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Abstract 

As the need for durable, long lasting infrastructure increases, new methods and 

techniques are being explored to prolong the service life of roads and bridges.  One method to 

reduce shrinkage and early age cracking in concrete is internal curing.  Internal curing supplies 

water to concrete, using pre-wetted lightweight aggregate (LWA), as needed throughout the 

process of hydration to reduce self desiccation, which leads to cracking.  This research project 

analyzed two types of coarse LWA, expanded clay and expanded shale.  The mixtures were 

developed specifically for use in bridge decks and adhered to specifications of the Arkansas State 

Highway and Transportation Department (AHTD).  The concrete mixtures contained LWA at 

rates of 0, 100, 200, and 300 lb/yd
3
.  The research was divided into two phases. The first phase 

measured autogenous and drying shrinkage in both plastic and elastic states using embedded 

vibrating wire strain gages (VWSG) cast in concrete prisms. The expanded clay LWA mixtures, 

with the 300 lb. replacement rate yielding the best results, were most effective in reducing 

shrinkage. Compressive strength decreased as the amount of LWA included in the mixture 

increased. However, all mixtures surpassed the 28 day compressive strength specified by AHTD. 

The second phase of the research project measured plastic shrinkage cracking in thin concrete 

test slabs. Methods and materials were investigated to produce consistent plastic shrinkage 

surface cracks of the concrete slabs. The extent of plastic shrinkage that occurred was quantified 

by measuring the total crack area of the test slabs. Implementation of 300 lb. of expanded clay 

LWA did not reduce the crack lengths, but did reduce the average crack widths experienced by 

the test slabs due to plastic shrinkage.  
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Chapter 1 Introduction 

1.1 Overview 

Curing of concrete has long since been utilized in the construction industry in regards to 

bridge decks. Curing increases concrete strength and durability while supplying additional water 

to reduce shrinkage and early age cracking. The vast majority of today’s curing procedures are 

done externally. Common practices of external curing include ponding, fogging, misting, and 

wet burlap applications (Bentz & Weiss, 2011). While external curing is important to counteract 

premature moisture loss, it has shown only to penetrate millimeters into the concrete surface, 

especially in the case of high performance concrete (Bentz, 2002). Internal curing is a relatively 

new method that supplies additional moisture needed during hydration, not just to the surface of 

the concrete, but throughout the concrete matrix. Internal curing is defined by the American 

Concrete Institute (ACI) as “supplying water throughout a freshly placed cementitious mixture 

using reservoirs, via pre-wetted lightweight aggregates, that readily release water as needed for 

hydration or to replace moisture lost through evaporation or self-desiccation” (ACI, 2010). 

1.2 Research Significance 

A goal of internal curing is to reduce the strain in concrete mixtures which directly 

influences the potential of concrete to crack. Designers have to take preventative measures in an 

effort to reduce or eliminate shrinkage cracking in bridge decks and concrete pavements 

throughout the U.S. However, in many cases these preventative measures are not sufficient in 

eliminating cracking. Early age cracking of concrete can significantly decrease the durability 

and, consequently, the design life of the structure. Research findings have shown that the effects 

of internal curing on concrete shrinkage can help in the effort to extend the life of concrete 

structures as well as reducing costly repairs or replacements whose structural integrity or 
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serviceability is weakened through the influence of shrinkage cracking. In past research, internal 

curing has been studied mostly for its use in high-performance concrete (HPC) due to its 

increased need for moisture throughout the hydration process. However, limited research has 

been conducted for the effects of internal curing in conventional concrete, or concrete with a 

higher water to cement ratio (w/cm), due to the assumption that the concrete matrix contains 

sufficient water to allow full hydration. Bridge decks cast with conventional concrete are still 

experiencing early age cracking, so the goals of this research are to examine the effects that 

internal curing have on conventional concretes to determine if the implementation of internal 

curing can mitigate early age cracking in bridge decks. The purposes of this research are not to 

replace common external curing methods, but to find ways to supplement the curing of concrete 

that may result in increased service life of structures in the future.  

1.3 Research Scope 

For this research, internal curing was provided by two types of coarse lightweight 

aggregate (LWA); expanded clay and expanded shale. These LWA’s were submerged in water 

prior to batching so that the internal pores of the LWA would contain water that could be 

released into the concrete matrix throughout the hydration process. The research discussed herein 

was performed in two phases. The first phase of the research examined the effects of internal 

curing on autogenous and drying shrinkage using embedded vibrating wire strain gages (VWSG) 

cast in concrete prisms to monitor strain. The strains in the concrete prisms were measured from 

the time of casting out to 112 days. The LWA’s were added in varying replacement rates and 

compared with a Control to examine the effects on strain as well as compressive strength. The 

second phase examined the effects of internal curing on plastic shrinkage cracking of test slabs. 

This phase investigated experimental methods to consistently produce plastic shrinkage cracks in 
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concrete test slabs, and examined if the implementation of LWA affected the degree of plastic 

shrinkage cracking that occurred.  
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Chapter 2 Literature Review 

2.1 History of Internal Curing 

 Internal curing of concrete most likely began before the benefits were realized. The 

Romans used porous aggregates such as pumice and scoria in some of their structures, most 

notably the dome of the Pantheon (Bremner & Ries, 2009). Its use, however, was not for the 

increased curing capabilities of the LWA. The LWA was used to decrease dead loads of the 

concrete itself. The realization of the significance of internal curing through LWA came much 

later in history by Paul Klieger in 1957 stating, “Lightweight aggregates absorb considerable 

water during mixing which apparently can transfer to the paste during hydration”  (Bentz & 

Weiss, 2011). The high amount of variance in the properties of naturally occurring LWA made 

implementing these aggregates in construction a struggle. It wasn’t until Stephen Hayde patented 

a method of manufacturing LWA, that a broader use of LWA’s could be accomplished (though it 

happened long after Hayde’s patent in 1914) (Bremner & Ries, 2009). Hayde developed a 

method of rapidly cooking shale, slate, and clay in a rotary kiln at high temperatures where the 

gases could not escape the aggregate, causing it to expand and creating its porous structure.  

During the 1990’s internal curing research was being performed in several countries 

including work by Weber and Reinhardt (Bentz & Weiss, 2011). They investigated the use of 

pre-wetted LWA for its use in internal curing (Weber & Reinhardt, 1995). Other water-carrying 

reservoirs investigated included wood fibers and superabsorbent polymers (SAP) (Bentz & 

Weiss, 2011).  Internal curing has been studied in much more depth for its use in high 

performance concretes (HPC) because of increased hydration in these low w/cm concretes. 

Research of internal curing in concrete remains a relatively new area of study to this day.  
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2.2 Theory of Internal Curing 

ACI defines curing as “action taken to maintain moisture and temperature conditions in a 

freshly placed cementitious mixture to allow hydraulic cement hydration and (if applicable) 

pozzolanic reactions to occur so that the potential properties of the mixture may develop” (ACI, 

2010).  The goal of internal curing is to maintain conditions so that increased hydration may 

occur by providing an internal source of water. In most cases, the internal source of water is 

provided by pre-wetted LWA. Through the process of hydration, water and cement react forming 

hydration products. These hydration products occupy less volume than water in its bulk form 

(Bentz & Weiss, 2011). This reduction in volume can leave void spaces in the cement matrix 

inducing tensile stress as the presence of water diminishes. Internal curing provides additional 

water that is stored within the aggregate pore structure. As hydration occurs and water is 

consumed in the cement paste, water from the LWA is drawn back into the paste to further the 

degree of hydration. The nature of the manufactured LWA is that its pores are larger than the 

pores in the cement paste. Studies using X-Ray absorption of cement materials indicated that 

water will move from coarse to finer pores (Bentz, Hansen, Madsen, Vallee, & Griesel, 2001).  

As water is consumed and the relative humidity drops, water is drawn out of the larger pores in 

the LWA and into the smaller pores of the cement paste (Figure 2.1). 
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Figure 2.1   Comparison Between External Curing and Internal Curing (Weiss, Bentz, 

Schindler, & Lura, 2012) 

 

2.3 The Use of Internal Curing in Conventional Concrete Mixtures 

Most internal curing research has focused on HPC mixtures that possess a low w/cm and 

high cement content. These mixtures contain insufficient water content to fully hydrate the 

cement. In addition, the dense nature of HPC results in low permeability, which decreases the 

effectiveness of external curing (Espinoza-Hijazin & Lopez, 2011). However, for the research 

discussed herein, concrete mixtures with a w/cm equal to 0.44 were analyzed that do not fall into 

the category of HPC.  In theory, mixtures with w/cm greater than 0.36 have enough water 

without internal curing to assume 100 percent hydration, assuming extended and saturated curing 

conditions are present (Bentz, Lura, & Roberts, 2005). However, in many job site applications, 

saturated and ideal curing conditions can be impractical. Environmental conditions paired with 

shorter-than-ideal curing periods can lead to moisture loss resulting in decreased hydration. 

Espinoza-Hijazin and Lopez found a 15 percent increase in the degree of hydration, a 19 percent 

increase in 90 day compressive strength, and a 30 percent decrease in chloride ion permeability 
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in conventional concrete using internal curing when compared to no internal curing used. They 

stated, “…the mixtures with internal curing showed less water effectively lost than the mixtures 

without it, That is, internal curing was able to maintain better curing conditions for the cement 

paste even under drying conditions” (Espinoza-Hijazin & Lopez, 2011).  

Research done by Kansas University evaluated the effect of internal curing through LWA 

in concretes with a w/cm equal to 0.44 (Reynolds, Browning, & Darwin, 2009). They evaluated 

three different replacement rates of intermediate LWA:  low, medium, and high replacement 

rates (8.4, 11.3, and 13.8 percent aggregate by volume). In almost every mix, the addition of 

LWA reduced the free shrinkage of the concrete at both 30 and 90 days. The best results coming 

from the highest replacement rate of LWA (14 day cure) that yielded 30 and 90 day shrinkage of 

220 and 347 microstrain, while the control experienced 313 and 410 microstrain, respectively. 

When comparing the three different replacement rates, they found the greatest reduction in free 

shrinkage came in the mixture with the highest amount of LWA used. Their study also found that 

the addition of LWA had little change on compressive strength. 

2.4 Why Use Internal Curing? 

NCHRP Synthesis 333, states that the largest contributing factors to transverse deck 

cracking are weather and curing (National Cooperative Highway Research Program, 2004). 

Higher cracking was reported with lower humidity levels and increased evaporation rates. When 

adverse weather conditions and less than ideal curing methods are experienced in the field, 

internal curing can be another way to provide the moisture needed to reduce potential cracking. 

Internal curing should not be used to replace external curing methods, but be used to supplement 

current curing practices. 



8 

 

Bridge decks experience some of the worst environmental conditions. Most bridge decks 

are exposed to de-icing salts, freeze-thaw cycles, wet and dry conditions, and thermal variations 

(Holm, Bremner, & Newman, 1984). Holms used scanning electron micrographs to evaluate 

cored concrete samples taken from various aging structures located in areas with harsh 

environment conditions. Holms took concrete samples from structures built as far back as 1919. 

The samples revealed a very strong bond between LWA and cement paste matrix. He explained 

that since there is moisture exchange between LWA and the cement paste while the concrete is 

still in its plastic stage, it prevents a film of water from developing at the aggregate-cement paste 

interface. The absence of this water layer strengthens that bond. Holms found less micro-cracks 

at the interface of the LWA and the paste. He concludes that since the elastic stiffness of the 

LWA is closer to the stiffness of the cement, when compared to normal weight aggregate, the 

similarities in stiffness decrease concentrations at this interface reducing the amount of micro-

cracks. Less micro-cracking results in less outside environment infiltration into the concrete, 

which increases the service life of structures.  

2.5 Effects of Internal Curing on Properties of Concrete 

2.5.1 Compressive strength 

Internal curing can have a dual effect on concrete compressive strength of concrete. On 

one hand, the lower strength of LWA can cause an overall decrease in compressive strength in 

the concrete. However, the increased degree of hydration of the cement paste due to an increase 

in the available amount of internal water increases concrete compressive strength. Mixture 

proportioning plays a significant role in concrete strength, so internal curing may have different 

effects based on the types and amounts of materials used for a particular mixture. The age of 

testing can also a factor. At early ages, while cement is still in the early stages of curing, 
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compressive strength may be lower than conventional concrete mixtures due to the mechanically 

weaker LWA. As the time after casting increases, the internally cured mixtures may continue to 

cure the concrete at a higher rate than conventional concrete mixtures resulting in increased 

compressive strengths (Bentz & Weiss, 2011). However, it is important to note that both 

increases and decreases in compressive strength with the addition of LWA have been found in 

past research.  

2.5.2 Modulus of Elasticity 

LWA possesses a lower modulus of elasticity than of normal weight aggregate, coarse or 

fine. When either a portion or total amount of normal weight aggregate is replaced with LWA, 

the modulus of elasticity of the concrete will decrease in many cases (Byard B. E., 2011). ACI 

318 states that modulus of elasticity for concrete is sensitive to the modulus of elasticity of the 

aggregate (ACI, 2008).  It calculates the modulus of elasticity of concrete using Equation 1. 

                                                                                               (Equation 1) 

Where: 

EC = Modulus of elasticity for concrete 

wc = unit weight of concrete (lb/ft
3
) 

f’c = compressive strength of concrete (psi) 

Replacing normal weight aggregate with LWA will decrease the density of concrete, in turn, 

reducing the modulus of elasticity as shown in the above equation.  

2.6 Types of Concrete Shrinkage 

It should first be noted that while strains in many cases refer to a volume reduction, 

strains can also result in volumetric expansion. While ‘shrinkage’ is commonly used in reference 

to strains, keep in mind that both shrinkage and expansion may occur. Concrete shrinkage can be 

attributed to multiple causes. Shrinkage causes the internal tensile stresses to increase. Shrinkage 
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stresses are developed internally and are not caused by external loadings. Once these stresses 

exceed the tensile capacity of the concrete, cracking will occur. If one can keep concrete 

shrinkage to a minimum, then the result should be reduced cracking. Plastic, autogenous and 

chemical, and drying shrinkage will be discussed in further detail. 

2.6.1 Plastic Shrinkage 

ACI defines plastic shrinkage as “shrinkage that takes place before cement paste, mortar, 

grout, or concrete sets” (ACI, 2010). Immediately after placement of concrete, the surface begins 

to lose moisture to evaporation. As the moisture is lost to the environment, the water is 

transported to the surface from inside the concrete (Henkensiefken, Briatka, Bentz, Nantung, & 

Weiss, 2010). If the evaporation exceeds the rate at which concrete can supply moisture to the 

surface, then stresses increase and cracking can occur.  

2.6.1.1 Phases of Plastic Shrinkage 

Concrete that is in a drying environment progresses through three drying phases (Lura, 

Pease, Mazzotta, Rajabipour, & Weiss, 2007). In phase 1 the concrete goes through 

sedimentation, where the denser particles such as cement and aggregate settle to the bottom. This 

causes the less dense particles such as the water to rise to the surface. Sedimentation leaves this 

water at the surface susceptible to evaporation. In Phase 2 the water at the surface begins to 

evaporate leaving a liquid-vapor menisci that develops capillary pressure which furthers the 

consolidation process, forcing more water to the surface of the concrete. When concretes contain 

prewetted LWA, water is drawn out of these reservoirs first, because the pore structure of the 

LWA is usually larger than those in the cement paste (Henkensiefken, Briatka, Bentz, Nantung, 

& Weiss, 2010). As this rearrangement of particles continues, there comes a point where the 

pressure of the concrete matrix cannot be reduced any further, drying of the matrix then 



11 

 

infiltrates in the interior of the concrete. This increases the cracking potential in the concrete and 

this transition is called the ‘critical point’ (Lura, Pease, Mazzotta, Rajabipour, & Weiss, 2007). 

This is the point at which the concrete is most susceptible to cracking. During Phase 3 the drying 

penetrates into the interior of the matrix where the liquid path between the surface and interior 

disappears. During this phase, the settlement and evaporation rates decrease (Holt, 2001). 

2.6.1.2 Factors Contributing to Plastic Shrinkage 

Plastic shrinkage is attributed to four major forces (Lura, Pease, Mazzotta, Rajabipour, & 

Weiss, 2007). First is rapid evaporation of water from the surface of the concrete, which 

increases the tensile stresses in the capillary water close to the surface. The amount of exposed 

surface area in relation to the total volume (known as the surface area to volume ratio) will affect 

the amount of plastic shrinkage that occurs. Bridge decks have a high surface area to volume 

ratios which can result in plastic shrinkage cracking if preventative measures are not taken.  The 

second force is differential settlement. Areas in contact with reinforcing steel or other restraints 

will affect the amount of settlement that occurs. The difference in the amount of settlement 

throughout the concrete specimen will incur tensile stresses which increase the probability of 

cracking. Concrete mixtures with low slump are less susceptible to plastic shrinkage cracking 

due to a decrease in settlement (Qi, Weiss, & Olek, 2003).  This was confirmed by this research 

experiences in analyzing plastic shrinkage cracking in thin concrete slabs (Refer to Ch. 4 for 

details). The third contributing force for plastic shrinkage cracking is differential thermal dilation 

where a temperature gradient develops between the surface and the inner core of the concrete 

specimen due to evaporation of the surface water. This temperature gradient will cause 

differential shrinkage throughout the specimen promoting cracking. When testing for plastic 

shrinkage cracking in laboratory settings, thin concrete slabs are used to reduce the temperature 
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gradient between the surface and the interior of the concrete. The fourth force is autogenous 

shrinkage before hardening of the concrete matrix. As explained in the following section, 

hydration results in liquid-vapor menisci which induce tensile stresses. This has also been shown 

to occur even if evaporation is prevented (Lura, Pease, Mazzotta, Rajabipour, & Weiss, 2007).  

2.6.1.3 Test Methods for Plastic Shrinkage 

Since plastic shrinkage cracking occurs before or during the initial setting of the concrete, 

methods to assess plastic shrinkage measure the quantity of surface cracking. Quantification of 

plastic shrinkage cracking has proved difficult in past research. One major factor in concretes’ 

susceptibility to plastic shrinkage is the rate of evaporation. Water loss of 1.0 kg/m
2
/h (0.2 

lb/ft
2
/h) has been widely referenced as the evaporation rate that leaves concrete susceptible to 

plastic shrinkage (ACI, 1999). 

ASTM C1579 Standard Test Method for Evaluating Plastic Shrinkage Cracking of 

Restrained Fiber Reinforced Concrete (Using Steel Form Insert) is one method for quantifying 

plastic shrinkage cracking (ASTM, 2006). This method uses a steel form insert that is fabricated 

to reduce concrete slab thickness which induces concentrated stresses which can lead to 

cracking. Since plastic shrinkage cracking can occur in different locations on the surface of the 

slab, this test method aims at controlling that variability by reducing the thickness of the slab in 

the transverse direction. This test method was used by Henkensiefken et al. to analyze the effects 

of internal curing on cement paste and concrete mixtures (Henkensiefken, Briatka, Bentz, 

Nantung, & Weiss, 2010). Figure 2.2 shows the geometry of the formwork and the steel insert. 
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Figure 2.2   ASTM C 1579 Formwork and Stress Riser Geometry (ASTM 2006) 

 

This test method is one of the few standardized test methods (and the only ASTM 

standard) that specifically analyzes plastic shrinkage cracking in concrete. Difficultly arises 

when trying to analyze plastic cracking in concrete due to the internal restraint of the aggregate. 

The presence of aggregate causes concrete to shrink less than cement paste (Pelisser, da S. 

Santos Neto, La Rovere, & de Andrade Pinto, 2010). This is why multiple test methods that 

analyze plastic shrinkage remove the coarse aggregate by wet sieving which promotes more 

shrinkage. The higher surface area to volume ratio that exists, the greater the probability that 

drying and/or plastic shrinkage can occur. This is why bridge decks, pavement surfaces, walls, 

and large slab floors are more susceptible to this shrinkage cracking (Weiss, Yang, & Shah, 

1998).  
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In 1985, Kraai proposed a test to determine the cracking potential attributed to drying 

shrinkage (Kraai, 1985). This test differed in that it evaluated the cracking potential of specimens 

at very early ages and results were recorded 24 hours after placement. While Kraai referred to 

the volume change as drying shrinkage, it should be noted that plastic shrinkage plays a large 

role in this test. To increase the shrinkage, Kraai evaluated 2 x 3 foot slabs that were ¾ inches 

thick. This high surface area to volume ratio allows for maximum exposure to the environment. 

In order to maximize the cracking potential, external restraint was used in the form of wire mesh 

placed around the perimeter of the rectangular molds (Figure 2.3). The wire mesh restrains the 

mortar mixture as it shrinks, inducing tensile stresses throughout the slab. Once these stresses 

exceed the tensile capacity of the mortar mixture, the slabs will crack. Coarse aggregate was not 

used in this test in order to reduce the amount of internal restraint of the mixture. In the absence 

of stiff aggregate, the mixture will shrink at a greater rate. The slabs are exposed to high 

temperature, low humidity and a constant wind speed in order to simulate drying conditions. At 

24 hours, crack lengths and widths are evaluated.  Shaeles and Hover used Kraai’s test method in 

evaluating the influences of mixture proportions and finishing on plastic shrinkage in cement 

mortars (Shaeles & Hover, 1988). This research found that reducing the paste volume through 

the use of water-reducing agents reduced plastic shrinkage cracking. It was also concluded that 

screeding and finishing played a significant role in the severity of plastic shrinkage cracking. It 

was stated that it may be possible to use this method to evaluate concrete’s potential for plastic 

shrinkage cracking. The research program used Kraai’s methods as the basis for analyzing plastic 

shrinkage cracking in concrete slabs.  
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Figure 2.3   Formwork for Thin Slabs (Kraai, 1985) 

 

2.6.2 Autogenous and Chemical Shrinkage 

Autogenous shrinkage is “the bulk strain of a closed, isothermal, cementitious material 

system not subjected to external forces” (Jensen & Hansen, 2001). The external shrinkage that 

occurs without the influence of any external forces such as evaporation or temperature changes is 

autogenous. During the first hours after mixing, autogenous shrinkage is directly related to 

chemical shrinkage, that is, chemical and autogenous shrinkage are the same. As the concrete 

hardens, autogenous shrinkage and chemical shrinkage are no longer linked. The solidification of 

the cementitious matrix no longer allows the autogenous shrinkage to keep pace with ongoing 

chemical shrinkage (Figure 2.4). After the initial hardening of the cement paste, the autogenous 

shrinkage is inhibited which decreases the shrinkage of the bulk specimen. The chemical 

shrinkage continues to increase at this point, creating void space within the cement paste.  
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Figure 2.4   Chemical and Autogenous Shrinkage Volumes During Hydration of a Paste 

with a w/cm of 0.30 (Henkensiefken, 2008) 

 

The result is a pressure drop in the water that causes vapor-filled cavities in the pore 

system (Henkensiefken, Bentz, Nantung, & Weiss, 2009). Through the continued process of 

hydration, water is consumed and the relative humidity inside the concrete can drop. This 

localized drying due to the drop in relative humidity is called self-desiccation (Holt, 2001). Self-

desiccation is a greater cause for concern in lower w/cm concretes. This is due to the fact that 

with a lower amount of water/ higher amount of cement, there may not be enough water to fully 

hydrate the cement. So when the water is consumed, the empty pores develop tensile stresses 

which can cause cracking in the concrete. Autogenous shrinkage increases with increasing 

cement content, cement fineness, and temperature (ACI, 2001).  

The reactions between cement and water result in chemical shrinkage, which causes a 

reduction in volume (Holt, 2001). Chemical shrinkage is “the volume reduction associated with 

the hydration reactions in a cementitious material” (Jensen & Hansen, 2001). The volume of the 

hydration products is less than the sum of the individual volumes of water and cement. 
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2.6.2.1 Testing Methods for Autogenous Shrinkage 

Testing concrete or cement paste specimens in sealed conditions is a way of measuring 

autogenous effects. By eliminating drying shrinkage, it can be assumed that the shrinkage that 

does occur under sealed conditions is autogenous. There are multiple methods to assess 

autogenous shrinkage. For mortar and paste specimens, ASTM C1698 Standard Test Method for 

Autogenous Strain of Cement Paste and Mortar is predominately used. The mixture is placed in 

a corrugated tube that is sealed. The corrugated tubes cause the mixture to only expand at the two 

ends that are not restrained. The contraction or expansion at the two ends is measured after 

setting by two linear variable differential transformers (LVDT) (ASTM, 2009).  

For concrete and mortar specimens, sealed prisms have been studied to evaluate 

autogenous effects. Weiss, Borischevsky, and Shah used sealed prisms to evaluate autogenous 

effects on high performance concrete in 1999. Another test method is ASTM C1581 Standard 

Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of 

Mortar and Concrete under Restrained Shrinkage. This test method evaluates autogenous effects 

by monitoring shrinkage cracking under restrained conditions.  (Bentz & Weiss, 2011).  

2.6.3 Drying Shrinkage 

Drying shrinkage is a volume reduction from a loss of water in concrete (Holt, 2001). As 

the concrete dries, water is emptied out of internal pores causing them to shrink, reducing the 

volume of the concrete specimen. Drying shrinkage occurs when concrete is in its hardened state. 

Reduction of the free water in concrete is due to several factors. External factors such as wind 

and temperature can increase the surface evaporation which draws free water from inside the 

concrete. Internal factors, such as hydration, chemically consume the free water thus further 

drying the concrete. 
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When concrete shrinks the tensile strain increases. If the concrete tensile strain exceeds 

the tensile strain capacity of concrete, then cracking will occur. Concrete used in structural 

application is generally restrained in some way. Restraint refers to external materials in contact 

with concrete that limit the extent to which the concrete contracts. When concrete shrinkage and 

restraint are combined, tensile stresses are developed (ACI, 2001). Examples of restraint can be 

foundations, reinforcing steel, other sections of the structure, or geometry. Figure 2.5 illustrates 

how tensile stresses are developed with the combination of drying shrinkage and restraint. 

 

Figure 2.5   Concrete Cracking Due to Drying Shrinkage (ACI, 2001) 
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2.6.3.1  Factors Contributing to Drying Shrinkage 

The main factors controlling drying shrinkage of concrete include relative humidity, 

aggregate type, aggregate content, water content, and w/cm (ACI, 2001). As the relative 

humidity increases, the drying shrinkage decreases (Hansen & Almudaiheem, 1987). In their 

testing of cement paste with a w/cm of 0.60, Hansen & Almudaiheem found ultimate drying 

shrinkage in the cement paste equal to 1.00 percent at a relative humidity of zero percent and an 

ultimate drying shrinkage in the paste of 0.10 percent at a relative humidity of 90 percent. This 

study shows how significant a role relative humidity plays on the drying shrinkage of concrete.  

Both the type and quantity of aggregate affect the amount of drying shrinkage. As 

mentioned above, cement and water react through hydration which reduces the volume of the 

cement-water paste. Coarse aggregate reduces the amount of shrinkage in the paste through the 

aggregate’s elastic restraint (ACI, 2001). The highly rigid rock acts as internal restraints which 

fight against the shrinkage of the paste. Another factor affecting the amount of drying shrinkage 

is the modulus of elasticity of the coarse aggregate. Past studies have shown that as the modulus 

of elasticity of the aggregate increases, the linear shrinkage of concrete decreases (Hansen & 

Almudaiheem, 1987). Figure 2.6 shows how both the quantity and the type of aggregate 

influence the relative shrinkage of concrete. Note that ‘m’ refers to the modulus ratio, which is 

the ratio of the modulus of elasticity of the aggregate to the modulus of elasticity of the fully 

hydrated cement paste. From the figure one can observe that both aggregate content and type 

have a major influence on drying shrinkage of concrete.  
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Figure 2.6   Effect of Relative Aggregate Content and Modulus Ratio on Drying Shrinkage 

of Concrete (Hansen & Almudaiheem, 1987) 

 

For a fixed w/cm, an increase in water content (which also increases the cement content) 

increases drying shrinkage. If the aggregate size or content of a concrete mixture change, then 

the cement paste volume may have to be altered in order to obtain similar consistency. Smaller 

aggregate size increases surface area that needs to fully coated by the cement paste in a given 

mixture. Therefore, if a targeted consistency , which is measured by slump, is required, then 

using larger aggregate size may require less cement paste for coverage which will also decrease 

the amount of drying shrinkage that occurs. As the w/cm increases, so does the shrinkage (ACI, 

2001). 

2.6.3.2 Test Methods for Drying Shrinkage 

The most widely used method for evaluating drying shrinkage in concrete and cement 

mortar specimens is ASTM C157 Standard Test Method for Length Change of Hardened 
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Hydraulic-Cement Mortar and Concrete (ASTM, 2008). This method measures the linear length 

change of concrete specimens exposed to drying conditions from 24 hours after casting. The 

length change of a prism cast with concrete or cement mortar is measured by a length comparator 

(Figure 2.7). The shrinkage is recorded beginning at 1 day of age and all of the remaining 

shrinkage values are compared to the 1 day length. For each testing period, the prisms are 

measured, and the change in length divided by the original length of the prism yields the linear 

strain which is the amount of drying shrinkage. The method can be done at a relatively low cost 

compared with other methods in evaluating shrinkage in concrete or cement mortars.  

 

Figure 2.7   Linear Comparator and Prism used in ASTM C157 

 

2.7 Lightweight Aggregate 

As noted earlier in Section 2.1, naturally formed LWA’s were used in concrete thousands 

of years ago. While naturally forming LWA such as pumice and scoria can be used in concrete, 

its variability and selective deposit locations make it unrealistic for global use. Today, the 

majority of LWA is manufactured. There are various manufacturing methods including rotary 

kiln heating, sintering, and molten slag agitation (ACI, 2003). The research discussed herein 
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focused on the use of LWA’s manufactured in rotary kilns and so will be the focus in this 

literature review.  

2.7.1 Manufacturing LWA  

The process of manufacturing LWA started with Stephen Hayde’s 1914 patent. He later 

discovered that a rotary kiln could be used to efficiently produce the LWA (Bremner & Ries, 

2009). The manufactured LWA comes from heating clay, shale, or slate that passes through in a 

long, inclined, cylindrical kiln that continually rotates. Temperatures gradually increase for the 

first two-thirds of the kiln, and then quickly increase for the remaining one-third of the kiln 

(Byard & Schindler, 2010). Maximum temperatures can reach almost 2200 degrees Fahrenheit 

(F). See Figure 2.8 for an illustration of the process of manufacturing expanded clay, shale, and 

slate. At these extreme temperatures, the material becomes plastic while gases from the interior 

are released causing expansion. These gases form disconnected pores throughout the aggregate 

structure once the material cools and becomes elastic. The formation of pores in the aggregate 

decreases the density of the aggregate. These internal pores are able to hold water until the 

cement paste requires it.  
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Figure 2.8   Manufacturing Process of Expaned Clay, Shale, and Slate (Byard & Schindler, 

2010) 

 

2.7.2 Mixture Proportioning of LWA 

Mixture proportioning the correct amount of LWA is an important step to insure that 

there is a sufficient amount of internally stored water to increase hydration. Bentz and Snyder 

developed an equation to estimate the amount of fine LWA needed for internal curing (Bentz, 

Lura, & Roberts, 2005). Even though the equation is intended for the use of fine LWA, it was 

used as a guide for determining the approximate amount of coarse aggregate needed.  

                                                                                                   (Equation 2) 

Where: 

  = mass of dry, fine LWA (lb/yd
3
); 

    = cement factor or content for the concrete mixture (lb/yd
3
); 

CS = chemical shrinkage of cement (g of water/g of cement); 
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   = maximum expected degree of hydration of cement; 

S = degree of saturation of cement (0 to 1); 

   = absorption of lightweight aggregate (g of water/g of dry LWA); 

For w/cm below 0.36, using (w/cm)/0.36 gives the estimated maximum degree of 

hydration of the cement ( ).  If the w/cm is above 0.36, then the maximum degree of 

hydration is assumed to be 1.0. The chemical shrinkage of cement (CS) will vary depending on 

the type of cement used in the mixture. Bentz et al. calculated the coefficients for chemical 

shrinkage shown in Table 2.1.  He notes that the coefficients for chemical shrinkage can vary 

significantly based on the densities chosen for the different phases of cementitious materials, but 

the values given below are used in the Virtual Cement and Concrete Testing Laboratory system 

(Bentz, Lura, & Roberts, 2005). 

Table 2.1   Calculated coefficients for Chemical Shrinkage Due to Cement Hydration 

(Bentz, Lura, & Roberts, 2005) 

Cement Phase 
Coefficient,                                                                    

g water/g solid cement phase 

C3S 0.0704 

C2S 0.0724 

C3A 0.171*  0.115** 

C4AF 0.117*  0.086** 

Silica Fume 0.20 

* Assuming sufficient sulfate to convert all of the aluminate phases to ettringite 

**Assuming total conversion of the aluminate phases to monosulfate 

 

Equation 2 estimates how much curing water is needed to maintain total saturation in the 

cement paste by compensating for the chemical shrinkage in the cement paste at the maximum 

estimated degree of hydration of cement (Bentz, Lura, & Roberts, 2005). Whether internal curing 

is used for a low or high w/cm concrete, steps should be taken to prevent evaporation of water 
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from the surface of the concrete. Higher w/cm concretes will be more susceptible to increased 

evaporation due to the increased amount of bleed water at the surface.  

2.8 Summary 

As highlighted in this literature review, shrinkage of concrete can negatively affect the 

service life of structures by inducing early age cracking. Reinforcing steel can provide restraint 

to concrete shrinkage which increases tensile stresses that lead to cracking if the tensile capacity 

of concrete is exceeded. These cracks can leave concrete susceptible to adverse environmental 

conditions which increase the deterioration rate of the structure. Internal curing is a method that 

reduces concrete shrinkage by providing internally stored water, via LWA, to be cured as needed 

throughout the hydration process. While most of the past research of internal curing has focused 

on HPC (containing a low w/cm), the continuing use of conventional concrete in bridge decks 

and other structural applications demands research to mitigate shrinkage cracking in concretes 

that maintain normal w/cm.  
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Chapter 3 Experimental Procedures 

3.1 Purpose 

The purpose of the laboratory study was to test and evaluate the effect that coarse LWA 

has on concrete shrinkage. The study was broken into two phases: first, to study the effects of 

coarse LWA on the drying shrinkage from casting to 112 days of age; second, to study the 

effects of coarse LWA on reducing plastic shrinkage cracking in concrete slabs at early ages. The 

research also evaluated the effectiveness of coarse LWA on the concrete mixtures adherence to 

the Arkansas State Highway and Transportation Department (AHTD) specifications. This 

research differed from the majority of internal curing research in that internal curing was 

evaluated in a conventional concrete mixture. As stated in the Literature Review, past research 

has found that internal curing may not be needed in conventional concrete mixtures in ideal 

curing conditions. Even with conventional concrete mixtures, many Department of 

Transportation’s (DOT’s) still experience shrinkage cracking in bridge decks. In summary, the 

purpose of this research was to evaluate the effectiveness of internal curing when conventional 

concrete is subjected to drying conditions in both plastic and hardened states.  

3.2 Materials 

3.2.1 Mixtures 

The hardened concrete properties were examined for seven different mixtures. A control 

mixture was batched using normal-weight coarse aggregate (Control). The control mixture was 

prepared to conform to Section 802 of the AHTD Standard Highway Specifications for a Class 

S(AE) concrete. A minimum cement content of 611 lb/yd
3 

of Type I portland cement was 

required. A fraction may be replaced by supplementary cementitious materials. The maximum 

w/cm permitted was 0.44, and the minimum 28 day compressive strength was 4000 psi. 
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For three mixtures a portion of the coarse aggregate was replaced with Expanded Clay 

LWA by amounts of 100, 200, and 300 lb/yd
3
 (Clay1, Clay2, and Clay3, respectively).  In the 

three remaining mixtures, a portion of the coarse aggregate was replaced with Expanded Shale 

LWA at the same replacement rates as shown above (Shale1, Shale2, and Shale3, respectively). 

All mixtures contained 1700 lb/ yd
3 

of coarse aggregate (normal weight plus LWA) (Table 3.1). 

Table 3.1   Mixture Proportions  

Mixture 

Unit Weight per Unit Volume (lb/yd
3
) 

Cement 
Coarse 

Aggregate 
LWA Sand Water w/c 

Control 611 1700 0 1440 269 0.44 

Clay1 611 1600 100 1329 269 0.44 

Clay2 611 1500 200 1218 269 0.44 

Clay3 611 1400 300 1107 269 0.44 

Shale1 611 1600 100 1353 269 0.44 

Shale2 611 1500 200 1266 269 0.44 

Shale3 611 1400 300 1178 269 0.44 

 

3.2.2 Cementitious Material and Admixtures 

In all mixtures, Type I portland cement was used. In order to eliminate variables that 

could contribute to the overall shrinkage, supplementary cementitious materials were not 

included. In order to achieve a slump of 1-4 inches as required by AHTD, a superplasticizer, 

ADVA Cast 575, was used in all mixtures. The amount of the superplasticizer varied 

occasionally in order to maintain the specified slump.   

3.2.3 Normal-weight Coarse Aggregate  

The coarse aggregate used in the Control mixture was crushed limestone obtained from 

McClinton-Anchor located in Springdale, AR. The coarse aggregate complied with grading 

requirements of AASHTO T 27 (Table 3.2). 
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Table 3.2   Limestone Gradation 

Sieve 

Size 

AHTD Specification, Coarse 

Aggregate % Passing 

1.25" 100 

1.0" 60-100 

0.75" 35-75 

0.5" - 

0.375" 10-30 

#4 0-5 

#8 - 

 

3.2.4 Fine Aggregate 

The fine aggregate used was dredged river sand from the Arkansas River. The fine aggregate 

complied with AASHTO T 27 (Table 3.3). 

 

Table 3.3   Fine Aggregate Gradation 

Sieve 

Size 

AHTD Specification, Fine Aggregate      

% Passing 

0.375" 100 

#4 95-100 

#8 70-95 

#16 45-85 

#30 20-65 

#50 5-30 

#100 0-5 

 

3.2.5 Coarse Lightweight Aggregate (LWA) 

Two different types of coarse LWA were used during testing, expanded clay and expanded 

shale. The coarse expanded clay was manufactured in West Memphis, AR by Old Castle 

Materials Inc. The coarse expanded shale was manufactured in Ottawa, KS by Buildex Inc. The 

properties of the coarse aggregate used in this research are shown in Table 3.4.  
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Table 3.4   Coarse Aggregate Properties 

Coarse 

Aggregate 

Absorption 

Capacity    

(Percent) 

Specific 

Gravity 

Crushed 

Limestone 
0.38 2.68 

Expanded Clay 15.0 1.25 

Expanded Shale 12.9 1.41 

 

Absorption capacities and specific gravities were tested in previous research performed 

by Royce Floyd at the University of Arkansas (Floyd, 2012). The crushed limestone which was 

used in the control mixture is included to contrast its properties with those of the coarse LWA’s. 

The expanded clay LWA had a nominal maximum aggregate size of ½ inch, and the expanded 

shale LWA had a nominal maximum aggregate size of ¾ inch. Figure 3.1 shows both types of 

coarse LWA used in this study. 

 

Figure 3.1   Expanded Clay LWA (left) and Expanded Shale LWA (right) 

 

3.3 Phase I - Drying Shrinkage Testing 

Phase I of the research project involved testing the effects of internal curing on drying 

shrinkage. Preliminary tests were performed analyzing different mixture proportions and their 

influence on drying shrinkage. Drying shrinkage was measured using methods specified in 
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ASTM C157 (ASTM, 2008). For each test batch, four prisms were cast and tested. Compressive 

strength was tested up to 56 days. When it was determined that the internally cured mixtures 

showed less shrinkage using ASTM C157 test method, all mixture proportions shown in Table 

3.1 were again batched in the same molds. However, during this phase of the investigation 

VWSG were embedded to monitor temperature and strain from the period immediately after 

casting to 112 days. Due to the cost of the VWSG, ASTM C157 was used first to establish that a 

reduction in shrinkage was occurring. This allowed the mixture proportions and procedures to be 

modified to ensure that internal curing was taking place before implementing testing with the 

VWSG. Compressive strength tests were again administered for all mixtures. 

3.3.1 Mixing Procedure and Aggregate Preparation 

The LWA was placed in an oven at 330 degrees Fahrenheit approximately 48 hours 

before mixing to remove all moisture from the aggregate. After 24 hours in the oven, the LWA 

was removed and allowed to cool to room temperature. The LWA was placed into 5 gallon 

buckets and saturated in water approximately 24 hours prior to mixing. At this time, samples of 

the normal weight rock and sand were placed into the oven to determine moisture content.  

Immediately prior to mixing, the buckets containing the LWA were drained of excess 

water. This was done by placing a lid with small holes on the bucket and turning over to drain. 

After allowing the excess water to drain, the LWA was weighed and a sample was taken and 

placed into the oven to determine actual moisture content. Since the LWA had to be saturated in 

water for 24 hours prior to mixing, it was necessary to assume the moisture content of the LWA 

based on prior testing. Shown in Tables 4.3 and 4.7 in Chapter 4 are the assumed and actual 

moisture contents of both clay and shale LWA. Moisture contents for the normal weight fine and 

coarse aggregate were calculated, and the amount of mixing water was adjusted based on those 
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moisture contents. ADVA Cast 575 superplasticizer was added directly to the mixing water to 

achieve the desired slump.  

For drying shrinkage testing, mixtures were batched into a 9.0 ft
3
capacity electric rotating 

drum mixer (Figure 3.2). Each mixture volume was 2.5 ft
3
. The inside of the rotating mixer was 

wetted prior to mixing. All coarse aggregate and half of the mixing water were added first and 

mixed. The remaining water, fine aggregate, and cement were then added and mixed for 

approximately three minutes. The fresh concrete was allowed to rest for approximately three 

minutes and a slump test was administered. The concrete was mixed again and poured into a 

wheel barrel prior to casting.  

 

Figure 3.2   Rotating Drum Mixer 

 

3.3.2 ASTM C157- Linear Length Change 

Linear shrinkage was first tested using ASTM C157. The steel molds and linear 

comparator were used in accordance with ASTM C490 (ASTM, 2004). Steel molds 
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manufactured by Humboldt were used. The specimens measured 4 x 4 x 10 inches. Gage studs 

were embedded in to each end to the concrete specimens. The specimen molds are shown in 

Figure 3.3. 

 

Figure 3.3   Steel Molds  

 

Linear shrinkage of the specimens was measured using a length comparator with digital indicator 

manufactured by Humboldt (H-3250) (Figure 3.4). Measurements were accurate to 1/10,000 of 

an inch. Four prisms were cast for each mixture, and the length of each prism was measured 

twice at each age.  
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Figure 3.4   Length Comparator with Digital Indicator (www.humboldtmfg.com) 

 

3.3.2.1 Casting and Curing Procedures 

The prisms were cast in accordance with ASTM C157. After mixing, concrete was placed 

into the steel molds. The inside surfaces of the steel molds were oiled to facilitate demolding. 

Concrete was placed in two layers. Each layer was rodded 22 times, and the sides of the molds 

were tamped with a rubber mallet to released internal air voids.  The surfaces of the prisms were 

finished with a steel trowel. The molds holding the fresh concrete were immediately placed in an 

environmental chamber with a relative humidity of 50 ± 4 percent at a temperature of 73 ± 3 

degrees Fahrenheit (23 ± 2 degrees Celsius). The environmental chamber adhered to ASTM 

C511 (ASTM, 2009b). The relative humidity was controlled using a dehumidifier. The 
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specimens were demolded, and the first measurement was recorded at 23.5 ± 0.5 hr. After 

testing, prisms were placed on wooden rollers so to not inhibit shrinkage of the specimens and to 

allow proper air circulation to all sides of the prisms while in the environmental chamber.  

3.3.2.2 Linear Shrinkage Recording 

Shrinkage was recorded at 1, 7, 14, 21, 28, 56, 90, and 112 days for each of the four 

prisms cast with each experimental mixture. First, the reference bar was measured on the linear 

comparator and zeroed. Then, the concrete prism was placed on the linear comparator and spun. 

The length was then recorded. The reference bar was placed back on the comparator and zeroed, 

and the next prism length was recorded. This process was repeated so that the length of each 

prism was recorded twice to ensure consistent results. Shrinkage strain was calculated by 

dividing the change in length by the gage length of 10 inches. 

3.3.3 Compressive Strength Cylinders 

Twelve 4 x 8 inch cylinders were cast for each mixture in accordance with ASTM C39. 

The cylinders were cast at the same time as the prisms, and then placed in the environmental 

chamber. The cylinder molds were capped for the first 24 hours. At 23.5 ± 0.5 hours, the 

cylinders were demolded and placed into a lime-saturated water tank until time of testing. The 

cylinders were tested at 1, 7, 28, and 56 days. For each testing period, three cylinders were tested 

for compressive strength using a Forney hydraulic compression machine (Figure 3.5).  
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Figure 3.5   Concrete Testing Machine 

 

3.3.4 Strain Gage Testing- Linear Length Change 

Once the preliminary testing using ASTM C157 showed that internal curing reduced 

shrinkage, VWSG were used to monitor shrinkage in the concrete specimens. The rationale for 

using VWSG was three-fold. First, using VWSG allowed monitoring and recording both 

temperature and strain immediately after concrete was cast into the prisms. This gave insight on 

the effect the LWA has on set time, shrinkage strain prior to 24 hours, and temperature during 

initial hydration. Second, it allowed for readings to be taken at closer time intervals and with 
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greater accuracy. Third, it allowed comparison with ASTM C157 so that implementation of 

VWSG may be investigated for future use. For each concrete mixture, three prisms were cast, 

each with one VWSG embedded inside the prism. 

3.3.4.1 Casting and Curing Procedures 

Casting of the molds used in VWSG testing was similar to the casting procedure used in 

ASTM C157. The same steel molds were used. The gage studs that were used in ASTM C157 

were not used when testing shrinkage with VWSG. The holes that previously contained the gage 

studs were covered with tape.  All of the interior surfaces of the molds were then oiled to make 

the demolding process easier and limited the restraint due to adhesion of the concrete and the 

steel mold surfaces. Concrete was cast in two layers. Each layer was rodded 22 times and tapped 

uniformly on all four sides with the rubber mallet. The VWSG was placed on top of the first 

layer in the center of the molds (Figure 3.6).   

 

Figure 3.6   Vibrating Wire Strain Gage Placement in Steel Molds 
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The second layer of concrete was placed over and around the VWSG. The layer was 

gently rodded and the sides of the mold were tapped. The surface was finished using a trowel. 

Placing and keeping the VWSG centered in the molds was possible due to the high coarse 

aggregate content of all mixtures.  

Immediately after the surfaces of the specimens were finished, they were sealed with 

industrial grade cellophane wrap (Figure 3.7). The cellophane wrap was used to prevent moisture 

loss to the environment during the first 24 hours in order to rule out environmental factors during 

the first 24 hours and limit the types of shrinkage to chemical and autogenous.  

 

Figure 3.7   Wrapped Steel Molds During First 24 Hours 
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Once the molds were sealed, they were brought into the environmental chamber. The 

VWSG were immediately connected to the data acquisition system to begin recording strain and 

temperature data. The environmental chamber adhered to the same conditions as specified in 

Section 3.3.2.1.  

After 23.5 ± 0.5 hour, the cellophane wrap was removed and the concrete prisms were 

removed from the molds. The concrete prisms were placed on wooden rollers to allow for free 

shrinkage and uniform temperature and humidity on all side of the prisms. The prisms remained 

in the environmental chamber for the remainder of the 112 day testing period (Figure 3.8).  

 

Figure 3.8   Concrete Prisms 

 

3.3.4.2 Strain Gages and Data Acquisition System 

A data acquisition system was developed and programmed to monitor strain and 

temperature readings during the testing period at specified time intervals. Geokon Model 4200 
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VWSG were used. This strain gage is designed for direct embedment into concrete and to 

monitor short and long term strain and temperature (Figure 3.9).  

 

Figure 3.9   Model 4200 Vibrating Wire Strain Gage (www.geokon.com) 

 

A Campbell Scientific CR10X datalogger collected strain and temperature readings. The 

datalogger has a data storage capacity of 128 kilobytes, which translates to a maximum storage 

of 62,252 data points. Due to the memory size, data were downloaded to a computer throughout 

the testing period.  Campbell Scientific’s PC400 datalogger support software was used to 

program and upload data from the CR10X.  There were seven different mixtures tested and three 

separate prisms (each with one VWSG) for each mixture giving a total of 21 VWSG taking strain 

and temperature readings. The data acquisition system consisted of 21 VWSG, a CR10X 

datalogger, two AM416 multiplexors, and one AVW4 vibrating wire interface. A multiplexor 

allows for multiple sensors to be connected to a single datalogger. Two multiplexors were 

needed since the AM416 multiplexor was able to read only 16 sensors (when both strain and 

temperature are being recorded). Therefore, the two multiplexors were wired and programmed to 

run one, 21 count loop for every time interval. Data for all VWSG were taken every five 

minutes. At later ages, all data were recorded at one hour intervals.  
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 Before casting the VWSG into the concrete prisms, preliminary tests were performed to 

verify the accuracy of the strain readings produced by the VWSG and the data acquisition 

system. The preliminary tests were performed by mounting a VWSG to the top of a steel 

cantilever arm. Twenty-five (25) pounds was loaded to the end of the cantilever beam. The 

material and dimensional properties of the cantilever beam were known which allowed 

calculation of theoretical strain at the location of the VWSG. The VWSG was then connected to 

a Geokon Model GK403 Vibrating Wire Readout Box which displayed the strain experienced by 

the VWSG. The difference between the theoretical and measured strain readings in the cantilever 

test was 4.5 microstrain (4.5 x 10
-6

 in/in). Lastly, the Geokon Model GK403 Vibrating Wire 

Readout Box and the readings taken from the data acquisition system were compared and 

verified.  

 When concrete prisms’ volume decreased in unrestrained conditions, the strain gages 

compressed. This yielded smaller strain readings as the prisms continued to shrink throughout 

the testing period. Therefore, in order to offset all of the strain results showing negative values, 

all strain values were changed in sign (all positive strain are shown as negative and negative 

strain shown as positive). As strain values increased (as shown in Figures 4.1-4.11), the 

shrinkage of the prisms increased. 

3.4 Phase II - Plastic Shrinkage Testing 

Phase II of the research analyzed the effects of internal curing on plastic shrinkage. As 

mentioned in the Literature Review, difficultly arises when trying to quantify plastic shrinkage 

cracking. A high surface area-volume ratio is necessary to aid in plastic shrinkage, which 

generally stipulates using thin concrete slabs. By using thin slabs the surface area to volume ratio 
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was maximized. The process and difficulties in assessing plastic shrinkage cracking will be 

explained further in Chapter 4 Results and Discussion.   

3.4.1 Mixing Procedure and Aggregate Preparation 

The mixing procedure and aggregate preparation for plastic shrinkage testing was very 

similar to the procedure highlighted in Section 3.3.1. The main difference was the quantity of 

concrete that was batched for each mixture. In most cases, twelve cubic feet of concrete was 

batched for each mixture. Due to the increased volume of the mixtures, a one cubic yard gas-

engine powered rotating drum mixer was used (Figure 3.10).  

 

Figure 3.10   One Cubic Yard Rotating Drum Mixer 

 

3.4.2 Mixtures 

In an effort to effectively test and measure plastic shrinkage cracking in concrete, 16 

separate mixtures were tested during this phase of the research project. The different mixtures 

will be discussed further in Section 4.3. 
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3.4.3 Formwork 

The dimensions and materials used in the formwork of the thin slabs are as follows. Four 

by eight foot (4 x 8 ft.) plywood boards, ¾ inch thick, were used as the bottom of the formwork, 

and 1½ x 1½ inch boards (actual dimensions of 1⅜ x 1⅜ inch) were screwed to the perimeter of 

the plywood sheet. The 1½ x 1½ inch boards made up the sides of formwork and produced the 

thickness of 1⅜ inch. Six mil polyethylene sheeting lined the bottom and sides of the formwork 

to prevent moisture loss of the fresh concrete by soaking in to the wood formwork. To increase 

the external restraint of the formwork, ¾ x ¾ x ⅛ inch angle steel was used. Holes were drilled 

approximately every 18 inches in the bottom leg of the angle. That leg was screwed over the 

polyethylene sheeting to the plywood around the entire perimeter of the formwork. The vertical 

leg of the steel angle member measured 2  from the sides of the formwork (Figure 3.11).  

 

Figure 3.11   Formwork Details 

 

3.4.4 Casting Procedure 

For each mixture, two 4 x 8 ft. slabs were cast. After the desired slump value was 

obtained, the mixer was moved in position so that the concrete could be placed onto the first 

slab. The concrete was placed onto the center of the formwork where it was distributed 

uniformly using shovels. The edge of a 5 ft. long section of plywood was wetted and used to 
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screed the surface of the slab. The plywood screed was worked by two people longitudinally 

from one end to the other, creating a level surface. The surface was immediately finished using 

steel trowels until it was smooth and uniform. A proper finish was necessary to be able to 

visually locate surface cracks and eliminate surface voids or defects that might cause stress 

concentrations. The surface was smoothed using steel trowels as quickly as possible, then not 

disturbed to allow bleed water to evaporate and surface cracks to develop. External vibration was 

not used. During the preliminary tests, a vibrator was used, but was not effective in consolidating 

the concrete due to the rock content and the small slab thickness. Therefore, consolidation was 

performed by compressing the concrete over the entire area of the slab manually using steel 

trowels.  

3.4.5 Environmental Conditions 

Due to the size of the slabs, all slabs were cast and tested outdoors (Figure 3.12). While 

performing laboratory experiments in uncontrolled conditions is not preferable, the time of the 

year and weather conditions during testing were desirable in creating a drying environment for 

the slabs. As mentioned in Ch. 2, in order to produce plastic shrinkage cracks, harsh 

environmental conditions must be maintained. For that reason the slabs were cast and tested in 

August. The average temperature in August in Fayetteville, AR is 89 degrees F. Mixing began 

around 1:00 p.m. so that the slabs would be finished during the hottest time of the day. The slabs 

were cast on days with direct sunlight to increase the evaporation rate. A 3 x 3 ft. box fan was 

used to increase the wind velocity over the slabs, which also increases the evaporation rate. The 

fan was turned on immediately after the surface of the slabs were finished and remained on for 4 

hours. The rate of evaporation was measured by weighing an evaporation pan filled with water 

every 30 minutes after finishing. ACI 305 Hot Weather Concreting states that an evaporation 
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rate of 0.2 lb/ft
2
/hr (1.0 kg/m

2
/hr) of water will promote plastic shrinkage cracking on a concrete 

surface (ACI, 1999).  The results of the evaporation rates for each slab are given in Chapter 4. To 

promote cracking, the slabs were not externally cured.  

 

Figure 3.12   Environmental Conditions 

 

3.4.6 Crack Measurements 

Test slabs usually experienced initial cracking approximately 30 minutes after finishing 

the surface. Once cracks began to initiate, the advancement of crack length and width occurred 

quickly. At approximately 24 hours after finishing the slabs, cracks were assessed. The 

procedure of quantifying cracking started with tracing all surface cracks with a permanent 

marker. The lines were not traced directly on the cracks, but were traced adjacent to the cracks. 

This was done so that the widths of the cracks could be visually determined, and so that the point 

at which the crack terminated would be correctly identified. The crack ends were marked so that 

any crack growth subsequent to 24 hours could be determined. After all of the cracks were 

traced, the crack lengths were measured. This was done using monofilament line. The small 
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diameter and flexibility of the line allowed the crack lengths to be measured accurately. The 

monofilament line was marked every two inches with a marker. While measuring the crack 

lengths, the location of the 2 inch intervals were marked on the slab along the cracks. It was at 

these two inch marks that crack width measurements were taken. Taking measurements every 

two inches allowed crack width measurements to be taken in unbiased locations. Crack widths 

were measured at the same locations at one day and two weeks after casting the slabs. The width 

of the crack was estimated using a crack width comparator card. This transparent card contained 

lines with widths from 0.1 mm up to 3 mm. The card was placed directly over the crack and the 

width at that location was estimated by comparing with the known line widths displayed on the 

card. Once all of the crack lengths and widths were recorded, total crack area was computed by 

multiplying the crack length by the average crack width. The total crack area was the result in 

which the plastic shrinkage cracking was quantified (Figure 3.13).  

 

Figure 3.13   Test Slab During Crack Measurements 
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Chapter 4 Results and Discussion 

4.1 Phase I: Preliminary Shrinkage Data using ASTM C157 

The research began by assessing the shrinkage of various concrete mixtures using ASTM 

C157. These results were to verify that a reduction in shrinkage was occurring with the internally 

cured mixtures. Mixtures were initially batched with 1790 lb/yd
3
 of total coarse aggregate. This 

proportion of rock made it difficult to cast the concrete into the steel prisms. Therefore, the total 

amount of coarse aggregate was reduced to 1700 lb/yd
3
.  The results below are from the 

preliminary tests using 1700 lb/yd
3
 of coarse aggregate.  

4.1.1 Mixture Proportions 

Four different mixture proportions were used in the preliminary shrinkage results. The 

‘ControlP’, ‘Clay1P’, ‘Clay2P’, ‘Clay3P’, and ‘Shale3P’ contained: 0, 100, 200, and 300 lb/yd
3
 

of expanded clay LWA; and 300 lb/yd
3
 of expanded shale LWA, respectively. The ‘P’ denotes 

that these mixtures were preliminary mixtures, so not to be confused with the mixtures tested 

using the embedded VWSG. The mixture proportions are the same as those given in Table 3.1 in 

Chapter 3.  

4.1.2 Fresh Properties 

Table 4.1 shows the unit weights and the slump values of the preliminary mixtures. It can 

be observed that the unit weight of the mixtures decreases as the percentage of LWA increases. 

Decreasing the self weight of concrete is a secondary benefit to mixtures that contain LWA. 

Decreasing dead loads of the concrete can decrease both material and construction costs.  
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Table 4.1   Fresh Properties 

  

Slump 

(in.) 

Unit Weight 

(lb/ft
3
) 

ControlP 2.75 150.00 

Clay1P 2.25 144.80 

Clay2P 1.75 141.40 

Clay3P 2.00 138.60 

Shale3P 1.50 137.40 

 

4.1.3 Compressive Strength 

Compressive strength values are shown in Table 4.2. All of the cylinders exceeded the 

specification of AHTD for a 28 day compressive strength of 4000 psi. Each value is the average 

compressive strength of three cylinders. The Control averaged the highest 28 day and 56 day 

compressive strengths. As the amount of normal-weight coarse aggregate was replaced with 

LWA, the compressive strength decreased. Since LWA is intrinsically weaker than the limestone 

aggregate, its reduced compressive strength weakens the concrete matrix. In a previous study, it 

was concluded that the use of LWA increased the compressive strength at 90 days by increasing 

the degree of hydration. This, in turn, counteracted the decrease in aggregate strength by 

increasing the overall degree of hydration (Espinoza-Hijazin & Lopez, 2011). These results were 

not the case for our mixtures. The lower strength of the LWA aggregate played a role in 

decreasing the overall compressive strength of concrete at later ages. It should be noted that the 

cylinders were submerged in a water bath immediately after demolding at 24 hours of age. Since 

the cylinders were in an ideal curing environment, the degree of hydration for all mixtures 

including Control should have been high. The additional water inside the LWA may not have 

been needed due to these ideal conditions.  
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Table 4.2  Compressive Strength 

Mixture 
Compressive Strength (psi) 

1 Day 7 Day 28 Day 56 Day 

ControlP  3520 8450* 9070 9570 

Clay1P 4990 7850 8770 9320 

Clay2P 4280 7150 8250 7970 

Clay3P 4210 7530* 7710 8080 

Shale3P 4210 6450 7200 6840 

* Indicates specimens tested at 21 days 

  

4.1.4 Moisture Content 

As mentioned in Chapter 3, Moisture content of the LWA at the time of batching was 

assumed. Unlike normal weight aggregate where moisture content can be measured prior to 

batching, LWA must be assumed and then measured after batching.  This is due to the high 

absorption capacity of LWA and the fact that is submerged in water until batching. All LWA 

was soaked for 24 hours prior to batching, therefore LWA samples were taken after the 24 hour 

soaking period (at the time of batching) and tested for actual moisture contents. Table 4.3 

compares the actual and assumed moisture contents for the preliminary testing. The assumed 

moisture contents were based on previous testing. 

Table 4.3   Assumed vs. Actual LWA Moisture Contents 

Mixture Control Clay1P Clay2P Clay3P Shale3P 

Assumed 

Moisture 

Content 

(percent) 

N/A 26.0 26.0 26.0 22.0 

Actual 

Moisture 

Content 

(percent) 

N/A ** 24.4 26.5 17.4 

**Recording Error 

     



49 

 

It is important to note that the LWA was not in a saturated surface dry (SSD) condition 

when added to the concrete mixture. While it can be batched in SSD conditions, the method of 

patting the surfaces of the LWA to that condition can be impractical. In research and in the field, 

LWA is continually soaked with water and therefore the LWA is saturated when the concrete is 

batched.  

4.1.5 Shrinkage Results 

For each mixture, four concrete prisms were cast. Of the four prisms for each mixture, 

three were selected that yielded the closest values. The first measurements at 24 hours are 

crucial, because all subsequent test readings are subtracted from that value. That is one reason 

why four prisms were cast instead of just three. That allowed for all prism shrinkage results to be 

evaluated and if an outlier existed, it could be disregarded, leaving three prisms to contribute to 

the shrinkage results. The three prisms with the closest values were chosen. The mean value of 

these three prisms was calculated and plotted in the figures below. ASTM C157 states that when 

three specimens are averaged, one standard deviation should be 0.0048 percent or less. All 

standard deviation values fell within the specifications of ASTM C157 (Table 4.4).  

Table 4.4   Standard Deviation of Preliminary Strain Readings  

Mixtures 
Standard Deviation (Percent) 

Day 1 Day 7 Day 14 Day 21 Day 28  Day 56 Day 90 Day 112 

ControlP 0.0000 0.0023 0.0016 0.0015 0.0015 0.0013 0.0016 0.0020 

Clay1P 0.0000 0.0003 0.0013 0.0013 0.0018 0.0015 0.0022 0.0013 

Clay2P 0.0000 0.0012 0.0016 0.0008 0.0020 0.0015 0.0014 0.0015 

Clay3P 0.0000 0.0005 0.0011 0.0007 0.0006 0.0004 0.0008 0.0012 

Shale3P 0.0000 0.0003 0.0013 0.0024 0.0010 0.0018 0.0011 0.0023 

 

4.1.5.1 Day 28 Preliminary Strain Results 

Figure 4.1 shows the ASTM C157 strain results for the prisms up to 28 days. From day 7 

to day 28, the Control mixture experienced higher strain than all the mixtures. At 28 days, 
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Shale3P showed the lowest amount of strain of the five mixtures tested. The mean strain of 

Shale3P at 28 days was 218 microstrain, while ControlP’s mean strain was 293 microstrain. 

According to this preliminary research, the presence of soaked LWA decreased strain by up to 

approximately 26 percent at 28 days. These preliminary tests support the effectiveness of soaked 

LWA used as an internal curing agent.  

Figure 4.1   ASTM C157 Strain results (28 days) 

 

4.1.5.2 Day 112 Preliminary Strain Results 

The preliminary prisms were also tested for shrinkage up to 112 days. The 112 day strain 

results are given in Figure 4.2. The 112 day data varied from the 28 day results. The strain 

readings between the Control mixture and the LWA mixtures showed no meaningful differences 

at 112 days. The Control readings unexpectedly dropped from its 90 day reading and the 112 day 

reading, while the LWA mixtures continued a slight increase in strain during this period. The 

differences in strain between the Control and the LWA mixtures at 28 days did not remain 
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throughout the testing period. This potentially could be attributed to the testing instrument’s 

inaccuracy or that the LWA mixtures did not affect the shrinkage of the concrete prisms. Since 

implementation of the VWSG was based on the 28 day results of this test, the same mixture 

proportions that were used in this test were also used in the VWSG testing. As is evident in 112 

day results using the VWSG (shown in Section 4.2.5.4), those results were more consistent than 

the results from ASTM C157.  

 

Figure 4.2   ASTM C157 Strain results (112 days) 

 

4.2 Phase I: Shrinkage Data using Strain Gages 

After monitoring shrinkage using ASTM C157 and finding that LWA did decrease 

shrinkage in the prisms, VWSG were cast in the prisms to monitor strain and temperature.  
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4.2.1 Mixture Proportions 

Seven different mixtures were tested for 112 days during this phase of research. A control 

mixture was batched using normal-weight coarse aggregate (Control). For three mixtures a 

portion of the coarse aggregate was replaced with Expanded Clay LWA by amounts of 100, 200, 

and 300 lb/yd
3
 (Clay1, Clay2, and Clay3, respectively).  In the three remaining mixtures, a 

portion of the coarse aggregate was replaced with Expanded Shale LWA at replacement rates 

shown above (Shale1, Shale2, and Shale3, respectively). These mixtures will be referred to as 

(Shale1, Shale2, and Shale3). All mixtures contained 1700 lb/yd
3 

of coarse aggregate (normal 

weight and LWA). The mixture proportions are shown in Table 3.1 in Chapter 3.  

4.2.2 Fresh Properties 

For each mixture, slump and unit weight were recorded and the results are shown in 

Table 4.5. As in the fresh properties of the preliminary mixtures, the unit weight decreased as 

more LWA was replaced with normal weight coarse aggregate. This was expected due to the 

decreased unit weight of the LWA in comparison with the portion of normal weight coarse 

aggregate that it replaced. The slump results were more variable than desired. Sealing the prism 

molds for the first 24 hours was important due to the difference in slump. By sealing the prisms, 

surface evaporation, which would have been increased for the mixtures with higher slump 

results, was eliminated. Sealing the prisms reduced the variability between the mixtures caused 

by differences in slump. 
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Table 4.5   Fresh Properties 

Mixture 

Slump 

(in) 

Unit Weight 

(lb/ft
3
) 

Control 1.50 148.70 

Clay1 8.00 144.20 

Clay2 5.00 142.50 

Clay3 2.25 139.30 

Shale1 4.00 146.10 

Shale2 4.25 143.40 

Shale3 6.50 139.50 

 

4.2.3 Compressive Strength 

Twelve 4x8 inch cylinders were cast for each mixture. Each value shown in Table 4.6 is 

the average of three cylinders. All mixtures exceeded the AHTD specified 28 day strength of 

4000 psi by 7 days of age. Thus, while the compressive strengths decreased as the amount of 

LWA was added, all strengths were well above the specification. The presence of the water 

stored in the LWA did not increase the compressive strength in excess of the Control in any of 

the LWA mixtures. As mentioned in Section 4.1.3, some studies have shown that internally 

cured mixtures can increase the compressive strength over the control mixture, but this was not 

the case for this study. It is possible that the LWA mixtures could continue to gain strength at a 

greater rate in later ages than the Control mixture, but no compressive strength testing was 

performed after 56 days.  

Table 4.6   Compressive Strength 

Mixture 
Compressive Strength (psi) 

1 Day 7 Day 28 Day 56 Day 

Control 3850 6430 8460 8880 

Clay1 3260 6060 7440 8050 

Clay2 3610 6090 7200 7960 

Clay3 3940 6320 7100 7790 

Shale1 4030 6450 7600 8080 

Shale2 3820 6290 7470 8110 

Shale3 3580 5770 7090 7460 
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4.2.4 Moisture Content 

Similar to Section 4.1.4 the moisture content of the LWA had to be assumed due to the 

fact that all LWA was soaked for 24 hours prior to batching. Even after testing multiple 

preliminary moisture contents of the LWA’s, the moisture contents varied between the mixtures. 

While the moisture contents did vary, it is not likely that the difference between the estimated 

and the actual values significantly impact the shrinkage of concrete. The largest difference 

between the assumed moisture content and the actual moisture content of the LWA was in the 

Clay3 mixture, which was an increase of 7.3 percent. This difference in assumed and actual 

moisture content of the LWA increased the w/cm from 0.44 to 0.474.   

Table 4.7   Assumed vs. Actual LWA Moisture Contents 

Mixture Clay1 Clay2 Clay3 Shale1 Shale2 Shale3 

Assumed 

Moisture Content 

(percent) 

26.0 26.0 26.0 22.0 22.0 22.0 

Actual Moisture 

Content (percent) 
28.2 26.4 33.3 19.5 23.8 17.6 

 

4.2.5 Shrinkage Results 

Three prisms, each with one, embedded VWSG, were used to record strain data for each 

mixture. The strain results from the three prisms were averaged together and that mean value for 

each mixture is what is shown in the following sections. This was done so that the results could 

be compared with the ASTM C157 results, which also took the mean value of three prism 

results. Using the VWSG yielded values between the three prisms for each mixture with low 

standard deviations. The standard deviations fell within the range (less than 0.0048 percent 
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standard deviation) prescribed in ASTM C157. Table 4.8 shows the standard deviation results 

using the VWSG. 

Table 4.8   Standard Deviations of VW Strain Gage Results 

Mixtures 
Standard Deviation (Percent) 

Day 1 Day 7 Day 28  Day 56 Day 90 Day 112 

Control 0.00022 0.00049 0.00096 0.00115 0.00122 0.00106 

Clay1 0.00019 0.00026 0.00058 0.00087 0.00109 0.00100 

Clay2 0.00043 0.00060 0.00028 0.00022 0.00051 0.00060 

Clay3 0.00057 0.00035 0.00030 0.00043 0.00073 0.00098 

Shale1 0.00018 0.00026 0.00047 0.00039 0.00060 0.00077 

Shale2 0.00009 0.00034 0.00075 0.00113 0.00165 0.00173 

Shale3 0.00041 0.00013 0.00045 0.00052 0.00088 0.00110 

 

When reviewing the strain results in the following figures, note that any horizontal line in 

the data represents a time period where the power was lost. Several such occasions occurred 

during the months that the data were being recorded.  

4.2.5.1 Day 1 Strain Results 

A major advantage in measuring strain using VWSG is that strain and temperature 

readings can be recorded immediately after casting the concrete into the molds. ASTM C157 is 

limited due to the fact that strain readings for the entire testing period are based off of the 24 

hour length measurement. Therefore, there is no information available about strains that occur 

within the first 24 hours. Evaluating the effects of internal curing during the first 24 hours may 

provide important information on its overall influence of shrinkage even at later ages. One of the 

objectives of the research project was to determine whether internally cured conventional 

concrete showed a difference in strain readings at ages less than 24 hours when compared to the 

Control mixture. Since the concrete mixtures in this research were not HPC, that is, they had a 

relatively high w/cm of 0.44, the question was examined, “would the concrete matrix benefit 

from the internally stored water in the LWA or would there be enough water in the paste matrix 
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to not draw out the water from the LWA pore structure within the first 24 hours?” Answering 

this question would provide further insight on whether conventional concrete truly benefits from 

internal curing. 

It is important to note that during the first 24 hours the specimens were sealed so not to 

lose moisture to the environment. This step was taken to reduce the number of variables that 

could influence the results. Since slump values for the different mixtures varied, the surrounding 

environment could affect the mixtures differently. If one mixture contained a higher slump, it 

could be more susceptible to surface evaporate due to a higher amount of bleed water. Effort was 

taken to seal the specimens immediately after the surfaces were finished so that the results of the 

various mixtures that could be experimentally compared with confidence.  

Figure 4.3 shows the strain values of the clay LWA mixtures compared to the Control 

during the first 24 hours. When viewing this and all other graphs plotting strain, it is important to 

note that negative strain values correspond to an elongation of the strain gages. This elongation 

can be due, in part, to expansion of the concrete mixture. At very early ages, prior to 4 hours, all 

three clay mixtures show greater expansion than the Control mixture. This is likely due to the 

presence of water in the LWA that is readily available to aid in the hydration process. The 

presence of the soaked LWA in the mixtures affected the degree of expansion that occurred. For 

the first 20 hours, the difference did not exceed 30 microstrain. The surfaces of the steel molds 

were oiled to decrease the bond between the concrete and the steel. However, adhesion did occur 

during the first 24 hours which could also have affected the amount of negative strain in all of 

the prisms. The bond between the concrete and steel molds provided some degree of restraint to 

the concrete shrinkage within the first 42 hours. This could induce tensile stresses in the prisms 

which could explain a portion of the negative strain shown during the first 24 hours. There was 
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still a difference in the extent of negative strain between the LWA mixtures and the Control 

which is attributed to the additional water provided by the LWA. In future testing, using plastic 

sheeting to line the inner surfaces of the steel molds would be advantageous in reducing the 

external restraint while the prisms are in the molds.  

 Figure 4.4 shows the strain values of the shale LWA mixtures compared to the Control 

during the first 24 hours. The shale LWA mixtures did not vary from the Control to the same 

degree as the clay LWA mixtures. The higher amount of shrinkage that occurred in the shale 

mixtures is attributed to the lower moisture content when compared with the clay LWA. During 

the first four hours, the shale mixtures did not show a difference in strain as did the clay 

mixtures. However, as the Control mixture began to shrink at around four hours, the shale 

mixtures continued to expand. For mixtures containing clay or shale LWA, there was noticeable 

difference in volume change during the first 24 hours after casting. 

 

Figure 4.3   Expanded Clay Strain (24 hours) 
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Figure 4.4   Expanded Shale Strain (24 hours) 

 

 Twenty four hours after casting, the cellophane wrap was removed and the concrete 

prisms were demolded. While the inner surfaces of the steel molds were oiled prior to casting, 

the process of removing the hardened concrete prisms from the molds proved difficult. Since 

each of the prisms had an embedded VWSG, care was taken while demolding in order not to 

affect the readings. However, as shown in Figures 4.3 and 4.4, a sudden reduction in strain is 

evident at 24 hours when the prisms were demolded.  

All prisms were demolded in the same way to maintain consistency. Various methods to 

demold the prisms with minimal impact should be investigated further to limit disruption of the 

strain results. A possible solution would be to line the molds with thin polyethylene sheeting so 

that the concrete and steel would not adhere to each other. In all of the prisms, the strain readings 

resumed a normal trend after the demolding process.  
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4.2.5.2 Day 7 Strain Results 

The 7 day results show how all of the VWSG readings resumed a normal trend after the 

drop in strain due to the demolding process. Figure 4.5 shows the clay LWA mixtures in 

comparison to the Control mixture. At 7 days, the reduction in shrinkage strain is evident as the 

amount of LWA replacement is increased.  

Figure 4.6 shows the strain in the shale LWA mixtures and the Control up to 7 days. 

Similar to the 24 hour results, the shale mixtures do not vary as much from the Control as do the 

clay mixtures. This is attributed to the lower moisture content in the shale LWA mixtures. 

Although the reduction is not as great as the clay mixtures, the shrinkage strain decreases as the 

content of shale LWA increases. The shale mixtures also do not vary as much as the clay 

mixtures in relation to each other.  

 

Figure 4.5   Expanded Clay Strain (7 days) 
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Figure 4.6   Expanded Shale Strain (7 days) 

 

4.2.5.3 Day 28 Strain Results 

Strain data for the first 28 days are illustrated in Figure 4.7 (Expanded Clay Mixtures) 

and Figure 4.8 (Expanded Shale Mixtures). Figure 4.7 shows a notable difference in strain 

between the Control Mixture and the mixtures containing the Expanding Clay. As the coarse 

aggregate was replaced by LWA, the strain decreased.  While the difference in strain between 

Clay1 and Clay2 is negligible, there is a measurable difference between the Control and Clay3 at 

28 days. From Figure 4.8 the data show less of a difference in strain between the Shale mixtures 

and the control than is the case for the Clay. These results are reasonable when considering the 

lower absorption capacity of the Shale (12.9 percent) than in relation to Clay (15 percent). 

Shale1 and Shale2 mixtures show no measurable difference from one another as well as no 

measurable difference with Control at 28 days. However, the lack of separation of the Control 

with Shale1 and Shale2 at 28 days is, in part, due to a period of 2 days where data was lost for 

the Control. The time of the time data is revealed by the horizontal lines in both Figures.  
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Figure 4.7   Expanded Clay Strain (28 days) 

 

 

Figure 4.8   Expanded Shale Strain (28 days) 

 

4.2.5.4 Day 112 Strain Results 

Strain data for the entire 112 day testing period are shown in Figures 4.9 (Expanded Clay 

Mixtures) and 4.10 (Expanded Shale Mixtures). For the clay mixtures, the decrease in strain 

-50

0

50

100

150

200

250

0 7 14 21 28

M
ic

r
o

st
r
a

in
 (

1
x
1
0

-6
in

/i
n

)

Time (days)

Control

Clay1

Clay2

Clay3

-50

0

50

100

150

200

250

0 7 14 21 28

M
ic

r
o

st
r
a

in
 (

1
x
1
0

-6
in

/i
n

)

Time (days)

Control

Shale1

Shale2

Shale3



62 

 

between the Control and Clay3 continues for up to 112 days. Clay1 and Clay2 mixtures show no 

difference in strain in relation to each other at 112 days, but were lower than the Control. It was 

initially hypothesized that at these later ages, the Control mixture would continue to shrink while 

the clay and shale LWA mixtures would experience a decrease in shrinkage. This was not the 

case in this testing program. The Control as well as the clay and shale LWA mixtures 

experienced a similar rate of shrinkage at later ages. The difference in strain between the Control 

and the LWA mixtures occurred at early ages and was maintained, to a degree, throughout the 

remainder of the testing period.  

The Expanded Shale mixtures showed no significant decrease in shrinkage at 112 days 

when compared to the Control. While there is a difference in strain in Shale3 and Control, the 

difference is small, approximately 20 microstrain. Throughout the entirety of the testing period, 

the Expanded Shale mixtures had less of an effect on strain than the Expanded Clay mixtures.  

 It is also evident from Figures 4.9 and 4.10 that all mixtures experienced a reduction in 

strain at approximately 84 days (varies depending on the date the mixture was cast). This 

decrease in strain was due to a change in temperature in the environmental chamber. Concrete 

expands when temperature increases and contracts when temperature decreases (Nilson, Darwin, 

& Dolan, 2010). This change decreased the strain for all test specimens. Therefore, the drop in 

strain readings is temperature-related artifact, and the specimens would not have experienced a 

drop in strain from around 84 days to 112 days if it were not for the temperature decrease. The 

cause of the temperature fluctuations are highlighted in section 4.2.6.  
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Figure 4.9   Expanded Clay Strain (112 days) 

 

 

Figure 4.10   Expanded Shale Strain (112 days) 
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troughs are due to temperature variations in the environmental chamber. During the testing 

period, power to the environmental chamber failed on multiple occasions. For a significant 

portion of the testing period, the cause of the power failure was unknown. The cause for the 

power outages was subsequently determined to be a clogged air filter in the air conditioning unit. 

The temperature variations were not planned, nor ideal for testing concrete strain, but all of the 

prisms were exposed to the same environmental conditions through the entire testing period. 

Also, all mixtures were cast within 10 days of each other, so the temperature variation occurred 

at similar ages for all specimens. The effects of temperature can be observed in Figures 4.7 and 

4.8 (day 28 strain). The reduction in temperature resulted in a decrease in strain. See Figure 4.11 

for illustration of temperature drop of the Control mixture. Each VWSG contained a thermistor 

(Figure 3.9) that recorded concrete temperature.  As shown Figure 4.11, the control mixture 

experienced a temperature drop of approximately 15 degrees F at 91 days of age. All specimens 

experience the same decrease in temperature, but only the Control mixture is shown.  

 

Figure 4.11   Temperature Decrease of Control Mixture 
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4.2.7 Data Comparison between ASTM C157 and Strain Gage Results 

Strain results for both ASTM C157 and VWSG methods are discussed previously in 

Sections 4.1 and 4.2, respectively. In almost all cases, the strain values recorded using ASTM 

C157 methods were higher than the strain values recorded with the VWSG. Table 4.9 lists the 

strain reading values for ASTM C157 and VWSG.  

Table 4.9   Comparative Strain Readings 

Mixture Test Method 
Results (microstrain) 

7 Day 28 Day 56 Day 112 Day 

Control 
ASTM C157 107 293 330 382 

Strain Gages 99 223 * 306 

Clay1 
ASTM C157 97 272 360 415 

Strain Gages 66 208 241 279 

Clay2 
ASTM C157 92 230 280 393 

Strain Gages 55 * 264 287 

Clay3 
ASTM C157 76 248 320 388 

Strain Gages 40 151 232 258 

Shale3 
ASTM C157 58 218 311 364 

Strain Gages 69 206 279 286 

* Error in Data Recording 
   

 

In all of the tests using VWSG, the demolding process caused a sudden decrease in strain. 

This decrease could be a factor that caused the VWSG readings to consistently produce lower 

strain values compared with ASTM C157 method. Also, at 24 hours most of the VWSG 

produced a negative strain reading. Since ASTM C157 starts readings at 24 hours (strain equal to 

zero at this point), then this could also be a factor in the difference in strain values. Even with 

these contributing factors, the ASTM C157 results had a greater rate of change throughout the 

testing period than the VWSG results. The VWSG were placed in the prisms used in accordance 

with ASTM C157 to compare the strain readings between the two different testing methods. For 

each prism, a VWSG was placed in the center of the mold. A six-inch VWSG measured the 
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change in length of its end blocks. ASTM methods measure the change in length from the gage 

studs cast into each end of the prism. Theoretically, this difference in the distance between 

measuring points should not change the strain reading since the change in length is divided by 

the original length, but the location and size of the VWSG may contribute to the lower strain 

readings throughout the course of the testing period.  

4.3 Phase II: Plastic Shrinkage Testing 

4.3.1 Mixtures 

As discussed in the Literature Review, difficulties arise when trying to test and quantify 

plastic shrinkage cracking in concrete. Concretes with high coarse aggregate contents pose 

challenges in evaluating shrinkage, because the aggregate in the mixture acts as internal restraint 

against all types of shrinkage, including plastic shrinkage. In an effort to effectively test and 

measure plastic shrinkage cracking in concrete, 16 separate mixtures were tested during this 

phase of the research project. The major problems faced while trying to develop plastic 

shrinkage cracks in test slabs were: inadequate external restraint, high internal restraint due to 

aggregate, and workability and the resulting finish of the mixtures. The different mixtures will be 

discussed further in the following sections explaining the various test methods that were 

attempted.  

For the plastic shrinkage testing, the selection of which mixtures to test was based on the 

results from the Phase I, the drying shrinkage testing. To obtain a baseline, the Control batch had 

to produce plastic shrinkage cracks. If the Control slabs did not produce plastic cracking, then it 

would not be expected for the mixtures containing LWA to crack either. Initiating plastic 

shrinkage cracking in the Control slabs proved to be difficult. However, once the mixture 

proportions and formwork could produce consistent cracking, then the LWA mixtures could be 
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evaluated and compared to the Control. Instead of testing all the different replacement rates of 

LWA, just the LWA mixture that produced the best results from phase I, which was Clay3, was 

tested and compared with the Control mixture.  

4.3.2 Developing Test Slabs 

At the beginning of this phase of the research, the test methods first developed by Kraai 

in 1985 were followed. Kraai cast a 2 x 3 ft. slab that was ¾ inch thick, and nailed wire mesh to 

the bottom of the formwork around the perimeter. The wire mesh was then bent up 90 degrees 

(Kraai, 1985). This provided external restraint that increased the tensile stresses in the concrete 

as shrinkage occurred. This increase in stresses would cause surface cracks in the concrete slabs 

if the stresses exceeded the concrete tensile capacity. In addition, Kraai removed the coarse 

aggregate by wet sieving the concrete immediately after mixing. By using cement paste instead 

of concrete, shrinkage would increase, causing more cracks. However, for this research project, 

the objective of both Phase I and Phase II was to evaluate the effects of internal curing using 

coarse LWA. This eliminated the option of wet sieving the concrete. If the coarse aggregate was 

removed from the control mixture, then adding coarse LWA in the other mixtures would 

decrease the shrinkage of the slab by the presence of the aggregate, itself. These mixtures would 

not be comparable, in that case. 

Another issue in implementing the Kraai’s test methods was the slab thickness. Since 

AHTD coarse aggregate gradations specify a maximum size aggregate of 1¼ inch, the slab 

thickness of ¾ inch would not be adequate for the mixture designs used in this study. Therefore, 

the thickness of the slab was increased to 1⅜ inch.  

Testing began using 4 x 4 ft. slabs with a thickness of 1⅜ inch. Two and one-half inch 

wide strips of ½ inch square wire mesh was stapled around the perimeter of the formwork and 
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the bent up at approximately 90 degrees. These first test slabs produced no surface cracks (Figure 

4.12). In order to promote transverse cracking and increase the surface area of the slabs, the 

longitudinal direction of the slabs was increased to 8 ft., which made the slabs 4 x 8 ft.  Test 

slabs with the new dimensions were cast, but there were still no surface cracks developing.  

 

Figure 4.12   4’ x 4’ Test Slab 

 

At this point, it appeared that the concrete mixture was not experiencing enough 

shrinkage to produce cracks at the surface. So, the research team decided to move to testing 

plastic shrinkage cracking using ASTM C1579 Standard Test Method for Evaluating Plastic 

Shrinkage Cracking of Restrained Fiber Reinforced Concrete (Using Steel Form Insert), which 

is explained in Section 2.6.1.3 of Chapter 2. While this test method is for testing the effects of 

steel fibers cast in concrete, it was thought that it could be related to testing the effects of internal 

curing on plastic shrinkage as was done by Henkensiefken et al. (Henkensiefken, Briatka, Bentz, 

Nantung, & Weiss, 2010). The steel insert was fabricated and the formwork was built per the 

specifications. The difference in our preliminary tests and the ASTM C1579 specifications was 
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the environmental conditions. These tests were conducted outdoors in July. As mentioned above, 

the environmental conditions at this time produced drying evaporation rates that were well above 

the 0.2 lb/ft
2
/hr prescribed by ACI 305 for dry conditions.  Preliminary tests were administered 

using the Control mixture cast in two molds. Once again, plastic shrinkage cracks were not 

observed in the slabs. In order to increase shrinkage, the initial amount of 1700 lb/yd
3
 of coarse 

aggregate was then reduced to 1500, then to 1300, and finally to 850 lb/yd
3
. Surface cracks did 

not appear on any of the preliminary slabs using ASTM C1579. This test method proved 

ineffective in producing plastic shrinkage cracking in the Control mixture, so this test was not 

used in examining the effect that coarse LWA has on plastic shrinkage cracking. The research 

went back to evaluating thin slabs and trying to determine how to produce plastic shrinkage 

cracks in tests slabs cast with concrete.  

Literature by Weiss et al. analyzed shrinkage cracking using more rigid formwork 

(Weiss, Yang, & Shah, 1998). They cast concrete into a small 100 x 75 mm steel mold with 

threaded rods at the ends to provide restraint. The threaded rods were used so that the fresh 

concrete could be cast around the rods and obtain a strong bond to the threaded surface. Once the 

concrete contracted, the bond with the rods would increase tensile stresses, resulting in cracking. 

While this test method did not specifically test plastic shrinkage, it did highlight the need for 

adequate restraint to produce cracks in concrete. Pelisser et al. analyzed plastic shrinkage 

cracking in thin slabs cast with cement mortar in a similar fashion to Kraai’s work. One 

difference in the testing was that Pelisser used steel angle instead of wire mesh for external 

restraint (Pelisser, da S. Santos Neto, La Rovere, & de Andrade Pinto, 2010). Pelisser’s 

reasoning for using steel angle instead of wire mesh was not stated, but the increased rigidity of 

the steel angles when compared to the wire mesh would increase the overall restraint of the 
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formwork. It is important to note that Pelisser did not test concrete, but only tested cement 

mortar. He noted that the influence of coarse aggregate would reduce the amount of shrinkage 

that would take place and, therefore, omitted aggregate from his mixtures. From the examples of 

these two studies, it was concluded that the wire mesh used in this research program did not 

provide enough restraint to cause cracking at the slab’s surface. Since the goal was to measure 

plastic shrinkage, casting a small specimen similar to Weiss et al. would be insufficient due to a 

small surface area. So 4 x 8 ft. thin slabs were used as before, but ¾ x ¾ x 
1
/8 inch steel angle 

members were fixed around the entire perimeter instead of wire mesh (Figure 3.11 in Chapter 3). 

At this point, it was still unknown if the slabs would crack, because of the high internal rigidity 

of the Control mixture and the increased thickness of the slab compared to previous literature.  

The first test slabs using the steel angle were evaluated. Two slabs were cast at the same 

time. The concrete mixture had a slump of less than an inch. When the slabs were cast, the 

concrete mixture was too dry and a smooth surface finish was not obtained. Both test slabs did 

not experience any plastic shrinkage cracking. This test proved how slump affects plastic 

shrinkage cracking. Our findings agree with the conclusion by Qi et al. that concretes with low 

slump are less susceptible to plastic shrinkage cracking due to a decrease in settlement (Qi, 

Weiss, & Olek, 2003). This relationship between slump and plastic shrinkage is very important 

when trying to quantify plastic shrinkage cracks. Slump values of different concrete mixtures 

should be very similar so that comparisons of the amount of cracking can be compared. This is 

one of multiple factors that make analyzing and quantifying plastic shrinkage cracking difficult.  

The Control mixture was batched again and this time the amount of superplastisizer was 

increased so that slump was four inches. The concrete was cast from the same mixer for two 

slabs. These were the first slabs that developed plastic shrinkage cracks. Plastic shrinkage 
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cracking became visible approximately 20 minutes after finishing the slab surfaces. The use of 

the steel angle members was very affective in increasing the tensile stresses in the concrete 

leading to cracks. Figure 4.12 shows a test slab approximately one hour after casting. Figure 4.13 

shows a test slab 24 hours after casting and after the cracks were mapped and measured. The 

same Control mixture was batched again and cast into two 4 x 8 ft. slabs. 

 

Figure 4.13   Slab After Formation of Plastic Shrinkage Cracks 

 

 

Figure 4.14   Slab Cracks Mapped 24 Hours After Casting 

 

Since the Control slabs were cast, producing plastic surface cracks, the next step was 

testing the Clay3 mixture. The same mixture proportions used in Phase I for Clay3 were batched 
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and cast onto two 4x8 ft slabs. The high volume of coarse aggregate in this mixture caused the 

surface of the slabs to be unworkable. There was not enough paste in the mixture to produce a 

smooth finish. After this test, various other test mixtures were batched to improve the surface 

finish of the slabs.  

To increase the surface finish and still maintain the same amount of LWA that was used 

in the previous testing, the amount of normal weight coarse aggregate decreased. The 

proportions of the Clay3 mixture were modified to increase the workability and surface finish. 

Clay3U, which denotes the updated Clay3 mixture, was cast onto two 4x8 ft. slabs and cracking 

was observed and measured. Since the LWA clay mixture had been modified to increase 

workability, then a modified mixture had to be cast and tested for the Control, as well. The 

ControlU, which denotes the updated Control mixture, was cast onto two 4x8 ft. slabs and 

cracking was observed and measured. The mixture proportions are shown in Table 4.10.  

Table 4.10   Mixture Proportions for Test Slabs 

Mixture 
Unit Weight per Unit Volume (lb/yd

3
) 

Cement Coarse Aggregate LWA Sand Water w/c 

Control 611 1700 0 1440 269 0.44 

ControlU 611 1357 0 1773 269 0.44 

Clay3 611 1400 300 1107 269 0.44 

Clay3U 611 1057 300 1440 269 0.44 

 

The ControlU and the Clay3U mixtures were evaluated in the following section for 

plastic shrinkage cracking. Due the scope of this phase of the research project and the timeline, 

no further testing of thin slabs was preformed after successful Control and Clay mixtures were 

cast and evaluated. This phase of research was, in many ways, preliminary to future testing of the 

effects of internal curing on plastic shrinkage cracking.  
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4.3.3 Slump 

Slump plays a significant role in the amount of plastic shrinkage that takes place. The 

lower the slump, the less susceptible the concrete mixture can be to plastic shrinkage. The role 

that slump plays on the extent of plastic shrinkage cracking that occurs was verified through the 

research program. In the preliminary testing, it was concluded that if the slump for a particular 

mixture was low, then the amount of surface cracks would decrease. For this reason, the 

researchers attempted to obtain similar slump values for the different mixtures. For the ControlU 

mixture, a slump of 3.5 inches was obtained. For the Clay3U mixture, a slump of 5.5 inches was 

obtained. Since the Clay3U mixture’s slump was higher than the ControlU mixture, then it can 

be assumed that the difference in slump between the two mixtures did not aid the Clay3U 

mixture in yielding less cracks, rather, the higher slump of Clay3U mixture could possibly cause 

the cracking results to be conservative.  

For each mixture, two slabs were cast so that the cracking results could be compared 

between the two to evaluate the consistency of the amount of cracking. In all cases except 

ControlU, the first slab that was placed yielded more cracks than the second slab. These results 

were attributed to a decrease in flowability or slump (which can be time dependent). The 

concrete for the second slab remained in the rotating mixer while the concrete was being placed 

in the first slab. While efforts were taken to decrease the time between casting the first and the 

second slab, the increased time from batching to placement of the second slab still affected 

cracking. Therefore, for each batch, the timing and procedures were done in a consistent manner 

throughout the testing period to mitigate the variables that affect plastic cracking results.   
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4.3.4 Environmental Conditions 

As mentioned in Ch. 3, all plastic shrinkage testing was performed outdoors. The size of 

the slabs made it impractical to cast and evaluate the slabs indoors. Due to this phase of the 

research taking place in the summer months (June-August), the research team took advantage of 

the natural environmental conditions that promote drying conditions. All slabs were cast at 90 

degrees F or higher. All slabs were cast on days with direct sunlight to further the extent of 

drying on the slab surfaces. Finally, a large fan was used to create a constant wind velocity for 

four hours after the slabs were finished. The combination of temperature, wind velocity, and low 

humidity levels all contributed to the drying conditions needed to promote plastic shrinkage 

cracking. The drying conditions were measured by the evaporation rate for the first four hours 

after finishing. ACI 305 Hot Weather Concreting suggests that a minimum rate of evaporation of 

at least 0.2 lb/ft
2
/hr (1.0 kg/m

2
/hr) relates to drying conditions of the concrete surface (ACI, 

1999). The ControlU and Clay3U had an average evaporation rate of 0.43 lb/ft
2
/hr and 0.41 

lb/ft
2
/hr over the four hour period, respectively. Therefore, both mixtures at least doubled the 

evaporation rate given in ACI 305.  

 Using natural environmental conditions will inherently add variability and limit the time 

and the location in which plastic shrinkage can be tested. Because of those limitations and to 

decrease the amount of variables during testing, it is recommended that future plastic shrinkage 

slabs be evaluated in controlled conditions.  

4.3.5 Plastic Shrinkage Cracking Results 

As explained in Section 4.3.2 the process of casting slabs that could first produce plastic 

shrinkage cracks proved difficult. The results below are from four separate slabs, two slabs cast 

for the ControlU mixture and two slabs cast for the Clay3U mixture. For each mixture, two slabs 
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were cast in succession from the same batch of concrete.  The crack information for each slab is 

given in Table 4.11.  

Table 4.11   Slab Data 

Mixture 
Number 

of Cracks 

Total 

Crack 

Length (in) 

Avg. 

Crack 

Width (in) 

Total 

Crack Area 

(in
2
) 

ControlU 
Slab C 7 252.0 0.0413 10.28 

Slab D 10 289.5 0.0351 10.15 

Clay3U 
Slab E 12 293.0 0.0315 9.11 

Slab F 11 260.0 0.0183 4.77 

 

For the ControlU mixture, the total crack area between the two slabs was similar. Slab C 

showed less overall crack length than Slab D, but the average crack width was larger. The 

consistency between the two slabs was the highest in the ControlU mixture compared with all of 

the previous test slabs. The Clay3U slabs did not show any reduction in crack length when 

compared to the ControlU slabs, in fact, the Clay3U slabs resulted in slightly more overall crack 

length. However, the Clay3U slabs differed from the ControlU slabs in regards to crack widths. 

Clay3U slabs had significantly lower average crack widths than the ControlU slabs. The 

reduction in crack widths resulted in a lower total crack area. There was a significant difference 

between the two Clay3U slabs, but both showed a reduction in total crack area when compared 

to ControlU mixture. Clay3U, like multiple preliminary mixtures, showed a difference in plastic 

shrinkage between the first and second slabs, both cast from the same batch of concrete. The 

difference in time between casting the first and second slab (usually around ten minutes) proved 

in most cases to affect the extent to which the slabs cracked. 
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Chapter 5 Conclusions 

The research performed for this project was to examine the effects of saturated LWA on 

shrinkage in both plastic and hardened states in conventional concrete mixtures. The research, 

and the conclusions herein, is drawn from the research experiences described in the previous 

chapters.  

5.1 Phase I- Drying Shrinkage Conclusions 

 Replacing a portion of normal weight aggregate with soaked LWA decreased the 

compressive strength at both early and late ages.  

  For the preliminary ASTM C157 results, strain prior to 28 days of age was reduced in 

the concrete mixtures that contained either shale or clay LWA.  

 Casting VWSG in 4x4x10 inch concrete prisms yielded lower strain readings than ASTM 

C157 results.  

 The presence of LWA affected the amount of shrinkage that occurs prior to 24 hours after 

batching.  

 The Clay3 mixture proved to be the most effective in decreasing shrinkage.  

 The presence of LWA was not shown to affect the shrinkage of concrete at later ages 

(following 56 days of age). The difference in strain of the concrete specimens occurred at 

earlier ages and was maintained, to a degree, throughout the remaining testing period.  

 Shale LWA mixtures proved less effective in decreasing concrete strains from the 

Control than the clay LWA mixtures.  

5.2 Phase II- Plastic Shrinkage Conclusions 

 Developing adequate external restraint is very important when attempting to quantify 

plastic shrinkage cracks in concrete slabs. The presence of coarse aggregate inhibits the 
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shrinkage of the slabs, making crack development more difficult to obtain. From our 

experiences, using steel angle members around the perimeter of the formwork provides 

sufficient restraint to induce plastic shrinkage cracking in concrete.  

 Slump of the concrete mixture is an important factor in plastic shrinkage potential. High 

slump increases the amount of plastic shrinkage cracks. A low slump will reduce or can 

even eliminate plastic shrinkage cracks in test slabs. Much effort must be taken to 

monitor slump when attempting to quantify plastic shrinkage cracks experimentally.  

 The 300 lb replacement rate of LWA (1700 lb of total coarse aggregate content including 

LWA) was not adequately workable for concrete slab applications.  

 When comparing the Control and the Clay3U slabs, the total crack lengths were not 

affected by the use of clay LWA.  

 The use of clay LWA reduced the average crack widths, which led to a reduction in total 

crack area of the test slabs.  

5.3 Recommendations for Future Research 

 Demolding methods should be investigated in the future to reduce or eliminate the 

adverse effects that demolding has on the strain results. 

 Fine LWA should be examined for its effects on conventional concrete shrinkage.  

 For the LWA’s used in this project, it is recommended to use the clay LWA instead of the 

shale LWA.  

 For plastic shrinkage analysis, testing should be done under strict, controlled 

environmental conditions.  

 Further testing should be done in testing the effects of internal curing on plastic shrinkage 

cracking in test slabs.  
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