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Abstract 

Field and laboratory tests were conducted on 18 full-scale, geosynthetic reinforced, 

roadway test sections located in Marked Tree, Arkansas. Base course, geosynthetic, and 

subgrade samples were collected, and pavement depth, in-situ density and in-situ hydraulic 

conductivity measurements were obtained during a geotechnical site investigation. The 

performance of sections containing geotextile products being used for separation and filtration 

(Carthage Mills FX-66, Mirafi 570, Propex 2006, Propex 2044, and Propex 4553) was 

investigated.      

Moisture content, sieve analysis, Atterberg limits, modified proctor, specific gravity, and 

hydraulic conductivity tests were performed on the acquired soil samples. Transmissivity and 

permittivity testing was conducted on the geotextile samples. Performance of the flexible 

pavement system was monitored (annual inspections performed) by Arkansas State Highway and 

Transportation Department (AHTD) personnel.  

  The hydraulic conductivity values determined in field were validated using the 

empirically obtained Moulton (1980) equation and the effective particle size, porosity, and fines 

content obtained from the forensic analysis. The base course was identified to be non-freely 

draining (hydraulic conductivity<10,000 ft/day) based on the field hydraulic conductivity values. 

No differences were observed in the hydraulic conductivity measurements for the base course for  

sections containing or not containing geotextiles. The average permittivity of the geosynthetics 

installed in the ten-inch thick sections was lower than the permittivity of the geosynthetics 

installed in the six-inch thick sections. No correlation was observed between the average 

transmissivity values for the ten-inch thick and six-inch thick sections.   



 
 
 

 

Excessive rutting was observed in six-inch thick sections containing the Carthage Mills 

FX-66 geotextile product. Also, more rutting, alligator cracking, and ponding was observed in 

the six-inch thick sections than the ten-inch thick sections, regardless of the presence of 

geosynthetics. Based on the results of this research, the wrong types of geotextile fabrics were 

originally installed at the Marked Tree Test Section. The geotextile fabrics, as installed at the 

base course/subgrade interface, did not improve the performance of the pavement system. It is 

recommended that geotextile design criteria be met prior to installation, and that the current 

geotextiles be day- lighted to provide enhanced drainage. 
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Chapter 1. Introduction 

1.1.  Background 

Since the 1920’s geosynthetics have been placed between the subgrade and base course 

layers in pavement systems to serve as reinforcement, layer separation, drainage, and moisture 

barriers (Al-Qadi et al., 1999). Geosynthetics (specifically geotextiles) have been shown to 

prevent fines migration from the subgrade to base course when used as a filter and to prevent 

intrusion of base course materials into the subgrade layer when used as a layer separator.  

According to Tingle and Jersey (1989), geosynthetics have been used to improve the 

performance of roadways, especially for low volume roads, by increasing service life or by 

reducing the quantity of base course as indicated by an improved ability to manage vehicle 

traffic with a reduced aggregate thickness. Comparable performance between unreinforced and 

reinforced road sections has also been observed (Tingle and Jersey, 1989).  

Coffman (2010) states that base course drainage, strength, and rigidity are important 

parameters to be considered for roadway design and performance. More specifically, Coffman 

(2010) states that geosynthetics may be used to improve the drainage, strength, and rigidity of 

the pavement system. The objective of the research associated with the AHTD Transportation 

Research Center (TRC) Project 0406 was to determine the extent of improvement and 

mechanism responsible for improvement in low volume roadways reinforced with geosynthetics. 

The test sections installed as part of AHTD TRC Project 0406 were utilized in the research 

project described in this thesis.  

Two recent projects sponsored by the MBTC and the AHTD have focused on the strength 

and rigidity of pavement systems.  Researchers working on MBTC Project 2027 focused on the 

effects of fines content (by weight) on the strength and hydraulic conductivity of Class 7 base 
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course while researchers working on AHTD TRC Project 0903 were studying the effects of 

geosynthetic separators/reinforcement and base course thickness on pavement system rigidity 

(Coffman, 2010).  

The research documented in this thesis and conducted as a part of MBTC Project 3020 

will contribute to the above mentioned projects by analyzing the performance of the geotextile 

products installed in the pavement sections at the Marked Tree, Arkansas, test site.  

1.2.  Hypothesis and Objectives 

 Geotextiles used as geosynthetic filters and geosynthetic separators prevent fines 

migration from the subgrade into the base course and prevent base course penetration into the 

subgrade, respectively, enhancing the ability of the base course to drain and improving roadway 

performance. This hypothesis will be verified by performing field observations and field and 

laboratory tests. The following will be obtained from these observations and tests:  

• observations during exhumation of base course, geosynthetics, and subgrade materials, 

• identification and characterization [I&C] of  base course and subgrade materials  at the 
Marked Tree, Arkansas site, 

• field hydraulic conductivity [FHP] values of in-situ base course, 

• lab hydraulic conductivity [LHP] values of recompacted base course, 

• permittivity and transmissivity [P&T] values of geosynthetic separators. 
 

1.3. Need for Research 

In roadways constructed on clayey subgrades, fines may be transferred into the base 

course and the base course may penetrate into the subgrade as a result of vehicle loading. This 

transfer of fines and penetration of base course may cause ponding or distress, leading to 

alligator cracking, rutting and premature roadway failure. Geotextiles are considered a cost 

effective technique (implemented in place of additional base course thickness) to improve 

roadway performance by filtering subgrade particles and separating the base course and 

subgrade. The research described in this thesis is aimed at justifying the potential benefits of 
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geotextiles as a filtration and separation medium. Past research has not provided satisfactory 

results (results which can be implemented in design) for highly plastic, clayey subgrade (the 

subgrade conditions associated with the Marked Tree site). Therefore, a need to conduct 

additional research was observed leading to the formation of this research project.  

1.4. Thesis Overview 

The research conducted to investigate the need for geotextiles to be used as geosynthetic 

filters to prevent fines migration from the subgrade into the base course and as geosynthetic 

separators to prevent penetration of the base course into the subgrade is documented in this 

thesis. The manuscript is divided into five chapters. An introduction to the research, hypothesis, 

objectives, need for the research, and overview of this thesis are contained in this chapter. More 

specifically, this chapter is a brief summary of this thesis and a guideline for readers.  

A classification of geosynthetics, with details about geotextiles and a review of existing 

literature about field and laboratory studies conducted utilizing geotextiles as a separator and 

filtration medium between base course and subgrade interface are presented in Chapter 2. The 

field studies presented in Chapter 2 include: Howard (2006), Al-Qadi et al. (1999), Blanco 

(2003), Freeman et al. (2000), and Tabor (2007). The laboratory studies presented in Chapter 2 

include: Lawrence (2006), Koerner (1994) and Benson (2010).  

The social, demographic, and weather information for Marked Tree, AR along with site 

location and site selection are also presented in Chapter 2. The subgrade, base course, and 

geosynthetic sample acquisition processes and descriptions of testing procedures (field and 

laboratory) are presented in Chapter 3.   

In Chapter 4, results obtained from the field and laboratory testing is presented. 

Specifically, the results from four types of laboratory testing (wash sieving, hydrometers, 
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Atterberg limits, and specific gravity) performed on the exhumed subgrade samples, six types of 

laboratory testing (dry sieving, wet sieving, hydrometers, specific gravity, modified proctor, and 

hydraulic conductivity) performed on the exhumed base course samples, two types of laboratory 

testing (transmissivity and permittivity) performed on the exhumed geotextile samples and in-

situ hydraulic conductivity testing conducted on base course samples are presented in Chapter 4. 

Comparisons between the index properties obtained from the Marked Tree site as a part of this 

research and the index properties obtained from the Marked Tree site as a part of past research, 

and the measured hydraulic conductivity values for the base course and empirically obtained 

hydraulic conductivity values for the base course are presented in Chapter 4. A review of the 

design of geotextiles (for filtration and separation) for the geotextiles installed at the Marked 

Tree site, the pavement profile, the pavement distress survey (modified from Goldman, 2011) 

and the site observations from field visits are also presented in Chapter 4.  

Conclusions derived from this research and recommendations for additional research are 

presented in Chapter 5. Detailed results obtained from laboratory testing performed on base 

course, subgrade, and geotextile samples are presented in Appendix A for completeness. 

Detailed results obtained from field testing are presented in Appendix B for completeness.  
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Chapter 2. Literature Review 

2.1.  Introduction  

The American Society for Testing and Materials defines geosynthetics as: 

  “A planar product manufactured from polymeric material used with soil, rock, earth, or 
other geotechnical engineering related material as an integral part of a man-made project, 
structure, or system”(ASTM D4439, 2005).  
 
This definition is expanded upon in Sections 2.2 and 2.3 when the classifications of 

geosynthetics are discussed. Previous field studies and laboratory studies relating to the use of 

geosynthetics are presented in Sections 2.4 and 2.5, respectively. The Marked Tree test site, from 

which all samples for this investigation were obtained, is discussed in Section 2.6. 

2.2. Classifications of Geosynthetics 

Geosynthetic products can be divided into eight different categories: 
 

• Geotextile (GT), 

• Geogrid (GG), 

• Geonet (GN), 

• Geomembrane(GM), 

• Geosynthetic Clay Liner (GCL), 

• Geopipe (GP), 

• Geofoam (GF) and 

• Geocomposite. 
 
Although there are eight categories, the three most common types of geosynthetics for 

roadway applications (the focus of this research) are geogrids, geotextiles, and geocomposites 

(Holtz et al., 1998). The classifications for each geosynthetic type along with the primary 

function(s) of individual geosynthetics are presented in Table 2.1.  

Geosynthetics can be manufactured using natural or synthetic products (Holtz et al., 

1998). The manufacturing process of a geosynthetic product is largely dependent on the 

geosynthetics application. A classification of common types, and common uses of geosynthetics 

based on material and manufacturing process is presented in Figure 2.1. Although all of the 
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geosynthetic types are displayed in Table 2.1and Figure 2.1, the focus of this research is 

geotextiles, wich are discussed in further detail in Section 2.3.    

Table 2.1. Primary function and description of geosynthetics (Holtz, 1998 and Koerner, 

2005). 

 

 

 

 

Separation Reinforcement Filtration Drainage Containment

Geotextile 

(GT)

Permeable synthetic fibers woven together to form a 

porous, flexible fabric
X X X X

Geogrid

 (GG)

High-density polypropylene or polyethylene with an 

open mesh structure which allows interlocking with 

the surrounding materials

X

Geonet

 (GN)

Continuous extrusion of parallel sets of polymeric 

ribs at acute angles into a net like configuration
X

Geomembrane 

(GM)

Impervious, very soft, thin sheets of rubber or plastic 

materials.
X

Geosynthetic 

Clay Liner

 (GCL)

Thin layers of bentonite clay sandwiched between 

two geotextiles or bonded to a geomembrane
X

Geopipe

 (GP)

Typically used as leachate collection pipes under 

high compressive loads
X

Geofoam

 (GF)

Polymeric expansion process resulting in "foam" that 

consists of gas filled cells
X

Geocomposite 

(GC)

Multi-purpose system consisting of two or more 

types of geosynthetics to achieve more than one 

function 

X X X X X

Type of 

Geosynthetic 

(GS)

Description
Primary Function
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Figure 2.1. Classification of geosynthetics (from Holtz et al., 1998). 
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2.3.  Geotextiles 

As shown previously in Figure 2.1, geotextiles are classified as non-woven or woven 

depending on the method of production. Geotextiles can be used for separation, reinforcement, 

filtration, and/or drainage as presented previously in Table 2.1. According to Appea, 1997 

geotextiles are commonly used as a filtration medium and hence are referred to as filter fabric. 

The typical placement of a geotextile product is at the interface between the subgrade and base 

course (Appea, 1997). This is usually performed to achieve separation and filtration between the 

subgrade and base course materials in roadway applications.  

In the late 1960’s, Rhone-Poulenc Textiles, France (Appea, 1997) initiated research on, 

and production of, non-woven fabrics for different applications. The company was interested in 

utilizing the non-woven fabrics to reinforce unpaved roads, railroad ballast, and embankments 

(Appea, 1997). In addition to reinforcement capabilities, geotextiles have gained popularity in 

the recent past as a tool to improve base course hydraulic conductivity by preventing fines 

migration into the base course.  

2.4. Previous Field Studies 

Discussion of previous research projects in which the use of geotextiles were used for 

separation and studied are presented in this section. These projects are well documented in the 

literature and provide real-world performance data for geotextiles. The projects discussed in this 

section include: 

• Section 2.4.1- full-scale field studies and finite element modeling of flexible pavement 
systems containing geosynthetics (Marked Tree, Arkansas) as presented in Howard, 
2006. 

• Section 2.4.2-evaluation of geosynthetics used as separators (Bedford County, Virginia) 
as presented in Al-Qadi et al., 1999. 

• Section 2.4.3-characterization of permeability of pavement bases in the Missouri 
Department of Transportation roadway system (Missouri) as presented in Blanco, 2003. 



9 
 

• Section 2.4.4-geotextile separators for hike and bike trails (Columbia, Missouri) as 
presented in Freeman, 2000. 

• Section 2.4.5-geotextile separators for equestrian trails (Missouri) as presented in 
Tabor, 2007. 

 
The results observed in these research projects and recommendations derived from these 

studies are also presented in this section.  

2.4.1. Full-Scale Field Study and Finite Element Modeling of a Flexible Pavement Containing 

Geosynthetics (Marked Tree, Arkansas) as presented in Howard, 2006 

An 850-foot long flexible pavement secondary road was instrumented and constructed in 

2005 in Marked Tree, Arkansas. Sixteen test sections, and an additional transition section, were 

installed in a newly constructed frontage road as displayed in Figure 2.2. Section 7 was created 

as a transition section, transitioning the thickness of base course material from ten-inches thick to 

six-inches thick (Howard, 2006).  

As presented in Figure 2.2a, these test sections contained control sections and various 

geosynthetic configurations including geotextile, geogrid, or geogrid on top of geotextile. These 

sections were heavily instrumented with asphalt strain gauge, earth pressure cells, geotextile 

strain gauges, geogrid strain gauges, moisture content probes, piezometers, and thermocouples 

(Figure 2.2b). The effects of including geosynthetics within the pavements of low volume roads 

constructed on poor subgrade soils encompassing different base course thicknesses and utilizing 

different types of geosynthetics was the focus of this research (Howard, 2006).  
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(a) 

 

 
(b) 

 

Figure 2.2. a) Plan (a) and profile (b) view of test sections, Marked Tree, Arkansas (from 

Howard, 2006). 

 
According to Howard (2006), the full-scale, instrumented roadway was reinforced with 

multiple types of geosynthetics and constructed over a period of three months. A total of 129 
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sensors were installed which required approximately 16,400 feet of sensor cable and 1,210 feet 

of protective conduit. Immediately following completion of the pavement system, a fully loaded, 

single axle dump truck drove over the test section over 2,000 times (Howard, 2006). During a six 

month period (September 2005 to February 2006) over 500 falling weight deflectometer (FWD) 

drops were placed on the pavement (Howard, 2006). Some rutting and minimal to no fatigue 

cracking (less than 3.5 percent) was observed for all sections except Section 9 (11.7 percent) 

(Howard, 2006). Typical rut depths ranged from 0.13 to 0.25 inches and compared favorably 

with the values that were calculated using the Asphalt Institute (Asphalt Institute, 1982) transfer 

functions (Howard, 2006). 

The moisture content varied from 3.4 percent to 7.1 percent from construction initiation 

to the end of testing (Howard, 2006). The optimum moisture content for the subgrade sections as 

determined by AHTD and the roadway contractor ranged from 16.8 to 20.4 percent (Howard, 

2006). According to Howard (2006) it was concluded that the compacted subgrade moisture 

content had minor variations from optimum conditions.  

According to Howard (2006) the advantages of the geosynthetic materials were not 

recognized in this investigation because of the dry climatic conditions and reduced testing 

intervals (Howard, 2006).    

2.4.2. Evaluation of Geosynthetics Used as Separators (Bedford County, Virginia) as 

presented in Al-Qadi et al., 1999 

In 1994, a 150 meter long flexible pavement secondary road was constructed and 

instrumented in Bedford County, Virginia. According to Bhutta (1998), the site was located 62 

miles (100 km) from the Virginia Tech campus at the intersection of State Route 757 and State 

Route 616 in Bedford County, VA (Figure 2.3). The test site contained a total of nine test 
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sections as presented in Figure 2.4. A summary of base course thicknesses and geosynthetics 

installed is presented in Table 2.2. 

 
(a) 

 

 
(b) 

 

Figure 2.3. Google Maps images a) zoomed out and b) zoomed in satellite image of test site 

located on State Route 757 and State Route 616, Bedford County, VA (modified from 

Google Maps, 2011). 

SR 757

SR 616

Test site
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Figure 2.4. Layout of test sections installed for the research project (from Bhutta, 1998).  

 

Table 2.2. Summary of base course thickness and geosynthetic installed (from Bhutta, 

1998). 

 

As presented in Table 2.2, the sections were divided into three groups based on base 

course thickness. For the first group, the base course thickness was 100 mm thick; for the second 

group the base course thickness was 150 mm thick; for the third group a base course thickness 

was 200 mm thick (Al-Qadi et al., 1999). According to Al-Qadi et al., (1999) one section in each 

Section No. Description
Base Course 

Thickness (mm)

1 Control 100

2 Woven Geotextile 100

3 Geogrid 100

4 Control 150

5 Woven Geotextile 150

6 Geogrid 150

7 Control 200

8 Woven Geotextile 200

9 Geogrid 200
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group was stabilized with an Amoco 2002 woven geotextile (GT), one section in each group was 

stabilized with a Tensar BX 1200 geogrid (GG), and one section in each group was a control 

section (i.e. contained no geosynthetic). All geosynthetics were placed at the base 

course/subgrade interface.  

The Average Daily Traffic (ADT) was approximately 500 vehicles (in summer) with 

eight to ten percent truck traffic (Al-Qadi et al., 1999). The pavement was instrumented with 

pressure cells, strain gauges, thermocouples, moisture sensors, and piezoelectric sensors. 

Periodic rut measurements and ground-penetrating radar (GPR) surveys were performed at the 

test sections (Al-Qadi et al., 1999). 

Based on periodic GPR surveys conducted over the three years of pavement service life, 

contamination (fines migration from subgrade to base course) had occurred in the control 

sections; while no contamination was observed in the sections stabilized with geosynthetics (Al-

Qadi et al., 1999). The initial fines content of the base course was reported as 5.5 percent by Al-

Qadi et al., 1999. A summary of results obtained from testing conducted on the exhumed base 

course and the exhumed subgrade soil are presented in Tables 2.3 and 2.4, respectively.  

Table 2.3.Test results for base course samples at the test site in Bedford County, VA (from 

Bhutta, 1998). 

 

 

Base Course Classification GW

Coefficient of Uniformity (Cu) [unitless] 16

Coefficient of Uniformity (Cc) [unitless] 1.5

Specific Gravity [unitless] 2.78

Max. Dry Density  (kN/m
3
) [Modified proctor] 22.4

Optimum Water Content (percent) [Modified proctor] 6.1

Fines content in control sections [percent] 16.1

Fines content in geogrid sections [percent] 15.0

Fines content in geotextile sections [percent] 12.4
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Table 2.4. Test results for the subgrade soil at the test site in Bedford County, VA (from 

Bhutta, 1998). 

 

The maximum dry density for the base course obtained using modified proctor energy 

was 22.4 kN/m3 at optimum water content (dry weight basis) of 6.1 percent. Based on the results 

from wash sieve analysis tests conducted on the exhumed base course samples, after the roadway 

was in service for three years, the control sections contained 16.1 percent fines, the geogrid 

sections contained 15 percent fines, and the geotextile sections contained 12.4 percent fines. The 

presence of subgrade fines in base course was attributed to pumping from the subgrade 

transferring to beneath the pavement under vehicle loading. Strength and elongation results of 

the exhumed geotextile and geogrid material before installation and after three years of service 

life are presented in Table 2.5.  

 

 

 

 

 

 

 

Soil Classification CH ML

Section
1 to 3, 

6 to 9
4 and 5

Finer than #200 [percent] 76 73

Liquid Limit (LL) [percent]  56 to 68  approximately 41 

Plasticity Index (PI) [percent]  28 to 37  4 to 6 

Specific Gravity 2.77 2.74

Max. Dry Density [kN/m
3
] Standard Energy 15.8 17.1

Optimum Water Content [percent] Standard Energy 24.4 17
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Table 2.5. Characteristics and properties of the geosynthetics before installation and after 

exhumation (from Al-Qadi et al., 1999). 

 

It was observed that the ultimate strength of the geotextile in the warp direction was 

reduced by 33 percent, whereas in the fill direction the geotextile strength after the service life 

was the same as the geotextile strength prior to installation. The ultimate strength of the geogrid 

after the service life was compliable to the initial ultimate strength (Al-Qadi et al., 1999). Strain 

development in the exhumed geotextile was 59 percent in the warp direction and 26 percent in 

the fill direction. The geogrid developed 39 percent strain in the machine direction and a 52 

percent strain in the cross-machine direction (Al-Qadi et al., 1999). 

At terminal rutting criteria of 20 mm along with linear rutting progression equations 

obtained from measurements of rutting were used to calculate service life of the pavement 

systems containing the geogrid, the geotextile, and no geosynthetic (control sections). Inclusion 

of geosynthetics increased the service life of the pavement based on the rutting progression 

equations. The geogrid stabilized sections carried 82 percent more Equivalent Single Axle Load 

(ESALs) before failure (20 mm of rutting) than the control section, while the geotextile 

stabilized sections carried 134 percent more ESALs before failure than the control sections (Al-

Qadi et al., 1999). Therefore, the use of geosynthetics, specifically the use of geotextiles 

improved the pavement performance of this secondary road (Al-Qadi et al., 1999). 

Ultimate 

Strength

Ultimate 

Elongation

Ultimate 

Strength

Ultimate 

Elongation

(kN/m) (percent) (kN/m) (percent)

Warp 27 14.8 18 23.6

Fill 25 9.9 25 12.5

Machine 19 8.9 19 12.4

Cross Machine 33 9.3 32 14.1

Geotextile

Geogrid

Before Installation

(July 1994)

After exhumation

(October 1997)

Material Direction 
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2.4.3. Characterization of Hydraulic Conductivity of Pavement Bases in the Missouri 

Department of Transportation Roadway System as discussed in Blanco, 2003  

According to Blanco (2003), a research project was conducted for the Missouri 

Department of Transportation (MODOT) to ensure that hydraulic conductivity of Type 5 base 

course was adequate to drain the pavement system. Type 5 base course is predominantly used in 

roadway projects in the State of Missouri (Blanco, 2003). The Type 5 base course material used 

in this research was classified as silty sands or silty, clayey sands as per the Unified Soil 

Classification System (USCS). The Type 5 base course material was also classified as A-1-a and 

A-1-b as per the AASHTO classification method (Blanco, 2003). Samples from supplier 

quarries, on-site stock piles, and from compacted in-place roadway bases around the state of 

Missouri were obtained in bulk quantities (Blanco, 2003). A summary of the acquired samples is 

presented in Table 2.6. 

Table 2.6. Summary of sample acquisition (from Blanco, 2003). 

 

The “Rockfill” alternate material includes individual particle sizes as large as 12 inches 

filled with a mixture of coarse and fines aggregates (Blanco, 2003). The actual rockfill is crushed 

rock with sand added to maintain the plasticity index (less than six) of material passing No. 40 

(Blanco, 2003). Index properties, fines content, and soil classification of the Type 5 base and 

Rockfill alternate as obtained from Blanco, (2003) are presented in Table 2.7. The material used 

in the MODOT research is called Type 5 base (Blanco, 2003) as it meets the gradation 

requirement based on dry sieving as presented in Table 2.8 (MODOT, 2011).  

Location Dates Source Sampling location Type

Route 71, McDonald Co. September 2001 Lanagan Quarry Quarry, field Type 5

Route 13, St. Clair Co. September 2001 Ash Groove Quarry Quarry, field Type 5

Route 63, Rudolph Co. September 2001 Riggs Quarry Stockpile at site Type 5

Route 71, Nodaway Co. September 2001 Idecker Quarry Stockpile at site, field Type 5

Taney Co. December 2001 Journegan Quarry Stockpile at site Rockfill

Crawford Co. December 2001 from site Stockpile at site Rockfill
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Table 2.7. Soil classification, index properties and, fines content for Type 5 base and 

alternate rockfill (from Blanco, 2003). 

 
 

Table 2.8. Gradation requirement for Type 5 base course as per Missouri Department of 

Transportation (from MODOT, 2011). 

 
 
  The values of hydraulic conductivity as measured in laboratory, field, and estimated 

(using different techniques) are presented in Table 2.9. The hydraulic conductivity values were 

obtained in the laboratory using a constant head permeameter (CHP) and a flexible wall 

permeameter (FWP). The sample size for the laboratory hydraulic conductivity testing was six-

inches in diameter and 4.5 or 4.75 inches tall. According to Blanco (2003) the infiltration values 

were obtained in the field using a double-ring infiltrometer (DRI), and the hydraulic conductivity 

was calculated following the procedures outlined in ASTM D3385 (2008).  The values obtained 

in the laboratory and fields are presented in Figure 2.5. The field measured hydraulic 

D60 D30 D15 D10 Cu Cz
1
P200 γdmax

2
OMC

3
e

Soil 

Classification

(mm) (mm) (mm) (mm) (%) (pcf) (%) (unitless) USCS

Ash Grove Quarry 5.3 1.0 0.20 0.05 106.0 3.8 12 136.5 7.0 0.21 GP-GM

Ash Grove Field 3.8 0.5 0.10 0.02 190.0 3.3 17 136.5 7.0 0.21 SM

Idecker Quarry 9.1 2.7 0.25 0.02 455.0 40.1 13 125.0 10.0 0.32 GM-GC

Idecker Field 8.0 1.3 0.03 0.01 800.0 21.1 18 125.0 10.0 0.32 GM/GM-GC

Lanagan Quarry 4.0 0.8 0.10 0.04 100.0 4.0 13 141.0 6.5 0.17 SM

Riggs Quarry 4.8 0.4 0.04 0.02 237.5 1.7 19 137.0 8.0 0.21 SM

Crawford Co. 5.1 0.5 0.10 0.05 102.0 1.0 14 138.7 8.0 0.19 SM

Taney Co. 4.8 1.0 0.08 0.02 237.5 10.5 15 138.9 7.7 0.19 SM

1
Percent passing No. 200 sieve

2
OMC is optimum moisture content 

3
Void Ratio 

(unitless)

Source

Bold values represent extrapolated values from grain size distribution based on wet sieving. 

Sieve
Percent passing 

by weight

1 inch 100

1/2 inch 60-90

No. 4 35-60

No. 30 10-35

No. 200 0-15
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conductivity values ranged from 1.9E-05 cm/s to 1.9E-03 cm/s while the laboratory obtained 

hydraulic conductivity values ranged from 3.0E-07 cm/s to 8.8E-02 cm/s (Blanco, 2003). The 

measured laboratory hydraulic conductivity values obtained in the laboratory were usually higher 

than the measured hydraulic conductivity values obtained in the field except for samples 

obtained from Ash Groove Field, Idecker Field, and Crawford Co.  

Table 2.9. Estimated, laboratory, field hydraulic conductivity values for Type 5 base (from 

Blanco, 2003). 

 

γd w 1
e Hazen (k) Sherard (k) Moulton (k) Lab k* Field k

(lb/ft
3
) (%) (unitless) (cm/s) (cm/s) (cm/s) (cm/s) (cm/s)

Ash Grove Quarry 131.0 8.0 0.21 2.5E-03 1.4E-02 5.4E-06 2.8E-03 1.9E-03

Ash Grove Field 134.6 8.0 0.21 4.0E-04 3.5E-03 1.1E-06 3.0E-06 1.9E-03

Idecker Quarry 119.3 9.0 0.32 4.0E-04 2.2E-02 1.2E-05 8.8E-02 4.6E-05

Idecker Field 138.7 9.0 0.32 1.0E-04 3.2E-04 3.6E-06 3.0E-07 4.6E-05

Lanagan Quarry 133.6 4.0 0.17 1.6E-03 3.5E-03 1.2E-06 5.4E-03 9.7E-05

Riggs Quarry 137.7 9.0 0.21 4.0E-04 5.6E-04 9.4E-07 5.2E-03 3.7E-05

Crawford Co. 136.3 8.8 0.19 2.5E-03 3.5E-03 2.9E-06 4.5E-06 9.1E-05

Taney Co. 144.4 7.9 0.19 4.0E-04 2.0E-03 6.8E-07 3.0E-04 1.9E-05

1
Void Ratio 

Properties

*Bold values represent flexible wall permeameter test and remaining are constant head permeameter test.

Source

Predicted  Hydraulic Conductivity
Measured Hydraulic 

Conductivity
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Figure 2.5. Field and laboratory measured hydraulic conductivities (modified from Blanco, 

2003). 

 
The hydraulic conductivity of base course was also predicted using the empirical 

relationships presented by Hazen (1930), Moulton (1980), and Sherard et al., (1984). The Hazen 

(1930) and Sherard et al., (1984) methods utilize values obtained from grain size distribution 

(D10 or D15, respectively) while the Moulton (1980) method utilizes both values obtained from 

the grain size distribution (D10 and P200) and also the porosity (n) of the soil. The Hazen (1930) 

equation is provided in Equation 2.1, the Sherard et al., (1984) equation is provided in Equation 

2.2, and the Moulton (1980) equation is provided in Equation 2.3.  

Where  
k is hydraulic conductivity (cm/s); 
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D10 is size opening through which 10 percent by weight of dry sample will pass (mm);  
C is empirical coefficient (for this study 1.0). 

Where  
k is hydraulic conductivity (cm/s); 
D15 is size opening through which 15 percent by weight of dry sample will pass (mm).  
 

 
Where  
k is hydraulic conductivity (ft/day); 
D10 is size opening through which 10 percent by weight of dry sample will pass (mm);  
n is porosity of the material (unitless); 
P200 is percent of material finer than the No. 200 sieve (75 µm). 

 
A comparison between the measured  laboratory hydraulic conductivity values and the 

measured field hydraulic conductivity values and the estimated hydraulic conductivity values 

obtained using the Hazen (1930), Sherard et al., (1984) and Moulton (1980) equations is 

presented in Figure 2.6. The predicted hydraulic conductivity values based on the Hazen (1930) 

and Sherard et al., (1984) methods range from 10-2 cm/s to 10-4 cm/s (Blanco, 2003). These 

predictions are one to two orders of magnitude higher than the hydraulic conductivity values 

measured in laboratory using the CHP and the hydraulic conductivity values measured in field 

using the DRI. The hydraulic conductivity values obtained using the Moulton (1980) equation 

ranged from 10-5 cm/s to 10-7 cm/s (Blanco, 2003) which are within the range of values measured 

using the FWP but underestimate the field hydraulic conductivity values measured using the DRI 

(by one to two orders of magnitude); these empirically predicted values are also several orders of 

magnitude lower than the hydraulic conductivity measured using CHP.  

2

1535.0 Dk =  (Sherard et al., 1984) Equation 2.2 

597.0

200

654.6478.1

10

510*214.6

P

nD
k =  

(Moulton, 1980) and (Blanco, 2003) Equation 2.3 
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Figure 2.6. Laboratory measured, field measured and estimated hydraulic conductivities of 

base course samples obtained from various sources (modified from Blanco, 2003). 

 

The in-situ hydraulic conductivity was regarded as the most relevant in this study. The 

hydraulic conductivity values as measured in laboratory and in field (ranging from 10-3 to 10-5 

cm/s) do not meet the 1 cm/s permeable base drainage criteria but did meet the gradation 

requirements (Blanco, 2003). The study proved that materials tested that are in compliance with 

the gradation specification for base materials, as used in roadway construction in Missouri, are 

not drainable.  
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2.4.4. Geotextile Separators for Hike and Bike Trail (Missouri, Columbia) as presented in 

Freeman et al., 2000 

A 4.7 mile hike and bike trail is maintained by the City of Columbia, Missouri Parks and 

Recreation Department and constructed on the former Missouri-Kansas-Texas (MKT) railroad 

line (Freeman et al., 2000). The MKT trail is currently designated as a blue route by City of 

Columbia (Figure 2.7). The blue route is defined by the City of Columbia (2011) as, “mostly 

soft-surfaced pathways, open only to non-motorized traffic, and shared with pedestrian traffic”. 

 
 

 

Figure 2.7. MKT trail on City of Columbia, Missouri bike map (City of Columbia, 2011)  

 
According to Freeman et al., (2000), the sub-surface of the trail consists of railroad 

ballast, outcrop rocks, and clayey soils. The wearing surface consisted of five to ten centimeters 

of crushed limestone as presented in Figure 2.8. Intrusion of the wearing surface aggregate into 

the subgrade soil and excessive rutting within the wearing surface and subgrade in the frequently 

used paths caused locations of water ponding and muddy spots (Freeman et al., 2000). Because 

of the intrusion of the wearing surface aggregate into the subgrade, approximately $17,000 was 

spent each year towards maintenance of the trail. 

Blue Route
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Figure 2.8. Sub-surface profile of the hike and bike trail (Freeman et al., 2000). 

 
To mitigate the intrusion of the wearing surface aggregate into the subgrade, three test 

sites (Figure 2.9) were selected in June of 1998. The sites are labeled as Section 1, Section 2, and 

Section 3 in Figure 2.9.  According to Freeman et al., (2000), the sites were selected based on the 

following selection criteria: 

• Past record of intrusion of the wearing surface aggregate into the subgrade  

• Water ponding on the surface 

• Excessive rutting 

 
 

Figure 2.9. The 4.7 mile hike and bike trail maintained by City of Columbia Missouri 

Parks and Recreation Department (from Freeman et al., 2000). 

 

10 mm. WEARING
SURFACE

SUBSURFACE
(RAILROAD
BALLAST, OUTCROP
ROCKS   AND
CLAYEY SOILS)

5-10 cm. thick
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Geotextile separators were investigated as a plausible solution to mitigate the aggregate 

intrusion into the subgrade by installing a geotextile between the wearing surface and the 

subgrade as presented in Figure 2.10.  

 

Figure 2.10. Typical cross section of Columbia, Missouri hike and bike trail as stabilized 

using geotextiles (modified from Freeman et. al., 2000). 

 
Each site contained one test section, measuring thirty meters long by three meters wide. 

The top five to ten cm of wearing surface aggregate and subgrade soil was removed using a box 

scraper. The section was then inspected for debris that might puncture the newly installed 

geotextile (Freeman et.al. 2000). The geotextile was then directly placed over the exposed 

subgrade.  

A non-woven needle-punched geotextile was installed in Sections 1 and 2 and a non-

woven spun bonded geotextile was installed in Section 3 (Freeman et al., 2000). After placement 

of the geotextile, the surface of the geotextile was ensured (by visual inspection) to be wrinkle 

free. The surface aggregate (as obtained from Boone Quarry in Columbia, Missouri) was then 

placed on top of the geotextile using a ten ton dump truck. While explicitly not described, the 

unstabilized sections adjacent to the stabilized sections were the control section. Index tests were 

Subgrade

Wearing surface aggregate intrusion
prevention into subgrade

Geotextile
Separator

Slope Varies
Wearing Surface

Typically 3m
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performed on the aggregates used for the hike and bike trail before installation of the geotextile 

(Table 2.10).  

Table 2.10. Results of tests performed on the wearing surface aggregate type used for the 

hike and bike trail in Columbia, Missouri before installation of geotextile (from Freeman et 

al., 2000). 

 
 
The wearing surface aggregate contained eleven percent of non-plastic fines. The non-

woven needle-punched geotextile collected more fines as compared to non-woven spun bonded 

geotextile in the rigid wall permeameter testing (Freeman et al., 2000). A summary of test results 

from samples collected one year after the placement of the geotextile are presented in Table 2.11. 

Table 2.11. Results of tests performed on the exhumed samples as obtained one year after 

installation of geotextile specimens in Columbia, Missouri field site test sections (from 

Freeman et al., 2000). 

 

Test Description Results

Atterberg Limits Aggregate fines were classified as Non-Plastic 

Passing No. 200 

sieve
Eleven percent passing No. 200 sieve

Rigid Wall 

Permeameter

The fines migrate through the geotextile in the flow direction. The non woven 

needle-punched geotextile collected more fines within the geotextile as 

compared to the nonwoven spunbonded

1
∆

2
Mass

3
w

4
w

5
ψ

6
ψ

(cm) (g) (%) (%) (s
-1

) (s
-1

)

1B 0.40 0.189 5 9.1 1.083 0.815

2A -2.27 0.194 3.3 6.5 1.083 1.026

2B -1.98 0.360 4.3 7.4 1.083 0.833

2C -1.98 0.379 3.6 7.6 1.083 0.835

3A 1.95 0.091 4 5.8 0.362 -

3B 1.28 0.282 5 4.7 0.362 0.295

3C 0.72 0.189 3.8 6.2 0.362 0.520

3
Exhumed base course water content

4
Exhumed subgrade water content

5
New geotextile permittivity

6
Exhumed geotextile permittivity

Site Geotextile 

Nonwoven 

needle 

punched 

Nonwoven 

Spunbonded

1
Change in base course thickness after one year

2
Mass of soil in exhumed geotextile samples
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Based on visual observation, rutting, ponding, and aggregate intrusion decreased in the 

sections stabilized with geotextiles as observed monthly for a one year period. Rutting was 

prevalent during the observations of Section 2 (a section containing the non-woven needle-

punched geotextile) and averaged about 2.1 cm. The exhumed non-woven needle-punched 

geotextile had more fines (by weight) as compared to non-woven spun bonded geotextile. The 

reduction in permittivity values for non-woven needle-punched geotextile was greater than the 

reduction in permittivity values of non-woven spun bonded geotextile, except for Section 3C 

which increased in permittivity.    

According to Freeman et al., (2010) the findings of the study suggest that the sections 

stabilized using geotextiles were successful in functioning as a filtration and separation barrier 

for the hike and bike trail. Furthermore, rutting and ponding was reduced in the sections 

containing geotextiles as compared with sections without geotextiles.   

2.4.5. Geotextile Separators for Equestrian Trails (Missouri) as presented in Tabor, 2007      

According to Tabor (2007), the 370 miles of equestrian trails under the control of the 

Missouri Department of Conservation (MDC) were in poor condition due to a lack of design 

guidelines and maintenance protocol. A research study was conducted to develop a stabilization 

technique that would reduce maintenance costs and achieve sustainable trails. Stabilization 

techniques employed include the addition of surface aggregate and the addition of aggregate with 

geosynthetics (geotextile and geonets).  

According to Tabor (2007) the trail segments (constructed between February and July of 

2006) were selected based on the following criteria: 

• location, 

• ease and feasibility of construction, 

• implementation of a particular stabilization technique and, 
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• and feasibility of retro-fitting the existing trail or re-routing trails which could not be 
retro-fitted. 
 
The three trail segments selected include: 
 

• the Rudolph Bennitt Conservation Area,  

• the Forest 44 Conservation Area,  

• and the Angeline Conservation Area.  
 
The stabilization techniques utilized, and the post construction observations obtained 

from the investigations at the Forest 44 Conservation Area, the Angeline Conservation Area, and 

the Rudolph Bennitt Conservation Area are presented in Tables 2.12, 2.13, and 2.14, 

respectively. According to Tabor (2007), the successful stabilization performed for the Forest 44 

Conservation Area utilized the following geosynthetics: wrap geotextiles, non-wrap geotextiles, 

and geocells. In the geosynthetics stabilized segments, no sagging was observed, during the post 

construction observation period of one year. Muddy spots were observed after a rainfall event in 

segments without geosynthetic stabilization.  
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Table 2.12. Stabilization techniques implemented and post construction observations in 

Forest 44 Conservation Area (as reported by Tabor, 2007).  

 

The stabilization performed for Angeline Conservation Area utilized non-wrap geotextile, 

surface aggregate with geosynthetics, and an eight inch thick base course layer in which the top 

two inches were clean aggregate (Tabor, 2007). Water diversion from uphill to downhill was 
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unsuccessful after a rainstorm event as evidenced by six-inch deep ruts. Muddiness and ponding 

were observed along with base course intrusion into subgrade. No benefits from the various 

stabilization techniques at the Angeline Conservation Area were determined. 

As per Tabor (2007), the stabilization performed for Rudolph Bennitt Conservation Area 

utilized water bars, rerouting of trails, geocells, wrap geotextile and non-wrap geotextile. Muddy 

surfaces, clogging, and ponding were the major issues observed following implementation. Re-

routing of a trail segment also proved ineffective. The geocell was the only stabilization 

technique that provided satisfactory results.  
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Table 2.13. Stabilization techniques implemented and post construction observations in 

Angeline Conservation Area (as reported by Tabor, 2007).  
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Table 2.14. Stabilization techniques implemented and post construction observations in 

Rudolph Bennitt Conservation Area (as reported by Tabor, 2007).  
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2.5. Previous Laboratory Studies 

Discussion of previous research projects in which filtration of geosynthetics was studied 

using laboratory testing is presented in this section. These projects are well documented in the 

literature and provide real-world performance data for base course and geotextiles. The previous 

projects included in this section include: 

• Section 2.5.1-investigation of the effects of fines on base course performance 
(Arkansas) as presented in Lawrence, 2006.  

• Section 2.5.2- long-term performance of geosynthetics in drainage applications 
(nationwide) as presented in Koerner, 1994. 

• Section 2.5.3- properties of geosynthetics exhumed from a final cover at a solid waste 
landfill (Wisconsin) as presented in Benson et al., 2010. 

 
The results of these studies and recommendations proposed by the studies are also 

presented in this section.  

2.5.1. Investigation of the Effect of Fines on Base Course Performance (Arkansas) as 

presented in Lawrence, 2006 

Lawrence (2006) investigated the effects of high base course fines content on the 

performance of the base course material for roadway applications in Arkansas. Material samples 

were obtained from five different quarries to represent the effects of fines on various geological 

materials. A “model” gradation blend was developed based on historical data and the relevant 

AHTD specifications. According to Lawrence (2006), the model gradation was developed 

utilizing samples created containing six percent, eight percent, ten percent, twelve percent, 

fourteen percent, and sixteen percent fines.  

As per AHTD specifications, the acceptable range of fines for Class 7 base is between 

three percent and ten percent. The ability to control the quantity of fines content in Class 7 base 

is difficult and costly for aggregate suppliers utilizing a rock crusher (Lawrence, 2006). The 

material specification for Class 7 base (as reported by Lawrence, 2006) is presented in Table 
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2.15. The quarries as characterized by source rock type, geological formation, and location are 

presented in Table 2.16. 

Table 2.15. AHTD Class 7 material specifications (AHTD 1996 as reported by Lawrence, 

2006). 

 
 

Table 2.16. Characterization of base course materials (as reported by Lawrence, 2006). 

 

Lawrence (2006) reported that samples were obtained from the working faces of 

produced Class 7 quarry stockpiles utilizing heavy duty front end loaders. The samples were then 

transported to the University of Arkansas Engineering Research Center (ERC). Approximately 

3,000 to 5,000 pounds of Class 7 material was obtained from each quarry. Fractioning of 

aggregate was performed using the AHTD gradation acceptance criteria as previously presented 

in Table 2.15 (Lawrence, 2006).  

According to Lawrence (2006), the model gradation was created to characterize 

Sieve Percent Passing Particle Size Breakpoint

1.5 inch 100 1.5 inch

1 inch 60-100 -

3/4 inch 50-90 3/4 inch

No. 4 25-55 No. 4

No. 40 10-30 No. 40

No. 200 3-10 No. 200

Maximum Liquid Limit (minus No. 40 material) 25 -

Maximum Plasticity Index (minus No. 40 material) 6 -

Minimum crusher-run material 90 -

Maximum percent wear by the Los Angeles Test 45 -

Location

(County)

Sharps Benton Limestone Boone

Preston Crawford Sandstone Hartshorne

Black Rock Lawrence Dolomite Powell

Glen Rose Hot Springs Noviculite Arkansas Noviculite

Granite Mountain Pulaski Syenite Cretaceous

Aggregate 

Type
Geological FormationQuarry



35 
 

the upper boundary of the historical and the “as received” gradation. This was based on the 

hypothesis that material properties for the finer grained blends represent the worst case for 

hydraulic conductivity. The “as received’ and model blends are presented in Figure 2.11.  

 

Figure 2.11. Grain size distribution curves for AHTD lower gradation limits, model blends, 

and historical and “as-received” (from Lawrence, 2006). 

 
The fines content of the model blends ranged from six percent to sixteen percent in two 

percent increments. The model gradation (not the boundary blends) was expected to imitate 

crusher production so the fines content was varied on the model gradation.  

The classification and index testing results for “as-received” Class 7 base course for the 

five quarries utilized in the study are presented in Table 2.17 (Lawrence, 2006). A summary of 

average laboratory hydraulic conductivities for the Class 7 base course utilized for the model 

gradations from the five quarries are presented in Table 2.18 (Lawrence, 2006). 
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Table 2.17. Classification and index testing results for “as-received” Class 7 base course for 

the five quarries utilized in the study (modified from Lawrence, 2006). 
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Table 2.18. Summary of average hydraulic conductivity for the Class 7 base course utilized 

for the model gradations from the five quarries (from Lawrence, 2006). 

 

The higher hydraulic conductivity of Glen Rose quarry sample at 16 percent fines content 

was attributed to river run fines which are more rounded particles. The author postulated that 

more rounded particles create larger void spaces and result in higher hydraulic conductivity 

values. No explanation was provided for the increased hydraulic conductivity values for Granite 

Mountain quarry and Preston quarry samples. 

As reported by Lawrence (2006), for every one percent increase in fines content (between 

six and ten percent) the hydraulic conductivity was reduced by one order of magnitude. However 

above ten percent (until sixteen percent) the decrease in hydraulic conductivity is less than one 

order of magnitude for one percent change in fines content. Therefore, it was postulated by 

Lawrence (2006) that the decrease in hydraulic conductivity for fines content greater than ten 

percent is relatively unimportant; even though, as per Lawrence (2006), the hydraulic 

conductivity of granular base course decreases with an increase of fines content. 

 

 

Sharps Preston Black Rock Glen Rose
Granite 

Mountain

6 CHP
1 3.97E-03 2.91E-03 5.80E-03 3.88E-03 2.74E-03

8 CHP 1.89E-03 1.60E-03 7.92E-03 3.83E-03 1.21E-04

10 FWP
2 2.60E-05 9.40E-06 3.84E-05 5.75E-04 1.72E-06

12 FWP 1.14E-05 3.55E-06 5.48E-05 1.11E-04 6.55E-07

14 FWP 1.06E-05 2.96E-06 8.53E-06 1.25E-04 9.36E-07

16 FWP 5.05E-06 3.74E-06 7.12E-06 5.65E-06 9.78E-07
1
 Constant Head Permeameter

2
 Flexible Wall Permemameter

Average Hydraulic Conductivity (cm/s)
Fines 

content (%)
Testing
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2.5.2. Long-term performance of geosynthetics in drainage applications (nationwide) as 

presented in Koerner, 1994. 

A research study was conducted to predict drainage systems behavior utilized in 

transportation applications (Koerner, 1994).  As part of a national research program (sponsored 

by AASHTO), geosynthetic samples were exhumed from pavements at 91 sites in 17 states and 

tested in laboratory (Koerner, 1994).  

According to Koerner (1994) site selection was based on survey responses provided by 

geotechnical and materials engineers from the Department of Transportation (DOT) offices for 

the 50 states. The site selection was categorized as sites facing problems, functioning as 

intended, or observed behavior was uncertain (Koerner, 1994). A summary of the geosynthetic 

performance of the exhumed specimens along with a definition of acceptable and non-acceptable 

performance are presented in Table 2.19.  
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Table 2.19. Summary of results for 91 exhumed geosynthetic performance and 

classification of acceptable and non-acceptable performance (from Koerner, 1994). 

 

C
o

ns
tr

uc
tio

n/

M
ai

nt
en

an
ce

D
ra

in
ag

e
G

eo
te

xt
ile

P
re

fa
b

ri
ca

te
d

 g
eo

co
m

p
o
si

te
 e

d
ge

 d
ra

in
 (

P
G

E
D

)
4

1
2

7
1

4
4

4
1
0

G
eo

te
xt

ile
 w

ra
p

p
ed

 u
nd

er
d

ra
in

 (
G

W
U

D
)

2
5

1
6

9
6

1
2

P
er

fo
ra

te
d

 p
ip

e 
un

d
er

d
ra

in
 (

P
P

U
D

)
6

5
1

1
1

0

G
eo

te
xt

ile
 s

o
ck

ed
 p

er
fo

ra
te

d
 p

ip
e 

(G
S

P
P

)
1

2
9

3
2

0
1

G
eo

te
xt

ile
 w

al
l d

ra
in

 f
ilt

er
 (

G
W

D
F

)
3

3
0

0
0

0

G
eo

te
xt

ile
 e

ro
si

o
n 

co
nt

ro
l f

ilt
er

 (
G

E
C

F
)

4
3

1
1

0
1

T
o

ta
l

9
1

6
3

2
8

1
4

6
1
4

1 2

N
o

n-
ac

ce
p

ta
b

le
 p

er
fo

rm
an

ce
 d

ue
 t
o

3

3
M

ul
tip

le
 n

o
n 

ac
ce

p
ta

b
le

 p
er

fo
rm

an
ce

 o
n 

so
m

e 
si

te
s 

ca
us

ed
 t

he
 t

o
ta

l t
o

 b
e 

gr
ea

te
r 

th
an

 n
o

n 
ac

ce
p

ta
b

le
 p

er
fo

rm
an

ce

D
ra

in
ag

e 
sy

st
em

N
um

b
er

 

o
f 

si
te

s

A
cc

ep
ta

b
le

 

p
er

fo
rm

an
ce

 

(A
,B

, 
o
r 

C
)1

N
o

n-

ac
ce

p
ta

b
le

 

p
er

fo
rm

an
ce

 

(D
 o

r 
F

)2

A
: a

ll 
th

re
e 

co
m

p
o

ne
nt

s 
(s

ys
te

m
, 

d
ra

in
, 

an
d

 f
ilt

er
) 

p
er

fo
rm

in
g 

as
 in

te
nd

ed
 

B
: o

ne
 c

o
m

p
o

ne
nt

 p
er

fo
rm

in
g 

 le
ss

 t
ha

n 
id

ea
l

C
: m

o
re

 t
ha

n 
o

ne
 c

o
m

p
o
ne

nt
  

p
er

fo
rm

in
g 

le
ss

 t
ha

n 
id

ea
l

D
:  

o
ne

 c
o

m
p

o
ne

nt
 p

er
fo

rm
in

g 
p
o

o
rl

y

F
:  

m
o

re
 t

ha
n 

o
ne

 c
o

m
p

o
ne

nt
 p

er
fo

rm
in

g 
p

o
o

rl
y 

o
r 

fa
ilu

re
 o

f 
o

ne
 c

o
m

p
o

ne
nt



40 
 

Non-acceptable performance due to the geotextile, based on the results previously 

presented in Table 2.19, became the focus of the investigation (Koerner, 1994). According to 

Koerner (1994) lack of initial contact between the geotextile and base course caused non-

acceptable performance of the geosynthetics based on visual inspection. The testing conducted 

on geotextile samples includes long term flow test (LTFT), fine fraction filtration test (F3), and 

dynamic fine fraction filtration test (DF3). The criteria utilized to analyze the three testing 

methods are presented in Table 2.20.  

Table 2.20. Criteria to analyze laboratory results conducting on exhumed geotextile 

samples (from Koerner, 1994). 

 

2.5.2.1 Long term flow test (LTFT) testing 

According to Koerner (1994) the LTFT is a constant head test in which geosynthetic 

samples are permeated over long periods of time to show the flow rate through the soil/geotextile 

system to observe the equilibrated flow rate, excessive clogging, or soil piping. Koerner (1994) 

further states that the LTFT testing was conducted on four types of geotextile with four different 

soil types. The soils were artificially made by blending Ottawa sands (100 percent to 5 percent) 

and loess-type cohesion less silts (0 to 95 percent). The test was conducted using clear and turbid 

de-aired water. The turbid de-aired water was produced by mixing three grams of cohesion less 

silt in one liter of water. Summaries containing a list of the geotextiles and soils utilized in this 

study along with their properties are presented in Tables 2.21 and 2.22, respectively.  

 

Number

1

2

3

Flow can increase over time, which generally signifies the lack of soil retention, hence 

excessive soil loss through the geotextile.

Flow can decrease over time until the system is non-functional, which generally signifies 

excessive clogging of geotextile.

Flow can gradually decrease and then reach an equilibrium value, which should be the 

allowable flow rate for the system, or in some cases the lower bound of allowable flow rate.

Criteria
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Table 2.21. Properties of geotextiles used in LTFT testing (from Koerner, 1994). 

 

Table 2.22. Gradation properties of soils used in LTFT testing (from Koerner, 1994). 

 
 

According to Koerner (1994) for the clear water flow, the decrease in flow rates was 

directly proportional to the quantity of silt blended in the soil. The clear water system was a 

stable filtration system for all of the soil-geotextile combinations tested. The limit of detectability 

of the system was observed in the system containing 100 percent silt (Koerner, 1994). In the 

turbid water flow, silt passage through the soil-geotextile interface achieved steady state at 1,000 

hours for all the geotextiles (Koerner, 1994). The geotextiles allowed passage of silt at low 

percentages (< 5 percent) but at higher silt percentages (< 25 percent) flow rate was decreased 

significantly (Koerner, 1994). The LTFT testing was successful in predicting drainage system 

behavior.  

2.5.2.2 Fine fraction filtration (F
3
) testing 

According to Koerner (1994) the F3 test is based on a hypothesis “the fine fraction of the 

soil upstream of a filter poses a major challenge to its long term behavior”. Hence, soil samples 

(s
-1

)

Non-woven needle-punched polyester 1.8 0.125 (No. 120)

Non-woven heat bonded polypropylene 2.5 0.090 (No. 170)

Woven monofilament polypropylene 0.6 0.212 (No. 70)

Non-woven needle-punched polypropylene 2.9 0.125 (No. 120)

Type of geotextile
Permittivity AOS

O95

 (U.S. std. sieve)

D85 D60 D50 D15 D10 Cu

(mm) (mm) (mm) (mm) (mm) (unitless)

Ottawa sand (100%) 1.00 0.80 0.75 0.65 0.62 1.3

5%-95% silty sand 1.00 0.69 0.62 0.45 0.40 1.7

25%-75% sandy silt 1.00 0.54 0.46 0.04 0.02 24.5

Silt (100%) 0.05 0.04 0.03 0.02 0.01 3.2

Soil type
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with particles that are finer than the apparent opening size (AOS) of the geotextiles were used to 

conduct testing.  

The soil types used were Ottawa sands, fly ash, and well-graded sandy silt locally known 

as Le Bow soil. The same types of geotextiles, as presented previously in Table 2.21, were used 

in conjunction with the same type of soils. Ottawa sand built up a layer on the various geotextiles 

causing equilibrium flow rates (Koerner, 1994). The fly ash completely passed through the 

geotextiles due to the AOS of the geotextile being greater than the fly ash which implied 

excessive soil loss. Flow rates through the geotextile were reduced for Le Bow soil due to the 

gradual built up of the Le Bow soil on the geotextile (Koerner, 1994). These reduced flow rates 

were obtained for sites with acceptable and non-acceptable performance. No differentiation in 

flow characteristics were observed between sites classified as “A” or sites classified as “F”, as 

previously presented in Table 2.19, by conducting the F3 testing.  

2.5.2.3 Dynamic fine fraction filtration (DF
3
) testing 

According to Koerner (1994) the DF3 testing is required under specialized conditions 

such as dynamic loading of railroads, erosion control filters for coastal waterways, and etc. The 

DF3 is a fine filtration test which utilizes dynamic pulsing of the hydraulic system (Koerner, 

1994). The soil types used for the DF3 testing were fly ash, well graded sand, and Le Bow soil. 

The fly ash passed through the non-woven needle-punched geotextile due to the AOS of 

geotextile being greater than the size of the fine particles. The well graded soil initially decreased 

the flow through the non-woven needle-punched geotextile and finally equilibrated. The Le Bow 

soil reduced the flow of the system until the lower system limit (0.01 sec-1) was reached 

(Koerner, 1994). Similar to the F3 testing no differentiation in flow characteristics were observed 
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by conducting the DF3 testing for sites previously denoted as “A through F” in Table 2.19 

(Koerner, 1994).  

2.5.3. Properties of geosynthetics exhumed from a final cover at a solid waste landfill as 

presented in Benson et al, 2010. 

A laboratory study was conducted to investigate the performance of exhumed 

geosynthetic samples in June 2007 from a final cover at a solid waste landfill in Wisconsin 

(Benson et al., 2010). While the final cover of a landfill is not the same application for the use of 

geosynthetics as a roadway application, the testing conducted on the samples was similar to the 

testing conducted as a part of the research discussed in this thesis.  The exhumed geosynthetic 

samples were geocomposites drains (GCD), geomembrane (GM), and geosynthetic clay liner 

(GCL). The details of geosynthetic exhumed samples are presented in Table 2.23. The profile of 

Test Pits 1 to 4 is presented in Figure 2.12.  

Table 2.23. Summary of geosynthetics exhumed in June 2007 from a final cover at a solid 

waste landfill facility in Wisconsin (from Benson et al., 2010). 

 
 

Test Pit 1 2 3 4

Location Lower Side Slope (4:1) Upper Side Slope (4:1) Top Deck (3%) Top Deck (3%)

Installation Date 08/2001 08/2001, 9/2002 09/2002 09/2002

Sampling Date 06/2007 06/2007 06/2007 06/2007

Service life 

(in years)
5.8 4.7, 5.8 4.7 4.7

Surface layer 

thickness (mm)
915 1145 915 1220

Geocomposite 

drain (GCD)

Geomembrane 

Geosynthetic 

clay liner (GCL)

CETCO Bentomat ST 

with 5.1+0.3 kg/m
2 

granular bentonite

CETCO Bentomat ST 

with 5.1+0.3 kg/m
2 

granular bentonite, 

Bentonite NSL 4.7+0.4 

kg/m
2
 granular bentonite

GSE HyperNet 5.1 mm HDPE drainage net with 

227g nonwoven, polypropylene geotextile heat-

bonded both sides.

GSE HyperNet 5.1 mm HDPE 

drainage net with 170g nonwoven, 

polypropylene geotextile heat-

bonded both sides.

GSE 1mm textured LLDPE

Bentonite NSL 4.7+0.4 kg/m
2 

granular bentonite
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Figure 2.12. Profile of test pits 1 to 4 (from Benson et al., 2010). 

 
According to Benson et al., (2010), no visible defect of exhumed geosynthetics was 

observed. The overlapped areas of the geotextile had no soil intrusion and hence the geotextile 

was effective in retaining overlying soil. Fines were observed on the geonet ribs but did not 

cause excessive clogging. No movement of the GCL had occurred based on the fact that the 

alignment coordinated with match points (Benson et al., 2010). The exhumed subgrade soil 

properties are presented in Table 2.24. 

Table 2.24. Properties of exhumed subgrade soil (from Benson et al., 2010).  

 

Silty Sand

300 mm300 mm 300 mm

Silty Clay

615 mm

845 mm
920 mm

Top SoilTop SoilTop Soil

Silty Clay

Silty Clay

Silty SandSilty Sand

GCL

GM

GCD

GCL

GM

GCD

TEST PIT 1 AND 3

TEST PIT 2

TEST PIT 4

Water Content Fines content 

(%) (%)

Test Pit 1 15.1 79 CL-ML

Test Pit 2 14.5 85 CL-ML

Test Pit 3 15.8 83 CL-ML

Test Pit 4 16.2 76 CL-ML

Test Pit USCS Designation
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According to Benson et al. (2010), the water content of the subgrade soil in direct contact 

of the GCL ranged from 14.5 percent to 15.2 percent and the fines content of the subgrade soil 

ranged from 76 percent to 83 percent.  

According to Benson et al.,(2010), constant head testing was conducted on the GCD with  

values of head of 10 mm (imitating in-situ conditions) and 50 mm (to compare with the 

measured permittivity during construction) to measure the permittivity of the exhumed GCD (50 

mm diameter specimen). Transmissivity of the exhumed GCD (305 mm by 356 mm specimen) 

was also measured in the machine direction utilizing a hydraulic gradient of 1.0 and normal 

stresses of 24kPa (imitating in-situ conditions) and 480 kPa (to compare with manufacture data 

from Benson et al., 2010). The permittivity and transmissivity values obtained by laboratory 

testing are presented in Table 2.25.  

Table 2.25. Permittivity and transmissivity values obtained by laboratory testing for GCD 

(from Benson et al., 2010). 

 

Head (10 mm) Head (50 mm) σ* (24 kPa) σ* (480 kPa)

1 0.30 0.20 4.4E-4 2.0E-4

2 0.39 0.31 5.4E-4 2.3E-4

3 0.61 0.51 3.4E-4 1.4E-4

1 0.59 0.42 2.8E-4 1.1E-4

2 0.68 0.55 6.1E-4 1.7E-4

3 0.30 0.26 4.0E-4 1.5E-4

1 0.35 0.27 3.0E-4 1.2E-4

2 0.69 0.49 7.2E-4 1.4E-4

3 0.59 0.46 3.6E-4 1.3E-4

4 0.45 0.26 5.7E-4 1.5E-4

1 0.79 0.60 3.4E-4 1.2E-4

2 0.81 0.51 5.7E-4 1.2E-4

3 0.88 0.53 5.6E-4 1.0E-4

4 0.61 0.38 2.7E-4 1.3E-4

Permittivity Transmissivity

(m
2
/s)Test Pit Sample

*Normal Stress

Test Pit 1

Test Pit 2

Test Pit 3

Test Pit 4

(s
-1

)
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According to Benson et al. (2010), consistent permittivity values were obtained by 

laboratory testing for the head of 10 mm and 50 mm. The permittivity values obtained by 

laboratory testing for the exhumed GCD at 50 mm head (0.2 s-1 to 0.6 s-1) were lower than the 

permittivity values obtained prior to construction (1.51 s-1 to 1.72 s-1). Furthermore, the low 

permittivity values of the exhumed samples were attributed to soil intrusion. The permittivity 

was still adequate (at least ten times higher than required) to permit one unit gradient flow from 

the overlying silty sand (Benson et al., 2010).   

According to Benson et al. (2010), consistent transmissivity values were also obtained by 

laboratory testing at normal stress of 24 kPa and 480 kPa. A summary of the comparison 

between the transmissivity values of the exhumed samples and the transmissivity values reported 

by the manufacturer are presented in Table 2.26. The transmissivity values obtained by 

laboratory testing at a hydraulic gradient of 1.0 and normal stress of 480 kPa for the exhumed 

GCD samples were higher than the transmissivity values published by the manufacture (Benson 

et al., 2010). No explanation in increase in the transmissivity values were provided except that 

the satisfactory filtration was provided and the aperture opening size (AOS) met the common 

filter criteria (Benson et al., 2010). 

Table 2.26. Comparison of GCD transmissivity values obtained in the laboratory for 

exhumed samples and the manufacture published data for the new samples (from Benson 

et al., 2010). 

 
 

Exhumed Manufacturer

(m
2
/s) (m

2
/s)

Test Pit 1

Test Pit 2

Test Pit 3

Test Pit 4

Transmissivity at σ* = 480 kPa

Test Pit

*Normal Stress

4.0E-05

6.0E-05

1.1E-4 to 2.3E-4

1.0E-4 to 1.5E-4
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2.6. Arkansas Test Section Site 

Social, demographic and weather information about the Marked Tree, Arkansas are 

presented in Section 2.6.1. The site location and the process used for site selection for the current 

research project are presented in Section 2.6.2 and 2.6.3, respectively. This information is 

included for completeness. 

2.6.1. Social, Demographic and Weather Information about Marked Tree, Arkansas. 

The Arkansas test section site was constructed in Marked Tree, Arkansas, and has been in 

service since 2006. The elevation of the City of Marked Tree is 224 feet above mean sea level 

(Marked Tree, AR, 2011). The population of Marked Tree is 3,100 people (Marked Tree, AR, 

2011). Mean daily temperatures ranges from 52°F to 72°F (Marked Tree, AR, 2011). The 

average yearly total precipitation based on 100 years of historical data in Poinsett County is 

49.40 inches (National Oceanic and Atmospheric Administration, 2010) as presented in Figure 

2.13. 

 
 

Figure 2.13. Historical precipitation for Poinsett County (modified from NOAA, 2010). 
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2.6.2. Site Location 

The Arkansas Test Section Site is located on Frontage Road 3 in Marked Tree, Arkansas. 

As discussed in Section 2.5.1, Marked Tree is a small town located in northeast Arkansas. 

Frontage Road 3 runs parallel to U.S. Highway 63 and connects to Arkansas Highway 75 (Figure 

2.14). Major cities in the vicinity of Marked Tree are Jonesboro, Arkansas, located 33 miles to 

the Northwest, and Memphis, Tennessee, located 39 miles to the Southeast.  

 

Figure 2.14. Google Map satellite image of test site located on Frontage Road 3, Marked 

Tree, AR (modified from Google Maps, 2010). 

 

2.6.3. Site Selection 

Research was conducted at the Marked Tree, AR test section during previous research 

projects. Specifically, the site was constructed as part of AHTD TRC Project 0406 and the site 

was investigated as part of AHTD TRC Project 0903. The scope of the AHTD TRC 0406 and 

AHTD TRC 0903 research projects are listed below for reference. 

• As discussed previously in Section 2.4.1, the AHTD TRC 0406 research project 
was a full scale field study that included finite element modeling to study the 
effects of geosynthetics on flexible pavement (Hall et al., 2007).  
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• Researchers associated with AHTD TRC Project 0903 research project evaluated 
the basal reinforcement of flexible pavement with geosynthetics (Goldman, 
2011). The object of the AHTD TRC 0903 research project was to evaluate the 
mechanisms of basal reinforcement of pavements and to evaluate different field 
tests to infer the contribution of reinforcement geosynthetics in using pavement 
performance. The current performance of the pavement sections at the Marked 
Tree site were evaluated, with the goal of comparing the effects of the different 
geosynthetics types and base course depths. 
 

The Marked Tree, AR site, as originally constructed, consisted of sixteen flexible 

pavement sections in the East-bound lane of Frontage Road 3. As shown in Figure 2.15, each 

section is 50 feet long, and the sections are located between STATION 136+50 and STATION 

145+00. Each section contains a unique type of geosynthetic, however the control section do not 

include any type of geosynthetic. Geosynthetics were placed at the base course/subgrade 

interface installed under either six-inches or ten-inches of base course thickness. A transition in 

base course thickness from ten-inches thick to six-inches thick occurs in Section 7. The test 

sections were constructed with a research focus to study the effects of geosynthetics on pavement 

performance.  
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Figure 2.15. Profile view of sections showing various geosynthetics installed at the Marked 

Tree, AR (from Coffman, 2010). 
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2.7. Conclusion  

The definition, classification, and function of geosynthetics were discussed in this 

chapter. The functions of geosynthetics include separation, reinforcement, filtration, drainage, 

and containment. Specifically, as applied to the research discussed in this thesis, geotextiles are a 

type of geosynthetic utilized for separation, reinforcement, and filtration.  

Past field studies utilizing geotextiles to stabilize roadways, equestrian trails, and hike 

and bike trails were also presented in this chapter. The site location for these research projects 

were Arkansas, Virginia, and Missouri. The field studies were conducted to quantify the benefits 

of utilizing geotextiles as an effective filtration and separation medium in different applications, 

and to present hydraulic conductivity values for base course in roadway applications for State of 

Missouri.  

Past laboratory studies investigating the filtration and separation aspect of geotextiles 

were also presented in this chapter. Specifically, different laboratory testing techniques and 

performance of geotextiles in landfill application were presented. The laboratory techniques 

explored were long term flow testing, fine fraction filtration testing, dynamic fine filtration 

testing, permittivity testing, and transmissivity testing. The dynamic fine filtration and fine 

fraction filtration testing were used to successfully differentiate the in-situ problem but not the 

site performance. The long term flow testing was successfully used to identify the problem and 

predict site performance. The major disadvantage of the long term flow testing was lengthy 

testing period.  The permittivity and transmissivity of geocomposite drains was also measured 

before and after installation to determine the viability of the use of the geocomposite drains.  

After exhumation, the drains appeared to be in working order based on the results of the 

permittivity and transmissivity testing.   
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Site details for the current research project were also presented in this chapter. This site 

was constructed as part of a research project that investigated the performance of the pavement 

system using in-situ sensors. The site was also used for previous research projects that attempted 

to quantify benefits of geotextile using deflection based tests.  
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Chapter 3. Methods and Procedures 

3.1. Introduction 

Field sample collection, field testing, field measurements, and laboratory testing 

performed on the samples which were collected in the field are discussed in this chapter.  Base 

course, subgrade, and geosynthetic samples were exhumed and collected from 18 test sections 

during a field visit to the Arkansas Test Section site conducted from October 25th to 29th, 2010. 

The sample collection procedures utilized during this visit are presented in Section 3.2. The 

procedures used to conduct field hydraulic conductivity testing of the base course are presented 

in Section 3.3. The laboratory testing schedule and procedures used to conduct the laboratory 

testing for the base course, subgrade, and geosynthetic samples are presented in Section 3.4. 

Field measurement techniques, utilized to comprehend the pavement conditions, including: 

roadway alignment, asphalt and base course thickness, and pavement performance (rutting, 

alligator cracking, longitudinal cracking, and transverse cracking) are presented in Section 3.5. 

The laboratory testing was performed to identify and characterize base course and 

subgrade materials, to measure the hydraulic conductivity of recompacted base course (for 

comparison with 1) the hydraulic conductivity values measured in the field, and 2) estimated 

using the equations presented previously in Section 2.4.3), and to measure the permittivity and 

transmissivity of geosynthetic separators. The laboratory testing techniques performed on 

exhumed subgrade samples include: wash sieve, hydrometers, Atterberg limits, and specific 

gravity. The laboratory testing procedures performed on exhumed base course samples include: 

dry sieve, wet sieve, hydrometers, specific gravity, modified proctor, and hydraulic conductivity. 

The laboratory testing procedures performed on exhumed geotextile samples include 

transmissivity and permittivity.  
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3.2. Sample Collection 

Asphalt cutting and removal and field testing (including dynamic cone penetration testing 

and California bearing ratio testing) conducted outside of the scope of this project by Goldman 

(2011) but conducted in conjunction with this research project are described in Section 3.2.1.  

Base course, geosynthetic, and subgrade samples were collected as described in Sections 3.2.2 

and 3.2.3. A flowchart providing a summary of the sample collection and field testing procedures 

as performed in the field (conducted as a part of this research and conducted as a part of 

Goldman, 2011) is presented in Figure 3.1. A schematic displaying the plan view of the Marked 

Tree test containing information about the various geosynthetic types installed in, and exhumed 

from, the sections is presented in Figure 3.2.  
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Figure 3.1. Flow chart of sample collection and field testing within each section as 

conducted in October 2010.  

Determine in-situ water content and unit 
weight using nuclear gauge at 2" 

increments from asphalt/base course 
interface to base course/subgrade interface

Core 6" diameter boring in 
outside wheel path 5 or 7 

inches deep (for 6" or 10" thick 
sections, respectively)

Saw-cut, remove, and dispose of 
asphalt in all 2' by 2' test sections

Conduct DCP testing on base course 
and subgrade materials (TRC-0903)1.

Excavate base course material in 
2" lifts. Collect recovered soil 
sample in buckets for transport

Conduct TSB testing to
determine in-situ 

permeability as per 
ASTM D6391

Manually obtain 
base course moisture
content samples and 

weigh in field

Transport to 
University of 

Arkansas 
laboratory

Remove,
recover and 

transport 
geosynthetic 
(if present)

Obtain nuclear gauge 
measurements at 2" 
increments to 12"
inches below base 
course/subgrade 

interface

Determine gravimetric
moisture content as per 

ASTM D2216

Conduct CBR 
testing on 

subgrade material 
(TRC-0903)1

Obtain two 
Shelby tube 

samples 

Manually obtain 
subgrade moisture

content samples and 
weigh in field

Excavate subgrade material in 
2" lifts. Collect recovered 
sample in sealed bags for 

transport

Notes: 1Task items assigned to 
TRC-0903 are outside the 

scope of this research project 
and were conducted separately 

(see Goldman, 2011)

Conduct CBR testing on base
course materials (TRC-0903)1.



56 
 

 

Figure 3.2. Plan view of sections showing various geosynthetics installed at the Marked 

Tree, AR (modified from Howard, 2007). 
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3.2.1. Asphalt Cutting and Removal, Dynamic Cone Penetrometer, and California Bearing 

Ratio Testing 

A two foot by two foot test area was clearly marked using spray paint in the outside 

wheel path of each of the roadway sections (as shown previously in Figure 3.2). The outline of 

the test areas was then cut by AHTD personnel using a wet circular saw as presented in Figure 

3.3. Water introduced during asphalt cutting by the wet saw was removed using a portable 

vacuum to avoid changing the in-situ moisture content of the base course and subgrade below the 

asphalt, as presented in Figure 3.4. The asphalt was manually removed using a crowbar, if 

feasible; otherwise a hammer drill was used to aid in removal of the asphalt (Figure 3.5). A 

typical section, after removal of the asphalt is presented in Figure 3.6. 

   
(a) (b) 

 

Figure 3.3. Two foot by two foot test sections cut by Arkansas State Highway and 

Transportation Department (AHTD) personnel using a wet concrete saw a) Section 13W 

and b) Section 8. 
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 (a) (b) 

 

Figure 3.4. Water introduced by cutting the asphalt removed by a portable vacuum a) 

within the test section and b) around the test section. 

 

   
 (a) (b) 
 

Figure 3.5. Removal of asphalt using a) crowbar (Section 13W) and b) hammer drill 

(Section 13BW). 

 

 

Figure 3.6. Two foot by two foot test area after asphalt removal (Section 3). 
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After the asphalt was removed, one Dynamic Cone Penetrometer (DCP) test was 

performed in the Southeast corner of each of the test areas (Figure 3.7). Although the DCP 

testing was conducted during the site visit, this testing was associated with AHTD TRC Project 

0903. The full testing procedures and the results obtained from this testing are presented in 

Goldman (2011). For completeness, a simplified version of the testing procedure is discussed 

herein. 

The cone was driven from the asphalt/base course interface to a depth of 600mm (~24 

inch) below the asphalt/base course interface. The DCP rod and cone traveled through the base 

course, through the geosynthetic (if present), and into the subgrade where the test was 

completed. The verticality of the DCP rod was difficult to maintain at a depth of ~600mm and 

hence the test was terminated at this depth. Measurements of the movement of the drive anvil, 

caused by the impact of the hammer, were recorded after every blow; the movement of the anvil 

was referenced from the asphalt/base course interface. Since measurements were taken to a depth 

of 24 inches below the asphalt/base course interface an opening (with the same diameter as the 

cone) was created in the geosynthetic (if present) by the cone.  

 
 

Figure 3.7. Dynamic Cone Penetrometer (DCP) testing in progress.  
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After DCP testing was completed within each section, one California Bearing Ratio 

(CBR) test was performed in the center of each test area (Figure 3.8). Although the CBR testing 

was conducted during the site visit, this testing was associated with AHTD TRC Project 

0903.The full testing procedures and results associated with this testing are presented in 

Goldman (2011). For completeness, a simplified version of the testing procedure is discussed 

herein. 

Following the nuclear density testing (as described later in Sections 3.2.2 and 3.2.3) that 

was conducted on the base course and on the subgrade, a CBR test was conducted within each 

section at the asphalt/base course interface, and the base course/subgrade interface, respectively. 

A surcharge load plate was placed on top of the base course layer and loading was applied 

through a piston ram with the aid of the University of Arkansas vibroseis truck. To achieve a 

penetration rate of 0.05 in/min, one revolution per every 12 seconds was required. Two LVDTs 

(one mounted on the truck and another underneath the load cell) were used to measure the piston 

movement (Goldman, 2011). The deformation of the piston was considered as the difference in 

movement recorded by the two LVDTs.  

 
 

Figure 3.8. California Bearing Ratio (CBR) testing in progress.  
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3.2.2. Base Course Density Testing (ASTM D6938) and Sampling  

After removing the asphalt, in-situ total unit weight and water content readings were 

obtained using a Troxler® nuclear density gauge (model 3450) following the procedures 

described in ASTM D6938 (2005). In the Northwest corner of each of the two foot by two foot 

testing areas a hole was created by driving a pre-hole driver rod through a rod guide. The rod 

was driven into the base course to a depth of either eight inches or twelve inches for the six-inch 

thick sections and ten-inch thick sections, respectively (Figure 3.9a). Density and moisture 

content measurements were obtained at two inch increments by lowering the source rod deeper 

into each pre-drilled hole within each section (Figure 3.9b). A schematic showing the various 

source rod positions for ten-inch thick and six-inch thick sections are presented in Figures 3.10a 

and 3.10b, respectively. 

   
 (a) (b) 

Figure 3.9. a) Pre-hole driver rod driven through the rod guide and b) nuclear gauge 

positioned at the asphalt base course interface to obtain base course density and water 

content readings for the base course. 
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 (a) (b) 

 

Figure 3.10. Schematic of nuclear gauge (direct transmission testing) for a) ten-inch thick 

section and b) six-inch thick section (modified from INDOT, 2011). 

 

The in-situ total unit weight determined using the nuclear density gauge is used in 

conjunction with the gravimetric moisture contents (as described later in this section) to obtain 

the in-situ dry unit weight because the nuclear density gauge was only placed at the asphalt/base 

course interface to obtain the density and moisture content of the base course. This procedure of 

obtaining the moisture content and dry unit weight at one location instead of at every two inch 

thick lift interface led to incorrect measurements of the in-situ moisture content. Therefore, the 

gravimetric moisture content was averaged over the corresponding depth that the source rod was 

inserted to obtain the corrected dry unit weight (Equation 3.1). 

Where  
γdry is the corrected in-situ dry unit weight (lb/ft3); 
γtng is the average in-situ total unit weight over the depth that the source rod penetrated below the 
asphalt/base course interface as obtained using a nuclear gauge (lb/ft3); 
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ωavg is the average in-situ gravimetric moisture content over the depth that the source rod 
penetrated below the asphalt/base course interface as obtained from laboratory measurements 
(percent). 
 

Every two inches, approximately 50 pounds of sample was obtained by dislodging the 

base course using a hammer drill and then shoveling the base course into a bucket (Figure 3.11a). 

A garden trowel was used to obtain the 50 pound sample when in the vicinity of the geosynthetic 

interface to prevent damage to the geosynthetic (Figure 3.11b). A small portion (approximately 

400 grams) of the base course sample obtained from each two inch lift was placed in moisture 

content tins, and weighed in the field to determine the initial moist weight of the sample (Figure 

3.12). The weight of each moist sample, and the corresponding moisture content tin, was 

measured immediately on site before the samples were transported back to the University of 

Arkansas laboratory (hereafter referred to as the UofA laboratory) to prevent moisture loss from 

affecting the moisture content measurements. The dry weight of the samples in the moisture 

content tins was determined by drying the samples in the oven at the UofA laboratory after the 

samples were received in the laboratory (as previously depicted in Figure 3.1). Geosynthetic 

samples were exhumed using a box cutter and placed in pre-labeled bags for testing in the UofA 

laboratory (Figure 3.13).  

      
 (a) (b) 
 

Figure 3.11. a) Shoveling and b) hand scooping base course samples into buckets. 
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Figure 3.12. Base course moisture content sample. 

 

     
 (a) (b) 

 

Figure 3.13. Geosynthetic sample a) removal using a box cutter and b) pre-labeled bag 

ready for placement. 

 
Photographs of a typical geotextile and geogrid located at the base course/subgrade 

interface are presented in Figure 3.14a and 3.14b, respectively. The base course (stored in 

buckets) and geotextile (stored in bags) were safely transported to the UofA laboratory. 
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 (a) (b) 

 

Figure 3.14. a) Typical geotextile/subgrade interface (Section 4) and b) typical 

geogrid/subgrade interface (Section 5). 

 

3.2.3. Subgrade Density Testing (ASTM D6938) and Sampling  

After removing the base course and geosynthetic, in-situ total unit weight and water 

content readings were obtained before excavation of the subgrade materials using a Troxler® 

nuclear density gauge (model 3450) as presented in Figure 3.15. In the Northwest corner of the 

two foot by two foot test area, a hole was created by driving a pre-hole driver through a rod 

guide from the base course/subgrade interface to a depth of 14 inches below the base 

course/subgrade interface (Figure 3.16). Density and moisture content measurements were 

obtained at two inches by lowering the source rod deeper into each pre-drilled hole until a depth 

of 12 inches below the base course/subgrade interface was reached within each section. Because 

the nuclear gauge was not lowered to each two inch thick lift interface, the dry density of the first 

six-inches of subgrade at each two inch interval, for each section, was computed using Equation 

3.1. The dry density of the second six-inches, at each two inch interval, was obtained directly 

from the nuclear gauge (and are incorrect) because subgrade moisture content samples were not 

obtained for this depth (as discussed later in this section). No trench correction was applied to the 

gauge.   
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Figure 3.15. Nuclear gauge positioned to obtain subgrade density and water content 

readings (Section13BW). 

 

 

Figure 3.16. Schematic of nuclear gauge (direct transmission testing) placed at the base 

course/subgrade interface to obtain subgrade density and water content readings at two 

inch increment by lowering source rod (modified from INDOT, 2011). 

 
Two 30 inch long, three inch diameter Shelby tubes were pushed by Arkansas State 

Highway and Transportation Department (AHTD) personnel starting at the base course/subgrade 

interface to a depth of 24 inches below the base course/subgrade interface. Within each section, 

SAFE POSITION

2 INCH POSITION

DIRECT
TRANSMISSION
TESTING

BASE COURSE/SUBGRADE INTERFACE

BACKSCATTER POSITION

4 INCH POSITION

6 INCH POSITION

8 INCH POSITION

10 INCH POSITION

12 INCH POSITION
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one tube was pushed in the Northeast corner of the excavation while the other tube was pushed 

in the Southwest corner of the excavation for each section (Figure 3.17). Each Shelby tube 

sample was collected in accordance with ASTM D1587. The ends of each Shelby tube were 

sealed with O-ring gaskets and melted wax was placed over the gasket to prevent moisture loss.   

 
 

Figure 3.17. Typical location of DCP hole, deep hole (for nuclear gauge readings), and two 

holes created by obtaining Shelby tubes (Section). 

 
Following collection of the two Shelby tube samples from each section, bag samples of 

subgrade material were obtained from the center of the excavation using a trowel. Samples were 

collected in two inch lifts beginning at the base course/subgrade interface and continuing to a 

depth of six-inches below the subgrade/base course interface. Following collection, the bag 

samples were transported to the UofA laboratory for further testing. A portion of each two inch 

thick subgrade sample was retained in the field to determine the in-situ gravimetric moisture 

content (Figure 3.18). The weight of each moist sample, and the corresponding moisture content 

tin, was measured immediately on site before the samples were transported back to the UofA 

laboratory to prevent moisture loss from affecting the moisture content measurements. Subgrade 

samples (bags, moisture content tins, and Shelby tubes) were safely transported to the laboratory. 
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The dry weight of the samples in the moisture content tins was determined by drying the samples 

in the oven at the UofA laboratory after the samples were received in the laboratory (as 

previously depicted in Figure 3.1).  

 
 

Figure 3.18. Subgrade moisture content sample. 

 

3.3. Field hydraulic conductivity of base course (ASTM D6391) 

Two Stage Borehole (TSB) tests were performed in the field in accordance with ASTM 

D6391 to determine the in-situ hydraulic conductivity of base course material. Only one stage 

(the first stage with a flat bottom) of the test was performed. Five tests were completed for each 

base course thickness. The test was performed on four sections containing geotextiles and one 

control section. A total of 20 tests were performed, of which ten tests (five tests per base course 

thickness) were performed in October 2010 in conjunction with sample collection and ten tests 

(five tests per base course thickness) were performed in May 2011.  

The location of each of the TSB tests was marked using spray paint. The asphalt and base 

course were cored by Arkansas State Highway and Transportation Department (AHTD) 

personnel using a six-inch diameter core barrel (Figure 3.19).  AHTD personnel cored to a depth 

of five inches and seven inches below the top of the asphalt surface for the six-inch thick 
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sections and ten-inch thick sections, respectively. The base of the borehole was leveled by 

placing clean sand in the bottom of the borehole.  

 

Figure 3.19. Coring by Arkansas State Highway and Transportation Department (AHTD) 

personnel for installation of two stage borehole test casing. 

 
Schedule 40 PVC pipe with a four inch inside diameter, 1/4 inch wall thickness, and eight 

inch length (for the six-inch thick sections) or ten-inch length (for the ten-inch thick sections) 

was placed in the borehole. The 3/4 inch wide annulus space between the outside of the PVC 

pipe and the edge of the borehole was filled with WyoBen No.8 bentonite. The bentonite was 

placed by layering the dry granular bentonite in 1/2 inch thick lifts. Water was added to each lift, 

the bentonite was allowed to absorb the water, and the bentonite was compacted using a 1/4 inch 

diameter wooden dowl.  

The bentonite was allowed to hydrate for approximately four hours. The leveling sand 

was then removed from the inside of the casing using a vacuum, the casing was filled with a sock 

containing pea gravel (to re-simulate the overburden stress which was removed), and then filled 

with water. The standpipe and top cap were placed on the device, the standpipe was filled with 

water, and testing was initiated. The time required for the water level within the standpipe to 
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drop from 120 mm to 20 mm was recorded. The standpipe was repeatedly refilled, and the time 

required for the predetermined drop was repeatedly measured. The TSB setup and observation of 

water infiltration with time are presented in Figures 3.20a and 3.20b, respectively.   

     
 (a) (b) 

 

Figure 3.20. a) Two stage borehole setup prior to testing and b) ongoing two stage borehole 

test. 

 
A plan and profile view of a typical test location for the TSB, Shelby tubes, previously 

installed  instrumentation, and locations of previous testing are presented in Figures 3.21 and 

3.22 for the six-inch thick sections and for the ten-inch thick sections, respectively. A graphical 

representation of the sample collection process (previously described in Sections 3.2.2 and 3.2.3) 

for the six-inch thick sections and the ten-inch thick sections is also presented in Figures 3.21 

and 3.22, respectively. The laboratory testing procedures conducted on the samples collected, 

using the procedures described in this section, are described in Section 3.4. A summary of TSB 

results for the hydraulic conductivity of the base course is presented in Section 4.8. The in-situ 

hydraulic conductivity results for the base course are presented in the Appendix, in Section B.4, 

for completeness.  
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Figure 3.21.Plan and profile view of typical test locations for Shelby tubes, two stage 

borehole, previously installed earth pressure cells, two foot by two foot test area, and 

previous test area for the six-inch thick base course sections.  
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Figure 3.22. Plan and profile view of typical test locations for Shelby tubes, two stage 

borehole, previously installed earth pressure cells, two foot by two foot test area, and 

previous test area for the ten-inch thick base course sections. 
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3.4. Laboratory Testing 

The laboratory testing schedule for base course samples obtained from the ten-inch thick 

sections are presented in Tables 3.1 and 3.2 and for the six-inch thick sections is presented in 

Table 3.3. The laboratory testing schedule for the subgrade samples obtained from the ten-inch 

thick sections and the six-inch thick sections are presented in Tables 3.4 and 3.5, respectively. A 

checkmark in Table 3.1 through 3.5 indicates that the test was conducted as a part of the 

laboratory testing program.  
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Table 3.1. Laboratory testing schedule for the exhumed base course samples for the ten-

inch thick sections (for Sections 1B to 2).  

 
 

 

 

 

 

 

 

 

 

 

 

(inch) DS
1

DS
2

DS
3

MB
4

FWP
5

Section 1B 0-2 � � � �

Section 1B 2-4 � � � �

Section 1B 4-6 � � � �

Section 1B 6-8 � � � �

Section 1B 8-10 � � � � � � � �

Section 1A 0-2 � � � �

Section 1A 2-4 � � � �

Section 1A 4-6 � � � �

Section 1A 6-8 � � � �

Section 1A 8-10 � � � � � � � �

Section 1 0-2 � � � �

Section 1 2-4 � � � �

Section 1 4-6 � � � �

Section 1 6-8 � � � �

Section 1 8-10 � � � � � � � �

Section 2 0-2 � � � �

Section 2 2-4 � � � �

Section 2 4-6 � � � �

Section 2 6-8 � � � �

Section 2 8-10 � � � � � � � �

5
Falling head test performed to measure hydraulic conductivity using a Flexible Wall Permeameter (FWP)

*Depth below asphalt/base course interface

Bold represents the base course samples obtained at the base course/subgrade interface
1
Dry sieving conducted on 3,000 gram oven dried sample in November 2010

2
Dry sieving conducted before proctor testing in July 2011

3
Dry sieving conducted after permeability testing in October 2011

4
Constant head test performed to measure hydraulic conductivity using a Mariotte Bottle (MB)

Location
Depth*

Laboratory testing conducted on exhumed base course samples

Dry Sieving
Wash Sieving Hydrometers

Modified 

Proctor

Specific 

Gravity

k
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Table 3.2. Laboratory testing schedule for the exhumed base course samples for the ten-

inch thick sections (for Sections 3 to 6).  

 

 

 

 

 

(inch) DS
1

DS
2

DS
3

MB
4

FWP
5

Section 3 0-2 � � � �

Section 3 2-4 � � � �

Section 3 4-6 � � � �

Section 3 6-8 � � � �

Section 3 8-10 � � � � � � � �

Section 4 0-2 � � � �

Section 4 2-4 � � � �

Section 4 4-6 � � � �

Section 4 6-8 � � � �

Section 4 8-10 � � � � � � � �

Section 5 0-2 � � � �

Section 5 2-4 � � � �

Section 5 4-6 � � � �

Section 5 6-8 � � � �

Section 5 8-10 � � � � � � � �

Section 6 0-2 � � � �

Section 6 2-4 � � � �

Section 6 4-6 � � � �

Section 6 6-8 � � � �

Section 6 8-10 � � � � � � � �

*Depth below asphalt/base course interface

Bold represents the base course samples obtained at the base course/subgrade interface
1
Dry sieving conducted on 3,000 gram oven dried sample in November 2010

2
Dry sieving conducted before proctor testing in July 2011

3
Dry sieving conducted after permeability testing in October 2011

4
Constant head test performed to measure hydraulic conductivity using a Mariotte Bottle (MB)

5
Falling head test performed to measure hydraulic conductivity using a Flexible Wall Permeameter (FWP)

Location
Depth*

Laboratory testing conducted on exhumed base course samples

Dry Sieving
Wash Sieving Hydrometers

Modified 

Proctor

Specific 

Gravity

k
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Table 3.3. Laboratory testing schedule for the exhumed base course samples for the six-

inch thick sections.  

 

(inch) DS
1

DS
2

DS
3

MB
4

FWP
5

Section 8 0-2 � � � �

Section 8 2-4 � � � �

Section 8 4-6 � � � � � � � �

Section 9 0-2 � � � �

Section 9 2-4 � � � �

Section 9 4-6 � � � � � � � �

Section 10 0-2 � � � �

Section 10 2-4 � � � �

Section 10 4-6 � � � � � � � �

Section 11 0-2 � � � �

Section 11 2-4 � � � �

Section 11 4-6 � � � � � � � �

Section 12 0-2 � � � �

Section 12 2-4 � � � �

Section 12 4-6 � � � � � � � �

Section 13 0-2 � � � �

Section 13 2-4 � � � �

Section 13 4-6 � � � � � � � �

Section 13W 0-2 � � � �

Section 13W 2-4 � � � �

Section 13W 4-6 � � � � � � � �

Section 13A 0-2 � � � �

Section 13A 2-4 � � � �

Section 13A 4-6 � � � � � � � �

Section 13B 0-2 � � � �

Section 13B 2-4 � � � �

Section 13B 4-6 � � � � � � � �

Section 13BW 0-2 � � � �

Section 13BW 2-4 � � � �

Section 13BW 4-6 � � � � � � � �

4
Constant head test performed to measure hydraulic conductivity using a Mariotte Bottle (MB)

5
Falling head test performed to measure hydraulic conductivity using a Flexible Wall Permeameter (FWP)

*Depth below asphalt/base course interface

Bold represents the base course samples obtained at the base course/subgrade interface
1
Dry sieving conducted on 3,000 gram oven dried sample in November 2010

2
Dry sieving conducted before proctor testing in July 2011

3
Dry sieving conducted after permeability testing in October 2011

Location
Depth*

Laboratory testing conducted on exhumed base course samples

Dry Sieving Wash 

Sieving
Hydrometers

Modified 

Proctor

Specific 

Gravity

k
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Table 3.4. Laboratory testing schedule for the exhumed subgrade samples for the ten-inch 

thick sections.  

 

 

 

 

 

 

 

 

Depth*

(in) Wash Sieving Hydrometers Atterberg Limits Specific Gravity

Section 1B 0-2 � � � �

Section 1B 2-4 � � � �

Section 1B 4-6 � � � �

Section 1A 0-2 � � � �

Section 1A 2-4 � � � �

Section 1A 4-6 � � � �

Section 1 0-2 � � � �

Section 1 2-4 � � � �

Section 1 4-6 � � � �

Section 2 0-2 � � � �

Section 2 2-4 � � � �

Section 2 4-6 � � � �

Section 3 0-2 � � � �

Section 3 2-4 � � � �

Section 3 4-6 � � � �

Section 4 0-2 � � � �

Section 4 2-4 � � � �

Section 4 4-6 � � � �

Section 5 0-2 � � � �

Section 5 2-4 � � � �

Section 5 4-6 � � � �

Section 6 0-2 � � � �

Section 6 2-4 � � � �

Section 6 4-6 � � � �

Location
Laboratory testing on exhumed subgrade samples

*Depth below base course/subgrade interface
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Table 3.5. Laboratory testing schedule for the exhumed subgrade samples for six-inch thick 

sections.  

 
 

  The laboratory testing procedures utilized for this research are identified in Table 3.6 

and described in detail in this section. The objective of the testing sequence was to identify and 

characterize base course and subgrade materials, measure the hydraulic conductivity of 

recompacted base course samples, and measure the permittivity and transmissivity of geotextile 

samples.  

Depth*

(in) Wash Sieving Hydrometers Atterberg Limits Specific Gravity

Section 8 0-2 � � � �

Section 8 2-4 � � � �

Section 8 4-6 � � � �

Section 9 0-2 � � � �

Section 9 2-4 � � � �

Section 9 4-6 � � � �

Section 10 0-2 � � � �

Section 10 2-4 � � � �

Section 10 4-6 � � � �

Section 11 0-2 � � � �

Section 11 2-4 � � � �

Section 11 4-6 � � � �

Section 12 0-2 � � � �

Section 12 2-4 � � � �

Section 12 4-6 � � � �

Section 13 0-2 � � � �

Section 13 2-4 � � � �

Section 13 4-6 � � � �

Section 13W 0-2 � � � �

Section 13W 2-4 � � � �

Section 13W 4-6 � � � �

Section 13A 0-2 � � � �

Section 13A 2-4 � � � �

Section 13A 4-6 � � � �

Section 13B 0-2 � � � �

Section 13B 2-4 � � � �

Section 13B 4-6 � � � �

Section 13BW 0-2 � � � �

Section 13BW 2-4 � � � �

Section 13BW 4-6 � � � �

Location
Laboratory testing on exhumed subgrade samples

*Depth below base course/subgrade interface
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Table 3.6. Test procedures used in this research project.  

 

ASTM Number Test Description Purpose Number of tests

ASTM C136 

(2005)

Standard Test Method for Sieve Analysis of Fine and 

Coarse Aggregates
I&C

1 70

ASTM D422 

(2005)

Standard Test Method for Particle-Size Analysis of Soils 

(Hydrometers)
I&C 124

ASTM D854 

(2005)

Standard Test Methods for Specific Gravity of Soil 

Solids by Water Pycnometer (Method B)
I&C 124

ASTM D1140 

(2005)

Standard Test Methods for Amount of Material in Soils 

Finer than No. 200 (75-µm) Sieve (Wash Sieve)
I&C 124

ASTM D1557 

(2005)

Standard Test Methods for Laboratory Compaction 

Characteristics of Soil Using Modified Effort (56,000 ft-

lbf/ft
3
 (2,700 kN-m/m

3
))

I&C 72

ASTM D1587 

(2005)

Standard Practice for Thin-Walled Tube Sampling of 

Soils for Geotechnical Purposes (Shelby Tubes)
I&C 36

ASTM D2216 

(2005)

Standard Test Methods for Laboratory Determination of 

Water (Moisture) Content of Soil and Rock by Mass
I&C 466

ASTM D4318 

(2005)

Standard Test Method for Liquid Limit, Plastic Limit, 

and Plasticity Index of Soils (Atterberg Limits)
I&C 54

ASTM D4491 

(2005)

Standard Test Methods for Water Permeability of 

Geotextiles by Permittivity
P&T

2 15

ASTM D5084 

(2005)

Standard Test Methods for Measurement of Hydraulic 

Conductivity of Saturated Porous Materials Using a 

Flexible Wall Permeameter (Method C)

LHC
3 2

ASTM D6391 

(2005)

Standard Test Method for Field Measurement of 

Hydraulic Conductivity Limits of Porous Materials Using 

Two Stages Infiltration from a Borehole (TSB) [First 

Stage Only]

FHC
4 20

ASTM D6574 

(2005)

Standard Test Method for Determining the (In-Plane) 

Hydraulic Transmissivity of a Geosynthetic by Radial 

Flow

P&T
2 15

ASTM D6938 

(2005)

Standard Test Method for In-Place Density and Water 

Content of Soil and Soil-Aggregate by Nuclear Methods 

(Shallow Depth)

I&C 36

No ASTM
Test Method for Laboratory Measurement of Hydraulic 

Conductivity using a Mariotte Bottle
LHC

3 16

1
Identification and Characterization of base course and subgrade material 

4
Field hydraulic conductivity of base course 

2
Permittivity and Transmissivity of geosynthetic separators

3
Laboratory hydraulic conductivity of recompacted base course 
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3.4.1. Identification and Characterization [I&C] of Base Course and Subgrade Materials  

A series of tests were performed to identify and characterize the base course and 

subgrade material. The identification and characterization tests performed for the research 

project include: grain size distribution (sieve analysis and hydrometers), wash sieve, specific 

gravity, modified proctor, Atterberg limits, laboratory hydraulic conductivity and moisture 

content. Each of these testing techniques is discussed in the subsequent subsections (Sections 

3.4.1.1 to 3.4.1.7). Empirical predictions of hydraulic conductivity as based on soil properties 

(porosity and/or grain size) are presented in Section 3.4.1.8.  

3.4.1.1 Sieve Analysis (ASTM C136) 

Seventy (70) dry sieve analysis tests were conducted in accordance with ASTM C136 

(2005) on 3,000 gram oven-dried sub-samples from 70 exhumed base course samples (one test 

per sample). These sieve analyses were conducted in November 2010 after the samples had been 

transported from the field to the UofA laboratory. In July 2011, dry sieve analyses were also 

performed on the base course samples remaining in the buckets for each of the eighteen sections 

at the base course/subgrade interface layer to ensure the initial 3,000 gram base course sample 

was a representative sample, and to segregate the material for proctor testing. These sieve 

analyses were performed to determine the difference in gradation between the initial gradation 

after sampling (November, 2010) and the remaining bucket sample (July, 2011). The samples 

ranged in weight from 10,335 grams (Section 4) to 19,636 grams (Section 6) for the ten-inch 

thick sections and ranged in weight from 7,974 grams (Section 8) to 15,849 grams (Section 13A) 

for six-inch thick sections. 

Dry sieve analyses were also performed in October, 2011 on the 18 recompacted base 

course samples obtained from the base course/subgrade interface after laboratory hydraulic 

conductivity testing was conducted. These sieve analyses were performed to determine if a gain 



81 
 

or loss in fines had occurred during proctor testing and hydraulic conductivity testing. The sieve 

sizes used for dry sieve analyses are presented in Figure 3.23. The results for the sieve analyses 

are presented in Section 4.2.1, and all of the grain size distribution plots obtained from the sieve 

analysis testing is presented in the Appendix in Section A.1, for completeness.  

   
 (a)         (b) 

Figure 3.23. Sieve sizes used for dry sieving as per AHTD (2010) specifications  

a) opening sizes for each sieve (in mm.) and b) picture of sieves. 

  

For the initial dry sieve analysis tests was performed on the 3,000 gram oven dried base 

course samples, a representative sample was obtained from the bucket by shaking the bucket 

prior to collecting the sample to be used for each test. Each test was conducted following ASTM 

C316 (2005). A Rainhart® model 637 mechanical sieve shaker (Figure 3.24) was used to shake 

the samples for 7.5 minutes (this reduction in time constitutes a deviation from the ASTM). The 

sieve sizes utilized for testing were determined using Section 303 of the AHTD specifications for 

aggregate base course grading requirements (AHTD, 2010).  

 

Opening Size

(mm)

1.5 inch 38.1

1 inch 25.4

3/4 inch 19.05

3/8 inch 9.525

Number 4 4.75

Number 10 2

Number 40 0.425

Number 200 0.075

Pan 0

Sieve Size
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 (a)         (b) 
 

Figure 3.24. a) sieve set placed in the Rainhart® model 637 mechanical sieve shaker, b) 

sieve set placed in the RO-TAP® model RX-29 mechanical sieve shaker. 

 
Wash sieving was performed in accordance with ASTM D1140 (2005) on 54 subgrade 

samples in March 2011 (as previously identified in Tables 3.4 to 3.5 on pages 77 to 78, 

respectively). Fifty grams of oven dried sample were used for each test. Ceramic bowls were 

used to assist in particle separation (Figure 3.25). A U.S. No. 200 standard sieve with an 

apparent opening size of 75µm (herein after referred to as a No. 200 sieve) was used to conduct 

the test (Figure 3.26). The percent passing the No. 200 sieve, using the wet washing method, was 

determined using Equation 3.2. 
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Figure 3.25. Subgrade sample being soaked in water prior to wash sieving. 

Where 
A is the percentage of material finer than the 75 µm sieve by washing (percent); 
B is the original dry mass of the sample (g), [50 grams for this research project]; 
C is the dry mass of the specimen retained on the 75 µm sieve including the amount retained on 
any upper sieve after washing (g).  
 

  

Figure 3.26. Wash sieving of subgrade sample using a standard No. 200 sieve. 

 
In a similar procedure to the wash sieving of the subgrade samples, wash sieving was 

performed for the base course samples following ASTM D1140 (2005). The base course samples 

were oven dried (1,500 grams following drying) then allowed to soak in water to assist in 

100]/)[( ×−= BCBA  (ASTM D1140, 2005)     Equation 3.2 
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particle separation. The base course sample were then transferred to a sieve set containing a No. 

40 sieve stacked on top of a eight inch deep No. 200 wash sieve (Figure 3.27a) to prevent 

damage to No. 200 sieve. The sieve set was then placed under a sink faucet and the faucet was 

turned on. Gentle stirring of sample was performed by hand without any downward pressure to 

ensure discharge of particles passing the No. 40 sieve without forcing particles through the 

screen. When the No. 200 eight inch deep sieve was approximately two thirds full of water and 

soil the faucet was turned off and the No. 40 sieve was removed (Figure 3.27b).  

The No. 200 sieve was then placed in the sink and gently stirred by hand without any 

downward pressure to ensure discharge of particles passing the No. 200 sieve without forcing 

particles through the screen. The No. 200 eight inch deep sieve was then placed under the faucet 

and water was turned on. The test was completed when the water passing the sieve was clear 

(Figure 3.27b). The entire soil sample retained on the No. 40 and No. 200 sieves were combined 

into a pan and oven dried at 105°C for 24 hours. The dry weight of the sample was measured and 

recorded, and the percent passing was determined using Equation 3.2.  
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 (a) (b) 

 

Figure 3.27. Wash sieving of base course sample using a) No. 40 sieve stacked on top of 

eight inch deep No. 200 sieve and b) eight inch deep No. 200 sieve. 

 

3.4.1.2 Hydrometer (ASTM D422) 

Hydrometer tests were performed on 70 base course and 54 subgrade samples (as 

previously identified in Tables 3.1 to 3.5 on pages 74 to 78, respectively). The testing procedure 

followed ASTM D422 with minor deviations. Six hydrometers tests (each containing a unique 

sample) were conducted simultaneously, using a common hydrometer control, temperature 

control, and cleaning bath. By conducting six tests at a time, the process of testing the 124 

samples was expedited. 

To prepare the salt solution, a one liter glass sedimentation cylinder was filled with 

deionized, de-aired water until the one liter mark was reached with the bottom of the meniscus. 

The cylinder was then placed on a digital stirring plate (Figure 3.28.a) and magnetic stirrer was 

used to agitate the sample in the cylinder. The rate of stirring was adjusted to keep the magnetic 

stirrer in continuous motion at the center of the sedimentation cylinder.   
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An antistatic polystyrene white weigh boat (VWR International, 2011) (hereafter referred 

to as a weigh boat) was tared on a scale and 40 grams of sodium hexametaphosphate (salt) was 

added to the weighing boat. The salt from the weigh boat was gradually transferred to the 

sedimentation cylinder (still on the stirring plate) at such a rate such that all crystals were 

suspended in the solution and did not reach the bottom of the sedimentation cylinder (Figure 

3.28b). The stirring was stopped when no visible salt particles were observed in the 

sedimentation cylinder. In each of the awaiting eight 250 mL capacity beakers, 125 grams of the 

prepared brine solution was poured.  

   
 (a)         (b) 

Figure 3.28. a) Digital stirring plate, b) Sodium Hexametaphosphate solution preparation. 

 
Fifty-five (55) grams of air dried base course or air dried subgrade (passing the No. 200 

sieve) were required for each test. The required 55 grams of base course material passing the No. 

200 sieve were obtained by manual sieving. The required 55 grams of subgrade material passing 

the No. 200 sieve were obtained by pulverizing the subgrade sample using a mortar and rubber 

tipped pestle. The six samples (each from a different depth in various sections) were then placed 

in metal moisture content tins, weighed and oven dried at 105°C for 24 hours. After the six 

samples were oven dried, 50.00 grams of samples were utilized for each hydrometer test. Each 
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sample solution (containing 125mL of sodium hexametaphosphate solution mixed with 50 grams 

of soil sample) was then stirred manually in a 250 mL beaker using a glass stirring rod for two 

minutes. Each solution was then transferred to a dispersion cup (Figure 3.29a), and the mixture 

was then mechanically dispersed for five minutes using a dispersion machine (Figure 3.29b). 

    
 (a) (b) 

 

Figure 3.29. a) Dispersion cup and b) dispersion machine. 

 
Each dispersed solutions was then transferred to an empty one liter sedimentation 

cylinder. Each cylinder was then filled with deionized water until the one liter mark was reached 

with the bottom of meniscus for all six samples. 

The hydrometer control and temperature control sedimentation cylinders contained the 

same sodium hexametaphosphate solution and were prepared in the same manner as the soil 

samples but did not contain 50 grams of soil. Each of the cylinders were sealed using a rubber 

stopper, one of which contained an opening to insert the thermometer. A third sedimentation 

cylinder, filled with tap water, was used as a bath to clean the hydrometer between readings. 

Following sample preparation, each of the cylinders containing the soil sample solutions, 

the hydrometer control solution, and the temperature control solution were mixed for one minute 
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by repeatedly turning the cylinder upside down and right side up. After one minute of mixing, 

the cylinders were placed on the table and not disturbed until the test was completed (24 hours 

later). An example of hydrometer testing in progress (six samples) is presented in Figure 3.30.  

         
 (a) (b) (c) 

 

Figure 3.30. a) Hydrometer testing in progress, b) temperature control, and c) hydrometer 

control. 

 
A stopwatch was used to determine the elapsed time from the start of the test. Only one 

stop watch was used for all the six hydrometers. The stop watch was started when the first 

cylinder was placed on the table after mixing (by the researcher); simultaneously the second 

cylinder was picked up (by laboratory assistant) and mixed. Similarly the third cylinder was 

picked up (by the researcher) concurrently at the time of the placement of the second cylinder 

(by the laboratory assistant). The two minutes reading for the first cylinder was recorded (by the 

laboratory assistant) while the third cylinder was being placed on the table (by the researcher). 

Hence all the readings of the third cylinder were one minute after the readings of the second 

cylinder which was one minute after the readings of the first cylinder. A similar technique was 

used for the fourth, fifth and sixth cylinder. At the fifteen minute reading for the third cylinder 

(recorded by the researcher) the fourth cylinder was picked (by the laboratory assistant) and 



89 
 

mixed for one minute. Therefore, the difference in reading time between the first and fourth 

cylinder was eighteen minutes. No conflict of readings occurred by implementing this technique.  

For each sample, measurements were taken at two (2), five (5), fifteen (15), thirty (30), 

sixty (60), ninety (90), two hundred and fifty (250), and one thousand four hundred and forty 

(1440) minutes elapsed time. Each reading was performed as follows (Figure 3.31): 

• the hydrometer was lowered into the sedimentation cylinder 15 seconds before the 
reading, 

• care was taken to avoid large movements of the hydrometer in the solution,  

• the readings (hydrometer control, temperature control, soil sample) were taken at each 
specified time, 

• and the values observed for the hydrometer control, temperature control, and soil sample 
were recorded simultaneously.  

 

 
 

Figure 3.31. Typical hydrometer test reading recorded. 

 
The results for the hydrometers for base course and subgrade samples are presented in 

Sections 4.2.2 and 4.2.3, respectively. Plots of the hydrometer results for all of the 70 base 

course samples (percentages based on the weight of the fine particles, and percentages based on 

the weight of the entire sample), and the hydrometer results for the 54 subgrade samples are 

presented in the Appendix, in Sections A.4, A.5, and A.6, respectively, for completeness.  
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3.4.1.3 Atterberg Limits (ASTM D4318) 

The Atterberg limits (plastic limit and liquid limit) were determined for 54 subgrade 

samples in accordance with ASTM D4318 (2005). For each of the 54 samples, a 200 gram air-

dried subgrade sample was added to the dispersion cup. Exactly 100 grams of deionized water 

was added to the dispersion cup containing each of the 200 gram air dried of subgrade samples. 

For each test preparation, the dispersion cup was then inserted in the dispersion machine (as 

previously shown in Figure 3.29b) and the sample was mechanically dispersed. The sample in 

the dispersion cup was checked periodically for lumps using a metal spatula. The mixing of 

sample was determined to be completed when the entire sample was free of lumps and at 

consistent water content throughout the sample. The sample from each of the dispersion cups 

was then transferred to a coffee filter located within a ceramic bowl. Each sample remained 

within the coffee filter in the bowl and allowed to air dry for 24 hours.  

Each previously prepared sample was then transferred from the filter paper into a small 

ceramic bowl. Each sample was thoroughly mixed using a metal spatula. If the sample appeared 

to be dry, water was added to the sample. After a consistent mix was achieved, the sample was 

spread evenly in the bottom half of the calibrated cup (Figure 3.32).  
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Figure 3.32. Liquid limit test conducted on subgrade sample. 

 
The number of drops that were needed to close a 0.5 inch long portion of the groove was 

recorded. The test was successful if the grove closed at least 0.5 inch using a minimum of 15 

blows or a maximum of 35 blows. A sample was obtained from each test by moving the spatula 

perpendicular to the groove from one end to another. The sample was placed in a water content 

tin with pre-determined weight and oven dried at 105°C for 24 hours. The weight of the dry 

sample and can was measured and recorded. The wet and dry weights of each corresponding 

sample were used to determine the moisture content of the sample. Because a multi-point liquid 

limit test was selected, three iterations of the test were performed for each sample at different 

moisture contents using portions of the same sample. The number of blows required for the three 

successive points ranged between 15-25, 20-30, and 25-35 blows. If the sample was too dry to 

achieve the desired number of blows, water was added, and if the sample was wet to achieve the 

desired number of blows, the sample was dried using an electric hair dryer.  

The moisture content obtained for the three trials were plotted against their respective 

number of blows (Figure 3.33). A best fit logarithmic trend line was plotted through the data 

points. The point corresponding to 25 blows was the liquid limit (LL) for the sample.   
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Figure 3.33. Subgrade liquid limit plot for sample obtained from Section 1B at a depth of 0-

2 inches below the base course/subgrade interface. 

 
For each sample, one-third of the previously prepared sample was spread on a glass plate 

which was twelve inches long by twelve inches wide by 0.5 inch thick. The samples were dried 

until it was feasible to roll the sample without the sample sticking to the glass plate. Sufficient 

pressure was applied to roll a uniform diameter thread which was approximately 1/8 inch thick. 

The roll was successful if the resulting thread broke by itself at diameter equal to 1/8 inch. This 

thread was transferred to a can (with pre-determined weight) and was covered by another can to 

avoid moisture loss while the additional sample was collected. For each section and depth, a 

cumulative sample of approximately twelve grams was placed in the two cans and their weights 

were measured and recorded. Each of the samples was dried at 105°C for 24 hours. The dry 

weight was measured and recorded. The moisture content (plastic limit) was determined using 

the wet and dry weights and averaging the results from the two containers. Summarized subgrade 

Atterberg limits results are presented in Section 4.3 and all of the subgrade Atterberg limits plots 

for the subgrade samples are presented in the Appendix, in Section A.7, for completeness.  

w = -1.97ln(n) +42.98
R² = 0.84

35.5

36.0

36.5

37.0

37.5

38.0

10 100

M
o
is

tu
re

 C
o

n
te

n
t,

 w
, 

(%
)

Number of Blows, n, (unitless)
25

LL



93 
 

3.4.1.4 Specific Gravity (ASTM D854) 

Specific gravity testing was performed on 70 base course and 54 subgrade samples (as 

previously identified in Tables 3.1 to 3.5 on pages 74 to 78, respectively). The specific gravity 

tests were conducted in accordance with ASTM D854 (2005), with deviations as discussed later 

in this section. Because specific gravity testing was only conducted on the portion of the samples 

passing the No. 200 sieve, 250 mL pycnometers were used. Each pycnometer was calibrated 

using the procedures specified in ASTM D854 (2005). Specifically, the exact volume of each of 

the pycnometer was obtained using Equation 3.3: 

where  
Vp is the calculated volume of the pycnometer (mL), 
Mpw,c is the mass of the pycnometer and water at the calibration temperature (g), 
Mp is the average mass of the dry pycnometer at calibration (g), 
ρw,c is the mass density of water at the calibration temperature (g/mL). 
 

Exactly 50.00 grams of oven dried base course and subgrade material passing the No. 200 

sieve was used to perform each test. As with the hydrometer testing discussed in the previous 

section, the base course material passing No. 200 sieve was obtained by manual sieving. While 

the samples of subgrade material passing the No. 200 sieve were obtained by pulverizing the 

subgrade sample using a mortar and rubber tipped pestle.  

During testing, the 50 grams soil sample was added to the pycnometer and the 

pycnometer was then filled with de-aired water until the bulb was half full. The pycnometer was 

connected to a vacuum pump via a hose and stopper and continually agitated for five minutes to 

de-air the sample. The elapsed time was measured using a stop watch. The sample remained in 

suspension while the solution was in constant motion. The pycnometer was then disconnected 

from the vacuum pump and the pycnometer was filled with deionized, de-aired water to the 250 

cw

pcpw

p

MM
V

,

, )(

ρ

−
=  (ASTM D854, 2005)     Equation 3.3 
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mL mark. The pycnometer was again connected to the vacuum pump for five minutes. This ten 

minute vacuum application was a deviation from ASTM D854 as the ASTM requires the 

pycnometer (with sample and deionized, de-aired water) to be continually agitated under vacuum 

for two hours.  

The weight of the pycnometer (with sample and deionized, de-aired water) after the de-

airing process was measured using a scale. The temperature of the solution was measured using a 

digital thermometer (Figure 3.34). The weight and temperature were duly recorded.  

 

Figure 3.34. Temperature measured of soil sample de-aired water solution in pycnometer 

as measured using a digital thermometer. 

 
The corrected specific gravity values at 20°C were calculated using Equations 3.4 to 3.7 

(obtained from ASTM D854, 2005). A summary of results for the specific gravity for the fines 

particles within the base course and subgrade samples is presented in Section 4.4, and all of the 

specific gravity results for base course and subgrade samples are presented in the Appendix, in 

Section A.8, for completeness.  

9982063.0
wK

ρ
=  

 

Equation 3.4 

 

266 )1095.4()1077.7(00034038.1 TTw ××−××−= −−ρ  
 

Equation 3.5 
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Where  
K is the temperature correction factor; 
ρw is the density of water (g/mL); 
T is the test temperature (°C); 
Gs is the specific gravity  
Ms is the mass of the oven dried soil solids (g); 
Mpw,t is the mass of the pycnometer and water at test temperature (g); 
Mpws,t is the mass of the pycnometer, water and soil solids at test temperature (g).  
 

3.4.1.5 Modified Proctor (ASTM D1557) 

Modified Proctor testing was performed on the 18 base course samples obtained from the 

base course/subgrade interface in accordance with ASTM D1557 (2005). Four proctor points 

were conducted per section (i.e. 72 base course samples were tested). Each proctor test was 

performed at the same gradation, for the base course/subgrade interface sample from the 

respective sections, as determined by dry sieving of the 3,000 gram sample conducted in 

November, 2010. A 5.5 kg sample was required per Proctor point to perform the modified 

proctor test. Due to lack of material in the interface base course sample, the interface samples 

were supplemented with portions of gradations from other samples within the same section at 

different depths. For example, the six-inch sections base course/subgrade interface layers located 

at a depth of four to six-inches below the asphalt/base course interface were supplemented with 

soil, from required portions of the gradation, within the layers located at a depth of zero to two 

inches and two to four inches below the asphalt/base course interface, from the same section. 

Similarly the ten-inch sections base course/subgrade interface layers located at  nominal depths 

of eight to ten-inches below the asphalt/base course interface were supplemented with soil from 

)(( ,, stpwstpw
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required portions of the gradation, from depths of six to eight inches and four to six-inches below 

the asphalt/base course interface, from the same section. Target moisture contents of three, five, 

seven, and nine percent were established for the four points based on in-situ conditions and a 

prior knowledge of the optimum water content for this material. The soil was compacted in five 

layers using 56 blows per layer. Sieving was performed on all of the oven dry interface samples 

and supplement samples (in accordance to Section 3.4.1.1). After sieving, the sample retained on 

each sieve was placed in metal pans (Figure 3.35). The weight of pan was recorded before and 

after the addition of samples.  

 

Figure 3.35. Individual grain sizes are placed in separate metal pans after sieving. 

 
Certain quantities of individual size particles matching the gradation of the interface 

sample, as obtained from the sieve analyses conducted in November, 2010 and discussed in 

Section 3.4.1.1 were placed in three feet by three feet metal pans (Figure 3.36).  
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Figure 3.36. Piles of individual particle sizes matching the gradation of interface samples 

obtained in November 2010, and placed in three foot by three foot metal pans. 

 
Each soil samples that had been separated into select gradations and placed in the 

aforementioned three foot by three foot metal pans was mixed using a trowel. The weight of a 

plastic spray bottle filled with tap water was measured and recorded. During sample 

preparations, water was sprayed onto each sample using the spray bottle as the sample was 

mixed together. The amount of water added to the soil was based on the target water content. 

The spray bottle was weighed periodically to ensure that an adequate amount of water was added 

to achieve the target moisture content. Mixing of the sample was concluded when the sample 

was observed to have uniform amount of water. After an adequate amount of water was added to 

each sample, the final weight of the spray bottle with water was recorded.  

For each sample, the first layer was placed in the mold assembly and the height from the 

top of the sample to the top of the mold assembly was measured. The sample was placed in the 

mold in approximate one inch thick layer. As per ASTM D1557 (2005), a manual rammer, 18 

inches tall, with a free fall drop height of 18 inches, and weighing 10 pounds was utilized. The 

mold used was 4.58 inches tall and six-inch diameter. The rammer was positioned perpendicular 

to the sample surface by holding the guide sleeve. Blows were delivered to the soil by holding 
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the guide sleeve vertically with one hand and raising the hammer with the other hand and 

allowing the hammer to fall freely. The first four blows were delivered to the four corners of the 

mold then the remaining blows were delivered in a circular pattern around the outside of the 

mold. A total of 56 blows per layer were delivered to the soil sample. After delivering 56 blows, 

the height from the top of the sample surface to the top of the mold assembly was measured 

using a ruler. On completion of compaction of the fifth layer, the collar was removed by 

loosening the screws. Each sample was then trimmed/leveled using a metal straight edge. Any 

holes in the top surface of the sample were filed with trimmed soil with a maximum hole size of 

1/8 inch. Any sample on the base plate or outside the mold was wiped away using a clean cloth 

towel. The weight of mold with sample (including base plate) was measured on a scale and 

recorded for each respective sample (Figure 3.37). The weight of the base course sample was 

calculated by subtracting the individual weights of base and mold from the combined weight of 

base, mold, and the sample. The unit weight was then determined by dividing the weight of the 

base course by the volume of the calibrated mold.  

 

Figure 3.37. Weight measurement of base and mold containing compacted base course 

sample. 
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For each of the 18 base course samples, an empty metal pan weight was measured and 

recorded following completion of each proctor test. The mold was then removed from the base 

plate and placed on the empty metal pan. A hammer was used to manually extrude each sample 

from the mold. Approximately one half of the sample from each mold was transferred into each 

pan. The weight of each pan and wet sample was measured using a scale and recorded. Each pan 

was then placed in an oven and dried at 105°C for 24 hours. The dry weight of each of the pans 

containing soil was measured on the scale and recorded.  

The dry and wet weights for each sample were used to calculate the moisture content of 

the recompacted base course samples. The wet density, dry density and moisture content of base 

course sample were calculated using Equations 3.8, 3.9, and 3.10, respectively. The results for 

the modified proctor testing on base course samples are presented in Section 4.5 and all the 

modified proctor plots obtained from the modified proctor testing for the base course samples are 

presented in the Appendix, in Section A.9, for completeness.  

 
Where  
ρw is the wet base course density (g/cm3); 
Msbm is the mass of soil, base plate, and cylindrical mold (g); 
Mbm is the mass of base plate and cylindrical mold (g); 
V is the volume of the mold (cm3); 
ρd is the dry base course density (lb/ft3); 
K is the conversion factor from g/cm3 to pcf which is 62.43; 
w is the moisture content of the sample (percent); 
Mwsp is the mass of the wet sample and pan (g); 
Mdsp is the mass of the dry sample and pan (g); 
Mp is the mass of the pan (g). 

c

bmsbm
w

V

MM −
=ρ  (ASTM D1557, 2005)     Equation 3.8 

w
K w

d
+

×=
1

ρ
ρ  (ASTM D1557, 2005)     Equation 3.9 

100×
−

−
=

pdsp

dspwsp

MM

MM
w  (ASTM D1557, 2005)     Equation 3.10 



100 
 

3.4.1.6 Lab Hydraulic Conductivity [LHC] of recompacted base course 

One of the laboratory testing techniques utilized to measure the hydraulic conductivity of 

recompacted base course material was using a Mariotte Bottle (MB) device. No ASTM is 

available for this testing method. One proctor point from each section was used to determine the 

laboratory hydraulic conductivity of the corresponding base course sample. As discussed in 

Section 3.4.1.5, the modified proctor test was performed in accordance with ASTM D1557 to 

create the recompacted soil. 

The sample tested from Section 13W was first placed in the device but no flow was 

observed over a three day period using the maximum possible hydraulic gradient (i) value of 4.5. 

The sample was then removed from the MB and transferred to the Flexible Wall Permeameter 

(FWP) device. Section 1B was initially placed in the FWP but the observed flow was in excess 

of the flow capacity of the FWP device (i.e. the flow was the same as the flow in FWP with no 

sample) and the sample was then transferred to the MB. The head in the MB was set at 6.2 cm, 

12.1 cm, and 23.8 cm to achieve i values of 0.5, 1.0, and 2.1, respectively. For Sections 10 and 

12 no flow was observed at i values of 0.5, 1.0, and 2.1. Therefore, heads of 35.6 cm, 41.4 cm, 

and 49.6 cm were utilized which resulted in i values of 3.1, 3.6, and 4.3, respectively. Results 

from constant head tests, using the MB, were obtained for 16 recompacted base course samples. 

For the MB testing procedure, the proctor mold was used as a rigid wall to encompass the soil 

during the test. The testing procedure was divided into individual steps, including equipment 

assembly, testing, and test completion.   

The first step in the testing process was equipment assembly. For each test, the base of 

the MB was placed on a table. A circular expanded metal mesh measuring six-inch in diameter 

with 1/16 inch circular openings along with synthetic fabric filter, also measuring six-inches in 

diameter, was then placed on top of the MB base. It was ensured, by visual inspection, that the 
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synthetic filter fabric was placed in contact with the sample. A black rubber sleeve (with two 

pipe clamps on the outside of the sleeve and measuring approximately six-inches in diameter) 

was then fitted on the base of the MB. It was visually ensured that approximately half height of 

the rubber sleeve was beyond the top of the base of the MB. The mold with the recompacted 

base course sample was then placed onto the filters (located in the rubber sleeve on the base of 

the bottle) and set flush with the help of the rubber sleeve. The clamps on the rubber sleeve were 

tightened using a nut driver. One clamp was used to tighten the sleeve on the base of the MB 

while the other clamp was used to tighten the sleeve on the mold. Another black rubber sleeve 

(with two pipe clamps on the outside of the sleeve) was placed on top of the mold. The sleeve 

was pushed downward so that one half of its height was on the mold. Companion circular 

expanded metal mesh and synthetic fabric filter were placed on top of the mold. It was ensured, 

by visual inspection, that the synthetic filter fabric was in contact with the sample. The top of the 

MB was then placed on top of the mold and set flush with the help of the rubber sleeve. The 

clamps were tightened using a nut driver. One clamp was used to tighten the sleeve on top of the 

mold while the other was used to tighten the sleeve on the bottom of the top of the MB (Figure 

3.38).  
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Figure 3.38. Constant head testing using the MB setup.  

 
The second step in the testing process was testing. For each test, an empty five gallon 

plastic bucket was placed in a sink with a faucet. The bucket was filled with water until it was 

approximately two thirds full. The entire equipment assembly (shown previously in Figure 3.38) 

was placed in the bucket. The water level in the bucket was above the top of the mold after the 

bottom of the MB assembly was fully submerged in the bucket filled. The base of the MB was 

sealed using three number seven rubber stoppers. The stand pipe of the MB was adjusted such 

that the bottom of the standpipe was at 6.2 cm above the datum (the minimum i value), and the 

top of the stand pipe was sealed using a rubber stopper.  

The MB was then filled with water from the faucet using the tubing attached to the top 

portion of the MB (Figure 3.39). While the MB was filled with water, the clip on the tubing on 

top of the device (controlling air flow in the equipment) remained open to prevent pressure build 

up in the equipment. When the bottle was almost completely filled, the faucet was turned off; the 

tubing was then removed from the faucet and sealed using a number three rubber stopper. The 
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clip on top of the MB was squeezed at the same time the faucet hose was plugged to close the 

vent valve. The three number seven stoppers were then removed from the base of the MB, and 

the test was initiated when the stopper was removed from the stand pipe. Removal of stopper 

from the stand pipe and the starting of the stopwatch (used to record time) were performed 

simultaneously.  

  

Figure 3.39. Mariotte bottle ready for testing. 

 
The time required for every five centimeter drop in the water level, as measured using a 

scale on the side, was recorded. The test was conducted for i of values of 0.5, 1.0, and 2.0 by 

placing the bottom of the stand pipe at 6.2 cm, 12.2 cm and 23.8 cm above the datum (located at 

the top of the bucket), respectively. The hydraulic gradient, corrected area and hydraulic 

conductivity were calculated using Equations 3.11, 3.12, and 3.13, respectively.  

l

h
i =       Equation 3.11 

spbcb AAA −=       Equation 3.12 
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Where  
i is the hydraulic gradient (unitless) 
l is the length of the (six-inch diameter) proctor mold (in cm); 
h is the position of the bottom of the stand pipe above the datum. 
Acb is the corrected area of the inside of the bottle (in cm2);  
Ab is the area of the inside of the bottle (in cm2);  
Asp is the outside area of the standpipe (in cm2);  
wlb is the water level at reading b (in cm); 
wla is the water level at reading a (in cm); 
tb is the stop watch time at reading b (in seconds); 
tb is the stop watch time at reading a (in seconds); 
h is the position of the bottom of the stand pipe above the datum. 
 

The third step in the testing process was test completion. For each sample, water was 

drained from the equipment when the test was completed by loosening the hose clamps. The 

equipment was then completely disassembled by removing the hose clamps. The mold and each 

sample were then removed from the equipment. Each sample was manually extruded from the 

mold using a hammer. The sample was then split between two metal pans and oven dried at 

105°C until the sample was dry. Sieve analyses were performed on each of the dried samples in 

accordance with Section 3.4.1.1. The results obtained from the hydraulic conductivity laboratory 

testing on base course samples are presented in Section 4.7, and all of the hydraulic conductivity 

results for base samples are presented in the Appendix, in Section A.10, for completeness.  

The hydraulic conductivity of two recompacted base course samples (Sections 1A and 

13W) was performed using a FWP device in accordance with ASTM D5084. The hydraulic 

conductivity for Sections 1A and 13W were obtained using a FWP for the reasons discussed in 

Section 3.4.1.6. The pressure in the cell water, head water, and tail water was fixed at 20 psi, 17 

psi, and 16 psi, respectively which resulted in an effective stress of 4.0 psi (at the bottom of the 

sample). The calculated values of i for Sections 1A and 13W were 7.4 and 7.3, respectively. The 
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hydraulic conductivity values for the last five readings were averaged to obtain the average 

laboratory hydraulic conductivity values of the recompacted base course samples.  

3.4.1.7 Moisture Content (ASTM D2216) 

As mentioned in Sections 3.2.2 and 3.2.3, approximately 250 gram and 400 gram 

subgrade and base course samples, respectively, were obtained from each two inch thick lift 

placed in moisture content tins, and transported back to the U of A laboratory. The weight of the 

moist sample placed in moisture content tins was measured immediately on site before the 

samples were transported back to the laboratory. The 70 base course samples and 54 subgrade 

samples were oven dried at 105°C for 24 hours and the dry weights were recorded. The moisture 

content was calculated using Equation 3.14. 

 
Where  
w is the water content (%) 
M1 is the mass of container and moist sample (g); 
M2 is the mass of container and dried sample (g); 
Mt is the mass of the tin (g).  
 

A similar procedure was followed for the moisture content determination of the 54 

proctor samples (described in Section 3.4.1.5).  The moisture conditioned base course, remaining 

in the three foot by three foot pans after each sample was compacted, was collected and a 

moisture content test was performed following the above mentioned procedure on each 

respective sample. As a part of Atterberg limits testing (described in Section 3.4.1.3), the water 

content was obtained for 270 samples. Also, following the hydraulic conductivity testing 

conducted in the Mariotte bottle (Section 3.4.1.6) and flexible wall permeameter (Section 

3.4.1.6), the water content was obtained for 16 and 2 samples, respectively.     
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3.4.1.8 Hydraulic Conductivity (empirical prediction) 

The hydraulic conductivity of the base course was also estimated using the empirical 

equations presented by Hazen (1930), Moulton (1980), and Sherard et al. (1984) in a similar 

manner as discussed in Section 2.4.3. As discussed previously, the Hazen (1930) and Sherard et 

al.(1984) methods utilize only values obtained from grain size distribution (D10 or D15, 

respectively) while the Moulton (1980) method utilizes both values obtained from the grain size 

distribution (D10 and P200) and the porosity (n). The Hazen (1930) equation is provided in 

Equation 3.15 (previously presented as Equation 2.1) while the Sherard et al. (1984) equation is 

provided in Equation 3.16 (previously presented as Equation 2.2) and the Moulton (1980) 

equation is provided in Equation 3.17 (previously presented as Equation 2.3). The results based 

on these empirical predictions are presented in Section 4.9. 

Where  
k is hydraulic conductivity (cm/s); 
D10 is size opening through which 10 percent by weight of dry sample will pass (mm);  
C is empirical coefficient (for this study 1.0). 

 
Where  
k is hydraulic conductivity (cm/s); 
D15 is size opening through which 15 percent by weight of dry sample will pass (mm).  
 
 
 

 
Where  
k is hydraulic conductivity (ft/day); 
D10 is size opening through which 10 percent by weight of dry sample will pass (mm);  
n is porosity of the material (unitless); 

2

10CDk =  (Hazen, 1930)     Equation 3.15 

2

1535.0 Dk =  (Sherard et. al., 1984) Equation 3.16 
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P200 is percent of material finer than the No. 200 sieve (75 µm). 
 

Note: The dry sieving conducted in November, 2010 was used to obtain the D10, D15, P200 values.  
These values were then used in the previously listed empirical equations to obtain hydraulic 
conductivity estimates.  
 

3.4.2. Transmissivity and Permittivity of Geosynthetic Separators [P&T] 

Transmissivity testing and permittivity testing were performed to determine the in-plane 

flow and cross plane flow through a geosynthetic sample, respectively. A total of fifteen tests 

were performed for each testing technique, ten on exhumed geotextile samples and five on new 

geotextile samples. As mentioned in Section 3.2.2, the exhumed samples were previously 

obtained from the six-inch and ten-inch sections (5 samples per section thickness) in October 

2010.  

3.4.2.1 Transmissivity (ASTM D6574) 

Transmissivity of a geotextile is the quantity of in-plane flow through a unit width. The 

transmissivity values of five geotextile samples in the six-inch sections, four geotextile samples  

in the ten-inch sections, and five new geotextile samples were obtained from laboratory 

measurements. The transmissivity testing was divided into individual steps including: sample 

preparation and placement, equipment setup, and testing.   

The first step in the testing process was sample preparation and placement. The 

transmissivity device was placed on a table. A one foot by one foot geosynthetic sample was 

measured and carefully removed from each of the two foot by two foot exhumed sample. New 

samples sent from the fabrication plant measured one foot by one foot, as requested. Each 

geosynthetic sample was placed in the center of the device. It was ensured, by visual inspection, 

that the sample was placed in the area cutout for sample placement. Following placement of the 

geosynthetic sample, a one foot by one foot, half inch thick acrylic plate was placed on top of the 
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sample without moving the sample. A water tight cushion was then placed on top of the acrylic 

plate to prevent water from flowing over the sample to ensure the water only flows through the 

sample. Another one foot by one foot, half inch thick acrylic plate was then placed on top of the 

cushion to carry a load applied to simulate overburden stresses. A predetermined weight of 

approximately 172 pounds was placed on top of the acrylic sheet to simulate field conditions 

(vertical effective stress of 1.0 psi).  

The second step in the testing process was equipment setup (Figures 3.40). The hose was 

connected to a faucet and turned on to fill up the device. The drain tube was placed in the 

laboratory catch basin to drain excess water. Another tube that discharged water passing through 

the geosynthetic sample was placed in an empty white bucket. The bucket was emptied out in a 

sink as needed. For each sample, the equipment was filled with water until a steady flow rate was 

observed. Head in the equipment was regulated using two adjustable stand pipes. One adjustable 

stand pipe was used to control the head water and one adjustable stand pipe was used to control 

the tail water. Two metallic rulers were used to measure heads (head water and tail water). One 

was used to read the head water level and one was attached to read the tail water level (Figure 

3.40a).  
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 (a) (b) 

 

Figure 3.40. Setup of transmissivity test a) upstream and b) downstream.  

 
The third step in the testing process was testing. The tail water stand pipe was maintained 

at 14.8 cm (to achieve an effective stress of 1 psi) while the head water stand pipe was adjusted 

to obtain variable head difference for at least five measurements. The time required for a fixed 

volume of water to pass through the geosynthetic and discharge from the pipe was recorded 

using a stop watch. The fixed volumes used for testing of each sample were 100 mL, 250 mL, 

500 mL, 1000 mL, 2000 mL and 5000 mL depending on the flow rate. A graduated cylinder was 

used for the 100 mL, 250 mL, 500 mL, and 1000 mL discharge while pre-determined volumes 

were marked in the bucket for the 2000 mL and 5000 mL discharge. Each measurement was 

performed twice, and an average flow was calculated for each volume of flow. The hydraulic 

gradient was calculated using Equation 3.18 and transmissivity values were obtained using 

Equation 3.19.  

l

h
i

∆
=  (ASTM D6574, 2005)  Equation 3.18 
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Where  
i is the hydraulic gradient (unitless) 
∆h is the difference in upstream head and downstream head (in cm); 
l is the length of the sample (in cm); 
θ is the transmissivity of the geotextile (in m2/s); 
Q is the flow through the geotextile (in liter/sec); 
w is the width of the geotextile sample (in cm); 

 
A summary of the results obtained from the transmissivity testing conducted on all the 

geotextile samples are presented in Section 4.11.1, and all of the results that were obtained 

during the transmissivity testing are presented in the Appendix, in Section A.11, for 

completeness.  

3.4.2.2 Permittivity (ASTM D4491) 

The permittivity of a geotextile is a measure of the flow through an area in the transverse 

direction. The permittivity values of six geotextiles in the six-inch sections, four geotextiles in 

the ten-inch sections, and five new geotextile samples were obtained from laboratory 

measurement. The testing procedure for permittivity testing was divided into individual steps 

including sample preparation, equipment setup, and testing.  

The first step in the testing procedure was sample preparation and sample placement. The 

permittivity device was placed on a table. A three inch diameter circle was marked (using a 

white Sharpie®) on each geotextile sample and removed using scissors. Samples were obtained 

from either the unused exhumed sample or the new sample. For the new sample, each sample 

was trimmed from the one foot by one foot sample received from the fabrication plant and 

previously tested, as described in Section 3.4.2.2. 

The second step in the testing procedure was equipment setup. For each test, the top of 

the device was inverted and the circular sample was placed in the opening reserved for the 
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sample. A circular brass plate with openings for four screws, an outside diameter of three inches, 

and hollow diameter of 2.5 inches was placed on the top of each of the samples. Each sample 

was secured by clamping down the brass plate using the four screws inserted through the four 

openings in the brass plate (Figure 3.41).  

  
 

Figure 3.41. Geotextile sample secured using brass plate in the permeability device.  

 
 Plumbers putty was applied on top of the base to avoid water leaks. The top assembly 

was then placed on the base of the device and pressed firmly. The top and base were secured 

using four 1/4 inch diameter bolts. A hose was connected to a water source on one end and to the 

permittivity device on the other. The device was then filled using water using the hose. A 

constant amount of water was supplied to the device to make water overflow through the weir on 

top of the device, creating a constant head. The permittivity device setup is presented in Figure 

3.42. 
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 (a) (b) 

 

Figure 3.42. Setup of permittivity device a) sample location and b) test reading.  

 
The third step of the testing process was testing. The two standpipes (one is adjustable 

and the other is not adjustable) were kept vertical to obtain a steady state discharge. A head 

difference was created by rotating the adjustable stand pipe and collecting the discharge in a 

graduated cylinder. The volume of flow was recorded along with the time required to obtain this 

volume. The head in the non-adjustable standpipe was maintained at approximately 40 cm, and a 

variable head difference was created by inclining the adjustable outflow arm (Figure 3.42b). A 

summary of the results obtained from permittivity testing on the geotextile samples are presented 

in Section 4.11.2, and all the results for the permittivity testing on geotextiles samples are 

presented in the Appendix, in Section A.12, for completeness. 
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3.5. Pavement Conditions 

Pavement conditions are an important indicator of the pavement performance. The 

vertical alignment of the top of the asphalt, the top of the base course, and the top of the 

subgrade were obtained during the site visit in October 2010 using surveying instruments (total 

station), as discussed in Section 3.5.1. Asphalt and base course depth measurements were also 

obtained using manual methods (tape measure) as discussed in Section 3.5.1. A pavement 

distress survey conducted by AHTD personnel and analyzed and reported by Goldman (2011) is 

presented in Section 3.5.2.  

3.5.1. Pavement Profile (October 2010) 

The top of the asphalt layer was measured, using a total station, at the four corners of 

each of the two foot by two foot test area: before the asphalt was removed, after the asphalt was 

removed, and after the base course was removed (Figure 3.43). The depth of the asphalt and the 

depth of the base course were obtained from these measurements by subtracting the top of the 

base course elevation from the top of the pavement elevation, and by subtracting the top of the 

subgrade elevation from the top of the base course elevation, respectively. The depth of the 

asphalt layer was also manually measured (using a tape measure) at the four corners of the two 

foot by two foot test area (after asphalt was removed) as presented in Figure 3.44a. Similarly the 

depth to the base course/subgrade interface was also measured using manual techniques as 

presented in Figure 3.44b. These values were used to determine the thickness of the asphalt and 

base course layers in all of the 18 test sections.  
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 (a) (b) 

Figure 3.43. Elevation recorded using survey equipment at a) top of asphalt and b) top of 

base course.  

 

   
 (a) (b) 
 

Figure 3.44. Manual depth verification to a) top of asphalt and b) top of base course.  
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 A summary of results of these elevation and pavement thickness measurements is 

presented in Section 4.13. These measurements were obtained to identify the actual thickness of 

the asphalt and base course layers. This data was obtained after the sections had been in service 

for five years. Some of the sections were demonstrating severe rutting at the time of data 

acquisition which may lead to discrepancies in results.    

3.5.2. Pavement Distress Survey (modified from Goldman (2011)) 

Pavement distress survey data collected by AHTD personnel in June 2010 and April 2011 

was analyzed and reported by Goldman et al. (2011). The data includes percentage of the lane 

with alligator cracking (based on area), total linear feet of longitudinal cracks, and average rut 

depth measurements. The data was used to analyze the pavement performance over its service 

life and compare the relative performance of six-inch thick sections to the ten-inch thick 

sections. The summary of results for this data is presented in Section 4.14.  

3.6. Conclusion 

Sample acquisition techniques for exhuming base course, subgrade, and geosynthetic 

samples were presented in this chapter. The procedures followed to perform the in-situ hydraulic 

conductivity testing on the base course (conducted using the TSB technique) in October 2010 

and May 2011 was also presented in this chapter. In-situ testing using DCP and CBR, as 

conducted jointly with this project but as a part of TRC Project 0903, were briefly mentioned for 

completeness.  

The methods and procedures utilized for laboratory testing in this research were 

presented in detail. The testing was performed in accordance with ASTM standards (any 

deviations from the ASTM were also reported). The laboratory testing for hydraulic conductivity 

of 16 base course were performed utilizing a constant head device (Mariotte Bottle) for which no 
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ASTM is present. The laboratory testing for hydraulic conductivity of two base course samples 

(with relatively low flow) was tested utilizing a Flexible Wall Permeameter which was 

conducted in accordance with ASTM D5084. Insufficient base course sample for modified 

proctor tests conducted on the samples from the base course/subgrade interface samples led to 

this sample being supplemented with certain grain sizes from other depths in the same section. 

The sieve sizes used to determine the base course particle size conformed to AHTD (2010) 

specifications.  

The laboratory testing performed on exhumed subgrade samples included: wash sieve, 

hydrometer, Atterberg limits, and specific gravity testing. The laboratory testing performed on 

exhumed base course samples included: dry sieve, wet sieve, hydrometer, specific gravity, 

modified proctor, and hydraulic conductivity testing. Transmissivity and permittivity laboratory 

testing procedures were followed for testing the exhumed geotextile samples and newly acquired 

samples. The procedures followed to obtain field data to quantify pavement conditions (surface 

elevation, asphalt thickness, base course thickness, alligator cracking, longitudinal cracking, and 

rutting) were also presented in this chapter. The results obtained by following the testing 

procedures described in this chapter are discussed in Chapter 4 and presented for completeness in 

the Appendix.   
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Chapter 4. Results 

4.1.  Introduction 

 Results obtained from testing conducted in the laboratory and in the field are presented in 

this chapter. Discussion about the results is also presented within the chapter for each testing 

technique.  Specifically, the results obtained from the: grain size analysis (sieve analysis and 

hydrometers), Atterberg limits, specific gravity, modified proctor, hydraulic conductivity, 

transmissivity, and permittivity testing are presented with discussion of the results also being 

presented.. Also, the results from the: in-situ hydraulic conductivity testing conducted on the 

base course, gravimetric moisture content testing conducted on the base course and subgrade, 

nuclear density testing conducted on  the base course and subgrade, and pavement performance 

are presented and discussed. 

The results obtained from grain size analysis testing conducted on the base course 

samples are presented in Section 4.2. The results obtained from subgrade Atterberg limits testing 

on the subgrade samples are presented in Sections 4.3. The results obtained from specific 

gravity, in-situ gravimetric moisture content, and unit weight testing is presented in Section 4.4. 

The results obtained from modified proctor testing conducted on the base course samples are 

presented in Section 4.5. Comparisons between the index properties obtained as a part of this 

research and the index properties obtained with past research are presented in Section 4.6. 

Hydraulic conductivity values, as obtained from laboratory and in-situ measurements, for the 

base course samples are presented in Sections 4.7 and 4.8, respectively. Comparisons between 

the laboratory and field obtained hydraulic conductivity results (for base course samples) and 

empirical predictions of hydraulic conductivity are presented in Section 4.9.  
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Geotextile design criteria, as applied to the geotextiles already in place at the Marked 

Tree Test Section, are presented and discussed in Section 4.10. Transmissivity and permittivity 

results obtained for new and exhumed geotextile samples are presented and discussed in Section 

4.11.1 and 4.11.2. Observations made during the October 2010 during the geotechnical 

investigation and pavement profile measurement obtained during the October 2010 site visit are 

presented in Section 4.12 and 4.13, respectively. The pavement distress survey (as modified from 

Goldman, 2011) is presented and discussed in Sections 4.14. 

4.2. Grain Size Analysis (dry sieve analysis, wet sieve analysis, and hydrometer analysis)  

As discussed in Section 3.4.1.1, a grain size distribution was determined for each of the 

of the base course samples by performing sieve analysis (dry and wet) and by conducting 

hydrometer tests. A grain size distribution was determined for each of the subgrade samples by 

performing sieve analysis (wet) and by conducting hydrometer tests.  The results of these grain 

size analyses are presented in Sections, 4.2.1, 4.2.2, and 4.2.3.  

4.2.1. Sieve Analysis  

A typical gradation of a base course sample, as obtained from Section 1B at a depth of 0-

2 inches below the asphalt/base course interface, is presented in Figure 4.1. The sieve analyses 

were performed in accordance with the testing procedures presented in Section 3.4.1.1. The grain 

size results including D60, D30, D15, D10, Cu and Cg are also presented in Figure 4.1. The grain 

size distribution curves obtained for all the 70 base course sub-samples are presented in the 

Appendix, in Section A.1, for completeness.  
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Figure 4.1. Gradation of base course sample obtained from Section 1B at a depth of 0-2 

inches below the asphalt/base course interface. 

 
Typical gradations of base course samples obtained from Section 1B at a depth of 8-10 

inches below the asphalt/base course interface, as conducted: 1) after sampling (November 

2010), 2) before proctor testing (July 2011), and 3) after hydraulic conductivity testing (October 

2011) are presented in Figure 4.2.  

The gradations obtained from the three dry sieving techniques are in close agreement. 

Minor changes in gradation are observed due to particle movement and breakage. The grain size 

results including D60, D30, D15, D10, Cu and Cg for the dry sieving conducted in November 2010, 

July 2011, and October 2011 on the Section 1B sample obtained from 8-10 inches below the 

asphalt/base course interface are also presented in Figure 4.2. All of the  grain size distribution 

curves comparing the gradations obtained from the dry sieve analyses conducted in November 

2010, July 2011, and October 2011 for the 18 base course samples obtained from the base 

course/subgrade interface (one from each section) are presented in the Appendix, in Section A.2, 

for completeness. 
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Figure 4.2. Gradation of base course sample from Section 1B at a depth of 8-10 inches 

below the asphalt/base course interface as conducted: 1) after sampling (November 2010), 

2) before proctor testing (July 2011), and 3) after hydraulic conductivity testing (October 

2011). 

 
Wet sieve testing was also performed in March 2011 in accordance with the testing 

methods outlined in Section 3.4.1.1 to compare the fines content obtained using the two sieving 

methods (dry sieving and wet sieving). The fines content obtained for the base course at the base 

course/subgrade interface, within each of the 18 section, as obtained using the three dry sieving 

techniques and one wet sieving technique are tabulated in Table 4.1and presented graphically in 

Figure 4.3. The fines content values as obtained using the wet sieving technique for the 70 base 

course samples and 54 subgrade samples are presented in the Appendix, in Section A.3, for 

completeness.  
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Table 4.1. Fines content (in percent) for the base course at the base course/subgrade 

interface layer (4-6 inches below the asphalt/base course interface for the six-inch thick 

sections and 8-10 inches below the asphalt/base course interface for the ten-inch thick 

sections).   
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Figure 4.3. Fines content (in percent) for the samples as obtained from the base 

course/subgrade interface layer (4-6 inches for six-inch thick sections and 8-10 inches for 

the ten-inch thick sections, as measured below the asphalt/base course interface). 
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The fines content determined by dry sieving in July 2011 (on the remainder of the bucket 

sample before proctor testing) exhibited a higher fines content when compared to the initial dry 

sieving of the 3,000 gram samples in October 2010. However, for Section 3 and Section 13W the 

fines content decreased from 2.30 to 2.13 percent and from 3.10 percent to 2.65 percent, 

respectively, between the 3,000 gram sub-sample and the remainder sample. The typical increase 

in fines content may be attributed to the sample size. The base course samples remaining in the 

bucket as obtained from the base course/subgrade interface ranged in weight from 10,335 grams 

(Section 4) to 19,636 grams (Section 6) for the ten-inch thick sections and ranged in weight from 

7,974 grams (Section 8) to 15,849 grams (Section 13A) for six-inch thick sections. 

The fines content for the base course samples obtained from the base course/subgrade 

interface as determined by dry sieving (after hydraulic conductivity testing) on the recompacted 

base course samples exhibited higher fines content when compared to the initial dry sieving of a 

3,000 gram sub-sample. A minimum increase of 1.73 percent (Section 6) and a maximum 

increase of 2.59 percent (Section 1A) were observed in the ten-inch thick sections. Similarly, a 

minimum increase of 0.94 percent (Section 13W) and a maximum increase of 2.17 percent 

(Section 11) were observed in the six-inch thick sections. The increase in fines may be attributed 

to sample size and particle breakage.  

Each sample weighed approximately 5,500 grams before the proctor test as compared to 

the 3,000 gram sub-sample. Also, particle breakage occurred during the recompaction process 

(modified proctor testing) after which the hydraulic conductivity test was performed. The 

increase in fines content was attributable to these factors. Although hydraulic conductivity 

testing has been shown by other researchers (Blanco, 2003) to wash out fines it appears that 
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particle breakage had a larger influence than fines wash out  as the fines contents were higher 

after hydraulic conductivity testing.  

Higher fines contents were obtained by wet sieving than by dry sieving (when compared 

to the initial dry sieving of a 3,000 gram sub-sample) for base course samples obtained from the 

base course/subgrade interface. An average increase of 6.60 percent and 6.97 percent was 

observed for the ten-inch thick sections and six-inch thick sections, respectively.  As observed 

previously in Figure 4.3, base course samples obtained from the base course/subgrade interface 

layer for Section 13W appear to be exception for all four of the sieving methods. The profile of 

fines content with depth as determined by wet sieving is presented for this section is presented in 

Figure 4.4.  

 

Figure 4.4. Profile of fines content (in percent) with depth for Section 13W as determined 

by wet sieving.  

 
The fines content in the base course immediately above the base course/subgrade 

interface (as determined from the sample obtained at a nominal depth of 4-6 inches below the 

asphalt/base course interface) ranged from 2.65 to 5.14 percent in Section 13W, for the various 

sieving techniques. The measured fines content obtained by dry sieving were typically higher in 

Section 13W than the measured fines content in the adjacent sections. However, the lowest 

measured fines content in the base course, on samples obtained at the base course/subgrade 

interface, was obtained by wet sieving the sample from Section 13W. The loss in fines within the 
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base course may be caused by fines transport along the base course/subgrade interface layer, in 

the lateral direction, to another section.  It was assumed that the as-placed fines content for the 

base course samples at this site was 10 percent (as obtained by wet sieving); this was the 

maximum value allowed (as per AHTD regulations) for fines content within base course when 

this test site was constructed.  No values for fines content within the base course at the Marked 

Tree Test Section site were reported in Brooks (2009), Hall et al. (2007), or Howard (2006). 

Therefore, any deviation in fines content above or below 10 percent is of interest.  As discussed 

in Chapter 2, and as will be discussed later in Section 4.7, the fines content within the base 

course is an important design parameter as it has been shown to correlate with permeability 

(Moulton, 1980, and to affect the permittivity and transmissivity of a geotextile placed within the 

pavement system (typically placed at the base course/subgrade interface (FHWA, 1998).      

The fines contents as determined by wet sieving for the 18 interface base course samples, 

as obtained from the base course/subgrade interface layer (nominally 4-6 inches below the 

asphalt/base course interface for the six-inch thick sections and nominally 8-10 inches below the 

asphalt/base course interface for the ten-inch thick sections) are presented in Table 4.2, Likewise,  

the fines contents as determined by wet sieving for the 18 interface subgrade samples, as 

obtained from the subgrade/base course interface layer (0-2 inch below the base course/subgrade 

interface), are presented in Table 4.2. The differences in fines content (determined by wet 

sieving) between the subgrade and base course samples located below and above the base 

course/subgrade interface, are presented in Figure 4.5a along and the locations of the samples 

(for the different base course thicknesses) is identified with a schematic (Figure 4.5b).    
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Table 4.2. Fines content (in percent) determined by wet sieving for the  base course samples 

obtained from the base course/subgrade interface layer and for the  subgrade samples 

obtained from the subgrade/base course interface layer.  

 

 

 

 

Depth*
% Finer than 

75µm (B)
Depth**

% Finer than 

75µm (S)
(S)-(B)

(inch) (%) (inch) (%) (%)

Section 1B 8-10 9.9 0-2 56.7 46.9

Section 1A 8-10 8.1 0-2 56.4 48.3

Section 1 8-10 8.3 0-2 70.7 62.4

Section 2 8-10 7.5 0-2 68.4 60.9

Section 3 8-10 7.8 0-2 69.0 61.2

Section 4 8-10 7.6 0-2 70.1 62.5

Section 5 8-10 7.2 0-2 62.2 55.0

Section 6 8-10 10.7 0-2 66.7 56.0

Mean 8-10 8.4 0-2 65.0 56.7

Section 8 4-6 11.1 0-2 64.7 53.6

Section 9 4-6 10.3 0-2 63.5 53.2

Section 10 4-6 8.9 0-2 59.9 51.0

Section 11 4-6 7.6 0-2 66.3 58.8

Section 12 4-6 7.4 0-2 45.9 38.5

Section 13 4-6 10.5 0-2 72.4 61.9

Section 13W 4-6 5.1 0-2 61.3 56.2

Section 13A 4-6 7.6 0-2 78.2 70.6

Section 13B 4-6 8.8 0-2 60.1 51.3

Section 13BW 4-6 9.2 0-2 75.4 66.2

Mean 4-6 8.6 0-2 64.8 56.1

*Depth below asphalt/base course interface

**Depth below base course/subgrade interface

Location

S = Subgrade, B = Base Course
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 (a)  (b) 

Figure 4.5. (a) Difference in fines content (in percent as determined by wet sieving) between 

the subgrade and the base course samples immediately above and below the base 

course/subgrade interface and (b) schematic identifying the locations of the samples within 

the depth profile.  

 
Because the difference in the fines content (between the subgrade and base course 

samples immediately above and below the base course/subgrade interface) for the samples 

obtained in Sections 1 and 13 (the control sections) both have a difference of approximately 62 

percent, this is treated as the standard and significant deviations away from this value are of 

interest. 

The average difference in fines content (as obtained from wet sieving) was 56.7 percent 

and 56.1 percent for the ten-inch thick and six-inch thick sections, respectively. The comparison 

between the six-inch thick and the ten-inch thick sections reveal that the same difference in fines 

content between the base course and subgrade samples at the subgrade/base course interface for 

the same fabric in corresponding sections containing the same fabric but different base course 

thicknesses. The exceptions to this observation were Sections 1A and 13A, Sections 2 and 12 
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and, Sections 4 and 10. The difference in fines content between Sections 1A and 13A, Sections 2 

and 12, Sections 4 and 10 is 22.3 percent, 22.4 percent, 11.6 percent, respectively. The difference 

in fines content might be an indication of fines retention or clogging in Section 1A, Section 10, 

and Section 12.  

No comparison between the six-inch thick sections (13W and 13BW) and the 

corresponding ten-inch thick sections (1W and 1BW) was performed because no samples were 

obtained for the corresponding ten-inch thick sections (1W and 1BW). Sections 13W and 13BW 

were not initially within the scope of this research project (or previous research projects) but 

during the field visit in October, 2010 these sections were visually identified as failing. Hence 

samples were obtained from these sections to identify why these sections were failing. The fines 

content obtained by conducting wash sieve analyses on the 70 base course samples and the 54 

subgrade samples are presented in the Appendix, in Section A.3, for completeness.  

4.2.2. Hydrometer Analysis (Base Course) 

Hydrometer testing was conducted on the base course samples in accordance with the 

procedures outlined in Section 3.4.1.2. Typical results from a hydrometer test conducted to 

determine the silt and clay content in a base course sample, normalized relative to percentage 

passing the No. 200 sieve and normalized by weight of the entire sample, are presented in 

Figures 4.6a and 4.6b, respectively.  The typical sample results presented in Figure 4.6 were 

obtained for the sample from Section 1B at a depth of 0-2 inches below the asphalt/base course 

interface.     
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 (a)  

  

 
 (b) 

 

Figure 4.6. Result obtained from hydrometer testing conducted to determine the silt and 

clay contents a) normalized relative to percentage passing the No. 200 sieve and b) 

normalized by the weight of entire sample in the base course sample obtained from Section 

1B at a depth of 0-2 inches below the asphalt/base course interface. 

 
By normalizing the plots relative to the percent passing the No. 200, the percentage of 

fines that are silt or clay was determined.  By normalizing the plots relative to the total weight of 

the sample, the percentage of the whole sample that is silt or clay was determined.  For the 

example shown in Figure 4.6 (Section 1B 0-2 inches below the asphalt/base course interface), the 

fines are 91.7 percent silt  and 8.3 percent clay, or the whole sample is 11.0 percent silt and 1.0 
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percent clay. The silt content of the fines in the base course at the base course/subgrade interface 

layers is presented in Figure 4.7.  

 
 

Figure 4.7. Silt content (in percent) of the fine particles for the base course samples 

obtained from the base course/subgrade interface layers for the six-inch thick sections and 

the ten-inch thick sections (as determined by hydrometer testing). 
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between Sections 1B and 13B, and Sections 4 and 10 are more significant. The silt content in 

Section 1B is 4.2 percent higher than Section 13B, and the silt content in Section 4 is 2.8 percent 

higher than Section 10. Similarly, the clay content of the fines in the base course sample at the 

base course/subgrade interface layer for the six-inch thick sections and the ten-inch thick 

sections is presented in Figure 4.8.  A summary of minimum and maximum silt content and clay 
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content of fine particles in the base course samples, at the base course/subgrade interface, for the 

six-inch thick and ten-inch thick sections is also presented in Table 4.3. 

 
 

Figure 4.8. Clay content (in percent) for the base course samples obtained from the base 

course/subgrade interface layers for the six-inch thick sections and the ten-inch thick 

sections (as determined by hydrometer testing). 
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The clay content in Section 13B is 4.2 percent higher than Section 1B, and the clay 

content in Section 10 is 2.84 percent higher than Section 4. As observed in Figure 4.8, the 

samples with the highest clay contents, within the fines in the base course, are found at the base 

course/subgrade interface in Sections 10, 13W, and 13B.  The grain size distribution curves 

obtained for all 70 base course samples, as normalized relative to the fines content, and as 

normalized relative to the entire sample are presented in the Appendix, in Sections A.4 and A.5, 

respectively, for completeness. 

4.2.3. Hydrometer Analysis (Subgrade) 

The hydrometer testing conducted on the subgrade samples was performed in accordance 

with the procedures outlined in Section 3.4.1.2 to determine the silt and clay content of the entire 

sample. The fines content determined by wet sieving (following the procedures outlined in 

Section 3.4.1.1) provided the percentage of the soil sample that is classified as fines. Example 

results from a hydrometer test conducted on a subgrade sample obtained from Section 1B at 

depth of 0-2 inches below the base course/subgrade interface is presented in Figure 4.9.  

 
 

Figure 4.9. Result obtained from hydrometer testing conducted to determine the silt and 

clay content in the subgrade samples as obtained from Section 1B at a depth of 0-2 inches 

below the base course/subgrade interface. 
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As obtained from hydrometer testing, the silt content of the sample shown in Figure 4.9 is 

39.8 percent while the clay content is 16.9 percent.  Summaries of silt content and clay content of 

the subgrade samples from the six-inch thick and the ten-inch thick sections are presented in 

Tables 4.4a and 4.4b, respectively.  
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Table 4.4. Summary of silt and clay content for subgrade samples (normalized by weight of 

entire subgrade sample) for the a) six-inch thick sections and b) ten-inch thick sections.  

 (a) (b) 

     
 

The silt content of the subgrade samples obtained from the  ten-inch-thick sections and 

the six-inch thick sections ranged from 21.3 percent (Section 1A, 2-4 inches) to 50.2 percent 

(Section 2, 2-4 inches) and 23.8 percent (Section 12, 2-4 inches) to 58.2 percent (Section 13A, 0-

Depth* Silt Clay

(inch) (%) (%)

Section 1B 0-2 39.8 16.9

Section 1B 2-4 37.6 15.2

Section 1B 4-6 39.0 17.5

Section 1A 0-2 37.9 18.5

Section 1A 2-4 21.3 9.1

Section 1A 4-6 36.2 17.8

Section 1 0-2 47.8 22.9

Section 1 2-4 44.2 20.3

Section 1 4-6 47.1 21.9

Section 2 0-2 44.7 23.7

Section 2 2-4 50.2 20.7

Section 2 4-6 45.1 23.8

Section 3 0-2 43.3 25.7

Section 3 2-4 42.0 25.7

Section 3 4-6 48.4 27.8

Section 4 0-2 44.4 25.7

Section 4 2-4 43.2 26.5

Section 4 4-6 42.2 21.7

Section 5 0-2 36.4 25.8

Section 5 2-4 33.5 25.1

Section 5 4-6 43.7 32.0

Section 6 0-2 41.1 25.6

Section 6 2-4 44.2 31.8

Section 6 4-6 43.0 31.6

Mean - 41.9 24.0

Location

*Depth below asphalt/base course interface

Bold represent the maximum and minimum values 

Depth* Silt Clay

(inch) (%) (%)

Section 8 0-2 36.4 28.3

Section 8 2-4 40.5 31.1

Section 8 4-6 41.7 30.9

Section 9 0-2 39.1 24.4

Section 9 2-4 36.8 25.3

Section 9 4-6 43.7 26.0

Section 10 0-2 38.2 21.7

Section 10 2-4 47.1 24.5

Section 10 4-6 41.6 19.6

Section 11 0-2 39.7 26.6

Section 11 2-4 30.4 21.1

Section 11 4-6 45.2 33.9

Section 12 0-2 26.3 19.6

Section 12 2-4 23.8 17.6

Section 12 4-6 24.1 16.5

Section 13 0-2 39.0 33.4

Section 13 2-4 37.1 51.8

Section 13 4-6 36.0 51.2

Section 13W 0-2 36.0 25.3

Section 13W 2-4 37.2 30.9

Section 13W 4-6 40.7 41.5

Section 13A 0-2 58.2 20.0

Section 13A 2-4 28.3 11.6

Section 13A 4-6 35.2 55.8

Section 13B 0-2 32.8 27.4

Section 13B 2-4 30.8 22.8

Section 13B 4-6 29.5 19.0

Section 13BW 0-2 47.3 28.1

Section 13BW 2-4 48.2 28.7

Section 13BW 4-6 29.6 20.9

Mean - 37.3 27.8

Location

*Depth below base course/subgrade interface

Bold represent the maximum and minimum values 
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2 inches), respectively. The grain size distribution curves obtained for all 54 subgrade samples 

are presented in the Appendix, in Section A.6, for completeness. 

The clay content for the ten-inch thick sections and the six-inch thick sections ranged 

from 9.1 percent (Section 1A, 2-4 inch) to 32.0 percent (Section 5, 4-6 inch) and 11.6 percent 

(Section 13A, 2-4 inch) to 55.8 percent (Section 13A, 4-6 inch), respectively. The average silt 

content for the ten-inch thick sections and the six-inch thick sections were 41.9 percent and 37.3 

percent, respectively. The average clay content for the ten-inch thick sections and the six-inch 

thick sections were 24.0 percent and 27.8 percent, respectively.  

The clay content as determined by hydrometer testing (normalized relative to percentage 

passing the No. 200 sieve - wet sieve basis) for the 18 base course samples obtained from the 

base course/subgrade interface layer (nominally 4-6 inches below the asphalt/base course 

interface for the six-inch thick sections and nominally 8-10 inches below the asphalt/base course 

interface for the ten-inch thick sections), and the clay content for the 18 subgrade samples as 

obtained from the subgrade/base course interface layer (0-2 inches below the base 

course/subgrade interface) are presented in Table 4.5.  The differences in clay content (of the 

fine particles) between the subgrade and base course samples located above and below the 

geosynthetic at the base course/subgrade interface are presented in Figure 4.10. 
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Table 4.5. Clay content (in percent) determined by hydrometer testing (normalized relative 

to percentage passing the No. 200 sieve - wash sieve basis) for the base course samples as 

obtained from the base course/subgrade interface layer and clay content for the  subgrade 

samples as obtained from the subgrade/base course interface layer. 

 
 

Depth*
Clay Content  

(B)
Depth**

Clay Content 

(S)
(S)-(B)

(inch) (%) (inch) (%) (%)

Section 1B 8-10 6.00 0-2 16.91 10.91

Section 1A 8-10 3.50 0-2 18.50 15.01

Section 1 8-10 5.59 0-2 22.89 17.30

Section 2 8-10 9.02 0-2 23.68 14.67

Section 3 8-10 4.25 0-2 25.70 21.45

Section 4 8-10 7.00 0-2 25.74 18.74

Section 5 8-10 7.89 0-2 25.76 17.87

Section 6 8-10 5.80 0-2 25.60 19.80

Mean 8-10 6.13 0-2 23.10 16.97

Section 8 4-6 6.56 0-2 28.33 21.77

Section 9 4-6 6.45 0-2 24.38 17.93

Section 10 4-6 9.84 0-2 21.66 11.82

Section 11 4-6 5.57 0-2 26.64 21.07

Section 12 4-6 7.87 0-2 19.61 11.75

Section 13 4-6 4.80 0-2 33.44 28.64

Section 13W 4-6 12.16 0-2 25.29 13.13

Section 13A 4-6 3.64 0-2 19.98 16.33

Section 13B 4-6 10.20 0-2 27.36 17.16

Section 13BW 4-6 8.21 0-2 28.05 19.84

Mean 4-6 7.53 0-2 25.47 17.94

*Depth below asphalt-base course interface

**Depth below base course-subgrade interface

S = Subgrade, B = Base Course

Location
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Figure 4.10. Difference in clay content of fines (in percent) between the base course and 

subgrade samples immediately below and above the geotextile at the base course/subgrade 

interface. 

 
The comparison between six-inch thick and ten-inch thick sections reveal that the 

difference in the clay content (of the fine particles) is the same between the samples located 

above and below the subgrade/base course interface for the same geotextiles in corresponding 

sections containing the same fabric but different base course thicknesses. The exceptions to this 

observation were Sections 1B and 13B, Sections 1 and 13 and, Sections 4 and 10. The difference 

in clay content (of the fine particles) between Sections 1B and 13B, Sections 1 and 13, Sections 

4 and 10 is 6.2 percent, 11.3 percent, 6.9 percent, respectively.  
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4.3. Atterberg Limits 

Atterberg limits testing was performed on 54 subgrade samples in accordance with the 

procedures outlined in Section 3.4.1.3. The Liquid Limit (LL) and Plasticity Index (PI), as 

determined for all of subgrade samples by performing the Atterberg limits tests, are presented in 

Figure 4.11. Subgrade samples with PI and LL greater than 1.5 standard deviations from both the 

average PI and average LL are presented in Table 4.6.  

 

Figure 4.11. Classification of subgrade soil as per the United Soil Classification System 

(USCS).   

 

Table 4.6. Subgrade samples with PI and LL greater than 1.5 standard deviations from 

both the average PI and average LL.  
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The LL of 18 out of 54 subgrade samples obtained from the subgrade/base course 

interface was greater than 50, and hence the soil was classified as highly plastic clay (CH). One 

sample (Section 8, 0-2 inch) plotted below the A-line and has a LL greater than 50, so the sample 

was classified as highly plastic silt (MH). The remaining 35 subgrade samples were classified as 

low plasticity clay (CL) as the LL was lower than 50. The average LL in the ten-inch thick 

sections and six-inch thick sections were 43 and 51, respectively.  The average PI in the ten-inch 

thick sections and six-inch thick sections were 24 and 31, respectively. The majority of the 

outlier samples were from the six-inch thick sections, namely Section 13 and its abutting 

sections. It may be deduced that the soil in these sections (surrounding Section 13) may not be 

the same as the rest of the six-inch thick sections or the ten-inch thick sections.  

The clay content (or clay fraction, CF) obtained from hydrometer testing (as presented 

previously in Section 4.2.3) and the PI obtained from the Atterberg limits testing were used to 

calculate the activity of the subgrade samples and are presented in Figure 4.12. Subgrade 

samples with CF and PI values greater than 1.4 standard deviations from the mean CF and mean 

PI are presented in Table 4.7. The majority of the data lies between the Illite and Sodium 

Montmorillonite activity trend lines, bounding the Illite trend line. 
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Figure 4.12. Subgrade soil mineralogy classification based on activity  

(Activity = Plasticity Index/Clay Content). 

 

Table 4.7. Subgrade samples with CF and PI greater than 1.5 standard deviations from 

both the average CF and average PI.  
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sections are 23.9 percent and 30.6 percent, respectively. More variation from the average CF and 

average PI was observed in samples obtained from the six-inch thick sections than from the 

samples obtained from the ten-inch thick sections. The samples that are 1.5 standard deviations 
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only sample from the ten-inch thick sections that was 1.5 standard deviations greater than 

average was from Section 6 (2-4 inches). Subgrade Atterberg results for all samples are 

presented in the Appendix, in Section A.7, for completeness.  

4.4. Specific Gravity, In-situ Gravimetric Moisture Content, and Unit Weight   

A summary of the specific gravity, in-situ gravimetric moisture content, and dry unit 

weight values as determined for the 70 base course samples and 54 subgrade samples is 

presented in Table 4.8 on the next page. The specific gravity values, as obtained using ASTM D 

854 (discussed previously in Section 3.4.1.4) for the subgrade and the base course samples for 

six-inch and ten- inch thick sections, respectively, are in close agreement (Table 4.8). The 

specific gravity of the base course was only measured on the fine particles and not on the whole 

sample.  Specific gravity testing on a gradation of all particle sizes could not be completed 

because of the large particle sizes (requiring a very large pycnometer), and because of lack of 

sample. The specific gravity values, of the fines in the base course samples, ranged from 2.75 to 

2.88 and from 2.73 to 2.84 for the ten-inch thick and six-inch thick sections, respectively. The 

specific gravity values, of subgrade samples, ranged from 2.61 to 2.80 and 2.58 to 2.73 for the 

ten-inch thick and six-inch thick sections, respectively. The specific gravity value obtained for 

the 70 base course samples and the 54 subgrade samples are presented in the Appendix, in 

Section A.8, for completeness. 

The moisture content testing was performed in accordance with testing procedures 

presented in Section 3.4.1.7. The in-situ gravimetric moisture content values (dry weight basis) 

for the ten-inch thick sections and the six-inch thick sections ranged from 2.0 to 4.8 percent, and 

from 1.7 to 6.4 percent, respectively. The dry unit weight values reported in Table 4.8 (on the 

next page) were calculated using Equation 3.1 presented in Section 3.2.2). The total unit weight 
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values, as obtained by the nuclear density gauge, which were discarded due to non-rational 

results, are presented in Table 4.9 (on the next page). The dry unit weight values for the base 

course samples (as calculated using Equation 3.1) for the ten-inch thick sections and the six-inch 

thick sections ranged from 129 pcf to 150 pcf, and from 133 pcf to 150 pcf, respectively.  

The in-situ gravimetric moisture content values (dry weight basis) for the ten-inch thick 

sections and the six-inch thick sections ranged from 14.2 to 25.1 percent, and from 17.2 to 41.5 

percent, respectively. The dry unit weight for the subgrade samples (calculated based on 

Equation 3.1) for the ten-inch thick sections and the six-inch thick sections ranged from 93pcf to 

113 pcf, and from 77 pcf to 104 pcf, respectively.  

Table 4.8. Summary of specific gravity, moisture content, and dry unit weight for the six-

inch thick and the ten-inch thick sections subgrade and base course samples.  

 

 

Property Range of Values Units

Specific Gravity at 20°C (six inch sections) 2.73 to 2.84 unitless

Specific Gravity at 20°C (ten inch sections) 2.75 to 2.88 unitless

Moisture Content (six inch sections) 1.7 to 6.4 percent

Moisture Content (ten inch sections) 2.0 to 4.8 percent

Dry Unit Weight (six inch sections) based on Equation 3.1 133 to 150 pcf

Dry Unit Weight (ten inch sections) based on Equation 3.1 129 to 150 pcf

Specific Gravity at 20°C (six inch sections) 2.58 to 2.73 unitless

Specific Gravity at 20°C (ten inch sections) 2.61 to 2.80 unitless

Moisture Content (six inch sections) 17.2 to 41.5 percent

Moisture Content (ten inch sections) 14.2 to 25.1 percent

Dry Unit Weight (six inch sections) based on Equation 3.1 77 to 104 pcf

Dry Unit Weight (ten inch sections) based on Equation 3.1 93 to 113 pcf

SUBGRADE

BASE COURSE
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Table 4.9. Summary of  disregarded values obtained using nuclear gauge.  

 
 

The average moisture content is higher in the base course and subgrade samples of the 

six-inch thick sections (3.4 percent, 23.6 percent)as compared to the average moisture content of 

the base course and subgrade samples of ten-inch thick sections (3.2 percent, 20.3 percent), 

respectively. The in-situ gravimetric moisture content profiles, dry density profiles (based on the 

results obtained using Equation 3.1), and dry density profiles (based on results obtained using 

nuclear gauge) with depth for the six-inch thick sections are presented in Figures 4.13, 4.14, and 

4.15, respectively. The individual gravimetric moisture content profiles, dry density profiles 

(based on the results obtained using Equation 3.1), and dry density profiles (based on results 

obtained using the nuclear gauge) with depth for each of the 18 sections are presented in the 

Appendix, in Sections B.1, B.2, and B.3, respectively, for completeness.  

Sample Location Depth

Base Course Section 13W 
0-2 inch below asphalt/base 

course interface

Base Course Section 1
0-2 inch below asphalt/base 

course interface

Subgrade Section 13W 
0-2 inch below base 

course/subgrade interface

Subgrade Section 13 BW 
4-6 inch below base 

course/subgrade interface

Total density measured by nuclear gauge 

was 123.2 pcf which is exceptionally high 

for subgrade material. 

Total density measured by nuclear gauge 

was 189.4 pcf which is exceptionally high 

for base course material. 

Total density and dry density measured by 

nuclear gauge was 119.7 pcf  and 148.3 

pcf, respectively.

Reason

Total density measured by nuclear gauge 

was 184.0 pcf which is exceptionally high 

for base course material. 
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Figure 4.13. In-situ gravimetric moisture content profiles for six-inch thick sections. 

 

 

Figure 4.14. Dry density profiles (as calculated using Equation 3.1) for the six-inch thick 

sections. 
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Figure 4.15. Dry density profiles (based on nuclear gauge) for the six-inch thick sections. 
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depth of 4-6 inches below the base course/subgrade interface is in agreement with the field 

observations obtained by excavating a trench across the Westbound lane in Section 13BW.  As 

discussed in Section 4.12, a change in visible subgrade properties at a depth of approximately six 

inches below the base course/subgrade interface was observed while excavating the trench. 

Based on visual-manual classification techniques, the soil also appeared to contain higher silt 

content at a depth of six inches below the base course/subgrade interface. The subgrade moisture 

content of Section 13A increased from 17.9 percent (at a depth of 2-4 inches below the base 

course/subgrade interface) to 35.0 percent (at a depth of 4-6 inches below the base 

course/subgrade interface). The rapid increase of moisture content with depth over a small 

sampling interval may not be an accurate representation of the actual in-situ moisture content.  

The dry unit weight values for the base course in the six-inch thick sections ranges 

between 133pcf (Section 13BW, 0-2 inches) and 150pcf (Section 8, 4-6 inches), as calculated 

using Equation 3.1. The dry unit weight for Section 13BW (as calculated using Equation 3.1) 

ranged from 133pcf to 136pcf. The dry unit weight for Section 13BW was relatively lower than 

the other six-inch thick sections where the range was 141pcf to 150 pcf.  These low unit weights 

may have contributed to failure within this section.  

The dry unit weight of the subgrade (as calculated using Equation 3.1) as calculated for 

the six-inch thick sections ranged between 77pcf (Section 13BW 0-2 inches) to 104pcf (Section 

13A 2-4 inches). The dry unit weight for Section 13BW increased from 77pcf to 88 pcf. The 

minimum dry unit weight for the subgrade samples (Section 13BW, 0-2 inch) was due to the in-

situ gravimetric moisture content of 25.5 percent and a total unit weight (obtained using a 

nuclear gauge) of 97 pcf. The dry unit weights in Section 13BW was relatively lower than the 
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remaining six-inch thick sections that ranged between 96pcf and 103 pcf. These low unit weights 

may have contributed to failure of the pavement system in this section. 

The dry unit weight of the base course (as directly obtained using a nuclear gauge) in the 

six-inch thick sections ranged between 138pcf (Section 13A 0-2 inches) to 154pcf (Section 13W 

4-6 inches), except for Section 13BW. The dry unit weight values (as obtained directly using a 

nuclear gauge) for the base course in Section 13BW (130pcf to 138 lb/ft3) were the lowest dry 

density values for all the six-inch thick sections.  Although these dry unit weight values are 

incorrect, because of incorrect moisture contents, a trend of the dry unit weight values being the 

lowest in Section 13BW is observed.  Again, these low dry unit weight values may have 

contributed to failure of the pavement system in Section 13BW (as discussed in Section 4.14).   

The in-situ gravimetric moisture content profiles, dry density profiles (based on the 

results obtained using Equation 3.1), and dry density profiles (based on results obtained directly 

from the nuclear gauge) with depth, for the ten-inch thick sections are presented in Figures 4.16, 

4.17, and 4.18, respectively.  
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Figure 4.16. In-situ gravimetric moisture content profiles for the ten-inch thick sections. 

 

 

  Figure 4.17. Dry density profile (as obtained using Equation 3.1) for the ten-inch thick 

sections. 

 
 

0

2

4

6

8

10

12

14

16

18

20

0 6 12 18 24 30

0

2

4

6

8

10

12

14

16

18

20

0 6 12 18 24 30

D
ep

th
 B

el
o

w
 T

o
p

 o
f 

A
sp

h
a

lt
 S

u
rf

a
ce

, 
(i

n
ch

)

Gravimetric Moisture Content (Subgrade), (%)

D
ep

th
 B

el
o

w
 T

o
p

 o
f 

A
sp

h
a

lt
 S

u
rf

a
ce

, 
(i

n
ch

)

Gravimetric Moisture Content (Base Course), (%)

Section 1B Section 3
Section 1A Section 4
Section 1 Section 5
Section 2 Section 6

Base Course

Subgrade

Asphalt

0

2

4

6

8

10

12

14

16

18

20

70 80 90 100 110 120 130 140 150 160 170

0

2

4

6

8

10

12

14

16

18

20

70 80 90 100 110 120 130 140 150 160 170

D
ep

th
 B

el
o

w
 T

o
p

 o
f 

A
sp

h
a

lt
 S

u
rf

a
ce

, 
(i

n
ch

)

Dry Density (Subgrade), (lb/ft3)

D
ep

th
 B

el
o

w
 T

o
p

 o
f 

A
sp

h
a

lt
 S

u
rf

a
ce

, 
(i

n
ch

)

Dry Density (Base Course), (lb/ft3)

Section 1B
Section 1A
Section 1
Section 2
Section 3
Section 4
Section 5
Section 6

Base Course

Subgrade

Asphalt



149 
 

 
 

Figure 4.18. Dry density profile (based on nuclear gauge) for ten-inch thick sections. 
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(Section 5, 6-8 inches). The dry unit weight (as calculated using Equation 3.1) for the subgrade 

in the ten-inch thick sections ranged between 93pcf (Section 2 0-2 inches) to 113pcf (Section 1B 

4-6 inches). The dry unit weight (calculated based on Equation 3.1) of Section 1B ranged 

between 109pcf to 113pcf which was relatively higher than the remaining sections where the dry 

unit weight ranged from 93pcf to 105pcf. 

The dry unit weight base course (as directly obtained using a nuclear gauge) in the ten-

inch thick sections ranged between 132pcf (Section 2, 0-2 inches) to 151pcf (Section 1A, 8-10 

inches). Section 3 from 0-2 inches below the asphalt/base course interface was an exception, as 

the dry unit weight (127pcf) was lower for this interval. The subgrade dry unit weight (as 

directly obtained using a nuclear gauge) in the ten-inch thick sections ranged between 86pcf 

(Section 2 0-2 inches) to 103pcf (Section 1 6-8 inches). An outlier was Section 1B, starting at 

103pcf (0-2 inches),increasing to 109pcf (2-4 inches,) and decreased to 105pcf (8-10 inches). 

The higher dry unit weights values obtained in Section 1B (as directly obtained using a  nuclear 

gauge)may have led to better performance this section (as discussed in Section 14.4).. Typically, 

an increase in dry unit weight (as directly obtained using a nuclear density gauge) with respect to 

depth was observed in base course and subgrade layers for the six-inch thick and the ten-inch 

thick sections.  

4.5. Modified Proctor 

As obtained from laboratory testing (as described previously in Section 3.4.1.5), the dry 

unit weights for the ten-inch thick sections ranged from 141pcf to 156pcf over a range in 

moisture content between 2.3 percent to 8.7 percent (gravimetric basis). The dry unit weight for 

the six-inch sections ranged from 144pcf to 155pcf over a range in moisture content between 1.7 

percent and 8.4 percent (gravimetric basis). These laboratory obtained dry unit weights values 
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were within the ranges obtained in the field, for the respective ten-inch thick and six-inch thick 

sections, as obtained using the nuclear density gauge and gravimetric moisture content (Equation 

3.1),  assuming that the samples were compacted at 95 percent of maximum dry density (as 

obtained using modified energy). As discussed in the previous section, the dry unit weight (as 

calculated using Equation 3.1) for the ten-inch thick sections and the six-inch thick sections 

ranged from 129pcf to 150 lb/ft3, and 133pcf to 150 lb/ft3, respectively. The corresponding water 

contents obtaining in the field ranged from 2.0 to 4.8 percent for the ten-inch thick sections and 

from 1.7 percent to 6.4 percent for the six-inch thick sections. The maximum dry density and 

optimum moisture content obtained from the modified proctor testing ranged from 151pcf to 

155pcf and 2.4 percent to 5.8 percent for the six-inch thick sections and from 146pcf to 156pcf 

and 2.8 percent to 6.7 percent for the ten-inch thick sections, respectively. A summary of 

maximum dry density and optimum moisture content values (obtained from the modified proctor 

testing), the previously reported dry unit weight values (as obtained in the field and calculated 

using Equation 3.1), and in-situ gravimetric moisture content values (from field obtained 

samples) are presented in Table 4.10 along with the relative compaction. The maximum dry unit 

weights (obtained from modified proctor testing) and the dry unit weights calculated using 

Equation 3.1 for the six-inch thick and ten-inch thick sections is presented in Figure 4.19 on page 

153. 
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Table 4.10. Summary of maximum dry density and optimum moisture content (obtained 

from modified proctor testing), in-situ dry unit weight (calculated using Equation 3.1), and 

in-situ gravimetric moisture content. 

 

Depth*

Max. Dry 

Unit 

Weight

Optimum 

Moisture 

Content 

Dry Unit Weight 

Based on 

Equation 3.1

Gravimetric  

Moisture 

Content

Relative 

Compaction

(in)  (lb/ft
3
) (%)  (lb/ft

3
) (%) (%)

Section 1B 8-10 152.5 5.25 147.1 4.77 96.44

Section 1A 8-10 148.2 5.77 143.2 3.87 96.68

Section 1 8-10 145.8 6.71 156.4 3.01 107.25

Section 2 8-10 147.7 6.35 141.4 4.19 95.71

Section 3
1 8-10 155.6 2.84 143.0 4.00 91.92

Section 4
1 8-10 156.5 2.97 147.2 3.68 94.08

Section 5 8-10 146.1 4.54 149.4 2.52 102.28

Section 6
1 8-10 151.9 2.88 148.8 3.57 97.98

Section 8 4-6 153.1 4.82 149.5 2.37 97.64

Section 9
1 4-6 154.1 2.36 146.0 3.75 94.70

Section 10 4-6 154.4 5.19 147.1 5.98 95.28

Section 11 4-6 152.8 5.80 149.7 3.91 98.02

Section 12
1 4-6 154.7 2.95 146.6 3.97 94.81

Section 13 4-6 152.2 4.85 147.6 3.27 96.99

Section 13W 4-6 151.3 4.90 147.4 6.42 97.41

Section 13A 4-6 151.0 5.19 144.4 3.56 95.60

Section 13B 4-6 153.8 4.92 147.9 3.48 96.12

Section 13BW 4-6 153.0 5.82 136.4 4.24 89.17

*Depth below asphalt/base course interface
1
Highest value used for max. dry unit weight

Location 
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Figure 4.19. Maximum dry unit weight (based on modified proctor testing) and dry unit 

weight (calculated using Equation 3.1) for the six-inch thick and ten-inch thick sections. 

 
Optimum moisture content values obtained from modified proctor testing and gravimetric 

moisture content values obtained from the geotechnical investigation are compared for the six-

inch thick and the ten-inch thick sections in Figure 4.20. The optimum moisture content values, 

determined by proctor testing, for the base course samples in the ten-inch thick sections, as 

recovered from 8-10 inches below the asphalt/base course interface, were higher in five (out of 

eight sections) than the in-situ gravimetric moisture content values. Conversely, the optimum 

moisture content values, determined by proctor testing, for the base course samples in the six-

inch thick sections, as recovered from 4-6 inches below the asphalt/base course interface, were 

lower in four (out of ten sections) than the in-situ gravimetric moisture content values. 
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Figure 4.20. Optimum moisture content (based on modified proctor testing) and 

gravimetric moisture content for the six-inch thick and ten-inch thick sections. 
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dry density value and the molding water content that corresponded with the dry density.  A 

second order polynomial was used to determine the maximum dry density and optimum water 

content for the curves that did mimic a bell shaper curve. Although several of the curves were 

misshapen, the proctor testing was not recompleted because of lack of sample. The proctor 

curves obtained for the 18 base course samples obtained from the base course/subgrade interface 

are presented in the Appendix, in Section A.9, for completeness.  

   
 (a) (b) 

 

Figure 4.21. a) Proctor curve for Section 5 (ten-inch thick section), and b) Proctor curve for 

Section 9 (six-inch thick section). 
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situ dry density values to be higher than the maximum dry density values as obtained in the field.  

The maximum dry unit weight for base course determined in conjunction with the MBTC-3020 

project (hereinafter referred to as the current study) and reported in this thesis (as obtained from 

modified proctor testing) ranged from 145pcf to 155pcf for  optimum water content values 

ranging from  4.5 percent to 6.9 percent, respectively. The in-situ dry unit weight values obtained 

in the current study ranged from 129 pcf to 150 pcf.  The differences in the dry unit weight 

values and optimum moisture content values reported by Howard (2006) and current research are 

not significant even though the results reported in Howard (2006) are peculiar. However, the in-

situ values reported in the current study are in fact lower than the values reported by Howard 

(2006).   The specific gravity, Atterberg limits, and fines content for the subgrade soil obtained 

via laboratory testing associated with this project were compared with values reported by Brooks 

(2009), as presented in Table 4.11. 

Table 4.11. Comparison of subgrade index properties obtained by laboratory testing with 

the values reported by Brooks (2009). 

 

Brooks (2009) reported conducting specific gravity test on bulk samples recovered from 

site (auger cuttings from unknown depths) while the current study had approximately 600 grams 

of exhumed samples out of which only the fines particle were utilized to conduct the specific 

gravity testing. As per Brooks (2009), the depth of sample acquisition was from 2.5 feet to deep 

to 12.5 feet deep and from 3.5 feet to 13.5 feet  deep in the ten-inch thick and six-inch thick 

sections, respectively. The samples exhumed in the current study were obtained from the base 

Brooks (2009) Current Study Brooks (2009) Current Study

Specific Gravity 2.68 to 2.72 2.61 to 2.80 2.67 to 2.71 2.58 to 2.73 unitless

Liquid Limits  (LL) 63 to 67 25 to 58 49 to 73 27 to 97 percent

Plastic Limits (PL) 17 to 20 13 to 28 14 to 20 13 to 33 percent

Plasticity Index (PI) 41 to 47 11 to 36 35 to 54 14 to 68 percent

Passing No. 200 83 to 90 30 to 76 67 to 88 40 to 91 percent

UnitsRange of Values

 Ten inch thick sections  Six inch thick sections

Range of ValuesProperty
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course/subgrade interface to a depth of six-inches. These factors may have caused the 

discrepancy in specific gravity values in the subgrade samples. Similarly the Atterberg testing 

was conducted using the dry method of preparation, on bulk samples acquired from the depths 

mentioned above (Brooks, 2009). The current research had limited sample which was acquired 

from shallow depths of subgrade and the testing was conducted utilizing the wet method of 

preparation. These factors may be responsible for the discrepancy in fines content and Atterberg 

limits.  

4.7. Hydraulic Conductivity (Laboratory) 

The hydraulic conductivity of the 18 base course samples was obtained from the base 

course/subgrade interface was measured using a Mariotte Bottle (MB), for 16 samples, or a 

Flexible Wall Permeameter (FWP), for 2 samples, (in accordance with the procedures outlined in 

Section 3.4.1.6). A summary of average hydraulic conductivity (as obtained from laboratory 

measurements) of the base course samples obtained from the base course/subgrade interface for 

the ten-inch thick sections is presented in Table 4.12. A graphical representations of the data 

provided in Table 4.12 is presented in Figure 4.22.  

Table 4.12. Summary of average hydraulic conductivity (ft/day) of base course samples at 

the base course/subgrade interface for the ten-inch thick sections as obtained from 

laboratory measurements (MB and FWP*).  

 

Hydraulic 

Gradient

Avg. 

Hydraulic 

Conductivity 

Hydraulic 

Gradient

Avg. 

Hydraulic 

Conductivity 

Hydraulic 

Gradient

Avg. 

Hydraulic 

Conductivity 

Dry 

Density

Measured 

Molding 

Moisture 

Content  

Gravimetric 

Moisture 

Content 

Fines Content 

(after 

permeability 

testing)

(i ) (kavg) (i ) (kavg) (i ) (kavg) (γd) (w ) (w ) (P200)

(inch) (unitless) (ft/day) (unitless) (ft/day) (unitless) (ft/day)  (lb/ft
3
) (%) (%) (%)

Section 1B 8-10 0.5 229.69 1.0 71.24 2.1 123.53 154 4.9 4.8 3.9

Section 1A* 8-10 7.5* 0.01 7.5* 0.01 7.5* 0.01 145 3.0 3.9 4.3

Section 1 8-10 0.5 129.49 1.0 136.88 2.1 117.08 150 2.3 3.0 3.8

Section 2 8-10 0.5 506.12 1.0 302.81 2.1 138.17 146 5.1 4.2 4.3

Section 3 8-10 0.5 7.52 1.0 16.63 2.1 15.11 156 2.8 4.0 4.0

Section 4 8-10 0.5 56.98 1.0 48.64 2.1 49.09 156 3.0 3.7 3.6

Section 5 8-10 0.5 93.28 1.0 101.30 2.1 88.41 148 2.8 2.5 3.5

Section 6 8-10 0.5 35.72 1.0 30.19 2.1 24.28 152 2.9 3.6 3.3

*Hydraulic Conductivity obtained using flexible wall permeameter, therefore gradients are higher than obtained using the Mariotte Bottle

Depth**
Section

** Depth below asphalt/base course interface



158 
 

 

Figure 4.22. The average hydraulic conductivity (ft/day) of base course samples at the base 

course/subgrade interface for the ten-inch thick sections as obtained from laboratory 

measurements (MB and FWP*).  

 
 The effective stress at half height of the sample in the MB ranged from 0.3 psi to 0.9 psi 

for hydraulic gradients of 0.5 to 4.3, respectively, compared to the 3.5 psi effective stress (at half 

height of the sample) in FWP. The fines in Section 1A may have clogged the porous stone in the 

FWP which may have caused low flow and resulted in the lower measured average hydraulic 

conductivity value of 0.01 ft/day.  Also the applied effective stress in the FWP (3.6 psi) was 

higher than the applied effective stress in the MB (0.3 psi to 0.9 psi) which may have resulted in 

lower hydraulic conductivity values for the base course sample obtained from  Section 1A. The 

average base course hydraulic conductivity (averaged over three hydraulic gradients) obtained 

using MB for the ten-inch thick sections range from 13.1 ft/day (Section 3) to 315.7 ft/day 

(Section 2). The difference in in-situ gravimetric moisture content as compared to measured 

molding water content ranged from 0.1 percent (Section 1B) to 1.2 percent (Section 3). The 

difference can be attributed to sample size and material preparation procedures. The sample size 

for gravimetric moisture content was approximately 400 grams compared to approximately 100 

grams of sample utilized to determine the molding water content.  
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A summary of average hydraulic conductivity (as obtained from laboratory 

measurements) of the base course samples obtained from the base course/subgrade interface for 

the six-inch thick sections is presented in Table 4.13. A graphical representations of the data 

provided in Table 4.10 is presented in Figure 4.23.  

Table 4.13. Summary of average hydraulic conductivity (ft/day) of base course samples at 

the base course/subgrade interface for the six-inch thick sections as obtained from 

laboratory measurements (MB and FWP*).  

 
 

 
 

Figure 4.23. The average hydraulic conductivity (ft/day) of base course samples at the base 

course/subgrade interface for the six-inch thick sections as obtained from laboratory 

measurements (MB and FWP*).  
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Moisture 

Content  
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Fines Content 
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permeability 
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(i ) (kavg) (i ) (kavg) (i ) (kavg) (γd) (w ) (w ) (P200)

(inch) (unitless) (ft/day) (unitless) (ft/day) (unitless) (ft/day)  (lb/ft
3
) (%) (%) (%)

Section 8 4-6 0.5 69.01 1.0 59.09 2.1 54.11 151 3.3 2.4 3.8

Section 9 4-6 0.5 13.61 1.0 21.19 2.1 21.17 154 2.4 3.7 3.4

Section 10 4-6 3.1* 0.30 3.6* 0.25 4.3* 0.82 155 4.5 6.0 3.8

Section 11 4-6 0.5 23.45 1.0 16.49 2.1 15.84 153 5.7 3.9 3.7

Section 12 4-6 3.1* 0.83 3.6* 0.74 4.3* 1.38 155 2.9 4.0 3.4

Section 13 4-6 0.5 46.90 1.0 54.17 2.1 54.70 146 1.7 3.3 3.1

Section 13W* 4-6 7.3* 0.10 7.3* 0.10 7.3* 0.10 153 5.5 6.4 4.0

Section 13A 4-6 0.5 12.51 1.0 22.15 2.1 54.70 146 3.3 3.6 3.3

Section 13B 4-6 0.5 1.91 1.0 5.41 2.1 11.40 151 3.2 3.5 2.7

Section 13BW 4-6 0.5 84.02 1.0 156.32 2.1 111.56 150 4.3 4.2 3.2

Section
Depth**

*Hydraulic Conductivity obtained using flexible wall permeameter, therefore gradients are higher than obtained using the Mariotte Bottle

** Depth below asphalt/base course interface
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 The average base course hydraulic conductivity (averaged over three hydraulic 

gradients) obtained using MB for the six-inch thick sections range from 0.5 ft/day (Section 10) to 

117.3 ft/day (Section 13BW). The difference in gravimetric moisture content as compared to 

measured molding water content ranged from 0.1 percent (Section 13BW) to 1.8 percent 

(Section 11). The difference can be attributed to sample size and material preparation 

procedures. The sample size for gravimetric moisture content was approximately 400 grams 

compared to approximately 100 grams of sample utilized to determine the molding water 

content.  

The laboratory measured hydraulic conductivity and the fines content (obtained by dry 

sieving after permeability testing) are presented in Figures 4.24 and 4.25, for the ten-inch thick 

and six-inch thick sections, respectively. No correlation was observed between the laboratory 

measured hydraulic conductivity and the fines content (obtained by dry sieving after 

permeability testing). Lawrence (2006) reported hydraulic conductivity decreased by one order 

of magnitude for one percent increase in fines content between six percent and ten percent.  
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Figure 4.24. Comparison between the average hydraulic conductivity (ft/day) and fines 

content (percent) after permeability testing of base course samples at the base 

course/subgrade interface for the ten-inch thick sections.  

 

 
Figure 4.25. Comparison between the average hydraulic conductivity (ft/day) and fines 

content (percent) after permeability testing of base course samples at the base 

course/subgrade interface for the six-inch thick sections.  
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As reported by Cedergren (1994), for base course (in the pavement system) to be freely 

draining a minimum hydraulic conductivity of 10,000 ft/day (3.5 cm/sec) is required. The 

laboratory measured hydraulic conductivity did not satisfy the requirement to be classified as 

freely draining base course. The laboratory measured hydraulic conductivity is two to four orders 

of magnitude lower than the criteria reported by Cedergren (1994). The laboratory measured 

hydraulic conductivity results for the base course samples are presented in the Appendix, in 

Section A.10, for completeness. 

4.8. Hydraulic Conductivity (In-situ) 

A summary of average apparent hydraulic conductivity is presented in Table 4.14. The 

average in-situ apparent hydraulic conductivity obtained in October for the ten-inch thick 

sections ranged between 2.76E-03 ft/day (Section 1B) and 1.50E-01 ft/day (Section 4). The 

average in-situ apparent hydraulic conductivity obtained in May for the ten-inch thick sections 

ranged between 1 ft/day (Section 2) and 8.17 E-02 ft/day (Section 4). As reported by Cedergren 

(1994), for base course (in pavement systems) to be freely draining a minimum hydraulic 

conductivity of 10,000 ft/day is required. Based on this requirement, and based on the values 

measured in the field, the base course cannot be categorized as a freely draining base course. The 

hydraulic conductivity results, as measured in the field, for the base course samples are presented 

in the Appendix, in Section B.4, for completeness. 
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Table 4.14. Summary of average apparent hydraulic conductivity (ft/day) obtained using 

the Two Stage Borehole method (ASTM D6391) in October 2010 and May 2011. 

 
 

4.9. Hydraulic Conductivity (empirical prediction and comparison) 

Summary tables containing the estimated hydraulic conductivity based on the Hazen 

(1930), Sherard et al. (1984), and Moulton (1980) equations (previously presented in Section 

3.4.1.8) for the ten-inch thick sections and the six-inch sections are presented in Tables 4.15 and 

4.16, respectively. The graphical representations of the data provided in Tables 4.15 and 4.16 

along with the laboratory obtained hydraulic conductivity and in-situ measured apparent 

hydraulic conductivity are presented for comparison purposes in Figures 4.26 and 4.27, 

respectively. 

October 2010

Test 1 Test 2

(ft/day) (ft/day) (ft/day)

Section 1B 2.76E-03 2.75E-03 2.11E-01

Section 1 2.23E-02 2.14E-02 1.84E-01

Section 2 3.47E-02 1.92E-02 1.00E+00

Section 3 2.34E-02 2.44E-02 1.38E-01

Section 4 2.07E-01 1.50E-01 8.17E-02

Section 10 1.49E-01 - 8.47E-02

Section 11 1.11E-01 - 1.25E-01

Section 12 1.81E-01 - 2.53E-01

Section 13 4.98E-03 - 1.72E-02

Section 13B 1.06E-01 - 6.13E-04

LOCATION May 2011
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Table 4.15. Summary of estimated hydraulic conductivity of the ten-inch thick sections 

using Hazen (1930), Sherard et al. (1984) and Moulton (1980) equations.  

 

Table 4.16. Summary of estimated hydraulic conductivity of the six-inch thick sections 

using Hazen (1930), Sherard et al. (1984) and Moulton (1980) equations.  

 

Depth*
Hazen 

(k)

Hazen 

(k)

Sherard

(k)

Sherard

(k)

Moulton

(k)

(inch) (cm/s) (ft/day) (cm/s) (ft/day) (ft/day)

Section 1B 8-10 0.61 1726 0.77 2183 0.08

Section 1A 8-10 0.37 1047 0.34 966 1.48

Section 1 8-10 0.71 2000 0.97 2752 0.56

Section 2 8-10 1.20 3406 2.01 5710 2.14

Section 3 8-10 0.43 1210 0.55 1556 0.06

Section 4 8-10 0.96 2729 1.50 4257 0.10

Section 5 8-10 0.98 2782 1.53 4325 1.47

Section 6 8-10 1.32 3749 2.00 5660 0.84

* Depth below asphalt/base course interface

Location

Depth*
Hazen 

(k)

Hazen 

(k)

Sherard

(k)

Sherard

(k)

Moulton

(k)

(inch) (cm/s) (ft/day) (cm/s) (ft/day) (ft/day)

Section 8 4-6 0.65 1830 0.88 2485 0.55

Section 9 4-6 1.18 3348 1.59 4504 0.53

Section 10 4-6 1.57 4441 1.96 5555 0.28

Section 11 4-6 0.71 1999 1.05 2986 0.20

Section 12 4-6 1.23 3486 1.82 5162 0.26

Section 13 4-6 0.56 1590 0.97 2753 2.14

Section 13W 4-6 0.31 891 0.86 2433 0.20

Section 13A 4-6 0.51 1447 0.69 1963 2.27

Section 13B 4-6 1.14 3219 1.56 4422 0.84

Section 13BW 4-6 5.26 14904 3.68 10428 1.39

* Depth below asphalt/base course interface

Section
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Figure 4.26. Estimated hydraulic conductivity, laboratory obtained average hydraulic 

conductivity (k) for interface base course sample, and in-situ average apparent hydraulic 

conductivity (Stage 1) for the ten-inch thick sections. 

 

 
 

Figure 4.27. Estimated hydraulic conductivity, laboratory obtained average hydraulic 

conductivity (k) for interface base course sample, and in-situ average apparent hydraulic 

conductivity (Stage 1) for the six-inch thick sections. 
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It was observed that hydraulic conductivity predicted based on the Moulton (1980) 

equation was three to four orders of magnitude lower than the hydraulic conductivity predicted 

based on the Sherard et al. (1984) and Hazen (1930) equations even though all of the equations 

are correlated to grain size data. The laboratory obtained average hydraulic conductivity (k) 

values for all hydraulic gradients (i) does not align with any of the estimated values except for 

Sections 10, 12, and 13W; sections in which distress was observed (as discussed in Section 

4.14). The hydraulic conductivity values for these sections are in close agreement with the 

estimates obtained using the Moulton (1980) prediction.  

On average, the hydraulic conductivity measured in the laboratory was two and three 

orders of magnitude higher than the values obtained using the Moulton (1980) estimation for the 

six-inch thick and the ten-inch thick sections, respectively, except for Section 1A which was two 

orders of magnitude lower than Moulton (1980) prediction. The average laboratory hydraulic 

conductivity was one to three orders of magnitude lower than values obtained using the Sherard 

et al. (1984) and Hazen (1930) equation. This was expected as the values obtained from Hazen 

(1930) and Sherard et al. (1984) are intended to be used for clean sand and are not applicable for 

this application.  The equation presented by Moulton (1980) has been shown to work for base 

course (Blanco, 2003), so the comparable results between the values obtained from the Moulton 

(1980) equation and the laboratory measured data were expected. 

The measured in-situ apparent hydraulic conductivity in May 2011 was observed to be 

higher than the hydraulic conductivity measured in October 2010 except for Sections 4, 10, and 

13B, which are all sections in which distress was observed (Section 4.14). The hydraulic 

conductivity measured in these sections in October 2010 was insignificantly higher than the 

hydraulic conductivity measured in May 2011 (0.065 to 0.105 ft/day). The lower in-situ 
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hydraulic conductivity in October 2010 may be attributed to unsaturated subgrade conditions. 

The measured in-situ hydraulic conductivity in May 2011 was in close agreement with the values 

obtained from the Moulton (1980) estimation except for Sections 13 and 13B, both of which are 

sections in which distress was observed (Section 4.14).  

The hydraulic conductivity values determined in field are validated by the estimation 

obtained using the Moulton (1980) equation. The control sections (without geotextiles) exhibited 

similar in-situ hydraulic conductivity when compared to sections with geotextiles. The addition 

of geotextiles in these sections does not appear to impact the hydraulic conductivity of the base 

course. Based on the vertical hydraulic conductivity values obtained at the Marked Tree Test 

Section, the addition of geotextiles did not increase or decrease the hydraulic conductivity of the 

base course (as compared with the control sections).   

4.10. Transmissivity and Permittivity of Geotextiles   

The transmissivity and permittivity testing for new and exhumed geotextile sample were 

performed in accordance with the procedures outlined in Section 3.4.2.1 and 3.4.2.2, 

respectively. The results obtained from the transmissivity and permittivity testing as performed 

on exhumed geotextile samples and new geotextile samples are presented in Sections 4.10.1 and 

4.10.2, respectively.  The results obtained from permittivity testing (as discussed in Section 

4.10.2) are utilized in Section 4.11 when reviewing the geotextile design criteria.   

4.10.1. Transmissivity of Geotextiles 

A summary table with the laboratory obtained transmissivity values is presented (Table 

4.17). A graphical representation of the data tabulated in Table 4.17 is also presented graphically 

in Figure 4.28.  
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Table 4.17. Summary of geotextiles transmissivity values obtained from laboratory 

measurement and fines content obtained by dry sieving conducted in November 2010.  

 
 

 
Figure 4.28. Transmissivity values of exhumed and new geotextile samples obtained from 

laboratory measurement. 

 

Transmissivity 

(θ) 

Fines Content (Dry 

Sieving November 

2010) 

(m
2
/s) (percent)

Section 10 Amoco Propex 4553 Propex Geotex 801 4.48E-05 1.67

Section 11 Amoco Propex 2006 Propex Geotex 315ST 3.43E-05 1.53

Section 12 Amoco Propex 2044 Propex 4x4 1.30E-04 1.38

Section 13B Mirafi HP 570 Mirafi HP 570 1.25E-04 1.30

Section 13W Carthage Mill FX 66 Carthage Mill FX 66 8.02E-05 3.10

Section 13BW Carthage Mill FX 66 Carthage Mill FX 66 9.43E-05 1.41

Section 1B Mirafi HP 570 Mirafi HP 570 2.00E-04 1.71

Section 2 Amoco Propex 2044 Propex 4x4 7.53E-05 2.39

Section 3 Amoco Propex 2006 Propex Geotex 315ST 3.47E-05 2.30

Section 4 Amoco Propex 4553 Propex Geotex 801 5.33E-05 1.50

Amoco Propex 4553 Propex Geotex 801 2.95E-05 -

Amoco Propex 2006 Propex Geotex 315ST 4.63E-05 -

Amoco Propex 2044 Propex 4x4 7.30E-05 -

Mirafi HP 570 Mirafi HP 570 1.37E-04 -

Carthage Mill FX 66 Carthage Mill FX 66 1.41E-04 -
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The transmissivity values of exhumed samples for the six-inch thick sections as 

compared to the ten-inch thick sections are in close agreement except for Mirafi HP570 and 

Propex 2044. The transmissivity of exhumed samples ranged from 3.4E-5 m2/s in Section 11 

(Propex 2006) to 2.0E-4 m2/s in Section 1B (Mirafi HP 570). The transmissivity value measured 

for the Propex 2044 sample obtained from Section 12 is 5.7E-5 m2/s higher than the new sample 

and higher than the transmissivity values obtained for the same type of geosynthetic obtained 

from the corresponding ten-inch thick section (Section 2). The transmissivity value for Mirafi HP 

570 (Section 1B) was 6.3E-5 5 m2/s higher than the new sample. The higher transmissivity value 

in the exhumed samples as compared to the new samples may indicate that the exhumed sample 

was damaged during exhumation or may  be due to larger aperture opening size (AOS) from 

being in service for 5 years. The transmissivity value of Mirafi HP 570 (Section 13B) and the 

new sample are in close agreement. As discussed in Section 4.11 the geotextiles utilized in this 

study did not meet the  AOS requirement (AOS <0.3mm) except for Propex 4553. The 

transmissivity value of new Carthage Mills FX-66 sample were 4.7E-5 m2/s and 6.1 E-05 m2/s 

higher than the exhumed (Carthage Mills FX-66) samples in Sections 13W and 13BW, 

respectively. As will be discussed in  Section 4.11, the Carthage Mills FX-66 geotextile does not 

meet the AOS criteria, soil retention criteria, and permittivity requirement and hence lower 

transmissivity values are expected, and were observed for exhumed samples (Sections 13W and 

13BW), as compared to new samples. Graphs of transmissivity values for the ten exhumed 

geotextile samples and five new geotextile samples (as tested in UofA laboratory) are presented 

in the Appendix, in Section A.11, for completeness.   
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4.10.2. Permittivity of Geotextiles 

A summary of permittivity values obtained in the laboratory is presented in Table 4.18. A 

graphical representation of the data tabulated in Table 4.18 is also presented in Figure 4.29 for 

clarity.  

Table 4.18. Summary of geotextiles permittivity values obtained from laboratory 

measurement and fines content obtained by dry sieving conducted in November 2010.  

 
 

Permittivity 

(ψ)

Fines Content 

(Dry Sieving 

November 2010)

 (s
-1

) (percent)

Section 10 Amoco Propex 4553 Propex Geotex 801 0.18 1.67

Section 11 Amoco Propex 2006 Propex Geotex 315ST 0.07 1.53

Section 12 Amoco Propex 2044 Propex 4x4 0.16 1.38

Section 13B Mirafi HP 570 Mirafi HP 570 0.31 1.30

Section 13W Carthage Mills FX 66 Carthage Mills FX 66 0.07 3.10

Section 13BW Carthage Mills FX 66 Carthage Mills FX 66 0.12 1.41

Section 1B Mirafi HP 570 Mirafi HP 570 0.20 1.71

Section 2 Amoco Propex 2044 Propex 4x4 0.08 2.39

Section 3 Amoco Propex 2006 Propex Geotex 315ST 0.05 2.30

Section 4 Amoco Propex 4553 Propex Geotex 801 0.32 1.50

Amoco Propex 4553 Propex Geotex 801 0.32 -

Amoco Propex 2006 Propex Geotex 315ST 0.12 -

Amoco Propex 2044 Propex 4x4 0.13 -

Mirafi HP 570 Mirafi HP 570 0.27 -

Carthage Mills FX 66 Carthage Mills FX 66 0.05 -

Amoco Propex 2006 Propex Geotex 315ST 0.05 -

Amoco Propex 2044 Propex 4x4 0.15 -

Amoco Propex 4553 Propex Geotex 801 1.50 -

Mirafi HP 570 Mirafi HP 570 0.40 -

Carthage Mills FX 66 Carthage Mills FX 66 0.05 -

New Samples

Manufacturer's 

Data

Six inch Sections

Ten inch Sections

Tested at University of Arkansas Laboratory

Section
Description of 

exhumed samples

New Description
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Figure 4.29. Permittivity values of exhumed and new geotextile samples obtained from 

laboratory measurement. 

 
The permittivity values for the exhumed samples measured in laboratory ranged from 

0.07 s-1 (Section 11, Propex 2006) to 0.31 s-1 (Section 13B, Mirafi HP 570) for the six-inch thick 

sections, and ranged from 0.05 s-1 (Section 3, Propex 2006) to 0.32 s-1 (Section 4, Propex 4553)  

for the ten-inch thick sections. The permittivity values obtained in the laboratory for the 

exhumed and new samples are in close agreement. As discussed in the next section, the 

permittivity and the clogging requirement were fulfilled for all of the geotextile products 

installed in the ten-inch thick and six-inch thick sections, but the sections did not meet the 

Aperture Opening Size (AOS <0.3mm) criteria, except for the Propex 4553 product.  

The permittivity of the exhumed geotextile samples in the ten-inch thick sections was 
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Section 4 (Propex 4553). The permittivity of the Propex 4553 geotextile (Section 4) was higher 

than the corresponding exhumed sample in Section 10 by 0.14 s-1 but was in close agreement 

with the new sample. The permittivity values published by the manufacture were in accordance 

with the new samples tested in the laboratory except for the Propex 4553 sample. The 

permittivity value (for Propex 4553) published by the manufacturer was 4.62 times higher than 

the permittivity value for a new sample as obtained in the UofA laboratory. The sample tested in 

the laboratory may not be a representative sample and hence additional testing may be required 

to ascertain the cause of the discrepancy. Graphs of permittivity values for the ten exhumed 

geotextile samples and five new geotextile samples (tested in U of A laboratory) are presented in 

the Appendix, in Section A.12, for completeness. 

4.11. Review of Geotextile Design Criteria  

The geotextile design guidelines presented in FHWA (1998) were utilized to evaluate the 

geotextiles installed in the Marked Tree, AR site. Each geotextile was evaluated to determine if 

the product met the soil retention, permittivity/permeability (filtration), and clogging criterias for 

the application. The evaluation was performed for the ten-inch thick and the six-inch thick 

sections. The calculated parameters for subgrade soil and geotextiles along with the criteria 

fulfillment for the aforementioned three criteria are presented in the Appendix, in Section A.13, 

for completeness. 

Summaries of the criteria satisfaction matrices for various geotextiles in the ten-inch 

thick sections and the six-inch thick sections are presented in Tables 4.19 and 4.20, respectively. 

All of the previously installed geotextiles at the Marked Tree Test Section fulfilled the 

permittivity criteria and the clogging requirement in the ten-inch and the six-inch thick sections; 

all products did not fulfill the permittivity requirement. The permittivity value (for the Propex 
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4553 Non-Woven geotextile) published by the manufacturer was 4.62 times higher than the 

permittivity value for a new sample obtained in the laboratory. As a result of discrepancy, for the 

permittivity requirement each geotextile product was evaluated using both the manufacturer 

published permittivity value and the laboratory obtained permittivity value measured during the 

course of this research project. 

The Propex 4553 non-woven product met all criteria in both the ten-inch thick and the 

six-inch thick sections. Conversely, the Carthage Mills FX-66 slit film product did not satisfy 

four out of six criteria. The Aperture Opening Size (AOS <0.3mm) criterion was not met for any 

of the products except for Propex 4553 product.  The retention criterion was not met for any of 

the products except for the products except for the Propex 4553 product. 

Table 4.19. Summary of criteria satisfaction for the various geotextiles in the ten-inch thick 

sections. 

 

Table 4.20. Summary of criteria satisfaction for the various geotextiles in the six-inch thick 

sections. 

 

Geotextile

For non dispersive 

cohesive soils with PI>7 

(AOS or O95<0.3 mm)

Permittivity 

Criteria 

(kGT>ksoil)

Clogging 

Criteria 

(O95>3D15)

Retention 

Criteria 

(AOS<B*D85)

Permittivity 

Requirement 

(ψlab>ψ)

Permittivity 

Requirement 

( ψmfg>ψ)

Propex 4553 Non-Woven � � � � �* �

Propex 2006 Woven x � � x � x

Propex 2044Woven x � � x � �

Mirafi Geolon HP 570 Woven x � � x � �

x - criteria or requirement not met

�- criteria or requirement met 

* Discrepancy between manufacture published and laboratory obtained permittivity values 

Geotextile

For non dispersive 

cohesive soils with PI>7 

(AOS or O95<0.3 mm)

Permittivity 

Criteria 

(kGT>ksoil)

Clogging 

Criteria 

(O95>3D15)

Retention 

Criteria 

(AOS<B*D85)

Permittivity 

Requirement 

(ψlab>ψ)

Permittivity 

Requirement 

( ψmfg>ψ)

Propex 4553 Non-Woven � � � � �* �

Propex 2006 Woven x � � x � x

Propex 2044Woven x � � � x x

Carthage Mills FX-66 Slit Film x � � x x x

Mirafi Geolon HP 570 Woven x � � x � �

x - criteria or requirement not met

�- criteria or requirement met 

* Discrepancy between manufacture published and laboratory obtained permittivity values 
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 Based on the review of the geotextile design criteria which utilized information as 

previously discussed in this document including: grain size, Atterberg limits, apparent opening 

size of the geotextile, geotextile permittivity, and subgrade permeability, only the Propex 4553 

Non-Woven product would have bettered the performance of the roadway system and should 

have been installed at the Marked Tree Test Section . Although the Carthage Mills FX-66 Slit 

Film was not intended to be included in the study, because of the roadway failure discussed in 

Section 4.14, the product was investigated.  If proper design protocols were followed, and all 

design criteria were met, this product should not have been installed in the adjacent lane.     

4.12. Site Observation (October 2010) 

During the site visit conducted in October, 2010 Sections 13W and 13BW were visually 

identified as failing. Therefore, although these sections were not initially instrumented and 

constructed with the other 16 sections, base course, subgrade, and the geotextile samples were 

exhumed from Sections 13W and 13BW. As discussed previously in Chapters 3 and 4, the 

samples obtained from these sections were sent to the laboratory and tested with the samples 

obtained from the other 16 sections. The pavement in Section 13BW had an undulating surface 

in the transverse direction of traffic flow and hence a trench (the width of the westbound lane) 

was excavated to perform a forensic analysis (Figure 4.30).  
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 (a) (b) 

 

Figure 4.30. Section 13BW a) trench excavation performed by AHTD personnel using a 

backhoe, b) after asphalt removal (undulating pavement surface). 

 
The asphalt was first removed to determine if the undulation in the roadway was 

transferred to the base course. After determine the undulation was transferred to the base course, 

the base course was also excavated. After the base course was removed, the geosynthetic was 

also removed, and moist subgrade was observed (Figure 4.31). As observed during the 

exhumation of the geosynthetic in Section 13W, the base course did not puncture the 

geosynthetic, the base course did not indent into the subgrade, and water infiltrated the trench 

from the geosynthetic at the edges of the trench. For all of the excavations, no puncture in the 

geosynthetic or indention into the base course was observed, even for the control sections and the 

sections containing only geogrids. Therefore, the geosynthetics served their purpose for 

separation, but may not have been required as the base course and subgrade particles within the 

control sections were separated even though no geotextile was present.    

A void space underneath the geotextile was also observed as presented in Figure 4.32. 

This void space may be attributed to the excavation process, or may be attributed to flow along 

the geosynthetic interface creating a drainage channel. Up to three layers of overlapped 

geotextile and discoloration in the subgrade soil were observed as presented in Figure 4.33. The 
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discoloration on the east side of the trench was different than the discoloration on the west side 

of the trench (Figure 4.33).  This discoloration is believed to be caused spatial variability in the 

material properties (as previously discussed in Section 4.4).        

   
 (a) (b) 

 

Figure 4.31. Section 13BW subgrade a) after the geotextile removed and b) the zoomed in 

view after geotextile removal. 

 

 
 

Figure 4.32. Void space observed (Section 13BW) underneath the geotextile. 
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 (a) (b)   

Figure 4.33. Discoloration in subgrade soil in Section 13BW after trench excavation on the 

a) east side and b) west side of the trench.  

 
Excessive alligator cracking was observed in the outer wheel path of Section 13W as 

presented in Figure 4.34 and discussed further in Section 4.14. Lateral seepage was also 

observed from the geotextile at the base course/subgrade interface of Section 13W during and 

after nuclear gauge testing on the subgrade, DCP testing on the subgrade, and CBR testing on the 

subgrade (Figure 4.35). 

 

Figure 4.34. Alligator cracking in the outer wheel path of Section 13W. 
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 (a) (b)  

Figure 4.35. Lateral seepage observed in subgrade of Section 13W a) after DCP testing and 

b) after completion of CBR testing.  

 

4.13. Pavement Profile (October 2010)  

The elevations measured for top of pavement, top of base, and top of subgrade which 

were obtained in accordance with Section 3.5.1 and are graphically presented in Figure 4.36. 

These measurements were obtained to identify the actual asphalt and base course thickness. 

These elevations are based on an arbitrary site-specific benchmark elevation (elevation=100 feet) 

rather than a standardized datum. Because the goal was to determine base course and pavement 

thicknesses and the relative changes in elevation of the roadway surface between sections, the 

selection of the site specific benchmark was insignificant.  
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(a)  (b) 

   
(c) (d) 

 

Figure 4.36. Pavement profile a) top of pavement elevation, b) top of base elevation (total 

station), c) top of base elevation (total station and depth measurements) and d) top of 

subgrade elevation (total station and depth measurements). 

 
Sections 1, 6, 10, 12, 13W, and 13BW were the local low points for top of asphalt 

elevations with respect to their abutting sections. Similarly, Sections 6, 10, 12, 13W, and 13BW 

were the local low points for top of base elevation (determined by total station and manual 

measurements) with respect to their abutting sections. Section 13W has the lowest top of 

pavement elevation measured at the lowest top of course base elevation which is an indication of 

a low spot in the roadway alignment and indication of rutting. Ponding of water may occur in 

this low spot, and was observed in Section 13W, and in other six inch sections, during the site 

visit in May 2011 as presented in Figure 4.37.   
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Figure 4.37. Ponding in six-inch thick sections in May, 2011 (from Goldman, 2011) [view 

from Section 13W looking East]. 

 
The average pavement thickness ranges between 1.97 inches (Section 1) to 2.41 inches 

(Section 5) in the ten-inch thick sections and 1.95 inches (Section 13BW) to 2.69 inches (Section 

13B) in the six-inch thick sections, respectively. The average base course layer thickness ranges 

between 8.97 inches (Section 4) to 11.38 inches (Section 1) in the ten-inch thick sections and 

5.30 inches (Section 13BW) to 7.22 inches (Section 8) in the six-inch thick sections. Section 

13BW has the smallest base course thickness in the six-inch thick sections and Section 1 has the 

largest base course thickness in the ten-inch thick sections. Also for the combined thickness of 

asphalt and base course Section 13BW had the lowest thickness in the six-inch sections and 

Section 1 had the highest thickness in the ten-inch thick sections.  

The asphalt and base course thickness obtained in October 2010 were compared with 

thickness values reported by Howard (2006) and AHTD (2002). The thicknesses were subtracted 

from the top of pavement elevation obtained from AHTD (2002). Section 6 was selected as a 

fixed reference point and the elevations obtained in October 2010 were adjusted to align with the 

elevations reported by AHTD (2002). Section 6 had the least amount of rutting and the lowest 

percent area of lane with alligator cracking (as described in Section 4.14) and hence was selected 
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as the fixed reference point. The obtained elevations were then plotted to compare the 

differences in top of pavement and top of base course elevations. The elevations for top of 

pavement, top of base, and top of subgrade for October 2010 site data and values reported by 

Howard (2006) and AHTD (2002) are graphically represented in Figure 4.38.   

    
 (a) (b) 

 

 
  (c) 

 

Figure 4.38. Comparison of pavement profile a) top of pavement elevation, b) top of base 

elevation, and c) top of subgrade elevation reported by AHTD (2002) and Howard (2006) 

and measured during site visit in October 2010.  

 
No apparent difference in top of pavement and top of base course elevations were 

observed between the data obtained in October 2010 and values reported by Howard (2006) and 

AHTD (2002) except for Sections 1B, 1A, 1, and 8. The differences in top of pavement 

elevations for Sections 1B, 1A and 1are not accurate as the elevations utilized were obtained 

from AHTD design drawings for the centerline of the roadway and these sections contain super-
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elevation. No as-built drawings were available to obtain the actual elevations. Pavement 

elevations as reported in AHTD (2002) for Section 8 did not match the onsite pavement 

elevations, as the driveway connecting to the nursing home to Frontage Road 3 was constructed 

after the design of Frontage Road 3. The actual top of pavement elevation of Section 8 was lower 

than the elevation reported by AHTD (2002). For these reasons the discrepancy in top of 

pavement elevation, as obtained from the October 2011 measurements and from AHTD (2002) 

in Sections 1B, 1A, 1, and 8 were not real. These discrepancies are attributed to variation from 

the design during construction.  

4.14. Pavement Distress Survey (Modified from Goldman (2011)) 

Pavement distress survey data was obtained from Goldman (2011) and was used to 

quantify the distress in the pavement system (as previously discussed in Section 3.5.2). The 

alligator cracking, longitudinal cracking, and rut depth measurements are presented in Sections 

4.11.1, 4.11.2, and 4.11.3, respectively. 

4.14.1. Alligator Cracking 

The percentage of the lane with alligator cracking (based on the area of the lane) for all 

the 18 sections is presented in Figure 4.39. As observed in Figure 4.39, the maximum 

percentages of the lane with alligator cracking are 3.58 percent (Section 4) and 83.3 percent 

(Section 13BW) in the ten-inch thick and six-inch thick sections, respectively. Section 13BW 

was deemed to be failing during the October, 2010 site visit. A trench (previously discussed in 

Section 4.12) was excavated to determine the extent of the rutting in Section 13BW. Although 

the trench and damaged portions of Section 13BW were patched by AHTD personnel during the 

October 2010 site visit, however, in April, 2011 83.3 percent of the lane had alligator cracking.  
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Figure 4.39. Percent area of lane with alligator cracking for June 2010 and April 2011 

(modified from Goldman, 2011).  

 
More alligator cracking was observed in April 2011 as compared to June 2010 in all of 

the 18 sections. Several sections, specifically (Sections 3, 4,10,11,13, 13W, and 13BW) show 

elevated levels of alligator cracking as compared to the other sections. Section 10 had relatively 

more alligator cracking as compared to abutting sections and as compared to the alligator 

cracking observed in the corresponding ten-inch thick section with the same geosynthetic type 

(Section 4). Section 11 which had less alligator cracking than Section 10, but slightly more 

alligator cracking as compared to the corresponding ten-inch thick section (Section 3). Section 

13 has similar alligator cracking as compared to Section 11. The alligator cracking observed in 

Section 1 was insignificant. The average area of lane with alligator cracking for Sections 13W 

and 13BW was 22.6 percent and 63.0 percent, respectively. These two sections both contain the 

same geosynthetic type. Based on alligator cracking measurements, Sections 13W, 13BW, and 

10 are the worst performing sections.  
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4.14.2. Longitudinal Cracking 

The total linear feet of longitudinal cracks for all 18 sections is presented in Figure 4.40. 

Again due to continued use more longitudinal cracks were observed in April 2011 as compared 

to June 2010.  

 
Figure 4.40. Total linear feet of longitudinal cracks observed in June 2010 and April 2011 

(modified from Goldman, 2011).  

 
The maximum total linear feet of longitudinal cracks was 58.3 feet (Section 1B) and 61.5 

feet (Section 13BW) in the ten-inch thick and the six-inch thick sections, respectively.  Section 

10 has more longitudinal cracks as compared to abutting sections and compared to the 

longitudinal cracks observed in the corresponding ten-inch thick section with the same 

geosynthetic type (Section 4). Section 13W and Section 10 each contain similar quantities of 

longitudinal cracks. The longitudinal cracking values (as presented in Figure 4.40) for Sections 

10 and 13W are local maxima, while Section 13BW is the global maximum. The differences 

(between June 2010 and April 2011) in longitudinal cracking values for the local and global 
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maxima are higher as compared to the rest of the sections. Based on longitudinal cracking, 

Sections 13W, 13BW, and 10 are the worst performing sections.   

4.14.3. Rut depth 

The average rut depth measurements for the 18 sections are presented in Figure 4.41. As 

per Figure 4.41, more rutting was observed in Section 10 as compared to abutting sections and 

compared to the rutting observed in the corresponding ten-inch thick section with the same 

geosynthetic type (Section 4). The maximum average rut depth measurement was 0.3 inches 

(Section 1) for the ten-inch thick sections and 1.5 inches (Section 13BW) for the six-inch thick 

sections. The rut depths measured in Sections 13W and 13BW are significantly greater than the 

rut depths measured in abutting sections. Based on rut depth measurements Sections 13W, 

13BW, and 10 are the worst performing sections.  

 
Figure 4.41. Average rut depth (inch) observed in June 2010 and April 2011 (modified from 

Goldman (2011)).  
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4.15. Conclusion 

Based on the results of this research (as obtained from the field and laboratory testing), in 

combination with the performance data (rutting and cracking) data presented by Goldman 

(2011), and field observations made during the October 2010 and May 2011 site visits, the 

following conclusions are obtained. 

• The sections which have average rut depths measurements near or in excess of 20 

mm (defined as failure based on Al-Qadi et al., 1999), include Sections 10 (19 

mm), 13W (25.6 mm), and 13BW (40.64 mm).     

• These sections are the three sections in which the sum of the base course and 

asphalt thicknesses are the smallest. The sum is less than eight inches for each 

section. 

• Specific instances in which Sections 10, 13W, and 13BW are the worst 

performers (based on the laboratory, field testing, and field observation 

conducted as a part of this research project) are listed below. 

o The water content values within the base course at the base 

course/subgrade interface are the highest for Sections 13BW, 10, and 

13W (4.2, 6.0, and 6.4 percent, respectively).    

o The lowest top of pavement and top of base course elevation were 

observed in Sections 13BW and 13W (based on pavement profile). The 

low spots caused ponding in these sections.  

o Water infiltration from the base course/subgrade interface was observed 

in the field during the forensic investigation of Sections 4, 10, 13W, and 

13BW (within the two foot by two foot excavation and within the trench 

excavation). The infiltration appeared during the nuclear density testing 
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of the subgrade and during the California Bearing Ratio (CBR) testing on 

the subgrade (the CBR testing is discussed in Goldman, 2011). It is 

important to note that these sections were exhumed following a rain storm 

in which ponding of water was observed in the wheel paths in these 

sections. Water may have infiltrated into the cracks in the pavement, 

traveled through the base course, and ponded at the interface between the 

base course and subgrade due to the low permeability of the subgrade 

preventing infiltration into the subgrade. The effective stress and total 

head were reduced within the excavations, causing water to flow into the 

excavation during testing.  

o As observed in the trench that was excavated across the worst performing 

section (Section 13BW), the surface deformation (rutting) was transferred 

from the asphalt through the base course and into the subgrade. Intimate 

contact was observed between the geosynthetic and the subgrade. It was 

discovered that up to three layers of geotextile were overlapped at various 

locations across the lane. This overlapping may have contributed to 

failure. 

o From the results obtained from the base course sieve analysis testing (dry 

sieve, wet sieve, hydrometer analysis) conducted on samples located 

directly below and above the base course/subgrade interface, the 

difference in fines content for the control sections (13/1) was the same 

(62 percent). The difference in clay and silt content for comparable six-

inch thick and ten-inch thick sections for Section 13B/1B and 10/4 was 
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the greatest, with differences of 4.2 percent and 2.8 percent, respectively. 

The difference in silt and clay content the control sections (13/1) was 

similar (approximately 95 percent and 5 percent, respectively). Section 

13BW, 13B, 13W, and 10 contained the highest clay contents, at 

approximately 8 percent, 10 percent, 12 percent and 10 percent, 

respectively. 

o From the results obtained from the gravimetric moisture content testing, 

the moisture content in the base course of the six-inch thick and ten-inch 

thick sections ranged from 1.7 to 6.4 percent and 2.0 to 4.8 percent, 

respectively. The moisture contents in the base course at the base 

course/subgrade interface are considerably higher for Sections 10 and 

13W than for the other sections. 

o From the results obtained from the gravimetric moisture content testing, 

the moisture content in the subgrade of the six-inch thick and ten-inch 

thick sections ranged from 17.2 to 41.5 percent and 14.2 to 25.1 percent, 

respectively. The moisture contents in the subgrade at the subgrade/base 

course interface are considerably higher for Sections 10 and 13W than for 

the other sections. 

o From the results obtained for the base course dry unit weight values 

(calculated based on Equation 3.1) ranged from 133pcf to 150pcf and 

from 129pcf to 150pcf for the six-inch thick and ten inch thick sections, 

respectively. The base course dry unit weight for Section 13BW was the 

lowest in the six-inch sections. 
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o From the results obtained for the subgrade dry unit weight values 

(calculated based on Equation 3.1) ranged from 77pcf to 104pcf and from 

93pcf to 113pcf for the six-inch thick and ten inch thick sections, 

respectively. The lowest subgrade dry unit weight values obtained were 

found in Section 13BW. The highest subgrade dry unit weight values 

obtained were found in Section 1B. 

o From the results obtained from the geotextile design criteria review, only 

the Propex 4553 met all of the design criteria. The Carthage Mills FX-66 

product failed the most criteria (four of six criteria); the Carthage Mills 

FX-66 product was installed in sections 13W and 13BW. 

• From the results obtained from the sieve analysis testing (dry sieve, wet sieve, 

hydrometer analysis) conducted on samples located directly below and above the 

base course/subgrade interface, the difference in fines content for comparable 

six-inch thick and ten-inch thick sections for Section 13A/1A, 12/2, and 10/4 was 

the greatest, with deviations of 22.3, 22.4 and 11.6 percent, respectively, between 

the respective sections.   

• From the results obtained from the Atterberg Limits testing, in combination with 

the results obtained from the wet sieving, the subgrade in the six-inch thick 

sections were more plastic and more active as compared to the subgrade in the 

ten-inch thick sections, even though almost all of the samples plotted along the 

Illite activity line. 

• From the results obtained from the specific gravity testing, the specific gravity of 

the fines in the base course specific gravity ranged from 2.73 to 2.84 and 2.75 to 
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2.88 for the six-inch thick and ten-inch thick sections, respectively. The subgrade 

specific gravity ranged from 2.58 to 2.73 and 2.61 to 2.80 for the six-inch thick 

and ten-inch thick sections, respectively. 

• From the results obtained from the modified proctor testing, the base course 

maximum dry unit weight and optimum moisture content ranged from 148pcf to 

155pcf and 4.5 percent to 6.4 percent for the six-inch thick sections and from 

145pcf to 154pcf and 4.7 percent to 6.9 percent for the ten-inch thick sections, 

respectively.  

• From the results obtained from in-situ hydraulic conductivity testing, laboratory 

hydraulic conductivity testing, and correlations between grain size and hydraulic 

conductivity, the in-situ hydraulic conductivity values were the lowest. The 

correlation proposed by Moulton (1980) provides the best comparison to the 

measured values. Typically, the values estimated using the Moulton (1980) 

equation were between the laboratory measured values and the in-situ measured 

values. Based on the values obtained for vertical hydraulic conductivity, the 

addition of geotextiles did not increase or decrease the hydraulic conductivity of 

the base course (as compared with the control sections). Also the minimum 

criteria for free draining base (>10,000 ft/day) was not met for the base course 

samples investigated from all of the sections.   

• From the results obtained from the geotextile design criteria review, all of the 

geotextile products  fulfilled the permittivity criteria and the clogging 

requirement but did not satisfy the soil retention criteria.  
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• From the results obtained from transmissivity and permittivity testing, the 

transmissivity and permittivity of the exhumed geotextiles from the six-inch thick 

and ten-inch thick sections ranged from 3.4E-5 m2/s to 2.0E-4 m2/s and from 0.05 

s-1 to 0.32 s-1, respectively.      

• More rutting and alligator cracking was observed in the six-inch thick sections as 

compared to the ten-inch thick sections.  

• The combined thickness of asphalt and base course was highest in Section 1 and 

lowest in Section 13BW. 

  



192 
 

Chapter 5. Conclusions and Recommendations 

Drainage is a crucial element in pavement performance. Historical applications and 

benefits in utilizing geotextiles as evidenced through field studies were presented in Chapter 2. 

More specifically, the past field studies (located in various states) which were examined utilized 

geotextiles to stabilize roadways, equestrian trails, and hike and bike trails. The studies were able 

to identify and enumerate the benefits of geotextiles. In addition to the field studies, laboratory 

studies that explored new techniques to predict base course and geotextile performance in the 

field were also presented. The laboratory methods explored were able to identify the problem 

(reduced permeability of base course or geotextiles) but could not accurately predict field 

performance. The laboratory testing method (long term flow test) which identified the geotextile 

clogging issue and accurately predicted the problem was very time consuming.   

Sample acquisition techniques utilized in this research project were presented in detail in 

Chapter 3. Specifically, the in-situ testing procedures, the laboratory testing schedule, and 

laboratory testing procedures used to conduct this research were identified. The field testing 

program consisted of performing in-situ density and moisture content measurements, collecting 

samples (of the base course, geotextiles, and subgrade samples for the purpose of additional 

laboratory testing), and performing in-situ hydraulic conductivity measurements. The testing was 

performed to identify and characterize the base course and the subgrade samples (based on in-

situ density, moisture content, grain size analysis, specific gravity of fines, Atterberg limits, 

maximum dry density, and optimum water content), to obtain values of laboratory and field 

hydraulic conductivity of the base course material, and to measure the transmissivity and 

permittivity of the geotextiles. Conclusions drawn from the results obtained from the 

aforementioned field and laboratory testing (as discussed in Chapter 4) are presented in Section 
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5.1. Recommendations, for the correct implementation of geotextile products for filtration and 

separation in roadway applications, based on the results (as discussed in Chapter 4), are 

presented in Section 5.2. This chapter is concluded with recommendations for future work, as 

presented in Section 5.3.   

5.1. Conclusions Drawn from Results of Field and Laboratory Testing 

Based on the results of this research (as obtained from the field and laboratory testing), in 

combination with the performance data (rutting and cracking) data presented by Goldman 

(2011), and field observations, the following conclusions were obtained. 

• The installed base course at the Marked Tree Test Section does not meet the 

freely draining base course requirement (k>10,000 ft/day), 

• No increase or decrease in in-situ vertical hydraulic conductivity was observed 

by the addition of geotextiles, 

• The thickness of base course in the pavement system directly affects pavement 

performance especially on clayey subgrades, 

• Only one of the geotextile products (Propex 4553) installed in the Marked Tree 

Test Section meet all of the design requirements (retention, permittivity, 

clogging) established by the FHWA (1998). 

•  The Carthage Mills FX-66 product installed in the Marked Tree Test Section 

failed to meet four of the six design requirements. This product was installed in 

Sections 13W and 13BW, the two sections which failed. 

• The base course permeability can be estimated using the Moulton (1980) 

equation. 
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• The Two Stage Borehole testing method produced in-situ hydraulic conductivity 

values which were reasonable (as compared with laboratory data, Moutlon 

(1980), and Blanco (2003). 

• Sections 13W and 13BW had the smallest pavement thicknesses (combined 

asphalt and base course thicknesses). The highest moisture content was also 

observed for the base course and subgrade samples at the base course/subgrade 

interface within these sections.  

5.2. Recommendations Based on Results of Laboratory and Field Testing 

Based on the results of this research, in combination with the performance data (rutting 

and cracking) data presented by Goldman (2011), the following recommendations are suggested. 

• Base course thicknesses in excess of six-inches to be used for secondary roads 

constructed over marginal subgrade in the state of Arkansas. 

• The geosynthetic products investigated in this study NOT to be used at the base 

course/subgrade interface for secondary roads constructed over marginal 

subgrade in the state of Arkansas. As no observations of increased pavement 

performance were observed for the sections containing geosynthetics as 

compared with sections containing no geosynthetics.  

• If geotextile products are used at the base course/subgrade interface in secondary 

roads in the state of Arkansas, detailed construction inspection of the vertical 

alignment of the roadway should be conducted to prevent localized low spots 

where the geosynthetic may deposit water transferred from other locations, 

causing decreased performance. 
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• If geotextile products are used at the base course/subgrade interface in secondary 

roads in the state of Arkansas, the geotextile products should be day-lighted or 

connected to edge drain to drain water collected at the base course/subgrade 

interface. 

• If geotextile products are used at the base course/subgrade interface in secondary 

roads in the state of Arkansas, the geotextile products should be designed to meet 

the FHWA (1998) geotextile design criteria. 

5.3. Recommendations for Future Work 

Recommendations for future work, based on the results obtained from this research project 

include:  

• Atterberg limits testing on the fines in the base course samples, 

• day-lighting of the geosynthetics to prevent the geotextiles from carrying water to the low 

spots in the pavement system,  

• reconstruction of the Marked Tree Test Section utilizing geosynthetics that meet the 

FHWA (1998) design criteria, and utilizing construction quality control/quality assurance 

practices,  

• and a cost-benefit study investigating the contribution of geosynthetics to a pavement 

system as compared to the contribution of additional base course thickness to a pavement 

system. 

5.3.1. Atterberg Limits on Base Course Samples 

Atterberg limits testing were conducted on all of the “disturbed” subgrade samples 

collected in the bags. To determine if highly plastic fines are migrating from the subgrade to the 

base course, Atterberg limits testing must be conducted on the base course samples located at the 
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base course/subgrade interface. Atterberg limits testing were scheduled to be conducted on the 

fines from these base course samples, and the samples were prepared. However, the samples 

were deemed to be non-plastic after being unable to roll threads (and therefore obtain the plastic 

limit) for two of the samples, and additional testing on the remaining samples was aborted. A 

more trained laboratory technician may have been able to determine if the base course samples 

did contain some plasticity.        

5.3.2. Day-lighting of Geosynthetics at Marked Tree Test Site 

Based on the survey data reported in Section 4.13, local low spots within the pavement 

alignment may lead to locations where water can pond. More specifically, the geosynthetics may 

wick water to the low spots at the base course/subgrade interface, creating ponding which may 

be detrimental to the performance of the pavement system. The geosynthetics at the Marked Tree 

Test Site should be day-lighted to prevent the opportunity for ponding. After the geosynthetics 

have been day lighted, further investigation should be conducted to determine the effects of day 

lighting.     

5.3.3. Reconstruction of Marked Tree Test Section 

Although no benefit in pavement performance was by observed utilizing geosynthetic 

products at the Marked Tree Test Site, this may be caused by incorrect placement of the 

geosynthetics and incorrect types of geosynthetics. Because of the excessive rutting (Section 

13BW) and the damage incurred as the result of the forensic geotechnical field investigation 

(Section 13BW), it is recommended that the Marked Tree Test Site be reconstructed. During the 

reconstruction, the following inherent difficulties of the current site (listed below) may be 

addressed: 

• Location of the geosynthetics, 
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• uniform traffic count and loading, 

• uniform subgrade soils, 

• well documented construction, 

• and care for the in-situ sensors. 

5.3.3.1 Location of Geosynthetics 

All of the geosynthetics installed at the Marked Tree Test Site were installed at the base 

course/subgrade interface. Whereas, this location is the most beneficial for geotextile separators 

and geotextile filters, this location may not be the best location for geogrid reinforcement. It is 

suggested that in sections containing geogrid, the geogrid specimens be placed at the middle of 

the base course layer instead of at the base course/subgrade interface. 

All but one of the geotextiles installed at the Marked Tree Test Site did not meet all of the 

FHWA (1998) design criteria for geotextile fabrics.  Additional fabrics that meet FHWA criteria 

should be installed at the Marked Tree Test Site.   

5.3.3.2 Uniform Traffic Count and Loading 

  Although not discussed in the thesis, the traffic count data (as presented in Goldman, 

2011) obtained from the Marked Tree Test Site is non-uniform. This non-uniformity was caused 

by the construction of the nursing home with the driveway spanning Sections 7 and 8. The 

location of the nursing home, resulted in more traffic on the ten-inch thick sections as opposed to 

the six-inch thick sections. Following construction of the nursing home, continuous traffic count 

data should have been obtained for both the Eastbound and Westbound lanes in Section 13 and in 

Section 1. By investigating the data the exact amount of traffic that traveled over each section 

could have been determined.   
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Because of construction at the technical school located just West of Section 13B, the 

traffic that traveled over the Westbound lane was also more heavily loaded. The trucks traveling 

in the Westbound lane carried building materials and supplies and unloaded the materials and 

supplies at the school prior to traveling back to the Interstate in the Eastbound lane. This 

additional loading may have been an additional cause of the failure in Sections 13B and 13BW.  

Weigh stations may have supplied needed information about the loading of the pavement system 

by these material suppliers.             

5.3.3.3 Uniform Subgrade Soils 

Based on the results presented in Sections 4.1 and 4.3, the subgrade soils within the six-

inch thick sections and the ten-inch thick sections are not the same. The soils below the six-inch 

thick section are more active than the soils below the ten-inch thick sections. This variation in 

subgrade soils may have been an additional cause in the poor performance of the six-inch thick 

sections as compared with the ten-inch thick sections. To investigate only the components of the 

geosynthetics or base course thickness, the subgrade soils should be the same in all sections.     

5.3.3.4 Well Documented Construction 

Upon initiation of the research project associated with this thesis, it was believed that the 

westbound lane contained no geosynthetics. However, after obtaining unpublished photos of the 

site during construction of the site, it was determined that the Westbound lane was reinforced 

with geosynthetics (up to three layers thick in some locations). Additionally, onsite density 

measurements during placement of the subgrade and base course, elevations of the alignment, 

and saved unused samples of the geosynthetics used in the pavement system would have proven 

very beneficial to this project.    
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5.3.3.5 Care for the In-situ Sensors  

Upon initiation of the research project associated with this thesis, the in-situ sensors 

including the asphalt strain gauges, earth pressure cells, geotextile strain gauges, geogrid strain 

gauges, moisture content probes, piezometers, and thermocouples installed when the site was 

constructed were not working. Proper care for these sensors would have enabled additional data 

that may have provided more insight into the performance of the geosynthetics and the overall 

performance of the flexible pavement system.        

5.3.4. Cost Benefit Analysis 

To truly determine if geosynthetic products should be used in pavement systems to 

reduce the cost associated with additional thickness of base course, the contribution of the 

geosynthetics must be known. Following the reconstruction of the Marked Tree Test Site 

(implementing strategies to prevent: poor performance of the in-situ devices, poor selection of 

the location of the geosynthetics within the pavement system, and poor construction practices), a 

cost benefit analysis may be conducted to determine the savings or loss in savings of using 

geosynthetics.    

5.3.5. Recommended Changes in Testing Schedule 

While extensive testing was conducted as previously described in Chapter 3, the results 

(previously described in Chapter 4) do not provide a sufficiently complete understanding of 

geotextile performance in pavement drainage application. Therefore, as a result of the findings of 

this research project, the following areas have been identified for improvement to the field and 

laboratory testing program: 

• Measure the AOS of geotextiles to determine the change in AOS after being in 

service for five years, 
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• weigh the geotextile after exhumation to determine the weight of fines trapped in 

the geotextiles which is a good indicator of geotextile clogging, 

• more samples from each sections should had been exhumed so more test could 

have been performed (especially a five point modified proctor test instead of a 

four point proctor test),  

• conduct specific gravity tests on large particles to obtain a more representative 

laboratory obtained specific gravity, 

• conduct forensic investigation on Sections 1W and 1BW (ten-inch thick sections) 

to compare the performance with the failing Sections 13W and 13BW (six-inch 

thick sections), 

• conduct transmissivity and permittivity testing on additional new geotextile 

samples,  

• and conduct TSB on Sections 1W, 1BW, 13W and 13BW to obtain vertical 

hydraulic conductivity of base course materials.  
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