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Abstract 

Putting an end to the rapid deterioration of concrete structures in the United States will 

only occur through the introduction of better materials and construction methods.  The American 

Society of Civil Engineers (ASCE) reports the overall condition of concrete bridges in the United 

States to be a “C+”.  Though better than other areas of the infrastructure, there is still room for 

improvement in concrete bridges.  One major area that may be improved is that of the concrete 

bridge deck.  The bridge deck is comprised of the actual driving surface.  It is subject to many 

deterioration mechanisms including freeze/thaw cycles, de-icing salts, and cyclic loading.  The 

bridge deck must be highly durable to combat the negative effects it is subjected to.  A recent 

advancement to increase durability is the placement of a pre-saturated lightweight aggregate 

(LWA) inside concrete.  This LWA will offset cracking associated with drying shrinkage and 

self-desiccation.  The pre-saturated LWA is an expanded clay or expanded shale material which 

is able to absorb water into the pores of its structure and release that water to hydrating cement.  

The current research is focused on determining the effects of this LWA soaking durations of 1, 3, 

and 7 days.  A constant replacement rate of 300 lbs/yd
3
 was used for the current study.  A control 

mixture was cast for comparison purposes which contained no LWA.  The research program 

concrete mix designs were developed in accordance with the Arkansas State Highway and 

Transportation Department bridge deck specification.  Reported results included 

shrinkage/strain, compressive strength, modulus of rupture, and modulus of elasticity.  Findings 

indicated that a 1 day soaked LWA preformed equivalent or better than extended soaking 

durations at mitigating concrete shrinkage. 

 

 

 



Acknowledgments 

 I would like to thank those who have supported me throughout the duration of this 

project.  Specifically I would like to thank my Lord and Savior Jesus Christ for giving me the 

strength, knowledge, and opportunities to complete this work.  I would also like to thank my 

parents who have supported me throughout my entire education. 

I would very much like to thank Dr. Micah Hale for the opportunity to study and work 

towards a Master’s of Science in Civil Engineering.  Without his help and support I would not 

have completed the requirements necessary for the degree completion. Thanks are in order to the 

staff of the Center for Training Transportation Professionals.  They supported the project with 

equipment and knowledge of working in a laboratory environment.  I would also like to thank 

the Arkansas State Highway and Transportation Department for sponsoring the research.   

 Special thanks are in order to the group of students around me that have helped 

throughout this project. I would like to thank my research partner and good friend Daniel Goad 

who made much of the current research possible and enjoyable.  With his help the quality of the 

project and my studies were greatly enhanced.  Thank you to Jared Bymaster, Jonathan Kerby, 

Cameron Murray, Richard Deschenes, and Royce Floyd who helped during the construction 

phase of the project and provided advice towards its advancement.   

 

 

 

 

 

 

 



Table of Contents 

 

Chapter 1 Introduction ............................................................................................................1 

 1.1 Introduction ..............................................................................................................1 

 1.2  Research ...................................................................................................................2 

Chapter 2  Literature Review ..................................................................................................5 

 2.1  Historical Perspective of Internal Curing ................................................................5 

 2.2  Internal Curing Overview ........................................................................................6 

 2.3  Mechanical Properties of Internally Cured Concrete from Previous Research .......7 

 2.4  Shrinkage Types Associated with Early Age Concrete .........................................10 

 2.4.1  Plastic Shrinkage ........................................................................................10 

 2.4.2  Drying Shrinkage .......................................................................................12 

 2.4.2.1 Chemical Shrinkage .......................................................................12 

 2.4.2.2 Autogenous Shrinkage ...................................................................13 

 2.4.3 Thermal Shrinkage .....................................................................................15 

 2.5  Lightweight Aggregates .........................................................................................16 

  2.5.1    Expanded Clay LWA .................................................................................18 

 2.5.2  Expanded Shale LWA................................................................................18 

 2.5.3  Superabsorbent Polymers...........................................................................19 

 2.6  Infiltration Depth of Internally Cured Water .........................................................20 

 2.7  LWA Replacement Rate ........................................................................................22 

 2.8  Internal Curing in Practice .....................................................................................23 

 2.9  Extension of Knowledge ........................................................................................24 

Chapter 3  Research Methodology ........................................................................................26 

 3.1  Methodology Overview .........................................................................................26 

 3.2  Methodology of Mix Design Development ...........................................................27 

 3.2.1  LWA Moisture Content .............................................................................27 

 3.2.2  Mix Design Development ..........................................................................29 

 3.3  Batching Process ....................................................................................................31 

 3.4  Measurement of Fresh Concrete Properties ...........................................................33 



 3.5  Measurement of Hardened Concrete Properties ....................................................34 

 3.5.1  Compression Testing .................................................................................34 

 3.5.2  Shrinkage Testing ......................................................................................35 

 3.5.2.1 Drying Shrinkage Testing Using a Length Change Comparator ...36 

 3.5.2.2 Drying Shrinkage Testing Using Vibrating Wire Strain Gages.....38 

 3.5.3  Modulus of Rupture Testing ......................................................................40 

 3.5.4  Modulus of Elasticity Testing ....................................................................42 

Chapter 4  Results and Discussion .........................................................................................45 

 4.1  Results Overview ...................................................................................................45 

 4.2  Shrinkage Results...................................................................................................45 

 4.2.1  Length Change Comparator Shrinkage Results .........................................45 

 4.2.2  Vibrating Wire Strain Gage Shrinkage Results .........................................50 

 4.2.3 Differences between Shrinkage Methods ..................................................57 

 4.3  Compressive Strength, Slump, and Unit Weight ...................................................59 

 4.4  Temperature Results ..............................................................................................62 

 4.5  Modulus of Rupture Results ..................................................................................63 

 4.6 Modulus of Elasticity Results ................................................................................66 

Chapter 5  Conclusions ...........................................................................................................71 

 5.1 Conclusions Overview ...........................................................................................71 

 5.2 Conclusions – Fresh Concrete Properties ..............................................................71 

 5.3 Conclusions – Hardened Concrete Properties ........................................................72 

References .....................................................................................................................................76 

 

 

 

 

 

 

 

 



Table of Figures 

 

Figure 2.2.1 LWA Moisture Transfer to Hydrating Cement Paste ..................................... 7 

Figure 2.3.1 Increased Reserve Capacity through Internal Curing` ...................................10 

Figure 2.4.1 Autogenous and Chemical Shrinkage Volume Difference ............................14 

Figure 2.4.2 Autogenous and Chemical Shrinkage Difference by Phase ..........................15 

Figure 2.5.1 Manufacturing Process of Expanded LWA ...................................................19 

Figure 3.3.1 Removal of Excess Water after Soaking Duration for LWA ........................32 

Figure 3.3.2 Concrete Mixer and the Mixing Concrete .....................................................33 

Figure 3.5.1.1 Unbroken and Broken Concrete Cylinders ....................................................35 

Figure 3.5.2.1.1 Forney Length Change Comparator...............................................................37 

Figure 3.5.2.2.1 Vibrating Wire Strain Gage and Specimen Storage ......................................40 

Figure 3.5.3.1 Modulus of Rupture Testing Device with Specimen .....................................42 

Figure 3.5.4.1 Modulus of Elasticity Testing Device with Specimen ...................................44 

Figure 4.2.1.1 Clay Shrinkage Results Using a Length Change Comparator .......................46 

Figure 4.2.1.2 Shale Shrinkage Results Using a Length Change Comparator ......................47 

Figure 4.2.1.3 Confidence Intervals for Length Change Comparator Results ......................50 

Figure 4.2.2.1 Clay Shrinkage Results Using Vibrating Wire Strain Gages.........................52 

Figure 4.2.2.2 Shale Shrinkage Results Using Vibrating Wire Strain Gages .......................53 

Figure 4.2.2.3 Confidence Intervals for Vibrating Wire Strain Gage Results ......................55 

Figure 4.2.2.4 Clay Shrinkage Results Using Strain Gage Data at 28 Days .........................56 

Figure 4.2.2.5 Shale Shrinkage Results Using Strain Gage Data at 28 Days .......................57 

Figure 4.3.1 Clay Compressive Strength Curve .................................................................61 

Figure 4.3.2 Shale Compressive Strength Curve ...............................................................62 

Figure 4.4.1 Temperature Profile of Concrete Specimens throughout Testing..................63 

Figure 4.6.1 Stress-Strain Curve Modulus of Elasticity LWA Clay Concrete ...................67 

Figure 4.6.2 Stress-Strain Curve Modulus of Elasticity LWA Shale Concrete .................68 

Figure 4.6.3 Stress-Strain Curve Modulus of Elasticity Control Concrete ........................69 

 

 

 

 

 



List of Tables 

 

Table 2.6.1 Estimated Water Travel Distance During Hydration .....................................21 

Table 3.2.1.1 Measured LWA Moisture Contents ...............................................................28 

Table 3.2.1.2 Mixture LWA Moisture Contents ..................................................................28 

Table 3.2.2.1 Mix Designs for Control and LWA Mixtures ................................................31 

Table 4.1.1 Mix Designs for Control and LWA Mixtures ................................................45 

Table 4.2.1.1 LWA Shrinkage Mitigation (Length Change Comparator) ...........................48 

Table 4.2.1.2 Confidence Interval Data for Length Change Comparator Specimens .........49 

Table 4.2.2.1 LWA Shrinkage Mitigation (Vibrating Wire Strain Gage) ...........................51 

Table 4.2.2.2 Confidence Interval Data for Strain Gage Specimens ...................................54 

Table 4.3.1 Compressive Strength, Slump, and Unit Weight ...........................................61 

Table 4.5.1 Modulus of Rupture Data...............................................................................64 

Table 4.6.1 Modulus of Elasticity Data ............................................................................66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table of Equations 

 

Equation (3-1) LWA Fines Replacement Rate .......................................................................31 

Equation (3-2) Modulus of Rupture .......................................................................................41 

Equation (3-3) Modulus of Elasticity .....................................................................................43 

Equation (4-1) ACI Prediction Equation for Modulus of Rupture .........................................65 

Equation (4-2) ACI Prediction Equation for Modulus of Elasticity ......................................70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 Introduction 

1.1 Introduction 

 As with any construction project, the service life of the constructed facility is as short as 

its weakest element.  Some elements of a particular structure do not undergo the same degree of 

physical assault as others.  A bridge deck will be subject to variable loading and unloading, 

freeze thaw conditions, deicing salts, and other deleterious substances.  As such, the bridge deck 

has the potential to be the weakest link in any bridge simply because of the conditions it will be 

subject to throughout its life.  A bridge deck must be designed and constructed carefully to 

mitigate potential damage and deterioration mechanisms to ensure the serviceability of the bridge 

deck. 

In 2013, a “D+” was awarded to the overall infrastructure of the United States by the 

American Society of Civil Engineers (ASCE) infrastructure report card (ASCE, 2013).  Based on 

this scoring, there is room for improvement in every aspect of the overall infrastructure.  The 

quickest approach to solve the current failing infrastructure would be to spend the estimated 3.6 

trillion dollars required to fix all of the problems (ASCE, 2013).  This spending would only fix 

the current deficiencies and would not implement new or better products and systems.  A better 

solution would be to work towards developing new products produced through research to aid 

designers and contractors in developing a more sustainable infrastructure.  New technologies 

developed through research further not only the advancement of knowledge, but also lead to real 

world applications of that technology.  These advancements will provide the strategic foundation 

for improving America’s infrastructure.   

In the 2013 ASCE report, bridges fared slightly better than the entire collection of U.S. 

infrastructure systems, and received an overall grade of “C+” (ASCE, 2013).  The report card 



2 

 

notes that of the 607,380 bridges in the United States, just over 11 percent are structurally 

deficient (ASCE, 2013).  Many of those bridges are nearing the end or at least the latter half of 

their expected design life.  This poses a major threat to transportation routes for all forms of 

commerce.  Without bridges to connect the various interstates and highways, there would be no 

interstate commerce.  Many man hours may be lost yearly if the deterioration of the nation’s 

bridges continues to remain unchecked.  These lost hours cannot be made up and would be 

destructive to the financial future of the nation.  In essence, our bridges must be protected to 

ensure the societal and economic wellbeing of the nation. 

1.2 Research  

In order to preserve the investment made into new bridges and the nation’s infrastructure 

as a whole, there is a need to increase the service life of these projects.  One solution to 

increasing their service life is by increasing the durability of the materials used to build these 

projects.  For concrete bridges, increased durability is directly related to decreasing the number 

and size of cracks associated with new construction.  These cracks may form as a result of 

several different mechanisms; however, the end effect is usually the same.  Concrete cracking 

introduces deleterious substances to the internal mechanics of the concrete.  Deleterious 

substances include water and salts which deteriorate the concrete and steel reinforcement.  The 

deterioration caused by invasive substances leads to shorter than expected lifespans of the 

concrete.   One of the best ways to combat the effects of cracking with any concrete structure is 

to properly cure it.  Curing may take several forms, but if implemented properly it will reduce 

cracking and increase concrete lifespans.  One such form of curing is internal curing. 

Internal curing provides much needed water for cement hydration to the internal recesses 

of the concrete.  It provides a basic function (that of an internal humid environment) which all 
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concrete needs, but in a different form than traditionally provided.  In this project, internal curing 

will be studied to determine its applicability in mitigating shrinkage cracking in concrete bridge 

decks.  Bridge deck cracking is one of the most noticeable forms of cracking in any bridge 

because it is in direct connection with all who traverse the bridge.  As mentioned previously, 

bridge decks must be able to withstand many adverse conditions.  Proper techniques must be 

utilized during all stages of construction to ensure the durability and highest quality of the 

concrete.  This will ensure a long lasting deck that does not need to be resurfaced every few 

years.   

The proposed research will study the attributes of internally cured concrete using a pre-

saturated lightweight aggregate (LWA).  The aggregate will absorb water inside its porous 

structure and release that water while the cement is hydrating.  It will be cast directly into the 

concrete during mixing and will be based on a direct replacement rate with the limestone coarse 

aggregate.  The effects from the introduction of LWA into the concrete will be monitored on 

both fresh and hardened concrete properties.   

Internally cured concrete using a pre-saturated LWA is an area that has been previously 

examined.  Some effects from introducing LWA into concrete are known.  However, the effects 

of employing different soaking times on the LWA (1, 3, and 7 days) will be evaluated in this 

study.  The proposed research will determine the advantages, if any, of increasing the soaking 

time of the LWA prior to incorporating it into the mix.   By reducing the soaking time of the 

LWA in the concrete, the cost associated with the LWA will be mitigated as well.  This cost 

mitigation will increase the viability of internally cured concrete as an option for major 

construction projects.   
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Another goal of the research is to determine the applicability of internally cured concrete 

for the mitigation of shrinkage in concrete bridge decks.  The research will aid the overall 

knowledge of the field of internal curing and will provide paths for the inclusion of LWA into 

more concrete mix designs.  By providing another alternate curing method to construction 

management professionals, the probability of longer service lives of concrete structures can 

increase.  Through proper management and development of more innovative technologies, 

longer lifespans and increased durability are possible for new infrastructure.  These techniques 

may even be used to overhaul the current infrastructure to extend its service life.  By improving 

the existing structures and developing new sustainable construction methods, the future for the 

nation’s infrastructure is bright.   
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Chapter 2 Literature Review 

2.1 Historical Perspective of Internal Curing 

The use of light weight aggregates (LWA) began during the Roman Empire (Bentz & 

Weiss, 2011).  LWA was utilized in the Pantheon to aid in reducing the dead weight of the 

arched roof (Bentz & Weiss, 2011).  An added benefit of the inclusion of LWA in the Pantheon 

was the supply of water to the internal recesses of the hydrating cement matrix stimulating 

internal curing.  Although some benefits of LWA were realized long ago, Philleo (1991) was the 

first to verbalize the idea of internally cured concrete (Bentz & Weiss, 2011). 

During the latter half of the Twentieth century, vast developments in the mechanical 

properties of concrete were realized.  Although many of these effects were positive, some were 

negative.  New high strength concrete mixtures were being developed and re-developed (PCA, 

1994).  As the compressive strength of the concrete increased, other properties such as the 

modulus of elasticity, permeability, and tensile strength were also affected.  The concrete 

suffered from self-desiccation brought about by the lack of available water for hydration of the 

cement particles (Bentz & Weiss, 2011).  Self-desiccation is the loss of water within the cement 

matrix due to the lack of necessary mix water to hydrate the cement (Holt, 2001).  Suction 

stresses are formed due to the hydrating cement particles attempting to pull water from within 

the cement matrix (Holt, 2001).  These suction stresses may lead to cracking if water is not 

allowed to alleviate the hydrating cement particles. To combat the negative effects associated 

with the new higher strength concrete, research investigating the water available for hydration 

was performed.  One solution to the self-desiccation problem experienced with high strength 

concrete was internal curing (Bentz & Weiss, 2011).   
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2.2 Internal Curing Overview 

Internal curing is the process of placing water in an encapsulated state within the concrete 

for use during hydration of the cement matrix (Henkensiefken et al., 2011).  There are many 

ways water can be encapsulated and batched directly into the concrete mixture itself.  ACI 

(2010) describes internal curing as “supplying water throughout a freshly placed cementitious 

mixture using reservoirs, via pre-wetted lightweight aggregates, that readily release water as 

needed for hydration or to replace moisture lost through evaporation or self-desiccation” (Bentz 

& Weiss, 2011).  These reservoirs include, but are not limited to: lightweight expanded clay and 

shale aggregates (LWA), superabsorbent polymers, Bentonite clays, and naturally occurring 

porous materials such as pumice (Jensen & Lura, 2006).  The internal curing material is pre-

soaked in water.  By encapsulating the additional water, the water cement (w/c) ratio of the 

mixture is not affected.  The water is considered additional water and only utilized during 

hydration (Bentz et al., 2005).  The water added from internal curing is similar to the water 

added from external curing.  Water added from external curing practices i.e. wet burlap, soaked 

plastic sheeting, or a curing compound is not added to the w/c of traditional mix design.  

Similarly water absorbed by the LWA is not accounted for in the w/c of internally cured concrete 

(Roberts, 2006).  Unlike external curing which applies water only to the first few millimeters of 

the outer surface, internal curing water is distributed more evenly during curing which allows for 

the hydration of interfacial transition zones (ITZ) located around the aggregate particles 

(Henkensiefken et al.,  2009).  Provided in Figure 2.2.1 is a graphical representation of the 

difference between external and internal curing techniques. 

The water located inside the LWA is desorbed due to internal suction stresses generated 

as the hydrating cement particles become devoid of available water (Bentz & Snyder, 1999).  
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The suction pressure allows the water to be desorbed from the LWA on an as needed basis for 

hydration as described by ACI (ACI, 2012).  The water provided from the LWA decreases the 

internal pressure buildup that was caused by the hydrating cement particles becoming devoid of 

necessary water (Holt, 2001).  By providing the necessary water for hydration, many of the 

negative effects associated with hydrating low w/c concretes are avoided (Bentz & Weiss, 2011).  

The negative side effects associated with various types of drying shrinkage are provided in 

Section 2.3.  

 

Figure 2.2.1. LWA moisture transfer to hydrating cement paste (Castro et al., 2010). 

2.3 Mechanical Properties of Internally Cured Concrete from Previous Research 

Studies into a curing mechanism to meet the hydration needs of high strength concrete 

began by utilizing various internal water sources that distributed water to the hydrating cement 

particles.  Early studies focused on the use of pre-wetted LWA (Bentz & Weiss, 2011).  This 
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aggregate type has been the topic of many journal articles and conference papers.  Coarse and 

fine aggregates under pre-soaked and dry conditions have been investigated (Famili et al., 2012).  

Because LWA’s are porous and have been in commercial use in the United States since the 

1940’s, this product is ideal for internal curing research (Bentz & Weiss, 2011). 

Numerous research agencies have investigated the effects of internal curing on the 

mechanical properties of concrete.  However, not all of the researchers have come to the same 

conclusions.  For instance, by using internal curing the compressive strength of concrete has 

increased (Roberts, 2006) and decreased (Famili et al., 2012).  The increase in compressive 

strength was attributed to better hydration of the cement matrix (Roberts, 2006).  The increase in 

hydration water leads to an increase in the volume of strength producing calcium silica hydrate 

(C-S-H) in the cement matrix of the concrete thus improving the early and later age strengths 

(Roberts, 2006).  Other research indicated that the hardness of the LWA was an equally 

important, if not more important factor, than the increase in the hydration products in 

determining compressive strength (Bentz & Weiss, 2011).  If the compressive strength of the 

LWA aggregate itself is considerably lower than that of the normal weight aggregate, then the 

compressive strength of the concrete may decrease (Bentz & Weiss, 2011).  Another factor 

affecting the decrease in compressive strength is the amount of LWA replaced in the mixture 

(Bentz & Weiss, 2011).  If a relatively small replacement rate was utilized, the influence on 

compressive strength would be equally insignificant (Bentz & Weiss, 2011). 

The modulus of elasticity and tensile strength were other properties associated with 

internal curing of which researchers differed (Byard & Schindler, 2010).  It was no surprise, 

however, that these properties exhibit the same results as that of compressive strength.  Most 

strength characteristics associated with concrete function in direct relation to the compressive 
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strength; as the compressive strength is modified the other strength properties are also modified.  

The modulus of elasticity for concrete is directly related to the elastic modulus of the aggregate 

utilized in the mix design (Byard & Schindler, 2010).  The elastic modulus of kiln cooked clay 

and shale LWA is considerably lower than normal weight aggregates (Byard and Schindler, 

2010).  As such, the modulus of elasticity decreases with large increases of LWA in the mixture, 

despite the increase in the hydration products (Byard & Schindler, 2010). 

Relative humidity, permeability, and durability are positively affected by internal curing 

(Golias et al., 2012).  It has been well established that internal curing increases the internal 

relative humidity of concrete (Geiker et al., 2004).  The increase in relative humidity was directly 

associated with the additional water located inside the concrete (Geiker et al., 2004).  Similar to 

creating a 100 percent relative humidity zone around the concrete through external curing, 

internal curing creates a similar environment within the concrete (Kovler & Jensen, 2005).  The 

increase in relative internal humidity decreases the internal suction stresses associated with the 

hydrating cement particles attempting to pull water from an external source (Geiker et al., 2004).  

Twelve days after mixing, the LWA concrete maintained a 95 percent relative humidity level 

compared to the reference (non-LWA) concrete that loses relative humidity much more quickly 

following mixing (Geiker et al., 2004).  Due to the increase in available water and subsequent 

decrease in hydration stresses, the permeability of internally cured concrete decreases (Golias et 

al., 2012).  This decrease occurs as the hydration products fill in the void space located in the 

cementitious matrix (Kovler & Jensen, 2005).  With an increase in hydration products and 

decrease in permeability, the longevity or durability of the concrete will be greatly increased 

(Kovler & Jensen, 2005).  Anytime the mortar matrix is densified, a subsequent increase in 

concrete durability is produced.  The increase in durability is directly related to the increased 
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ability of the concrete to prevent water from penetrating the exterior surface (Mehta & Kumar, 

2006).  Through a reduction in penetration water, the ingress of deleterious substances is also 

reduced (Mehta & Kumar, 2006).  Provided in Figure 2.3.1 is a schematic showing the increase 

in reserve capacity, leading to long term durability as a result of internal curing.  Reserve 

capacity is the buffer zone between the maximum shrinkage stress of the specimens and the 

cracking strength of the concrete (Bentz & Weiss, 2011).  Internal curing provides water to 

alleviate stress buildup which decreases the shrinkage stresses providing a larger buffer between 

the overall shrinkage stress and the strength at which the concrete cracks (Bentz & Weiss, 2011). 

  

A. Normal concrete shrinkage stress.            B. Internally cured concrete shrinkage stress. 

Figure 2.3.1 Increased reserve capacity through internal curing (Bentz & Weiss, 2011). 

2.4 Shrinkage Types Associated with Early Age Concrete 

2.4.1 Plastic Shrinkage 

ACI defines plastic shrinkage as “shrinkage that takes place before cement paste, mortar, 

grout, or concrete sets” (ACI, 2012).  Plastic shrinkage occurs by water being lost due to 

environmental factors (Shaeles & Hover, 1988).  Factors such as internal concrete temperature, 
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ambient air temperature, ambient humidity, and wind velocity contribute directly to plastic 

shrinkage (Mehta & Monteiro, 2006).  As water evaporates from the surface of the concrete 

while it is setting, internal water must be drawn upon to keep the external concrete moist 

(Shaeles & Hover, 1988).  As the internal water (bleed water) is drawn from within the concrete, 

tensile strains occur which may lead to cracking associated with the plastic shrinkage (Holt, 

2001).  Bleed water may also be drawn from the concrete by the subgrade, the formwork, or the 

internal aggregate (Mehta & Monteiro, 2006; Holt, 2001).  According to Shaeles and Hover 

(1988) to avoid the deleterious effects from plastic shrinkage cracking, protection of the concrete 

is required.  Activities such as pre-soaking the subgrade, adding wind breaks, using chilled water 

and chilled aggregates, or re-vibrating the concrete before it sets, aid in protecting the concrete 

from plastic shrinkage (Mehta & Monteiro, 2006). 

The negative effects of plastic shrinkage may also be reduced through the addition of a 

pre-soaked medium providing water during heavy bleed water evaporation periods.  Suction 

stresses, similar to those produced from the aforementioned hydrating cement particles following 

initial set, are created during evaporation of the bleed water (Mehta & Monteiro, 2006).  Internal 

curing provides a source of internal water to alleviate the stresses developed during evaporation 

of the bleed water.  However, the water that is desorbed from the LWA to prevent suction cannot 

provide water for hydration in the event that drying shrinkage occurs.  Concrete experiencing 

large amounts of autogenous (volume change) shrinkage typically does not experience 

significant bleed water loss associated with plastic shrinkage.  The reasoning for this is that 

concrete experiencing large autogenous shrinkage stresses do not contain the amount of mixing 

water needed to experience large plastic shrinkage losses. 
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2.4.2 Drying Shrinkage 

As the concrete dries or hydrates, there is a decrease in the total volume of concrete 

compared to the product of raw materials utilized in batching (Ahmad et al., 2010).  ACI defines 

drying shrinkage as “shrinkage resulting from loss of moisture” (ACI, 2012).  Moisture may 

occur in concrete in multiple forms i.e. that of mix water, chemical admixtures, and water stored 

in the aggregate.  Drying shrinkage begins as soon as the water and cement come into contact 

with one another (Mehta & Monteiro, 2006).  Part of drying shrinkage is the loss of volume 

associated with the volume change in products due to the formation of the C-S-H, which begin 

immediately when water is added (Mehta & Monteiro, 2006). The negative effects associated 

with drying shrinkage are the tensile stresses generated with the change in volume (Mehta & 

Monteiro, 2006).  As the spacing between the cementitious materials decreases due to the 

formation of C-S-H, there is a decrease in available water to traverse the cement matrix.  As such 

the stresses generated by the drawing or suction of water from surrounding pore spaces increases 

(Holt, 2001).  The stress range generated from capillary suction is on the order of 10 to 100 MPa 

(Holt, 2001).  Chemical shrinkage and autogenous shrinkage are two types of drying shrinkage 

that produce stresses due to the hydrating cement matrix.  Together they produce an effect 

known as self-desiccation which causes cracking due to the suction stresses generated.  Both 

shrinkage types are discussed in detail below. 

2.4.2.1 Chemical Shrinkage 

The volume of the final product of cement mortar is less than the sum of the added parts 

of water and cement (Mehta & Monteiro, 2006).  Chemical shrinkage is defined as the total 

amount of volume reduction due to the product difference of the chemical reaction in producing 

C-S-H (Mehta & Monteiro, 2006).  Chemical shrinkage includes the shrinkage that occurs inside 
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the pore space of the cement matrix after the concrete becomes rigid.  Chemical shrinkage is 

sometimes referred to as “hardening shrinkage” (Tazawa et al., 1995).   Before the initial set 

occurs, chemical shrinkage occurs, but no stress or strain is generated (Byard & Schindler, 

2010).  Chemical shrinkage is a continual process ongoing after the concrete sets.  Chemical 

shrinkage following initial set is termed autogenous shrinkage (Byard & Schindler, 2010). 

2.4.2.2 Autogenous Shrinkage 

Autogenous shrinkage is defined by ACI as the “change in volume produced by 

continued hydration of cement, exclusive of effects of applied load and change in either thermal 

condition or moisture content (ACI, 2012).  This shrinkage occurs within the mortar matrix when 

the concrete is in a sealed environment or closed system with no loading (Holt, 2001; Mehta & 

Monteiro, 2006).  Chemical shrinkage and autogenous shrinkage produce the same effect while 

the concrete is in an unrestrained form (Byard & Schindler, 2010).  The meaning of unrestrained 

does not imply reinforcing steel, but rather the state of the hydrating mortar matrix.  An 

unrestrained state is one in which the C-S-H have not sufficiently filled the mortar matrix to 

impede the volume reduction of the concrete.  As the C-S-H fill in the mortar matrix, the 

concrete becomes rigid eliminating continued length change associated with volume change 

(Tazawa et al.,1995); although hydration of the concrete continues.  Chemical shrinkage is the 

total volume reduction of the chemical reaction for C-S-H, including both the total volume 

reduction and the pore space reduction of the cement matrix (Tazawa et al., 1995).  Autogenous 

shrinkage is solely the volume reduction associated with the change of length of the concrete 

specimen (Tazawa et al., 1995).  Another term commonly associated with the volume change 

associated with this length change is the “macroscopic” reduction in volume of the concrete 

structure (Holt, 2001).  Figures 2.4.1 and 2.4.2 illustrate the difference chemical and autogenous 
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shrinkage as related to the hydration of the cement.  Specifically the type of shrinkage associated 

with the volume difference of the concrete is provided in Figure 2.4.1, while the shrinkage 

associated with each phase of hydration is provided in Figure 2.4.2. 

 

 

Figure 2.4.1 Autogenous & chemical shrinkage volume difference (Holt, 2001). 

Where: 

C = Unhydrated Cement 

W = Unhydrated Water 

Hy = Hydration Products 

V = Voids Generated by Hydration  
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Figure 2.4.2. Autogenous & chemical shrinkage difference by phase (Holt, 2001). 

2.4.3 Thermal Shrinkage 

The chemical reaction resulting in the formation of the C-S-H generates heat (Mehta & 

Monteiro, 2006).  In smaller structures with a high surface to volume ratio, the heat of hydration 

is dissipated without any adverse effects (Mehta & Monteiro, 2006).  Concrete structures that are 

relatively large (approximately 3 feet or greater in all directions) or utilize large amounts of 

cement may encounter heat of hydration issues in the form of thermal shrinkage (Gajda & 

Vangeem, 2002).  Concrete of this scale is referred to as mass concrete (Gajda & Vangeem, 

2002).  As the depth of a concrete member increases, the heat generated from hydration is unable 

to dissipate to the environment (Mehta & Monteiro, 2006).  As the internal heat increases, 

stresses form along the thermal transition zones of the cooling concrete (Mehta & Monteiro, 

2006).  The cooling of the concrete induces tensile stresses especially along the weak ITZ of the 

cement mortar and the aggregate (Mehta & Monteiro, 2006).  The tensile stresses cause 

microcracking which affect durability, and in extreme cases may decrease the compressive 
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strength of the concrete (Mehta & Monteiro, 2006).   However mass concrete is not the only 

concrete members that must be mindful of thermal issues. 

Thin section members are also at risk for thermal effects associated with concrete 

placement.  Though thin members do not generate as much heat as mass concrete, however they 

are susceptible to thermal gradient cracking (ACI 224.1r, 2007).  When placing thin sections 

such as concrete bridge decks, changing exterior temperatures may cool one side of the member 

more rapidly than the opposite side of the member (ACI 224.1r, 2007).  This creates a 

differential volume change which produces tensile stress in the concrete along the thermal 

gradient (ACI 224.1r, 2007).  These tensile stresses can produce cracking in the concrete leading 

to shorter lifespans of the concrete members (ACI 224.1r, 2007).  Serious distortion of concrete 

members may occur if the stresses generated by thermal gradients are not accounted for (ACI 

224.1r, 2007).  Protecting concrete from all forms of thermal shrinkage and gradients is vital to 

the success of long term durability of concrete members. 

2.5 Lightweight Aggregates  

Light-weight aggregates (LWA) are those that have a lower specific gravity than 

traditional aggregate sources.  ACI defines LWA as an “aggregate of low density, such as: (a) 

expanded or sintered clay, shale, slate, diatomaceous shale, perlite, vermiculite, or slag; (b) 

natural pumice, scoria, volcanic cinders, tuff, and diatomite; or (c) sintered fly ash or industrial 

cinders used in lightweight concrete” (ACI, 2012).  LWA’s have a network of internal pores 

which decrease their specific gravity from normal weight aggregates.  It is the coarse porous 

network that provides the ability of LWA to internally cure concrete (Bentz & Weiss, 2011).  

The LWA is able to absorb a large amount of water with respect to its initial volume.  Many of 

the LWA’s in use today are able to absorb between five and 25 percent of their total volume in 



17 

 

water (Hoff, 2002).  The water located inside this internal pore structure is then desorbed as 

needed from the suction produced by the hydrating cement grains (Hoff, 2002).  The larger pores 

of the saturated LWA contain the lowest molecular forces, allowing their water to be released 

before smaller pore openings (Bentz & Snyder, 1999).  The minimum pore size necessary for 

desorption of water is 100 nm (Byard & Schindler, 2010).  The desorption capacity of LWA 

varies according to pore size distribution with each different LWA (Byard & Schindler, 2010).  It 

is preferable to use LWA’s that release 90 percent or more of absorbed water (Bentz & Weiss, 

2011).  If the chosen LWA does not release most of their absorbed water, then a larger volume of 

LWA must be placed in the mixture (Bentz & Weiss, 2011).  This higher LWA content will 

hydrate the necessary cement particles (Bentz & Weiss, 2011).  However, there may be other 

deleterious effects such as reduced compressive strength and lower modulus of elasticity 

associated with the increased LWA content (Bentz & Weiss, 2011).  

Manufactured LWA’s are those produced through an industrial process other than what 

occurs in nature.  Many LWA’s utilized today are produced in this capacity as the process can 

provide assurance of the mechanical properties for the given LWA (Byard & Schindler, 2010).  

The raw material, whether clay or slate, is mined and brought to a processing plant (Byard & 

Schindler, 2010).  At the plant, the material is heated until it is in a plastic state (Byard & 

Schindler, 2010).  Gases form within the mineral during the heating process, which provide a 

pore structure during cooling (Byard & Schindler, 2010).  It is important to note that this pore 

structure within the LWA is not completely connected (Byard & Schindler, 2010).  The 

disconnected pore structure allows the concrete to maintain its low permeability despite 

containing a highly porous aggregate.  The trapped gases create voids or pores allowing the 

LWA to absorb and desorb water for use in internal curing (Byard & Schindler, 2010). 
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Other sources of internal curing mechanisms include super absorbent polymers, wood 

pulp, sintered fly ash, and expanded slag (Byard & Schindler, 2010).  Internal curing 

mechanisms such as super absorbent polymers and wood pulp provide no structural performance 

for the concrete (Byard & Schindler, 2010).  Due to the availability and structural integrity of 

LWA over that of other internal curing sources, LWA’s are often the material of choice for real 

world applications of internal curing (Byard & Schindler, 2010).  

2.5.1 Expanded Clay LWA 

LWA’s produced through a manufacturing process have predictable properties 

guaranteed by the quality assurance program set forth by the manufacturer.  Expanded clay is 

one such material that is produced in a rotary kiln manufacturing process (Jensen & Lura, 2006).  

The gases produced during the formation of expanded clay leave behind a highly porous 

structure (Jensen & Lura, 2006).  Kiln cooked expanded clay has measured porosities of up to 90 

percent (Jensen & Lura, 2006).  However, the water absorption potential is considerably lower 

than 90 percent.  The disconnection of pores leads to the considerably lower absorption values 

compared to the 90 percent pore structure (Jensen & Lura, 2006).  

2.5.2 Expanded Shale LWA 

Similar to expanded clay, expanded shale is produced in the same process.  Rotary kilns 

heat crushed slate to nearly 1200
o
 C until they reach a plastic state (Jensen & Lura, 2006).  The 

process for manufacturing LWA is shown in Figure 2.5.1.  Gases entrapped during this process 

provide the necessary pore structure for internal curing (Jensen & Lura, 2006).  The pores 

produced in manufactured slate, such as Stalite, are smaller than pores produced in similar LWA 

materials (Jensen & Lura, 2006).  Due to the smaller pores, expanded slates, such as Stalite do 

not release imbibed water as easily as clays (Jensen & Lura, 2006).  Instead, they may hold a 
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certain percentage of water until the relative humidity drops below 70 percent (Jensen & Lura, 

2006).   

 

Figure 2.5.1. Maufactoring process of expanded LWA (Byard & Schindler, 2010). 

2.5.3 Superabsorbent Polymers  

Superabsorbent polymers (SAP) are substances that may absorb up to 5000 times their 

initial weight of liquid in certain applications (Jensen, 2013).  Through a connection of similar 

linked molecules, SAP’s retain the ability to not only absorb large amounts of water, but to 

release that absorbed water to hydrating cement particles (Kolver & Jensen, 2005).  It is the 

combination of absorption and release that makes SAP’s valuable to concrete mix design 

(Jensen, 2013).  During hydration, the cement matrix utilizes available mix water, but requires 

more water for complete hydration of low w/c concrete (Bentz & Weiss, 2011).  Similar to 

LWA’s, SAP’s are able to desorb their absorbed water as needed for complete hydration of the 

cement matrix (Jensen, 2013).  
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There are three negative side effects associated with utilizing SAP’s in concrete mix 

designs (Jensen, 2013).  The first negative effect is related to the structural capacity of SAP’s 

(Jensen, 2013).  They are not able to carry load, and as such reduce concrete strength if utilized 

in large amounts (Jensen, 2013).  The second negative effect is the extra porosity produced once 

the internal curing water has been desorbed (Jensen, 2013).  If utilized in sufficiently low 

quantities, the increased hydration products offset the strength loss due to the SAP’s inability to 

carry load and extra porosity (Jensen, 2013).  Concrete strength can increase depending on the 

amount of SAP’s, and reduced cracking associated with self-desiccation (Jensen, 2013).  The 

extra porosity may even be beneficial i.e. aiding in freeze thaw resistance of the concrete 

(Jensen, 2013).  The third downfall associated with SAP’s is the cost (Jensen & Lura, 2006).  

Compared to other internal curing mediums, SAP’s are more expensive, and are predominantly 

utilized in other industries requiring large absorption capacities (Jensen & Lura, 2006). 

2.6 Infiltration Depth of Internally Cured Water 

An important aspect of internally cured concrete is the depth the water penetrates into the 

cement matrix.  If the water is unable to reach all hydrating cement paste, then it does not 

accomplish its full potential of internally curing the concrete during hydration.  Henkensiefken et 

al. (2009) examined the penetration depth of water leaving a saturated lightweight aggregate.  

Henkensiefken et al. (2009) determined the penetration depth of water from a saturated 

lightweight aggregate to be 2 millimeters using X-Ray absorption techniques.   

Further research was conducted on the depth that internal curing water was able to reach 

during hydration of the cement particles.  The new research utilized neutron tomographies to 

determine the distance traversed by the water through the cement matrix (Bentz & Weiss, 2011).  

This research provided a depth of 3 millimeters traveled by the water after leaving the LWA 
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(Bentz & Weiss, 2011).  The significance of this research and others similar to it is that it 

provides a basis for the size of the LWA used for internal curing.  If the aggregate size is too 

large to provide adequate dispersion within the concrete matrix, then all the cement particles may 

not hydrate (Henkensiefken et al., 2009).  Therefore, aggregate size and distance traveled by the 

water from the LWA directly affect the amount of shrinkage mitigated through using internal 

curing (Henkensiefken et al., 2009).   

Another aspect concerning the distance traveled by the water in the cement matrix is the 

age of the concrete.  Early in the hydration stage of cement, the water can travel further distances 

than at later ages (Bentz & Weiss, 2011).  As the hydration products fill in the void space 

between the mortar and aggregate, the travel lanes become closed.  As such, the distance traveled 

by water during the each stage of hydration changes based on reaction product volume (Bentz & 

Weiss, 2011).  Provided in Table 2.6.1 is a table of estimated travel distances based on reaction 

product growth as expressed in concrete age.   

Table 2.6.1. Estiamted water travel distance during hydration (Bentz & Weiss, 2011). 

Hydration Age Estimated Travel Distance of Water 

Early (i.e., < 1 day) 20 mm 

Middle (i.e., 1 day to 3 days) 5 mm 

Late (i.e., 3 days to 7 days) 1 mm 

Worst Case (i.e., > 28 days) 0.25 mm 

 

The w/c and curing conditions have the potential to affect the travel distance of water 

from the LWA (Bentz & Weiss, 2011).  As the w/c decreases there is an increased need for 

curing water to reach full hydration of the cement (Bentz & Weiss, 2011).  If the w/c is high 

enough to provide adequate water for complete hydration, suction stresses are not generated by 

the hydrating cement.  This leads to shorter travel distances from water leaving the LWA.  Little 

internal curing research has not been performed for concrete mixtures at the proposed w/c of 
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0.44, and different w/c have the potential to change the distance traveled by the water upon 

leaving the LWA (Bentz & Weiss, 2011).  Similarly, if the concrete is cured in an environment 

where water is not lost to the atmosphere, the distance traveled by water leaving LWA is 

different than that from exposed drying conditions (Bentz & Weiss, 2011).  The exposed curing 

conditions lead to shorter travel distances as the void space is more quickly filled during 

hydration (Bentz & Weiss, 2011).   

2.7 LWA Replacement Rate 

To establish a complete understanding of the internal curing process, a proper coarse 

LWA replacement rate has been determined to enable complete hydration of the cement to 

mitigate shrinkage.  The proper coarse LWA replacement rate ensures that excessive expenses 

associated with using LWA are mitigated.  The time required for adequate soaking must also be 

determined to ensure complete saturation of the coarse LWA.  Complete saturation of the LWA 

is needed to ensure that the minimal amount of LWA is added for hydration of the cement.  By 

utilizing the minimal amount of LWA, the overall cost associated with LWA is mitigated to the 

fullest extent.  It also mitigates the effect of the LWA on the compressive strength of the LWA 

concrete.  

Replacement rate equations such as Equation (3-1), as presented by Bentz et al. (2005), 

provided a needed baseline for complete hydration.  However, the equation is developed to 

calculate the amount of LWA fine material required for hydration as opposed to the amount of 

coarse LWA (Bentz et al., 2005).  The other issue concerned with the Equation (3-1) is the w/c 

utilized to produce complete hydration.  Previous research does not agree that a w/c of 0.36 

produced complete cement hydration (Delatte & Cleary, 2008).  The typical range of w/c 
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required to produce cement hydration is between 0.36 (Bentz et al. 2005) and 0.42 (Delatte & 

Cleary, 2008).   

2.8 Internal Curing in Practice 

When a new idea is presented to the engineering community, there are ample 

opportunities for research, but in many instances these ideas do not become reality.  It is exciting 

to know that internal curing is not only a research topic, but an area that is in practice as well.  A 

ready mix company located in Dallas, TX, TXI, successfully utilizes internally cured concrete 

for construction of municipal and residential designs (Villarreal & Crocker, 2007).  Due to the 

environmental conditions in northern Texas, there are many applications for concrete pavements 

(Villarreal & Crocker, 2007).  These concrete pavements were improved through the use of 

internal curing as stronger concrete with improved workability and less cracking was reported 

(Villarreal & Crocker, 2007).  The improvement came through an increase in the density of 

hydration products around the steel reinforcement (Daigle et al., 2008).  The increased hydration 

products mitigate the ingress of deleterious substances that corrode reinforcement (Daigle et al., 

2008).  The pavements in north Texas are not high strength concrete, which is the focus of most 

internal curing research, rather internal curing is used to increase durability and longevity of 

normal strength concrete (Villarreal & Crocker, 2007).  The internally cured concrete of north 

Texas used a replacement rate of 5 ft
3
/yd

3
 of LWA for the normal weight aggregate (Villarreal & 

Crocker, 2007).  More than 2,600,000 yd
3
 (2,000,000 m

3
) of internally cured concrete has been 

placed for commercial use in the northern Texas area (Bentz & Weiss, 2011).  The internally 

cured concrete has reduced the number and size of the cracks associated with placement of the 

concrete when compared to the standard TxDOT concrete mix design (Bentz & Weiss, 2011).   
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Texas is not the only state, however, to use internally cured concrete for commercial 

applications.  States such as Indiana, Ohio, and New York have successfully applied internal 

curing technology (Bentz & Weiss, 2011).  Indiana utilized internal curing in a comparison study 

of two concrete bridge decks (Bentz & Weiss, 2011).  Two box girder bridges were built 

simultaneously with two different decks constructed for each bridge (Bentz & Weiss, 2011).  

One bridge was constructed with the standard concrete mixture used by the Indiana highway 

department while the other was constructed of an internally cured concrete mixture (Bentz & 

Weiss, 2011).  The results are still extremely preliminary as no noticeable differences have been 

observed between the two decks (Bentz & Weiss, 2011).  Ohio has employed internal curing in 

conjunction with its silica fume, high performance mixture (Bentz & Weiss, 2011).  It is placed 

as a topping for bridge decks and reported equivalent or increased compressive strengths and 

maintained the entrained air (Bentz & Weiss, 2011).  New York has successfully applied internal 

curing in nine concrete bridge deck toppings (Bentz & Weiss, 2011).  Strengths associated with 

these decks have produced mixed results, as some decks have an improved strength over 

traditional mixes while others lowered strengths (Bentz & Weiss, 2011).  Though there are 

reported instances of lower strengths, the NYDOT reports no complaints against internally cured 

concrete (Bentz & Weiss, 2011). 

2.9 Extension of Knowledge 

A review of the literature reveals many researchers have examined the effects of pre-

soaked LWA on the mechanical properties of concrete.  However, research to determine the 

optimal soaking time for coarse LWA has not been identified.  There are many articles related to 

the optimal mix proportions of LWA to reduce the deleterious effects, but few addresses the 

optimal LWA soaking time to reduce concrete shrinkage.  Any change in moisture content and 
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the resulting difference in concrete shrinkage should be evaluated.  Prior research looks directly 

at mitigating the self-desiccation brought about from autogenous shrinkage at w/c’s lower than 

0.42.  Much less research has been conducted on concrete with a w/c larger than 0.42, and most 

bridge decks are cast with w/c’s greater than 0.42.  Therefore, the use of coarse lightweight 

aggregate is reasonable due to the unknown nature of the travel distance of the water associated 

with a w/c of 0.44.  An optimal soak time ensures the coarse LWA is fully saturated allowing the 

minimal amount of LWA to be utilized in the concrete mixture.  By minimizing the amount of 

LWA added to the mixture, a reduction in the negative side effects associated with LWA 

mixtures will be obtained.  The proposed research into soaking durations will aid in eliminating 

this gap in the literature.  Proposed mixtures include a variation of soak times (1, 3, and 7 days). 

The intent of the research is to produce results that will aid concrete producers in their internal 

curing implementation programs furthering the use of internally cured concrete.    
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Chapter 3 Research Methodology 

3.1 Methodology Overview 

The intent of the current research is to quantify shrinkage reduction through the use of 

internally cured concrete using different soaking time frames (1, 3, and 7 days) for LWA.  To 

quantify shrinkage reduction, a methodology for analyzing concrete specimens must include a 

quantifiable measurement of shrinkage.  Current practice techniques include the use of a length 

change comparator and scanning electron microscopy to determine shrinkage reduction (Bentz & 

Weiss, 2011).  Another method to quantify the shrinkage reduction is to calculate the amount of 

water needed to hydrate the cement (Bentz et al., 2005).  With defined shrinkage quantities, 

shrinkage results from internally cured concrete may be compared to a traditional limestone 

control mixture to determine the amount of shrinkage reduction.  All methods compare a control 

mixture (i.e. non-internally cured concrete) to an internally cured concrete.  The methodology 

used for this research program builds upon methods already in current practice. 

  Current practice techniques such as using a length change comparator and others have 

been established for measuring the amount of shrinkage within internally cured concrete.  

However, the majority of concrete used as the control mixture is for concrete susceptible to self-

desiccation.  Self-desiccation occurs when available mix water is not sufficient to completely 

hydrate the cement (Bentz and Weiss, 2011).  A review of the literature reveals that any mixtures 

with a w/c greater than 0.36 (Bentz et al. 2005) to 0.42 (Delatte and Cleary, 2008) contains 

sufficient water to hydrate all cement particles.  This research program looks at establishing the 

amount of shrinkage reduced with internal curing of concrete specimens developed with a w/c of 

0.44.  Based on the review of the literature a w/c of 0.44 contains an adequate amount of mix 

water to hydrate the cement.  It is known that concrete shrinks due to drying shrinkage even 
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when enough water is in the mixture for complete hydration (Mehta & Monteiro, 2006).  This 

shrinkage may cause drying shrinkage cracking due to the product volume change.  It is more 

noticeable in heavily reinforced sections due to the extra restraint confining the concrete from 

shrinking.  Given that the concrete shrinks, this research provides an option to reduce internal 

stresses due to drying shrinkage through the use of an internal curing aggregate.  

3.2 Methodology of Mix Design Development 

3.2.1 LWA Moisture Content 

To begin the research, an understanding of the expanded clay and shale properties was 

needed to aid in the development of the concrete mix designs.  The LWA was added to the 

concrete in a saturated non-surface dry condition.  For applicability of the research to real world 

solutions, the amount of water located on the outside of the aggregate was necessary to calculate 

the w/c.  To aid in establishing the amount of water located on the outside of the LWA, previous 

research at the University of Arkansas (Floyd, 2012) was referenced.  Previous research 

developed lightweight self-consolidating concrete mixtures using lightweight clay and shale 

aggregates.  This research established average total moisture contents for the LWA in a non-

surface dry condition.  The lightweight self-consolidating concrete research revealed average 

saturated non-surface dry expanded clay and shale aggregate moisture contents of 26 and 22 

percent.  The absorption capacity of expanded clay provided by Old Castle was 15 percent and 

expanded shale provided by Buildex was 12.9 percent.  With known moisture contents and 

absorption capacities for the LWA, excess water was accounted for in the mix design w/c.  

To verify the previous work performed at the University of Arkansas, tests were 

conducted to check the moisture contents of the LWA.  This began by taking the LWA moisture 

content to zero.  The aggregate was placed in an oven at 350
o
F ± 9

o
F for a minimum of 24 hours.  
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Some highly saturated aggregate showed visible signs of moisture after 24 hours of oven drying, 

and was placed in the oven for another 24 hour drying period.  With the aggregate at zero percent 

moisture, the soak duration began.  Three soak durations were chosen to determine the LWA’s 

absorption capacity within a specified time frame.  The three soak durations were 1, 3, and 7 

days.  The LWA was placed in water tight containers and soaked for the specified time duration.  

Once the aggregate completed its specified soak time, the aggregates were drained and a sample 

was collected.  The sample was weighed in its saturated non-surface dry condition and placed in 

the oven for 24 hours to dry.  Once the aggregate dried, a dry weight was taken and the total 

moisture content was calculated.  With known absorption capacities for both the clay and shale, 

excess moisture was determined and accounted for in the w/c.  Results from the LWA moisture 

content testing program are provided in Table 3.2.1.1.  Provided in Table 3.2.1.2 are the LWA 

moisture contents measured during batching of the concrete for comparative purposes.  From 

Tables 3.2.1.1 and 3.2.1.2, it was determined that the moisture content of the LWA varied during 

individual testing.   

Table 3.2.1.1. Measured LWA moisture contents. 

Measured LWA Moisture Contents 

  Clay (%) Shale (%) 

1 Day  27 19 

3 Day  25 18 

7 Day  28 23 

 

Table 3.2.1.2. Mixture LWA moisture contents. 

Mixture LWA Moisture Contents 

  Clay (%) Shale (%) 

1 Day  24 17 

3 Day  28 18 

7 Day  21 24 
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The results provided in Tables 3.2.1.1 and 3.2.1.2 yield insight into the behavior of pre-

soaked non-surface dry LWA.  The moisture contents were typically within 7 percent of one 

another when comparing similar soak times.  This provided justification for the standardization 

of the assumed LWA moisture content throughout the research program.  The determination was 

based on the data provided in Tables 3.2.1.1 and the data provided from the previous lightweight 

self-consolidating concrete mix designs developed at the University of Arkansas (Floyd, 2012).  

The lightweight self-consolidating concrete mix designs used the same aggregate source for both 

the lightweight clay and lightweight shale as the internally cured concrete mix designs.  Due to 

the larger amount of data for the lightweight self-consolidating concrete, it was determined to 

use the same moisture contents established for the expanded clay and expanded shale.  The 

average saturated non-surface dry moisture content for expanded lightweight clay and shale was 

26 and 22 percent.  

3.2.2 Mix Design Development 

With average saturated non-surface dry moisture contents established for each of the 

LWA’s, mix designs were developed for the different LWA sources.  A control mix design 

containing no coarse LWA was designed for comparing the shrinkage mitigation of the LWA 

concrete.  The concrete mix designs were developed in conjunction with the Arkansas State 

Highway and Transportation Department (AHTD) concrete bridge deck specification.  The 

AHTD concrete bridge deck specification contained four requirements applicable to the research 

program.  The four requirements were as follows: (1) Minimum of 611 lbs/yd
3
 of cement, (2) 

Slump of 1 - 4 inches, (3) Water-cement ratio of 0.44, and (4) Minimum compressive strength of 

4000 psi at 28 days.   
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The quantity of cement used in each mix design was 611 lbs/yd
3
.  Ash Grove portland 

cement Type I/II was used for all mixtures.  As cement is the most expensive ingredient in 

concrete, it is assumed for real world applications that the minimum amount of cement is used 

for mix designs.  With the amount of cement established the amount of water for each mix 

design was calculated to be 270 lbs/yd
3
 using a w/c of 0.44.  With the two mix design 

requirements met for the AHTD specification, the coarse aggregate was set to 1700 lbs/yd
3
 and 

sand was used to fill the remaining cubic yard.  The air content was designed at 2 percent per 

cubic yard.  No entrained air was used in the development of the mix designs.   ADVA Cast 575 

was used as a high range water reducer to ensure workability of the mix design. 

The aforementioned mix design was the basis for the LWA mix designs.  A set 

replacement rate of LWA was used to ensure comparable results.  The replacement rate was 

based on the equation provided by Bentz et al. (2005).  Utilizing Equation (3-1), a replacement 

rate of 265 pounds of clay LWA and 308 pounds of shale LWA was calculated for each LWA 

type.  Therefore, a replacement rate of 300 lb/yd
3
 of LWA was utilized for each LWA in the 

investigation.  Based on this replacement rate, the mix design using LWA replaced 300 pounds 

of coarse limestone aggregate with 300 pounds of LWA.  The cement content, w/c, and total 

water content remained the same as the control mixture while the coarse limestone was reduced 

to 1400 lbs/yd
3
.  ADVA Cast 575 was used as a high range water reducer to ensure workability 

of the concrete.  Mix designs remained constant throughout testing for each aggregate type; 

however, the soaking time frames of the LWA concrete mixtures were varied.  Saturated surface 

dry mix designs for both the control and LWA mixtures are provided in Table 3.2.2.1.  With mix 

designs established for both the control and LWA mixtures, batching of internally cured concrete 

began.  
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Equation (3-1) LWA fines replacement rate (Bentz et al., 2005). 

MLWA = Max amount of LWA (fines) for cement hydration (lb/yd
3
) 

Cf  = Cement factor (content) for concrete mixture (lb/yd
3
) 

CS = Chemical shrinkage of cement (lb/lb) 

αmax = Maximum expected degree of hydration of cement  

S = Degree of saturation of aggregate (0 to 1) 

ϕLWA = Absorption of LWA (lb/lb) 

Table 3.2.2.1. Mix designs for control and LWA mixtures. 

Mixture Proportions: Saturated Surface Dry Condition 

Mix Design Control Clay Shale 

Cement (lb/yd
3
) 611 611 611 

Coarse Aggregate (lb/yd
3
) 1700 1400 1400 

Fine Aggregate (lb/yd
3
) 1440 1107 1178 

LWA Aggregate (lb/yd
3
) 0 300 300 

Water (lb/yd
3
) 270 270 270 

w/cm  0.44 0.44 0.44 

HRWR ADVA 575 (oz/cwt) 4 4 4 

 

3.3 Batching Process 

Batching of the internally cured concrete and control mixture began with amassing the 

necessary aggregate to perform the intended research.  Moisture contents of the coarse and fine 

aggregate were taken to determine the amount of moisture contained on the outside of the 

aggregate.  The moisture content was determined by similar methods used to determine the 

moisture content of the LWA.  A sample was obtained from the bulk aggregate.  The sample was 

weighed in its moist condition and placed in an oven to dry for a minimum of 24 hours.  To 
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ensure the moisture content was not changed in the bulk aggregate during the 24 hour drying 

period of the sample aggregate, all necessary batch aggregate was obtained at the same time of 

the moisture content sample.  The bulk aggregate necessary for batching was placed in water 

tight containers with lids to ensure moisture loss was prevented.  By measuring the moisture 

content of the aggregate, the w/c was accurately accounted for in the mix designs.  The moisture 

content of the LWA was assumed to be 26 percent for the expanded clay and 22 percent for the 

expanded shale as previously covered in Section 3.2.1.  To saturate the LWA, it was placed in 

buckets with water and sealed with lids for the intended soak duration.  The excess water was 

then removed from the LWA by placing a perforated lid on the bucket and allowing the water to 

escape as shown in Figure 3.3.1.  Moisture content testing and batch weights of the LWA were 

obtained, once the excess water had been removed from the LWA.  Once moisture contents were 

obtained the aggregates were weighed to match mix design and batch size.  Cement was 

provided in 92.4 lbs bags and weighed as needed depending on individual batch size.  Mixing 

water was obtained based on mixture proportion requirements and the aggregate moisture 

content.   

 

 Figure 3.3.1. Removal of excess water after soaking duration for LWA. 
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Batching began by placing all coarse aggregate with half the mixing water in the mixer, 

and then turning the mixer on.  With the coarse aggregate and water mixing, the sand, cement, 

and remaining water with the high range water reducer were added to produce concrete.  The 

concrete mixture was continuously mixed until all constituents were uniformly combined.  

Mixing of the concrete was conducted in accordance with ASTM 192/C192M-07.  A deviation 

occurred from ASTM 192/C192M-07 in that the concrete was not allowed to mix 3 minutes 

followed by a 3 minute rest followed by a final 2 minute mixing period.  The concrete was 

continuously mixed until it achieved a uniform consistency.  See Figure 3.3.2 for photographs of 

the concrete mixer and the mixing concrete.  The exact time frame for mixing varied depending 

on the batch size for a given specimen.  Once the concrete was thoroughly mixed, it was 

transported to a position where testing of the fresh concrete properties was performed.   

 

  

           Figure 3.3.2. Concrete mixer and the mixing concrete. 

3.4 Measurement of Fresh Concrete Properties 

With the concrete in a plastic state, the fresh concrete properties were measured.  For 

comparison of the control mixture and the internally cured concrete, the workability and unit 

weight were measured for each concrete mixture.  Workability of the concrete was measured by 
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the slump test.  It provided a comparison to determine if the LWA affected the ability to place 

the concrete or the flow of the internally cured concrete when compared to the control mixture.  

Slump tests on the fresh concrete were conducted by following ASTM C143/C143M-05a.  The 

slump tests results are provided in in Table 4.3.1. 

Knowing the LWA had a lower unit weight than the coarse limestone, it was expected 

that the unit weight of the concrete would be lower in the internally cured specimens compared 

to that of the control mixture.  Concrete is classified as normal weight and lightweight by ACI 

318-08 based on the unit weight of the specimen.  ACI 318-08 defines normal weight concrete as 

having a density in the range of 135 – 160 lb/ft
3
, while lightweight is defined as having a unit 

weight in the range of 90 - 115 lb/ft
3
 (ACI, 2008).  The unit weight of concrete was determined 

to establish which code guidelines would govern its development when used in field 

applications.  The unit weight also provided insight into the strength and durability of the 

concrete.  Unit weight testing was conducted in accordance with ASTM C138/C138M-07.  Unit 

weight results are provided in Table 4.3.1. 

3.5 Measurement of Hardened Concrete Properties 

3.5.1 Compression Testing 

With the workability and unit weight measurements recorded, specimens were cast for 

testing the hardened properties of the concrete.  For each mixture proportion, twelve cylinder 

specimens which measured 4 inches in diameter by 8 inches in depth were cast for compression 

testing.  Prior to casting, the cylinder molds were sprayed with a lubricant which ensured easy 

form removal.  Concrete cylinder casting and curing was conducted in accordance with ASTM 

C192/C192M-07.  A deviation from ASTM C192/C192M-07 occurred during the making of the 

concrete cylinders.  The cylinders were tapped more than 15 times on the outside of the form to 
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ensure consolidation in the low slump mixtures.  A Forney compression machine model F-400F-

LC1 was used to conduct compression testing.  Three cylinder specimens were tested in 

compression at 1, 7, 28, and 56 days of age.  Compression strength testing was conducted in 

accordance with ASTM C39/C39M-05e1.  A deviation from ASTM C39/C39M-05e1 was that 

diameter measurements of specimens were not recorded during testing.  The specimen molds 

were not deformed during use, and no diameter measurements were taken.  Compression 

strength test results are found in Section 4.3 in Table 4.3.1.  Provided in Figure 3.5.1.1 are 

images of unbroken and broken concrete specimens. 

 

 

     Figure 3.5.1.1. Unbroken and broken concrete cylinders. 

3.5.2 Shrinkage Testing 

Shrinkage testing was conducted using two methods.  The first method used a length 

change comparator.  The second method used embedded concrete strain gages.  Both types of 
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testing utilized steel form work which produced specimens that measured 4 inches by 4 inches 

by 10 inches.  Similar consolidation techniques were utilized for both testing techniques.   

3.5.2.1 Drying Shrinkage Testing Using a Length Change Comparator 

Shrinkage testing using the Forney length change comparator began with casting the 

specimens. Four specimens or prisms were cast using the formwork for each mix design.  All 

formwork was coated in a form release spray to aid in de-molding.  Gage studs were placed into 

the end of the formwork and became part of the specimen following set.  The gage studs aided in 

measuring the amount of length change throughout the specimen.  Specimens were placed and 

consolidated in accordance with ASTM C192/C192M-07.   

Upon consolidation and finishing, the concrete prisms were stored inside the formwork in 

a greater than or equal to 50 percent humidity environment for 24 hours ± 30 minutes.  The top 

of the specimens was open to the ambient air inside the environmental chamber.  Following the 

24 hour setting period, the specimens were removed from the formwork.  Each specimen was 

identified with the batch date, LWA replacement rate, LWA soak time, and specimen number.  

Once the specimens were removed from the formwork, an initial reading was taken and this 

reading became the baseline for subsequent measurements.  Testing was performed in 

accordance with ASTM C490-04 except that median readings were recorded from the dial 

instead of the lowest dial reading.  The four specimens from each mix design were measured 

twice to ensure an accurate reading, and then were returned to the environmental chamber for 

continued curing.  The specimens were stored on rollers inside the environmental chamber to 

ensure unrestrained shrinkage.  The environmental chamber was maintained at a 50 ± 4 percent 

humidity environment with a temperature of 73
o
F ± 3

o
F in accordance with ASTM 

C157/C157M-06.   
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With an initial length recorded for 1 day of curing, subsequent shrinkage measurements 

were taken to determine the effectiveness of the LWA at mitigating drying shrinkage. Testing 

continued for 112 days, with readings taken at 1, 7, 14, 21, 28, 56, 90, and 112 days.  With 

known lengths for the concrete prisms throughout the first 112 days, shrinkage measurements 

were calculated for each prism.  The two data points for each time measurement were averaged 

and subtracted from the initial length.  The initial length was expected to be the longest recorded 

length of each prism.  Strain was calculated by dividing the length change by the gage length 

(which was 10 inches).  Shrinkage results using the length change comparator are provided in 

Section 4.2.1 in Figures 4.2.1.1 and 4.2.1.2.  Provided in Figure 3.5.2.1.1 are pictures of the 

Forney length change comparator used during the internal curing research. 

 

      Figure 3.5.2.1.1. Forney length change comparator.  

Drying shrinkage began as the C-S-H began to form, which is typically during the first 24 

hours.  Therefore, some concrete shrinkage was not measured when the length change 

comparator was used because the specimens remained in the forms for 24 hours.  However, the 

length change comparator did provide an opportunity to examine the shrinkage mitigation 
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potential of the coarse clay and shale LWA.  By comparing the length change of the mixtures 

containing LWA to the control mixture, the length change comparator showed the reduction in 

shrinkage attained through the use of the LWA. 

3.5.2.2 Drying Shrinkage Testing Using Vibrating Wire Strain Gages 

Similar to drying shrinkage testing using a length change comparator, drying shrinkage 

testing with vibrating wire strain gages began with specimen production.  Each specimen 

contained a strain gage at the center of the prism in all directions.  The gage wires extruded from 

the concrete and attached to the data collection system.   

Curing of the concrete using vibrating wire strain gages began immediately following 

placement.  Each concrete form produced two concrete specimens.  As mentioned previously, 

drying shrinkage during the first 24 hours was not recorded using the length change comparator.  

In the strain gage specimens, gage studs were not placed in the specimens as the strain gages 

recorded measurements instead of taking an external reading.  This allowed the first 24 hours of 

shrinkage data to be recorded.  To ensure plastic shrinkage was mitigated, the specimens were 

sealed.  By mitigating plastic shrinkage, all shrinkage during the first 24 hours was drying or 

chemical shrinkage.  This removed excess variables due to possible air changes from entering 

and exiting the environmental chamber.  To seal the concrete, polyurethane wrapping was placed 

around the specimen and formwork.  The wrapping covers all sides of the formwork, and was not 

removed until 24 hours ± 30 minutes following placement.   

Upon completion of the 24 hour setting time, the polyurethane sheeting was removed.  

The concrete formwork was removed with careful consideration not to disturb the sample.  

However, sample disturbance was noticed in the data as excessively large strain due to impact 

from a rubber mallet which aided in form removal.  Errant data due to form removal was 
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removed from the data.  Once removed from the formwork, each specimen was given a 

numerical value to correlate it with the matching strain gage.  Each specimen also had the batch 

date, LWA soak time, and the LWA replacement rate recorded on its end.  These inscriptions 

were made to aid during data analysis for the determination of strain associated with each strain 

gage.  Similar to the previous testing technique, the specimens were stored on rollers to aid in 

unrestrained shrinkage.  The specimens were cured in the same environment as the previous 

testing method. 

The use of embedded vibrating wire strain gages provided an opportunity to collect more 

data than the length change comparator testing.  The data collection system used Geokon model 

number 4200 concrete embedment strain gages.  The gages measured direct strain and the 

internal temperature of the concrete.  The strain gages had the capacity to measure up to 3000 με.  

The strain gages had the resolution of 1.0 με and had a gage length of 6 inches.  The gages had 

the ability to read an active temperature range of -20
o
C to +80

o
C.   

The gages were connected to a data collection system capable of taking readings for a 16 

channel vibrating wire strain gage configuration.  A Campbell Scientific CR10X data collection 

system was utilized for collecting the temperature and strain gage measurements.  The data was 

collected from the CR10X data collection system through the use of Campbell Scientific’s 

software PC400.  The data was collected as a dat file, which was then converted to a text file and 

subsequently imported and analyzed in Excel.  Graphs representing strain vs. time were 

generated for the data.   

Unlike the length change comparator tests, the vibrating wire strain gages recorded strain 

directly.  There was no conversion associated with the data analysis, only that initial strain must 

be zeroed with respect to the zero time interval.  With the data presented in strain, a plot of the 
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strain versus time was produced.  This provided an opportunity to determine quantitatively the 

amount of shrinkage reduction through the introduction of LWA as an internal curing 

mechanism.  Similar to length change comparator testing, a control specimen was cast to 

compare the shrinkage mitigation of the LWA specimens.  Results similar to the length change 

comparator data were collected.  The results are provided in Section 4.2.2 in Figures 4.2.2.1 and 

4.2.2.2.   Depicted in Figure 3.5.2.2.1 is a picture of the vibrating wire strain gage and data 

collection system.   

 

Figure 3.5.2.2.1. Vibrating wire strain gage and specimen storage. 

3.5.3 Modulus of Rupture Testing 

Modulus of rupture (MOR) testing provided the flexural strength of concrete.  A control, 

shale LWA, and clay LWA specimen were prepared for testing.  The same mix design was used 

for MOR testing as was used throughout the research program.  The soak time for each LWA 

mix design was 1 day given that the 1 day soaking specimens performed equivalent to other 

soaking durations.  Specimens were cast in pre-fabricated concrete molds.  The molds were 4 
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inches by 4 inches by 16 inches in length.   The concrete was placed in two lifts with 32 rods for 

each lift in accordance with ASTM C192/C192M-07.  The specimens were stored inside the 

environmental chamber for 24 hours.  During the first 24 hours inside the environmental 

chamber, the specimens were left inside the formwork with the top section exposed.  Following 

24 hours, the specimens were removed from the formwork.  Each specimen had the batch date, 

LWA replacement rate, and a number indicating each specimen.  Following the de-molding 

process, the specimens were immersed in a calcium hydrated water bath to ensure a 100 percent 

humidity curing environment. 

At 28 days of age, the specimens were tested for their flexural strength in accordance 

with ASTM C78-08.  The prisms were placed in the testing apparatus with third point loading 

applied to the prisms.  Following failure three measurements were taken to the nearest 0.05 inch 

to determine the failure plane.  With the necessary information provided the modulus of rupture 

was calculated using:  

  
     

      ⁄  

Equation (3-2) Modulus of rupture. 

Where: 

R = Modulus of Rupture (psi) 

P = Maximum Applied Load as Recorded by Testing Machine (pounds) 

L = Span Length (inches) 

b = Average Width of Specimen at Fracture (inches) 

d = Average depth of Specimen at Fracture (inches) 
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The modulus of rupture provided insight into the flexural strength of the concrete and was an 

indirect measure of tensile strength.  Modulus of rupture results are provided in Section 4.5 in 

Table 4.5.1.  Provided in Figure 3.5.3.1 is the testing apparatus with a test specimen.   

 

Figure 3.5.3.1. Modulus of rupture testing device with specimen. 

3.5.4 Modulus of Elasticity Testing 

Moduli of elasticity (MOE) testing specimens were cast at the same time as the MOR 

specimens.  A control, shale LWA, and clay LWA were produced for comparison purposes.  

Similar to MOR testing, the only soaking duration used for MOE testing was 1 day soaked LWA 

in conjunction with a 300 pound coarse aggregate replacement rate.  Specimens were 4 inches in 

diameter by 8 inches in depth.  Cylinders were produced in accordance with ASTM 

C192/C192M-07.  With the specimens consolidated in the formwork, they were moved to the 

environmental chamber for 24 hours.  The specimens were left uncapped.  Following the 24 

hours needed to harden, the molds were removed from the concrete specimens.  Each specimen 

had the batch date, LWA replacement rate, and LWA soak time inscribed on it for quality 
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control.  The specimens were then immersed in a calcium hydrated water bath to ensure a 100 

percent humidity curing environment.   

Following the 28 day curing time, the specimens were prepared for MOE testing.  

Preparation included the grinding of the ends so that the plane of each face of the cylindrical 

specimen was within 0.002 inches.  This is in accordance with ASTM C469/C469M-02e1.  With 

samples prepared for testing, the measuring apparatus was attached to each concrete specimen.  

The samples were then placed in the Forney compression machine for testing.  MOE for each 

specimen was determined by measuring the compressive strength and strain at two individual 

points.  The first point of measurement was 0.00005 strain and the corresponding compressive 

strength.  The second point of measurement was the strain at 40 percent of the average 

compressive strength of the concrete.  These two points of measurement were in accordance with 

ASTM C469/C469M-02e1.  Once the two points were attained, the MOE was calculated in 

accordance with the following equation: 

  
       

            ⁄  

Equation (3-3) Modulus of elasticity. 

Where: 

E = Chord Modulus of Elasticity (psi) 

S2 = Stress Corresponding to 40 percent of ultimate load (psi) 

S1 = Stress Corresponding to a longitudinal strain of 50 millionths (psi) 

ε2 = Longitudinal Stain Produced by S2 

Results of modulus of elasticity testing were reported to the 50,000 psi. Calculated values for the 

present research are presented in Section 4.6 in Table 4.6.1.  Provided in Figure 3.5.4.1 is a 

picture of the MOE testing apparatus with specimen. 
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Figure 3.5.4.1. Modulus of elasticity testing device with specimen. 
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Chapter 4 Results and Discussion 

4.1 Results Overview 

The first data assembly began with a collection of absorption capacities from the LWA 

specimens.  The study needed a baseline for the excess outer water located on the LWA to 

determine the amount of water added to the mix design w/c from the surface of the LWA.  The 

results of the LWA absorption capacities were shown in section 3.2.1 in Tables 3.2.1.1 and 

3.2.1.2.  With absorption capacities and excess water determined, mix designs were developed 

and concrete specimens were cast.  Mix designs are provided in Table 4.1.1.  Strain was 

measured with a length change comparator and vibrating wire strain gages to determine total 

shrinkage.  Slump, unit weight, and temperature data were measured for all mixtures.  

Compressive strength testing was conducted for all specimens as a control to ensure similar mix 

designs performed as expected.  Finally, modulus of elasticity and modulus of rupture tests were 

conducted to determine differences between the control specimen and the LWA concrete.   

    Table 4.1.1. Mix designs for control and LWA mixtures. 

Mixture Proportions: Saturated Surface Dry Condition 

Mix Design Control Clay Shale 

Cement (lb/yd
3
) 611 611 611 

Coarse Aggregate (lb/yd
3
) 1700 1400 1400 

Fine Aggregate (lb/yd
3
) 1440 1107 1178 

LWA Aggregate (lb/yd
3
) 0 300 300 

Water (lb/yd
3
) 270 270 270 

w/cm  0.44 0.44 0.44 

HRWR ADVA 575 (oz/cwt) 4 4 4 

 

4.2 Shrinkage Results 

4.2.1 Length Change Comparator Shrinkage Results 

A length change comparator (ASTM C490-04) was used to measure linear shrinkage in 
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the concrete specimens.  Length change measurements were taken at intervals until the 

specimens were 112 days old.  The length change measurements provided an insight into the 

amount of shrinkage reduction through the use LWA.  Multiple soaking durations were tested in 

order to determine the optimal soaking time of the LWA.  From Figure 4.2.1.1 it was observed 

that the 7 day soaked clay produced the least shrinkage in the clay specimens at 112 days.  

However, it should also be noted that the 1 day clay produced very similar shrinkage results as 

the 7 day soaked aggregate at 112 days.  From Figure 4.2.1.2 it was observed that the 1 day 

soaked shale produced the least shrinkage for the average of the specimens in this testing 

program.  All LWA concrete specimens did however reduce shrinkage when compared to the 

control specimens as seen in Figures 4.2.1.1 and 4.2.1.2 in this testing program. 

 

  Figure 4.2.1.1. Clay shrinkage results using a length change comparator. 
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Figure 4.2.1.2. Shale shrinkage results using a length change comparator 

As mentioned previously, the results indicated that the 7 day soaked clay and the 1 day 

soaked shale were optimal performers at mitigating shrinkage out to 112 days.  The amount of 

shrinkage reduction at 28 and 56 day intervals has been provided in Table 4.2.1.1.  For instance, 

at 28 days of age the clay LWA soaked for 1 day had 24.9 percent less shrinkage than the control 

mixture.  Similarly, the same 1 day soaked clay specimen only exhibited 2.7 percent less 

shrinkage at the 56 day interval than the control specimen.  The data indicated that as the 

concrete aged, there was a reduction in the shrinkage of the concrete.  This may be explained that 

as the concrete hydrates, the number of un-hydrated cement particles decreases.  Therefore as the 

amount of C-S-H increased the amount of shrinkage reduced in the concrete specimens.  
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 In review of the shrinkage reduction at the 28 day interval, the 3 day soaked clay and the 

1 day soaked shale produced the least shrinkage.  At the 56 day interval, the 3 day soaked clay 

and the 1 day soaked shale again produced the least shrinkage.  A review of Figure 4.2.1.1 

revealed that the 3 day soaked clay produced increased expansion at later ages near the 90 and 

112 day intervals.  However, the shale remained more uniform throughout testing and the 1 day 

soak duration produced the least shrinkage at all intervals.  The shale produced more uniform 

absorption capacities and shrinkage results than that of the clay specimens.  However, the 

minimum strain produced in the clay and shale LWA was very similar.  The 1 day soaked shale 

produced a strain of 364 με while the 7 day clay produced a strain of 356 με.  As mentioned 

previously, the 1 day soaked clay produced similar results as the 7 day soaked clay.  The 1 day 

soaked clay produced a strain of 361 με.  This was very similar to the strain produced within the 

1 day soaked shale.  The results indicate that both clay and shale were viable options for 

mitigating shrinkage and produced similar results.  Another conclusion is that there is minimal 

difference in shrinkage mitigation due to aggregate soak duration as long as it is soaked a 

minimum of 24 hours.   

Table 4.2.1.1. LWA shrinkage mitigation (length change comparator). 

Mixture Percent Difference 

Days 28 56 

Control 0.0% 0.0% 

Clay 1 Day 24.9% 2.7% 

Clay 3 Day 32.8% 15.3% 

Clay 7 Day 20.0% -9.4% 

Shale 1 Day 34.3% 15.6% 

Shale 3 Day 15.8% 0.3% 

Shale 7 Day 24.2% 7.8% 
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Due to the nature of testing multiple specimens, there is always the potential for variation 

in data recordings.  As such, confidence intervals were calculated to determine overlaps in 

shrinkage data produced by the length change comparator.  Confidence intervals were calculated 

for all concrete mix designs at 112 days, with calculations based on a 90 percent confidence 

level.  Provided in Table 4.2.1.2 are the upper and lower confidence interval bounds for the 

shrinkage data. 

      Table 4.2.1.2. Confidence interval data for length change comparator specimens. 

112 Day Data 
Average 

Strain 

Standard 

Deviation 

Confidence 

Interval 

Lower 

C.I. 

Upper 

C.I. 

Control 418.8 76.0 62.5 356.3 481.2 

Clay 1 Day Soak 361.3 15.5 12.7 348.5 374.0 

Clay 3 Day Soak 396.3 11.8 9.7 386.5 406.0 

Clay 7 Day Soak 356.3 178.1 146.5 209.8 502.7 

Shale 1 Day Soak 363.8 22.9 18.8 344.9 382.6 

Shale 3 Day Soak 446.3 32.2 26.5 419.7 472.8 

Shale 7 Day Soak 411.3 18.9 15.5 395.7 426.8 

 

The findings produced from the confidence interval calculations indicate that there was 

no statistical difference in shrinkage results produced by the length change comparator.  The 

control specimen overlaps the confidence interval of all LWA concrete specimens.  The reason is 

the large scatter in the shrinkage data for the control specimen.  The 112 day strain for the 4 

control specimens ranges from 370 με – 530 με.  Ranges for the LWA were typically less than 75 

με difference.  The 160 με difference in the control data causes there to be no statistical 

significance in the shrinkage results for the length change comparator data. (It should be noted 

that the 7 day soaked clay concrete has a large confidence interval due to a potential errant 

reading taken from one of the specimens.  However, if the data point was removed, there would 

still be an overlap between the 7 day soaked clay specimen and the control specimen, and no 
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results would change.)  In conclusion, the length change comparator shrinkage data indicated 

that there is no statistical significance in measured shrinkage between the LWA specimens and 

the control specimens.   

 

Figure 4.2.1.3. Confidence intervals for length change comparator results. 

4.2.2 Vibrating Wire Strain Gage Shrinkage Results 

Vibrating wire strain gages produced by Geokon Industries were used to measure the 

shrinkage of concrete prisms.  The strain gages were placed inside the concrete prisms and 

measured the shrinkage during the hydration of the cement paste.  The strain gages were 

sensitive to all shrinkage and expansion in the concrete specimens.  Shrinkage results are 

provided in Figures 4.2.2.1 and 4.2.2.2.  An observation of the figures indicates expansion during 

the initial hydration phase.  The formation of C-S-H expanded the concrete before the majority 

of the bulk water was chemically combined, thus causing expansion.  Following expansion, the 
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bulk water chemically combined in the C-S-H and shrinkage occurred throughout further testing. 

The results indicate that the 1 day soaked clay and 1 day soaked shale produced the least 

shrinkage at the 112 day interval.  The 1 day soaked clay and 1 day soaked shale produced micro 

strains of 258 and 286 respectively.  Soak time of the LWA did have a minor effect on the 

shrinkage produced in the concrete specimens.  However this effect was small as seen in Figures 

4.2.2.1 and 4.2.2.2, as long as the LWA was soaked for 24 hours.   

Provided in Table 4.2.2.1 are the LWA shrinkage mitigation at 28 and 56 day intervals as 

measured with vibrating wire strain gages.  The results agreed with the length change comparator 

results of Table 4.2.1.1 in that, as the concrete aged, there was less shrinkage.  The 3 day soaked 

clay LWA and the 7 day soaked shale LWA produced the least shrinkage when compared to the 

control specimen at 28 and 56 day intervals.  The 3 day soaked clay mixture had a 50.9 and 45.8 

percent reduction in shrinkage at the 28 and 56 day interval when compared to the control 

mixture.  The 7 day soaked shale mixture had a 46.7 and 29.8 percent reduction in shrinkage at 

the 28 and 56 day interval when compared to the control mixture.  The 3 day clay and 7 day 

shale did not produce the least shrinkage at the 112 day interval, as seen in Figures 4.2.2.1 and 

4.2.2.2.  The 1 day soaked clay and 1 day soaked shale produced the least shrinkage at the 112 

day interval as seen in Figures 4.2.2.1 and 4.2.2.2.   

Table 4.2.2.1. LWA shrinkage mitigation (vibrating wire strain gage). 

Mixture  Percent Difference  

Days 28 56 

Control 0.0% 0.0% 

Clay 1 Day 33.1% 18.4% 

Clay 3 Day 50.9% 45.8% 

Clay 7 Day 50.2% 32.2% 

Shale 1 Day 8.9% 1.8% 

Shale 3 Day 36.2% 29.1% 

Shale 7 Day 46.7% 29.8% 
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During testing of the control and 1 day soak duration for clay and shale, complications 

arose due to a loss of power to the data collection system.  This resulted in gaps in the data where 

strain was not recorded.  The gaps in the data may be seen in Figures 4.2.2.1 and 4.2.2.2; 

however, the general trend of increasing strain is still observed with the missing data.  The 

problem was corrected before the 3 day and 7 day soaking durations were cast and tested.   

 

Figure 4.2.2.1. Clay shrinkage results using vibrating wire strain gages. 
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Figure 4.2.2.2. Shale shrinkage results using vibrating wire strain gages. 
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difference with the control data.  Confidence intervals for the strain gage specimens are provided 

in Table 4.2.2.2.   

      Table 4.2.2.2. Confidence interval data for strain gage specimens. 

112 Day Data 
Average 

Strain 

Standard 

Deviation 

Confidence 

Interval 

Lower 

C.I. 

Upper 

C.I. 

Control 306.3 10.5 10.0 296.3 316.3 

Clay 1 Day Soak 257.8 6.9 6.6 251.1 264.4 

Clay 3 Day Soak 298.3 16.3 15.5 282.9 313.8 

Clay 7 Day Soak 307.4 5.0 4.7 302.7 312.1 

Shale 1 Day Soak 285.5 11.0 10.5 275.0 296.0 

Shale 3 Day Soak 311.6 9.8 9.3 302.3 320.9 

Shale 7 Day Soak 306.4 8.9 8.4 297.9 314.8 

 

 The 1 day soaked clay specimens produced the confidence interval with the smallest 

strain values.  The small shrinkage values indicate these specimens produced the least shrinkage 

of all the specimens.  It also indicates that the 1 day soaked clay specimens produced the best 

results for shrinkage mitigation.  Following the 1 day soaked clay specimens were the 1 day 

soaked shale specimens.  This group of specimens produced the second lowest shrinkage results, 

and as seen in the data from Table 4.2.2.2, the results do not overlap the control data.  Both the 1 

day soaked clay and shale produce confidence intervals which fall outside the strain range for the 

control specimens.  This indicates that there is no increased advantage in shrinkage mitigation to 

soaking the LWA longer than 24 hours.   

As seen from Table 4.2.2.2 and Figure 4.2.2.3, the 1 day soaked clay produced less 

shrinkage and lower confidence intervals for the strain gage data specimens.  A potential 

explanation for this is the porosity of the expanded LWA.  The expanded clay lightweight 

aggregate has an absorption capacity of 15 percent while the expanded shale has an absorption 

capacity of 12.9 percent.  This difference in absorption capacity leads to less water in the shale 



55 

 

specimens.  This reduction in curing water in the shale specimens may have led to increased 

shrinkage when compared to the clay specimens.  However, though there was less water in the 

shale specimens than the clay specimens, there is still a decrease in shrinkage when compared to 

the control specimens.   

 

Figure 4.2.2.3. Confidence intervals for vibrating wire strain gage results. 
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least shrinkage, while the shale had different soaking durations producing the least shrinkage.  

However, when comparing the shrinkage reduction at 28 days of both 3 and 7 day soaked 

specimens to that of the 1 day soaked specimens there is minimal difference.  The 1 day soak 

duration produced nearly equivalent shrinkage reduction to that of the maximum shrinkage 

reduction soaking durations.   

 

Figure 4.2.2.4. Clay shrinkage results using strain gage data at 28 days. 
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Figure 4.2.2.5. Shale shrinkage results using strain gage data at 28 days. 
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percentage difference between the control specimen and the LWA specimens was larger in all 

cases except in the 1 day soaked shale when comparing strain gage data to length change 

comparator data.  The observation held true for both the 28 day and 56 day data.  An explanation 

for the observed data was due to the wrapping of the strain gage specimens in polyurethane 

sheeting while the length change comparator specimens were not sealed.  The LWA was able to 

mitigate more chemical shrinkage because water was not lost to the atmosphere during initial set 

of the specimens.  By preventing water loss to the atmosphere, all water located in the LWA was 

available for hydration of the cement particles.  With all water being used for hydration products 

instead of bleed water mitigation, the overall amount of shrinkage could be reduced more than in 

the unwrapped specimens.   

Though the length change comparator and vibrating wire strain gages measured the 

change in length of the concrete specimens, there were potential areas for differences in the 

measured results.  One such source of difference in the two testing types was the accuracy and 

frequency of the collection systems.  Both systems agree that shrinkage reduction occurred as a 

result of using LWA as an internal curing agent.  However, the resolution of the instruments 

involved could affect the amount of total shrinkage measured for each specimen.  The length 

change comparator measured length change differences to ten-thousandths of an inch yielding a 

resolution of 10 µε.  The vibrating wire strain gages measured strain with a resolution of 1 µε.  

Though both provide a high degree of length change difference capability, the length change 

comparator data produced one shrinkage measurement at 8 measurement intervals.  The 

vibrating wire strain gage data were collected continuously throughout the entire 112 day curing 

cycle.  This continuous data collection system of the strain gage specimens compared to 8 
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singular points of the length change comparator specimens provides an opportunity for the data 

to vary between the two collection systems.   

Another possible difference between the two measurement systems could be due to the 

location of testing.  The specimens for the length change comparator data were removed from the 

environmental chamber during testing.  As such, these specimens were subjected to potential 

temperature and humidity drops during testing.  The specimens with internal vibrating wire strain 

gages were placed in the environmental chamber without being moved or removed.  This 

potential drop in temperature and humidity gradient may have caused slight changes in the data, 

when comparing the two data collection systems.   

4.3 Compressive Strength, Slump, and Unit Weight 

Compressive strength testing was carried out at 1, 7, 28, and 56 day intervals.  Three 

specimens were tested at each age.  The compressive strength, slump, and unit weight test results 

are provided in Table 4.3.1.  Compressive strength curves are shown in Figures 4.3.1 and 4.3.2, 

and it is evident that coarse LWA does reduce concrete compressive strength.  The control 

mixture produced the highest compressive strength.  The control specimens were expected to be 

stronger than the LWA specimens due to the lower strength of the LWA.  There were no 

apparent trends in the compressive strength data of different soaking durations (1, 3, and 7 days) 

between the clay and shale LWA.  The data shown in Figures 4.2.1 and 4.2.2 indicates that there 

is no distinguishable difference in the compressive strength of LWA soaked at 1, 3, and 7 days.  

The 7 day soaked LWA specimens did not produce the largest compressive strength during 

testing at either the 28 day or 56 day test interval.  The 1 day soaked lightweight aggregate did 

perform equal to or better than the 3 and 7 day soak duration specimens and produced the highest 

compressive strength in the LWA clay specimens at 28 days.  Sufficient compressive strength is 
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gained for a 1 day soak LWA as for extended soaking durations.  The compressive strength of all 

the concrete mixtures exceeded the minimum compressive strength design criteria of 4000 psi as 

defined by AHTD.  

Slump tests were conducted in accordance with ASTM C143/C143M-05a.  The addition 

of LWA as an ingredient in concrete did not affect the slump of the concrete, nor did the soaking 

duration of the LWA.  With the high coarse aggregate content and relatively low w/c (0.44), the 

main factor affecting slump was the use of a high range water reducer.  The maximum slump 

criterion, as defined by AHTD, for the research was 4 inches.  The slump of three concrete 

mixtures exceeded the 4 inch maximum requirement.  Given that the slump was high for three 

mixtures, other data provided conclusively there were no deleterious effects caused by the excess 

high range water reducer used to adjust slump.  A review of the unit weight and compressive 

strength data of the three high slump mixtures revealed there was no decrease in either property.  

A review of the compressive strength and unit weight data was necessary given that high range 

water reducer carried the potential to delay strength gain and segregate the concrete when used 

excessively in concrete production.  The data show typical compressive strength values for LWA 

of approximately 7000 psi and typical unit weight values of approximately 140 lb/ft
3
 for LWA 

concrete at the 300 pound LWA replacement rate.  Therefore, the LWA concrete with the higher 

slump values was of equal quality to the LWA concrete that was within the 4 inch slump limit. 

According to ACI 318-08, normal weight concrete has a density between 135 – 160 lb/ft
3
 

(ACI, 2008).  The addition of LWA did lower the unit weight of the concrete; however, all 

concrete mix designs developed were normal weight according to ACI 318-08.  The control 

mixture had a unit weight of 150 lb/ft
3
 due to a large amount of coarse limestone aggregate, 

while the LWA concretes had unit weights that ranged from 137 lb/ft
3
 to 140 lb/ft

3
 respectively.  
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Unit weight provided an insight that the LWA would not affect the concrete in a negative manner 

by lowering its unit weight.  Lightweight concrete is prone to lower tensile strengths and 

increased shrinkage (Mehta & Monteiro, 2006).  A replacement rate greater than 300 lb/ft
3
 could 

result in the concrete being defined as lightweight according to ACI 318-08.  A reduction in unit 

weight does lower concrete member dead loads.  

Table 4.3.1. Compressive strength, slump, and unit weight. 

Mixture 
Compressive Strength (psi) 

Slump (in) Unit Weight (lb/ft
3
) 

1 Day 7 Day  28 Day 56 Day 

Control 3520 8450 9070 9570 2.75 150 

Clay 1 Day 3300 6190 7040 7290 6.25 138 

Clay 3 Day 3060 6010 7020 7510 5.00 139 

Clay 7 Day 2730 5760 6870 7330 8.00 139 

Shale 1 Day 4210 6450 6840 7570 3.00 137 

Shale 3 Day 4370 6590 7200 7640 2.00 140 

Shale 7 Day 3880 5950 7090 7410 2.00 138 

 

Figure 4.3.1. Clay compressive strength curve. 
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Figure 4.3.2. Shale compressive strength curve. 
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the formwork.  The concrete specimens were allowed to cure for 24 hours in the formwork and 

wrapped in polyurethane sheeting.  The removal of the sheeting and forms produced a rapid drop 

in temperature.  The concrete would then find an equilibrium temperature between 72
o
F and 

75
o
F as seen in Figure 4.4.1, which is in accordance with ASTM C157/C157M-06.  As expected, 

internal curing and soaking duration had no effect on concrete temperature. 

 

Figure 4.4.1. Temperature profile of concrete specimens throughout testing. 
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MOR test also is an indirect measure of concrete tensile strength.  Concrete specimens 

containing LWA were weaker in compression; however, there should be an increase in the bond 

at the interfacial transition zone due to better hydration, which should increase tensile strength.  

The LWA released the water to the surrounding hydrating cement particles and should provide a 

better bond product.  However, the w/c was not low enough to undergo self-desiccation in the 

control specimen.  This led to similar MOR values for all the specimens in question.  Presented 

in Table 4.5.1 is the MOR values for the control, expanded clay, and expanded shale LWA. 

  Table 4.5.1. Modulus of rupture data. 

Modulus of Rupture Data 

(psi) Clay Shale Control 

Spec 1 920 795 900 

Spec 2 855 790 835 

Spec 3 875 735 805 

Measured Avg 885 775 845 

ACI Prediction 665 670 700 

 

Section 10 of ASTM C78-02 states that no beam failures shall deviate more than 16 

percent from each other if constructed from the same sample of concrete.  The largest deviation 

was found in the control group between specimen 1 and specimen 3.  The deviation between the 

two specimens is approximately 11 percent.  This deviation is within the specified criteria of 

ASTM C78-02.   

The MOR test results indicate that the 1 day soaked clay at a 300 pound replacement rate 

produced the strongest beams in flexure at 885 psi as seen in Table 4.5.1.  The 1 day soaked 

shale at a 300 pound replacement rate produced the weakest beams in flexure at 775 psi.  The 

control specimen’s had an average strength of 845 psi.  There is an approximate 12 percent 

difference in the average beam flexural strength of the weakest and strongest specimens.  
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Though the average clay and average shale specimens did not produce close results, they did stay 

within the 16 percent deviation as put forth in Section 10 of ASTM C78-02.  This requirement 

does not apply to these specimens as they are not of the same batch.  However it does provide 

insight into typical deviations within the MOR test of similar batch samples.  As such, it is 

concluded that the 1 day soaked 300 pound replacement rate of lightweight clay and lightweight 

shale did not impact the MOR of the concrete.   

Provided in ACI 318-08 is an equation for estimating the modulus of rupture of concrete: 

       √    

Equation (4-1) ACI prediction equation for modulus of rupture. 

Where: 

fr = Modulus of Rupture of concrete (psi) 

λ = Lightweight Concrete Modification Factor (λ = 1 for Normal Weight Concrete) 

f’c = Specified Compressive Strength of concrete (psi) 

As seen in Table 4.5.1, the estimated MOR value based on ACI 318-08 for the concrete was 

conservative for the mix designs in this research.  The measured concrete MOR values were at a 

minimum of 1.16 times larger than the ACI 318-08 prediction equation.  This underestimation in 

the MOR strength of the concrete leads to a conservative design.  The underestimation agrees 

with the earlier assumption that the 1 day soaked 300 pound replacement rate of LWA does not 

negatively affect the MOR.  Both LWA mix designs produced similar MOR values as that of the 

control mix design further indicating that the LWA did not affect the MOR.  However, there is a 

potential for deviations in MOR values at different LWA replacement rates and soaking 

durations. 
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4.6  Modulus of Elasticity Results 

Modulus of elasticity (MOE) specimens were cast in accordance with ASTM 

C192/C192M-07 except where specified in Chapter 3.  There was an expectation that the MOE 

for the LWA would be different than that of the control specimen.  The lower compressive 

strength of the LWA compared to the coarse limestone aggregate was reason for the expectation 

of the lowered MOE.  The lower strength LWA was expected to deform more than the limestone 

under a given loading producing a lower MOE value.  The lower MOE value indicates that the 

LWA concrete was less stiff than the control mix design.  Presented in Table 4.6.1 are the 

measured MOE values.  Presented in Figures 4.6.1, 4.6.2, and 4.6.3 are the stress-strain curves 

developed from ASTM C469/C469M-02e1. 

   Table 4.6.1. Modulus of elasticity data. 

Modulus of Elasticity Data 

(ksi) Clay Shale Control 

Spec 1 4320 4790 6030 

Spec 2 4790 4970 6010 

Spec 3 5100 5060 6200 

Measured Avg 4740 4940 6080 

ACI Prediction 4750 4980 5620 
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Figure 4.6.1. Stress-strain curve modulus of elasticity LWA clay concrete. 
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Figure 4.6.2. Stress-strain curve modulus of elasticity LWA shale concrete. 
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Figure 4.6.3. Stress-strain curve modulus of elasticity control concrete. 
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The clay LWA has a more porous structure than the shale, and the pore structure reduces density 

and increases deformation.   

Provided in ACI 318-08 is a prediction equation to estimate the modulus of elasticity of 

concrete: 

     
     √    

Equation (4-2) ACI prediction equation for modulus of elasticity. 

Where: 

Ec = Modulus of Elasticity (psi) 

wc = Density of Concrete (lb/ft
3
)  

f’c = Specified Compressive Strength of concrete (psi) 

As seen in Table 4.6.1 the MOE equation predicts closely the expected MOE or errs 

slightly conservative.  The LWA clay and shale MOE predicted values were close to the same as 

the measured values of 4750 psi and 4980 ksi respectively.  The control prediction was lower 

than the measured MOE by approximately 8 percent.  The prediction equation found in ACI 318-

08 can be used to estimate the MOE of internally cured concrete using LWA.  However, the ACI 

318-08 prediction equation will produce conservative MOE values. 

Provided in ASTM C469/C469M-02e1 is the precision of the MOE testing procedure.  

Two specimens averaged together should not depart more than 5 percent from an individual 

batch according to Section 9 of ASTM C469/C469M-02e1.  However, specimen 1 and specimen 

3 produced with clay departed from the average approximately 8 percent.  Though this is out of 

the specification range, the averaged value of all three specimens produced acceptable results.  
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Chapter 5 Conclusions 

5.1 Conclusions Overview 

The object of the previous research was to determine the applicability of 1 day soaked 

LWA at reducing concrete shrinkage when used as an internal curing agent.  Other soaking 

durations and a control concrete mixture were utilized in the research program to aid in this 

determination of using 1 day soaked LWA.  Concrete shrinkage was evaluated through the use of 

a length change comparator and by embedding vibrating wire strain gages into concrete prisms.  

The research looked at the effect of the LWA on the fresh and hardened concrete properties as 

well.  The unit weight, slump, temperature, compressive strength, MOR, and MOE were all 

measured to determine the effect caused through the introduction of LWA.  The conclusions of 

the research are presented below. 

5.2 Conclusions – Fresh Concrete Properties 

The addition of LWA as an internal curing mechanism has little effect on concrete slump.  

Differences in slump were due to high range water reducer.  The LWAs, both shale and clay, are 

very coarse with angular edges similar to the coarse aggregate limestone used in the control 

specimen.  As such, the addition of 300 lbs LWA as a direct substitute for the limestone coarse 

aggregate had a minimal effect on the slump and workability aspects of the fresh concrete.  

Mixture workability was affected more by high range water reducer dosage than aggregate 

choice. 

The addition of LWA as an internal curing mechanism did influence concrete unit 

weight.  The control mixture had a unit weight of 150 lb/ft
3
 while the shale and clay mixtures 

ranged from 137 lb/ft
3
 – 140 lb/ft

3
.   The addition of LWA decreased the unit weight of the 

concrete because of the reduced specific gravity of the LWA.  Further additions of LWA with a 
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subsequent decrease in coarse limestone aggregate will continue to decrease concrete unit 

weight.  Even though the unit weight for the LWA mixtures was lower than the control mixture, 

the LWA mixtures were still considered normal weight by ACI 318-08.  In addition to the 

benefits of internal curing, a lower unit weight will reduce dead loads associated with concrete 

structures. 

5.3 Conclusions – Hardened Concrete Properties 

The compressive strength of the concrete was affected by the addition of LWA into the 

concrete mix.  From the literature, Roberts (2006) determined that due to increased hydration of 

the cement matrix the compressive strength of the concrete would increase.  However, the 

current research found the compressive strength to decrease with the addition of LWA.  The 

LWA has lower specific gravities and lower compressive strength capacities than that of the 

coarse limestone aggregate.  As such, the lower compressive strength of the LWA had more 

influence on the compressive strength of the concrete than the increased hydration products.  

This may be due to the w/c.  The w/c used for the current research was 0.44 as specified by 

AHTD bridge deck specification.  A w/c of 0.44 provides enough water to hydrate all necessary 

cement particles in the concrete which prevents the hardened concrete from self-desiccating.  

Therefore, the increased hydration products are not enough to overcome the lower compressive 

strength of the LWA.   

Concrete shrinkage was directly affected by the addition of LWA into the mix design.  

The addition of LWA reduced the amount of shrinkage in the concrete.  Provided in Tables 

4.2.1.1 and 4.2.2.1 are the percent difference in shrinkage reduction of the LWA concrete in 

comparison to the control mixture.  Utilizing a length change comparator the data indicated that 

the 7 day soaked clay and 1 day soaked shale specimens produced the least shrinkage.  From the 
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vibrating wire strain gage data it was determined that the 1 day soaked clay and 1 day soaked 

shale produced the least shrinkage.  The data from both measuring systems concluded that the 

addition of LWA did decrease shrinkage in the concrete.  However, the results were not 

conclusive regarding which LWA was most effective at reducing concrete shrinkage.  Due to the 

variation from testing multiple concrete specimens for each mixture, confidence intervals were 

developed to determine the applicability of the LWA at reducing concrete shrinkage.  The 

confidence intervals produced for the length change comparator data do not provide a statistical 

significance between any of the LWA specimens and the control mixture.  The strain gage 

specimen’s confidence intervals do provide a statistical significance to the shrinkage mitigation 

of the 1 day soaked LWA specimens in comparison to the control mixture.  From the strain gage 

data, it was determined that the 1day soaked clay specimens produced the least shrinkage 

followed by the 1 day soaked shale specimens.  The findings were in accordance with LWA 

moisture content as the lightweight clay was able to provide more water for cement hydration 

than the shale aggregate.  In conclusion, the 90 percent confidence intervals do provide evidence 

that there is significant shrinkage reduction through the use of LWA as an internal curing agent.  

These findings support the use of internal curing as a concrete shrinkage mitigation technique 

when curing any type of concrete placement.  

One of the goals of the research project was to determine if LWA soaked for 1 day was 

sufficient to observe the benefits of internal curing.  The shrinkage results show that a 1 day 

soaking time does reduce shrinkage equivalently or better than extended soaking durations.  This 

may be best seen in the confidence intervals derived for the strain gage data in Table 4.2.2.2.  

The 1 day soaked clay and shale specimens were the only two specimens that do not overlap the 

confidence interval of the control mixture.   
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The modulus of rupture or the flexural strength of the concrete was not affected by the 

addition of LWA.  The control mixture had an average MOR of 845 psi while the clay and shale 

had an average MOR of 885 and 775 psi respectively.  Unlike the modulus of elasticity, which is 

affected by the specific gravity of the materials inside the concrete, the MOR is affected more by 

bond between the materials.  The addition of LWA did not result in a noticeable increase in the 

flexural strength of the concrete when compared to the control mixture.  This is in agreement 

with the compressive strength data.  The water provided by the LWA would need to produce 

more C-S-H than the control mixture for there to be an increase in the flexural strength of the 

concrete.  However, the similar MOR data between all specimens, suggests that the 300 pound 

replacement rate of coarse LWA did not affect the bond strength of the concrete enough to 

produce a noticeable difference.  ACI 318-08 provides a MOR prediction equation.  Data put 

forth in Table 4.5.1 suggests that the prediction equation is applicable to LWA concrete.  

However the prediction equation is conservative for the control and LWA concrete. 

The modulus of elasticity or stiffness of the concrete was affected by the addition of 

LWA into the concrete mix design.  The modulus of elasticity decreased as LWA content 

increased.  The specific gravity of the LWA was lower than the specific gravity of the limestone 

aggregate.  As specific gravity decreased, strength also decreased, which decreased the modulus 

of elasticity.  ACI 318-08 provides an equation to predict the MOE of the concretes in the 

research program.  The ACI 318-08 prediction equation is applicable to LWA concrete mixtures.  

The MOE prediction equation provided very accurate measurements of the LWA concrete 

mixtures, but was conservative in its prediction of the control mixture.  

Although the compressive strengths of the internally cured mixtures decreased when 

compared to the control mixtures, the compressive strength of the internally cured mixtures 
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exceeded AHTD requirements.  Furthermore, concrete shrinkage at 112 days was less when the 

concrete was internally cured.  There was little difference in the flexural strength of the internally 

cured mixtures versus that of the control mixture.  Similar to the compressive strength, the MOE 

of the internally cured mixtures was less than that of the control mixtures.   

 In conclusion, the current research focused only on internal curing with coarse LWA 

clay and shale materials.  The research found that a 1 day soaking duration of the LWA produced 

equivalent shrinkage mitigation results when compared to longer soaking durations.  Future 

research is needed to advance the knowledge of soaking duration of internally cured concrete.  

Further studies are needed to determine the applicability of extended soaking durations past the 7 

day interval in internal curing.  If the aggregate is left in submerged stockpiles then extended 

studies need to be conducted on LWA aggregate behavior past the 7 day study.  For these 

extended studies, shrinkage reduction may just be one factor with the research, while the 

aggregate itself may be another.  Does extended submersion breakdown the aggregate itself 

rendering it ineffective for internal curing and structural ability?  Further studies are also needed 

into the use of pre-saturated fine LWA.  Extended soaking durations did not affect the outcome 

of coarse LWA as long as a minimum soaking duration of 24 hours was provided.  However, 

fine LWA has a different pore size distribution which may affect the ingress rate of water into 

the LWA.  Also bulking is a factor in traditional sands and may also play a role in determining 

aggregate soak time of fine LWA’s.  These areas of research need to be investigated to determine 

their impact on internally cured concrete. 
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