the shakers. For example, the TTs display a large increase in force between about 100 Hz 

and 110 Hz as their own natural frequency is excited. This frequency band is much more 

strongly excited than other frequencies. 

Also, the Signal Express software used to control the experiments creates a slight pause between 

cyclic averages, offsetting the data sets by about 1/4000th of a second, which, for example, 

changes the phase of a 100 Hz signal by nine degrees. Leakage is still almost totally eliminated 

since the complete system response is captured in the same data window as the complete 

excitation force; however, the apparent phase shift requires the use of the H1 FRF algorithm as 

opposed to the superior EIV FRF algorithm. 

Finally, the ‘beating’ phenomenon discussed previously does not occur with stochastic signals, 

but does occur with any slowly varying deterministic signal such as multisine or chirp. Although 

filtering of the FRFs was found to effectively reduce the effect of ‘beating’, the true FRF shape is 

necessarily somewhat altered by the filtering. Experimental results indicate that the effect of 

filtering is small enough that it cannot be distinguished from the typical variability that is due to 

normal changes in the experimental setup, however, some increase in damping values should be 

expected as well as a decrease in modal mass.   

Validation of the multisine signal is performed by comparison of system identification results 

from multisine excitation to the results from baseline burst-random excitation. The results of 

both SIMO and MIMO test setups are considered. As before, natural frequencies, damping, 

modal mass, modal vectors, and modal flexibility are compared. 
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6.4.4.1 Natural Frequencies, Modal Damping, and Modal Mass 

SDOF methods are again used to estimate natural frequencies, damping, and modal mass for 

both SIMO and MIMO experiments using multisine (MS) and burst-random (BR) excitation. 

The results are compared in Table 6.9 for TT SIMO testing and in Table 6.10 for TT MIMO 

testing. 

Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g)
Desc. BR MS Diff. BR MS Diff. BR MS Diff.

B1 9.0 8.9 1% 0.58 0.77 25% 23.4 22.9 2%
T1 10.3 10.2 1% 0.58 0.67 13% 11.6 11.7 1%
B2 32.7 32.7 0% 0.67 0.72 7% 27.2 26.0 5%
T2 37.1 37.1 0% 0.42 0.42 1% 15.5 15.1 3%
B3 68.2 68.0 0% 1.08 1.12 3% 18.6 19.2 3%

BU1 74.3 74.4 0% 0.61 0.56 9% 15.1 16.5 8%
T3 79.0 79.0 0% 0.70 0.86 18% 16.8 14.3 18%

BU2 82.5 82.5 0% 0.80 0.80 0% 17.4 17.0 3%
BU3 107.8 107.5 0% 0.72 0.85 15% 21.6 18.5 17%
B4 112.5 110.7 2% 1.46 1.35 9% 27.5 19.1 44%
T4 131.8 131.8 0% 1.43 0.92 55% 21.9 35.3 38%

B4/G3 139.3 * -- 1.08 * -- 117.2 * --
B4/G1 148.4 * -- 0.78 * -- 60.1 * --
BU4 156.1 156.1 0% 0.62 0.57 9% 26.5 29.9 12%
* Mode not found. 

Table 6.9. Comparison of natural frequencies, damping, and modal mass found from 
burst-random and from multisine TT SIMO testing. 
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Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g)
Desc. BR MS Diff. BR MS Diff. BR MS Diff.

B1 9.0 8.8 2% 0.65 0.61 7% 29.3 27.2 8%
T1 10.4 10.2 2% 0.65 0.76 15% 13.8 20.6 33%
B2 33.0 32.9 0% 0.64 0.60 6% 27.4 29.4 7%
T2 37.8 37.6 1% 0.42 0.83 49% 17.4 14.4 21%
B3 68.3 68.4 0% 1.03 0.92 12% 13.1 14.4 9%

BU1 75.2 75.1 0% 0.50 0.73 32% 16.2 13.9 17%
T3 79.5 79.5 0% 0.79 0.61 29% 9.2 10.2 10%

BU2 83.7 83.7 0% 0.57 0.55 3% 15.2 14.8 3%
BU3 106.9 107.4 0% 1.05 0.23 360% 7.0 18.1 62%
B4 110.6 110.4 0% 0.89 0.53 70% 9.3 13.3 30%
T4 144.8 144.9 0% 0.57 0.48 19% 89.3 103.7 14%

B4/G3 137.7 137.7 0% 0.82 1.04 21% 8.7 6.0 45%
BU4 162.1 162.2 0% 0.64 0.36 78% 21.9 33.6 35%

 

Table 6.10. Comparison of natural frequencies, damping, and modal mass found from 
burst-random and from multisine TT MIMO testing. 

The tables show that the natural frequencies are in excellent agreement for burst-random and 

multisine excitation. For SIMO testing, the two local modes were not found with multisine but 

were found with burst-random. For MIMO testing, the B4/G1 mode was not found with either 

excitation signal.  

The damping ratios found from the SIMO testing agree well between the two signal types, and 

the multisine signal returns a higher ratio for most modes. This is partially due to the filtering. 

For the eleven modes higher than T1 that were identified by the SIMO multisine testing, six 

cannot be identified without filtering. For the remaining five, the damping is always lower 

without filtering, and the average reduction in the damping ratio is 0.16%. The damping ratios 

found from the MIMO testing do not agree as well as those found with SIMO, and this again 

stems from the smaller amount of redundant data available in the transfer function. 
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The modal mass is in excellent agreement between the two excitation signals for SIMO testing, 

but the variability is greater for MIMO testing. For the B4 mode from SIMO testing, the 

multisine modal mass is more accurate based on comparison to the APS results. For the T4 

mode, the burst-random result is in better agreement with the APS results. For the MIMO testing, 

the multisine signal provided better results for the B1, BU1, BU3, and B4 modes, and burst-

random provided better results for the T1, T2, and BU4 modes. Thus, although the modal masses 

with the two signal types for MIMO testing are not in good agreement, it is not clear that one 

signal is outperforming the other. 

6.4.4.2 Modal Vectors 

The modal vectors found with multisine excitation are compared to those found with burst-

random excitation in Figure 6.33 for TT SIMO testing and in Figure 6.34 for TT MIMO testing. 

 
Figure 6.33. MAC values for comparison of mode shapes found from burst-random and 

from multisine TT SIMO testing. 
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Figure 6.34. MAC values for comparison of mode shapes found from burst-random and 

from multisine TT MIMO testing. 

The comparison of MAC values is very similar to what has been discussed previously. The 

elements on the diagonal are nearly unity for modes that are common to both excitation signals, 

and the off diagonal terms are generally nearly zero. For the MIMO testing, the two local modes 

found with burst-random excitation (modes 12 and 13 in Figure 6.33) are correlated with the T4 

and BU4 modes. For the MIMO testing, only the B4/G3 mode was found, and it is correlated 

with the B4 and BU3 modes. 

6.4.4.3 Modal Flexibility 

Modal flexibility matrices found from the multisine testing and from the burst-random testing are 

compared to static load results in Table 6.11. 
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Desc. Static 
Load 

SIMO MIMO 
BR MS BR MS 

D   2.757 2.280 3.760 8.722 
Dd   0.555 0.492 0.829 0.981 

DOF 1D* 1.65 1.54 1.58 1.23 1.43 
DOF 3D* 1.89 1.63 1.71 1.37 1.56 

* Displacement at DOF due to 1 kip load at all DOFs (inches) 

Table 6.11. Comparison of modal flexibility found from burst-random and from multisine 
TT testing. 

Table 6.11 shows that use of the multisine signal gives better flexibility results for SIMO testing, 

but generally worse results for MIMO testing. For both SIMO and MIMO, the multisine testing 

gives better results for total maximum deflection, indicating that the identification of the 

controlling first mode is better with multisine. The high value of ܦ for MIMO multisine testing 

is again largely driven by the high value of modal mass found for mode T1.   

6.4.4.4 Summary of Multisine Validation 

The testing shows that the multisine signal performs as well as the burst-random signal. The 

natural frequencies are essentially identical for both signal types, as are the mode shapes. The 

modal mass differs somewhat with a MIMO setup, but the multisine signal provides better 

accuracy as often as the burst-random signal does. The modal flexibility results are also better in 

some cases with burst-random, and better in other cases with multisine. Overall, use of the 

multisine signal is supported by the testing. 

6.4.5 Validation of Using Roving Force Transducers 

Only four force transducers are available at the University, however, it is desirable to use more 

than four shakers in the testing of a real-world bridge. As such, it is explored whether good 

system identification can occur if the force transducers are used in a roving manner so that more 

than four shakers can be used simultaneously. The FRFs can only be calculated if there is force 
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data for all inputs. It is hypothesized that for a given set of input signals to an array of shakers on 

a particular structure, the output of any shaker is consistent enough that it does not need to be 

measured more than once. If this is true, then the four transducers can be ‘roved’ and more than 

four shakers can be used. An initial test is performed using four shakers, and a subsequent test is 

performed using eight shakers.  

6.4.5.1 Roving Force Transducer Testing With Four Shakers 

Previous testing has shown that the TTs produce force output that is quite uniform from set to set 

with deterministic input signals. The purpose of the current testing is to evaluate if structural 

identification can succeed using force inputs and acceleration outputs that are recorded during 

disparate experiments. This testing is performed in four parts as described below.  

In the first part, four shakers are used in a MIMO setup and all inputs are recorded. Multisine 

excitation is provided seven times in a row and five capture blocks are retained. As always, four 

experiments with orthogonal inputs must be undertaken to allow FRF calculation. The purpose of 

this part is to provide a baseline against which roving results can be compared. 

In the second part, the force transducers at input locations 1 and 2 are replaced with sleeve nuts, 

and the four experiments with five capture blocks each are performed again. Removing the force 

transducers requires the entire shaker and stinger apparatus to be removed from the structure, 

causing some level of disturbance to the installation, which could potentially affect the force 

input. If budget permitted, a quick-connect system could be developed for swapping out force 

transducers with less disturbance to the installation. 

In the third part, the transducers are reinstalled at inputs 1 and 2, and the transducers at input 

points 3 and 4 are removed. Another four experiments with five capture blocks each are 
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undertaken. At this point, neither the data from the second part nor the third part can 

independently be used to calculate FRFs since half of the force input information is missing in 

each. The force inputs recorded from the two different parts must be combined to enable FRF 

calculation, which is tantamount to assuming that the unrecorded input forces from one part are 

equal to the recorded input forces from the other part. This is accomplished as follows: 

• Align the data from the two parts as described in subsection 6.3.3.3. 

• Insert the recorded forces from the third part as the inputs at locations 1 and 2 for the 

second part. 

• Insert the recorded forces from the second part as the inputs at locations 3 and 4 for the 

second part. 

• This results in 40 total sets of data (5 capture blocks x 4 experiments x 2 parts). 

Finally, in the fourth part, all transducers are reinstalled and the four experiments are run a last 

time. This process allows all input locations to be disturbed, which may affect the force input. 

Since all four input locations are recorded before and after the disturbances, the input data from 

the first and last parts can be compared to evaluate what effect the disturbance has.     

The modal parameters captured from the various tests are compared in the following subsections. 

As before, frequencies, damping, modal mass, modal vectors, and modal flexibility are analyzed. 

6.4.5.1.1 Natural Frequencies, Modal Damping, and Modal Mass 

The parameters captured from the testing of part one are used as a baseline, and the parameters 

from the combined data of part two and part three are evaluated against this baseline. Parameter 

calculation was performed in the same manner as described previously. The results are presented 

in Table 6.12 for all inputs measured simultaneously (All) and for the combined data (Roving). 
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Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g)
Desc. All Roving Diff. All Roving Diff. All Roving Diff.

B1 8.8 8.8 0% 0.62 0.55 13% 25.1 24.4 3%
T1 10.2 10.2 0% 0.82 0.76 7% 21.7 20.6 5%
B2 32.8 32.8 0% 0.49 0.47 3% 32.8 33.0 1%
T2 37.6 37.6 0% 0.71 0.73 3% 15.6 14.9 5%
B3 68.2 68.0 0% 1.31 1.29 1% 16.5 17.3 5%

BU1 75.5 74.7 1% 0.66 0.68 3% 17.2 25.1 32%
T3 77.2 78.7 2% 1.92 2.09 8% 13.8 11.6 19%

BU2 83.5 83.1 0% 0.79 1.03 23% 12.7 9.3 36%
B4 111.1 111.3 0% 1.03 1.46 29% 11.7 10.9 7%
T4 134.8 * -- 0.70 * -- 44.9 * --
B5 140.6 141.0 0% 0.61 0.66 7% 4.5 4.0 10%

BU4 161.7 162.0 0% 0.21 ** -- 63.4 ** --
* Mode not found.  ** Poor identification.    

Table 6.12. Comparison of natural frequencies, damping, and modal mass found from 
baseline and roving transducer testing. 

Table 6.12 shows that the agreement for all parameters is generally better than for any previously 

discussed testing. The natural frequencies are nearly identical, the damping ratios are in very 

good agreement, and the modal mass is in very good agreement for modes below about 70 Hz. 

However, with roving force transducers, the T4 and BU4 modes could not be identified due to 

high noise in the FRFs. The noise is due to poor response of some of the TTs at higher 

frequencies, resulting in low and inconsistent force input. This is illustrated in Figure 6.35 which 

shows the typical force output from two of the TTs used in this testing.  
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Figure 6.35. Frequency domain data showing relatively poor response of shaker ‘Foxtrot’ 

compared to shaker ‘Quebec’. 

Figure 6.35 demonstrates that shaker ‘Quebec’ maintains good force output up to the 170 Hz 

cutoff frequency of the multisine signal, but shaker ‘Foxtrot’ has a force output that decreases 

towards the noise floor. Because the force input from ‘Foxtrot’ is noisy, it varies from set to set 

and thus a recorded force input from one experiment is a poor match for the accelerations from a 

different experiment. This is very clear in Figure 6.36 which shows the multiple coherence for 

output DOF 3D. The multiple coherence represents how much of the measured output is due to 

the measured inputs. A value of unity indicates that the output is completely due to the measured 

inputs, and a value of zero indicates that none of the output is due to the inputs. The coherence is 

very good up to about 70 Hz, and then it is poor. Thus, the output is not highly correlated with 

the assumed inputs. 
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Figure 6.36. Multiple coherence for output at DOF 3D showing poor results above 70 Hz. 

6.4.5.1.2 Modal Vectors 

Comparison of the modal vectors uses MAC values (Figure 6.37). The figure shows values of 

nearly unity for all of the elements on the diagonal except for mode T3. Review of the mode 

shapes reveals that neither test method captured this mode well, but the shape from the roving 

transducer testing is superior. The cause of the poor capture is a combination of two factors. 

First, the four shakers used in this testing are all located relatively close to the nodes of this mode 

shape, and thus it is not well excited. Second, the output of two of the shakers (‘Foxtrot’ and 

‘Mike’) is generally poor in this frequency range, decreasing the excitation of this mode even 

more.  

The off-diagonal terms are generally close to zero as they should be. None of the modes from the 

roving testing are highly correlated with baseline modes 10 and 12 (T4 and BU4 respectively), 

which is appropriate.  
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Figure 6.37. MAC values for comparison of mode shapes found from baseline testing and 

from roving transducer testing. 

6.4.5.1.3  Modal Flexibility 

The modal flexibility results are again compared to the static flexibility matrix. For this testing, 

the values of ܦ and ܦௗ are poor whether the force transducers are used in a roving manner or 

not. The displacement values are better than those from some of the previously reported tests, 

indicating that the B1 mode is identified well; however, the contribution of other modes to 

elements away from the diagonal are clearly inaccurate. This is largely due to the values of 

modal mass found for modes T1, B2, and T2, which are all significantly higher than those found 

from other tests. High modal mass is most directly related to a low eFRF peak, indicating that the 

measured FRFs are too low. In any case, the values captured using roving transducers are 

approximately the same as those captured with all inputs measured. 

 

 

1 2 3 4 5 6 7 8 9 10

123456789101112

0

0.5

1

Roving Modes

Baseline Modes

M
A

C 
V

al
ue



 282 

Desc. Static 
Load All Roving 

D  10.098 9.928
Dd  1.059 0.949

DOF 1D* 1.65 1.53 1.59
DOF 3D* 1.89 1.55 1.61

* Displacement at DOF due to 1 kip load at all DOFs (inches) 

Table 6.13. Comparison of modal flexibility found from baseline and roving transducer 
testing. 

6.4.5.1.4 Effect of Disturbance 

The effect of disturbing the input apparatus is also investigated. As noted, in the first step of this 

testing, all force inputs were recorded. The successive steps required the removal and 

reinstallation of the input apparatus, and in the final step all force inputs were again recorded. 

The sensitivity of the apparatus to this disturbance is investigated by comparing the force inputs 

from before and after the disturbance.  

This comparison is accomplished by finding the average difference in the frequency domain 

between the mean force output of each shaker for the before and after cases. The values are 

reported in the following tables. Table 6.14 shows the results for the entire range of excited 

frequencies, which is from 4 Hz to 170 Hz. Table 6.15 shows the results for the frequency range 

from 4 Hz to 60 Hz since it is clear from Figure 6.36 that the response is less consistent at higher 

frequencies. 

Shaker Mike Papa Quebec Foxtrot 
Mean Diff. 49% 16% 11% 12% 

 

Table 6.14. Mean difference in force output between initial shaker installation and final 
shaker installation, 4 Hz to 170 Hz. 
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Shaker Mike Papa Quebec Foxtrot 
Mean Diff. 15.6% 2.5% 2.4% 3.6% 

 

Table 6.15. Mean difference in force output between initial shaker installation and final 
shaker installation, 4 Hz to 60 Hz. 

The results reported in the tables show that the uniformity in force input is not significantly 

affected by the removal and reinstallation of the shakers for frequencies below 60 Hz. Above 60 

Hz, the force output is much more sensitive to any setup changes. The tables also show that 

shaker ‘Mike’ is far more sensitive than the others. Separate analysis also indicates that ‘Mike’ 

has far higher variance from set to set than the other three shakers used in this testing.  

Overall, this testing indicates that shakers with low variability in force output from set to set can 

be removed and reinstalled without a large effect on force output below 60 Hz. For higher 

frequencies, and for shakers with higher variability, the force output is less reliable.   

6.4.5.2 Roving Force Transducer Testing With Eight Shakers 

In this test, eight shakers are used in a MIMO setup. Since only four force transducers are 

available, this testing requires that half of the input forces must be assumed. The testing proceeds 

as follows: an experimental run is performed with the first four input locations outfitted with 

force transducers. Next, the transducers are moved to the last four input locations and the 

experiment is run again. This testing produces 80 capture blocks of data (5 capture blocks per 

polarity setting x 8 polarity settings x 2 experiments), with the last four input forces assumed for 

the first 40 blocks and the first four input forces assumed for the second 40 blocks. As before, the 

data is aligned in time by comparing output accelerations. 

The benefit of using more shakers is that better spatial distribution of input, greater total 

excitation force, and increased volume of redundant information will produce more reliable 
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results for a real-world structure. However, the light bridge model does not require this much 

input and better system identification results are not expected. The goal of this testing is merely 

to demonstrate that using assumed inputs for four of eight shakers can produce reliable results. 

All system identification parameters are again compared. The APS SIMO burst-random results 

are used as a baseline against which to compare the outcome of this testing. 

6.4.5.2.1 Natural Frequencies, Modal Damping, and Modal Mass 

These parameters are compared in Table 6.16. The natural frequencies are in good agreement for 

many of the modes, but are consistently high for modes above 70 Hz. The damping values show 

unusually poor agreement with the damping consistently low above 70 Hz. The modal mass 

values are in reasonable agreement below 70 Hz, except for mode B1. The modal mass is too 

high for mode B1 and modal flexibility will be significantly affected by this. The peak at this 

mode appears to be affected by leakage, decreasing the magnitude of the peak and thus 

increasing modal mass. Leakage is not apparent on any of the peaks of the other modes.  

For the roving transducer testing, modes BU3, T4, and BU4 were found by CMIF, but SDOF 

identification results were significantly in error and are not reported. As with the four input 

roving transducer testing, the variability in force input at higher frequencies causes the FRFs to 

be poor. Also as before, the multiple coherence plots indicate that the outputs are not well 

correlated with the inputs above 60 Hz, which informs the user that modal parameters will not be 

reliable in this range. 
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Mode Undamped Nat. Freq. (Hz) Damping Ratio (%) Modal Mass (lbf/g)
Desc. APS TT Diff. APS TT Diff. APS TT Diff.

B1 8.9 8.8 1% 0.86 0.42 52% 21.4 30.8 44%
T1 10.2 10.4 2% 0.57 1.37 138% 13.0 14.7 14%
B2 32.6 33.3 2% 0.62 0.63 2% 27.3 27.6 1%
T2 36.8 38.4 4% 0.40 0.71 78% 16.3 14.6 10%
B3 67.9 67.9 0% 1.09 1.57 44% 16.5 21.0 27%

BU1 73.9 77.3 5% 0.47 0.12 74% 14.1 65.1 360%
T3 76.3 80.9 6% 0.75 0.17 78% 19.0 29.1 54%

BU2 82.3 84.0 2% 0.66 0.55 16% 18.9 31.1 65%
BU3 105.7 112.0 6% 1.64 ** -- 14.7 ** --
B4 110.7 112.7 2% 1.00 0.16 84% 18.5 17.7 4%
T4 131.5 145.0 10% 1.76 ** -- 18.7 ** --

BU4 156.3 164.0 5% 0.74 ** -- 22.9 ** --
* Mode not found.  ** Poor identification.    

Table 6.16. Comparison of natural frequencies, damping, and modal mass found from 
baseline APS SIMO testing and from roving transducer testing. 

6.4.5.2.2 Modal Vectors 

The MAC values for the roving transducer testing versus the APS SIMO burst-random testing 

are shown if Figure 6.38. The elements on the diagonal are nearly unity for most of the modes, 

except for roving transducer modes seven and nine (T3 and B4 respectively). Visual inspection 

indicates that the T3 mode from the roving transducer testing is superior to that found with the 

APS SIMO testing. The B4 mode from the APS testing is superior. The off-diagonal terms are 

generally near zero, except some small amount of correlation between roving transducer mode 

nine (B4) and APS modes nine and twelve (BU3 and BU4). Overall, the modal vectors found 

with the roving transducer testing are in good agreement with the baseline modal vectors. 
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Figure 6.38. MAC values for comparison of modes shapes found from baseline APS SIMO 

testing and from roving transducer testing. 

6.4.5.2.3 Modal Flexibility 

The modal flexibility results are compared to the static flexibility matrix. For this testing, the 

value of ܦ is much better than for the testing using only four shakers. This improvement is 

primarily due to the much more accurate value of modal mass found for the T1 mode, which 

strongly affects many off-diagonal terms. The value of ܦௗ is poor and the displacements are poor 

due to the high value of modal mass found for mode B1.  

Desc. Static 
Load Roving 

D  4.392
Dd  1.223

DOF 1D* 1.65 1.16
DOF 3D* 1.89 1.28

* Displacement at DOF due to 1 kip load at all DOFs (inches) 

Table 6.17. Comparison of modal flexibility found from roving transducer testing. 
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6.4.5.3 Summary of Roving Force Transducer Validation 

The results generally show that the use of roving force transducers results in less accurate system 

identification than if all inputs are simultaneously measured. However, with only four 

transducers available, using roving transducers may still be desirable on a real-world bridge. 

Closer inspection of the results reveals that using roving transducers gives good identification of 

modes below about 60 Hz. All modes are found, and reasonably accurate values of damping and 

modal mass are calculated. Since all important modes of real-world bridges are usually below 60 

Hz, reliable results may be captured. 

It was also found during this testing that some of the TTs have poor uniformity of force output 

compared to others. For subsequent testing using roving transducers, it is important to select the 

best shakers of the 16 available. Also, disturbing the input apparatus does affect the force input, 

and subsequent testing must be planned in such a way that disturbance is minimized. Finally, the 

available testing software begins recording data at an unpredictable delay time after excitation 

begins. This requires that the assumed inputs be aligned as best as possible with the actual output 

measurements during data post-processing. Automated alignment worked well for laboratory 

data, but the higher noise levels of real-world data may make alignment more difficult.  

Overall, the use of roving force transducers should be avoided if possible. When roving is 

required, results for modes with frequencies above 70 Hz should be considered to be unreliable. 

Care must also be taken to select the most consistent transducers, and disturbance of the input 

apparatus must be avoided to the greatest extent possible. If these guidelines are followed, then 

accurate results can be acquired with roving force transducers. 
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6.5 CONCLUSION 

This chapter discussed various experiments intended to confirm that the TTs can be successfully 

used for EMA. All experiments were carried out in a controlled laboratory setting on a steel 

bridge model. TTs were used in SIMO and MIMO test setups with burst-random and multisine 

excitation signals. The use of roving force transducers was also tested. Baseline system 

identification was performed with conventional APS SIMO testing to provide a point of 

comparison for the TT results, and static load testing was performed to provide a baseline 

flexibility matrix. 

SIMO testing with a TT shaker was undertaken to determine how well these devices can excite a 

structure in comparison to a purpose-built shaker. The result was that all modes were found at 

nearly identical frequencies to the baseline. Some variation in damping and modal mass was 

found, but modal flexibility was as good as with the APS shaker. This testing demonstrated that a 

single TT can successfully excite a laboratory-scale structure. 

MIMO testing with four TTs was undertaken to validate that these shakers can successfully 

function in an array to allow excitation of larger structures. The APS SIMO results were again 

used as a baseline. The system identification provided accurate natural frequencies and modal 

vectors, but less accurate modal mass and modal flexibility. The decrease in accuracy was 

attributed to having only four columns in the transfer function as opposed to fifteen for the SIMO 

testing. Fewer columns provide less redundant data and the quality of the eFRFs was reduced. 

Nonetheless, the MIMO testing did demonstrate that an array of TTs can be used to successfully 

excite a structure from a variety of spatial locations. 
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The use of the multisine signal for SIMO and MIMO excitation was also tested. This signal has 

multiple theoretical advantages over the standard burst-random signal, but very little literature 

exists demonstrating its use in EMA. System identification results were compared from 

excitation with burst-random signals and with multisine signals. Overall, the multisine signal 

provided identification results that were just as good as the burst-random results. One issue is 

that a phenomenon referred to as ‘beating’ affects the FRFs, and they must be filtered to enable 

identification of all modes. This phenomenon is not limited to multisine signals, and occurs with 

other deterministic signals as well. However, filtering is not required for the real-world testing 

discussed in the next chapter. 

Finally, the idea of using roving force transducers was tested. The use of roving transducers 

allows MIMO testing to occur with fewer transducers than shakers. Testing showed that the TTs 

have less uniform output and are more sensitive to setup disturbances above about 70 Hz, but 

that modal identification below this frequency is adequate. Thus, roving force transducers is 

expected to be a viable test method on real-world structures. 

Overall, the testing reported in this chapter indicates that the TTs can be used as excitation 

devices for experimental modal analysis of structures. These shakers operate well in SIMO and 

MIMO tests and with stochastic burst-random and deterministic multisine input signals. 

Validating that similar results can be achieved on a real-world structure must still be explored.  
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7 CHAPTER SEVEN 

TESTING OF AN IN-SERVICE HIGHWAY BRIDGE 

7.1 INTRODUCTION 

The tactile transducer excitation system was evaluated on a laboratory bridge model and the 

results were promising. The capabilities of this system for MIMO EMA are now evaluated on a 

full-scale, in-service highway bridge. The objective of this test is to evaluate the effectiveness of 

MIMO EMA, and to determine optimal experimental design parameters for this approach. In the 

course of this experimentation, other items of interest to be analyzed are: 

• Evaluation of the pros and cons of combining data from disparate experiments. 

• Evaluation of the effects of traffic disturbances on modal identification. 

• Comparison of burst-random and multisine excitation techniques.  

• Evaluation of employing roving force transducers in structure excitation. 

Combining data from separate experiments is a commonly employed experimental method that 

aims to improve modal identification by increasing the amount of redundant data in a system 

transfer function. The danger with this technique is that the data from disparate experiments may 

be inconsistent due to the time-variant nature of real structures, and the modal identification may 

thus be inferior. Whether combining data improves modal identification or impairs it is 

evaluated. 

The presence of vehicular traffic adds unmeasured excitation to a structure, while potentially 

altering the mass and damping. It is not desirable to close bridges to traffic to enable testing, and 

thus the importance of collecting data without disturbance by traffic is evaluated in this work.     
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Multisine signals have many theoretical advantages over commonly used excitation signals, but 

have scarcely been used in testing of civil structures. This work evaluates how the use of 

multisine excitation compares to the popular burst-random excitation technique. Superior results 

with multisine would suggest that this signal type should be adopted for MIMO EMA testing of 

bridges. 

Finally, the cost of the dynamic excitation system can be reduced by employing a number of 

force transducers that is less than the number of operating shakers. A single force transducer has 

a cost that is similar to the combined cost of a TT shaker and a subwoofer amplifier. There must 

also be a data acquisition channel available for each force transducer. However, there are 

attendant technical challenges and data consistency risks if not all force inputs are recorded. 

Thus, an experiment using eight shakers with only four force transducers is conducted to 

evaluate the feasibility of roving force transducers on the real-world bridge.   

7.2 TEST SUBJECT 

The test subject for the experiments described in this chapter is an in-service highway bridge 

located in Fayetteville, Arkansas. This bridge is selected for testing for several reasons. First, the 

structural arrangement is highly representative of a large proportion of the national bridge 

population, thus successful results would indicate that this testing method will be applicable to 

many other bridges. Second, the close proximity to the University decreases travel time and 

costs. Third, the underside of the tested span is only about eleven feet above grade and water is 

not usually present, simplifying installation of testing equipment. Fourth, this bridge has already 

been evaluated by other dynamic testing approaches, which provides previous results against 

which the current results can be compared. For all of these reasons, this bridge is attractive as a 

test specimen. 
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The bridge was constructed in 1987 and has ten simply-supported spans (Figure 7.1). Each span 

has a length of 50’-0”, a total width of 27’–0”, and a roadway width of 24’-0” curb-to-curb. The 

substructures consist of concrete abutments at the ends and concrete pier bents for all 

intermediate supports (Figure 7.2). Each bent consists of a pair of square concrete columns 

spanned by a concrete cap. Bearings composed of sliding steel plates are used to support all 

beams. At the fixed end of each span, anchor bolts project up from the cap through round holes 

in steel bearing plates, sole plates, and beam bottom flanges to prevent transverse and 

longitudinal movement of the beams. The expansion end of each span utilizes a similar 

arrangement, except slotted holes in the sole plates allow longitudinal translation while still 

preventing transverse movement (Figure 7.3).  

The superstructure of each span consists of four rolled W27x94 girders spaced at 7’-6”. These 

girders support a composite concrete deck of nominal 8-inch thickness. The deck was cast by 

placing forms tight to the underside of the top flange, and thus the top and sides of each top 

flange are enveloped by concrete. Each edge of the bare concrete deck has a cast-in-place 

concrete barrier curb that is 3’-9” tall with expansion joints spaced at 10’-0”. These open joints 

extend 1’-7” down into the barrier.  
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Figure 7.1. Photographs showing overall view of bridge deck (left) and underside of a 

typical span (right). (Photos by EVF, Fayetteville, 10/18/13) 

      
Figure 7.2. Photographs showing typical pier (left) and typical abutment (right). (Photos by 

EVF, Fayetteville, 10/18/13) 

      
Figure 7.3. Photographs showing typical fixed bearing (left) and expansion bearing (right). 

(Photos by EVF, Fayetteville, 10/18/13) 
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Figure 7.4. Schematic drawing of bridge superstructure section. 

7.3 TEST PREPARATIONS 

This section describes the work performed in preparation for the field testing. The various 

sensors are described, the data acquisition setup and equipment are detailed, and the best TT 

shakers to use are selected. The excitation signal types, amplitudes, and durations are also 

determined. 

7.3.1 Accelerometers 

The response of the structure to dynamic input is captured with accelerometers. Twenty 

accelerometers are used in the bridge testing, and all are type 393C as supplied by PCB 

Piezotronics, Inc.  

As noted for the laboratory testing, the calibration of all accelerometers is checked prior to field 

testing. The calibration process is the same as described previously, and all sensors used except 

one are within 1.5% of the factory calibration. Sensor 23499 was found to be 2% off of the 

factory data, and so the measured sensitivity is used instead of the factory value. The various 

important characteristics of the accelerometers used are provided in Table 7.1. 

 

7’-6” (Typ.)

27’-0” Out to Out
24’-0” Curb to Curb

2’-3” 
(Typ.)

W27x94 (Typ.)

8” Conc. DeckBarrier Curb (Typ.)
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Bridge Loc. Type Serial No. Sensitivity 
(mV/g) Range (g) Range (Hz) 

1 U393C 8204 1066 ±2.5 800
2 393C 23444 997 ±2.5 800
3 393C 23500 1097 ±2.5 800
4 393C 23525 1081 ±2.5 800
5 393C 23608 1061 ±2.5 800
6 U393C 8957 1050 ±2.5 800
7 393C 23499 1092 ±2.5 800
8 393C 23502 1081 ±2.5 800
9 393C 23526 1070 ±2.5 800

10 393C 23721 1044 ±2.5 800
11 393C 23271 1054 ±2.5 800
12 393C 23501 1110 ±2.5 800
13 393C 23522 1070 ±2.5 800
14 393C 23606 1057 ±2.5 800
15 393C 23752 1073 ±2.5 800
16 393C 23443 1096 ±2.5 800
17 393C 23717 1031 ±2.5 800
18 393C 23523 1089 ±2.5 800
19 393C 23607 1042 ±2.5 800
20 393C 23753 1067 ±2.5 800

 

Table 7.1. Accelerometer information for devices used in bridge testing. 

7.3.2 Force Transducers 

The force input to the structure by a shaker is measured with a dynamic force transducer. These 

devices return a voltage that is proportional to the average tensile or compressive force that they 

are subject to. All force transducers are also supplied by PCB, and the relevant data for the four 

available transducers is provided in Table 6.2. 

Type Serial No. Sensitivity 
(mV/lbf) Range (lbf) Range (Hz) 

208C02 LW36746 47.87 ±100 36,000 
208C02 LW36262 49.94 ±100 36,000 
208C02 LW36271 51.29 ±100 36,000 
208C02 LW36231 49.13 ±100 36,000 

 

Table 7.2. Force transducer information for devices used in laboratory testing. 
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7.3.3 Data Acquisition and Equipment Connectivity 

The electronic devices used for the bridge testing are the same as those used for the laboratory 

testing. The various characteristics of each device, such as number of channels and resolution, 

are reported in the previous chapter. A schematic connectivity diagram for all of the devices used 

is shown in Figure 6.7. Up to eight shakers and twenty accelerometers are used in the testing. 

 
Figure 7.5. Schematic of devices used for bridge testing.  

7.3.4 Shakers and Mounting Apparatus 

7.3.4.1 Ranking of Shakers by Quality 

Sixteen of the TTs have been acquired, but only a maximum of eight are used in the bridge 

testing. As such, it is necessary to select which shakers to use. It has become apparent during 

various prior evaluations of these shakers that they do not all have equal quality. The shakers 

were purchased at various times and from various suppliers, and it is clear that the manufacturer 

produced the shakers in different production runs. Additionally, during the many uses of these 

shakers in different testing, certain levels of damage may have accrued. Therefore, it is 

determined that each shaker should be ranked by output quality and the best performers should 

be used in the bridge testing. 
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A testing process is set up that repeatedly sends the same multisine signal to a shaker while the 

shaker output is measured by a force transducer. The level of uniformity of the output is then 

used to rank the shakers from best to worst. The details of the testing and the data analysis are 

provided in the following paragraphs. 

A shaker is mounted to the support apparatus used for the laboratory bridge model testing. The 

apparatus is then connected to a very stiff steel pylon that is not expected to have any natural 

frequencies in the range of the input signal. A multisine signal with excitation from 4 Hz to 70 

Hz and a length of 25 seconds is produced and is input to the shaker seven times in a row without 

pause. The force output of the shaker is recorded, saved, and processed. 

The processing begins by eliminating the first and last data blocks, resulting in five capture 

blocks. If the shaker operates perfectly (and if there was no noise in the system) then the five 

capture blocks will be identical. Of course the devices are not perfect, and the amount of 

imperfection is quantified by comparing the five capture blocks to each other. A single number 

that indicates the relative quality of signal reproduction is desired so that the shakers can simply 

be ranked from best to worst. 

The first step in condensing the data to a single number is to transform the capture blocks from 

the time domain to the frequency domain. The data capture rate was 1000 Hz and so the 

transformed data spans the frequency range of 0 Hz to 500 Hz. The transformed data is truncated 

so that only the excited range of 4 Hz to 70 Hz is maintained, and the absolute value of the data 

is taken so that only the magnitude at each frequency line is preserved.  

For each frequency line, the mean magnitude is now found, and the absolute value of the 

difference of each capture block from the mean is calculated at each frequency line. The 
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differences are summed for the five capture blocks and the total magnitude of the difference is 

normalized by the mean magnitude of the force at each frequency line. The normalization is 

performed so that each frequency line has equal importance. This calculation is illustrated by the 

equation below, and is applied at each frequency line. 
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 Equation 7.2.

Where: 

௡ܨ ൌ absolute value of the force output at a frequency line for the nth capture block (lbf/Hz).  

 

This value of total difference is a positive real number at each frequency line. The mean of the 

total difference is now found for all frequency lines, which results in a single number per shaker. 

This number is the mean normalized variance of the shaker force output, and essentially 

represents how uniform the force output of the shaker is over the range of 4 Hz to 70 Hz. The 

results for the sixteen shakers are provided in Table 7.3.   

Shaker 
Name Rank Mean 

Norm. Var. 
Shaker 
Name Rank Mean 

Norm. Var. 
O 1 0.99% A 9 2.25% 
E 2 1.00% B 10 2.43% 
P 3 1.01% D 11 2.44% 
K 4 1.14% C 12 2.47% 
H 5 1.41% N 13 2.49% 
F 6 1.46% M 14 3.37% 
I 7 1.65% J 15 3.54% 
G 8 1.84% L 16 3.88% 

 

Table 7.3. Ranking of shakers by mean normalized variance of force output. 



 299 

These rankings indicate that the worst shaker has about four times more variability in force 

output than the best shaker. To demonstrate how significant this is, representative figures are 

prepared. The figures show the magnitude of the force output in the frequency domain for the 

five capture blocks of data. Figure 7.6 is focused on a small but representative frequency band in 

the vicinity of 11 Hz, and Figure 7.7 is focused in the vicinity of 50 Hz. Both figures clearly 

demonstrate that the best shaker has very clean and uniform force output, while the worst shaker 

adds significant noise to the force output. The plots for the best shaker also show that there is a 

steady decrease in force output as the device warms up over the duration of the testing.  

 
Figure 7.6. Best and worst shaker performance near 11 Hz. 

 
Figure 7.7. Best and worst shaker performance near 50 Hz. 

The four top-ranked shakers are used for the bridge testing when only four shakers are used, and 
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7.3.5 Preparation of Excitation System for Field Use 

Field ruggedized boxes were constructed for transport of the TT shakers, and for housing the 

amplifiers. These boxes are necessary for protecting the system components during the rigors of 

field use. A photograph of an amplifier box is shown in Figure 7.8. Each box is capable of 

driving four of the TTs.  

 
Figure 7.8. Photograph of field ruggedized amplifier enclosure. (Photo by EVF, dynamics 

lab, 10/18/13) 

7.3.6 Excitation Signals 

Multisine and burst-random excitation signals are used for the bridge testing for the same reasons 

as described for the laboratory testing. Multisine signals have a number of theoretical advantages 

that should provide superior results, while burst-random signals are a popular and traditional 

choice for structure identification. However, several characteristics of the signals need to be 

selected specifically for the bridge. These characteristics are signal length, frequency range of 

excitation, and signal amplitude.  

7.3.6.1 Length 

The signal length is inversely proportional to the frequency resolution. Longer signals provide 

higher resolution while shorter signals provide lower resolution. Higher resolution is generally 
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desirable so that closely spaced modes can be better identified, but higher resolution requires 

increased testing time.  

There are two main reasons why shorter signals are desirable for the bridge testing. First, traffic 

control is not used during testing and vehicles cross the bridge at frequent intervals. Data sets 

that include vehicle crossings provide far less accurate results than sets without crossings, and 

thus multiple sets without crossings must be captured. Shorter signal durations provide a benefit 

by increasing the probability of an individual set being captured without disturbance by traffic.  

The second reason why shorter signals are desirable is because the structure is not time-invariant. 

As time passes, the temperature and other environmental factors change, and the bridge 

properties are affected by this. Thus, the more time that the testing requires, the more 

inconsistent the data may be. The testing is planned to be completed within one day, and the 

signal length to use is impacted by this decision. 

Overall, signal lengths for both multisine and burst-random testing are set at 25 seconds. This 

signal length provides a frequency resolution of 0.04 Hz, and is expected to allow all testing to 

be completed in a 7-hour window. It is recognized that if the resolution seems to be too low 

during data processing, two sets can be appended to each other increasing the resolution to 0.02 

Hz. Of course, this improvement in resolution would come at the cost of less noise reduction due 

to fewer averages. 

7.3.6.2 Frequency Range 

The range of frequencies to excite with each signal type must also be selected. For the multisine 

signal, an integer number of discrete frequency lines are selected in order to create the signal. 

Thus there is both a frequency resolution and a frequency band of excitation to select.  
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For the frequency band, the minimum is set to satisfy two considerations. First, it is known that 

the shakers do not operate well at frequencies below about 5 Hz. Second, previous testing 

indicated that the lowest mode of the bridge exists at about 7 Hz. Thus, 4 Hz is selected as the 

low end of the excitation band. This frequency should allow the TTs to operate reasonably well, 

and should provide enough bandwidth below the lowest mode for determination of the damping 

and modal mass associated with that mode. 

The upper limit of the frequency band is selected such that all modes of interest are within the 

excited band. Based on previous results, 70 Hz is selected as the upper limit. The resolution is 

determined by the signal and is defined to match the resolution of the FFT of the output data. 

Thus, excitation lines are spaced at 0.04 Hz from 4 Hz to 70 Hz.  

For the burst-random signal, it is possible to control the band of excitation by applying filters to 

each unique realization. However, designing and applying a filter adds complexity to the testing. 

Also, the TTs essentially filter the output automatically by the way they respond to various 

frequencies. This greatly reduces force output below about 5 Hz, and gradually reduces the force 

output at frequencies above about 110 Hz. Thus, the realizations of random signals are not 

altered, and excitation of all frequencies is theoretically permitted. 

7.3.6.3 Amplitude 

The amplitude of the input to the shakers determines the force output, up to the maximum 

capacity of the shakers. In the laboratory testing, the force output was limited to prevent excess 

excitation of the light model structure. For the bridge testing, the mass of the structure precludes 

the issue of excess input. It is assumed that the maximum force that the shakers can produce will 

generate the best results by maximizing SNR. The force output is limited by the stroke of the 
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shakers at frequencies below about 20 Hz, and is limited by the power capacity of the amplifiers 

and shakers above this frequency.  

For the multisine signal, the amplitude can be selected individually for each frequency line. This 

is highly beneficial since the stroke can be controlled at low frequencies while the full potential 

of the shakers can be utilized at higher frequencies. To set the amplitudes for lower frequencies, 

experiments are conducted to identify the maximum signal amplitude that does not cause the 

stroke to be exceeded. To set the amplitudes for higher frequencies, experiments are conducted 

to identify the maximum signal amplitude that results in high force but does not cause noticeable 

distortion in the force output.  

For the burst-random signal, the amplitude over various frequency ranges can be controlled by 

using filters. The application of a high pass filter would potentially allow larger forces at higher 

frequencies while helping to prevent stroke exceedance at lower frequencies. Testing revealed 

that high total force output could be achieved without using filters, and thus filtering of each 

realization is not performed. The amplitude to use for all realizations is instead selected as the 

largest gain possible that results in only infrequent stroke exceedance (on average, stroke is 

exceeded less than once per three realizations). 

7.3.6.4 Signal Summary 

The multisine signal that is generated for use in bridge testing is illustrated. Figure 7.9 shows the 

relative magnitude of the signal over the excited frequency band. The time-domain version of the 

multisine signal is generated by the NI 9264 with a maximum amplitude of 200 mV. This signal 

is then increased by approximately 22 dB by the amplifiers which drive the TTs. Thus, the TTs 

receive a peak signal amplitude of approximately 30 V. Actual peak forces are approximately 25 
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pounds throughout the bridge testing. Figure 7.10 shows a typical example of the force output 

produced by a TT shaker during the actual bridge testing. The actual force output matches the 

input signal well.  

 
Figure 7.9. Magnitude of multisine signal used for bridge testing in frequency domain. 

 
Figure 7.10. Typical recorded force output of a shaker in the frequency domain due to the 

multisine signal input. 

Figure 7.11 shows how the phase of the multisine signal varies over a representative segment of 

the excited band. Figure 7.12 shows a typical example of the phase of the recorded force output 

from the bridge testing. As was identified during laboratory testing of the amplifiers and shakers, 

there is a phase shift caused by the devices. However, the phase reproduction is excellent. 
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Figure 7.11. Sample of phases for multisine signal used for bridge testing. 

 
Figure 7.12. Sample of phases for typical recorded force output due to the multisine signal 

input. 

The burst-random signals used in testing are obviously unique for every realization. Samples are 

shown for illustrative purposes. The beginning 0.5 seconds and the final 5 seconds of the signal 

are set to zero to reduce leakage. This leaves 19.5 seconds of excitation per 25-second data set 

(Figure 7.13). A single realization of a random signal is well known to result in unequal 

excitation to various frequency lines, as demonstrated in Figure 7.14. Many data sets are 

captured and averaged to result in more equal excitation. Figure 7.15 shows an example of the 

recorded force output of a shaker from the actual bridge testing. The shape of the plot 

demonstrates again that the TTs cannot provide significant force below about 5 Hz, that the force 
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output peaks between 10 Hz and 20 Hz, and that the force decreases at higher frequencies similar 

to what is seen for the multisine signal in Figure 7.10.  

Generation of the burst-random realizations is performed using the Signal Express software from 

National Instruments, and an RMS level of 80 mV is selected as a maximum value that seldom 

causes stroke exceedance. The actual peak voltage varies for every realization. As with the 

multisine signals, the amplifiers provide a gain of about 22 dB. Actual peak forces produced by 

the TT shakers are approximately 35 pounds throughout the bridge testing.     

 
Figure 7.13. Sample of a burst-random signal in the time domain. 

 
Figure 7.14. Sample of a burst-random signal in the frequency domain. 
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Figure 7.15. Typical recorded force output of a shaker in the frequency domain due to a 

burst-random signal input. 

7.4 TESTING PROCEDURE 

The best possible outcome of the testing is to capture modal properties of the structure that are 

accurate and complete. The testing procedure is established by choosing test parameters that 

have the highest probability of leading to accurate and complete modal data, while constrained 

by the available time and equipment. Unlike with the laboratory testing, the in-service bridge has 

no attributes that can be modified to get better results. Only the setup and arrangement of the 

testing equipment is variable. The procedure described in this section outlines the choices made 

in regards to the controllable variables of the bridge testing. 

7.4.1 Sensor Locations 

The available data acquisition system provides 24 input channels, of which 4 will be used for the 

available force transducers. This leaves 20 channels available for accelerometers. The placement 

of the accelerometers affects the quality of the modal data that can be captured. Since we are 

only interested in global vertical modes of the structure, all sensors will be oriented vertically. 

The selected accelerometers have strong magnetic bases, and thus they will be placed on steel 
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elements, i.e. the girders. Also, as has been discussed previously, a few guidelines apply to 

selecting sensor locations: 

• Avoid symmetric placement 

• Avoid placement at obvious nodal locations 

• Place in a spatially well-distributed arrangement 

This bridge is essentially symmetric about midspan, and thus obvious nodal locations for the 

second, third, and fourth order bending modes will be avoided. Also, the sensor placement will 

not be symmetric about midspan. Finally, the sensors will be relatively evenly distributed across 

the structure. Figure 7.16 schematically shows the sensor locations selected in consideration of 

the criteria discussed. Note that the sensors are organized into lines transverse to the bridge, 

labeled ‘B’ through ‘F’. Figure 7.17 presents a photograph of the typical method of 

accelerometer installation for the testing. 

 
Figure 7.16. Spatial arrangement of accelerometers shown on bridge framing plan. 
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Figure 7.17. Photograph of typical accelerometer installation. (Photo by EVF, Fayetteville, 

10/18/13) 

7.4.2 Shaker Locations 

The locations at which to impart excitation are largely driven by the sensor locations. It is best to 

excite the structure at the same DOFs where the outputs are being measured. This allows the 

right singular vectors to be used in the generation of eFRFs. However, with only four force 

transducers available, the spatial distribution of excitation is limited. Two different methods will 

be used considering this limitation; a method that only uses four shakers, and a method that uses 

eight shakers.  

7.4.2.1 Four-Shaker Testing with Roving Force Transducers 

This testing consists of using only the best four shakers, and all input forces are recorded during 

every experiment. It is known that excitation at different DOFs excites various modes to 

different levels. For this reason, various experiments are performed with the shakes in different 

locations so that all output DOFs are eventually excited. The shakers are organized into a 

transverse line corresponding to the transverse lines of sensors, ‘B’ through ‘F’. The first 

experiment has four shakers along sensor line ‘B’, the second experiment has the shakers along 

line ‘C’, etc. While the shakers are installed along a line, data sets are collected for multisine 

excitation and then for burst-random excitation.   
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In data processing, it is possible to create a larger transfer function by simply assembling 

additional columns from the separate four-shaker experiments. This approach is commonly used 

in MRIT testing. The success of this method can be evaluated by comparison to results from 

transfer functions from a single experiment.  

7.4.2.2 Eight-Shaker Testing 

This testing consists of using eight shakers in a spatially well-distributed arrangement. The force 

output from four of the shakers is recorded in one experiment, then the force transducers are 

moved and the force output from the other four shakers is recorded in a second experiment. This 

results in a transfer function with eight columns. Only multisine excitation is used in this testing. 

The spatial arrangement of the shakers is shown in Figure 7.18. 

 
Figure 7.18. Spatial arrangement of shakers shown on bridge framing plan for testing 

using eight shakers. 

7’-0” 10’-0”8’-0”8’-6”7’-6”

50’-0”

3 
Sp

. @
 7

’-6
” 

= 
22

’-6
”

C
L 

B
rg

s.

C
L 

B
rg

s.

Accelerometer
Shaker
Support

“K” “F”

“G” “E”

“P” “I”

“H” “Q”



 311 

7.5 DATA CAPTURE AND PROCESSING METHODS 

This section discusses various issues that impact the methods used to capture and process the 

data from the bridge testing. These issues generally consist of vehicle crossings during data 

collection, the methods by which data from disparate experiments can be combined, the technical 

issues with using roving force transducers, and the explicit manner in which data from this 

testing is processed. 

7.5.1 Traffic Issues 

Traffic was anticipated during testing since the bridge would not be closed. The test plan was 

created with this in mind. The Signal Express software was set up to continuously record data 

sets for both multisine and burst-random testing. For multisine, ten clean data sets per polarity 

setting per experiment are desired, and the software was configured to collect fifteen sets per 

polarity setting. Thus, one car crossing every 75 seconds was expected. Twenty clean data sets 

per experiment are desired for burst-random testing, and the software was configured to collect 

25 sets automatically.  

While the software was running and collecting measurements, each vehicle crossing was 

recorded by hand and the data sets affected by the crossing were noted. This enabled additional 

sets to be collected to meet the minimum number of clean sets desired. Actual traffic was far in 

excess of expectations, and 30 multisine sets were collected per polarity setting for most 

experiments. Many extra burst-random sets were also recorded due to the heavy traffic volumes. 

In retrospect, the testing should have been planned to occur at night when traffic is greatly 

reduced. Future testing using this method should be performed at night to be able to capture the 

most data in the shortest time. 
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In post-processing, it was necessary to determine which data sets are best and should thus be 

used for system identification. The field notes were helpful, but it was found that the free 

vibrations caused by vehicle crossings took longer to damp out than expected. Thus, some sets 

thought to be clean are actually affected by traffic. It is determined that the data sets should be 

sorted from best to worst, and the best can then be used for further processing. The multisine 

data and the burst-random data must be sorted differently because of the difference in the signal 

types. An algorithm was developed to perform the sorting work for each signal type. 

7.5.1.1 Multisine Data Sort 

The multisine data is the result of imparting the same excitation 15 times in a row without pause. 

Because of this, the output accelerations for all 15 sets should be identical except for the effects 

of the transient at the start of excitation, noise in the system (including environmental excitation), 

and traffic excitation. The transient error is taken care of by eliminating the first set. The noise 

and environmental errors are small compared to the level of excitation. The traffic, however, 

causes large disturbances to the affected data sets. These observations lead to a method for 

sorting the sets. 

The first step is to identify the best set (of 30 sets for most polarity settings). This is 

accomplished by using the field notes of vehicle crossings. The set that had the greatest amount 

of settling time after the most recent crossing is selected for use as a baseline against which to 

compare all other sets. The output measurements at DOFs 2, 8, and 14 are selected as 

representative of all 20 DOFs. 

Next, all data sets are transformed to the frequency domain and only the magnitude at each 

frequency line within the range of excitation is kept. The percent difference between the baseline 
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set and all sets is found at each frequency line. The mean percent difference for all frequency 

lines is then found. Finally, to make the numbers more meaningful, they are normalized. A 

second-best set is selected by analysis of the field notes, and the mean percent difference for all 

sets is normalized by the mean percent difference for this set. 

At this point, each data set is represented by a single number that expresses the level of 

agreement of that set to the baseline set. The lowest numbers indicate the sets the most similar to 

the baseline set, and high numbers indicate poor agreement with the baseline set. The method 

makes it easy to sort the sets into three groups: 

• Unaffected by traffic 

• At least one vehicle crossed 

• No vehicle crossed, but set is affected by a recent crossing 

Sample results are shown in Table 7.4 for polarity setting four with excitation at sensor line ‘B’. 

The set ranked first is of course the set used as a baseline. The set ranked 8th was thought to be 

the second-best set, and it has a difference of 1% from the baseline set due to normalizing. The 

best ten sets all have very little difference from the baseline set, and are not affected by traffic. 

Sets ranked 11th through 17th are significantly different from the baseline set, and have been 

affected by traffic. Comparison with the field notes shows that these sets did not include a 

vehicle crossing, but did begin shortly after a crossing. Sets ranked 18th and worse all include at 

least one vehicle crossing per the field notes, and this is clearly indicated in their normalized 

percent difference from the baseline set.  
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Polarity 4 Data Set Analysis
      Baseline Set: 23     
      Comp Set: 28     
Rank Diff. (%) Set No. Rank Diff. (%) Set No. Rank Diff. (%) Set No.

1 0.0 23 11 4.0 11 21 243 30
2 0.3 21 12 5.2 16 22 245 7
3 0.4 19 13 7.7 3 23 311 6
4 0.5 20 14 8.1 27 24 346 25
5 0.5 18 15 26 10 25 436 29
6 0.6 22 16 34 5 26 440 14
7 0.9 12 17 35 2 27 451 8
8 1.0 28 18 111 26 28 458 15
9 1.4 17 19 174 9 29 647 1

10 1.6 4 20 210 24 30 785 13
 

Table 7.4. Sample results for ranking data sets to identify traffic disturbance. 

The magnitude of the difference is further illustrated in Figure 7.19. These three plots are 

focused in on a single peak in the output FFT that is due to a mode. The baseline set is shown in 

all three plots as a comparison point for the other sets. The left plot also shows the 10th ranked 

set, and the difference between it and the baseline set is nearly invisible. The middle plot shows 

the 17th ranked set, and although the peak is little affected, the effects of traffic are noticeable in 

the lower segments. The right plot shows the 30th ranked set, which is significantly different than 

the baseline set. This data is from DOF 2, polarity setting 4 of the experiment with input at 

sensor line ‘B’. 
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Figure 7.19. Plots showing difference in magnitude of FFT with baseline data set 23 shown 
in all. Left plot shows set ranked 10th, middle plot shows set ranked 17th, and right plot 

shows set ranked 30th. 

Overall, the method developed for ranking the multisine data sets is simple and successful. This 

ranking process is performed for each polarity setting and for input at each line of sensors. The 

ten data sets least affected by traffic are selected and used in further processing. 

7.5.1.2 Burst-Random Data Sort 

For the bridge testing with burst-random signals, traffic is an equally significant issue. However, 

since every realization is unique, a different method for selecting the cleanest sets must be 

developed. It is recognized that the total energy input into the bridge is about the same for all sets 

without traffic, but is higher when traffic also excites the structure. Thus, the RMS level of the 

output accelerations is used for ranking the data sets. 

An algorithm is written that calculates the RMS level of each data set by using the 2-norm. The 

data sets are then ranked from lowest RMS level to highest RMS level. The 20 data sets with the 

lowest RMS level are then used in further processing. This method is far less sensitive than the 
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one used for multisine excitation, but does prevent data sets that include traffic crossings from 

being included. Typical ranking results are shown in Table 7.5. The RMS level is normalized by 

the lowest value found, and the 20th ranked set has total output accelerations that are 6% higher 

than the lowest set. The sets ranked 27th and worse have RMS values that are far higher and did 

include a vehicle crossing per the field notes.  

Excitation Line B Data Set Analysis

Rank 
Norm. 
RMS 
Level 

Set No. Rank 
Norm. 
RMS 
Level

Set 
No. Rank 

Norm. 
RMS 
Level 

Set No.

1 1.00 6 12 1.05 22 23 1.09 29
2 1.03 24 13 1.05 26 24 1.14 21
3 1.03 4 14 1.05 7 25 1.15 3
4 1.03 18 15 1.05 13 26 1.18 16
5 1.04 31 16 1.05 5 27 1.75 15
6 1.04 23 17 1.05 33 28 1.99 27
7 1.04 1 18 1.06 10 29 2.01 28
8 1.04 25 19 1.06 30 30 2.11 20
9 1.04 11 20 1.06 17 31 2.76 8
10 1.04 19 21 1.07 12 32 2.90 14
11 1.04 32 22 1.09 9 33 3.40 2

 

Table 7.5. Sample results for ranking burst-random data sets to exclude traffic 
disturbance. 

7.5.1.3 Summary of Traffic Issues 

The actual traffic volumes during bridge testing exceeded expectations. Also, the excitations 

caused by vehicle crossings did not damp out as quickly as expected. Because of this, many extra 

data sets had to be collected so that the minimum desired number of clean sets could be captured. 

For multisine excitation, the 10 cleanest sets were found by comparing each data set to a known 

clean data set. For burst-random excitation, the 20 least affected sets were found by calculating 

the RMS level of each set and ranking the sets from lowest RMS level to highest RMS level. 



 317 

Both methods clearly differentiate sets with traffic crossings from sets without traffic crossings. 

System identification proceeds using only the cleanest data sets. 

7.5.2 Analysis Groups 

Only four force transducers are available for the bridge testing. This generally constrains the 

testing such that only four shakers can be used in any single experiment since all input forces 

must be known. A test method is developed that uses four shakers spatially arranged along a 

single transverse line of accelerometers per experiment. There are five transverse lines of 

accelerometers, and five experiments are performed with the shakers at a different transverse line 

per experiment. The testing proceeds with the shakers first positioned along line ‘B’, then line 

‘C’, line ‘D’, line ‘E’, and finally line ‘F’ (Figure 7.16).  

The testing method generates FRFs for all 400 combinations of input DOFs and output DOFs (20 

inputs x 20 outputs). With these 400 FRFs, there are many possible ways to construct a transfer 

function that consists of some subset of the FRFs. There are two considerations that affect the 

choice: 

• More columns in the transfer function increases the amount of redundant information and 

thus improves the accuracy of modal parameters. 

• The time elapsed between experiments makes the data inconsistent and thus the 

combination of columns from different experiments may decrease the accuracy of modal 

parameters. 

Since these two considerations provide conflicting guidance on whether more columns are better, 

several combinations of columns are used and system identification is undertaken on each. The 

resulting modal parameters are then compared.  
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Table 7.6 lists the nine combinations of excitation lines that are used to construct transfer 

functions. These same combinations are used for both multisine and burst-random excitation. 

The rationale for these combinations is as follows: 

• Single line of inputs – the data is consistent since all input and output data is captured 

simultaneously. However, excitation along a single line may not adequately excite some 

modes, and there is less redundant data in the transfer function. 

• Three lines of inputs – the elapsed time between the first and last line excited is not great, 

and the risk of data inconsistency is thus not very high. It is also more likely that all 

modes of interest will be excited, and there is more redundant data in the transfer 

function. 

• All input lines – the elapsed time between the first and last line excited is the greatest, 

and thus the risk of data inconsistency is the greatest. However, the maximum amount of 

redundant data is available, and the greatest probability of exciting all modes is realized.   

Analysis 
Group Included Inputs Included 

Outputs
1 Line 'B' All
2 Line 'C' All
3 Line 'D' All
4 Line 'E' All
5 Line 'F' All
6 ‘B' + 'C' + 'D' All
7 ‘C' + 'D' + 'E' All
8 ‘D' + 'E' + 'F' All
9 All Lines All

 

Table 7.6.  Combinations of excitation locations used to form transfer functions for system 
identification. 

The method by which the transfer function is constructed with data from different experiments is 

simple. A transfer function with 20 rows for the 20 output DOFs and 4 columns for the 4 input 
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DOFs is constructed from the FRFs for each of the five experiments. The arrangement of the 

transfer function from a single experiment is demonstrated in Figure 7.20. The data within each 

of these transfer functions is consistent. Larger transfer functions are constructed by including 

the columns of FRFs from the desired input lines. The numbering system of the DOFs used for 

the bridge testing requires the columns from separate experiments to be interleaved as shown in 

Figure 7.21. The FRFs from separate experiments may be inconsistent due to the environmental 

changes that occur during the elapsed time between the execution of the experiments.  

 ൦

ଵ,ଵܨܴܨ ଵ,଺ܨܴܨ
ଶ,ଵܨܴܨ ଶ,଺ܨܴܨ

ଵ,ଵଵܨܴܨ ଵ,ଵ଺ܨܴܨ
ଶ,ଵଵܨܴܨ ଶ,ଵ଺ܨܴܨ

ڭ ڭ
ଶ଴,ଵܨܴܨ ଶ଴,଺ܨܴܨ

ڭ ڭ
ଶ଴,ଵଵܨܴܨ ଶ଴,ଵ଺ܨܴܨ

൪ 

 

Figure 7.20. Transfer function for data from a single experiment (line ‘B’ excited). 

 

 ൦

ଵ,ଵܨܴܨ ଵ,ଶܨܴܨ
ଶ,ଵܨܴܨ ଶ,ଶܨܴܨ

ଵ,଺ܨܴܨ ଵ,଻ܨܴܨ
ଶ,଺ܨܴܨ ଶ,଻ܨܴܨ

ڭ ڭ
ଶ଴,ଵܨܴܨ ଶ଴,ଶܨܴܨ

ڭ ڭ
ଶ଴,଺ܨܴܨ ଶ଴,଻ܨܴܨ

ଵ,ଵଵܨܴܨ ଵ,ଵଶܨܴܨ
ଶ,ଵଵܨܴܨ ଶ,ଵଶܨܴܨ

ଵ,ଵ଺ܨܴܨ ଵ,ଵ଻ܨܴܨ
ଶ,ଵ଺ܨܴܨ ଶ,ଵ଻ܨܴܨ

ڭ ڭ
ଶ଴,ଵଵܨܴܨ ଶ଴,ଵଶܨܴܨ

ڭ ڭ
ଶ଴,ଵ଺ܨܴܨ ଶ଴,ଵ଻ܨܴܨ

൪ 

 

Figure 7.21. Transfer function with interleaved data from two experiments (line ‘B’ 
combined with line ‘C’). 

7.5.3 Bridge Testing with Eight Shakers and Roving Force Transducers 

An experiment is also performed using eight shakers although only four force transducers are 

available. The methodology for such an experiment was described for the laboratory model and 

the laboratory results were promising. For the bridge testing, the eight shakers are arranged in a 

spatially well-distributed manner and multisine excitation is applied to all shakers. Four of the 

shakers are outfitted with force transducers. Eight different polarity settings of input signal are 

used to enable calculation of the FRFs. The force transducers are then moved to the other four 
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shakers and the exact same experiment is undertaken a second time. These two individual parts 

of the experiment are referred to as ‘part 1’ and ‘part 2’ in the following discussion. 

Assuming that the force input from each shaker is not affected by the relocation of the force 

transducers, then the force input would be the same whether the transducers are present or not. 

Thus, the force recordings from part 2 of the experiment would be applicable to the unmeasured 

shakers from part 1 of the experiment and visa-versa. This experimental method allows for more 

simultaneous force inputs than the available number of force transducers. 

A complication arises in this method due to the behavior of the Signal Express software. A 

separate run of the software is used for each polarity setting, and a small but random amount of 

time passes after the software starts to generate the excitation signals but before it starts to record 

the force and acceleration data. Thus, the force data from part 1 is not aligned with the 

acceleration data from part 2. As discussed previously for the similar laboratory testing, an 

algorithm is developed that finds the best alignment of the acceleration data for part 2 compared 

to part 1 for each polarity setting.    

7.5.4 Identification of Modal Parameters 

A complicated structure like a bridge presents many challenges in system identification. Noise, 

local modes, and transverse modes all affect the data and make it more difficult to isolate the 

desired global vertical modes of the structure. These spurious modes must be eliminated through 

the identification process, and various methods are used to determine which modes to discard. 
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7.5.4.1 Step 1 – Selection of CMIF Peaks 

The CMIF method is used for the bridge data, and begins by performing singular value 

decomposition on the transfer function. This first step provides mode shape estimates as the left 

singular vectors and singular values that indicate the relative strength of a mode at each 

frequency line. The CMIF plot for multisine excitation with combined excitation lines ‘C’, ‘D’, 

and ‘E’ is shown in Figure 7.22. Only the three largest singular values are plotted for 

presentation quality. It is notable that there are many peaks in the plot, all of which may indicate 

a mode of the structure. Since it is unknown which peaks indicate desired modes, all peaks must 

initially be selected (red asterisks indicate selected peaks). 

 
Figure 7.22. Typical CMIF plot from bridge testing data. 

7.5.4.2 Step 2 – Review of Mode Shapes 

The initial activity in evaluating the validity of a peak is to use the estimated mode shapes from 

the left singular vectors. In the vicinity of a peak, the mode shape should be a reasonably obvious 
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each side of the peak. Plots are generated for every selected CMIF peak that enable an evaluation 

of these criteria.  

As an example, Figure 7.23 shows the mode shape corresponding to a peak in the CMIF curve, 

as well as the mode shape for two frequency lines before and after the peak. It is first noted that 

the mode shape does not appear to be an expected shape for a relatively symmetric structure. It is 

also noted that the stability of the shape is poor. The MAC values are very low for the frequency 

lines on either side of the peak. Thus, this mode is discarded. 

 
Figure 7.23. Typical plot of mode shapes in the vicinity of a CMIF peak. Lack of stability 

indicates a spurious mode.  

As a second example, Figure 7.24 shows the mode shape corresponding to a different peak in the 

CMIF curve. This mode shape has a clear and symmetric appearance that is easily imagined as a 

true mode of vibration of the structure. Also, the mode shapes of nearby frequency lines are 

highly consistent as demonstrated by the MAC values that are near unity. Thus, this mode shape 

is selected for further processing. 

0
50

0
10

20
-1

0

1

Index 84

MAC = 0.193

0
50

0
10

20
-1

0

1

Index 85

MAC = 0.728

0
50

0
10

20
-1

0

1

MAC = 0.772

Index 87

0
50

0
10

20
-1

0

1

MAC = 0.564

Index 88

0

20

40

0

10

20

-1

-0.5

0

0.5

1

Mode Shape at Index 86



 323 

 
Figure 7.24. Typical plot of mode shapes in the vicinity of a CMIF peak. Clear shape and 

good stability indicate a real mode. 

7.5.4.3 Step 3 – Calculation of Natural Frequencies, Damping, and Modal Mass 

After mode shapes are selected, the estimated modal vectors are used to filter the transfer 

function. As discussed in previous chapters, with orthogonal modes and adequate spatial 

resolution, the filtering would eliminate the contribution of all modes except the mode of interest 

from the transfer function. The filtering process results in a single vector that is referred to as an 

eFRF, which is the FRF of an SDOF system. Several points in the vicinity of the peak are 

selected to solve for the system pole and Modal A (ߣ and ܯ௔). The natural frequency and 

damping ratio can be found from ߣ and the modal mass can be found from ߣ and ܯ௔.  

The values of these modal properties can be reviewed to help eliminate additional spurious 

modes as well as real modes that are poorly identified by the experiment. Damping ratios should 

be in the range of 1%. Very low damping or negative damping values indicate a spurious mode. 

Modal mass values are calculated as a complex number, but should be predominantly real. If the 

imaginary part is similar in magnitude to the real part, then the mode is either spurious or real but 

poorly identified. Also, as additional experiments are processed, the variation in modal mass can 
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be used to help identify spurious modes. Real modes will have modal mass that tends to a mean, 

while spurious modes will have much more widely scattered values of modal mass. 

Finally, the extracted modal parameters can be used to synthesize an eFRF. The overlay of the 

actual eFRF and the synthesized eFRF visually indicates if poor identification occurred. A poor 

fit of the synthesized eFRF is cause for eliminating the subject mode from further processing. 

Again, poor synthesis can be caused by either a spurious mode or by a real mode that is poorly 

identified. Poor identification can occur due to excessive noise, poor excitation of the mode, or 

inadequate modal filtering.  

Figure 7.25 shows the synthesis of an eFRF in the vicinity of a peak. This is an example of a 

good fit on both the phase plot and the magnitude plot. Also, the modal mass value is 

predominantly real. Figure 7.26 shows an example of a poor eFRF fit. Neither the synthesized 

phase nor the amplitude closely matches the actual data. The modal mass is also generally 

complex. The mode corresponding to Figure 7.25 would be maintained and the mode 

corresponding to Figure 7.26 would be discarded. 
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Figure 7.25. Overlay of eFRF synthesis and eFRF. Example shows good fit. 

 
Figure 7.26. Overlay of eFRF synthesis and eFRF. Example shows poor fit. 

4 6 8 10 12 14 16 18 20
-180

0

180
Ph

as
e 

(d
eg

)
Nat. Freq. = 12.2 Hz, Damping = 0.762%, Modal Mass = 2643.8662+198.7134i

4 6 8 10 12 14 16 18 20
10

-8

10
-6

10
-4

Frequency (Hz)

M
ag

ni
tu

de
 (f

t/l
b)

54 56 58 60 62 64 66 68

-100

0

100

Ph
as

e 
(d

eg
)

Nat. Freq. = 61.2 Hz, Damping = 0.588%, Modal Mass = 1322.0757-2433.9727i

54 56 58 60 62 64 66 68
10

-8

10
-7

10
-6

Frequency (Hz)

M
ag

ni
tu

de
 (f

t/l
b)



 326 

7.6 ANALYTICAL MODEL PREPARATION FOR RESULTS VALIDATION 

It is important to have other results with which to compare the system identification from the 

new experimental process. Finite element models are commonly used for this purpose since 

natural frequencies, mode shapes, and static flexibility matrices can all be found. However, real-

world structures are difficult to accurately model for a number of reasons.  

First, actual material properties are unknown and may vary between different structural elements. 

For example, the modulus of elasticity of the steel beams and diaphragms will be in the vicinity 

of 29,000 ksi, however, the exact value is unknown. Also, the diaphragms may have a different 

modulus of elasticity than the girders. The modulus of elasticity of the concrete deck must be 

assumed, and it is likely that the multiple batches of concrete that make up the deck have slightly 

varying elasticity. The parapets were cast separately and may have used a different mix design 

than the deck.  

Second, the connectivity of various elements can be difficult to model. For example, the bolted 

connections from the diaphragms to the girder connection plates are composed of six bolts 

through the web of the diaphragms. This connection is quite stiff, but less so than the full fixity 

that is assumed in a typical framed connection in a finite element program. The connection from 

the beams to the deck is made with shear studs and the top flanges are partially encased in 

concrete. The composite section of steel and concrete also causes modeling challenges. 

Third, the boundary conditions at the supports are difficult to model. This bridge uses bearings 

composed of sliding steel plates that allow the bridge to expand and contract without developing 

large forces, but, due to corrosion, the bearings do develop some longitudinal forces. 

Additionally, rotations at the bearings are resisted by the anchor bolts to some extent. Also, this 
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span is connected to the adjacent spans with neoprene strip seal deck joints. These joints are 

quite flexible, but do provide some resistance to motion. Finally, the piers have some level of 

flexibility that also contributes to a reduction of fixity at the bearings. 

Fourth, modal parameters are very sensitive to the distribution of mass and stiffness of the 

structure. The bridge must be highly discretized so that the various elements are able to behave 

in a manner that closely matches the real structure. The parapets provide significant added mass 

overhanging the fascia girders, and also provide some amount of added stiffness. The expansion 

joints in the parapets reduce their bending stiffness at 10-foot intervals. This level of detail is 

difficult to model. 

These various items that cause unknowns to exist in the creation of a finite element model 

require calibration. Calibration of a nominal model is performed by varying the parameters that 

cannot be explicitly known in such a way that the modal properties of the model more closely 

match the most accurately known modal properties of the real structure. 

7.6.1 Nominal Finite Element Model Generation and Details 

The nominal FE model is created to closely match the known geometry of the bridge. The 

horizontal location of all elements is known from field measurements, and the model is 

assembled to closely match the measurements. The deck is modeled using rectangular plate 

elements. The elements generally have a size of 1’-0” in the longitudinal direction and 1’-6” in 

the transverse direction. These dimensions vary along the overhangs, and along the 5” deck 

extension beyond the centerline of bearings. The 969 deck plates all have a uniform thickness of 

8”, a density of 150 pcf, and a modulus of elasticity of 3150 ksi (based on 3000 psi concrete). In 

the nominal model, the parapets are not included as physical elements, but the mass of the 
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parapets is included as an evenly distributed load on the portion of the deck overhangs where the 

parapets exist.  

It is considered to be important that the steel girders are in the proper vertical position from the 

deck so that the composite section stiffness is accurate. Additionally, local modes of the bottom 

flanges and the diaphragms can only be found from the finite element model if those elements 

are discretely modeled. To accomplish this goal, the girders and diaphragms are also modeled 

using plates (as opposed to simply using beam elements). Figure 7.27 illustrates the arrangement 

of the physical section and the method by which it is modeled. The flanges are modeled as plate 

elements with each plate 5” wide and 12” long. The girder web is modeled as plate elements with 

each plate 13.08” high and 12” long. The girder is connected to the deck with the equivalent of 

shear studs. A single stud is used every 12” along the girder, and each stud is 4” long and 2”x2” 

in section. The diaphragms and connection plates are also modeled with plate elements. A 

segment of the STAAD model is shown in Figure 7.28 and illustrates how the girder, connection 

plates, and diaphragms are framed into each other. The shear studs, girder elements, and 

diaphragm elements are steel with a density of 490 pcf and a modulus of elasticity of 29,000 ksi.  

 
Figure 7.27. Physical composite section (left) and method of modeling section (right). 
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Figure 7.28. Illustration of diaphragm and girder modeling in STAAD. 

The boundary conditions for the nominal model consist of pinned supports at the bearing 

locations along the bottom flange at one end of the span and as rollers at the other end of the 

span. Figure 7.29 shows the spatial location of the supports in the STAAD model. 

 
Figure 7.29. Illustration of girder end and location of supports in STAAD model. 

STAAD uses a hybrid finite element formulation for plate (a.k.a. shell) elements. A complete 

quadratic stress distribution is assumed, and there are six degrees of freedom per node. This 

allows the various segments of the girder to translate and carry stress in a physically accurate 

manner. This enables the many powerful local modes of the girders to be solved for in the model, 

and helps explain some of the actual modal testing results. The natural frequencies and mode 

shapes are found in STAAD using eigenvalue analysis. 
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7.6.2 Calibration of Model 

The nominal model is calibrated in an iterative manner to more closely match the field testing 

results. The field results that are used as a baseline are the natural frequencies of the global 

modes. These natural frequencies are highly consistent independent of the excitation method, and 

are a direct result of the actual distribution of mass, stiffness, and boundary conditions of the 

bridge. The calibrated finite element model should have global natural frequencies in close 

agreement with the test results. 

The first step in calibration is to perform a sensitivity analysis. The uncertain parameters are 

increased and decreased, and the sensitivity of the natural frequencies of the model to these 

changes is noted. In the case of this bridge, the following parameters are experimented with: 

• Deck stiffness – the modulus of elasticity of the concrete is varied from 3,152 ksi to 

4,070 ksi (assumed concrete strength ranging from 3 ksi to 5 ksi). 

• Deck thickness – the deck thickness of 8” is based on measurements at the edge of the 

overhang. Deck thickness in the model is varied from 7.5” to 9”. 

• Steel stiffness – the modulus of elasticity of the steel is assumed to be within 5% of 

29,000 ksi, so it is varied from 27,550 ksi to 30,450 ksi.  

• Boundary conditions – the longitudinal stiffness of the bearings is varied from zero to 

100 kip/in per bearing.  

• Shear studs – the stiffness of the shear studs affects the relative amount of deformation 

between the top flange and the deck. The 2”x2” section in the nominal model is based on 

probable actual shear stud areas. However, the 4” clear height of the studs allows more 

relative movement than is realistic. Thus, the area is varied up to a 4”x4” section. 
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• Parapet stiffness – the parapet adds stiffness to the bridge at the deck overhangs, but the 

open joints in the parapets reduces the effectiveness of this stiffness. The nominal model 

has no added stiffness for the parapets. The stiffness will be varied up to a level that 

includes the full concrete section of the parapets with no joints.   

The results of the sensitivity analysis are presented in Table 7.7. The natural frequencies of the 

first five global modes are shown. For each model, only the noted change was made from the 

nominal model. The table also provides the field results in the second column.  

Mode 
Name Field Modal Frequencies for Various Models (Hz) 

1 2 3 4 5 6 7
B1 6.1 4.8 2.7 4.7 4.9 5.0 4.9 6.2
T1 7.0 5.9 4.9 6.0 6.0 5.1 6.1 8.3

BU1 12.2 12.2 13.5 12.9 12.4 11.3 12.5 12.7
B2 21.7 16.2 9.1 16.0 16.5 16.9 16.8 19.4
T2 22.8 16.7 14.0 16.7 17.0 16.4 17.6 20.0

Model Descriptions: 
1 - Nominal model. 
2 - Concrete stiffness increased to 4070 ksi.
3 - Deck thickness increased to 9".
4 - Steel stiffness increased to 30,450 ksi.
5 - Bearing restraint increased to 100 k/in per bearing.
6 - Stud cross section increased to 4"x4".
7 - Parapet added - 9" wide by 32" tall each overhang.

Table 7.7. Select results for sensitivity analysis.  

The sensitivity analysis provides a framework for calibrating the model to the field results by 

indicating how the variation of each parameter affects the various modes. It is noteworthy that 

the addition of the parapet is the single most important parameter for moving the natural 

frequencies closer to the field values. Using the results of the sensitivity analysis for guidance, 

parameters are varied in a trial and error method to calibrate the model.   
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7.6.3 Final Model Parameters 

Several iterations are performed in an effort to calibrate the model. It is noted that there is no 

unique correct solution. The parameters could be varied in many different ways to achieve 

similar results, and thus the close match between the modal frequencies does not guarantee that 

the model is a good representation of the real structure. Nonetheless, the results for the modal 

frequencies are presented in Table 7.8, and the final properties of the calibrated model are listed.  

• Modulus of elasticity of concrete: 3,640 ksi (4 ksi concrete strength) 

• Modulus of elasticity of steel: 29,500 ksi 

• Deck thickness: 8.5 inches 

• Parapet dimensions: 8” wide by 32” high. Partial depth open joints (16” deep) added at 

10-foot spacing along parapets. 

• Bearing longitudinal stiffness: 90 kip/inch each bearing 

• Shear stud section dimensions: 3” x 3” 

• Model statistics: 200 beams, 3623 plates, 3994 nodes  

Mode Name Modal Frequencies Error (%) 
Field (Hz) Model (Hz)

B1 6.1 6.1 0%
T1 7.0 6.9 1%

BU1 12.2 12.2 0%
B2 21.7 21.2 2%
T2 22.8 23.2 2%

BU2 25.9 24.7 5%
B3 40.6 41.3 2%

BU3 54.8 53.6 2%
B4 65.6 61.7 6%

 

Table 7.8. Comparison of natural frequencies from bridge testing and from calibrated 
finite element model. 
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The calibrated model is also used to generate a static flexibility matrix for comparison to the 

modal flexibility matrices found from the testing of the real bridge. The static flexibility matrix is 

developed by applying a unit load in the calibrated model to a single node at the position of an 

accelerometer used in the field. The vertical displacements at all other DOFs are recorded, and 

these values are a row or a column of the static flexibility matrix.  

7.6.4 Comments Regarding Local Modes   

The finite element model revealed many strong local modes that involve the lower portions of 

the girders and the diaphragms. The diaphragm modes are of little concern since no 

accelerometers were mounted to diaphragms. The girder modes are of concern since all 

accelerometers were mounted to the bottom flanges of the girders. The flanges vibrate in a 

number of different lateral modes, and the frequencies of these modes are generally within the 

band of 26 Hz to 40 Hz.  

The manufacturer reports that the lateral sensitivity of the 393C accelerometers is less than or 

equal to 5%. This means that a 1g lateral acceleration of the bottom flange would be seen in the 

data as a vertical acceleration with a magnitude of up to 0.05g. Many peaks in the CMIF curves 

correlate to mode shapes that are suspected to be a result of these lateral flange modes. In 

retrospect, the accelerometers should have been attached to the underside of the top flanges to 

eliminate detection of these bottom flange lateral, local modes. 

7.7 RESULTS OF PREVIOUS TESTING OF BRIDGE BY OTHERS 

Dynamic testing of this bridge was carried out over several years by other students in the 

research group at the University of Arkansas. The testing that conformed to the generally 

accepted methods that are frequently used in the literature are used in this thesis as a point of 
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comparison for the current work. These accepted methods are MRIT (impact testing) and 

ambient testing. The details of the tests and the modal parameters captured are provided below. 

7.7.1 Ambient Testing 1 

Ambient testing was performed by Ryan Maestri, a graduate student at the University. A brief 

list of the details of his testing are provided below, and further details are available in Maestri et 

al. (2012). This was pure ambient testing with only environmental inputs; there were no traffic 

crossings or other intentional force inputs to the structure.  

• Date: 12/10/2010 

• Weather: ~45˚F, sunny, calm winds, low humidity 

• Data processing method: Cross-power spectral density at each frequency line, then 

singular value decomposition to identify mode shapes and damped natural frequencies. 

• Frequency resolution: 0.024 Hz. 

• Number of output DOFs: 24 

7.7.2 Ambient Testing 2 

Ambient testing was also performed by Javier Torres, a graduate student at the University. 

Results of this testing have not been published as of the date of this writing, and thus pertinent 

details are provided herein, and a summary of the testing details are provided below.  

This ambient testing used seven accelerometers along each girder for a total of 28 output DOFs. 

The bridge outputs were recorded continuously for four hours, with ambient inputs consisting of 

environmental disturbances and occasional traffic crossings. The raw data was processed using 

the ‘NeXT’ algorithm (James et al. 1993). This algorithm calculates auto-correlation and cross-

correlation functions from the data for a pair of DOFs. Impulse response functions (IRFs) are 
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estimated from the correlation functions, and each IRF is a time-domain estimate of the natural 

decay of a mode. Pseudo FRFs are calculated from the IRFs based on the assumption of white 

noise input with a magnitude of unity. The CMIF algorithm is then applied to the pseudo FRFs to 

find modal vectors and poles. 

• Date: 11/14/2011 

• Weather: ~40˚F, clouds, calm winds, low humidity 

• Data processing method: NeXT algorithm to produce pseudo FRFs and then the CMIF 

algorithm operating on the pseudo FRFs 

• Frequency resolution: 0.0305 Hz 

• Number of output DOFs: 28 

7.7.3 Impact Testing 1 

Impact testing was performed by Jeremy Rawn, a graduate student at the University. Results of 

this testing have not been published as of the date of this writing. The testing consisted of 

impacting the top surface of the bridge deck with an instrumented sledge hammer to impart 

excitation. Averaging was based on three hits per DOF, and the testing took about 1.5 hours. Due 

to the short total testing time, no significant effects due to time-variance are expected. Twenty-

four accelerometers were used to measure outputs, with eight of the accelerometers at the 

support locations.  

The data from this testing was reprocessed as part of the work of this thesis, but the output data 

for the eight accelerometers at the supports was neglected due to very low signal-to-noise ratio. 

Data was recorded for 16 seconds for each impact at a sampling rate of 512 Hz. For the current 

processing, the input force data is windowed to remove noise that results from vibration of the 
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hammer after force is no longer being imparted to the structure. This is a common practice in 

impact testing, and typical results of windowing are shown in Figure 7.30 for the first hit at DOF 

1.   

 
 

Figure 7.30. Force input data for a typical impact before windowing (left) and after 
windowing (right). 

The input and output data are then transformed to the frequency domain, the H1 FRF algorithm 

is applied, and a single transfer function is assembled by using each experiment as a column of 

the transfer function. Thus, a transfer function with 16 rows and 16 columns of FRFs is formed. 

The CMIF algorithm is then carried out as described elsewhere, modal vectors and damped 

natural frequencies are estimated from SVD of the transfer function, and then SDOF methods are 

used to estimate the poles and modal mass for each mode. 

•  Date: 11/15/2010 

• Weather: ~60˚F, sunny, calm winds, low humidity 

• Data processing method: FRFs from the 16 individual SIMO tests are combined into a 

single transfer function, and then modal properties are extracted using the CMIF 

algorithm. 
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• Frequency resolution: 0.0625 Hz 

• Number of output DOFs: 16 

7.7.4 Impact Testing 2 

Impact testing was also performed by Javier Torres. Again, results have not been published as of 

the date of this writing. The testing was nearly identical to that performed by Mr. Rawn, except 

that five impacts were imparted at each DOF, and 28 output DOFs were used. Data was recorded 

for 16 seconds for each impact at a sampling rate of 1024 Hz. The input force data was 

windowed to remove noise from the measurment that occurs after the impact. The data had not 

been properly analyzed, and thus further processing is performed as part of the work of this 

thesis.  

The input and output data are transformed to the frequency domain using the FFT. The H1 FRF 

algorithm is applied for each input location, resulting in a transfer function with a single column. 

The columns for all 28 experiments are organized into a single transfer function, and then the 

CMIF algorithm is applied to estimate modal parameters.  

• Date: 11/14/2011 

• Weather: ~40˚F, clouds, calm winds, low humidity 

• Data processing method: FRFs from the 28 individual SIMO tests are combined into a 

single transfer function, and then modal properties are extracted using the CMIF 

algorithm. 

• Frequency resolution: 0.00098 Hz 

• Number of output DOFs: 28 
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7.7.5 Modal Parameters Captured 

The previous testing of the bridge provided various modal parameters. The natural frequencies 

for the modes captured are provided in Table 7.9, and the modal damping and modal mass values 

are provided in Table 7.10. Mode shapes corresponding to each of the mode numbers are 

provided in Figure 7.31 and Figure 7.32. Finally, parameters relating to modal flexibility are 

provided in Table 7.11, and the meaning of each parameter is discussed in detail in subsequent 

sections. 

Mode Natural Frequencies (Hz)
No. Ambient 1 Ambient 2 Impact 1 Impact 2 
1 6.03 6.04 6.10 6.02 
2 7.03 7.02 7.04 6.94 
3 12.38 12.39 12.50 12.46 
4 22.09 * 21.67 21.60 
5 * * 23.35 23.45 
6 * 22.71 22.81 22.61 
7 24.59 25.57 24.57 24.37 
8 32.25 32.50 32.46 32.48 
9 * 34.21 * 34.19 

10 * 36.50 36.34 * 
11 40.55 41.50 * 40.34 
12 * 45.53 46.47 * 
13 * * * 48.47 
14 * * 51.72 51.30 
15 * * * * 
16 * 56.15 55.88 56.86 
17 * 63.69 63.74 64.25 
18 * * * * 
19 * * * 67.82 
20 * * 71.68 71.66 
21 * * 73.87 73.53 

* Mode not found. 

Table 7.9. Natural frequencies found from various previous dynamic tests. 
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 Mode Modal Damping (%) Modal Mass (lbf/g) 
No. Ambient 2 Impact 1 Impact 2 Impact 1 Impact 2 
1 0.75 0.80 0.44 3117 3409 
2 1.02 0.91 0.98 3302 2311 
3 1.06 0.76 0.70 3551 2374 
4 * 2.29 1.80 3058 2409 
5 * 0.64 0.52 3289 2349 
6 1.76 1.20 0.89 2346 1863 
7 0.75 0.97 1.16 4323 3248 
8 0.37 0.36 0.38 4082 3986 
9 0.19 * 0.11 * 2902 

10 0.17 0.24 * 2781 * 
11 0.37 * 0.73 * 5638 
12 0.51 1.23 * 3809 * 
13 * * 0.67 * 2100 
14 * 0.91 0.98 4839 3432 
15 * * * * * 
16 1.24 1.25 0.88 5534 5872 
17 0.32 0.58 0.48 2875 1950 
18 * * * * * 
19 * * 0.30 * 1303 
20 * 0.73 0.70 1959 1719 
21 * 0.71 0.51 5239 946 

* Mode not found. 

Table 7.10. Modal damping and modal mass found from various previous dynamic tests. 

Desc. Impact 1 Impact 2
D 48.7 23.8

Dd 1.01 0.94
Disp. 99% 89%

 

Table 7.11. Parameters relating to modal flexibility found from various previous dynamic 
tests. 

The data presented from previous testing was collected over a time span of several years, and in 

varying weather conditions. Also, test methods varied, data processing methods varied, and the 

skill of the researchers performing the testing varied. For all of these reasons, variation in the 
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estimated modal parameters is expected. The following general observations about the data are 

made: 

• Ambient techniques failed to capture many of the modes that were found with measured 

input. 

• Damping ratios were not calculated for the ‘Ambient 1’ testing. 

• Modal mass and thus modal flexibility cannot be estimated from output-only ambient 

testing. 

• ‘Ambient 2’ testing used more data and a more advanced processing algorithm than 

‘Ambient 1’, and thus far more modes were identified. 

• Natural frequencies were highly consistent for almost all modes. 

• Damping ratios were consistent for some modes (e.g. 2 and 8), but were inconsistent for 

others (e.g. 1 and 6). 

• Modal mass found from ‘Impact 2’ was consistently lower than from ‘Impact 1’, except 

for Mode 1. 

• The displacement parameter found using ‘Impact 1’ is in excellent agreement with the 

finite element model results, indicating that the modal mass for Mode 1 is accurate.  

• The ‘D’ parameter found using ‘Impact 1’ is large, indicating that the modal mass or 

modal vectors of some modes are significantly in error. 

7.8 ANALYSIS AND RESULTS OF CURRENT TESTING 

The primary goal of the bridge testing is to validate that the tactile transducer excitation system 

can provide meaningful MIMO EMA characterization of real-world structures. However, the test 

plan also allows the evaluation of several other issues that are important considerations in the 
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design of such testing. The success of combining the transfer functions from different 

experiments is analyzed since this allows the testing to be performed with fewer force 

transducers. The system identification from traditional burst-random excitation is compared to 

that from multisine excitation since the use of multisine signals is unproven on civil structures. 

Also, the results of system identification in the presence of traffic are evaluated to help determine 

if testing can succeed without regard to vehicle crossings. Finally, the success of only measuring 

some inputs to allow simultaneous excitation of more DOFs than the available number of force 

transducers is evaluated. 

7.8.1 Methods for Comparisons 

Comparisons of mode shapes utilize MAC values (Allemang 2003) as described in the previous 

chapter. These values are again calculated using the following equation: 

 
ܥܣܯ ൌ

ሺ்ܣ כ ்ܤሻሺܤ כ ሻܣ
ሺ்ܣ כ ்ܤሻሺܣ כ .ሻ Equation 7.3ܤ

Where: 

ܣ ൌ a vector representing a mode shape.  

ܤ ൌ a vector representing a different mode shape . 

 

Flexibility matrices are also compared as in the previous chapter. Again, two values are 

calculated: ܦ is a measure of the agreement between two matrices, and ܦௗ is a measure of the 

agreement between the main diagonal of two matrices. The equations used to calculate these 

quantities are: 

 

ܦ ൌ ඩ෍ ෍ ቆ
݂1௜,௝ െ ݂2௜,௝

݂1௜,௝
ቇ

ଶ௡

௝ୀଵ

௡

௜ୀଵ

 Equation 7.4.
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 Equation 7.5.

Where: 

ܦ ൌ the value representing the overall difference between two matrices. 

ௗܦ ൌ the value representing the difference between two matrix’s main diagonals. 

݊ ൌ the size of the square matrix. 

݂1 ൌ the flexibility matrix considered to be the more accurate of the two. 

݂2 ൌ the flexibility matrix being compared. 

 

A displacement due to uniform load applied to the flexibility matrices is also used in 

comparisons. The average displacement of the four DOFs along sensor Line D (near midspan) 

was found from the finite element model. The average displacement along this line is also found 

from an experimental result by multiplying the modal flexibility matrix by a vector of ones. The 

experimental average displacement is divided by the analytical average displacement and the 

result is displayed as a percentage. Thus, a value of 90% indicates that the displacement of the 

structure under uniform load based on an experimental result is 90% of the finite element model 

displacement. These displacements are primarily controlled by the accuracy of modal mass for 

Mode 1. 

Finally, throughout the discussions, reference is made to various modes by mode number. The 

shapes of those modes are provided in Figure 7.31 and in Figure 7.32 for reference.  
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Figure 7.31. Most commonly identified modes of vibration of the Hartbarger Bridge 

(modes 1 through 12). 
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Figure 7.32. Most commonly identified modes of vibration of the Hartbarger Bridge 

(modes 13 through 21) 
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Whether or not the bridge was adequately excited is determined by comparing the outcome of 

the testing using the novel approach to the outcome using traditional and accepted methods. All 

of the modal parameters are compared including natural frequencies, modal damping, modal 

mass, modal vectors, and modal flexibility. The results from the new approach are compared to 

the results from prior testing and to the predictions of the finite element model. 

Only a portion of the total data captured during bridge testing is used in this part of the analysis. 

The experiments using four shakers and multisine excitation with all excitation lines combined 

into a single transfer function are used here. The data from the other experiments is considered in 

other analyses later in this chapter. The reason for this is that having a force transducer at each 

shaker and using multisine excitation is the preferred approach for the multi-shaker system. 

Additionally, only using a single experimental result makes the discussion and presentation of 

tables and figures more clear.  

7.8.2.1 Natural Frequencies 

The number of natural frequencies found and the agreement of those frequencies to previous 

results from accepted techniques is analyzed. The finite element results are not considered since 

the natural frequencies of the model were calibrated to match the current data. The natural 

frequencies of the modes found from the current testing and from the four previous tests are 

presented in Table 7.12. 
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Mode MS MIMO Ambient 1 Ambient 2 Impact 1 Impact 2 
1 6.12 6.03 6.04 6.10 6.02 
2 6.98 7.03 7.02 7.04 6.94 
3 12.21 12.38 12.39 12.50 12.46 
4 21.69 22.09 * 21.67 21.60 
5 22.48 * * 23.35 23.45 
6 22.71 * 22.71 22.81 22.61 
7 24.32 24.59 25.57 24.57 24.37 
8 32.18 32.25 32.50 32.46 32.48 
9 34.04 * 34.21 * 34.19 

10 36.07 * 36.50 36.34 * 
11 40.54 40.55 41.50 * 40.34 
12 46.02 * 45.53 46.47 * 
13 48.00 * * * 48.47 
14 50.56 * * 51.72 51.30 
15 52.12 * * * * 
16 54.77 * 56.15 55.88 56.86 
17 62.26 * 63.69 63.74 64.25 
18 65.47 * * * * 
19 67.74 * * * 67.82 

 * Mode not found. 

Table 7.12. Comparison of natural frequencies (Hz) found from MIMO multisine testing 
and from various previous tests. 

Two observations are made based on Table 7.12. First, the MIMO EMA testing captured many 

more modes of vibration than any of the previous test methods. This is the expected outcome due 

to the many benefits of MIMO testing and multisine signals that have been discussed at length. 

The low level of excitation from ambient testing and the likelihood of unequal excitation at 

various frequency lines makes it more difficult to identify the many closely spaced modes of this 

bridge. For the impact testing, the low signal to noise ratios of the force and response data makes 

it more difficult to identify less powerful modes and closely spaced modes.  

Second, in almost all cases, the frequencies found from the previous testing are higher than those 

found from the MIMO EMA multisine testing. Excluding Mode 1, all of the previous results 
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combined are an average of 1.3% higher than the current results. This outcome is attributed to 

the effects of temperature. The ambient temperature was approximately 90˚F during the current 

testing, but was much cooler for all of the previous tests. Higher temperatures reduce the 

stiffness of materials, resulting in lower natural frequencies, however, the effect of temperature is 

not related to any particular testing method.  

7.8.2.2 Modal Damping 

The estimated damping ratios from the current testing and from the previous tests are compared 

in Table 7.13. As discussed, damping ratios tend to be highly variable for lightly damped 

structures since small errors in the calculation of the poles results in large errors in the damping 

ratios. For most of the modes, the damping found from the MIMO multisine testing lies within 

the range of the values found from previous tests. For Modes 2 and 6, the previous results are 

consistently higher than the current results, and for Mode 8, the previous results are consistently 

lower than the current results. Overall, no specific conclusions can be drawn from the 

comparison of damping ratios. 
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 Mode MS MIMO Ambient 2 Impact 1 Impact 2 
1 0.59 0.75 0.80 0.44
2 0.89 1.02 0.91 0.98
3 0.78 1.06 0.76 0.70
4 0.76 * 2.29 1.80
5 0.98 * 0.64 0.52
6 0.80 1.76 1.20 0.89
7 0.90 0.75 0.97 1.16
8 0.42 0.37 0.36 0.38
9 0.21 0.19 * 0.11

10 0.17 0.17 0.24 * 
11 0.70 0.37 * 0.73
12 1.06 0.51 1.23 * 
13 0.74 * * 0.67
14 0.77 * 0.91 0.98
15 0.57 * * * 
16 1.03 1.24 1.25 0.88
17 0.54 0.32 0.58 0.48
18 1.60 * * * 
19 0.34 * * 0.30

  * Mode not found. 

Table 7.13. Comparison of damping ratios (%) found from MIMO multisine testing and 
from various previous tests. 

7.8.2.3 Modal Mass 

The estimated values of modal mass found from the MIMO multisine testing and from the 

previous tests are compared in Table 7.14. The calculated value of modal mass is primarily 

controlled by the magnitude of the eFRF at the natural frequency of the mode. This magnitude 

can be significantly affected by processing issues such as imperfect modal filtering, and by 

testing issues such as leakage, measurement noise, and system noise due to ambient excitation. 

Thus, variability in calculated values of modal mass is not surprising.  

Comparing the impact testing results to the MIMO results for the 17 modes that were found by 

the impact tests, the modal mass values from impact are consistently higher than the MIMO 
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results for five modes and are consistently lower for nine modes. For four modes, the MIMO 

results are within the range of the impact results. Considering all modes, the average modal mass 

for ‘Impact 1’ is 5.2% higher than MIMO, and the average modal mass for ‘Impact 2’ is 20.6% 

lower than MIMO. Thus, there is no obvious relation for the modal mass results between any of 

the tests. Also, based strictly on this comparison, there is no indication that one testing method 

provides more accurate results than another testing method. However, since the modal mass is 

extremely important to the calculation of accurate modal flexibility, further discussion ensues in 

subsection 7.8.2.5. 

Mode MS MIMO Impact 1 Impact 2
1 2831 3117 3409
2 2214 3302 2311
3 2615 3551 2374
4 3992 3058 2409
5 2083 3289 2349
6 4393 2346 1863
7 5158 4323 3248
8 5007 4082 3986
9 3945 * 2902

10 2642 2781 *
11 6563 * 5638
12 3168 3809 *
13 2370 * 2100
14 4770 4839 3432
15 801 * *
16 7755 5534 5872
17 2365 2875 1950
18 6845 * *
19 3360 * 1303

   * Mode not found. 

Table 7.14. Comparison of modal mass (lbf/g) found from MIMO multisine testing and 
from various previous tests. 
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7.8.2.4 Modal Vectors 

The modal vectors found from the MIMO multisine testing and from the previous tests are 

compared to the vectors from the finite element model using MAC values. To enable MAC 

calculations, the DOFs must all be at the same spatial locations. The sensor locations for the 

previous tests were at a variety of locations that are not the same as the DOF locations for the 

current testing. Since the mode shapes must be smooth curves, interpolation using a cubic spline 

is performed along the length of each girder to estimate the modal vector amplitudes at 

consistent DOF locations. 

The MAC values as compared to the finite element modal vectors are given in Table 7.15. The 

‘Ambient 1’ testing provides relatively poor estimates of the modal vectors. This can be 

attributed to the low signal to noise ratio that results from very low excitation. The impact testing 

gives good modal vectors for the first five modes listed, but at higher frequencies the agreement 

is generally not as good. The MIMO testing is not as good for Mode 6 as the impact, but is better 

for Modes 12, 16, and 18 than the impact testing. Overall, the MIMO testing outperforms the 

impact and ambient testing methods in regards to capturing accurate modal vectors.   
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Mode MS MIMO Ambient 2 Impact 1 Impact 2 
1 0.99 1.00 0.99 1.00
2 1.00 0.86 0.98 0.98
3 1.00 0.99 0.99 1.00
4 0.94 * 0.95 0.95
6 0.88 0.45 0.94 0.96
7 0.77 0.56 0.70 0.70

11 0.85 0.81 * 0.94
12 0.81 0.63 0.79 *
16 0.95 0.45 0.71 0.92
18 0.95 * * *

  * Mode not found. 

Table 7.15. Comparison of MAC values for MIMO multisine testing and for various 
previous tests.  

7.8.2.5 Modal Flexibility 

Modal flexibility matrices found from the various tests are compared to the static flexibility 

matrix from the finite element model. As described previously, ܦ is used to compare all matrix 

elements, ܦௗ is used to compare just the matrix main diagonals, and ݌ݏ݅ܦ. is used to compare the 

average midspan displacement due to a unit load vector. The results for the MIMO multisine 

testing and for the two impact tests are shown in Table 7.16. Modal flexibility cannot be 

calculated for the ambient testing since modal mass cannot be calculated without measured 

inputs. 

The MIMO testing significantly outperforms the impact tests based on the ܦ and ܦௗ values. The 

better results with MIMO testing are due to the identification and inclusion of more modes in 

calculating modal flexibility. The results are also improved by better estimates of modal mass 

due to better SNR. The ݌ݏ݅ܦ. result is best from the ‘Impact 1’ testing, with average midspan 

deflections that are nearly identical to those predicted by the finite element model. This outcome 

suggests that the modal mass for Mode 1 is best estimated by the ‘Impact 1’ testing. This is not 
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surprising since the TTs do not generate much force at the frequency of Mode 1, and thus signal 

to noise ratio is diminished at this frequency.  

Desc. MS MIMO Impact 1 Impact 2
D 12.2 48.7 23.8

Dd 0.77 1.01 0.94
Disp. 94% 99% 89%

 

Table 7.16. Comparison of modal flexibility from MIMO multisine testing and from 
various previous tests. 

7.8.2.6 Summary Evaluation of Excitation System 

The goal of this analysis is to evaluate whether the MIMO excitation system provides results on 

par with commonly used and accepted ambient and impact excitation methods. Overall, the 

MIMO system outperforms both ambient and impact methods. Many more modes are identified 

and generally more accurate modal vectors are found using the novel system. Also, the modal 

flexibility matrix is a better match to the static flexibility matrix, indicating that the MIMO 

system also provides more accurate estimates of modal mass. Thus, using the TTs in a MIMO 

array to excite bridges similar to the tested bridge can be expected to provide superior modal 

parameters so long as fundamental natural frequencies are not too low. 

7.8.3 Evaluation of Combining Data from Disparate Experiments 

Combining data from several different experiments is a common technique used in modal testing 

of civil structures, and is commonly referred to as MIMO testing even though it is more 

accurately described as multiple-SIMO testing (it is also sometimes referred to as multiple 

reference impact testing (MRIT)). A common application of this technique is to use an 

instrumented hammer to apply impacts to a structure. An individual hit generates a single set of 

data, and multiple hits are performed at a single input location to allow averaging of sets. The 



 353 

process is repeated at as many DOFs as desired. A single column of the transfer function is 

assembled from the FRFs due to the hits at a single input location. Columns are then added for 

each input location. Because time elapses between the inputs, the FRFs from different columns 

of the transfer function cannot be completely consistent with each other. During the elapsed time, 

equipment may be moved, environmental conditions may change, etc., causing inconsistencies in 

the data. 

The benefit of this technique is that the additional columns of FRFs in the transfer function 

provide more redundant data, and the system identification becomes more accurate. The 

drawback of this technique is that the data from separate experiments are inconsistent, potentially 

making the system identification less accurate.  

For the bridge testing, four inputs in a transverse line were excited simultaneously, allowing the 

formation of a transfer function with four columns of completely consistent FRFs. Five 

experiments were performed with the inputs at different line of DOFs in each experiment. This 

allows the formation of a larger transfer function by augmenting with columns of FRFs fro 

additional experiments. A transfer function with up to twenty columns can be formed for the 

current testing. However, the data from the different experiments will be inconsistent due to the 

elapsed time between the experiments. The goal of the following analyses is to determine if the 

system identification improves with the inclusion of more redundant data, or if the identification 

gets worse due to inconsistent data. 

As discussed in subsection 7.5.2, system identification was performed for each experiment 

separately; for each group of three experiments that were performed successively; and for all five 
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experiments combined together. The results from these combinations of experiments are 

compared in the following subsections.  

7.8.3.1 Natural Frequencies 

The first item to be analyzed is the number of modes captured and identified accurately. It is 

noted that almost all modes are found in every experiment, but if the damping and modal mass 

estimates are poor for a mode then that mode is considered to not have been identified by the 

experiment. The results are presented in Table 7.17 for multisine excitation and in Table 7.18 for 

burst-random excitation. 

Mode Excitation Lines Used in Transfer Function
No. B C D E F B+C+D C+D+E D+E+F All
1 6.10 6.11 6.12 6.12 6.09 6.12 6.12 6.12 6.12
2 6.99 7.00 6.98 6.99 7.00 6.98 6.98 6.98 6.98
3 12.23 12.19 12.18 12.24 12.26 12.19 12.21 12.23 12.21
4 21.62 21.67 21.67 21.69 21.69 21.66 21.68 21.69 21.69
5 * 22.51 22.49 22.66 * 22.48 22.48 22.49 22.48
6 22.76 22.83 22.87 * 22.76 22.71 22.70 22.86 22.71
7 24.36 24.29 24.29 24.35 24.34 24.31 24.30 24.35 24.32
8 32.17 32.01 32.04 * 32.18 32.02 32.01 32.19 32.18
9 34.11 34.04 34.13 * 34.18 34.04 34.04 34.18 34.04

10 36.27 36.08 36.15 36.05 36.20 36.08 36.08 36.05 36.07
11 40.58 * 40.50 40.56 40.56 40.50 40.52 40.55 40.54
12 46.12 46.13 45.97 46.12 45.99 46.01 46.00 45.99 46.02
13 47.98 48.11 47.98 48.14 47.98 47.99 48.04 48.00 48.00
14 50.56 51.31 51.33 * * 50.56 51.31 * 50.56
15 52.09 52.23 52.27 * 52.12 52.20 52.27 52.12 52.12
16 54.83 54.72 54.65 54.75 * 54.78 54.68 54.70 54.77
17 62.31 62.22 62.30 62.53 * 62.27 62.25 62.56 62.26
18 65.36 65.38 65.91 65.81 * 65.43 65.66 65.80 65.47
19 67.72 67.75 67.78 * * 67.75 67.74 67.77 67.74
* Mode not found. 

Table 7.17. Natural frequencies (Hz) identified from the various single experiments and 
combinations of experiments using multisine excitation. 
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Mode Excitation Lines Used in Transfer Function
No. B C D E F B+C+D C+D+E D+E+F All
1 6.11 6.09 6.13 6.11 * 6.12 6.12 6.12 6.12
2 6.99 7.01 7.00 7.02 6.99 6.98 7.00 6.98 6.99
3 12.26 12.24 12.18 12.26 12.27 12.20 12.24 12.25 12.25
4 21.64 21.66 21.68 21.70 21.72 21.65 21.69 21.72 21.71
5 *  22.84 22.62 22.73 22.77 22.61 22.72 22.74 22.74
6 *  * * * * * 22.94 22.92 22.95
7 24.39 24.37 24.30 24.36 24.38 24.36 24.37 24.37 24.36
8 32.24 32.18 32.11 32.19 32.24 32.20 32.18 32.23 32.21
9 34.13 34.09 34.14 34.00 34.21 34.10 34.09 34.00 34.09

10 *  36.09 36.12 36.04 36.19 36.07 36.06 36.04 36.07
11 40.47 40.71 40.51 40.58 40.57 40.51 40.53 40.56 40.54
12 46.12 46.29 46.12 46.15 46.07 46.12 46.13 46.10 46.12
13 47.98 48.29 48.13 48.14 48.02 48.09 48.13 48.08 48.07
14 50.68 51.39 * * * 50.68 * *  50.68
15 52.24 52.15 * 52.48 52.10 52.24 * 52.10 52.11
16 54.88 54.96 54.73 * * 54.81 54.76 54.77 54.79
17 62.59 62.61 62.50 62.74 62.72 62.55 62.61 62.73 62.62
18 65.41 65.47 65.82 65.97 65.73 65.42 65.74 65.86 65.61
19 67.81 67.82 67.78 67.55 67.74 67.80 67.79 67.77 67.80
20 70.60 70.66 70.23 70.57 70.57 70.64 70.63 70.57 70.58
21 73.28 73.38 73.42 73.67 73.70 73.37 73.41 73.44 73.37
* Mode not found. 

Table 7.18. Natural frequencies (Hz) identified from the various single experiments and 
combinations of experiments using burst-random excitation. 

The tables indicate that modes are more consistently found when more columns are included in 

the transfer function. For the multisine data, excitation at only line B, C, or D enables almost all 

modes to be identified, but six modes are missed if only line E or F is used. For burst-random, 

three modes are typically missed when using only a single line. Including three excitation lines 

improves the capture of modes, and all modes of interest are found when all five experiments are 

included in the formation of the transfer function.  

The natural frequencies vary by small amounts for all modes depending on the location of 

excitation. However, there is no indication that the accuracy suffers by combining data from 
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separate experiments. This is not surprising since an accuracy decrease is more likely to occur in 

damping and modal mass. 

7.8.3.2 Modal Damping 

Modal damping is also compared for each experiment and for the various combinations of 

experiments. When experiments are combined, the expectation is that a modal peak becomes 

‘smeared’ due to the slight changes in frequency that result from the time-varying nature of the 

structure. Smearing of the peak often results in an increase in calculated damping since the 

damping is related to the sharpness of the peak. Thus, an increase in damping for the combined 

experiments would indicate that more error is introduced by data inconsistency. This 

phenomenon is checked for in the results from the multisine testing presented in Table 7.19, and 

the burst-random results presented in Table 7.20. 
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Mode Excitation Lines Used in Transfer Function
No. B C D E F B+C+D C+D+E D+E+F All
1 0.52 0.57 0.50 0.64 0.46 0.55 0.53 0.56 0.59
2 0.43 1.26 1.53 0.98 0.88 0.81 1.48 1.48 0.89
3 0.70 0.67 0.68 0.57 0.64 0.71 0.76 0.69 0.78
4 1.34 1.07 0.90 0.70 0.70 1.11 0.79 0.70 0.76
5 * 1.42 0.57 0.51 * 0.62 0.80 0.98 0.98
6 1.13 1.46 1.30 * 0.64 1.34 1.15 1.21 0.80
7 0.81 0.76 0.78 0.92 0.87 0.83 0.86 1.03 0.90
8 0.38 0.41 0.43 * 0.33 0.55 0.45 0.35 0.42
9 0.15 0.16 0.18 * 0.17 0.20 0.17 0.18 0.21

10 0.20 0.12 0.13 0.14 0.12 0.14 0.15 0.16 0.17
11 0.79 * 0.72 0.67 0.59 0.76 0.74 0.64 0.70
12 0.90 0.87 0.91 0.96 1.11 0.99 0.96 1.00 1.06
13 0.84 0.64 0.70 0.63 0.63 0.79 0.75 0.68 0.74
14 0.76 0.86 1.08 * * 0.76 0.96 * 0.77
15 0.63 0.69 0.70 * 0.57 0.63 0.70 0.57 0.57
16 0.85 1.29 1.12 1.17 * 0.95 1.14 1.14 1.03
17 0.41 0.40 0.42 0.34 * 0.45 0.54 0.37 0.54
18 1.33 1.33 1.97 1.67 * 1.42 1.69 1.70 1.60
19 0.35 0.33 0.32 * * 0.34 0.33 0.33 0.34
* Mode not found. 

Table 7.19. Damping ratio (%) identified from the various single experiments and 
combinations of experiments using multisine excitation. 
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Mode Excitation Lines Used in Transfer Function
No. B C D E F B+C+D C+D+E D+E+F All
1 0.13 0.03 0.46 0.13 * 0.10 0.18 0.21 0.18
2 0.49 1.02 1.49 1.22 0.75 0.70 1.33 0.83 0.72
3 0.73 0.71 0.67 0.60 0.59 0.79 0.75 0.76 0.75
4 1.37 1.12 0.97 0.73 0.72 1.19 0.83 0.73 0.78
5 * 0.50 0.45 0.43 0.59 0.50 0.58 0.55 0.60
6 * * * * * * 1.43 0.82 1.32
7 0.85 0.81 0.74 0.79 1.00 0.79 0.79 0.94 0.83
8 0.35 0.35 0.38 0.34 0.31 0.39 0.35 0.35 0.39
9 0.16 0.16 0.17 0.19 0.19 0.18 0.18 0.19 0.20

10 * 0.15 0.10 0.12 0.12 0.12 0.12 0.15 0.15
11 0.77 0.19 0.72 0.63 0.64 0.78 0.74 0.67 0.71
12 0.89 0.82 0.85 0.94 0.95 0.90 0.90 0.92 0.97
13 0.87 0.67 0.66 0.65 0.63 0.77 0.69 0.66 0.73
14 0.78 0.83 * * * 0.79 * * 0.80
15 0.62 0.76 * 0.50 0.53 0.65 * 0.53 0.54
16 0.85 1.27 1.01 * * 0.97 1.09 1.04 1.07
17 0.36 0.32 0.33 0.27 0.26 0.37 0.44 0.29 0.44
18 1.33 1.38 1.92 1.65 1.55 1.01 1.61 1.70 1.59
19 0.34 0.34 0.34 0.66 0.30 0.34 0.33 0.33 0.34
20 0.59 0.57 0.49 0.59 0.46 0.58 0.60 0.62 0.49
21 0.61 0.47 0.58 0.72 0.58 0.57 0.60 0.75 0.70
* Mode not found. 

Table 7.20. Damping ratio (%) identified from the various single experiments and 
combinations of experiments using burst-random excitation. 

For both excitation signals, the damping ratios vary widely as expected since a small error in the 

angle of the pole results in a large error in the damping ratio when damping is low. Additionally, 

different input locations have varying capability to excite each mode causing further variability. 

However, an attempt is still made to analyze if combining inconsistent experiments diminishes 

accuracy by only considering the modes that have relatively consistent results. 

For the multisine data, Mode 3 is considered first. This mode is well separated from other modes 

and always has a strong and well-shaped peak. The damping ratio varies between 0.57% and 

0.70% when only a single experiment is considered. When three experiments are combined, the 
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damping ratio is always higher than any individual value from the lines included. When all five 

experiments are combined, the damping ratio is 0.78%. This is more than 10% higher than the 

ratio found from any individual experiment. Thus, it appears as if the combination of 

experiments does cause smearing of the peak and an increase in calculated damping. Modes 7, 9, 

10, 12, and 17 show similar results. 

For the burst-random data, the results are the same. Modes 3, 8, 9, 12, and 17 have relatively 

consistent damping ratios when single experiments are used, and the calculated damping 

increases when experiments are combined. For these five modes, the damping found using all 

experiments is an average of 19% higher than the average damping found from the individual 

experiments. However, modes 7 and 20 have a lower damping ratio from all experiments than 

the average of the individual experiments. This result is attributed to an increase in accuracy due 

to the extra redundant data. 

For modes that have less consistent estimates of damping, the results using combined 

experiments are as likely to be lower as they are to be higher than those from single experiments. 

Also, the combination of experiments enables calculation of reasonable damping values for 

almost all modes, whereas an acceptable damping value could not be found with data from only 

a single experiment in some cases.   

Overall, the results indicate that calculated damping values are increased and made less accurate 

by combining experiments. However, damping is not well-estimated by individual experiments 

in many cases. In these instances, accuracy of damping seems to be improved by combining 

several experiments. Therefore, the logical course of action is to use the average damping from 
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several individual experiments when the results are consistent. When the individual results are 

not consistent, then combinations of experiments should be used to estimate damping.    

7.8.3.3 Modal Mass 

Modal mass is also compared in the same manner as frequencies and damping. The magnitude of 

modal mass is most directly related to the magnitude of the eFRF peak, and thus smearing of the 

peak due to inconsistent data is not expected to have a significant effect on modal mass. The 

values calculated are presented in Table 7.21 for multisine excitation and in Table 7.22 for burst-

random excitation. 

Mode Excitation Lines Used in Transfer Function
No. B C D E F B+C+D C+D+E D+E+F All
1 2673 2584 2940 2374 3209 2949 2983 2784 2831
2 1517 1674 1579 3229 3315 2050 2021 2288 2214
3 2697 2790 2849 2925 2742 2764 2646 2835 2615
4 3559 4355 3686 3544 3623 4213 4068 3597 3992
5 * 1970 2699 2992 * 2770 2363 2091 2083
6 3244 2574 5369 * 4435 2861 2551 2650 4393
7 5630 5645 5333 4827 5450 5405 5098 4660 5158
8 5213 3918 3294 * 6071 3606 3971 5467 5007
9 2117 3733 5914 * 3233 3276 4544 4623 3945

10 708 5702 11101 10417 4849 5453 2740 7531 2642
11 6962 * 6336 5506 7254 6399 5927 6775 6563
12 4385 5818 3167 2851 2786 3431 3156 2968 3168
13 2161 3503 2490 1562 3118 2290 2311 2602 2370
14 4731 11999 4183 * * 4791 7806 * 4770
15 5585 9578 3964 * 777 2831 3028 772 801
16 9857 6867 7105 9523 * 8763 6816 6030 7755
17 2036 2852 2684 2771 * 2479 2392 2842 2365
18 8229 12465 9006 5887 * 7841 6614 5918 6845
19 3543 1708 13995 * * 3755 6935 10764 3360
* Mode not found. 

Table 7.21. Modal mass (lbf/g) identified from the various single experiments and 
combinations of experiments using multisine excitation. 
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Mode Excitation Lines Used in Transfer Function
No. B C D E F B+C+D C+D+E D+E+F All
1 1438 687 2977 1216 * 4681 3417 1790 3382
2 1307 1499 2022 2365 4437 2113 1806 3379 2390
3 2762 2575 2583 2648 2639 2417 2537 2526 2538
4 3682 4212 3981 3352 3376 4015 3935 3435 3862
5 * 2919 2401 2817 3212 2504 2583 2629 2620
6 * * * * * * 3013 3795 3214
7 5473 5214 5438 5114 4740 5395 5213 4815 5205
8 5350 4003 3460 3551 6908 4313 3894 5833 4586
9 1974 2804 5710 2379 2606 2626 3097 2572 2841

10 * 4125 12610 8211 5524 5624 3813 5676 3666
11 6638 31400 6461 5839 6800 6403 6020 6578 6555
12 4429 6199 3326 2807 2888 3760 3236 3020 3242
13 2051 3440 2575 1609 3105 2309 2398 2641 2364
14 5107 12398 * * * 5155 * * 5093
15 6472 10286 * 7819 1317 3203 * 1302 1309
16 8918 6856 7436 * * 7883 6267 6690 7162
17 1558 2552 2453 2811 2654 2257 2150 2890 2102
18 7665 14273 8833 6132 6190 10442 7265 5938 6768
19 3018 1586 14047 16823 13867 3403 7025 10932 3161
20 2076 2134 1501 1943 2354 2113 1975 1822 2343
21 1796 2371 2178 1751 1471 2098 2104 1521 1623
* Mode not found. 

Table 7.22. Modal mass (lbf/g) identified from the various single experiments and 
combinations of experiments using burst-random excitation. 

There is significant variation in the calculated values of modal mass with either excitation signal. 

With multisine excitation, modes 3, 4, 7, and 17 have the most consistent results. The average 

values of modal mass for the individual experiments are 2801, 3753, 5377, and 2586 lbf/g 

respectively. The modal masses for these four modes found with all five experiments combined 

vary from the averages noted by -7%, 6%, -4%, and -9% respectively. The modal mass from all 

experiments combined is also within the range of values of the individual experiments for 17 of 

the 19 modes. 
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For the burst-random data, modes 3, 4, 7, 17, 20, and 21 have the most consistent results. The 

modal masses for these six modes calculated with all five experiments combined vary from the 

averages of the individual experiments by -4%, 4%, 0%, -13%, 16%, and -15% respectively. The 

modal mass from all experiments combined is within the range of values of the individual 

experiments for 17 of the 21 modes.  

Overall, there is no evidence of a consistent bias error in the magnitude of modal mass caused by 

combining experiments. Also, the modal mass found from combined experiments usually lies 

within the range of the values found from the included individual experiments. The modal mass 

found from individual experiments is sometimes highly variable (see burst-random mode 19), 

and thus including more data in the transfer function helps reduce the impact of poor results from 

single experiments. 

7.8.3.4 Modal Flexibility 

The modal flexibility matrix calculated for any experiment is assembled by superposition of the 

contributions of each mode. The contribution of a mode is driven by a few factors. The modal 

vector determines the distribution to the various input/output DOFs as ܷ כ ்ܷ, where ܷ is a 

modal vector. The magnitude of the contribution is inversely proportional to modal mass (ܯ௥) 

and is approximately inversely proportional to the square of the undamped natural frequency (Ω) 

when damping is low. For modes at higher frequencies, the magnitude of the contribution to 

modal flexibility is greatly reduced due to the Ωଶ term, and those higher frequency modes are 

thus less important.  

The accuracy of modal flexibility is primarily driven by the accuracy of ܯ௥. The natural 

frequencies are highly accurate, and the modal vectors are usually accurate as well, and can be 
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visually verified for many structures. However, the modal mass is largely controlled by the 

magnitude of the eFRF. This magnitude can be significantly affected by processing issues such 

as imperfect modal filtering, and by testing issues such as leakage and noise. As is quite 

noticeable in Table 7.21 and Table 7.22, the modal mass calculated varies significantly and will 

thus have a significant impact on the accuracy of modal flexibility. 

The accuracy of modal flexibility is determined by calculating ܦ and ܦௗ with respect to the static 

flexibility matrix from the finite element model. The various comparisons of experimental modal 

flexibility to the baseline static flexibility are made in Table 7.23 for multisine excitation and in 

Table 7.24 for burst-random excitation.  

Desc. Excitation Lines Used in Transfer Function
B C D E F B+C+D C+D+E D+E+F All

D 19.3 22.5 11.3 50.2 32.2 7.7 11.3 20.5 12.2
Dd 0.48 0.71 0.85 1.07 1.40 0.73 0.87 0.82 0.77

Disp. 109% 108% 93% 108% 84% 92% 89% 94% 94%
 

Table 7.23. Comparison of modal flexibility from the various single experiments and 
combinations of experiments using multisine excitation. 

Desc. Excitation Lines Used in Transfer Function
B C D E F B+C+D C+D+E D+E+F All

D 108.1 85.3 10.4 38.7 32.1 27.8 14.2 51.5 12.0
Dd 1.81 2.43 0.95 1.75 3.02 1.57 0.98 1.10 1.01

Disp. 23% 4% 88% 42% 1% 52% 76% 96% 79%
 

Table 7.24. Comparison of modal flexibility from the various single experiments and 
combinations of experiments using burst-random excitation. 

Considering the analysis groups from multisine excitation, modal flexibility generally improves 

when multiple experiments are combined. The best value of (7.7) ܦ is found when excitation 

lines B, C, and D are combined. The value of ܦ is worst when only the Line E data is used. The 
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average value of ܦ is 27.1 for the five single lines, and is 13.2 for the three groups of three lines. 

For the elements on the main diagonal of the flexibility matrix, the best result is found using only 

Line B, and the worst result is found using only Line E. The results using combinations of lines 

are much more consistent than the results using single lines. The average of  ܦௗ is 0.90 for the 

five individual experiments, and is 0.81 for the three groups of three experiments. Finally, the 

calculated displacements using modal flexibility range from 84% to 109% of the static 

displacements when only a single experiment is considered. The range of values is much tighter 

with multiple lines, only varying from 89% to 94%.  

The results using burst-random excitation are similar. The values have far less variability when 

multiple lines are used as compared to single lines. Overall, the data presented suggests that 

providing more columns in the transfer function improves the accuracy of modal flexibility. 

7.8.3.5 Summary of Results for Combining Data  

Combining data from inconsistent experiments made no noticeable difference in the highly stable 

natural frequencies of the various modes. The calculated modal damping noticeably increases 

and presumably becomes less accurate due to combining data. However, in cases when damping 

significantly varies between experiments, combining data improves the result. The calculated 

value of modal mass is not obviously better or worse when data is combined, but the stability of 

the result seems to improve when data is combined. Finally, the accuracy of modal flexibility is 

improved by combining columns, and the variability is also significantly decreased. Overall, 

combining multiple experiments improves the calculated modal properties of the subject bridge 

in more cases than it diminishes them.   
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Despite the apparent improvement in modal parameter accuracy that results from having 

additional columns in the transfer function, it is recognized that larger magnitude changes to the 

structure over time will diminish accuracy. It is always better to excite as many DOFs as possible 

in a single experiment to circumvent any issues with inconsistent data. However, if this is not 

feasible, then combining several experiments to produce a larger transfer function is shown 

herein to be acceptable. 

7.8.4 Comparison of Multisine and Burst-Random Excitation Techniques 

Exciting a structure with burst-random input is one of the common techniques used in modal 

testing. The benefits of this signal type have been discussed elsewhere in this thesis, and burst-

random inputs are used as a baseline for comparison. Multisine excitation signals are not 

commonly used, and very little literature exists describing its use for testing of civil structures. 

However, the signal has many benefits and may have been overlooked by many researchers. The 

use of deterministic signals is preferred with the tactile transducers because of the ease with 

which the amplitude can be controlled at any frequency. Amplitude control is desirable to 

prevent stroke exceedance at lower frequencies while still generating high force at other 

frequencies. Since the selected type of multisine signal has not been validated in testing of civil 

structures, the results using this signal are compared to the results using burst-random excitation 

herein. 

For this analysis, only the results based on combining all lines of shakers into a single large 

transfer function are presented. This is done to simplify and clarify figures, tables, and 

discussions. Also, the previous section demonstrated that using a transfer function that includes 

all excitation DOFs results in generally more stable modal parameters. Also, Modes 20 and 21 

are not considered since they were not identified in the multisine testing. The multisine signal 
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was constructed to only excite frequencies up to 70 Hz, and thus these two modes were not 

excited. 

7.8.4.1 General Remarks Regarding Burst-Random and Multisine 

Although the results of modal parameter identification are compared in detail for the two 

excitation techniques, there are other indications about the success of each signal that are 

considered first. A major issue with burst-random excitation is that a choice between leakage and 

low SNR must be made. If the excitation is stopped early enough in the capture window, then the 

structure response will be almost completely damped out by the end of the window and leakage 

will be small, but SNR will also be lower. If excitation is stopped later in the capture window, 

then SNR improves, but leakage gets worse.  

For the current testing, a relatively long capture window was used so that SNR could be 

reasonably high while still having low leakage. Excitation occurs during 19.5 seconds of the 25-

second capture window, and 5 seconds are provided for the response to damp out. The combined 

effects of leakage and SNR can be evaluated by reviewing coherence. Coherence is a measure of 

how much of the structure output can be attributed to the known input. This is a frequency 

domain measurement, and thus leakage and noise effects are automatically incorporated. A 

coherence value of unity indicates that the output is purely due to the input, and a coherence of 

zero indicates that there is no relation between the input and output. 

Figure 7.33 shows an example of the difference between coherence using multisine excitation 

and using burst-random excitation. The data shown is for excitation with four shakers at Line D, 

and the coherence is for the output measurement at DOF 3. The multisine coherence is low 

outside of the 4 Hz to 70 Hz excitation band as expected, since only ambient inputs should have 
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excited those frequencies. Coherence is generally nearly unity for the band that was excited. By 

contrast, the coherence is not nearly as good for burst-random excitation. This indicates that the 

output does not agree well with the input forces at numerous frequency lines. The cause is some 

combination of leakage and low SNR. If the output accelerations and input forces have low 

coherence at a frequency line that is nearby a natural frequency of the structure, then it can be 

expected that modal mass will be estimated poorly. 

 
 

Figure 7.33. Typical example of coherence using multisine excitation (left) and burst-
random excitation (right). 

7.8.4.2 Natural Frequencies, Modal Damping, and Modal Mass 

The undamped natural frequencies, damping ratios, and modal mass found for each mode using 

multisine excitation and using burst-random excitation are compared in Table 7.25. The 

published percent difference values are calculated as the difference between the two excitation 

methods divided by the mean of the two methods. 
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Mode Natural Frequency (Hz) Damping Ratio (%) Modal Mass (lbf/g)
No. MS BR Diff. MS BR Diff. MS BR Diff.
1 6.12 6.12 0.1% 0.59 0.18 109% 2831 3382 18%
2 6.98 6.99 0.1% 0.89 0.72 22% 2214 2390 8%
3 12.21 12.25 0.3% 0.78 0.75 4% 2615 2538 3%
4 21.69 21.71 0.1% 0.76 0.78 3% 3992 3862 3%
5 22.48 22.74 1.1% 0.98 0.60 48% 2083 2620 23%
6 22.71 22.95 1.0% 0.80 1.32 49% 4393 3214 31%
7 24.32 24.36 0.2% 0.90 0.83 8% 5158 5205 1%
8 32.18 32.21 0.1% 0.42 0.39 9% 5007 4586 9%
9 34.04 34.09 0.2% 0.21 0.20 5% 3945 2841 33%

10 36.07 36.07 0.0% 0.17 0.15 12% 2642 3666 32%
11 40.54 40.54 0.0% 0.70 0.71 2% 6563 6555 0%
12 46.02 46.12 0.2% 1.06 0.97 9% 3168 3242 2%
13 48.00 48.07 0.1% 0.74 0.73 1% 2370 2364 0%
14 50.56 50.68 0.2% 0.77 0.80 5% 4770 5093 7%
15 52.12 52.11 0.0% 0.57 0.54 6% 801 1309 48%
16 54.77 54.79 0.0% 1.03 1.07 4% 7755 7162 8%
17 62.26 62.62 0.6% 0.54 0.44 21% 2365 2102 12%
18 65.47 65.61 0.2% 1.60 1.59 1% 6845 6768 1%
19 67.74 67.80 0.1% 0.34 0.34 1% 3360 3161 6%

 

Table 7.25. Comparison of various modal parameters found from multisine excitation (MS) 
and burst-random excitation (BR). 

The undamped natural frequencies found are essentially identical for both excitation techniques. 

The largest differences are 1.1% for Mode 5 and 1.0% for Mode 6. The average difference for all 

other modes is less than 0.2%. Also, both methods identified all modes of interest. 

The damping ratios and modal masses are in very good agreement between the two methods for 

most modes. The burst-random signals did not excite Mode 1 well, and thus the eFRF was 

significantly more noisy than with multisine input. This is demonstrated in Figure 7.34 which 

shows the eFRF peak at Mode 1 for both excitation techniques, and the difference in noise is 

apparent. This diminishes the accuracy of the estimated damping and modal mass. 
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Figure 7.34. eFRF for Mode 1 from multisine excitation (left) and from burst-random 
excitation (right). 

Modes 5 and 6 are also not in good agreement. A review of the mode shapes shows that for 

burst-random, Mode 5 was more affected by the nearby Mode 6 than with multisine. However, 

the modal vector for Mode 6 was more accurate with burst-random excitation. The mode shape 

accuracy impacts modal filtering and the resulting damping ratios and modal masses found from 

the eFRFs. Thus, the Mode 5 results are more accurate from the multisine testing and the Mode 6 

results are more accurate from the burst-random testing.   

Modes 9 and 10 have good agreement for damping but not for modal mass. The mode shapes are 

nearly identical, and the eFRFs are very similar in appearance between multisine and burst-

random. However, the eFRF peaks are different in magnitude. Using the impact testing 

performed previously as a guide, burst-random is more accurate for Mode 9 and multisine is 

more accurate for Mode 10. 

The modal mass for Mode 15 also has poor agreement between the two excitation methods. A 

review of the modal mass estimated from various combinations of excitation lines shows that this 

mode is generally poorly identified in many experiments. 
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Excluding Modes 1, 5, 6, 9, 10, and 15, the average percent difference in damping ratio for 13 

modes is 7%, and for modal mass is 5%. Overall, the agreement between the two methods is very 

good.  

7.8.4.3 Comparison of Modal Vectors 

Modal vectors found using the two excitation signals are compared to each other using MAC 

values. Table 7.26 shows the results and the MAC values are essentially unity for all modes 

except Modes 5 and 6. For Mode 5, the vector using burst-random excitation is affected by the 

Mode 6 vector. For Mode 6 (torsion 2 shape), both excitation techniques result in suboptimal 

mode shape plots, neither of which is a good approximation of the expected second torsion 

mode. It is noted that this mode was difficult to find with burst-random excitation (Table 7.18), 

largely because of the very closely spaced and dominant Mode 5. A higher frequency resolution 

may have improved this issue, but in any case, a low MAC value is the result.  

Mode MAC Mode MAC Mode MAC Mode MAC 
1 1.00 6 0.23 11 1.00 16 1.00 
2 1.00 7 1.00 12 1.00 17 1.00 
3 1.00 8 0.99 13 1.00 18 1.00 
4 1.00 9 0.98 14 1.00 19 1.00 
5 0.87 10 1.00 15 1.00    

 

Table 7.26. Comparison of modal vectors using MAC values for multisine and burst-
random excitation. 

7.8.4.4 Comparison of Modal Flexibility 

Modal flexibility matrices are again compared using the criteria discussed previously, and which 

are presented in Table 7.27. The value of ܦ is essentially identical for both excitation signals. 

However, the value of ܦௗ and the average midspan deflection are much better with multisine 
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excitation than with burst-random excitation. This can largely be attributed to the better 

identification of Mode 1 with multisine testing. 

Desc. MS BR
D 12.2 12.0

Dd 0.77 1.01
Disp. 94% 79%

 

Table 7.27. Comparison of modal flexibility for multisine and burst-random excitation. 

7.8.4.5 Summary of Results for Comparison of Excitation Signals 

Both burst-random and multisine excitation identify all modes of interest and the natural 

frequencies are essentially identical. Values of modal damping and modal mass are in good 

agreement between the two methods with one notable exception: damping and modal mass for 

Mode 1 are estimated poorly using the burst-random signal. The modal vectors are also 

practically identical between the two excitation techniques, except for two modes that are very 

closely spaced and which interfere with each other. The resulting modal flexibility matrix is 

more accurate using the multisine signal, largely because of the better identification of Mode 1. 

Overall, the estimated modal parameters are slightly more accurate with multisine excitation than 

with burst-random excitation. 

7.8.5 Effects of Traffic Disturbances on Modal Parameter Identification 

The modal results presented above were found from data sets that were minimally affected by 

vehicular use of the subject bridge. However, for structures on roads with higher ADT, it will be 

more difficult to capture such clean data. Additionally, it is not desirable to interrupt the normal 

operation of a bridge to perform testing. Thus, the level to which the results are affected by 

including data that is compromised by vehicular crossings is studied. If the results are little 

affected, then testing can be performed without regard to traffic. If the results are significantly 
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worse with traffic, then testing must be performed either during low traffic periods (e.g. at night) 

or during temporary bridge closings. 

This analysis is performed using the Line D multisine data. This single excitation line is selected 

since all modes were found with the clean data and because there were many vehicle crossings 

during the period during which this experiment was undertaken. For the results presented, ten 

clean data sets for each of the four polarity settings are used, and ten data sets with traffic for 

each polarity setting are used. Thus, both methods use the exact same amount of data for modal 

identification.  

7.8.5.1 General Comparisons of Clean Data and Data With Traffic 

Before discussing the modal parameters, it is useful to investigate the differences between the 

clean data and the data that includes traffic crossings. First, the measured force input (in the 

frequency domain) at DOF 8 is shown in Figure 7.35 for a typical clean data set and for a typical 

data set during which a vehicle crossed the bridge. It is noted that the force input was essentially 

unchanged, and the two curves are indistinguishable in the plot. Next, the measured acceleration 

at DOF 8 is shown in Figure 7.36 for a clean data set and for a set with a vehicle crossing (also in 

the frequency domain). This demonstrates that the output measurements are significantly 

affected by vehicles. The curve with traffic is far more noisy, and the magnitude is far greater 

below about 30 Hz.  
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Figure 7.35. Typical measured force input without traffic and with traffic.  

 
Figure 7.36. Typical measured acceleration output without traffic and with traffic. 

Naturally, the FRFs are impacted by traffic as well. The FRF for DOF 8 is shown in Figure 7.37 

from data with traffic and without traffic. The added noise on the outputs is reflected throughout 

the length of the FRF, but the magnitude is only significantly affected below about 20 Hz. It is 

obvious that the modal properties for Mode 1 (6 Hz) and for Mode 2 (7 Hz) will be inaccurate. 

Interestingly, though, the peak at about 22 Hz for Mode 4 is not very noisy and the magnitude is 

nearly unaffected by the traffic. Many of the peaks at frequencies higher than 30 Hz have 

accurate magnitudes, although most are more noisy than the peak at 22 Hz. 
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Figure 7.37. Typical measured FRF without traffic and with traffic. 

Coherence is a measure of how much of an output measurement can be attributed to the input 

measurements. A value of unity indicates that the output is entirely due to the inputs, and a value 

of zero indicates that the output is completely unrelated to the inputs. Again, DOF 8 is used as an 

illustrative example and coherence with clean data and with traffic is plotted in Figure 7.38. Not 

surprisingly, the coherence is poor when data with traffic is used. It is also noted that traffic has 

the greatest effect at lower frequencies. 

 
Figure 7.38. Typical plot of multiple coherence without traffic and with traffic. 
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Based on the general comparisons of data with and without traffic provided, it can be expected 

that the presence of traffic will decrease the accuracy of modal parameters, especially at lower 

frequencies.   

7.8.5.2 Natural Frequencies, Modal Damping, and Modal Mass 

The undamped natural frequencies, damping ratios, and modal mass found for each mode using 

clean data and using data with traffic crossings are compared in Table 7.28. The published 

percent difference is calculated as the difference between the two values divided by the value 

found with clean data. 

Mode Natural Frequency (Hz) Damping Ratio (%) Modal Mass (lbf/g)
No. Clean Traffic Diff. Clean Traffic Diff. Clean Traffic Diff.
1 6.12 6.02 1.6% 0.50 0.04 92% 2940 12 100%
2 6.98 * * 1.53 * * 1579 * *
3 12.18 12.12 0.5% 0.68 0.34 50% 2849 2166 24%
4 21.67 * * 0.90 * * 3686 * *
5 22.49 22.46 0.2% 0.57 0.63 10% 2699 2635 2%
6 22.87 * * 1.30 * * 5369 * *
7 24.29 24.08 0.9% 0.78 0.33 58% 5333 6911 30%
8 32.04 31.98 0.2% 0.43 0.31 27% 3294 3246 1%
9 34.13 34.12 0.0% 0.18 0.23 26% 5914 5516 7%

10 36.15 36.14 0.0% 0.13 0.13 3% 11101 15055 36%
11 40.50 40.50 0.0% 0.72 0.68 5% 6336 6777 7%
12 45.97 45.88 0.2% 0.91 0.77 16% 3167 3750 18%
13 47.98 47.94 0.1% 0.70 0.68 4% 2490 2800 12%
14 51.33 * * 1.08 * * 4183 * *
15 52.27 52.26 0.0% 0.70 0.76 9% 3964 3428 14%
16 54.65 54.61 0.1% 1.12 1.39 24% 7105 6168 13%
17 62.30 62.27 0.1% 0.42 0.49 18% 2684 2481 8%
18 65.91 * * 1.97 * * 9006 * *
19 67.78 67.76 0.0% 0.32 0.33 3% 13995 13903 1%
* Mode not found. 

Table 7.28. Comparison of various modal parameters found from data without traffic 
(clean) and from data with traffic.  
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The undamped natural frequencies are barely affected by the presence of traffic; however, 5 of 

the 19 modes could not be identified due to the high noise. The damping ratios and modal masses 

are significantly affected by the presence of traffic for many modes. The worst result is for Mode 

1, where both the damping and modal mass are nearly zero. The low modal mass indicates that 

the mode appears to be significantly excited by small force inputs, which is a direct result of the 

high output accelerations caused by the unmeasured traffic input. The damping is similarly 

affected. At higher frequencies vehicular crossings provided little excitation, and thus the 

damping and modal mass are not nearly as affected.  

Figure 7.39 shows the synthesized eFRF (thick black curve) and the actual eFRF (thin curve) for 

Mode 1 with and without traffic, and the difference is significant. Noise is very high, especially 

in the phase plot, and the peak magnitude with traffic is nearly three orders of magnitude higher. 

Figure 7.40 shows the same information but for Mode 13. Within the frequency band shown, the 

added noise is visible, but of low amplitude. The magnitude of the eFRF is nearly unaffected by 

traffic excitation.  
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Figure 7.39. Results of SDOF identification of Mode 1 without traffic (left) and with traffic 

(right). 

 
Figure 7.40. Results of SDOF identification for Mode 13 without traffic (left) and with 

traffic (right). 
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It is also noted that the traffic excitation causes a serious leakage error. The multisine signal is 

designed to be free of leakage, exciting only frequency lines that are present in the FFT, and 

being completely periodic in the observation window. The traffic excitation meets neither 

requirement, and leakage must occur. The effects of leakage are not easily identified in the 

frequency domain data because noise is so prevalent; however, leakage is diminishing the 

accuracy of the modal parameters by some unknown amount.  

Many researchers use traffic excitation as an ambient input in output-only analysis, and assume 

that the traffic input can be approximated as white noise. The results of this testing indicate that 

traffic does not remotely excite all frequencies evenly, and that the assumption of white noise 

would give highly erroneous results. For this bridge, the damping and modal mass of modes 

below 20 Hz are inaccurate due to the magnitude error on the FRFs. The damping and modal 

mass values above 20 Hz are inaccurate due to more noise in the FRFs.   

7.8.5.3 Comparison of Modal Vectors 

Modal vectors found from data with traffic present are compared to modal vectors found from 

the clean data. MAC values are used to compare how similar the vectors are to each other. The 

outcome for each mode is shown in Table 7.29. The MAC values are all nearly unity, and thus 

the captured mode shapes are essentially identical with or without traffic present. 

Mode MAC Mode MAC Mode MAC 
1 1.00 9 0.98 15 0.99 
3 1.00 10 0.99 16 1.00 
5 1.00 11 1.00 17 1.00 
7 1.00 12 1.00 19 1.00 
8 1.00 13 1.00   

 

Table 7.29.  Comparison of modal vectors using MAC values for clean data and for data 
with traffic present. 
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7.8.5.4 Comparison of Modal Flexibility 

Modal flexibility found using data with traffic crossings can be expected to be highly inaccurate 

since the modal mass for powerful Mode 1 is highly inaccurate. Additionally, five modes were 

not captured, including the important Mode 2. The results are presented in Table 7.30, and it is 

clear that the modal flexibility matrix found is in no way similar to the static flexibility matrix. 

This can largely be attributed to the very low modal mass of Mode 1, and the missing Mode 2.  

Desc. Clean Traffic
D 11.3 18,180

Dd 0.85 358
Disp. 93% 18,700%

 

Table 7.30. Comparison of modal flexibility for data without traffic (clean) and for data 
with traffic. 

7.8.5.5 Summary of Results for Traffic Crossings 

The results of this analysis show that in general, data must be collected without traffic on the 

bridge in order to capture accurate modal parameters. Natural frequencies and modal vectors are 

not significantly affected by the presence of traffic, but modal damping and modal mass are 

affected. For this bridge, traffic causes a large increase in output accelerations for frequencies 

below about 20 Hz, and all frequency bands are affected by added noise. Both of these 

phenomena decrease the accuracy of modal damping and modal mass. The scale of the error at 

low frequencies is great enough that the modal masses are orders-of-magnitude different than the 

correct values. 

7.8.6 Evaluation of Employing Roving Force Transducers 

The final item to be analyzed for the bridge testing is the level of success that is achieved by 

simultaneously exciting more DOFs than the number of available force transducers. It is believed 
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that a greater spatial distribution of inputs will result in better results for the reasons discussed 

previously. As such, and similar to the laboratory testing, an experiment was performed with 

eight TTs operating simultaneously, but with only four of them outfitted with force transducers. 

Two nearly identical experiments were performed, with the force transducers measuring the 

output of four shakers in the first experiment, and measuring the output of the other four shakers 

in the second experiment.  

If this technique is successful, then the modal parameters found should be as good as or better 

than those found using only four shakers. However, any unintended differences between the two 

parts of the roving experiments will result in inconsistent data, and the modal parameters found 

may be less accurate. For this analysis, the multisine results with all lines of shakers combined 

into a single transfer function are used as a baseline against which to compare the results of using 

roving force transducers (referred to as ‘Baseline’ in various tables and figures). 

7.8.6.1 Natural Frequencies, Modal Damping, and Modal Mass 

The estimated undamped natural frequencies, damping ratios, and modal mass for each mode are 

compared in Table 7.31. The natural frequencies with roving are nearly identical to the baseline, 

and all modes of interest are identified. The damping ratios are generally in good agreement, 

with the damping for ten of the modes within 10% of the baseline values. The modal mass shows 

more variability: excluding Mode 15, the modal masses using eight shakers are an average of 

25% off of the baseline values. Ten of the values are lower than the baseline and nine are higher 

than the baseline. Overall, there is no obvious bias in the generally poor agreement between the 

roving modal masses and the baseline.       
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Mode Natural Frequency (Hz) Damping Ratio (%) Modal Mass (lbf/g)
No. Baseline Roving Diff. Baseline Roving Diff. Baseline Roving Diff.
1 6.12 6.11 0.2% 0.59 0.59 0% 2831 2600 8%
2 6.98 7.00 0.2% 0.89 1.10 24% 2214 1870 16%
3 12.21 12.25 0.3% 0.78 0.84 8% 2615 2559 2%
4 21.69 21.67 0.1% 0.76 1.06 40% 3992 4974 25%
5 22.48 22.75 1.2% 0.98 0.56 43% 2083 3116 50%
6 22.71 22.99 1.2% 0.80 1.06 32% 4393 4252 3%
7 24.32 24.28 0.2% 0.90 0.94 4% 5158 5573 8%
8 32.18 32.13 0.2% 0.42 0.39 9% 5007 4868 3%
9 34.04 34.00 0.1% 0.21 0.21 2% 3945 1936 51%

10 36.07 36.02 0.1% 0.17 0.13 19% 2642 3436 30%
11 40.54 40.54 0.0% 0.70 0.65 7% 6563 4238 35%
12 46.02 46.01 0.0% 1.06 0.88 17% 3168 2054 35%
13 48.00 47.88 0.2% 0.74 0.79 8% 2370 1381 42%
14 50.56 50.57 0.0% 0.77 0.64 17% 4770 6015 26%
15 52.12 51.89 0.4% 0.57 0.72 25% 801 3128 290%
16 54.77 54.90 0.2% 1.03 0.95 8% 7755 6622 15%
17 62.26 62.46 0.3% 0.54 0.37 31% 2365 3711 57%
18 65.47 65.44 0.0% 1.60 1.65 3% 6845 5881 14%
19 67.74 67.68 0.1% 0.34 0.34 1% 3360 4564 36%

 

Table 7.31. Various modal parameters found from roving force transducer testing 
compared to baseline parameters. 

7.8.6.2 Comparison of Modal Vectors 

The modal vectors for the roving testing are compared to the baseline testing using MAC values. 

The results are shown in Table 7.32 and the mode shapes are nearly identical for most modes. 

For Modes 5, 6, and 9, the mode shapes from the roving testing are not as symmetric about 

midspan as they should be. For Mode 18, symmetry of the mode shape about the bridge 

centerline is poor. However, fifteen of the mode shapes are accurate.   
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Mode MAC Mode MAC Mode MAC Mode MAC 
1 1.00 6 0.64 11 1.00 16 0.96 
2 0.97 7 1.00 12 0.98 17 0.99 
3 1.00 8 1.00 13 0.98 18 0.89 
4 1.00 9 0.60 14 0.98 19 0.91 
5 0.73 10 0.93 15 0.99    

 

Table 7.32. Comparison of modal vectors using MAC values for roving force transducer 
testing and baseline testing. 

7.8.6.3 Comparison of Modal Flexibility 

Modal flexibility matrices are compared to static flexibility from the finite element model, and 

the results are presented in Table 7.33. The baseline results are included as a point of reference. 

The value of ܦ for the roving testing is much higher than the baseline, indicating that the 

elements of the full matrix are less accurate. Similar results are found for the elements on the 

main diagonal as represented by the ܦௗ value. However, the average midspan deflection found 

from the roving testing is closer to the finite element result than the baseline deflection is. This 

indicates that the modal mass for Mode 1 is more accurate with the roving force transducer 

testing. 

Desc. Baseline 8 TTs
D 12.2 33.1

Dd 0.77 0.92
Disp. 94% 104%

 

Table 7.33. Comparison of modal flexibility for testing with roving force transducers and 
for the baseline testing. 

7.8.6.4 Summary of Results for Roving Force Transducers 

Overall, the modal parameters found from the roving testing are not as accurate as those found 

using the traditional method of combining experiments where all inputs are measured. A few 

mode shapes are less accurate with roving and the estimated modal masses show significant 
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variation for many modes. The modal mass issues suggest that the measured force input from a 

shaker does not agree well with the input when a force transducer is not present. This conclusion 

is supported by the results of the laboratory testing, wherein it was noted that the disturbances 

caused by moving the force transducers results in changes to the force input. In summary, the use 

of roving force transducers should be avoided. The benefits of better spatial distribution of 

excitation are overwhelmed by the harmful effects of inconsistent data. 

7.9 CONCLUSION 

The tactile transducer excitation system was evaluated for MIMO EMA testing of an in-service 

highway bridge. The data from the testing program was used to evaluate the following 

experimental design characteristics: 

• Evaluation of the pros and cons of combining data from disparate experiments. 

• Comparison of burst-random and multisine excitation techniques.  

• Evaluation of the effects of traffic disturbances on modal identification. 

• Evaluation of employing roving force transducers. 

The excitation system using TTs and subwoofer amplifiers successfully excited the real-world 

bridge. The system outperforms the accepted and more widely used ambient and impact 

excitation methods. More modes are identified and generally more accurate modal vectors are 

found using the tactile transducer MIMO EMA approach. Also, the modal flexibility matrix is a 

better match to the static flexibility matrix, indicating that the system also provides more 

accurate estimates of modal mass. Thus, the identification of more accurate modal parameters 

can be expected by utilizing the newly developed excitation system for bridges similar to the 

tested bridge. 
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For this testing, combining data from disparate experiments improved the accuracy of most 

modal parameters by increasing the amount of redundant information in the system transfer 

function. However, damping ratios noticeably increased and became less accurate due to 

inconsistencies between the various experiments. Thus, it is best to excite as many DOFs 

simultaneously as possible to get the most consistent data since all structures are time-variant. A 

major benefit of the novel excitation system is that a large number of exciters can be used at a 

reasonable cost. 

Multisine signals have many theoretical advantages over commonly used excitation signals, but 

have scarcely been used in testing of civil structures. The testing reported herein demonstrates 

that multisine excitation results in modal parameters that are nearly identical to those found using 

the more conventional burst-random technique, except for a few important modes that were 

better identified with multisine excitation. Based on testing of this bridge, the use of multisine 

excitation provides results that are superior to results using burst-random excitation. 

Vehicular traffic crossing the bridge during experimental modal testing causes significant 

amplitude change and noise in the output accelerations. While natural frequencies and modal 

vectors are barely affected by this, the noise diminishes the accuracy of damping and modal 

mass. For modes in frequency bands that are significantly excited by the traffic, the modal mass 

can be incorrect by orders-of-magnitude. Thus, MIMO EMA testing using the TT system should 

be conducted such that an adequate amount of data with no traffic disturbances can be collected. 

Finally, an experiment was conducted to evaluate if the excitation system could be used by 

employing roving force transducers. The result is that the modal parameters found with this 

method are less accurate than when all inputs are measured. The disturbance to the test system 
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caused by relocating the force transducers causes data inconsistencies that may be significant. 

Overall, the benefits of better spatial distribution of excitation are overwhelmed by the negative 

impacts of processing inconsistent data. 

7.10 FUTURE WORK 

Some of the results presented in this chapter may be specific to the individual bridge that was 

tested, and thus future work should be conducted on other bridges, especially with different 

structural arrangements. It was also recognized that traffic did not evenly excite all frequencies, 

although this is a common assumption made by other researchers. Testing should be conducted 

to determine to what level various frequencies are excited by traffic, and how this is affected by 

various bridge types.  
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8 CHAPTER EIGHT 

BRIDGE LOAD RATING USING MEASURED MODAL FLEXIBILITY 

8.1 INTRODUCTION 

A goal of this work is to use the high quality modal parameters to provide a bridge load rating. 

Load ratings indicate the capacity of a bridge to carry specific truck loads, and are thus valued by 

transportation agencies. These agencies use ratings to make operational decisions and to help 

decide where limited maintenance dollars should be invested. Although many researchers are 

attempting to develop methods by which damage to civil structures can be isolated by modal 

testing, few are working to provide bridge owners with actual load capacity. 

In this chapter, the current standard process for the development of load ratings is discussed, and 

some of the shortcomings of the current methods are called out. Second, the ways in which 

modal parameters can be used to improve the process are analyzed, and a specific use for this 

work is developed. In essence, it is proposed that the measured modal flexibility can be used to 

determine live load demand more accurately than standard industry practice. Third, the challenge 

of using modal flexibility to calculate internal structural forces is discussed. A two-step process 

is developed based on work published by others in which the rank of the measured flexibility 

matrix is increased, and then this global flexibility matrix is disassembled to determine local 

stiffness parameters. Finally, a full-scale multi-girder bridge (Hartbarger Bridge) is rated by 

various competing methods, and the results of the ratings are compared and discussed. 
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8.2 BRIDGE CONDITION EVALUATION BACKGROUND 

8.2.1 Bridge Inspection 

Routine bridge inspection began with the inception of U.S. Code Title 23, Section 151 in 1968, 

requiring inspection of all federal-aid highway bridges in the United States. This law was a 

reaction to the collapse of the Silver Bridge over the Ohio River on December 15, 1967 that 

resulted in 46 deaths (Coleman 1996). In 1978 the law was extended to include all publicly 

owned bridges greater than 20 feet long (White et al. 1992). It was recognized that experienced 

engineers should visually verify the condition of each and every bridge at regular temporal 

intervals to ensure that loss of life due to bridge collapse would be avoided.    

Since the passage of this landmark law, the means of bridge inspection have only been updated 

whenever bridge failures have occurred despite regular inspection. For instance, the Mianus 

River Bridge in Connecticut collapsed in 1983 due to a fracture in a pin-and-hanger connection.  

Now pins of this type are inspected for visually undetectable cracks using ultrasound techniques. 

The Schoharie Creek Bridge in New York collapsed in 1987 due to foundation scour. As a result, 

bridges are now given a baseline description as scour-critical or not scour-critical. Bridges 

classified as scour-critical are routinely inspected for scour by divers. More recently, the I-35 

West Bridge over the Mississippi River in Minnesota collapsed in 2007 due to fracture of a 

gusset plate. As a result, all gusset plates are now load rated. It can be recognized that these 

failures have merely added tasks for the inspection team to perform; neither fundamental nor 

revolutionary changes in the process of bridge inspection or evaluation has occurred.  

Additionally, inspection is mandated for safety, not for maintenance management. 

Four categories of bridge inspections exist; routine, fracture-critical, underwater, and damage (23 

U.S.C. § 650 (2004)). Routine inspections occur at regular intervals not to exceed 24 months and 
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document any changes in the bridge condition that have occurred subsequent to the previous 

inspection. Fracture-critical inspections are typically performed during a routine inspection, but 

include a more careful examination of the fracture-critical elements. Underwater inspections are 

also typically performed during a routine inspection and are meant to check for scour at 

foundations. Damage inspections are non-routine and occur after a hazard event may have 

harmed a bridge. Examples include events such as a girder being impacted by a vehicle or a 

foundation potentially being scoured during a flood. Damage inspections are reactive, whereas 

many researchers are attempting to develop proactive evaluation systems. No matter the 

inspection type, the key similarity between all four is that visual evaluation processes are the 

cornerstone of the effort.    

Visual inspection (VI) has many limitations. The foremost limitation is that VI is a subjective 

process with individual inspectors assigning widely varying condition ratings to the same 

deteriorated element. The FHWA performed a study on this subject and found that 56% of the 

average condition ratings are incorrect (Phares et al. 2004). Another limitation of VI is that 

although degradation of elements may be easily recognized, a change in strength is not. For 

instance, chlorides cause corrosion of reinforcing and the resulting spalling of bridge decks is 

documented by inspectors. However, the loss of reinforcing steel area and the loss of strength in 

the deck due to cracking are not easily determined. Furthermore, visual inspection is not an 

exhaustive survey and defects are often undetected as only surface defects can be seen. Finally, 

VI is an element by element procedure and the global interaction of various deteriorated 

segments is seldom considered.     
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In summary, bridge owners invest significant time and money into mandated inspections. The 

inspections are largely successful at ensuring bridges are safe, but the overall work product of 

inspections is qualitative. 

8.2.2 Bridge Load Rating 

Bridge load rating is a process of calculating the capacity of a bridge to carry various types of 

trucks. Load rating is required for all bridges by U.S. Code Title 23 Section 650; however, each 

state may have different laws that govern what axle arrangements and axle weights comprise the 

legal maximum load permitted on state roads. In addition to any truck configurations for a 

particular state, AASHTO provides several legal load configurations for national use as well as 

notional live loads that do not represent any particular highway vehicle. The notional loads have 

been developed to cause stresses in bridges that mimic the measured stresses in real bridges 

under a variety of load types. Load ratings are typically calculated for both the design loads and 

for the legal loads. The design loads and legal loads are illustrated in Figure 8.1 through Figure 

8.4. The diagrams are adapted from AASHTO (2008, App. D6A). 

 
Figure 8.1. Diagram of AASHTO HL-93 notional design load. HS-20 truck is similar but 

excludes the lane load. 



 390 

 
Figure 8.2. Diagram of AASHTO Type 3 legal truck load. Axle weights in kips. 

 
Figure 8.3. Diagram of AASHTO Type 3S2 legal truck load. Axle weights in kips. 

 
Figure 8.4. Diagram of AASHTO Type 3-3 legal truck load. Axle weights in kips.  

The calculated load ratings provide a numeric value that indicates the carrying capacity of the 

bridge for each given truck type. A rating greater than unity is taken to mean that the element 

under consideration can safely carry the particular truck, whereas a rating less than unity 

indicates that only the calculated fraction of the particular truck can be supported. Ratings less 

than unity suggest that the operating agency must either strengthen the bridge or post the bridge 

for reduced truck weights. 
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Per U.S. Code, load ratings must be performed in accordance with AASHTO. The basic format 

of the load rating equation for any structural element is: 

ܨܴ  ൌ
ܥ െ ܦ

ܮ
 Equation 8.1.

Where: 

ܨܴ ൌ the rating factor for the element under consideration. 

ܥ ൌ the structural capacity of the element. 

ܦ ൌ the dead load demand on the element. 

ܮ ൌ the live load demand on the element due to the selected truck load (plus impact). 

 

A rating factor exists for any location along any component of the bridge superstructure. It is 

usually not difficult to select a small subset of locations at which critical ratings will exist, and 

ratings are typically only calculated for these critical locations. The single final rating for the 

bridge as a whole is then taken as the minimum rating factor found for any part of the structure. 

The units of the variables on the right hand side of the rating equation must be consistent, but 

may be in terms of stress, force, or bending moment for any given structural element. 

Load ratings are supposed to be updated in cases where a bridge inspection reveals conditions 

that might impact the ratings (AASHTO 2008 Article 6A.1.1); however, this can be difficult to 

implement for two primary reasons  First, field determination of the damage or deterioration 

must be quite precise in order to be accurately incorporated into an analytical capacity 

calculation. Second, incorporation of the damage often requires a higher level of analytical 

analysis than the existing ratings are based on. This results in a rating for the subject component 

that is inconsistent with the rating of all other components, or the entire structure must be re-

rated at the higher analysis level.    
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8.2.2.2 Calculation of Section Capacity 

For the purposes of rating, capacity values must be found in accordance with AASHTO. The 

capacity of any bridge element is based on a combination of the physical section properties and 

the material strengths. AASHTO provides equations by which these physical properties are 

converted into a capacity. Although the AASHTO equations must be used in the determination 

of capacity, it is permissible for some physical properties to be modified based on field 

inspection or testing. It is common for both steel and concrete to have higher strengths than the 

minimums specified in the contract documents. It is also common for elemental section 

properties to degrade over time due to use and corrosion. AASHTO permits the use of increased 

material strengths in the calculation of ratings if laboratory testing supports such use (e.g. coupon 

testing of steel, compression testing of concrete cores), and AASHTO encourages the use of 

reduced section properties for apparent corrosion and damage.  

8.2.2.3 Calculation of Dead Load Demand 

The dead load force or stress is calculated in consideration of the construction sequence. Dead 

load stresses are nearly deterministic in many bridge types such as simple span, multigirder 

bridges. However, dead load stresses on bridges continuous over at least one support can be 

significantly altered due to small support settlements or locked in erection stresses. This and 

other sources of uncertainty are incorporated into the AASHTO specifications.  

8.2.2.4 Calculation of Live Load Demand 

The most onerous task in bridge design and bridge rating is the application of the live load for 

maximum effect at the detail under consideration. First, the spatial positioning of the load 

vehicles can be complicated and the use of influence surfaces may be required. Second, the flow 

of forces through the structure to the various supporting elements is usually highly complex. For 



 393 

expediency and cost control, most designs and ratings are performed using AASHTO live load 

distribution factors (AASHTO 2010). These factors are easily calculated by inserting a few 

geometric bridge properties into an equation, and then the distribution factor reduces the loading 

problem from two-dimensional to one-dimensional.   

The current AASHTO distribution factors presented in the LRFD specifications (AASHTO 

2010) were developed through a study commissioned by the NCHRP in 1985. The results were 

published in NCHRP Report 12-2611 (Zokaie et al. 1991) and were incorporated into the 

AASHTO LRFD Bridge Design Specifications in 1992. Plans of several hundred bridges 

randomly selected from the national bridge inventory file were collected, and finite element and 

grillage models were prepared (Zokaie 2000). Various bridge geometric properties were 

correlated with the analytical results of distribution of live load to the girders for moment and 

shear. From the correlations, equations were developed extending the results to a wide range of 

bridge types.       

AASHTO does not require the use of the distribution factors that they provide (AASHTO 2008, 

Article 6A.3.2). Designers are permitted to use any rational analysis that satisfies equilibrium, 

compatibility, and material constitutive relationships (AASHTO 2010, Article 4.4). AASHTO 

lists some commonly acceptable examples such as finite element and grillage analogy analysis. 

However, industry is cost competitive and the easiest permissible analysis method is used so that 

expenses are controlled. Thus, the simple AASHTO distribution factors are used for design and 

rating in almost all cases when they are applicable.       
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8.2.3 Load Rating Using Physical Testing 

AASHTO also allows load ratings to be performed by physical load test (AASHTO 2008, Article 

6A.3.4). Physical load tests can consist of diagnostic or proof loading. Diagnostic testing uses 

loads of various intensities to verify the behavior of the structure in response to the loading. The 

results are used to validate analytical models and enable load rating. Proof loading simply 

ascertains that the subject bridge can carry the proof load. This provides a lower bound on the 

true capacity of the structure.   

The benefit of any type of physical bridge testing is that the true global behavior of the structure, 

including its present actual condition, drives the results. In the case that an adequate array of 

strain gauges is installed prior to load tests, the actual flow of forces through the structure is 

documented. This eliminates the need to use any type of analytical load distribution approaches. 

Load rating still relies on estimates of section capacity and dead load stress, but the uncertainty 

of live load distribution is greatly reduced by the physical testing.   

Lenett et al. (1999) tested a bridge in Ohio using various NDT techniques including load testing 

and vibration testing. The capacity based on the physical testing was far in excess of the existing 

load rating based on standard analytical procedures and subjective inspection data. The paper 

concludes that subjective methods of condition assessment are inconsistent and unreliable. 

Similar conclusions are readily available in the literature, and it is widely recognized that 

physical testing is superior to analytical modeling. 

Nonetheless, this type of rating based on physical testing is uncommon due to the high costs of 

performing the testing and the operational issues involved. The costs include engineering and 

testing personnel, loaded trucks and drivers, and testing equipment such as deflection and strain 
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gauges. Load testing also typically requires temporary closure of the bridge, causing operational 

issues. Thus, it is not commonly used on important structures with high ADT.   

Overall, mandated load rating is intended to provide owners with the current live load capacity of 

a bridge. However, simplifying assumptions reduce accuracy by an unknown amount, and the 

difficulty of including deterioration identified by VI generally results in ratings that do not 

incorporate current structural condition. Physical testing results via modal analysis can 

automatically incorporate the current, as-built condition of a bridge and reduce the reliance on 

analytical assumptions. 

8.3 PRIOR RESEARCH IN MODAL ANALYSIS AND BRIDGE LOAD RATING 

It has been recognized by many researchers that the current bridge inspection and rating process 

can be improved by the application of modern technology. Although there are competing 

methods being considered, modal analysis has received a significant amount of attention. Hartle 

et al. (2007) provides a detailed review of published research on ‘early bridge testing’ that used 

vibration data. The chronicle lists 154 papers from 1937 to 1998 and makes it clear that modal 

analysis of bridges has a long history. However, only a small number of bridges were tested until 

the 1970’s when greater access to computing resources enabled modal analysis to expand, and 

modal analysis significantly increased in the 1980’s. Although testing of structures using 

vibrations was increasing, the purpose of the testing was typically for one of the following 

reasons: behavior under wind load; behavior under seismic load; accuracy of impact factors for 

design; and calibration of analytical models. Vibration or modal testing with a purpose of 

directly estimating the load capacity of a bridge was limited. 
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A literature review focusing on using modal analysis results to help determine vertical load 

capacity of bridges has been performed. Select publications from the review are mentioned 

below and provide an in-depth representation of the type of work that has been performed by 

researchers in this field.   

Ward (1984) recorded ambient vibrations of 18 bridges in Hong Kong and natural frequencies 

and damping ratios were found. In the paper, Ward suggested that bridge condition for carrying 

capacity could be diagnosed from monitoring of modal properties. One idea was to occasionally 

measure the fundamental frequency with the assumption that a frequency drop would be due to a 

stiffness drop. A second idea was to compare the fundamental frequencies of geometrically 

similar bridges with the assumption that a below average frequency would correspond to a 

weaker bridge. 

Brownjohn et al. (1987) measured ambient vibrations of the Humber Bridge in England and 

determined natural frequencies and damping ratios. These values were used to verify analytical 

modeling assumptions made during the bridge design. 

Agardh (1991) used drop-weight impact testing to measure the vibrations of a bridge before and 

after strengthening. Other bridges were also tested after several types of intentional beam 

damage occurred. Agardh concluded that the modal properties can be used to calibrate analytical 

models and to assess bridge condition. 

Aktan et al. (1992) tested a concrete bridge in an effort to determine if vibration tests can be used 

to assess bridge condition. Impact testing was performed and modal flexibility was found and 

compared to static flexibility. The static and modal flexibility did not agree well and excitation of 
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nonlinearities by impact testing was pointed to as a cause. The authors came to a similar 

conclusion as Agardh in that modal properties can be used to determine bridge condition. 

Miller et al. (1992) tested a concrete bridge using hammer impacts to try to determine the bridge 

capacity. Natural frequencies, damping ratios, and mode shapes were found. The bridge had 

known deterioration and the author discussed the issues with the industry and AASHTO process 

for subjectively calculating the remaining load-carrying capacity.     

Wood et al. (1992) attempted to use a novel excitation device for excitation of bridges. A nail 

gun was fired into a plate to produce a sharp impact. This work indicates the difficulty in finding 

cost-effective methods for adequately exciting bridge structures. 

Aktan et al. (1993) tested a three-span steel bridge using forced input (impact and actuator). 

They found the natural frequencies, damping ratios, mode shapes, and modal flexibility. These 

modal properties were used to calibrate a finite element model and the finite element model was 

then used to determine live load demand for bridge rating. The bridge was also rated using 

standard AASHTO distribution factors and the two results were compared. The calibrated finite 

element model produced much higher load ratings than the AASHTO analysis. 

Rotter et al. (1994) tested an old steel railroad bridge in an attempt to determine the remaining 

load capacity. An impact hammer was used to excite the bridge and the modal properties were 

compared to a finite element model. The measured natural frequencies were lower than the 

analytical model and the authors attributed this to section loss of the girders. 

Aktan et al. (1995) discussed the results of testing seven bridges with the purpose of damage 

detection via modal analysis. Impact excitation was used and natural frequencies, damping 
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ratios, mode shapes, and modal flexibility were found in all cases. The authors indicated that the 

modal flexibility agreed well with static flexibility and that modal flexibility could be used to 

help indicate damage.     

Deger et al. (1995) tested a prestressed concrete bridge in Germany. Data was collected before 

and after repairs and finite element models were calibrated to the measured modal properties. 

Haritos et al. (1995) tested four concrete bridges in Australia in an attempt to assess their 

condition. The modal data was used to calibrate finite element models. 

Zhang and Aktan (1996) performed impact vibration tests on a bridge in Ohio and found natural 

frequencies, damping ratios, mode shapes, and modal flexibility. These properties were used to 

calibrate a finite element model which was then used to determine live load demand. 

Wang et al. (2005) discuss a process that has been used to rate nearly 40 Ohio bridges. Modal 

analysis is used to calibrate finite element models of the bridges and then rating is based on the 

analytical model output. Excitation for the modal analysis is provided by instrumented hammer 

and natural frequencies, modal mass, and modal flexibility are found. The authors found that 

ratings based on the physical testing significantly exceed conventional ratings.  

Catbas et al. (2006) provided a good synopsis of issues with and the state of the art of damage 

detection and condition assessment using modal analysis. In this paper, the authors describe a 

process of using modal flexibility to detect bridge damage and describe some of the challenges 

that go along with detection. They also compare deflection results based on measured modal 

properties to deflection results from a physical load test. They show that even significant damage 
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is hard to detect in structures that are redundant. However, the authors do not mention or attempt 

to determine the load carrying capacity of the bridges discussed. 

Siswobusono et al. (2006) performed load testing and vibration testing of a bridge in Alabama 

with a purpose of providing a load rating. The tested bridge had a span length of 20 feet and 

consisted of steel beams with the upper half encapsulated in the concrete deck. The authors rated 

the bridge by determining the midspan deflection for a given load and then extrapolating the load 

that would cause a deflection equal to the AASHTO comfort limit for pedestrian use. It was 

assumed that the bridge load capacity equaled the load that would cause a deflection equal to the 

comfort limit deflection (L/800 for bridges without sidewalks and L/1000 for bridges with 

sidewalks). A major flaw in this paper is the assumption that structural failure would not occur 

for any reason prior to the selected deflection threshold.   

Gangone et al. (2009) reports on vibration testing performed for bridge condition assessment and 

health monitoring; however, this paper is highly representative of the predominance of 

publications in that the authors were only trying to identify local damage. An assessment of the 

global load capacity of the bridge was not performed. 

Catbas (2010) developed revised equations for distribution of truck loads for moment and shear 

using modal parameters. In this work, 40 concrete T-beam bridges were modeled using finite 

element software. Regression analysis was then used to correlate the modal properties found by 

the FE software with the maximum moment and shear found by the FE software. The purpose 

was to demonstrate that alternate distribution factor equations that incorporate measurable modal 

properties can be developed for common bridge types. The paper then compares the developed 
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distribution factor equations against a finite element model that had been calibrated to measured 

modal data and also against the AASHTO distribution factors. 

Gangone et al. (2011) outfitted a bridge with more than 100 sensors for diagnostic monitoring. 

Strain gauge data was used to produce load ratings for the bridge. Accelerometers were used for 

modal characterization and natural frequencies and mode shapes were found; however, this data 

was not used for vertical load capacity analysis. 

Gokce et al. (2011) reported on load rating and system reliability of a bascule bridge in Florida.  

The authors performed vibration analysis, load testing, and finite element modeling of the 

subject bridge. The finite element model was calibrated using strains measured during load 

testing. The model was then used for live load stress determination. This finite element output 

was used for the load rating. Reliability analysis was significantly discussed and was performed 

for the bridge system; however, the authors did not express how an operating agency should use 

output of the reliability analysis to inform decision making. 

Yi et al. (2011) performed vibration testing of a bridge in Korea. They used modal analysis to 

update a finite element model and then verified the accuracy of the model by comparing 

deflections predicted by the calibrated model to deflection measurements of the physical bridge.  

Analysis:     

The literature review shows that physical vibration testing is seldom used to help estimate load 

carrying capacity of bridges. When researchers have used modal data to enhance load capacity 

estimates, they have in nearly all cases taken the intermediate step of calibrating a highly detailed 

finite element model. They then use the model to determine live load stresses. Many researchers 
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are also attempting to isolate the location and severity of structural damage using vibration 

testing and modal analysis. This is an open research topic and the literature does not demonstrate 

a method by which any damage should be incorporated into bridge load ratings. Also, no method 

has been developed for directly incorporating the results of vibration testing in the production of 

bridge load ratings. 

8.4 METHOD OF ADVANCE 

Bridge owners use bridge ratings to make operational and maintenance decisions, and more 

accurate ratings enable better decisions. However, if a potential improvement in accuracy comes 

at a high cost, owners are unlikely to utilize the method. As has been discussed at length, the 

novel excitation system greatly reduces the cost of performing experimental modal analysis, but 

the method by which rating calculation is undertaken must also be achievable at a low cost. This 

requirement eliminates the common method of generating and calibrating a complicated finite 

element model since such a process requires many man-hours by skilled engineers. It is desirable 

to use the modal results in a much more direct manner. Additionally, FE models are colored by 

the experiences of the person creating the nominal model, and calibrated models are neither 

unique nor guaranteed to correctly represent force flow through the physical structure.  

Considering the three parts of the rating equation that can be manipulated, the biggest ‘bang for 

the buck’ can be achieved by selecting the live load demand. This can be recognized in the 

literature since most researchers only use their results to determine live load forces. Using modal 

results, structural capacity can be slightly modified by altering section properties, although an 

increase in section properties would be difficult to justify versus those resulting from the as-built 

dimensions. AASHTO does encourage the use of reduced section properties for apparent 

corrosion and damage, however, damage is usually localized and the characterization of the local 
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damage is an open research topic, may not alter the controlling ratings in any case, and is outside 

the scope of this thesis. 

The dead load demand typically cannot be modified based on the results of modal testing. 

Although it is possible to estimate a mass matrix based on the modal testing, the original 

construction sequence largely determines the dead load forces that must exist within each 

structural element. If a higher mass (and higher dead load forces) than expected based on as-

builts is suspected based on modal results, then direct measurements of the structural 

components would be a far more accurate way to determine the correct mass. Dead load stress is 

also dependent on section properties, and could thus be affected slightly by revised section 

properties. However, this is again dependant on localizing and characterizing any suspected 

damage that may reduce the section. 

The live load demand is the most appropriate variable to manipulate since it includes the most 

uncertainty. As discussed, most bridges are designed and rated using approximate distribution 

factors that are calculated from a single equation for a broad range of bridge geometries. There is 

a significant volume of literature that challenges the accuracy of both the older ASD/LFD and 

the newer LRFD load distribution factors (for example Cai (2005) and Suksawang and Nassif 

(2007). AASHTO even provided a guide specification to enhance the older distribution factors 

since for some bridge geometries, the resulting live load shear or moment in a girder could be up 

to 50% off of accurate values (AASHTO 1994). If the actual flow of forces through the structure 

is known, then the use of distribution factors can be discarded, generally resulting in more 

accurate and less conservative bridge ratings. Therefore, this work will advance the state of the 

art by using measured modal parameters to determine more accurate live load demand. 
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8.5 USE OF MODAL FLEXIBILITY FOR BRIDGE RATING 

It is desirable to use the results of the modal analysis to accurately determine the live load 

demand at all critical sections within the bridge. The live load demand can then be used in the 

rating equation to find the capacity of the bridge for the specified legal or design load. To 

proceed with this method, it is necessary to develop influence surfaces for each local element 

force or stress that may be critical. These influence surfaces can then be used to position truck 

loads to cause maximum response. 

8.5.1 Problem Definition 

The measured modal flexibility cannot be directly used for determining the local distribution of 

force through a structure. The problem is that the measured flexibility matrix does not usually 

contain the necessary information from which local stiffness could be determined. The flexibility 

matrix relates global responses to global applied loads as: 

 ሾ݂ሿሼܲሽ ൌ ሼݑሽ Equation 8.2.
Where: 

ሾ݂ሿ ൌ the measured modal flexibility matrix. 

ሼܲሽ ൌ a vector of externally applied global loads. 

ሼݑሽ ൌ a vector of global displacements. 

 

This equation demonstrates that for any applied external loads, the flexibility matrix can be used 

to calculate the displacements. In order to determine the local element forces, a different 

equation must be solved: 
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 ሾܨ௘௟௘ሿ ൌ ሾ݇௘௟௘ሿሾߚ௘௟௘ሿሼݑሽ Equation 8.3.
Where: 

ሾܨ௘௟௘ሿ ൌ the internal element forces in local coordinates. 

ሾ݇௘௟௘ሿ ൌ the stiffness parameters of the element in local coordinates. 

ሾߚ௘௟௘ሿ ൌ a matrix that relates the local and global coordinate systems. 

ሼݑሽ ൌ a subset of the global displacements for the element under consideration. 

 

In this equation, the local forces are desired but only ሼݑሽ is known. Local stiffness must be 

estimated in order for local forces to be found and used in the rating process. On the surface, it 

would seem quite possible to estimate local stiffness values based on the known flexibility 

matrix, since flexibility can be assembled directly from known local stiffnesses. However, modal 

flexibility is typically rank deficient and thus a unique solution does not exist.  

Consider the simple propped cantilever shown in Figure 8.5, which is indeterminate to the first 

degree. Assuming that modal flexibility was determined for a single DOF in the vertical 

direction at midspan, it is obvious that a unique solution for the stiffness of the two elements, ܫଵ 

and ܫଶ, does not exist. An infinite number of combinations of the two stiffness parameters would 

provide the same measured deflection for an applied load. A unique solution does not exist 

because the flexibility matrix (a scalar value in this case) is rank deficient. However, if the 

rotational DOF at midspan had also been measured, then the measured flexibility matrix (of size 

2x2) would be adequate to uniquely determine the local stiffness parameters, ܫଵ and ܫଶ.  
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Figure 8.5. Propped cantilever beam with variable stiffness. 

Additionally, in order to determine local stiffness parameters from which internal forces can be 

found, a model must be assumed that creates connectivity between the measured DOFs. The 

assumption of a model determines the range of solutions that can exist, and since any number 

and complexity of models could be assumed and justified, the final results will not be unique and 

will be dependent on the model assumptions. 

8.5.2 Assumption of a Model 

The first step in estimating the internal structural forces from the measured flexibility matrix is 

the assumption of a model. The need to develop a model leads many researchers to turn to 

complex finite element programs and calibration methods. As stated before, it is desirable to 

avoid this level of complexity, and thus the simplest model that can adequately represent the 

structure should be selected. The tested bridge is essentially planar, and deformations due to 

vertical loads primarily consist of vertical displacements and rotations about axes that lie in the 

plane of the structure. This suggests that Bernoulli-Euler beam elements are adequate. The most 

simple connectivity is also desired. Since the measured DOFs were arranged in a grid along the 

parallel beams of the bridge, one possible model is as shown in Figure 8.6. Each element in the 

model is assumed to be capable of carrying vertical shear, vertical bending, and torsion as shown 

in Figure 8.7. 
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This model has a few benefits. First, the simplicity allows quick and easy calculation without 

undue complexity that may not improve the estimate of forces. Second, since the beams are the 

critical rating elements in bridges of this type, it is essential that model elements exist that will 

provide the internal forces along the beam lines. Finally, a grid or grillage analysis is consistent 

with past practice in the design of bridges, and is thus more easily accepted by industry. 

 
Figure 8.6. Proposed model for estimating internal forces.   

 
Figure 8.7. Detail of local frame element DOFs. 

8.5.3 Estimation of a Full-Rank Flexibility Matrix 

In order to estimate the local stiffness parameters from the flexibility matrix, the rank must be 

sufficient for the proposed model. The measured matrix only includes vertical displacement at 
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the DOFs, but the assumed elements for the model require rotations as well. Since the rotations 

were not measured, values must be estimated that are consistent with the measured 

displacements. 

A method is used that was proposed by Doebling and Peterson (1997). In this method, a full rank 

flexibility matrix is assembled based on assumed values of local stiffness for the proposed 

model. Scaling values are then determined that modify the full rank matrix so that the elements 

in common with the measured flexibility match as closely as possible (in a least-squares sense). 

The final fullirank matrix is then composed of the measured flexibility values augmented by the 

values from the scaled model. The steps in the method given by Doebling and Peterson are 

shown below. 

The first step is to generate a full rank flexibility matrix based on an assumed model. The 

assumed model is the same as given above with all stiffness parameters set to a value of unity. A 

global stiffness matrix is assembled from the local stiffness of each beam, its connectivity, and 

its orientation. The local stiffness matrix and the beta matrix used are as shown in Figure 8.8 and 

Figure 8.9 respectively, and are taken from Sennett (1994, 89-90). The global flexibility matrix is 

the inverse of the global stiffness matrix.   

ە
ۖۖ
۔

ۖۖ
ۓ ௜ܶ

௜ܯ

௜ܸ

௝ܶ
௝ܯ
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Figure 8.8. Definition of local stiffness matrix for assumed elements. 
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ሾߚሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

cos ߠ sin ߠ 0
െ sin ߠ cos ߠ 0

0 0 1
0

0
cos ߠ sin ߠ 0

െ sin ߠ cos ߠ 0
0 0 ے1

ۑ
ۑ
ۑ
ۑ
ې

 

Figure 8.9. Definition of transformation matrix for assumed elements. 

The second step is the parameterization of the flexibility matrix by using the singular value 

decomposition: 

 ሾܩሿ ൌ ሾܸሿሾΣሿሾܸሿ் Equation 8.4.
Where: 

ሾܩሿ ൌ the assumed full rank flexibility matrix. 

ሾܸሿ ൌ the singular vectors of ሾܩሿ. 

ሾΣሿ ൌ the singular values of ሾܩሿ (on the main diagonal). 

 

The third step is the selection of a correlation set. The correlation set is selected as the values in 

the measured flexibility matrix that are considered to be the most accurate. The scaling of the 

assumed matrix will be such that the assumed matrix matches the correlation set as closely as 

possible. The correlation set is given as: 

 

ሾ݄ሿ ൌ ൦

݅ଵ
݅ଶ

݆ଵ
݆ଶ

ڭ
݅௡

ڭ
݆௡

൪ Equation 8.5.

Where: 

݅ ൌ the row co-ordinate of the correlation element within the measured flexibility matrix. 

݆ ൌ the column co-ordinate. 
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The fourth step is to construct a problem such that the ሾ݄ሿ entries in ሾܸሿሾΣሿሾܸሿ் are a least-

squares fit to the correlation set from the measured flexibility matrix. Doebling and Peterson 

formulate the problem in this way: 

 ൛Σ෠ൟ ൌ ሾܥሿିଵሼܤሽ Equation 8.6.
 

 ሾܥ௥ሿ ൌ  ሾܸሺ݅௥, 1ሻ כ ܸሺ ௥݆, 1ሻ ڮ ܸሺ݅௥, ݊௦ሻ כ ܸሺ ௥݆, ݊௦ሻሿ Equation 8.7.
Where: 

ሾܥ௥ሿ ൌ the rth row of ሾܥሿ. 

ሼܤሽ ൌ the vector of the correlation elements from measured flexibility. 

݊௦ ൌ the number of non-zero singular values in ൛Σ෠ൟ. 

 

From this, a scalar value is found that will scale the assumed flexibility as: 

ߙ  ൌ ሼΣሽ௡ೞ
ା ൛Σ෠ൟ Equation 8.8.

Where: 

ሼΣሽ݊ೞ
൅ ൌ the pseudo inverse of the ݊௦ largest singular values. 

 

The fifth step is to scale the assumed flexibility matrix as: 

෨൧ܩൣ  ൌ ሾܸሿߙሼΣሽሾܸሿ் Equation 8.9.
Where: 

෨൧ܩൣ ൌ the scaled assumed flexibility matrix. 
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The sixth step is to assemble a flexibility matrix that is composed of the measured values 

augmented by the scaled assumed values: 

 ሾܩ௖ሿ ൌ ሾܩ௢ሺ݄ሻ .෨ሺത݄ሻሿ Equation 8.10ܩ
Where: 

௢ሺ݄ሻܩ ൌ the measured flexibility matrix entries. 

෨൫ത݄൯ܩ ൌ the scaled values from the assumed flexibility matrix that complement ݄. 

 

The final step is to iterate using ሾܩ௖ሿ as the starting assumed flexibility matrix until a desired 

level of convergance is achieved. 

Using this method, a full-rank flexibility matrix can be estimated that preserves the values for the 

measured DOFs, while augmenting with nearly consistent rotations for the unmeasured DOFs.  

8.5.4 Solution for Local Element Stiffness 

Now that a full rank global flexibility matrix has been attained, estimates for the local stiffness 

values (ܫ and ܬ) are needed so that local forces can be calculated. The local stiffness can be found 

by disassembly of global flexibility. The process is thoroughly documented in Doebling et al. 

(1998), but only highlights of the process are restated herein. 

The disassembly is performed by formulating a problem: 

 ሾܥሿሼܲሽ ൌ ሾܤሿ Equation 8.11.
Where: 

ሼܲሽ ൌ a vector of the unknown stiffness parameters. 
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The ሾܥሿ and ሾܤሿ matrices are formed from the flexibility matrix and from the assumed connectivity and 

support conditions of the assumed structural model. In particular: 

ఈ,ఉܥ  ൌ  ሼܣఈሽ்ሾܩሿ൛ܣఉൟ൛ܣఉൟ்ሾܩሿሼܣఈሽ Equation 8.12.
 

ఈܤ  ൌ ሼܣఈሽ்ሾܩሿሼܣఈሽ Equation 8.13.
Where: 

ሾܩሿ ൌ the known flexibility matrix. 

ሾܣሿ ൌ the stiffness connectivity matrix. 

ሼܤሽ ൌ a vector of the complementary strain energy (per row) associated with the applied 

‘load vector’ ሼܣఈሽ. 

 

The formulation of ሾܣሿ is based on combining the static eigenvectors of the local stiffness of the various 

elements in the model via a transformation to the global DOF. This stiffness connectivity matrix is 

assembled as: 

 ሾܣሿ ൌ  ሾሾܶሿଵ
்ሾߢሿଵ ሾܶሿଶ

்ሾߢሿଶ ڮ ሾܶሿ௡
்ሾߢሿ௡ሿ Equation 8.14.

Where: 

ሾܶሿ ൌ an elemental to global DOF transformation matrix. 

ሾߢሿ ൌ a matrix of static eigenvectors for an element of the structural model. 

݊ ൌ the number of elements in the structural model. 
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The vector ሼܲሽ is assembled in the same organization as the global DOF such that: 

 

ሼܲሽ ൌ ൦

ሼ݌ሽଵ
ሼ݌ሽଶ

ڭ
ሼ݌ሽ௡

൪ Equation 8.15.

Where: 

ሼ݌ሽ ൌ a vector of static eigenvalues for an element of the structural model. 

 

For the beam elements used in this writing, the static eigenvalues and eigenvectors for an individual 

element are calculated as shown below: 

 

ሼ݌ሽ ൌ  

ۏ
ێ
ێ
ێ
ێ
ۍ
ܬܩ2

ܮ
0 0

0
ܫܧ2

ܮ
0

0 0
ଶܮሺܫܧ6 ൅ 4ሻ

ଷܮ ے
ۑ
ۑ
ۑ
ۑ
ې

 Equation 8.16.

 

 

ሾߢሿ ൌ  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ 0 0

√2
ଶܮ√ ൅ 4

1/√2 0 0

0 െ1/√2
ܮ

ଶܮ√2√ ൅ 4

0 0
െ√2

ଶܮ√ ൅ 4
െ1/√2 0 0

0 1/√2
ܮ

ଶܮ√2√ ൅ ے4
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 Equation 8.17.

 

 ሾ݇௘௟௘ሿ ൌ ሾߢሿሾ݌ሿሾߢሿ் Equation 8.18.
 

Where: 

ܩ ൌ the shear modulus of an element. 

ܬ ൌ the torsional stiffness of an element. 
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ܮ ൌ the length of an element. 

ܧ ൌ the modulus of elasticity of an element. 

ܫ ൌ the moment of inertia of an element. 

 

With this disassembly process, the unknown stiffness parameters can be solved for. With the 

local stiffness now known for each element of the structural model, elemental stiffness matrices 

can be generated and then a global stiffness matrix can easily be assembled. Thus, at this point a 

simple model exists that was developed directly from the measured modal flexibility matrix. 

8.5.5 Local Stiffness Results 

The two-step process described above is used on a measured modal flexibility matrix from the 

Hartbarger Bridge. Since the best modal results were found using the multisine signal with all 

excitation lines combined, only this modal flexibility matrix is used herein. The matrix is of size 

20 x 20 with only vertical DOFs included. In the first step, the matrix is augmented with 

compatible rotations, and in the second step, the augmented matrix is disassembled to find local 

stiffness values.  

It is desirable to ensure that the calculated local stiffness is reasonable, and thus hand 

calculations are performed to determine ܫ and ܬ values as well. The hand calculations assume 

composite action and follow AASHTO guidelines for the width of deck that contributes to each 

girder. Table 8.1 and Table 8.2 summarize and compare the results from the disassembly of 

modal flexibility and the results calculated using the as-built section dimensions. In these tables, 

the segment numbers refer to the portions of each main girder that comprise one element of the 

assumed model. 
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Segment Girder 1 Girder 2 Girder 3 Girder 4 
1 11,548 12,077 12,195 11,481 
2 11,760 13,514 11,433 10,949 
3 11,597 11,929 14,016 12,519 
4 9,473 10,380 10,846 12,772 
5 8,213 10,998 10,498 9,678 
6 8,363 12,857 10,592 10,762 
7 16,920 11,021 12,109 11,148 
8 11,844 12,683 11,989 11,195 

As-Built 9,498 9,967 9,967 9,498 
 

Table 8.1. Moment of inertia values found by disassembly of flexibility and by hand 
calculations using as-built dimensions (in4). 

The moment of inertia values shown in Table 8.1 demonstrate the success of using disassembly 

to find local stiffness. The average bending stiffness found via disassembly is 19% higher than 

the as-built stiffness for the fascia girders, and is also an average of 19% higher for the interior 

girders. The stiffness values calculated from the as-builts do not include any stiffness benefit due 

to the barriers per industry standard. In general, the bridge also seems stiffer near the ends of the 

span than toward the middle. Some significant variation in local stiffness values is the result of 

assumed rotations that are not completely consistent with the measured deflections. Although a 

case could be made for smoothing the values, these local stiffness values are used without 

modification in the generation of a global stiffness matrix for application of live load. 
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Segment Girder 1 Girder 2 Girder 3 Girder 4 
1 26,448 50,394 52,501 27,286 
2 9,895 14,522 14,748 10,212 
3 10,346 15,406 15,946 10,531 
4 10,229 15,829 16,464 10,565 
5 10,586 16,719 17,133 10,847 
6 10,612 16,802 17,129 10,811 
7 10,124 15,166 15,721 10,198 
8 21,758 48,756 50,292 22,977 

As-Built 12,288 15,360 15,360 12,288 
 

Table 8.2. Torsional stiffness values found by disassembly of flexibility and by hand 
calculations using as-built dimensions (in4).  

Table 8.2 displays the torsional stiffness of each girder segment as found from disassembly of 

the flexibility matrix and found by calculation using the as-built dimensions of the bridge. The 

torsional stiffnesses of the girders from disassembly are highly consistent for the fascia girders 

and for the interior girders, except at the girder ends. The high stiffness at the ends is attributed 

to the wrap-around deck detail which largely prevents rotation in the vicinity of the supports. Not 

including the girder end segments, the fascia girders are an average of 15% less stiff than the as-

built value, and the interior girders are an average of 4% stiffer than the as-built value. Again, the 

local stiffness values found from disassembly of the augmented flexibility matrix are used 

without modification in the generation of global stiffness for live load effect. 

8.6 GENERATION AND USE OF INFLUENCE SURFACES 

The maximum live load effects for the selected critical structural elements of the bridge must be 

found. For the various types of truck loads, which have deterministic wheel locations, but which 

may exist in nearly any location on the bridge, influence surfaces are commonly used to position 

the trucks for maximum effect. Thus, influence surfaces are generated for each critical rating 

element. The potential critical ratings for this bridge are:  
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• maximum moment at midspan of fascia girder 

• maximum moment at midspan of interior girder 

• maximum shear near support of fascia girder 

• maximum shear near support of interior girder 

An influence diagram is generated for each of these four force effects by applying a unit load to 

the structural model developed from the modal flexibility matrix. The internal force effect of 

interest is found with the following process. First, the global stiffness matrix is partitioned 

(Sennett 1994, 42): 

 
ቊ൛ܨ௣ൟ

ሼܨ௦ሽ
ቋ ൌ ቈ

௣௣൧ܭൣ ௣௦൧ܭൣ
௦௣൧ܭൣ ሾܭ௦௦ሿ

቉ ቊ൛ݑ௣ൟ
ሼݑ௦ሽ

ቋ Equation 8.19.

 

Where the subscript ‘p’ denotes the forces and displacements at free DOF, and the subscript ‘s’ 

denotes the forces and displacements at supported DOF. The global displacements at the free 

DOF are solved for as (assuming zero support displacements):  

 ൛ݑ௣ൟ ൌ .௣ൟ Equation 8.20ܨ௣௣൧ିଵ൛ܭൣ
 

And then the unknown reactions are found as: 

 ሼܨ௦ሽ ൌ .௣ൟ Equation 8.21ݑ௦௣൧൛ܭൣ
 

Finally, the local element forces are found using the known displacements and local element 

stiffnesses as: 

 ሾܨ௘௟௘ሿ ൌ ሾ݇௘௟௘ሿሾߚ௘௟௘ሿሼݑሽ Equation 8.22.
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A unit load is applied across a grid of locations and the solution process is repeated until a 

surface of response amplitudes is known. For the work reported herein, only the free vertical 

DOF of the simple frame model are used as load points in the development of the surfaces.  

The influence surfaces are now used to find the maximum responses due to the various truck and 

lane loads. First, a given truck is selected as the current load. The truck is applied in many 

locations within the deck limits per AASHTO requirements, and the maximum response is 

saved. For this project, truck positions follow a 1-foot grid in the longitudinal and transverse 

directions. In most cases, wheel loads do not align with influence surface ordinates. Linear 

interpolation of the influence ordinates is then used to estimate the response amplitude at the 

wheel location.  

8.7 RESULTS AND ANALYSIS 

Results of the rating of the Hartbarger Bridge are presented and discussed in this section. For all 

critical sections, ratings are developed using three different methods to estimate the live load 

effect: 

• AASHTO live load distribution factors 

• Calibrated finite element model 

• Measured modal flexibility 

The calibrated finite element model used for this work is the same one used in the previous 

chapter, and which was calibrated to closely match the measured natural frequencies. Influence 

surfaces are also developed for this model and loaded with the various rating trucks to find 

maximum response. For ratings based on bending moment, the average stresses in the plate 
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elements at the locations of maximum response are used. For shear ratings, the support reactions 

from the model are used. 

8.7.1 Overview of Rating Philosophies 

Over time, AASHTO has promulgated different design and rating philosophies. These 

philosophies are Allowable Stress Design (ASD), Load Factor Design (LFD), and Load and 

Resistance Factor Design (LRFD). AASHTO only currently supports the LRFD method, but 

various state and local transportation agencies still use ASD and LFD due to their lengthy 

experience with those design methods. Also, AASHTO still permits bridges to be rated using any 

of these three methods. In the interest of completeness, each of these philosophies is used to rate 

the bridge, and the ways in which the philosophies differ are discussed below. 

The ASD philosophy is largely based on empirical data and historic successes and failures. All 

loads are applied at their nominal (or service) levels, but a factor of safety is applied to structural 

capacity. For example, a steel section in tension is limited to a design allowable stress of 0.55ܨ௬. 

Thus, a factor of safety of approximately 1.82 has been applied for tensile stress in steel (with the 

implicit assumption that first yield is the failure criteria). Therefore, in the rating equation, 

capacity is based on allowable stresses. Dead load and live load demand are calculated based on 

their expected actual load levels. The rating equation is: 

ܨܴ  ൌ
ܥ െ ܦ

ܮ
 Equation 8.23.

 

The LFD design philosophy attempted to institute a more rational approach by applying load 

factors based on the level of uncertainty (i.e. the statistical spread) of the loads. For example, 

dead loads are factored by 130% whereas the more highly variable live loads are factored by 
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167%. However, the capacity is not modified by a safety factor. A steel section in tension is 

limited to a design stress equal to the yield stress, ܨ௬ (although plastification is permitted for 

some sections in bending). The rating equation is: 

ܨܴ  ൌ
ܥ െ ܦଵܣ

ܮଶܣ
 Equation 8.24.

Where: 

ଵܣ ൌ the dead load factor of 1.3. 

ଶܣ ൌ the live load factor of 2.17 for inventory and 1.3 for operating level. 

 

The LRFD design philosophy attempts to provide the same statistical probability of failure for all 

elements of a structure. With ASD and LFD, at the completion of design, an engineer has no idea 

what the overall factor of safety is for the structure in its entirety. With LRFD, theoretically, the 

probability of failure is known and all elements have the same probability of failing first. This is 

accomplished by providing both load factors that account for the variability inherent in the 

various types of loads, and resistance factors that account for the variability in the strength of 

materials. Thus, the rating equation is: 

ܨܴ  ൌ
ܥ߶ െ ܦ஽ߛ

ܮ௅ߛ
 Equation 8.25.

Where: 

߶ ൌ a resistance factor for the material and type of stress applied. 

஽ߛ ൌ a load factor applicable to the type of dead load. 

௅ߛ ൌ a load factor applicable to the type of truck load. 
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Traditionally, there are also two rating levels. The inventory rating determines a live load level 

that the bridge can carry daily without restriction of any kind. The operating rating determines a 

live load level that can be considered as a maximum load that the bridge may experience 

occasionally and that the bridge can carry safely. For all three design philosophies, inventory 

ratings essentially align with the normal design strength of the structure. However, operating 

ratings are handled somewhat differently for the three philosophies. 

In ASD, a higher allowable stress is permitted in the calculation of operating ratings. For 

example, allowable tensile stress in steel is increased from 0.55ܨ௬ for inventory to 0.75ܨ௬ for the 

operating level (an increase of 36%). The amount of increase in capacity is not consistent across 

all material stresses in ASD.  

For LFD, a smaller load factor of 1.3 is applied to the live load for operating ratings, whereas the 

load factor is 2.17 for inventory ratings. Thus, in LFD, the operating rating for any element is 

always 167% of the inventory rating.  

LRFD is similar to LFD, in that the only modification is to the load factor for live load. For 

LRFD, when using the HL-93 design load, a load factor of 1.35 is used at the operating level, 

whereas the factor is 1.75 at the inventory level. Thus, the operating rating is always 130% of the 

inventory rating. For legal loads, a single load factor of 1.40 is used (based on the low ADTT at 

this bridge), and there is no separate rating for the inventory and operating levels. Instead, the 

rating is interpreted as a safe load carrying capacity for the type of legal truck. 

The results using the three different methods for determining live load stress are separated based 

on the rating philosophy. The following subsections present the rating results for the Hartbarger 
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Bridge using ASD, LFD, and LRFD respectively. Rating calculations are voluminous and are 

included in the appendices. 

8.7.2 ASD Rating Results 

The ASD inventory ratings are presented in Table 8.3 and Table 8.4 for the three live load stress 

calculation methods. The ratings headed ‘DF’ are due to the use of AASHTO distribution 

factors, those headed ‘FE’ are due to the use of the calibrated finite element model, and those 

headed ‘MF’ are due to the use of the disassembled, augmented modal flexibility matrix. For the 

ASD and LFD philosophies, interior girder forces are based on distributing S/5.5 lanes of trucks 

to the girder (where ‘S’ is the girder spacing). For the fascia girder, the lever rule is used as 

illustrated in Figure 8.10.  

 
 

Figure 8.10. Location of wheel loads when using the lever rule per AASHTO. 

The ratings are divided into rows for the critical sections. The ‘Deck’ row contains ratings based 

on maximum bending stress at the extreme fiber (top) of the deck. The ‘Flange’ row contains 

ratings based on bending in the extreme fiber (bottom) of the bottom flange. The ‘Shear’ row 

contains ratings based on average shear stress in the web at the end of the girder. 

 

 

 

2’-0” 6’-0” Gage
Assumed 
Hinge
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Critical 
Section 

HS-20 Design Load Type 3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 1.80 0.96 1.93 2.48 1.30 2.53 

Flange 0.67 1.04 0.72 0.89 1.35 0.95 
Shear 3.49 3.42 3.24 4.80 4.58 4.38 

Fa
sc

ia
 Deck 1.66 1.65 2.05 2.21 2.23 2.70 

Flange 0.85 1.49 1.04 1.13 1.97 1.38 
Shear 3.81 4.56 5.11 5.07 6.49 7.13 

 

Table 8.3. ASD inventory ratings for HS-20 and Type 3 truck loads. 

Critical 
Section 

Type 3S2 Legal Truck Type 3-3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 2.33 1.41 2.77 2.47 1.56 2.77 

Flange 0.98 1.48 1.04 1.07 1.58 1.04 
Shear 4.52 4.72 4.34 4.78 5.00 4.60 

Fa
sc

ia
 Deck 2.43 2.44 2.96 2.65 2.59 3.04 

Flange 1.24 2.16 1.51 1.35 2.21 1.55 
Shear 5.56 5.64 6.48 6.05 6.00 6.84 

 

Table 8.4. ASD inventory ratings for Type 3S2 and Type 3-3 truck loads. 

The results are consistent for all four load types, so only the HS-20 results are discussed in detail 

for brevity. First, it is noted that the deck ratings are much lower using the FE model, but the 

flange ratings are much higher. For maximum bending, a wheel load is applied in the immediate 

area from which the deck stress is extracted. The stress concentrations due to the wheel load 

have not yet spread out through the deck width and steel section, resulting in higher stresses in 

the deck and lower stresses in the bottom flange. The other two methods proceed by calculating a 

moment due to the loads and finding the stress assuming linear elastic behavior and full 

participation by the steel and concrete. Thus, this result is not surprising, but does help indicate 

some of the types of unexpected issues that can occur even when using detailed FE models for 

design or rating. 
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Second, the modal flexibility flange ratings are 7% higher than the distribution factor ratings for 

the interior girder but are 22% higher for the fascia girder. Also, the finite element flange ratings 

are 55% higher than the distribution factor ratings for the interior girder but are 75% higher for 

the fascia girder. This indicates that the distribution factor ratings are more conservative for the 

interior girders than for the fascia girders for bending. For shear, the interior girder distribution 

factor rating is the least conservative of all methods, but the fascia girder distribution factor 

rating is the most conservative.   

Third, the ratings for bending stress from modal flexibility are always higher and less 

conservative than the distribution factor ratings, but the rating increase is not large for the 

interior girders. This suggests that the distribution factor for interior girders is fairly accurate for 

bridges with no skew (which has been documented historically).  

Overall, both the FE model and the flexibility model indicate that bending stresses spread across 

the full structure to a greater extent than is estimated by the distribution factors. Also, both 

models agree that interior girders take slightly more shear and that fascia girders take 

significantly less than predicted by distribution factors.   

The operating ratings using the ASD method are shown in Table 8.5 and Table 8.6, and show the 

same relationships as the inventory ratings do. 
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Critical 
Section 

HS-20 Design Load Type 3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 2.89 1.54 3.10 3.97 2.09 4.06 

Flange 1.23 1.89 1.32 1.64 2.47 1.73 
Shear 4.95 4.84 4.59 6.80 6.49 6.20 

Fa
sc

ia
 Deck 2.68 2.66 3.30 3.57 3.59 4.36 

Flange 1.43 2.52 1.77 1.91 3.33 2.34 
Shear 5.37 6.43 7.19 7.17 9.15 10.03 

 

Table 8.5. ASD operating ratings for HS-20 and Type 3 truck loads. 

Critical 
Section 

Type 3S2 Legal Truck Type 3-3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 3.74 2.27 4.45 3.96 2.51 4.45 

Flange 1.79 2.70 1.90 1.96 2.89 1.90 
Shear 6.40 6.69 6.15 6.78 7.08 6.51 

Fa
sc

ia
 Deck 3.91 3.93 4.77 4.27 4.18 4.89 

Flange 2.10 3.66 2.56 2.29 3.75 2.62 
Shear 7.89 7.95 9.12 8.60 8.45 9.64 

     

Table 8.6. ASD operating ratings for Type 3S2 and Type 3-3 truck loads. 

8.7.3 LFD Rating Results 

The LFD inventory ratings are presented in Table 8.7 and Table 8.8 for the three live load stress 

calculation methods. The operating ratings are not shown since they are all merely 167% of the 

published inventory ratings. Again, for the LFD philosophy, the distribution factor for interior 

girder forces is S/5.5 lanes of trucks to the girder, and the lever rule is used for the fascia girder.  
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Critical 
Section 

HS-20 Design Load Type 3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 1.71 0.91 1.83 2.27 1.23 2.40 

Flange 1.42 2.17 1.52 1.89 2.84 1.99 
Shear 2.94 2.87 2.73 4.04 3.85 3.68 

Fa
sc

ia
 Deck 1.76 1.74 2.16 2.34 2.36 2.86 

Flange 1.50 2.64 1.85 2.00 3.48 2.45 
Shear 3.19 3.81 4.27 4.38 5.43 5.96 

 

Table 8.7. LFD inventory ratings for HS-20 and Type 3 truck loads. 

Critical 
Section 

Type 3S2 Legal Truck Type 3-3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 2.49 1.34 2.63 2.72 1.48 2.63 

Flange 2.07 3.10 2.18 2.26 3.32 2.18 
Shear 3.80 3.97 3.65 4.02 4.20 3.87 

Fa
sc

ia
 Deck 2.57 2.58 3.13 2.80 2.74 3.21 

Flange 2.19 3.83 2.68 2.39 3.93 2.75 
Shear 4.12 4.72 5.41 4.36 5.01 5.72 

 

Table 8.8. LFD inventory ratings for Type 3S2 and Type 3-3 truck loads. 

The LFD load ratings for bending moment are generally quite a bit higher than when using the 

ASD philosophy. This is because LFD allows the full plastic moment of the section to be used 

for compact steel sections such as the rolled beams of the Hartbarger Bridge. In contrast, the 

ASD allowable stresses do not incorporate any increase for compact sections beyond first yield.  

As with the ASD ratings, the LFD deck ratings using the FE model are quite low due to locally 

high deck stresses in the vicinity of a truck wheel. For interior girder bending, the modal 

flexibility based ratings are 7% higher than those using distribution factors. For bending in the 

fascia girder, the modal flexibility based ratings are 23% higher than the ratings using 

distribution factors. These rating improvements align very well with the ASD results. Also as 



 426 

before, modal flexibility and finite element results apply less shear force to fascia girders and 

more to interior girders than distribution factors do.  

8.7.4 LRFD Rating Results 

For the LRFD philosophy, distribution factors were developed in a rational manner as described 

previously, and are different for shear and for moment. The distribution factors also provide 

modification factors for shear and moment based on the bridge skew. Since this bridge has zero 

skew, the modification factors are unity. For the structural arrangement of the Hartbarger Bridge, 

the distribution factor equations for more than one lane loaded (controlling) are: 

Interior girder moment: 
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 Equation 8.26.

Fascia girder moment: 
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Interior girder shear: 

 
ܨܦ ൌ  0.2 ൅ ൬

ܵ
ݐ12݂

൰ െ ൬
ܵ
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൰

ଶ
 Equation 8.28.

Fascia girder shear: 

 
ܨܦ ൌ  ݁௩ ቈ0.2 ൅ ൬

ܵ
ݐ12݂

൰ െ ൬
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ݐ35݂
൰

ଶ
቉ Equation 8.29.

 

In the preceding equations, ܭ௚, ݁௠, and ݁௩ are found as: 

௚ܭ  ൌ ݊൫ܫ௫ ൅ ௚݁௚ܣ
ଶ൯ Equation 8.30.
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݁௠ ൌ 0.77 ൅

݀௘

ݐ9.1݂
 Equation 8.31.

 

 
݁௩ ൌ 0.6 ൅

݀௘

ݐ10݂
 Equation 8.32.

Where: 

ܵ ൌ the girder spacing, in feet. 

ܮ ൌ the span length, in feet. 

௦ݐ ൌ the design slab thickness. 

݊ ൌ the modular ratio between steel and concrete. 

௫ܫ ൌ the moment of inertia of the bare steel girder. 

௚ܣ ൌ the area of the bare steel girder. 

௚݁ ൌ the distance between the C.G. of the deck and the C.G. of the girder. 

݀௘ ൌ the distance from the center of fascia girder to the face of barrier. 

 

The LRFD inventory ratings are presented in Table 8.9 and Table 8.10 for the three live load 

stress calculation methods. 

Critical 
Section 

HL-93 Design Load Type 3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 1.63 0.87 1.69 3.33 1.76 3.41 

Flange 1.34 2.01 1.40 2.76 4.03 2.82 
Shear 2.43 2.95 2.77 5.31 5.79 5.54 

Fa
sc

ia
 Deck 1.79 1.57 1.90 3.66 3.26 3.96 

Flange 1.52 2.30 1.62 3.11 4.79 3.36 
Shear 3.65 3.72 4.27 7.99 8.16 8.95 

 

Table 8.9. LRFD inventory ratings for HL-93 and Type 3 truck loads. 
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Critical 
Section 

Type 3S2 Legal Truck Type 3-3 Legal Truck 
DF FE MF DF FE MF 

In
te

rio
r Deck 3.65 1.91 3.74 3.99 2.11 3.74 

Flange 3.02 4.40 3.09 3.30 4.71 3.09 
Shear 5.00 5.98 5.49 5.29 6.32 5.82 

Fa
sc

ia
 Deck 4.01 3.57 4.33 4.38 3.79 4.44 

Flange 3.41 5.26 3.68 3.72 5.39 3.77 
Shear 7.52 7.09 8.14 7.96 7.54 8.60 

 

Table 8.10. LRFD inventory ratings for Type 3S2 and Type 3-3 truck loads. 

Using LRFD, the results are similar to ASD and LFD. The finite element model overestimates 

deck stresses and underestimates bottom flange stresses at the critical bending section. The 

ratings using modal flexibility are again less conservative than the distribution factor based 

ratings. For the interior girder and HL-93 loading, the flange rating is 4% higher using modal 

flexibility. For the fascia girder, the flange rating is 7% higher. It is noteworthy that the LRFD 

distribution factors provide ratings that are much closer to the modal flexibility results than the 

other design philosophies, although this is to be expected with the more complex distribution 

factor equations. 

8.8 CONCLUSIONS 

The Hartbarger Bridge was load rated using three different methods for determining live load 

stress. The simplest and most commonly used method is the application of AASHTO distribution 

factors. The most computationally intensive method, which is only occasionally used in industry, 

is to perform loading in a detailed finite element model. The third method, which is developed 

herein, is to use a simple model developed from a measured modal flexibility matrix. 

The modal flexibility matrix cannot be used directly for load rating since it is not possible to 

determine the needed internal structural forces without knowledge of local stiffness. A direct and 

simple solution to this problem is developed herein, and builds on previously published works. 
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This two-step method starts by solving the common issue of having measured flexibility of 

insufficient rank. The rank is increased by using a least-squares process to best fit a simple 

structural model to the measured data. An augmented flexibility matrix is then assembled that 

consists of the measured flexibility combined with estimated columns and rows for the 

unmeasured DOFs. The second step of the method disassembles the augmented flexibility matrix 

to determine local stiffness parameters for the simple structural model. With estimates of local 

stiffness based on the measured flexibility, it is then possible to determine internal forces due to 

any external loading pattern, including rating vehicles. 

The ratings for the Hartbarger Bridge demonstrate that the modal flexibility method is less 

conservative than the distribution factor method. For the older ASD and LFD design 

philosophies, the ratings based on bending stress (which usually control) range from 7% to 22% 

higher for the modal flexibility method. For the current LRFD philosophy, which uses carefully 

calibrated distribution factors, the ratings based on bending stress range from 4% to 7% higher 

using modal flexibility.  

Previous studies have shown that AASHTO distribution factors are at their best for simple-span 

bridges with no skew, such as the Hartbarger Bridge, and are less accurate for continuous spans 

and skewed bridges. Thus, larger increases in load rating can be expected using the modal 

flexibility rating method on more complex bridges. A rating increase based on modal testing 

could benefit bridge owners in situations where ratings (for legal loads especially) are less than 

unity. In a situation such as this, the higher ratings from the less conservative approach might 

demonstrate that load posting is not required, or that less restrictive posting can be used. 

Additionally, more accurate ratings can enable owners to better utilize their limited maintenance 

funds for managing and maintaining their aging bridge inventories.      
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An additional potential benefit to owners, although not demonstrable on the tested structure due 

to its good structural condition, is that loss of stiffness due to damage or deterioration will 

automatically be incorporated into the measured flexibility. The extracted local stiffness of 

elements will thus be lower, and this will be reflected in the ratings. However, it is noted that 

only generalized damage that decreases structural stiffness will cause this effect. Localized 

damage such as weld cracks, girder nicks, etc. will not usually decrease stiffness and thus will 

not change the load ratings. Detection and characterization of localized damage and defects is an 

open area of research that is not in the scope of this thesis.   

The modal flexibility method also outperformed the rating results based on the calibrated finite 

element model. The FE model significantly overestimated deck stresses while underestimating 

bottom flange stresses in the vicinity of wheel loads. Although the deck in the FE model is 

composed of 969 plate elements generally of 1.5 square feet each, the mesh is too coarse for 

proper distribution of the heavy wheel loads. To give more accurate results, the mesh would have 

to be finer for any location where wheels would be applied, and the wheel point loads would 

have to be converted to area loads distributed across the plate elements. Additionally, the plate 

elements that comprise the girders would also have to be developed from a finer mesh to enable 

more accurate force dissipation. These types of refinements would increase the engineering time 

required (and thus the cost of the model), and would further lengthen solution time (although this 

is generally a minor issue with modern computers). In industry, less experienced personnel 

performing this work would possibly not be aware of the inaccurate results in any case, 

especially without results from an alternate method for comparison. 

Overall, the use of measured modal flexibility for bridge rating is shown to be successful. The 

method provides results quite similar to those determined from standard industry practice, which 
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demonstrates that the method functions properly. Additionally, the new method provides load 

ratings that are on the order of 10% higher than standard industry ratings by using the actual flow 

of forces through the structure, as opposed to using conservative simplifying assumptions.  

8.9 FUTURE WORK 

The load rating performed herein was developed as a demonstration of the usefulness of the type 

of accurate modal flexibility matrix that can be captured using the tactile transducers in MIMO 

EMA testing of bridges. There is significant future work needed to validate the calculation of 

ratings with this method such as: 

• Testing and rating of a variety of bridge configurations (various skews, continuous 

bridges, concrete girders). 

• Statistical analysis of the effects of measurement noise, data collection errors, and modal 

parameter extraction errors in the accuracy of the ratings. 

• Since the assumed simple structural model is not unique, analysis of the effects of 

assuming different model configurations. 
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9 CHAPTER NINE 

THESIS CONCLUSION 

9.1 INTRODUCTION 

This chapter recapitulates and summarizes the broad range of work reported in this thesis. The 

first goal of the work was to determine the optimal manner in which to apply a tactile transducer 

based excitation system for MIMO EMA of short to medium-span bridges. The second goal was 

to develop a new method for directly using the identified modal parameters of a bridge to 

improve the load rating process. The various steps that were taken in order to achieve these goals 

are summarized in the following subsections, which parallel the chapters of this thesis.  

9.2 CHARACTERIZATION OF TACTILE TRANSDUCERS AND POWER 
AMPLIFIERS 

Tactile transducers and appropriately sized consumer subwoofer amplifiers are not manufactured 

with the intended use of MIMO EMA testing of bridges, and thus the manufacturers’ 

specifications do not provide the types of information that would inform the application of such 

devices to MIMO EMA. Therefore, it was necessary to characterize the operational and 

performance characteristics of these components in a quantitative manner. The literature 

provided no framework for this characterization process, and thus a testing protocol was 

developed and implemented.  

The testing was performed on several alternate tactile transducers and amplifiers. The selection 

of the best devices for use in the MIMO EMA system was validated by specific test results. 

Considering the three shakers tested, the shaker used for further work had the best low-frequency 

force output, the flattest response across a broad range of frequencies, and good signal 
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reproduction with low noise and distortion. Of the three amplifiers tested, the one used for 

further work had the best low-frequency gain and the least low-frequency distortion. This 

amplifier also provides two channels which each have adequate power to drive the TT shaker, 

and it also performed well with stochastic signals. 

9.3  IN-DEPTH CHARACTERIZATION OF SHAKER AND AMPLIFIER 

Additional testing of the best shaker and amplifier combination was undertaken with the goal of 

determining if a dedicated force transducer would be required at each input location for MIMO 

EMA. Ideally, the force output could be adequately characterized through controlled testing in 

the lab; however, this hypothesis was systematically evaluated to determine if force transducers 

could be neglected. Another goal was to determine if the shakers and amplifiers are uniform 

enough across their population that they could be used interchangeably. The literature did not 

provide guidance on performing an evaluation of this type, and a process was developed to 

establish the necessity of using force transducers with the novel MIMO EMA system. 

The testing revealed than a TT reproduces a signal in a uniform manner, with variation in force 

output on the order of 2%. Much of the variation was attributed to heating of the device during 

operation, and thus allowing the shakers to warm up prior to production testing would reduce the 

variation in force. It was also found that the amplifier reproduces a signal with variation in 

voltage output on the order of 0.1%.  

The population of TTs showed significant variation. It was apparent that different production 

runs of the devices incorporated design changes, and that the population acquired consisted of at 

least three different iterations. The average variation in force output across the population was on 
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the order of 7%, and the level of signal distortion was much higher for some of the devices than 

for others. 

The population of amplifiers was more uniform than the shakers, with voltage output varying by 

an average of only about 2%. However, setting an equal gain on all amplifiers is essentially 

impossible since a dial potentiometer is used for this purpose. No production run differences 

were identified with the amplifiers, and all provided similar quality of reproduction. 

It was also noted that structure response significantly affects the force output of the structure-

mounted shakers. In the vicinity of natural frequencies of the structure, the force output of a 

shaker changed by up to 100% in comparison to the force output on a rigid mount.  

Overall, the variation in shaker performance, amplifier gain settings, and structure interaction 

negated the idea that the shakers could be used without force transducers. However, the idea of 

roving force transducers was maintained since each run of a shaker in a particular setup was 

highly uniform. 

9.4 EXCITATION TECHNIQUES 

One of the most important aspects of modal testing is the proper selection and application of 

excitation signals. The signal type, force level, and spatial input locations all have consequences 

to the quality of the FRFs and extracted modal parameters. Since MIMO EMA of civil structures 

is only reported twice in the literature, and optimization of the inputs for this application is not 

reported, it was necessary to determine the best techniques for MIMO EMA excitation of short to 

medium-span bridges as part of the work of this thesis.  
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Many signal types were discussed and compared, and the multisine signal was selected as the 

best type of deterministic signal for MIMO EMA bridge testing. A multisine signal can be 

constructed in many ways, and can selectively be built and utilized in a manner that eliminates 

leakage and provides high SNR. The signal is also compatible with MIMO testing: merely 

changing the polarity of the input provides essentially orthogonal force inputs. Cyclic averaging 

is also enabled, reducing noise while practically eliminating leakage. Finally, deterministic 

signals allow the use of roving transducers. 

Selection of the best force level of the input is a balance of two opposing criteria. A high force 

level provides the best SNR in consideration of ambient noise in the structure and electronics. 

However, higher force also excites nonlinearities in structures and causes noise and rattles to 

develop. Thus, an appropriate force level must be determined for each structure by exploring a 

range and selecting an amplitude that provides the best FRFs. 

Development of a good spatial distribution of inputs is also important. The biggest danger is 

providing all input near the locations of modal nodes since a poorly excited mode is difficult to 

accurately identify. The most direct way to reduce this risk is to reduce the probability of 

providing all input at modal nodes. For symmetric structures, the shapes of some modes can be 

inferred prior to testing and the probable locations of modal nodes identified and avoided. Also 

for symmetric structures, the shakers should not be placed symmetrically. Symmetric placement 

increases the probability of all input occurring at nodes. Finally, increasing the number of inputs 

reduces the probability of only exciting nodal locations, and thus the proposed MIMO EMA 

using many low-cost shakers is beneficial in this regard.  
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9.5 DATA PROCESSING AND ANALYSIS METHODS 

Data capture methods were explored and explained as they relate to the accuracy of experimental 

results. Quantization errors in digital sensors and in data acquisition devices were discussed, and 

the necessity of adequate resolution in both the time domain and the frequency domain were 

demonstrated. Methods of data averaging for noise reduction were also compared, and cyclic 

averaging was noted as the best way to reduce noise while also diminishing or eliminating 

leakage errors.  

The calculation of FRFs was discussed for four different averaging methods, using both SIMO 

and MIMO excitation. The H1 algorithm was identified as the best for stochastic signals while 

the EIV algorithm performs best for deterministic signals. These algorithms assemble the FRFs 

into a larger transfer function from which modal parameters can be extracted. 

Parameter extraction is performed using the CMIF technique. Although many competing 

algorithms exist, CMIF was selected since it is robust and since it could be developed in-house. 

This algorithm provides a method for identifying potential modes as unusually high singular 

values. Associated singular vectors are taken as estimates of modal vectors and are used to filter 

the transfer function, resulting in enhanced FRFs. Least-squares techniques are then used to 

estimate the modal damping and modal mass from the enhanced FRFs. Finally, modal flexibility 

is synthesized from the identified natural frequencies, damping, and modal mass. 

9.6 LABORATORY BRIDGE MODEL TESTING 

Testing of a model structure in a laboratory environment was performed to validate that the TTs 

will provide an EMA characterization of a large-scale bridge model that is comparable to using a 

more conventional excitation device. This testing was important since EMA is a totally different 
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use for the shakers than the manufacturer intended. Thus, the shakers had never been validated 

for this use by the maker or by any other researcher. The various tests were designed to use the 

TTs in the same manner that purpose-built shakers are typically used, enabling the functionality 

of the TTs to be evaluated in realistic situations. 

The model structure was tested in several ways to provide a baseline for comparison. First, a 

static flexibility matrix was developed by applying large static loads to each DOF and measuring 

vertical displacements at all DOFs. This provided a baseline against which to compare 

synthesized modal flexibility matrices. Second, an industry-standard APS Dynamics shaker was 

used in a series of SIMO experiments to excite each DOF in turn and provide a high quality 

15x15 transfer function. Both multisine and burst-random signals were used. Modal parameters 

extracted from this testing were used as a baseline against which to compare parameters from 

tactile transducer excitation. 

The structure was also tested in several ways using the novel excitation system. First, a SIMO 

process was used with a single TT, and a 15x15 transfer function was produced. Second, a 

MIMO test with a particular spatial arrangement of four TTs was performed, and a 15x4 transfer 

function was produced. Third, another MIMO test with four TTs in a different spatial 

arrangement was performed. Fourth, a MIMO test with eight TTs and roving force transducers 

was performed, and a 15x8 transfer function was produced. All of the tests were repeated twice: 

once with multisine excitation, and once with burst-random excitation.     

The testing validated several items. First, the multisine signal was found to provide results on par 

with the burst-random signal. Second, use of roving transducers was successful for frequencies 

below 70 Hz. Above 70 Hz, some of the TTs perform in a less uniform manner and this has 
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serious negative consequences for parameter identification. Third, the MIMO testing 

underperformed the SIMO testing since a significantly smaller amount of redundant information 

was available in the transfer function for MIMO. Also, the issues with SIMO that cause errors in 

real-world testing are generally nonexistent in a controlled laboratory environment. 

Finally, the laboratory bridge model testing demonstrated that the TTs operating in a MIMO 

EMA environment provide accurate modal parameters. The modal flexibility matrix synthesized 

from these modal parameters also had good agreement with the measured static flexibility 

matrix. 

9.7 TESTING OF AN IN-SERVICE HIGHWAY BRIDGE 

The primary purpose of this testing was to evaluate the capabilities of the tactile transducer 

excitation system for MIMO EMA of a full-scale bridge. The literature only reports a single prior 

MIMO EMA bridge test, and that testing only utilized two shakers. Overall, the system 

performed very well, and many modes of the structure were identified. The results of this testing 

were compared to results from various tests performed previously by others, and the MIMO 

EMA system approach using TTs outperformed the other methods. The previous work included 

the two most common testing methods used in the field today, which are MRIT (hammer testing 

at many DOFs in turn) and OMA (ambient excitation only).  

The bridge was tested using only four TTs due to budget constraints. Testing with many more 

shakers was desirable, but force transducers and recording channels were not available for 

additional shakers. The four shakers were moved to five different lines of DOFs, and both burst-

random and multisine signals were used. A test using eight shakers and roving force transducers 

was also performed, although it is recognized that this is a less desirable testing method. 
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Secondary analysis was also performed to explore several other topics. The benefits of 

combining FRFs from experiments performed at different times were evaluated. For this testing, 

the larger combined transfer function provided better results for mode capture and modal mass, 

but the inconsistencies in the data caused an apparent increase in damping. This again indicates 

that the best testing method is to simultaneously excite as many DOFs as possible, further 

supporting the use of the inexpensive array of shakers.  

The use of roving force transducers was also tested again. Eight TTs were used with multisine 

excitation, and the four force transducers were all relocated one time. This testing produced a 

20x8 transfer function, and the modal parameters extracted were generally reasonable. However, 

combining data from separate experiments produced more accurate data and is easier to execute 

in the field. Thus, roving force transducers should be avoided in most situations.  

The impact of allowing traffic to use the structure during testing was also evaluated. It was found 

that the large unmeasured force input from traffic causes serious errors. Although identification 

of natural frequencies was not affected, modal mass estimates were off by orders of magnitude. 

However, a bridge does not have to be closed to enable MIMO EMA testing with the TT system. 

Testing only has to be performed at times when traffic is not heavy, such as overnight. Data sets 

that are contaminated by traffic can simply be excluded during processing. 

Finally, multisine and burst-random excitation were again compared. The use of multisine 

excitation provided more accurate modal parameters than burst-random, which is expected based 

on the theoretical advantages of the deterministic signal. However, burst-random signals are 

more traditionally used in EMA, and testing time is not significantly increased by using two 
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different signals. Thus, including burst-random excitation in future modal testing is reasonable, 

and provides an additional set of modal parameters for comparison and evaluation purposes. 

9.8 BRIDGE LOAD RATING USING MEASURED MODAL FLEXIBILITY 

Load rating of the Hartbarger Bridge was performed to evaluate a potential application for the 

high quality modal flexibility matrix that can be captured using the MIMO EMA excitation. It is 

again noted that none of the previous testing of this bridge provided modal parameters that could 

have been used for load rating. The parameters from MRIT were quite inaccurate and many 

modes were not found, and the OMA testing does not provide modal flexibility. Thus, the 

capability to extract accurate modal flexibility for a bridge structure is relatively novel. 

The most advantageous use of modal flexibility in load rating is in the application of truck loads. 

The live load demand at a section is highly dependent on assumptions about the flow of force 

through the structure, and the measured modal flexibility matrix provides valuable information in 

this regard. The load distribution is also affected by damage, deterioration, and structural defects, 

which are automatically reflected in the extracted modal flexibility. Simplifying and conservative 

assumptions that are typically used in live load application can be avoided by use of measured 

flexibility, improving the accuracy of the load ratings. There is also a potential to alter the 

capacity of sections and to modify section parameters used in the calculation of dead load 

demand; however, the rating performed did not include these changes due to the excellent 

condition of the Hartbarger Bridge.   

Measured modal flexibility cannot be directly used for live load application since the local 

stiffness of elements is not provided. Therefore, a two-step method was demonstrated that allows 

the estimation of local stiffness for an assumed simple model that connects the measured DOF. 
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In the first step, the rank of the flexibility matrix is increased by adding estimated flexibility of 

unmeasured DOF. In the second step, the augmented flexibility matrix is disassembled in a 

manner that provides local stiffness values for the assumed DOF connectivity model. For the 

Hartbarger Bridge, it was shown that the estimated local stiffness parameters were reasonable 

and were in good agreement with estimates based on actual section dimensions. A global 

stiffness matrix is then generated from the local stiffness values, and influence surfaces are 

generated to enable truck loading for maximum force response. 

The rating results using modal flexibility were in good agreement but were slightly less 

conservative than those found using traditional distribution factors. This good agreement 

demonstrates that the new method works properly, since the distribution factors are known to be 

accurate for the bridge type analyzed. The literature demonstrates that the traditional distribution 

factors are not accurate for many bridges with more complex geometry, and thus application of 

the modal flexibility method to these structures should provide improved results. Also, 

widespread damage and deterioration will be reflected in measured flexibility, and thus will 

automatically be included in local stiffness. Not only will the use of modal flexibility provide 

more accurate live load demand, but the calculated local stiffness can be used to modify the 

section capacity and the dead load stresses. 

A detailed finite element model was also used in the rating of the bridge. The use of detailed FE 

models is generally considered by industry to be the most accurate way to develop load ratings, 

however, there are many ways to get inaccurate results. It was found in this work that the FE 

model was generally too coarse at the points of load application. This coarseness resulted in deck 

stresses that were too high and bottom flange stresses that were unconservatively low. 

Calibrating a nominal FE model to field measurements is also a difficult problem that is still the 
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subject of ongoing research. Thus, the method developed herein that uses the measured modal 

flexibility matrix is a simpler and more direct way to improve load ratings than the use of FE 

modeling.     

9.9  OVERALL SUMMARY OF CONCLUSIONS 

The work reported in this thesis consisted of validating a novel excitation system for improved 

MIMO experimental modal analysis of certain classes of civil structures. Both laboratory testing 

and real-world field testing of the system were undertaken, and the results demonstrated that the 

system does provide more accurate modal parameters than those provided by other more 

commonly used excitation schemes. Research is advancing on many fronts to expand the use of 

measured modal parameters, and the new ability to capture accurate values will benefit the state 

of knowledge in this area.  

Load rating of an in-service highway bridge was also performed to demonstrate one potential use 

of the captured modal results. The use of measured modal parameters produced rating values that 

were accurate. The method demonstrated also has the benefit of eliminating the generation and 

calibration of a detailed FE model, which is currently the most common way that measured 

parameters are used. 
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Hartbarger Bridge Rating Calcs by: EVF Date:1/9/14

 Introduction:

PURPOSE: This worksheet is used to rate the Hartbarger bridge for various truck
types using various methods (ASD, LFD, LRFD. Fascia and interior
girders are rated.

REFERENCES: (A) AASHTO Standard Specifications for Highway Bridges,
Seventeenth Edition, 2002. 

(CE) AASHTO Manual for Condition Evaluation of Bridges, Second
Edition with Interims through 2003. 

(AR) AASHTO LRFD Bridge Design Specifications, Third Edition with
Interims through 2005. 

(BE) AASHTO Manual for Bridge Evaluation, Second Edition with
Interims through 2013. 

CREATED: 1/9/14 by EVF.

REVISED: None to date.

Introduction:

The second span of the Hartbarger bridge is rated herein. Rating is performed three different AASHTO design

philosophies: ASD, LFD, and LRFD. Additionally, live load effect is calculated in three different ways: per

AAHSTO distribution factors, using a calibrated finite element model, and using the results of modal testing.

For bending, stresses are used to rate since the section properties of the span changed during the

construction process, preventing the superposition of moments.

For all methods, unfactored dead load effects are the same. For the legal rating vehicles, unfactored live load

load effects are the same regardless of the design philosophy.

Rating of the bridge is performed at locations of maximum shear and maximum moment. Since this is a

simple-span structure, and since the section properties do not vary along the length of a girder, maximum

moment will occur at midspan and maximum shear will occur at the supports. Both fascia and interior

girders are rated.

 General information:

The general geometric data and material properties for the structure are as follows:

Lbridge 50ft:= Wbridge 27ft:=

Girder Spacing:

S 7.5ft:=

 Steel properties:

Fy 50ksi:= E 29000ksi:= γs 490pcf:=
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W27x94 girders:

Top Flange: Web: Bottom Flange:

bc 9.99in:= tw 0.49in:= bt 9.99in:= AISC 

tc 0.745in:= D 25.41in:= tt 0.745in:=

Ag 27.7 in
2

⋅:= Ix 3270 in
4

⋅:= d 26.9 in⋅:=

C12x20.7 intermediate diaphragms:

Wd 20.7
lb

ft
⋅:=

 Concrete Deck Properties:

f'c 3.5 ksi⋅:= assumed based on age

Ec 1820 f'c ksi⋅⋅:= Ec 3404.91 ksi⋅= AR C5.4.2.4

γc 150pcf:=

n 9:= A 10.38.1.3

tactual 8in:= nominal deck thickness per measurements at deck edge

tdesign tactual 0.5in−:= tdesign 7.5 in⋅=

thaunch 0in:=

 Section Properties:

The section properties are found for noncomposite loads, long term composite loads, and short term

composite loads.

 Noncomposite:

For dead loads applied prior to deck hardening, the girder supports all loads. 

Ix 3270 in
4

⋅= Sx 243 in
3

⋅:= AISC 

 Long Term Composite:

For dead loads applied after the deck hardens, the long term composite section is used. The segment of slab

that is considered part of the composite section is different for the fascia and interior girders, and thus thier

properties need to be found separately.

Width of deck that contributes to interior girder properties:

B min
Lbridge

4
S, 12 tdesign⋅, 









:= B 7.5 ft= A 10.38.3.1

Width of deck that contributes to fascia girder properties:

Bf
B

2
2.25 ft⋅+:= Bf 6 ft=
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Fascia LTC properties:

Ag 27.7 in
2

⋅=

Adeck

Bf tdesign⋅

3 n⋅
:= Adeck 20 in

2
⋅=

Altc Ag Adeck+:= Altc 47.7 in
2

⋅=

y

Ag
d

2
⋅ Adeck d

tdesign

2
+









⋅+

Altc

:= y 20.66 in⋅=

Igird Ix Ag y
d

2
−





2

⋅+:= Igird 4710.65 in
4

⋅=

Ideck

Bf

3 n⋅
tdesign

3
⋅

12
Adeck d

tdesign

2
+ y−









2

⋅+:= Ideck 2089.06 in
4

⋅=

If.ltc Igird Ideck+:= If.ltc 6799.71 in
4

⋅=

Sbf.ltc

If.ltc

y
:= Sbf.ltc 329.1 in

3
⋅=

Stf.ltc

If.ltc

d tdesign+ y−
:= Stf.ltc 494.95 in

3
⋅=

Interior LTC properties:

Adeck

B tdesign⋅

3 n⋅
:= Adeck 25 in

2
⋅=

Altc Ag Adeck+:= Altc 52.7 in
2

⋅=

y

Ag
d

2
⋅ Adeck d

tdesign

2
+









⋅+

Altc

:= y 21.61 in⋅=

Igird Ix Ag y
d

2
−





2

⋅+:= Igird 5114.15 in
4

⋅=

Ideck

B

3 n⋅
tdesign

3
⋅

12
Adeck d

tdesign

2
+ y−









2

⋅+:= Ideck 2160.5 in
4

⋅=

Ii.ltc Igird Ideck+:= Ii.ltc 7274.65 in
4

⋅=

Sbi.ltc

Ii.ltc

y
:= Sbi.ltc 336.64 in

3
⋅=
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Sti.ltc

Ii.ltc

d tdesign+ y−
:= Sti.ltc 568.75 in

3
⋅=

 Short Term Composite:

For live loads applied after the deck hardens, the short term composite section is used. The segment of slab

that is considered part of the composite section is different for the fascia and interior girders, and thus thier

properties need to be found separately.

Fascia STC properties:

Adeck

Bf tdesign⋅

n
:= Adeck 60 in

2
⋅=

Astc Ag Adeck+:= Astc 87.7 in
2

⋅=

y

Ag
d

2
⋅ Adeck d

tdesign

2
+









⋅+

Astc

:= y 25.22 in⋅=

Igird Ix Ag y
d

2
−





2

⋅+:= Igird 7105.66 in
4

⋅=

Ideck

Bf

n
tdesign

3
⋅

12
Adeck d

tdesign

2
+ y−









2

⋅+:= Ideck 2052.05 in
4

⋅=

If.stc Igird Ideck+:= If.stc 9157.7 in
4

⋅=

Sbf.stc

If.stc

y
:= Sbf.stc 363.15 in

3
⋅=

Stf.stc

If.stc

d tdesign+ y−
:= Stf.stc 997.29 in

3
⋅=

Interior STC properties:

Adeck

B tdesign⋅

n
:= Adeck 75 in

2
⋅=

Astc Ag Adeck+:= Astc 102.7 in
2

⋅=

y

Ag
d

2
⋅ Adeck d

tdesign

2
+









⋅+

Astc

:= y 26.01 in⋅=

Igird Ix Ag y
d

2
−





2

⋅+:= Igird 7640.37 in
4

⋅=
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Ideck

B

n
tdesign

3
⋅

12
Adeck d

tdesign

2
+ y−









2

⋅+:= Ideck 1965.69 in
4

⋅=

Ii.stc Igird Ideck+:= Ii.stc 9606.06 in
4

⋅=

Sbi.stc

Ii.stc

y
:= Sbi.stc 369.31 in

3
⋅=

Sti.stc

Ii.stc

d tdesign+ y−
:= Sti.stc 1145.06 in

3
⋅=

Dead Load Calculations:

Dead loads are divided into those applied to the noncomposite steel section and those applied to the

long-term composite section after the deck hardened. 

 Noncomposite Dead:

Girder self weight:

wgirder 94
lb

ft
⋅:= AISC 

Deck weight (per square foot of deck area):

wdeck tactual γc⋅:= wdeck 100 psf⋅=

Intermediate diaphragms (each):

wdia S Wd⋅:= wdia 155.25 lb=

Connection plates (each, based on field measurements):

wconn D 6⋅ in⋅
1

2
⋅ in⋅ γs⋅:= wconn 21.62 lb=

There are no SIP forms on this bridge, and no haunch.

 Composite Dead:

Barrier curbs:

wbarrier 400
lb

ft
⋅:=

This bridge has no wearing surface, utilities, or luminaires.

 Apply Dead Loads:

Dead loads per foot length of an interior and a fascia girder are found. Barrier load is distributed evenly to all

girders as permitted by AASHTO 3.23.2.3.1.1.

Noncomposite dead load for an interior girder:

Dint.nc wgirder wdeck S⋅+
3 wdia⋅

Lbridge

+
6 wconn⋅

Lbridge

+:= Dint.nc 855.91
lb

ft
=
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Composite dead load for an interior girder:

Dint.ltc

2 wbarrier⋅

4
:= Dint.ltc 200

lb

ft
=

Noncomposite dead load for a fascia girder:

Dfas.nc wgirder wdeck
S

2
⋅+ wdeck 2.25⋅ ft⋅+

3 wdia⋅

2 Lbridge⋅
+

3 wconn⋅

Lbridge

+:= Dfas.nc 699.95
lb

ft
=

Composite dead load for a fascia girder:

Dfas.ltc

2 wbarrier⋅

4
:= Dfas.ltc 200

lb

ft
=

 Calculate Unfactored Dead Load Forces:

Midspan moments and end shears are desired. 

 Interior Girder:

Mint.nc

Dint.nc Lbridge
2

⋅

8
:= Mint.nc 3209.66 kip in⋅⋅=

Mint.ltc

Dint.ltc Lbridge
2

⋅

8
:= Mint.ltc 750 kip in⋅⋅=

Vint.nc

Dint.nc Lbridge⋅

2
:= Vint.nc 21.4 kip⋅=

Vint.ltc

Dint.ltc Lbridge⋅

2
:= Vint.ltc 5 kip⋅=

 Fascia Girder:

Mfas.nc

Dfas.nc Lbridge
2

⋅

8
:= Mfas.nc 2624.83 kip in⋅⋅=

Mfas.ltc

Dfas.ltc Lbridge
2

⋅

8
:= Mfas.ltc 750 kip in⋅⋅=

Vfas.nc

Dfas.nc Lbridge⋅

2
:= Vfas.nc 17.5 kip⋅=

Vfas.ltc

Dfas.ltc Lbridge⋅

2
:= Vfas.ltc 5 kip⋅=
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ASD Section Capacities:

Section capacities are found using the AASHTO ASD design philosophy.

For bending, the top flange will not control since it is continuously braced by the deck and has less total

stress than the bottom flange. Thus, only the tensile capacity of the bottom flange and the compressive

capacity of the deck are needed:

fs.allow 0.55 Fy⋅:= bottom flange at the inventory level CE T6.6.2.1-1

fs.allow.op 0.75 Fy⋅:= bottom flange at the operating level CE T6.6.2.1-2

fc.allow 1200 psi⋅:= deck compression at the inventory level CE 6.6.2.4.1

fc.allow.op 1900 psi⋅:= deck compression at the operating level CE 6.6.2.4.1

For shear in a web without stiffeners, with a compact section, and with none of the web depth in bending

compression for the composite section:

fv.allow 0.33 Fy⋅:= web at the inventory level CE T6.6.2.1-1

fv.allow.op 0.45 Fy⋅:= web at the operating level CE T6.6.2.1-2

ASD Load Rating with Distribution Factors:

Load ratings per AASHTO ASD are calculated. First, live load effects and rating factors are found using the

AASHTO ASD distribution factors. Second, the same is found using the calibrated finite element model. Third,

the same is found using the modal testing results.

 AASHTO Live Load Distribution:

For interior girders, the distribution factor (wheels per girder) is:

DFint
S

5.5 ft⋅
:= DFint 1.36= A T3.23.1

For fascia girders, the lever rule is to be used assuming a pinned support at the first interior girder. The wheel

load closest to the barrier is placed at 2' off of the face per AASHTO F3.7.6A.

DFfas 1 wheel⋅
6.25 ft⋅

S
⋅ 1 wheel⋅

0.25 ft⋅

S
⋅+:= DFfas 0.87=

However, the distribution factor may not be less than:

DFfas
S

4 ft⋅ 0.25 S⋅+
:= DFfas 1.28= A 3.23.2.3.1.5

Calculate the impact factor to account for dynamic effects:

IF
50 ft⋅

Lbridge 125 ft⋅+
:= IF 0.29= A 3.8.2.1

 HS Truck Loading:

The maximum moment and shear for a single lane load are taken from AASHTO Appendix A for HS-20 loading:

Mhs 627.9 kip⋅ ft⋅:= Vhs 58.5 kip⋅:=
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The force effect to an interior girder is thus:

Vhs.int Vhs

DFint

2
⋅ 1 IF+( )⋅:= Vhs.int 51.28 kip⋅=

Mhs.int Mhs

DFint

2
⋅ 1 IF+( )⋅:= Mhs.int 6605.18 kip in⋅⋅=

The force effect to a fascia girder is:

Vhs.fas Vhs

DFfas

2
⋅ 1 IF+( )⋅:= Vhs.fas 48.01 kip⋅=

Mhs.fas Mhs

DFfas

2
⋅ 1 IF+( )⋅:= Mhs.fas 6183.57 kip in⋅⋅=

 HL-93 Truck Loading:

The LRFD HL-93 truck is just a combination of the HS-20 truck and the lane load.

Mhl Mhs
0.64 kip⋅

ft

Lbridge
2

8
⋅+:= Mhl 9934.8 kip in⋅⋅= AR 3.6.1.2.1

Vhl Vhs
0.64 kip⋅

ft

Lbridge

2
⋅+:= Vhl 74.5 kip⋅=

 AASHTO Legal Truck Loading: 

Three standard trucks are also provided by AASHTO that reflect typical highway traffic. These vehicles are

commonly used in ratings since load posting is based on these vehicle arrangements. The maximum

moments and shears from these vehicles are found and distributed to a girder.

L Lbridge:=

Type 3 Truck:

V3 17 kip⋅ 17 kip⋅
46 ft⋅

L
⋅+ 16 kip⋅

L 19 ft⋅−

L
⋅+:= V3 42.56 kip⋅=

M3 17 kip⋅
L

4
⋅ 17 kip⋅

L 29 ft⋅−( )

2
⋅+ 16 kip⋅

L 40 ft⋅−( )

2
⋅+:= M3 5652 kip in⋅⋅=

Type 3S2 Truck:

V3s2 15.5 kip⋅ 15.5 kip⋅
46 ft⋅

L
⋅+ 15.5 kip⋅

24 ft⋅

L
⋅+ 15.5 kip⋅

20 ft⋅

L
⋅+ 10 kip⋅

9 ft⋅

L
⋅+:=

V3s2 45.2 kip⋅=

M3s2
1

4
15.5 kip⋅ L⋅ 15.5 kip⋅ L 2 22⋅ ft⋅−( )⋅+ 15.5 kip⋅ L 2 4⋅ ft⋅−( )⋅+ 10 kip⋅ L 2 15⋅ ft⋅−( )⋅+[ ]⋅:=

M3s2 5157 kip in⋅⋅=

Type 3-3 Truck:

V33 14 kip⋅ 14 kip⋅
46 ft⋅

L
⋅+ 16 kip⋅

30 ft⋅

L
⋅+ 12 kip⋅

15 ft⋅

L
⋅+ 12 kip⋅

11 ft⋅

L
⋅+:= V33 42.72 kip⋅=
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M33
1

4
16 kip⋅ L⋅ 14 kip⋅ L 2 16⋅ ft⋅−( )⋅+ 14 kip⋅ L 2 20⋅ ft⋅−( )⋅+ 12 kip⋅ L 2 15⋅ ft⋅−( )⋅+ 12 kip⋅ L 2 19⋅ ft⋅−( )⋅+[ ]⋅:=

M33 4728 kip in⋅⋅=

And the force effects to the interior girders are:

V3.int V3

DFint

2
⋅ 1 IF+( )⋅:= V3.int 37.31 kip⋅=

M3.int M3

DFint

2
⋅ 1 IF+( )⋅:= M3.int 4954.68 kip in⋅⋅=

V3s2.int V3s2

DFint

2
⋅ 1 IF+( )⋅:= V3s2.int 39.62 kip⋅=

M3s2.int M3s2

DFint

2
⋅ 1 IF+( )⋅:= M3s2.int 4520.75 kip in⋅⋅=

V33.int V33

DFint

2
⋅ 1 IF+( )⋅:= V33.int 37.45 kip⋅=

M33.int M33

DFint

2
⋅ 1 IF+( )⋅:= M33.int 4144.68 kip in⋅⋅=

And the force effects to the fascia girders are:

V3.fas V3

DFfas

2
⋅ 1 IF+( )⋅:= V3.fas 34.93 kip⋅=

M3.fas M3

DFfas

2
⋅ 1 IF+( )⋅:= M3.fas 4638.42 kip in⋅⋅=

V3s2.fas V3s2

DFfas

2
⋅ 1 IF+( )⋅:= V3s2.fas 37.09 kip⋅=

M3s2.fas M3s2

DFfas

2
⋅ 1 IF+( )⋅:= M3s2.fas 4232.19 kip in⋅⋅=

V33.fas V33

DFfas

2
⋅ 1 IF+( )⋅:= V33.fas 35.06 kip⋅=

M33.fas M33

DFfas

2
⋅ 1 IF+( )⋅:= M33.fas 3880.12 kip in⋅⋅=
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 Calculate Load Ratings for Moment:

For ASD, the load ratings are simply found as:

RF
C D−

L
:=

D
CE 6.5.1 

 Fascia Moment:

For moment for a fascia girder, the rating is the minimum of that found for compression in the deck and

tension in the bottom flange. 

Inventory Level:

RFhs.deck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mhs.fas

⋅:= RFhs.deck 1.66=

RFhs.flange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mhs.fas

⋅:= RFhs.flange 0.85=

Operating Level:

RFhs.deck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mhs.fas

⋅:= RFhs.deck 2.68=

RFhs.flange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mhs.fas

⋅:= RFhs.flange 1.43=

 Interior Moment:

Inventory Level:

RFhs.deck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mhs.int

⋅:= RFhs.deck 1.8=

RFhs.flange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mhs.int

⋅:= RFhs.flange 0.67=

Operating Level:

RFhs.deck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mhs.int

⋅:= RFhs.deck 2.89=

RFhs.flange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mhs.int

⋅:= RFhs.flange 1.23=

 Other Legal Vehicles:

Fascia Girder:

IR3.deck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

M3.fas

⋅:= IR3.deck 2.21=
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IR3.flange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

M3.fas

⋅:= IR3.flange 1.13=

OR3.deck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

M3.fas

⋅:= OR3.deck 3.57=

OR3.flange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

M3.fas

⋅:= OR3.flange 1.91=

IR3s2.deck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

M3s2.fas

⋅:= IR3s2.deck 2.43=

IR3s2.flange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

M3s2.fas

⋅:= IR3s2.flange 1.24=

OR3s2.deck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

M3s2.fas

⋅:= OR3s2.deck 3.91=

OR3s2.flange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

M3s2.fas

⋅:= OR3s2.flange 2.1=

IR33.deck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

M33.fas

⋅:= IR33.deck 2.65=

IR33.flange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

M33.fas

⋅:= IR33.flange 1.35=

OR33.deck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

M33.fas

⋅:= OR33.deck 4.27=

OR33.flange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

M33.fas

⋅:= OR33.flange 2.29=

 Calculate Load Ratings for Shear:

 Fascia Shear for HS20 Load:

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vhs.fas

:= IRv 3.81=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vhs.fas

:= ORv 5.37=
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 Interior Girder Shear for HS20 Load:

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vhs.int

:= IRv 3.49=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vhs.int

:= ORv 4.95=

 Other Legal Vehicles:

Interior Girder:

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

V3.int

:= IRv 4.8=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

V3.int

:= ORv 6.8=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

V3s2.int

:= IRv 4.52=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

V3s2.int

:= ORv 6.4=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

V33.int

:= IRv 4.78=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

V33.int

:= ORv 6.78=
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ASD Load Rating with Finite Element Live Load Stresses

Stresses in the critical elements are found using the calibrated Hartbarger finite element model. The deck

surface of the model is loaded with unit loads and responses at the critical locations are collected. These

responses are then used to create an influence surface for each critical stress. Automatic positioning of the

various trucks is then performed for maximum response. The impact factor is not included in the FE analysis

and must be applied to the resulting stresses. Two trucks of the same type are applied to the bridge for each

loading case.

The results are as follows for the various truck loads and for an interior and a fascia girder:

 HS Truck Interior:

Vint 40.74 kip⋅ 1 IF+( )⋅:= Vint 52.38 kip⋅=

fb.int 9.059 ksi⋅ 1 IF+( )⋅:= fb.int 11.65 ksi⋅=

ft.int 0.934 ksi⋅ 1 IF+( )⋅:= ft.int 1.2 ksi⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= IRdeck 0.96=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= IRflange 1.04=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 3.42=

ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= ORdeck 1.54=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= ORflange 1.89=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 4.84=

 HS Truck Fascia:

Vfas 31.18 kip⋅ 1 IF+( )⋅:= Vfas 40.09 kip⋅=

fb.fas 7.527 ksi⋅ 1 IF+( )⋅:= fb.fas 9.68 ksi⋅=

ft.fas 0.540 ksi⋅ 1 IF+( )⋅:= ft.fas 0.69 ksi⋅=

IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= IRdeck 1.65=

IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= IRflange 1.49=
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IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 4.56=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= ORdeck 2.66=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= ORflange 2.52=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 6.43=

 Type 3 Truck Interior:

Vint 30.43 kip⋅ 1 IF+( )⋅:= Vint 39.12 kip⋅=

fb.int 6.939 ksi⋅ 1 IF+( )⋅:= fb.int 8.92 ksi⋅=

ft.int 0.689 ksi⋅ 1 IF+( )⋅:= ft.int 0.89 ksi⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= IRdeck 1.3=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= IRflange 1.35=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 4.58=

ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= ORdeck 2.09=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= ORflange 2.47=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 6.49=

 Type 3 Truck Fascia:

Vfas 21.91 kip⋅ 1 IF+( )⋅:= Vfas 28.17 kip⋅=

fb.fas 5.707 ksi⋅ 1 IF+( )⋅:= fb.fas 7.34 ksi⋅=

ft.fas 0.399 ksi⋅ 1 IF+( )⋅:= ft.fas 0.51 ksi⋅=

IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= IRdeck 2.23=
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IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= IRflange 1.97=

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 6.49=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= ORdeck 3.59=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= ORflange 3.33=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 9.15=

 Type 3S2 Truck Interior:

Vint 29.48 kip⋅ 1 IF+( )⋅:= Vint 37.9 kip⋅=

fb.int 6.355 ksi⋅ 1 IF+( )⋅:= fb.int 8.17 ksi⋅=

ft.int 0.633 ksi⋅ 1 IF+( )⋅:= ft.int 0.81 ksi⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= IRdeck 1.41=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= IRflange 1.48=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 4.72=

ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= ORdeck 2.27=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= ORflange 2.7=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 6.69=

 Type 3S2 Truck Fascia:

Vfas 25.21 kip⋅ 1 IF+( )⋅:= Vfas 32.41 kip⋅=

fb.fas 5.195 ksi⋅ 1 IF+( )⋅:= fb.fas 6.68 ksi⋅=

ft.fas 0.365 ksi⋅ 1 IF+( )⋅:= ft.fas 0.47 ksi⋅=
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IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= IRdeck 2.44=

IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= IRflange 2.16=

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 5.64=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= ORdeck 3.93=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= ORflange 3.66=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 7.95=

 Type 3-3 Truck Interior:

Vint 27.87 kip⋅ 1 IF+( )⋅:= Vint 35.83 kip⋅=

fb.int 5.936 ksi⋅ 1 IF+( )⋅:= fb.int 7.63 ksi⋅=

ft.int 0.573 ksi⋅ 1 IF+( )⋅:= ft.int 0.74 ksi⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= IRdeck 1.56=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= IRflange 1.58=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 5=

ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









1

ft.int

⋅:= ORdeck 2.51=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








1

fb.int

⋅:= ORflange 2.89=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 7.08=
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 Type 3-3 Truck Fascia:

Vfas 23.72 kip⋅ 1 IF+( )⋅:= Vfas 30.5 kip⋅=

fb.fas 5.066 ksi⋅ 1 IF+( )⋅:= fb.fas 6.51 ksi⋅=

ft.fas 0.343 ksi⋅ 1 IF+( )⋅:= ft.fas 0.44 ksi⋅=

IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= IRdeck 2.59=

IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= IRflange 2.21=

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 6=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









1

ft.fas

⋅:= ORdeck 4.18=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








1

fb.fas

⋅:= ORflange 3.75=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 8.45=

ASD Load Rating with Modal Flexibility Live Load Stresses

Stresses in the critical elements are found using the results of the modal analysis. Influence surfaces were

generated using unit loads for the critical responses. Automatic positioning of the various trucks is then

performed for maximum response. The impact factor is not included in the analysis and must be applied to

the resulting forces. Two trucks of the same type are applied to the bridge for each loading case.

The results are as follows for the various truck loads and for an interior and a fascia girder:

 HS Truck Interior:

Vint 42.97 kip⋅ 1 IF+( )⋅:= Vint 55.25 kip⋅=

Mint 4788 kip⋅ in⋅ 1 IF+( )⋅:= Mint 6156 kip in⋅⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= IRdeck 1.93=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= IRflange 0.72=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 3.24=
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ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= ORdeck 3.1=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= ORflange 1.32=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 4.59=

 HS Truck Fascia:

Vfas 27.87 kip⋅ 1 IF+( )⋅:= Vfas 35.83 kip⋅=

Mfas 3901 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 5015.57 kip in⋅⋅=

IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= IRdeck 2.05=

IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= IRflange 1.04=

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 5.11=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= ORdeck 3.3=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= ORflange 1.77=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 7.19=

 Type 3 Truck Interior:

Vint 31.81 kip⋅ 1 IF+( )⋅:= Vint 40.9 kip⋅=

Mint 3653 kip⋅ in⋅ 1 IF+( )⋅:= Mint 4696.71 kip in⋅⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= IRdeck 2.53=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= IRflange 0.95=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 4.38=
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ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= ORdeck 4.06=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= ORflange 1.73=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 6.2=

 Type 3 Truck Fascia:

Vfas 19.97 kip⋅ 1 IF+( )⋅:= Vfas 25.68 kip⋅=

Mfas 2953 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 3796.71 kip in⋅⋅=

IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= IRdeck 2.7=

IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= IRflange 1.38=

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 7.13=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= ORdeck 4.36=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= ORflange 2.34=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 10.03=

 Type 3S2 Truck Interior:

Vint 32.07 kip⋅ 1 IF+( )⋅:= Vint 41.23 kip⋅=

Mint 3335 kip⋅ in⋅ 1 IF+( )⋅:= Mint 4287.86 kip in⋅⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= IRdeck 2.77=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= IRflange 1.04=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 4.34=
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ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= ORdeck 4.45=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= ORflange 1.9=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 6.15=

 Type 3S2 Truck Fascia:

Vfas 21.97 kip⋅ 1 IF+( )⋅:= Vfas 28.25 kip⋅=

Mfas 2698 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 3468.86 kip in⋅⋅=

IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= IRdeck 2.96=

IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= IRflange 1.51=

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 6.48=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= ORdeck 4.77=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= ORflange 2.56=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 9.12=

 Type 3-3 Truck Interior:

Vint 30.3 kip⋅ 1 IF+( )⋅:= Vint 38.96 kip⋅=

Mint 3335 kip⋅ in⋅ 1 IF+( )⋅:= Mint 4287.86 kip in⋅⋅=

IRdeck fc.allow

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= IRdeck 2.77=

IRflange fs.allow

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= IRflange 1.04=

IRv

fv.allow D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= IRv 4.6=
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ORdeck fc.allow.op

Mint.ltc

Sti.ltc 3⋅ n
−









Sti.stc n⋅

Mint

⋅:= ORdeck 4.45=

ORflange fs.allow.op

Mint.nc

Sx

−
Mint.ltc

Sbi.ltc

−








Sbi.stc

Mint

⋅:= ORflange 1.9=

ORv

fv.allow.op D⋅ tw⋅ Vint.nc− Vint.ltc−

Vint

:= ORv 6.51=

 Type 3-3 Truck Fascia:

Vfas 20.79 kip⋅ 1 IF+( )⋅:= Vfas 26.73 kip⋅=

Mfas 2631 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 3382.71 kip in⋅⋅=

IRdeck fc.allow

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= IRdeck 3.04=

IRflange fs.allow

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= IRflange 1.55=

IRv

fv.allow D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= IRv 6.84=

ORdeck fc.allow.op

Mfas.ltc

Stf.ltc 3⋅ n
−









Stf.stc n⋅

Mfas

⋅:= ORdeck 4.89=

ORflange fs.allow.op

Mfas.nc

Sx

−
Mfas.ltc

Sbf.ltc

−








Sbf.stc

Mfas

⋅:= ORflange 2.62=

ORv

fv.allow.op D⋅ tw⋅ Vfas.nc− Vfas.ltc−

Vfas

:= ORv 9.64=
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LFD Section Capacities:

Section capacities are found using the AASHTO LFD design philosophy.

For bending, the compact steel section may be permitted to reach its full plastic capacity and thus

moments must be used instead of stresses in the rating equations. The moment capacity for a fascia girder

and for an interior girder is found below.

 Fascia Girder Moment Capacity:

b Bf:= b 6 ft=

C1 0.85 f'c⋅ b⋅ tdesign⋅:= C1 1606.5 kip⋅= A eq. 10-123

C2 Ag Fy⋅:= C2 1385 kip⋅= A eq. 10-124

C min C1 C2, ( ):= C 1385 kip⋅=

a
C

0.85 f'c⋅ b⋅
:= a 6.47 in⋅= A eq. 10-125

Since 'a' is less than the design slab thickness, then the neutral axis at the plastic moment is in the slab.

Mu.f 0.85 f'c⋅ b⋅ a⋅
a

2
⋅ Ag Fy⋅

d

2
tdesign+ a−





⋅+:= Mu.f 24538.1 kip in⋅⋅= A 10.50.1.1

 Interior Girder Moment Capacity:

b B:= b 7.5 ft=

C1 0.85 f'c⋅ b⋅ tdesign⋅:= C1 2008.13 kip⋅= A eq. 10-123

C2 Ag Fy⋅:= C2 1385 kip⋅= A eq. 10-124

C min C1 C2, ( ):= C 1385 kip⋅=

a
C

0.85 f'c⋅ b⋅
:= a 5.17 in⋅= A eq. 10-125

Since 'a' is less than the design slab thickness, then the neutral axis at the plastic moment is in the slab.

Mu.i 0.85 f'c⋅ b⋅ a⋅
a

2
⋅ Ag Fy⋅

d

2
tdesign+ a−





⋅+:= Mu.i 25433.63 kip in⋅⋅= A 10.50.1.1

For shear in a web without stiffeners, with a compact section, and with none of the web depth in bending

compression for the composite section:

fv.allow 0.58 Fy⋅:= A 10.48.8.1
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LFD Load Rating with Distribution Factors:

Load ratings per AASHTO LFD are calculated. Unfactored dead and live load forces are the same as for

ASD, however, the capacity changes.

The LFD rating equation is:

RF
C A1 D⋅−

A2 L⋅
:=

A1
CE 6.5.3

A1 1.3:=

A2 1.3:= at the operating level

A2 2.17:= at the inventory level

And the rating factors are:

 HS20 Truck Interior:

Vint Vhs.int:= Vint 51.28 kip⋅=

Mint Mhs.int:= Mint 6605.18 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 1.71=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 1.42=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 2.94=

ORdeck 1.67 IRdeck⋅:= ORdeck 2.85=

ORflange 1.67 IRflange⋅:= ORflange 2.36=

ORv 1.67 IRv⋅:= ORv 4.9=

 HS20 Truck Fascia:

Vfas Vhs.fas:= Vfas 48.01 kip⋅=

Mfas Mhs.fas:= Mfas 6183.57 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 1.76=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 1.5=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 3.19=
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ORdeck 1.67 IRdeck⋅:= ORdeck 2.93=

ORflange 1.67 IRflange⋅:= ORflange 2.51=

ORv 1.67 IRv⋅:= ORv 5.32=

 Type 3 Truck Interior:

Vint V3.int:= Vint 37.31 kip⋅=

Mint M3.int:= Mint 4954.68 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 2.27=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 1.89=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 4.04=

ORdeck 1.67 IRdeck⋅:= ORdeck 3.8=

ORflange 1.67 IRflange⋅:= ORflange 3.15=

ORv 1.67 IRv⋅:= ORv 6.74=

 Type 3 Truck Fascia:

Vfas V3.fas:= Vfas 34.93 kip⋅=

Mfas M3.fas:= Mfas 4638.42 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 2.34=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 2=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 4.38=

ORdeck 1.67 IRdeck⋅:= ORdeck 3.91=

ORflange 1.67 IRflange⋅:= ORflange 3.34=

ORv 1.67 IRv⋅:= ORv 7.31=

474



Hartbarger Bridge Rating Calcs by: EVF Date:1/9/14

 Type 3S2 Truck Interior:

Vint V3s2.int:= Vint 39.62 kip⋅=

Mint M3s2.int:= Mint 4520.75 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 2.49=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 2.07=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 3.8=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.16=

ORflange 1.67 IRflange⋅:= ORflange 3.45=

ORv 1.67 IRv⋅:= ORv 6.35=

 Type 3S2 Truck Fascia:

Vfas V3s2.fas:= Vfas 37.09 kip⋅=

Mfas M3s2.fas:= Mfas 4232.19 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 2.57=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 2.19=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 4.12=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.28=

ORflange 1.67 IRflange⋅:= ORflange 3.66=

ORv 1.67 IRv⋅:= ORv 6.88=

 Type 3-3 Truck Interior:

Vint V33.int:= Vint 37.45 kip⋅=

Mint M33.int:= Mint 4144.68 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 2.72=
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IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 2.26=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 4.02=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.54=

ORflange 1.67 IRflange⋅:= ORflange 3.77=

ORv 1.67 IRv⋅:= ORv 6.71=

 Type 3-3 Truck Fascia:

Vfas V33.fas:= Vfas 35.06 kip⋅=

Mfas M33.fas:= Mfas 3880.12 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 2.8=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 2.39=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 4.36=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.67=

ORflange 1.67 IRflange⋅:= ORflange 4=

ORv 1.67 IRv⋅:= ORv 7.28=
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LFD Load Rating with Finite Element Live Load Stresses

Stresses in the critical elements are found as discussed previously.

The results are as follows for the various truck loads and for an interior and a fascia girder:

 HS Truck Interior:

Vint 40.74 kip⋅ 1 IF+( )⋅:= Vint 52.38 kip⋅=

fb.int 9.059 ksi⋅ 1 IF+( )⋅:= fb.int 11.65 ksi⋅=

ft.int 0.934 ksi⋅ 1 IF+( )⋅:= ft.int 1.2 ksi⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 0.91=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Sbi.stc⋅ fb.int⋅
:= IRflange 2.17=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 2.87=

ORdeck 1.67 IRdeck⋅:= ORdeck 1.52=

ORflange 1.67 IRflange⋅:= ORflange 3.63=

ORv 1.67 IRv⋅:= ORv 4.8=

 HS Truck Fascia:

Vfas 31.18 kip⋅ 1 IF+( )⋅:= Vfas 40.09 kip⋅=

fb.fas 7.527 ksi⋅ 1 IF+( )⋅:= fb.fas 9.68 ksi⋅=

ft.fas 0.540 ksi⋅ 1 IF+( )⋅:= ft.fas 0.69 ksi⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 1.74=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Sbf.stc⋅ fb.fas⋅
:= IRflange 2.64=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 3.81=

ORdeck 1.67 IRdeck⋅:= ORdeck 2.91=

ORflange 1.67 IRflange⋅:= ORflange 4.41=

ORv 1.67 IRv⋅:= ORv 6.37=
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 Type 3 Truck Interior:

Vint 30.43 kip⋅ 1 IF+( )⋅:= Vint 39.12 kip⋅=

fb.int 6.939 ksi⋅ 1 IF+( )⋅:= fb.int 8.92 ksi⋅=

ft.int 0.689 ksi⋅ 1 IF+( )⋅:= ft.int 0.89 ksi⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 1.23=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Sbi.stc⋅ fb.int⋅
:= IRflange 2.84=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 3.85=

ORdeck 1.67 IRdeck⋅:= ORdeck 2.06=

ORflange 1.67 IRflange⋅:= ORflange 4.74=

ORv 1.67 IRv⋅:= ORv 6.43=

 Type 3 Truck Fascia:

Vfas 21.91 kip⋅ 1 IF+( )⋅:= Vfas 28.17 kip⋅=

fb.fas 5.707 ksi⋅ 1 IF+( )⋅:= fb.fas 7.34 ksi⋅=

ft.fas 0.399 ksi⋅ 1 IF+( )⋅:= ft.fas 0.51 ksi⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 2.36=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Sbf.stc⋅ fb.fas⋅
:= IRflange 3.48=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 5.43=

ORdeck 1.67 IRdeck⋅:= ORdeck 3.94=

ORflange 1.67 IRflange⋅:= ORflange 5.82=

ORv 1.67 IRv⋅:= ORv 9.07=
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 Type 3S2 Truck Interior:

Vint 29.48 kip⋅ 1 IF+( )⋅:= Vint 37.9 kip⋅=

fb.int 6.355 ksi⋅ 1 IF+( )⋅:= fb.int 8.17 ksi⋅=

ft.int 0.633 ksi⋅ 1 IF+( )⋅:= ft.int 0.81 ksi⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 1.34=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Sbi.stc⋅ fb.int⋅
:= IRflange 3.1=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 3.97=

ORdeck 1.67 IRdeck⋅:= ORdeck 2.24=

ORflange 1.67 IRflange⋅:= ORflange 5.17=

ORv 1.67 IRv⋅:= ORv 6.63=

 Type 3S2 Truck Fascia:

Vfas 25.21 kip⋅ 1 IF+( )⋅:= Vfas 32.41 kip⋅=

fb.fas 5.195 ksi⋅ 1 IF+( )⋅:= fb.fas 6.68 ksi⋅=

ft.fas 0.365 ksi⋅ 1 IF+( )⋅:= ft.fas 0.47 ksi⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 2.58=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Sbf.stc⋅ fb.fas⋅
:= IRflange 3.83=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 4.72=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.31=

ORflange 1.67 IRflange⋅:= ORflange 6.39=

ORv 1.67 IRv⋅:= ORv 7.88=
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 Type 3-3 Truck Interior:

Vint 27.87 kip⋅ 1 IF+( )⋅:= Vint 35.83 kip⋅=

fb.int 5.936 ksi⋅ 1 IF+( )⋅:= fb.int 7.63 ksi⋅=

ft.int 0.573 ksi⋅ 1 IF+( )⋅:= ft.int 0.74 ksi⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 1.48=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Sbi.stc⋅ fb.int⋅
:= IRflange 3.32=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 4.2=

ORdeck 1.67 IRdeck⋅:= ORdeck 2.48=

ORflange 1.67 IRflange⋅:= ORflange 5.54=

ORv 1.67 IRv⋅:= ORv 7.02=

 Type 3-3 Truck Fascia:

Vfas 23.72 kip⋅ 1 IF+( )⋅:= Vfas 30.5 kip⋅=

fb.fas 5.066 ksi⋅ 1 IF+( )⋅:= fb.fas 6.51 ksi⋅=

ft.fas 0.343 ksi⋅ 1 IF+( )⋅:= ft.fas 0.44 ksi⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 2.74=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Sbf.stc⋅ fb.fas⋅
:= IRflange 3.93=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 5.01=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.58=

ORflange 1.67 IRflange⋅:= ORflange 6.56=

ORv 1.67 IRv⋅:= ORv 8.37=
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LFD Load Rating with Modal Flexibility Live Load Stresses

Stresses in the critical elements are found using the results of the modal analysis as discussed previously.

The results are as follows for the various truck loads and for an interior and a fascia girder:

 HS Truck Interior:

Vint 42.97 kip⋅ 1 IF+( )⋅:= Vint 55.25 kip⋅=

Mint 4788 kip⋅ in⋅ 1 IF+( )⋅:= Mint 6156 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 1.83=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 1.52=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 2.73=

ORdeck 1.67 IRdeck⋅:= ORdeck 3.06=

ORflange 1.67 IRflange⋅:= ORflange 2.54=

ORv 1.67 IRv⋅:= ORv 4.55=

 HS Truck Fascia:

Vfas 27.87 kip⋅ 1 IF+( )⋅:= Vfas 35.83 kip⋅=

Mfas 3901 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 5015.57 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 2.16=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 1.85=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 4.27=

ORdeck 1.67 IRdeck⋅:= ORdeck 3.62=

ORflange 1.67 IRflange⋅:= ORflange 3.09=

ORv 1.67 IRv⋅:= ORv 7.13=
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 Type 3 Truck Interior:

Vint 31.81 kip⋅ 1 IF+( )⋅:= Vint 40.9 kip⋅=

Mint 3653 kip⋅ in⋅ 1 IF+( )⋅:= Mint 4696.71 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 2.4=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 1.99=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 3.68=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.01=

ORflange 1.67 IRflange⋅:= ORflange 3.32=

ORv 1.67 IRv⋅:= ORv 6.15=

 Type 3 Truck Fascia:

Vfas 19.97 kip⋅ 1 IF+( )⋅:= Vfas 25.68 kip⋅=

Mfas 2953 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 3796.71 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 2.86=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 2.45=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 5.96=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.78=

ORflange 1.67 IRflange⋅:= ORflange 4.08=

ORv 1.67 IRv⋅:= ORv 9.95=

 Type 3S2 Truck Interior:

Vint 32.07 kip⋅ 1 IF+( )⋅:= Vint 41.23 kip⋅=

Mint 3335 kip⋅ in⋅ 1 IF+( )⋅:= Mint 4287.86 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 2.63=
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IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 2.18=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 3.65=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.39=

ORflange 1.67 IRflange⋅:= ORflange 3.64=

ORv 1.67 IRv⋅:= ORv 6.1=

 Type 3S2 Truck Fascia:

Vfas 21.97 kip⋅ 1 IF+( )⋅:= Vfas 28.25 kip⋅=

Mfas 2698 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 3468.86 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 3.13=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 2.68=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 5.41=

ORdeck 1.67 IRdeck⋅:= ORdeck 5.23=

ORflange 1.67 IRflange⋅:= ORflange 4.47=

ORv 1.67 IRv⋅:= ORv 9.04=

 Type 3-3 Truck Interior:

Vint 30.3 kip⋅ 1 IF+( )⋅:= Vint 38.96 kip⋅=

Mint 3335 kip⋅ in⋅ 1 IF+( )⋅:= Mint 4287.86 kip in⋅⋅=

IRdeck

Mu.i A1 Mint.ltc⋅−

A2 Mint⋅
:= IRdeck 2.63=

IRflange

Mu.i A1 Mint.nc⋅− A1 Mint.ltc⋅−

A2 Mint⋅
:= IRflange 2.18=

IRv

fv.allow D⋅ tw⋅ A1 Vint.nc⋅− A1 Vint.ltc⋅−

A2 Vint⋅
:= IRv 3.87=

ORdeck 1.67 IRdeck⋅:= ORdeck 4.39=

ORflange 1.67 IRflange⋅:= ORflange 3.64=
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ORv 1.67 IRv⋅:= ORv 6.46=

 Type 3-3 Truck Fascia:

Vfas 20.79 kip⋅ 1 IF+( )⋅:= Vfas 26.73 kip⋅=

Mfas 2631 kip⋅ in⋅ 1 IF+( )⋅:= Mfas 3382.71 kip in⋅⋅=

IRdeck

Mu.f A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRdeck 3.21=

IRflange

Mu.f A1 Mfas.nc⋅− A1 Mfas.ltc⋅−

A2 Mfas⋅
:= IRflange 2.75=

IRv

fv.allow D⋅ tw⋅ A1 Vfas.nc⋅− A1 Vfas.ltc⋅−

A2 Vfas⋅
:= IRv 5.72=

ORdeck 1.67 IRdeck⋅:= ORdeck 5.36=

ORflange 1.67 IRflange⋅:= ORflange 4.58=

ORv 1.67 IRv⋅:= ORv 9.55=
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LRFD Load Rating Introduction

Load rating using the LRFD philosophy is about the same as using the other philosophies. The dead load

forces do not change and the forces due to legal trucks do not change. The section capacities are found

differently, load factors are applied, and the design live load becomes HL-93 instead of HS-20. 

RF
C γDL D⋅−

γLL L⋅
:=

γDL
BE 6A.4.2.1

γDL 1.25:= for components and attachments BE 6A.4.2.2

γLL 1.35:= for HL-93 truck at the operating level

γLL 1.75:= for HL-93 truck at the inventory level

γLL.l 1.4:= for legal loads, no separate inventory and operating levels BE 6A.4.4.2.3a-1

C ϕc ϕs⋅ ϕRn⋅:= ϕc

ϕc 1.0:= good bridge condition BE T6A4.2.3-1

ϕs 1.0:= redundant system BE T6.4.2.4-1

LRFD Bending Capacity - Interior Girder

Finding the strength per LRFD is a lengthy process because of the inclusion of the plastic moment and the

plastic neutral axis.  The flowcharts Figure C6.4.4-1 and C6.4.5-1 in AASHTO will be followed for these

calculations, and are attached for reference.

for flexure: ϕf 1.00:= AR 6.5.4.2

for shear: ϕv 1.00:=

 Step 1 - Check for Section Compactness:

 Check Minimum Yield Strength:

Fy 70ksi≤ 1= Okay AR 6.10.6.2.2

 Check Web Slenderness:

For webs without longitudinal stiffeners:

D 25.41 in⋅=

tw 0.49 in⋅=

D

tw

51.86=

D

tw

150≤ 1= Okay AR 6.10.2.1.1-1
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 Check Depth of Web in Compression:

This check is done at the plastic moment, and requires calculating the plastic neutral axis. The calculations

used to find the PNA can be conservatively simplified by ignoring the reinforcing steel in the deck.

2
Dcp

tw

⋅ 3.76
E

Fy

⋅≤ AR 6.10.6.2.2-1

At the plastic moment the force in the bottom (tension) flange is:

Pt Fy bt⋅ tt⋅:= Pt 372.13 kip⋅=

And the force in the web is:

Pw Fy D⋅ tw⋅:= Pw 622.54 kip⋅=

And the force in the top (compression) flange is:

Pc Pt:= Pc 372.13 kip⋅=

And the force in the slab is:

bs B:= bs 7.5 ft=

Ps 0.85f'c tdesign⋅ bs⋅:= Ps 2008.12 kip⋅=

The location of the PNA will be in one of the following locations:

Case 1: PNA lies in web

Case 2: PNA lies in top flange

Case 3: PNA lies in concrete deck

AR T D6.1-1

ts tdesign:=

PNA case 3←( ) Pt Pw+ Pc+ Ps<if

case 2←( ) Pt Pw+ Pc+ Ps≥if

case 1←( ) Pt Pw+ Pc Ps+≥if

y
D

2

Pt Pc− Ps−

Pw

1+








⋅← case 1=if

y
tc

2

Pw Pt+ Ps−

Pc

1+








⋅← case 2=if

y ts

Pc Pw+ Pt+

Ps









⋅← case 3=if

pna tt D+ y−← case 1=if

pna tt D+ tc+ y−← case 2=if

pna tt D+ tc+ ts+ y−← case 3=if

pna

:=

PNA 29.3 in⋅= measured upwards from the bottom of the bottom flange:
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Therefore, the depth of web in compression is zero:

Dcp 0 in⋅:=

And checking for compactness:

2
Dcp

tw

⋅ 3.76
E

Fy

⋅≤ 1= Okay - Compact

 Step 2 - Determine Plastic Moment:

Because the sections are compact, the bending strength is a function of the plastic moment.  Therefore, the

plastic moment must be found.  The plastic moment equations use a variable 'y' which is measured from

different points in the section depending on the location of the PNA.  This variable will be found first:

y' y tt D+ tc+ ts+ PNA−←

y tt D+ tc+ PNA−← Pt Pw+ Pc+ Ps≥if

y tt D+ PNA−← Pt Pw+ Pc Ps+≥if

y

:=

y' 5.1 in⋅=

Now the plastic moment will be calculated:

Mp d1 tt D+←

d2 d1 tc+←

d3 d2 ts+←

dt PNA tt−←

dw PNA tt−
D

2
−←

dc PNA tt− D−
tc

2
−←

ds PNA tt− D− tc−
ts

2
−←

m y'( )
2

Ps

2 ts⋅
⋅ Pc dc⋅+ Pw dw⋅+ Pt dt⋅+←

m
Pc

2 tc⋅
y'( )

2
tc y'−( )2+



⋅ Ps ds⋅+ Pw dw⋅+ Pt dt⋅+← Pt Pw+ Pc+ Ps≥if

m
Pw

2 D⋅
y'( )

2
D y'−( )

2
+ ⋅ Ps ds⋅+ Pc dc⋅+ Pt dt⋅+← Pt Pw+ Pc Ps+≥if

m

:=

Mp 2083.94 kip ft⋅⋅=
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 Step 3 - Determine Nominal Bending Strength:

There are two equations that may control the nominal bending strength, and the choice of which equation to

use is based on the ratio of the depth of section in compression to the total depth of section.  The following

checks this ratio and then calculates the nominal bending strength:

Mn.i Dt tt D+ tc+ ts+←

Dp Dt PNA−←

m Mp←

m Mp 1.07 0.7
Dp

Dt

⋅−








⋅← Dp 0.1 Dt⋅>if

m

:=

AR 6.10.7.1.2-1

AR 6.10.7.1.2-2

Mn.i 2013.34 kip ft⋅⋅=

LRFD Shear Capacity - Interior Girder

Vn C Vp⋅:= C AR 6.10.9.2-1

kw 5.0:= no web stiffeners AR 6.10.9.2

Es E:=

C c
1.57 Es⋅ kw⋅

D

tw









2

Fy⋅

←

c
1.12

D

tw









Es kw⋅

Fy

⋅←
D

tw

1.40
Es kw⋅

Fy

⋅≤if

c 1.0←
D

tw

1.12
Es kw⋅

Fy

⋅<if

c

:=
AR 6.10.9.3.2-6

AR 6.10.9.3.2-5

AR 6.10.9.3.2-4

C 1=

Vp 0.58 Fy⋅ D⋅ tw⋅:= Vp 361.08 kip⋅= AR 6.10.9.3.2-3

Vn.i C Vp⋅:= Vn.i 361.08 kip⋅=
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LRFD Bending Capacity - Fascia Girder

Finding the strength per LRFD is a lengthy process because of the inclusion of the plastic moment and the

plastic neutral axis.  The flowcharts Figure C6.4.4-1 and C6.4.5-1 in AASHTO will be followed for these

calculations, and are attached for reference.

for flexure: ϕf 1.00:= AR 6.5.4.2

for shear: ϕv 1.00:=

 Step 1 - Check for Section Compactness:

 Check Minimum Yield Strength:

Fy 70ksi≤ 1= Okay AR 6.10.6.2.2

 Check Web Slenderness:

For webs without longitudinal stiffeners:

D 25.41 in⋅=

tw 0.49 in⋅=

D

tw

51.86=

D

tw

150≤ 1= Okay AR 6.10.2.1.1-1

 Check Depth of Web in Compression:

This check is done at the plastic moment, and requires calculating the plastic neutral axis. The calculations

used to find the PNA can be conservatively simplified by ignoring the reinforcing steel in the deck.

2
Dcp

tw

⋅ 3.76
E

Fy

⋅≤ AR 6.10.6.2.2-1

At the plastic moment the force in the bottom (tension) flange is:

Pt Fy bt⋅ tt⋅:= Pt 372.13 kip⋅=

And the force in the web is:

Pw Fy D⋅ tw⋅:= Pw 622.54 kip⋅=

And the force in the top (compression) flange is:

Pc Pt:= Pc 372.13 kip⋅=

And the force in the slab is:

bs Bf:= bs 6 ft=

Ps 0.85f'c tdesign⋅ bs⋅:= Ps 1606.5 kip⋅=
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The location of the PNA will be in one of the following locations:

Case 1: PNA lies in web

Case 2: PNA lies in top flange

Case 3: PNA lies in concrete deck

AR T D6.1-1

ts tdesign:=

PNA case 3←( ) Pt Pw+ Pc+ Ps<if

case 2←( ) Pt Pw+ Pc+ Ps≥if

case 1←( ) Pt Pw+ Pc Ps+≥if

y
D

2

Pt Pc− Ps−

Pw

1+








⋅← case 1=if

y
tc

2

Pw Pt+ Ps−

Pc

1+








⋅← case 2=if

y ts

Pc Pw+ Pt+

Ps









⋅← case 3=if

pna tt D+ y−← case 1=if

pna tt D+ tc+ y−← case 2=if

pna tt D+ tc+ ts+ y−← case 3=if

pna

:=

PNA 28.02 in⋅= measured upwards from the bottom of the bottom flange:

Therefore, the depth of web in compression is zero:

Dcp 0 in⋅:=

And checking for compactness:

2
Dcp

tw

⋅ 3.76
E

Fy

⋅≤ 1= Okay - Compact

 Step 2 - Determine Plastic Moment:

Because the sections are compact, the bending strength is a function of the plastic moment.  Therefore, the

plastic moment must be found.  The plastic moment equations use a variable 'y' which is measured from

different points in the section depending on the location of the PNA.  This variable will be found first:

y' y tt D+ tc+ ts+ PNA−←

y tt D+ tc+ PNA−← Pt Pw+ Pc+ Ps≥if

y tt D+ PNA−← Pt Pw+ Pc Ps+≥if

y

:=

y' 6.38 in⋅=

490



Hartbarger Bridge Rating Calcs by: EVF Date:1/9/14

Now the plastic moment will be calculated:

Mp d1 tt D+←

d2 d1 tc+←

d3 d2 ts+←

dt PNA tt−←

dw PNA tt−
D

2
−←

dc PNA tt− D−
tc

2
−←

ds PNA tt− D− tc−
ts

2
−←

m y'( )
2

Ps

2 ts⋅
⋅ Pc dc⋅+ Pw dw⋅+ Pt dt⋅+←

m
Pc

2 tc⋅
y'( )

2
tc y'−( )2+



⋅ Ps ds⋅+ Pw dw⋅+ Pt dt⋅+← Pt Pw+ Pc+ Ps≥if

m
Pw

2 D⋅
y'( )

2
D y'−( )

2
+ ⋅ Ps ds⋅+ Pc dc⋅+ Pt dt⋅+← Pt Pw+ Pc Ps+≥if

m

:=

Mp 2011.26 kip ft⋅⋅=

 Step 3 - Determine Nominal Bending Strength:

There are two equations that may control the nominal bending strength, and the choice of which equation to

use is based on the ratio of the depth of section in compression to the total depth of section.  The following

checks this ratio and then calculates the nominal bending strength:

Mn.f Dt tt D+ tc+ ts+←

Dp Dt PNA−←

m Mp←

m Mp 1.07 0.7
Dp

Dt

⋅−








⋅← Dp 0.1 Dt⋅>if

m

:=

AR 6.10.7.1.2-1

AR 6.10.7.1.2-2

Mn.f 1890.89 kip ft⋅⋅=
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LRFD Shear Capacity - Fascia Girder

Vn C Vp⋅:= AR 6.10.9.2-1

kw 5.0:= no web stiffeners AR 6.10.9.2

Es E:=

C c
1.57 Es⋅ kw⋅

D

tw









2

Fy⋅

←

c
1.12

D

tw









Es kw⋅

Fy

⋅←
D

tw

1.40
Es kw⋅

Fy

⋅≤if

c 1.0←
D

tw

1.12
Es kw⋅

Fy

⋅<if

c

:=
AR 6.10.9.3.2-6

AR 6.10.9.3.2-5

AR 6.10.9.3.2-4

C 1=

Vp 0.58 Fy⋅ D⋅ tw⋅:= Vp 361.08 kip⋅= AR 6.10.9.3.2-3

Vn.f C Vp⋅:= Vn.f 361.08 kip⋅=

Determine Live Load Distribution Factors per LRFD:
The calculation of live load effects will use the distribution factors of LRFD Section 4.  

NL 2:= number of lanes Nb 4:= number of girders AR 3.6.1.1.1

 Interior Girder:

The value of Kg is found using the bare girder section properties:

eg
D

2
tc+

ts

2
+:= eg 17.2 in⋅= AR 4.6.2.2.1

Kg n Ix Ag eg
2

⋅+



⋅:= Kg 103182.91 in

4
⋅= AR 4.6.2.2.1-1

 Basic Distribution Factor for Moment:

There are a variety of limitations for using the empirical distribution factors, which are checked below:

check check 1← S 16.0ft≥ S 3.5ft≤∨if

check 2← ts 4.5in≤ ts 12.0in≥∨if

check 3← Nb 4<if

check 4← Kg 10000in
4

≤ Kg 7000000in
4

≥∨if

check "OK to use following DF formula"← otherwise

:=

AR T4.6.2.2.2b-1

check "OK to use following DF formula"=
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The bridge qualifies for use of the distribution factors, so the moment distribution factor for live load is

calculated below.

For one lane loaded:

DFm1 0.06
S

14 ft⋅






0.4
S

L







0.3

⋅
Kg

L ts
3

⋅











0.1

⋅+:= DFm1 0.46
lanes

beam
⋅= AR T4.6.2.2.2b-1

For more than one lane loaded:

DFm2 0.075
S

9.5 ft⋅






0.6
S

L







0.2

⋅
Kg

L ts
3

⋅











0.1

⋅+:= DFm2 0.62
lanes

beam
⋅=

And the controlling DF is:

DFm.i max DFm1 DFm2, ( ):= DFm.i 0.62
lanes

beam
⋅=

Since the bridge skew is zero, no moment reduction factor is calculated.

 Distribution Factor for Shear:

The bridge qualifies for use of the distribution factor based on the preceding checks, so the shear

distribution factor is:

For one lane loaded:

DFv1 0.36
S

25 ft⋅
+:= DFv1 0.66

lanes

beam
⋅= AR T4.6.2.2.3a-1

For more than one lane loaded:

DFv2 0.2
S

12 ft⋅
+

S

35 ft⋅






2.0

−:= DFv2 0.78
lanes

beam
⋅=

And the controlling DF is:

DFv.i max DFv1 DFv2, ( ):= DFv.i 0.78
lanes

beam
⋅=

No skew correction factor is applied since the skew is zero.

 Fascia Girder:

 Basic Distribution Factor for Moment:

The distance, de, is defined a the distance between the web centerline of the exterior girder and the interior

edge of the curb.

de 0.75 ft⋅:=

There are a variety of limitations for using the empirical distribution factors, which are checked below:

check check 1← de 5.5ft≥ de 1.0− ft≤∨if

check "OK to use following DF formula"← otherwise

:=

AR T4.6.2.2.2d-1

check "OK to use following DF formula"=

The bridge qualifies for use of the distribution factors, so the moment distribution factor for live load is

calculated below.
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For one lane loaded, the lever rule is to be used which will result in the same answer as for ASD, except that

a factor of 1.2 is applied for the multiple presence factor:

DFm1
0.87

2
1.2⋅:= DFm1 0.52

lanes

beam
⋅=

For more than one lane loaded:

DFm2 0.075
S

9.5 ft⋅






0.6
S

L







0.2

⋅
Kg

L ts
3

⋅











0.1

⋅+:= DFm2 0.62
lanes

beam
⋅= AR 4.6.2.2.1-1

Except modified by em:

em 0.77
de

9.1 ft⋅
+:= em 0.85= AR T4.6.2.2.2d-1

And the controlling DF is:

DFm.f max DFm1 em DFm2⋅, ( ):= DFm.f 0.53
lanes

beam
⋅=

Since the bridge skew is zero, no moment modification factor is calculated.

 Distribution Factor for Shear:

The bridge qualifies for use of the distribution factor based on the preceding checks, so the shear

distribution factor is:

For one lane loaded, the lever rule is used:

DFv1 DFm1:= DFv1 0.52
lanes

beam
⋅= AR T4.6.2.2.3a-1

For more than one lane loaded:

DFv2 0.2
S

12 ft⋅
+

S

35 ft⋅






2.0

−:= DFv2 0.78
lanes

beam
⋅=

Except modified by em:

em 0.6
de

10 ft⋅
+:= em 0.68= AR T4.6.2.2.3b-1

And the controlling DF is:

DFv.f max DFv1 em DFv2⋅, ( ):= DFv.f 0.53
lanes

beam
⋅=

No skew correction factor is applied since the skew is zero.

IM 0.33:= Dynamic load allowance
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LRFD Load Rating with Distribution Factors:

Load ratings per AASHTO LRFD are calculated.

 HL-93 Loading Interior:

Vint Vhl DFv.i⋅ 1 IM+( )⋅:= Vint 77.2 kip⋅=

Mint Mhl DFm.i⋅ 1 IM+( )⋅:= Mint 8163.3 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL Mint⋅
:= IRdeck 1.63=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅− γDL Mint.nc⋅−

γLL Mint⋅
:= IRflange 1.34=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc Vint.ltc+( )⋅−

γLL Vint⋅
:= IRv 2.43=

ORdeck IRdeck
1.75

1.35
⋅:= ORdeck 2.11=

ORflange IRflange
1.75

1.35
⋅:= ORflange 1.74=

ORv IRv
1.75

1.35
⋅:= ORv 3.15=

 HL-93 Loading Fascia:

Vfas Vhl DFv.f⋅ 1 IM+( )⋅:= Vfas 52.11 kip⋅=

Mfas Mhl DFm.f⋅ 1 IM+( )⋅:= Mfas 6958.54 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL Mfas⋅
:= IRdeck 1.79=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅− γDL Mfas.nc⋅−

γLL Mfas⋅
:= IRflange 1.52=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc Vfas.ltc+( )⋅−

γLL Vfas⋅
:= IRv 3.65=

ORdeck IRdeck
1.75

1.35
⋅:= ORdeck 2.32=

ORflange IRflange
1.75

1.35
⋅:= ORflange 1.97=

ORv IRv
1.75

1.35
⋅:= ORv 4.73=
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 Type 3 Truck Interior:

Vint V3 DFv.i⋅ 1 IM+( )⋅:= Vint 44.1 kip⋅=

Mint M3 DFm.i⋅ 1 IM+( )⋅:= Mint 4975.91 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRdeck 3.33=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅− γDL Mint.nc⋅−

γLL.l Mint⋅
:= IRflange 2.76=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc Vint.ltc+( )⋅−

γLL.l Vint⋅
:= IRv 5.31=

 Type 3 Truck Fascia:

Vfas V3 DFv.f⋅ 1 IM+( )⋅:= Vfas 29.77 kip⋅=

Mfas M3 DFm.f⋅ 1 IM+( )⋅:= Mfas 4241.55 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRdeck 3.66=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅− γDL Mfas.nc⋅−

γLL.l Mfas⋅
:= IRflange 3.11=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc Vfas.ltc+( )⋅−

γLL.l Vfas⋅
:= IRv 7.99=

 Type 3s2 Truck Interior:

Vint V3s2 DFv.i⋅ 1 IM+( )⋅:= Vint 46.84 kip⋅=

Mint M3s2 DFm.i⋅ 1 IM+( )⋅:= Mint 4540.12 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRdeck 3.65=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅− γDL Mint.nc⋅−

γLL.l Mint⋅
:= IRflange 3.02=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc Vint.ltc+( )⋅−

γLL.l Vint⋅
:= IRv 5=
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 Type 3s2 Truck Fascia:

Vfas V3s2 DFv.f⋅ 1 IM+( )⋅:= Vfas 31.61 kip⋅=

Mfas M3s2 DFm.f⋅ 1 IM+( )⋅:= Mfas 3870.08 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRdeck 4.01=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅− γDL Mfas.nc⋅−

γLL.l Mfas⋅
:= IRflange 3.41=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc Vfas.ltc+( )⋅−

γLL.l Vfas⋅
:= IRv 7.52=

 Type 3-3 Truck Interior:

Vint V33 DFv.i⋅ 1 IM+( )⋅:= Vint 44.27 kip⋅=

Mint M33 DFm.i⋅ 1 IM+( )⋅:= Mint 4162.44 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRdeck 3.99=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅− γDL Mint.nc⋅−

γLL.l Mint⋅
:= IRflange 3.3=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc Vint.ltc+( )⋅−

γLL.l Vint⋅
:= IRv 5.29=

 Type 3-3 Truck Fascia:

Vfas V33 DFv.f⋅ 1 IM+( )⋅:= Vfas 29.88 kip⋅=

Mfas M33 DFm.f⋅ 1 IM+( )⋅:= Mfas 3548.13 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRdeck 4.38=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅− γDL Mfas.nc⋅−

γLL.l Mfas⋅
:= IRflange 3.72=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc Vfas.ltc+( )⋅−

γLL.l Vfas⋅
:= IRv 7.96=
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LRFD Load Rating with Finite Element Live Load Stresses

 HL-93 Truck Interior:

Vint 40.74 kip⋅ 1 IM+( )⋅ 9.4 kip⋅+:= Vint 67.45 kip⋅=

fb.int 9.059 ksi⋅ 1 IM+( )⋅ 2.762 ksi⋅+:= fb.int 14.81 ksi⋅=

ft.int 0.934 ksi⋅ 1 IM+( )⋅ 0.239 ksi⋅+:= ft.int 1.48 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 0.87=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL Sbi.stc⋅ fb.int⋅
:= IRflange 2.01=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL Vint⋅
:= IRv 2.78=

ORdeck
1.75

1.35
IRdeck⋅:= ORdeck 1.13=

ORflange
1.75

1.35
IRflange⋅:= ORflange 2.6=

ORv
1.75

1.35
IRv⋅:= ORv 3.6=

 HL-93 Truck Fascia:

Vfas 31.18 kip⋅ 1 IM+( )⋅ 9.63 kip⋅+:= Vfas 51.1 kip⋅=

fb.fas 7.527 ksi⋅ 1 IM+( )⋅ 2.608 ksi⋅+:= fb.fas 12.62 ksi⋅=

ft.fas 0.540 ksi⋅ 1 IM+( )⋅ 0.165 ksi⋅+:= ft.fas 0.88 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 1.57=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL Sbf.stc⋅ fb.fas⋅
:= IRflange 2.3=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL Vfas⋅
:= IRv 3.72=

ORdeck 1.67 IRdeck⋅:= ORdeck 2.62=

ORflange 1.67 IRflange⋅:= ORflange 3.85=

ORv 1.67 IRv⋅:= ORv 6.22=
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 Type 3 Truck Interior:

Vint 30.43 kip⋅ 1 IM+( )⋅:= Vint 40.47 kip⋅=

fb.int 6.939 ksi⋅ 1 IM+( )⋅:= fb.int 9.23 ksi⋅=

ft.int 0.689 ksi⋅ 1 IM+( )⋅:= ft.int 0.92 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 1.76=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL.l Sbi.stc⋅ fb.int⋅
:= IRflange 4.03=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL.l Vint⋅
:= IRv 5.79=

 Type 3 Truck Fascia:

Vfas 21.91 kip⋅ 1 IM+( )⋅:= Vfas 29.14 kip⋅=

fb.fas 5.707 ksi⋅ 1 IM+( )⋅:= fb.fas 7.59 ksi⋅=

ft.fas 0.399 ksi⋅ 1 IM+( )⋅:= ft.fas 0.53 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 3.26=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL.l Sbf.stc⋅ fb.fas⋅
:= IRflange 4.79=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL.l Vfas⋅
:= IRv 8.16=

 Type 3S2 Truck Interior:

Vint 29.48 kip⋅ 1 IM+( )⋅:= Vint 39.21 kip⋅=

fb.int 6.355 ksi⋅ 1 IM+( )⋅:= fb.int 8.45 ksi⋅=

ft.int 0.633 ksi⋅ 1 IM+( )⋅:= ft.int 0.84 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 1.91=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL.l Sbi.stc⋅ fb.int⋅
:= IRflange 4.4=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL.l Vint⋅
:= IRv 5.98=
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 Type 3S2 Truck Fascia:

Vfas 25.21 kip⋅ 1 IM+( )⋅:= Vfas 33.53 kip⋅=

fb.fas 5.195 ksi⋅ 1 IM+( )⋅:= fb.fas 6.91 ksi⋅=

ft.fas 0.365 ksi⋅ 1 IM+( )⋅:= ft.fas 0.49 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 3.57=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL.l Sbf.stc⋅ fb.fas⋅
:= IRflange 5.26=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL.l Vfas⋅
:= IRv 7.09=

 Type 3-3 Truck Interior:

Vint 27.87 kip⋅ 1 IM+( )⋅:= Vint 37.07 kip⋅=

fb.int 5.936 ksi⋅ 1 IM+( )⋅:= fb.int 7.89 ksi⋅=

ft.int 0.573 ksi⋅ 1 IM+( )⋅:= ft.int 0.76 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Sti.stc⋅ ft.int⋅ n⋅
:= IRdeck 2.11=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL.l Sbi.stc⋅ fb.int⋅
:= IRflange 4.71=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL.l Vint⋅
:= IRv 6.32=

 Type 3-3 Truck Fascia:

Vfas 23.72 kip⋅ 1 IM+( )⋅:= Vfas 31.55 kip⋅=

fb.fas 5.066 ksi⋅ 1 IM+( )⋅:= fb.fas 6.74 ksi⋅=

ft.fas 0.343 ksi⋅ 1 IM+( )⋅:= ft.fas 0.46 ksi⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Stf.stc⋅ ft.fas⋅ n⋅
:= IRdeck 3.79=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL.l Sbf.stc⋅ fb.fas⋅
:= IRflange 5.39=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL.l Vfas⋅
:= IRv 7.54=
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LRFD Load Rating with Modal Flexibility Live Load Stresses

Stresses in the critical elements are found using the results of the modal analysis as discussed previously.

The results are as follows for the various truck loads and for an interior and a fascia girder:

 HL-93 Loading Interior:

Vint 42.97 kip⋅ 1 IM+( )⋅ 10.44 kip⋅+:= Vint 67.59 kip⋅=

Mint 4788 kip⋅ in⋅ 1 IM+( )⋅ 1501 kip⋅ in⋅+:= Mint 7869.04 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL Mint⋅
:= IRdeck 1.69=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL Mint⋅
:= IRflange 1.4=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL Vint⋅
:= IRv 2.77=

ORdeck
1.75

1.35
IRdeck⋅:= ORdeck 2.19=

ORflange
1.75

1.35
IRflange⋅:= ORflange 1.81=

ORv
1.75

1.35
IRv⋅:= ORv 3.6=

 HL-93 Loading Fascia:

Vfas 27.87 kip⋅ 1 IM+( )⋅ 7.54 kip⋅+:= Vfas 44.61 kip⋅=

Mfas 3901 kip⋅ in⋅ 1 IM+( )⋅ 1344 kip⋅ in⋅+:= Mfas 6532.33 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL Mfas⋅
:= IRdeck 1.9=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL Mfas⋅
:= IRflange 1.62=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL Vfas⋅
:= IRv 4.27=

ORdeck
1.75

1.35
IRdeck⋅:= ORdeck 2.47=

ORflange
1.75

1.35
IRflange⋅:= ORflange 2.09=

ORv
1.75

1.35
IRv⋅:= ORv 5.53=
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 Type 3 Truck Interior:

Vint 31.81 kip⋅ 1 IM+( )⋅:= Vint 42.31 kip⋅=

Mint 3653 kip⋅ in⋅ 1 IM+( )⋅:= Mint 4858.49 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRdeck 3.41=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRflange 2.82=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL.l Vint⋅
:= IRv 5.54=

 Type 3 Truck Fascia:

Vfas 19.97 kip⋅ 1 IM+( )⋅:= Vfas 26.56 kip⋅=

Mfas 2953 kip⋅ in⋅ 1 IM+( )⋅:= Mfas 3927.49 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRdeck 3.96=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRflange 3.36=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL.l Vfas⋅
:= IRv 8.95=

 Type 3S2 Truck Interior:

Vint 32.07 kip⋅ 1 IM+( )⋅:= Vint 42.65 kip⋅=

Mint 3335 kip⋅ in⋅ 1 IM+( )⋅:= Mint 4435.55 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRdeck 3.74=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRflange 3.09=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL.l Vint⋅
:= IRv 5.49=
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 Type 3S2 Truck Fascia:

Vfas 21.97 kip⋅ 1 IM+( )⋅:= Vfas 29.22 kip⋅=

Mfas 2698 kip⋅ in⋅ 1 IM+( )⋅:= Mfas 3588.34 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRdeck 4.33=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRflange 3.68=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL.l Vfas⋅
:= IRv 8.14=

 Type 3-3 Truck Interior:

Vint 30.3 kip⋅ 1 IM+( )⋅:= Vint 40.3 kip⋅=

Mint 3335 kip⋅ in⋅ 1 IM+( )⋅:= Mint 4435.55 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRdeck 3.74=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.i⋅ γDL Mint.nc⋅− γDL Mint.ltc⋅−

γLL.l Mint⋅
:= IRflange 3.09=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.i⋅ γDL Vint.nc⋅− γDL Vint.ltc⋅−

γLL.l Vint⋅
:= IRv 5.82=

 Type 3-3 Truck Fascia:

Vfas 20.79 kip⋅ 1 IM+( )⋅:= Vfas 27.65 kip⋅=

Mfas 2631 kip⋅ in⋅ 1 IM+( )⋅:= Mfas 3499.23 kip in⋅⋅=

IRdeck

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRdeck 4.44=

IRflange

ϕc ϕs⋅ ϕf⋅ Mn.f⋅ γDL Mfas.nc⋅− γDL Mfas.ltc⋅−

γLL.l Mfas⋅
:= IRflange 3.77=

IRv

ϕc ϕs⋅ ϕv⋅ Vn.f⋅ γDL Vfas.nc⋅− γDL Vfas.ltc⋅−

γLL.l Vfas⋅
:= IRv 8.6=
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