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ABSTRACT  

Anaerobic digestion has been widely used for wastewater treatment for decades. Several 

Anaerobic Toxicity tests have been developed to screen wastewater for toxicity and assess the 

treatability of such toxicants. However, past research and reviews on Biochemical Methane 

Potential (BMP) test and Anaerobic Toxicity Assay (ATA) were considered in this study. 

 The experimental tests included ammonium-nitrogen and sodium chloride toxicity tests 

with varied concentration and solid retention time. These tests were designed to demonstrate the 

impact of ammonia- nitrogen and sodium chloride on the biological degradation process. The 

anaerobic test set-up includes bench-scale test reactors and respirometers used for measuring gas 

production volume and rate. 

The experimental data using the gas production volumes and rates were plotted and 

analyzed. The hourly rate of gas production significantly decreases before the daily production 

volume decreases. Also, the gas production volume curves showed little or no toxicity when the 

gas production rates showed toxicity and acclimation.  

In conclusion, the hourly production rate curves will indicate toxicity faster and 

extensively than the cumulative daily production volumes curves, thereby reducing testing time. 
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1.0 INTRODUCTION 
 

Anaerobic digestion is without doubt one of the most efficient waste and wastewater 

treatment process, and it has been widely used for the treatment of municipal sludge, organic 

industrial wastes and agricultural wastes (Parkin and Miller 1983). It is a treatment process that 

compensates operational usage of fossil fuels by the production of methane during the treatment 

process (Chen et al. 2008). Many of the products/chemicals in waste and wastewater are toxic 

substances. A toxic substance is any chemical or mixture that may be harmful to the environment 

and to human health if inhaled, swallowed, or absorbed.  Toxic substances in wastewater are 

mostly synthetic which means they are man-made (EPA 2012).   Since toxic substances often 

occur at substantial concentrations in wastewater and sludge, they are found to be the leading 

cause of failure and upset in anaerobic digester or treatment process.   

Although many researchers have investigated the toxicity level in anaerobic digestion 

(McCarty and McKinney 1961; McCarty 1964; Van Velsen 1979; Koster and Lettinga 1988; 

Hansen et al. 1998; Gallert et al. 1998) and the effects of toxicity on methanogensis, the range of 

values differ under various experimental conditions. The variations might be due to complexity 

and mechanism of anaerobic treatment process such as antagonism, synergism, acclimation and 

the complex compounds formed (Chen et al. 2008). However, toxicity in anaerobic processes can 

be measured and prevented.   

Several  anaerobic  toxicity  assessment  procedures have  been  developed  to  test  the  

treatability  of industrial  effluents  from  anaerobic  sludge  digesters because a  universal  

monitoring  device  for  toxicity testing  is unlikely.   A greater number of  recent  studies have 

dealt  with  the  use  of  Biochemical Methane Potential assay and Anaerobic Toxicity Assay for  
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toxicity  screening  and assessment. Hungate (1969) developed Biochemical Methane Potential 

(BMP) assay and Anaerobic Toxicity Assay (ATA) for toxicity and degradability of organic 

matter which were modified by Miller and Wolin (1974) and Owen et al. (1979).  

This report provides detailed descriptions and analyses of past and present studies on the 

anaerobic digestion from selective articles and books; identification of factors affecting 

anaerobic toxicity assessments, methods and determination of acute and chronic toxicity, 

analysis of  methane production curve, and acclimation/testing time. The methods used for 

conducting ammonium-nitrogen and sodium chloride toxicity tests were described and 

experimental data were analysed and plotted. The effect of ammonia-nitrogen and sodium 

chloride on anaerobic biodegradation and the relationship between daily gas production volume 

(cumulative data every 24 hours) and the gas production rate were observed. Conclusions were 

reached from the interpretations and observations made from the gas production curve and the 

effect of testing time (hourly and daily) on anaerobic toxicity assessments were determined.
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2.0 LITERATURE REVIEW 
 

2.1 ANAEROBIC DIGESTION 

Anaerobic digestion has been used for decades in treating organic matter in wastewater. It 

involves the degradation and stabilization of organic materials under anaerobic conditions by 

microorganisms resulting in production of biogas, which is a mixture of carbon dioxide, methane 

(Bordac and Young 1998) and microbial biomass (Kelleher et al. 2000). Degradation is achieved 

by specialized groups of microorganisms in the absence of oxygen. The fundamentals of 

anaerobic treatment are biodegradation reaction, biological growth, toxicity, temperature, Solid 

Retention Time (SRT) and other factors affecting performance. Several important biodegradation 

reactions take place simultaneously during anaerobic treatment process (Figure 1). Complex 

organic materials are converted first to simpler organics, which in turn are converted to organic 

acids and hydrogen.   

 

Figure 1: Anaerobic Biodegradation Reactions 

(Young and Cowan 2004) 
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The organic acids and hydrogen are converted to methane by specialized microorganisms known 

as methanogens. All reactions must work together; otherwise overall treatment will be adversely 

affected. 

Toxicity or inhibition is a major fundamental of anaerobic treatment. It affects the 

maximum substrate uptake (g COD/g VSS/d) and half-saturation coefficients (g COD/L) of 

kinetic models as well as reduces COD removal efficiency and loading rate capacity. Thus, a 

substance or water constituent can be inhibitory or toxic when it decreases the microbial 

population or bacterial growth rate.  The decrease in microbial activity results in difficulty in 

controlling anaerobic process and imbalance in the anaerobic system, causing a decrease in pH 

(Jeris and Kugelman 1985; Bajpai and Iannotti 1988) due to the increase in volatile acids.  Toxic 

substances or compounds affect the metabolic enzymes of the microorganisms group, the energy 

metabolism by uncoupling of growth and ATP production, and the cell membranes by creating 

intracellular changes of the pH (Gallert et al. 1998). However, some toxic chemicals can be 

accommodated during anaerobic treatment of industrial wastewaters because toxicants like 

formaldehyde, acrylate, chloroform, trichloroethylene, and cyanide can be biodegradable.  

Favorable anaerobic conditions are required in the removal of toxicants including low 

toxicant concentration compared to IC50 (50% inhibition) concentration, biodegradable toxicant 

under the treatment conditions and acclimation of the biomass to some toxicants. Therefore, 

anaerobic toxicity assessment is important for the investigation of toxic substances that affect 

biological processes because of the increasing number of biogas plants and complexity of the 

water/wastewater sector.  
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2.2 ANAEROBIC TOXICITY ASSESSMENT 

Several works of literature have proposed different laboratory methods for measuring the 

potential methane production and toxicity under anaerobic conditions (Hungate 1969; Miller and 

Wolin 1974; Owen et al. 1979; Hansen et al. 2004; Schievano et al. 2008, 2009a). This led to the 

development of the Biochemical Methane Potential (BMP) test and Anaerobic Toxicity Assay 

(ATA) (Tothill and Turner 1996).   

ATA and BMP tests can be used individually or collectively to define the toxicity of 

pollutants in anaerobic applications and to measure methane/gas production by evacuation of 

small volume increment through a specially designed flow monitoring device as a respirometer 

(Young and Cowan 2004). For complex toxicity, a bioassay screening tool like the respirometer 

can be used for aerobic or anaerobic process in measuring gas production and toxicity (Speece 

2008). The first anaerobic respirometer toxicity test was developed and conducted by Owen et al. 

(1979) for assessing organic constituent’s inhibition and biodegradability (James et al. 1990; 

Young and Cowan 2004). The respirometer measures oxygen uptake or gas production, analyses 

substrate conversion and formation of by-product, evaluates biomass production and the toxicity 

of waste water and specific chemicals (Young and Cowan 2004). Also, the progress of the 

reaction is monitored, methane production rates and biomass activity are tracked, and the data is 

stored by computerized monitoring schemes (Speece 2008).   

The respirometer tests run as batch assays in serum bottles and methane/gas production is 

monitored by passing the gas through a CO2 scrubber. Most Anaerobic Toxicity tests are 

commonly conducted in batch modes where organic and inorganic energy substrates are added to 

the serum bottles along with adequate nutrients, minerals, buffer to control the pH, and 

microorganism seed culture (inoculum) at the beginning of the test. 
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2.2.1 ANAEROBIC TOXICITY ASSAY (ATA)  

ATA (Owen et al. 1979; Demirer and Speece, 1998) is the correlative measure of 

potential toxicity of a wastewater or chemical sample plus a biodegradable organic substrate 

(ethanol, acetate, benzoate etc.) with an anaerobic biomass contained within a sealed vessel 

developed by the McCarty’s group (Owen et al. 1979). Also, ATA is required to analyse the 

impact of specific chemicals on anaerobic processes. Biodegradable organic pollutants like 

acrylic acid, acrolein, lipids, and chlorinated organics when above certain concentrations, 

manifest inhibition (Speece 2008). 

The procedure involves the addition of 20 – 50 mL of wastewater sample and 

biodegradable organic substrates to anaerobic cultures in a 200 - 500 mL sealed serum bottle or 

2-L laboratory reactors in the absence of oxygen.  The biodegradable substrate concentration 

may range from 0 in the culture blank to 2 - 4 times the diluted wastewater concentration in other 

reactors (Young and Cowan 2004). Furthermore, the full impact of toxicity cannot be easily 

evaluated by the ATA for wastewater sample with diluted inoculum. Dilution of the wastewater 

must be considered during the interpretation of the ATA data except when dewatered granular 

sludge is used. To avoid substrate limitation, ATA is conducted in the presence of excess 

substrate added to the initial mixture in the serum bottles. Also, the biomass evaluated is placed 

in the serum bottles and gassed with 50% carbon-dioxide (CO2) and 50% methane (CH4).  

The initial gas production rate is of primary interest in the ATA (Speece 2008). Most 

importantly, if the waste water sample contains toxic substances, will toxicity reflect in the 

reduced initial rate of the gas production to volume of waste water added. For proper evaluation 

of toxicity, ATA assays are conducted using batch reactors with a range of wastewater 

containing biomass inoculum that allows the manifestation of reduced methane/gas production 
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rate (Speece 2008). At maximum metabolic rate, biomass activity does not depend on the 

substrate concentration and any reduction in gas production rate would relate to toxicity in the 

wastewater sample. 

 

2.2.2  BIOCHEMICAL METHANE POTENTIAL (BMP) TEST 

BMP test is the correlative measure of anaerobic biodegradation developed by Hungate 

(1969), and modified by the McCarty’s group (Owen et al. 1979; Chynoweth et al. 1993; Hansen 

et al. 2004). It is a powerful test conducted to assess the performance and treatability of wastes in 

anaerobic digester (Speece 1996; Bishop et al. 2009). The test is a simple method used to 

evaluate the conversion rate of waste to methane (Gunaseelan 1997), determine the potential of 

anaerobic process efficiency, measure the residual organic pollutants, and determine the non-

biodegradable substances after treatment (Speece 2008).  BMP tests involve exposing anaerobic 

cultures to wastewater constituents and recording the amount of methane or total biogas 

produced (Owen et al. 1979; Angelidaki et al. 2009; Young 2006).  

 BMP test is usually performed along with Biochemical Oxygen Demand (BOD) assay, 

although regulatory requirements might specify only BOD test. Since BMP test measures only 

the effective biodegradable fraction of the organic matter, the parameters considered are both 

quantitative and qualitative aspects of a substrate (Schievano et al. 2011). Similarly, BMP assay 

measures organic pollutants biodegradation rate under anaerobic conditions that a BOD assay 

would measure under aerobic conditions (Hansen et al. 2004). The advantage of BMP test is the 

estimation of certain kinetic parameters (Donoso-Bravo et al. 2011) and its applicability to all 

kinds of wastewater (Lesteur et al. 2010).  
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The procedure involves the addition of an effluent sample to a 20 – 50 mL inoculum from 

an anaerobic culture in a 200 - 500 mL serum bottles or 2-L laboratory reactors (Young and 

Tabak 1991, 1993). The headspace in the serum bottle is purged with gas at 30 – 50% CO2 

composition for pH control, nitrogen gas (N2) or methane (CH4) (Speece 2008). The serum 

bottles are incubated at 35oC and gas production, usually methane, are measured by inserting a 

hypodermic needle connected to a calibrated fluid reservoir, through the serum cap over periods 

ranging from 1 to 60 days (Robinson and Tiedje 1983), with or without the additions of 

chemicals or wastewater samples (Young and Cowan 2004). According to the stoichiometric 

relationship, 395 mL of CH4 production is equivalent to 1 gram COD at the temperature of 35oC 

use for the determination of COD reduction in liquid phase (Speece 2008). 

BMP assays use different sources of anaerobic biomass which include a laboratory 

maintained biomass and an inoculum from an anaerobic digester of a municipal wastewater 

treatment plant. To assess the ability for sustained biodegradation, the modern BMP test was 

developed with the addition of multiple substrates that are not easily degradable (Benjamin et al 

1984) over a period of 3 to 60 days (Young and Tabak 1993). For a BMP test, the biomass must 

be acclimated to the pollutants. Therefore, care must be taken to run a control with only an 

anaerobic inoculum and insure adequate time /acclimation for the biomass to metabolize the 

pollutant (Speece 2008).  In addition, care must be taken in overlooking toxicity when initially 

characterizing the anaerobic treatability assessment of wastewaters because excessive time may 

be required to reach the ultimate BMP.  
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2.2.3 DIFFERENCES AND SIMILARITIES BETWEEN BMP AND ATA  

ATA and BMP assays are different in several ways. ATA are used for the preliminary 

estimate of any toxicity inherent in wastewater while BMP tests give a preliminary estimate of 

the potential amount of COD bio-transformed into methane (Young and Cowan 2004).  ATA is 

flooded with acetate or other simple substrate while BMP test is not. ATA uses easily degradable 

compound to determine toxicity by comparing the methane production rate with concentration of 

the test compound while BMP test uses no added biodegradable compound and the methane 

production rate is a direct measure of the biodegradation potential of the organic compounds in 

the test sample (Benjamin et al. 1984).  

 In terms of initial and total gas production, the initial gas production rate is important in 

ATA while the total gas production volume is indicative of the BMP. Sell et al. (2011) analyzed 

the ability of BMP assay to predict methane production of full scale anaerobic digester and 

compared it to the methane production for different biomass using a known degradable feedstock 

(Moody et al. 2011a). The BMP data revealed that the enzyme processing wastewater was ideal 

for dilution while ATA data revealed toxicity at low inclusion rate due to high ammonia 

concentration in the wastewater (Sell et al. 2011). 

On the other hand, both BMP and ATA are used to determine the potential mixture of 

substrates necessary for the characterization of hydraulic retention time (Owen et al. 1979), 

organic loading rate and methane yield by relating laboratory scale test result to full scale 

anaerobic digesters (Wilkie et al. 2004; Sell et al. 2010). Sometimes the biomass used in ATA 

and BMP test has the ability to acclimate to the toxic substance. The length of time required for a 

microbial population to acclimate to a particular toxic compound is determined by the two 

methods (Benjamin et al. 1984).  
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Sell et al. (2010) performed BMP assays in triplicate using modified international 

standards ISO 117 34 (1995) and ATA in triplicate using the modified International standards 

ISO 13641-1 (2003) at different dilution ratios to analyze materials of unknown toxicity.  Effects 

of toxicants were calculated using the ratio of all % inclusion yields (toxicants combined with 

degradable substrate and inoculum in seven mass concentrations) to the control. Methane yield 

was determined using the linear portion of methane production curve. Methane production 

decreased as the ratio of test substrate to degradable substrate increased. Multiple procedures 

such as substrate characterization, methane production and toxicity analysis, mixture 

combination based on design criteria, substrate selection and analysis were recommended for the 

design and operation of full scale anaerobic digesters. 

However, there is advantage in the combined use of BMP assay and ATA. BMP tests 

determine substrate that inhibits methane production from the mixture of known substrates and 

test substrates. As a result, BMP tests have the potential of high dilution of substrate inhibition 

which can be overcome by ATA (Moody et al. 2009) using limited substrate in batch system, 

which does not represent the operational condition of typical anaerobic digesters (Sell et al. 

2010). 

 

2.3  FACTORS AFFECTING ANAEROBIC TOXICITY ASSESSMENT 

A range of values is reported in the literature for anaerobic toxicity assessments and the 

variations are often disturbing.  The variations might be due to experimental errors or factors that 

cause greater difference like the loading rate of the system, biomass inventory, and the effects of 

acclimation and nutrient insufficiency. Anaerobic Toxicity Assessment is sensitive to test 



 

11 
 

parameters (substrate, inoculum) which depend on operating conditions like inoculum/biomass 

inventory, temperature,  loading rate, acclimation, pH and size of particle (Lesteur et al. 2010). 

 

2.3.1 INOCULUM/BIOMASS INVENTORY 

With anaerobic treatment of wastewater, there is need for high biomass concentration to 

compensate for lower biodegradation rate of recalcitrant substances and prolong cellular 

residence times (Speece 1996). For anaerobic toxicity test, low inoculum affects biogas 

production. Also, the substrate/inoculum ratio affects kinetics (Gunaseelan 1995; Raposo et al. 

2006) and lag phase time but not ultimate methane production (Lesteur et al. 2010).  At high 

substrate/inoculum ratio, lag time is shorter (Chen and Hashimoto 1996). 

King et al. (2011) performed two sets of 35oC BMP assays based on established 

procedures (Owen et al. 1979) which comprises three batches. Each batch was conducted in 

triplicate using substrate alone, biomass alone, and biomass with substrate. Biogas production 

was monitored daily to determine the initial rate of methane production. The initial rates of 

methane production increased across substrate alone, biomass alone and substrate plus biomass 

assays with increasing temperature. In conclusion, the initial rate of methane production was 

highest in assay with the biomass plus substrate at 35o C. 

 

2.3.2 TEMPERATURE 

Temperature affects the rate of biomass metabolism activity and biodegradation.  Batch 

assays for different anaerobic sludge were used to determine acute toxicity of oleic acid 

(monounsaturated fatty acid found naturally in many plant and animal products) at different 
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temperature (30oC, 40oC & 55oC).  It was discovered that oleate was over 12-fold more toxic at 

thermophilic conditions than mesophilic conditions (Hwu and Lettigna 1997). 

Zupancic and Jemec (2010) conducted BMP assays to determine potential biogas 

production with different substrate and varied organic load at two temperatures (37oC and 55oC) 

using inoculum collected from a local municipal wastewater treatment plant. Due to different 

substrates and temperatures, significant differences were expected in anaerobic biodegradability. 

However, the differences were due to different inoculum employed at different temperature. It 

was concluded that BMP assay provides the first possible estimate of the substrate anaerobic 

degradation to determine the necessity of further experiments. 

Biodegradation of organic matter is faster at thermophilic conditions (55oC) than 

mesophilic conditions due to higher microbial metabolic activity (Fountoulakis et al 2008) but 

BMPs should be conducted under mesophilic conditions at 35oC (Lesteur et al. 2010; Danoso-

Bravo et al. 2011). 

 

2.3.3 LOADING RATE 

In developing toxicity data, the primary substrate should be tested over a range of 

concentrations. Low concentrations of toxic substances in a wastewater may be readily degraded 

whereas higher concentration may be toxic to the metabolism. An additional toxicant may have a 

negligible impact when the unit biomass metabolism rate is below the maximum potential 

capacity. As a result, toxicity tests are set up in a way that only one factor (toxicant 

concentration) is controlling and all other factors are not rate-limiting. Consideration should be 

given to gathering and interpreting toxicity data under substrate limiting condition since the IC50 

toxicant is higher under a non-limiting substrate conditions (Speece 2008). 
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Eskicioglu et al. (2011) used BMP assay to study anaerobic biodegradability of whole 

stillage under both mesophilic (35 ± 2 oC) and thermophilic (55 ± 2 oC) conditions. No 

significant lag phase was experienced at the beginning of the experiment under specific organic 

loading of 0.27 – 4.20 g TCOD/g VS but degradation was completed at high organic loading of 

0.051 g TCOD/L - 4.20 g TCOD/g VS. From the thermophilic BMP, higher overall biogas 

production was observed because of the additional biogas from the thermophilic inoculum. Also, 

the study emphasized that BMP assay does reflect the conditions of a full scale anaerobic 

digester and it is a cheaper and effective way of testing methane potential using the Owen et al. 

(1979) method. 

 

2.3.4 ACCLIMATION 

Other researchers (Yang et al. 1979, 1980; Parkin and Speece 1982) have studied and 

reported the response and recovery of methanogens to numerous organic and inorganic toxicants. 

When using toxicity tests for industrial wastewater, the biomass must be allowed adequate 

acclimation time to metabolize the pollutants (Speece 2008). The acclimation of anaerobic 

biomass to toxicants can be realized by first exposing the biomass to low concentrations, before 

ramping up the concentrations to the target range of prototype. This procedure for biomass 

acclimation is developed under favourable conditions with the concentration of biodegradation 

toxicants in the reactor maintained at a lower level than that in the wastewater sample (Speece 

2008). If the toxicants can be degraded into methane after some acclimation period, a decrease in 

initial gas production rate or a lag time period indicates toxicity (Benjamin et al. 1984).  

Biomass has the capability to acclimate to some toxicants, such that the same 

concentration of toxicants can be inhibitory to an un-acclimated biomass causing cessation in 
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metabolic activity while its shows no reduction in metabolic rate for an acclimated biomass. As a 

result, the concentration at first observed negative impact known as the threshold toxicity 

concentration of some toxicants can be increased as much as ten-fold with adequate acclimation 

(Speece 2008).  

 

2.3.5 OTHER FACTORS 

 Other factors that affect anaerobic toxicity assessments include pH and size of particle. A 

low pH due to a lower temperature, results in an increase of Volatile Fatty Acids (VFA) in an 

anaerobic reactor while high pH due to a higher temperature, produces free ammonia which is 

toxic to methanogens (Young and Cowan 2004). Therefore, a buffer is required to maintain 

neutral pH during BMP test (Lesteur et al. 2010). In addition, the size of particles affects kinetics 

and lowers the hydrolysis rate (Lesteur et al. 2010) due to variations in the available specific 

surface area of the substrate. Decreasing the size of substrate particle containing high fiber level 

improves gas production and decreases digestion time (Palmowski and Muller 2000). 

 

2.4 ACUTE AND CHRONIC TOXICITY 

Acute toxicity (EC50 or IC50) expresses the effective concentration that produces a 50% 

decrease in the activity of the microorganisms (biomass) exposed to the toxic substance or 

effluent for 48 hours. Acute toxicity is a result of sudden exposure of un-acclimated biomass to 

high levels of a toxicant because the biomass has not developed enough enzyme systems to 

adjust or adapt to the imposed stress.  
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Chronic toxicity (IC25) tests allow the assessment of more subtle adverse effects like 

reduction in reproduction or growth of biomass exposed to toxic substance or effluent over 48 

hours (Chaparro and Pires 2011). Chronic toxicity occurs as a result of gradual and prolonged 

exposure to toxic substances which give the biomass an opportunity to develop the enzyme 

system (acclimation) to degrade the toxicant. In some situations, biomass may adapt to toxicants 

without degradation. 

Anaerobic toxicity assessments are useful as a screening procedure for preliminary 

assessment of toxicant effect and the determination of acute and chronic toxicity as well as 

biological degradability (Benjamin et al. 1984). The full impacts of toxicity can be muted by the 

dilution of the sample with the inoculum (Young and Cowan 2004). 

Several publications have reported BMP values for a variety of wastewaters from 

different sources. If a toxicant inhibits biomass activity by 50% (IC50 concentration), then the 

biomass needed to treat a given amount of pollutant should be doubled to prevent a progressive 

rise in effluent concentration. All toxicants manifest toxicity relative to their concentrations 

(Speece 2008). IC50 concentration of a variety of organic chemicals to un-acclimated biomass 

was determined by Blum and Speece (1991) and the selected toxicity data from the literature can 

be viewed in Speece (2008).   

In addition, Chen et al. (2003) evaluated the chronic and acute toxicity of sodium to 

methanogens under thermophilic conditions. The biomass was acclimated to increasing sodium 

concentration of 4.1, 7.1, and 10.0 g/L using duplicate anaerobic toxicity assays to evaluate the 

chronic toxicity while un-acclimated biomass was used in a series of batch anaerobic toxicity 

assays to determine the acute toxicity. Methanogens had minimum adaptation time at high 

sodium concentrations and sufficient adaptation time with increasing sodium concentration. 
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Moreover, the batch ATAs simulated acute toxicity and showed a steep decline in the 

methanogenic activity. Even with the decrease in methanogenic activity, the methanogens 

acclimated to the higher concentrations of sodium with time, without deterioration in system 

performance with respect to COD removal and methane production. The acclimated 

methanogens seemed to function well at sodium concentrations lethal (LC50) to microorganisms 

in the batch tests. The effect of chloride during the tests was not mentioned   

From the findings, it was concluded that the acute and chronic toxicity can be caused by 

biodegradable fraction of organic compounds (Chaparro et al. 2010).Therefore, acute and 

chronic toxicity using ATA and BMP assays can be observed or determined from the methane 

production curve at various testing time. 

 

2.4.1 METHANE PRODUCTION CURVE 

Anaerobic respirometers are used to monitor the methane production. The pattern of 

methane production due to the relationship between methane production and kinetics control in 

anaerobic digestion determines the mechanism of toxicity (Young 2006). The biogas/methane 

production curves have various patterns depending on substrate biodegradation and production 

of toxic substances which controls the kinetics of anaerobic digestion.  

The cumulative methane production for the control is plotted as a straight line having a 

slope equal to the rate of daily methane production or hourly methane production expressed as 

mL/g CODadded. If the cumulative methane production curve for the test waste coincides with the 

control curve, then the test waste is biodegradable. If the slope is less than that of control, then 

the relative biodegradability of wastewater is the ratio of the slope of the test waste curve to 
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control substrate curve (Young and Cowan 2004). A decrease in slope indicates the occurrence 

of threshold toxicity caused by constituents in the wastewater.  

Labatut et al. (2011) used BMP assays to determine the bio-methane potential of more 

than 30 substrates. It was determined that the rate and extent of methane production were 

reduced when the required enzyme for a particular substrate’s degradation was present in the 

mixture. The curves aid in identifying anaerobic degradation issues. A steep curve indicated 

easily degradable substrate while a curve with an initial low slope, then an increase in slope 

indicated high inhibition during the first days of BMP test. The inhibition was due to the 

attainment of the biomass homeostatic threshold which altered thermodynamic balance and 

inhibited the metabolic reaction. However, when the thermodynamic conditions changes, it 

means acclimation occurred. To ensure ideal anaerobic conditions and prevent inhibition during 

BMP test, appropriate substrates and biomass combination were used under ideal environmental 

conditions especially substrate and biomass concentrations below inhibitory/toxic levels. 

 

2.4.2 TESTING TIME 

Data collection for anaerobic toxicity test requires precision and accuracy, and significant 

time commitment to measure the biogas or methane production (Gayle et al. 2010). Long 

acclimation time (1-2 months) tests are required to provide a large range of data for the 

estimation of methane production (Labatut et al. 2011). Toxicity tests may be extended for 30 or 

60 days to accommodate acclimation by toxicants or pollutants in some industrial waste water 

due to the lower growth rate of anaerobic microbes. The 30-day BMP is a first cut evaluation of 

the amount of methane produced from the conversion or biodegradation of the pollutant in a 

wastewater sample. An evaluation less than 30 days will not indicate key considerations such as 
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biofilm or granule development, net biomass yield, kinetic coefficients, trace metal 

supplementation requirements, and acclimation characteristics of biomass.  However, assay 

durations less than 30 days can be valuable when considering the suitability of anaerobic 

treatment for a given wastewater (Speece 2008).  Besides, short term ATA and BMP tests are 

needed for preliminary design of anaerobic digesters and measurements of toxicity. Some 

industries monitor toxicity by holding wastewater in a separate vessel (toxicity assays) for 24 

hours to determine the toxicity conditions before it is routed to the microbial treatment process 

(Speece 2008). A 24 or 48 hour routine test is required to measure an acute toxicity. Therefore, 

methods of reducing testing time of anaerobic toxicity assessment are necessary. 

Although the effect of product inhibition on reaction kinetics is difficult to prevent, the 

adequate digestion time allows the stabilization of substrate degradation resulting in maximum 

methane production represented by threshold limit to methane production curve. For instance, 

Sell et al. (2011) performed two sets of BMP tests. The first BMP test provided estimates of 

methane production rate while the second test was performed to extend the range for methane 

production estimate. The testing time for the second BMP test was selected based on the inability 

of the start-up or first BMP test to predict daily methane production rate during the duration (105 

days) of the study. The early methane production rate was above the predicted maximum value 

due to degradation of inoculum remnants. BMP measures the maximum methane production 

volume per gram of Volatile Solid (VS). BMP tests also can identify microbial inhibition, 

overloading and acclimation.  

Past research showed that the initial and cumulative volume of methane production of an 

anaerobic toxicity assessment can be measured hourly (Young et al. 1997; Young 2001; Cho et 

al. 2004) or daily (Lesteur et al. 2010). The initial rate techniques for predicting anaerobic 
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digester operation was studied by Danoso-Bravo et al. (2011). Batch experiments in triplicate 

were run and biogas production was measured manually. The initial specific methane production 

rates were calculated from the batch experiment conducted to assess five substrate 

concentrations. The measurement of the initial methane production rate involved the evaluation 

of substrate depletion and product build-up. The initial slope of the biogas or methane production 

curve is proportional to the biomass concentration while the maximum slope between the biogas 

production and time (Illanes 2008) estimates the initial rate. After three days of operation, the 

cumulative methane production graph showed increasing methane production rate at increasing 

initial substrate concentration and decreasing linear fed/inoculum (F/I) ratio resulting in biomass 

surplus for organic matter degradation at low F/I.  The study concluded that the 3 days test 

duration instead of the normal 20 days made the method easier to implement on a full scale 

operation, even though the loading rate, temperature and inhibition problems could not be 

predicted. An adequate range of linear F/I ratio was determined using different biomass 

concentration in anaerobic batch tests at constant substrate concentration, to achieve a linear 

biogas or methane concentration versus time achieved within a reasonable testing time (Illanes 

2008), allows for proper dilution of the biomass concentration and evaluation of the effect of 

substrate concentration (Danoso-Bravo et al. 2011). 

For hourly methane production rate curves, Pearson et al. (1980) showed the effect of 

time and toxicant concentration under shock loading on anaerobic gasification rate by presenting 

the hourly rates of gas production per unit volume of sludge with peak rate after 4 or 5 days and 

declination after 14 days. The authors conducted batch tests using four toxicants plus a control in 

a 25-sludge bottle setup. The bottles were mixed and one third of the content removed and 

replaced with fresh raw wastewater twice each week at a temperature range of 9oC to 29oC. The 
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gas production rates of the anaerobic test were computed by plotting the hourly gas production 

per unit volume of sludge versus temperature. The graph showed a decrease in gas production 

rate with increasing dose of toxicant. 

The fact that BMP tests are conducted in batches and measure biogas production, makes 

it difficult to relate their results to anaerobic digester that operate in continuous mode (Donoso-

Bravo et al. 2011). Introduction of new wastewater material into a bio-reactor will affect the 

microbial population and decrease the methane yield. Thus, in order to increase the testing time 

for BMP assessment, faster method for analyzing the chemical composition of a waste needs to 

be determined (Lesteur et al. 2010). 

In conclusion, the above review highlighted past research on anaerobic digestion and 

toxicity assessment which includes a detailed description of anaerobic digestion, anaerobic 

toxicity assessment methods (BMP and ATA which are good indicators for assessing toxicity of 

chemicals that might affect anaerobic performance adversely); factors that affects anaerobic 

toxicity assessment; and Acute and Chronic toxicity; methane production curve; and testing time. 

Since accurate sampling and spanning of the testing time are necessary during the anaerobic 

assessment of some industrial waste water, the toxicity test is monitored daily by observing the 

daily cumulative gas production volume and the hourly gas production rate during 24 hours 

(hourly rate). A fact about anaerobic toxicity assessment is that important information required 

for the operation and treatment of toxicity can be overlooked by assays with daily cumulative gas 

production volume and long testing time.   

Also, the correlation of anaerobic toxicity assessment for different testing time can be 

useful in extrapolating literature data or substituting different toxicity test (Blum and Speece 

1991).  Due to the fact that characterizing organic matter (biodegradable and non-biodegradable 
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fraction) and assessing anaerobic toxicity using standard test methods (Owen et al. 1979) is very 

time consuming, more effort should be given to determine the effect of testing time on anaerobic 

toxicity assessments. There are variations in experimental data and results, and no studies 

evaluating the effect of testing time (hourly and daily) on anaerobic toxicity assessments for the 

determination of toxicity and its effects on anaerobic treatment were found in literature. 

 Therefore, the objective of the current study was to show that the reduction in rate of 

biogas production is a better measure of toxic impact than a reduction in daily biogas production 

volume that is a measure of gas production rate is better than gas production volume.  
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3.0 METHODOLOGY 
 

The experimental plan for the current anaerobic toxicity test was divided into two groups; 

ammonium-nitrogen toxicity tests and sodium chloride toxicity tests. Ammonium-nitrogen is a 

common toxic substance while sodium chloride (salts) is occasionally present or introduced in 

municipal and industrial wastewater. Based on the past research and present wastewater 

treatment operation these two products or chemicals were used as test chemicals for this 

research. These tests were designed to demonstrate whether ammonium-nitrogen had an impact 

on the biological degradation process, evaluate the effect of solid retention time on ammonium-

nitrogen toxicity, and the impact of sodium chloride on gas production rate. Tests were 

conducted using bench-scale anaerobic test reactors for dosing the toxicants and anaerobic 

respirometers were used to measure gas production volume and rate. 

 

3.1 ANAEROBIC TEST 

The anaerobic test apparatus consisted of eight 500 ml serum bottles each containing 40 

mL of anaerobic seed culture at 2,500mg/L VSS suspended in a 400 mL Nutrient/Mineral/Buffer 

solution (NMB). The seed culture was obtained from an industrial anaerobic reactor or digester.  

The anaerobic test was set up as described in Appendix A. The NMB solution was prepared by 

adding 20 mL Min I, Min II and Nutrient solutions from Appendix B and 6 g of NaHCO3 per 

liter of distilled water. Feedstock organic solutions were prepared as described in Appendix B. 

Both acetate and ethanol were used as substrates for the tests. All feedstock solutions were 

prepared fresh before each test series and refrigerated to prevent deterioration during the testing. 

The test bottles where then placed on an eight-position variable speed magnetic stirrer 

and mixed at approximately 250 rpm to distribute the feed wastewater, chemical additives, and 
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biomass evenly throughout the reactor. The bottles were capped with a septum and connected to 

a Challenge Environmental Systems bubble cell respirometer. A 20 mL syringe containing 

potassium hydroxide (KOH) pellets and anhydrous calcium sulfate was used to remove carbon 

dioxide and water vapor from the gas before the flow was measured. The respirometer was 

configured to measure and record the gas production of each individual reactor. 

The reactors were fed acetate feedstock for several days to stabilize each culture and 

verify acceptable gas production. After stabilization, the pH of the mixed liquor was checked.  If 

the pH was 0.5 below or above 7.0, it was adjusted to 7.0 by adding 2 - 10 mL of potassium 

hydroxide (KOH) or hydrochloric acid (HCl) respectively.  The test temperature was 35oC. 

During each test run the mixed liquor in the bottles was sampled weekly using a syringe. 

These samples were tested for total and volatile suspended solids (TSS and VSS), soluble COD 

(sCOD), pH, (NH3 + NH4
+), and the values were recorded. The TSS and VSS tests were 

conducted according to the methods described in Standard Methods (American Public Health 

Association, American Water Works Association, Water Environment Federation, 1995). The 

sCOD and (NH3 + NH4
+) tests were conducted using HACH test kits (HACH Company) and the 

pH was measured using a calibrated electronic pH meter (Accumet AB15 Fisher Scientific). 

  

3.1.1 AMMONIUM-NITROGEN TOXICITY TEST AT VARIED CONCENTRATION 

The objective of this test series was to determine the impact of ammonium-nitrogen on 

anaerobic degradation. For the ammonium-nitrogen toxicity test, 6 mL of stabilization acetic acid 

was fed daily to each reactor as a biodegradable substrate for 2 to 3 days to give a COD dose of 

2,400 mg/L/day.  Following stabilization, the reactors where switched to the test feed (see 

Appendix C.1 for composition) and ammonium-nitrogen dosing schedule (Table 1). Acetate 
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feedstock (without base) was added as an organic substrate and ammonium-nitrogen feedstock 

was added at different volumes to respective test bottles. 

Then, ammonium-nitrogen feedstock was fed daily for seven days to the respective test 

reactors at 0 (Control), 2, 5, 15, 20 and 25 mg/L/day to give a 200, 500, 1500, 2000 and 2500 mg 

N/L. In this manner, the cumulative dose of ammonium-nitrogen increased with time of 

operation. 

 

Table 1: Ammonia-Nitrogen toxicity test feeding and dosage schedule at varied 
concentration. 

 
Reactor 

 
Feed 

 
Toxicants 

1,2 6 mL acetic acid feedstock None 

3 6 mL acetic acid feedstock 2 mL NH4-N feedstock 

4 6 mL acetic acid feedstock 5 mL NH4-N feedstock 

5 6 mL acetic acid feedstock 15 mL NH4-N feedstock 

6 6 mL acetic acid feedstock 20 mL NH4-N feedstock 

7 6 mL acetic acid feedstock 25 mL NH4-N feedstock 

 

 

3.1.2 AMMONIUM-NITROGEN TOXICITY TEST AT VARIED SOLID RETENTION 

TIME 

Following the initial setup of the ammonium-nitrogen test, the bottles were cleaned and 

the test was setup and run again using a different procedure for the ammonium-nitrogen toxicity 

test with variable solids retention time (Table 2). The different solid retention times were 
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achieved and controlled daily by adding the same defined amount of ammonium-nitrogen to the 

reactors after removing a defined amount of the mixed liquor. 

 For the first 3 days, acetic acid feed stock without base was added to the test bottles for 

stabilization of the culture. Following stabilization, the reactors were switched to the test feed 

(see Appendix C.2 for composition) and ammonium-nitrogen dosing schedule (Table 2).  An 

acetate control feed stock of pH 4.1 was added to the control reactors while ammonium acetate 

feedstock at pH 4.0 was added at different volumes to respective test chemicals rectors. To 

maintain different solids retention time, 25 mL, 17 ml, 11 mL of mixed liquor was wasted daily 

from respective bottles by using a syringe. An acetic acid-based feedstock having a COD of 

10,000  mg/L was then fed at a rate of 25, 17, and 11 mL/day to give respective doses of 500, 

340 and 220 mg (250, 170, and 110 mg COD/day). 

 
Table 2: Ammonia-Nitrogen toxicity test feeding and dosage schedule at varied Solid 

Retention Time. 

Reactor Waste SRT (days) Toxicants 

1,2 25 mL 20 25 mL acetate feedstock 

3,4 25 mL 20 25 mL ammonium acetate feedstock 

5,6 17 mL 30 17 mL ammonium acetate feedstock 

7,8 11 mL 45 11 mL  ammonium acetate feedstock 

 

The bottles were stabilized for 2 to 3 days prior to testing using an acetate feedstock. 

Then, acetate feedstock was added to the control reactors while ammonium acetate feedstock 

was added at different volumes to respective test bottles. The mixed liquor in these bottles was 

also tested weekly and VSS, TSS, sCOD, pH, and (NH3 + NH4
+-N) were measured and recorded. 
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3.1.3 SODIUM CHLORIDE TOXICITY TEST 

The objective of this test series was to evaluate the impact of sodium chloride on gas 

production rate. The setup was similar to the ammonium-nitrogen toxicity test but with different 

feedstock. For this test, ethanol was used as substrate.  For the first 3 days, 6 mL (1200 mg 

COD) of the ethanol feedstock containing 200,000 mg COD/L was added to the test bottles for 

stabilization of the culture. Following stabilization, the reactors where switched to the test feed 

(see Appendix C.3 for composition) and sodium chloride dosing schedule (Table 3). 6 ml of 

ethanol feed stock was added to the reactors daily. Also, two different doses of sodium chloride 

containing 200g and 1,500 g COD/L were added to the reactors. The daily cumulative sodium 

chloride dose added to reactor 1, 2, 3, 4, 5, 6, 7 and 8  are 0, 6400, 9800, 13200, 16600, 20000, 

23400 and 28800 mg/L NaCl respectively (Table 3).  

 

Table 3: Sodium Chloride toxicity test feeding and dosage schedule at varied concentration. 

Reactor Feed 
(Ethanol 

Feedstock) 

Toxicants 
First Dose 

(Sodium chloride 
feedstock I) 

Second Dose 
(Sodium chloride 

feedstock II) 

Cumulative sodium  
concentration 

per day 

1 6 mL 0 mL 0 mL 0 mg/L 

2 6 mL 1 mL 2 mL 6,400 mg/L 

3 6 mL 2 mL 3 mL 9,800 mg/L 

4 6 mL 3 mL 4 mL 13,200 mg/L 

5 6 mL 4 mL 5 mL 6,600 mg/L 

6 6 mL 5 mL 6 mL 20,000 mg/L 

7 6 mL 6 mL 7 mL 23,400 mg/L 

8 6 mL 11 mL 8 mL 28,800 mg/L 
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The feedstock was refrigerated to prevent degradation of the compound during the test program, 

after culture was stabilized, the pH was checked and if below 6.5, the pH of the feedstock was 

readjusted to 6.5. The mixed liquor in these bottles was also tested weekly and VSS, TSS, sCOD, 

pH, and (NH3+ NH4
+-N) were measured and recorded. 
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4.0 RESULTS 
 

After conducting the three sets of anaerobic toxicity tests, the experimental data were 

downloaded from the computer system connected to the anaerobic respirometer system and 

analyzed with Microsoft Excel.  The measured values of gas production in mL gas/g COD versus 

time (days), hourly gas production rate in mL/hour versus time,  gas production as a percent of 

control versus time, and the gas production rate versus  cumulative dose of toxicants were plotted 

using line graphs and interpreted for each toxicity test. 

 

4.1 AMMONIUM–NITROGEN TOXICITY TEST WITH VARIABLE 

CONCENTRATIONS 

The first set of toxicity tests was conducted to determine the impact of ammonia-nitrogen on 

anaerobic degradation and to determine the concentration at which ammonium-nitrogen toxicity 

was observed.  The reactors were first stabilized by feeding 6 mL of acetic acid feedstock fed 

daily for 3 days at a dose of 2,400 mg COD/L/ day plus sufficient ammonium-nitrogen feedstock 

to give concentrations of 200, 500, 1,000, 1,500, 2,000 and 2,500 mg N/L/day, respectively.    

The data were analyzed and plotted as gas production volumes in milliliters per gram 

COD applied as shown in Figure 2. Initially, the cumulative gas production volumes for the 

reactors receiving ammonium-nitrogen coincided with that of the control reactor at values 

between 500 and 600 mL/g COD. Starting on day 4, the reactors receiving the 2,000 and 2,500 

mg/L NH4-N feedstock began to show a decrease in gas production rates – as indicated by the 

reduced slope of the gas production curves – but only around 15% reduction in daily volumes 

(Figure 2).  
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Figure 2: Daily gas production volumes at varied ammonium-nitrogen concentration. 

 

Figure 3 shows the hourly gas production rates for the test reactors. Initially, hourly rate 

of gas production coincided with that for the control reactor.  Rates began to decrease 

dramatically after the fourth day in reactors receiving the highest ammonium-N dose rates.  
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Figure 3: Hourly gas production rates at varied ammonium-nitrogen concentration. 

 

The cumulative gas production volumes for the reactors as a percentage of the control are 

shown in Figure 4. This graph shows that the gas production volumes for reactors receiving NH4-

N decreased with time relative to that for the control reactor. Percentage of gas produced relative 

to that of the control for reactors receiving the 200, 500, 1,500, 2,000 and 2,500 mg/L NH4-N 

daily doses were about 101, 98, 94, 91 and 87% respectively on day 1 which decreased to 85, 77, 

54, 51 and 23% after 7 days. 
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Figure 4: Cumulative gas production volumes expressed as a percentage of that for the 

control reactor at varied ammonium-nitrogen concentration. 

 

However, the maximum hourly gas production rates for the reactors receiving NH4-N 

decreased with time relative to that for the control reactor (Figure 5).  

Percentage of gas produced relative to that of the control for reactors receiving the 200, 

500, 1,500, 2,000 and 2,500 mg/L NH4-N daily doses were about 101, 93, 89, 87 and 86% 

respectively on day which decreased to 78, 76, 45, 27 and 18 % after 7 days. 
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Figure 5: Maximum hourly gas production rates expressed as a percentage of that for the 

control reactor at varied ammonium-nitrogen concentration. 

  

Figure 6 shows the cumulative gas production volumes versus cumulative ammonium-

nitrogen dose. The gas production volumes relative to the control decreased with increasing 

cumulative ammonium-nitrogen concentration. 
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Figure 6: Gas production volumes expressed as a percentage of that for the control reactor 

at varied ammonium-nitrogen concentration. 

 

Figure 7 shows that maximum gas production rates relative to the control decreased with 

increasing cumulative ammonium-nitrogen concentration. The fact that the relationship between 

gas production rates and cumulative ammonium-nitrogen addition was the same for all dose rates 

indicates that the microorganisms did not acclimate to the ammonium-N regardless of the dose 

rate.  
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Figure 7: Maximum gas production rates expressed as a percentage of that for the control 

reactor at varied ammonium-nitrogen concentration. 

 

Comparing the graphs of the daily gas production volumes (Figure 6) with hourly gas 

production rates (Figure 7) from the ammonia toxicity tests with varied NH4-N concentration 

showed that the hourly rate of gas production decreased before the daily gas production volume 

decreased. Therefore, the hourly gas production rate graphs were adversely impacted 

significantly before a reduction in the daily gas production volume. 
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4.2 AMMONIUM–NITROGEN TOXICITY TEST WITH VARIABLE SOLID 

RETENTION TIME 

A second set of anaerobic tests was conducted to determine the impact of Ammonium-

nitrogen on biodegradation at different Solid Retention Time (SRT). The test setup was similar 

to the first ammonia toxicity test. In this case, 6 mL of acetic acid feedstock was added to the test 

bottles for 3 days at a dose rate of 2,400 mg/L/day for stabilization. Then 25 mL of the contents 

of the control reactor and 25, 17 ml, 11 mL of the contents of respective test reactors were 

removed daily and replaced with equal volumes of fresh acetate feedstock at 20,000 mg COD/L. 

The test reactors were also dosed with 500, 340 and 220 mg/L NH3-N/day to the 20-d, 30-d and 

45-d SRT reactors, respectively.   

 

 

Figure 8: Daily gas production volumes for the ammonium-nitrogen toxicity test at 

different SRT. 
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Figure 8 shows the daily gas production volumes at solid retention times of 20, 30 and 45 days. 

The maximum gas production volumes were between 500 and 600 mL/g COD. There were no 

significant changes in gas production volumes for the test reactors relative to that for the control. 

 Figure 9 shows the hourly gas production rates during the test. The rates decreased with 

increasing time for each reactor. The maximum gas production rate was about 230 ml gas/ hour 

at 45 days-SRT with a 50% decrease by the end of the test. 

 

 

Figure 9: Hourly gas production rates during ammonium-nitrogen test at different SRT. 
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(Figure 10). The maximum hourly gas production volumes of the 20, 30 and 45 days-SRT 

reactors were above the control values which do not indicate toxicity.  

 

 

Figure 10: Cumulative gas production volumes expressed as a percentage of that for the 
control reactor at different SRT. 

 

The maximum hourly gas production rates for the test reactors, expressed as a percentage 

of that for the control reactor however decreased with increasing testing time (Figure 11). Also, 

the percentage gas production rate decreased with decreasing solids retention time. The 

maximum hourly gas production rates of the 20 day-SRT reactors were below that of the control 

while the rates of the 45 day-SRT reactors were above the control respectively.  Initially, the 
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maximum hourly gas production rates of the 30 day-SRT reactors were above the control values 

but eventually decrease below the control values.  

 

 

Figure 11: Maximum hourly gas production rates expressed as a percentage of that for the 

control reactor at different SRT. 

 
Daily gas production volumes versus cumulative ammonium-nitrogen are shown in 

Figure 12.  The percentage gas production volumes for the 20 day-SRT reactors were above that 

of the control while the 30 and 45 day-SRT reactors were below that of the control which 

contradicts past research that gas production increases with increasing SRT.  However, in all 

cases, the gas production as a percentage of the control decreased with increasing cumulative 

ammonium-nitrogen indicating only slight toxicity. 
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Figure 12:  Gas production volumes expressed as a percentage of that for the control 

reactor at different SRT. 

 
Figure 13 shows gas production rates for the test reactors expressed as a percentage of 

that for the control reactors versus cumulative ammonium-nitrogen concentrations. These data 

show a gradual decrease, followed by a rise in the gas production rates with time and increasing 

ammonium-nitrogen concentration. The observed reduction in relative gas production rate 

starting around 1000 mg/L ammonium-nitrogen inhibition by ammonium-nitrogen and the 

increasing values starting around 2,500 mg/L cumulative ammonium-N suggests recovery from 

toxic impact.   
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Figure 13:  Maximum gas production rates expressed as a percentage of that for the 

control reactor at different SRT. 

 
Comparing the gas production volumes graphs with the gas production rates graphs for 

the ammonia toxicity test at different SRT showed that the hourly gas production rates showed a 

decrease before the daily volume showed a decrease.   
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4.3 SODIUM CHLORIDE TOXICITY TEST 

The third set of tests was conducted to determine the impact of sodium chloride on 

anaerobic degradation.  For this test, 6 mL (400 g COD/L) of ethanol feedstock was added to the 

test bottles for 3 days to allow stabilization of the culture. After the third day, 6 ml of ethanol 

feed stock  as well as 0, 6,400, 9800, 13,200, 16,600, 20,000, 23,400 and 28,800 mg/L of sodium 

chloride feedstock I and/or II were added  to reactor 1, 2, 3, 4, 5, 6, 7 and 8 respectively.  

Methane production when using ethanol as an organic substrate has two stages of 

reaction. The first stage is the related to acetate and hydrogen conversion while the second stage 

is related to acetate only conversion. The two reactions are due to the manner in which ethanol is 

degraded by anaerobic microorganisms. Ethanol reacts through fermentation to produce acetate 

and hydrogen gas. The acetate and hydrogen are converted to methane by different anaerobic 

microorganisms.  

 

 

         

After the test, the data were analyzed and the results were plotted as presented in Figures 

14 and 15. Figure 14 shows daily gas production volumes versus time.  The initial daily gas 

production volumes were similar for all reactors for the first two days.  Starting on day 3, the gas 

production rate, as indicated by the slope of the methane production curves, gradually decreased 

with increasing dose of sodium chloride. However, the daily gas production volumes remained 

essentially constant through day 6.   

 

 

C2H5OH     +       H2O CH3COO +    H +    2H2 (4.1)
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Figure 14:  Daily gas production volumes at varied sodium chloride concentration. 

 

Figure 15 shows the hourly gas production rates for the reactors. For the two conversion 

stages, the impact of sodium chloride on biodegradation could be observed from the initial and 

hourly gas production rate.  In this case, the hourly rates for both the acetate only and acetate 

plus hydrogen conversion reactions began to decrease dramatically on the third dose.  
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Figure 15: Hourly gas production rates at varied sodium chloride concentration. 

 

The gas production rates dropped by 50% as the daily dose of sodium chloride increased 

from 0 to 28,800 mg/L. Also, the hourly gas production rate was higher during the acetate 

hydrogen conversion stage than the acetate only conversion stage.   

In addition, the cumulative gas production volumes expressed as a percentage of that for 

the control reactor (Figure 16) indicated that the percentage volume of gas produced increased 

from that for the control reactor as time progressed. This rise in the percentage production rate 

indicates little or no toxicity with increasing sodium chloride dose. 
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Figure 16: Cumulative gas production volumes expressed as a percentage of that for the 
control reactor at varied sodium chloride concentration. 

 

However, the maximum hourly gas production rates expressed as a percentage of that for 

the control reactor indicated that the rate of gas production reactors receiving sodium chloride 

decreased from that for the control reactor as time progressed (Figure 17 and 18).  This drop in 

the percentage production rate indicates increasing toxicity with increasing sodium chloride 

dose. Initially, the gas production rates for the test reactors were above the control but dropped 

below that of the control after 2 days. The initial increase is due to phenomena known as 

simulation. During this period, the biomass growth and activity increases with increasing test 

chemicals concentration until a threshold level is reached. At this level, the test chemicals 

become toxic to the biomass and inhibit the treatment process. The percentage gas rates showed 

the same threshold toxicity regardless of the dose rate excluding 6,400 mg/L. 
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Figure 17: Maximum hourly gas production rates expressed as a percentage of that for the 
control reactor at varied sodium chloride concentration (Acetate Conversion). 

 

 

Figure 18: Maximum hourly gas production rates expressed as a percentage of that for the 
control reactor at varied sodium chloride concentration (Acetate + Hydrogen Conversion). 
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For practical purposes, sodium chloride had similar effect on the gas production rates with time 

during the acetate only conversion and acetate plus hydrogen conversion stages. 

Figure 19 shows that the cumulative gas production volumes as a percentage of control 

increased with increasing dose of sodium chloride. An increase in cumulative gas production 

volume was observed with increasing cumulative sodium chloride and dose rate. The gas 

production volumes were greater than 100% of the control excluding that of the 6,400 mg/l 

reactor which drops below the control which implies that one or more constituent of the sodium 

chloride formulation stimulated the growth of gas forming microorganisms. 

 

 

Figure 19: Gas production volumes expressed as a percentage of that for the control 
reactor at varied sodium chloride concentration. 

0%

20%

40%

60%

80%

100%

120%

0 40000 80000 120000

G
A

S 
PR

O
D

U
C

T
IO

N
 V

O
L

U
M

E
, 

 %
 o

f c
on

tr
ol

 

CUMULATIVE SODIUM CHLORIDE, mg/L 

6,400 mg/L-d 9,800 mg/L-d 13,200 mg/L-d
16,600 mg/L-d 20,000 mg/L-d 23,400 mg/L-d
28,800 mg/L-d



 

47 
 

 

The hourly gas production rates expressed as a percentage of that for the control reactor 

initially increased with increasing dose of sodium chloride (Figure 20 and 21). A reduction in 

hourly gas production rate was observed in all reactors after various cumulative sodium chloride 

doses.   This observation implies that the sodium chloride stimulated the growth of gas forming 

microorganisms before the threshold toxic level was reached. From Figure 20 and 21, the sodium 

chloride had similar effect on the gas production rates relative to that of control as the cumulative 

sodium chloride in the test bottles increased during the acetate only conversion and acetate plus 

hydrogen conversion stages.  

 

 

Figure 20: Maximum gas production rates expressed as a percentage of that for the control 
reactor at varied sodium chloride concentration (Acetate Conversion). 
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Figure 21: Maximum gas production rates expressed as a percentage of that for the control 
reactor at varied sodium chloride concentration (Acetate + Hydrogen Conversion). 

 

Finally, gas production volumes versus gas production rates for the sodium chloride test 

showed different effects at varied dosing rates. The gas production volume showed little or no 

toxicity while the gas production rates showed increasing toxicity with increasing cumulative 

concentrations.  
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5.0 DISCUSSION OF RESULTS 
 

The current toxicity tests have provided valuable insight into the impact of ammonium-

nitrogen and sodium chloride toxicity on anaerobic biodegradation as well as the impact of solids 

retention time on ammonium-nitrogen toxicity. The relationship between ammonium-nitrogen 

toxicity at varied concentration and SRT; and the inhibitory impact of sodium chloride on 

biodegradation has not been demonstrated previously in literature or previous research. The 

results of these research experiments help to explain the effect of the ammonium-nitrogen and 

sodium chloride at various loading rates on anaerobic biodegradation; show the effect solids 

retention time on ammonium-nitrogen toxicity; and the relationship between the hourly rate and 

daily volume of gas production for the tests.   

For the ammonium-nitrogen toxicity test at varied concentration, the impact of the 

ammonium-nitrogen at varied concentration on biodegradation was more evident in the hourly 

gas production rate measurements than in the daily gas production volumes.  In all cases, the 

hourly gas production rates showed a significant decrease with increasing ammonium-nitrogen 

concentration and time before the daily gas production volume decreased. Also, the decrease in 

hourly gas production rate was more significant compared to the daily cumulative production 

volume when a threshold toxic dose was achieved (Figure 2 and 3). This process was observed to 

be in proportion to the ammonium-nitrogen feed rate.  

In addition, the ammonium-nitrogen toxicity test at varied solid retention times showed 

that the longer the SRT, the higher the gas production rates. The cumulative gas production 

volumes for the reactors after 24 hours were almost the same but hourly gas production rates 

during the 24 hours showed a significant decrease with increasing solids retention time and 

testing time. The daily gas production volumes showed little or no toxicity while the hourly gas 
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production rates showed a reduction due to toxicity. The observed reduction in gas production 

rates in the different SRT reactors compared to the control reactor may be due to the increase in 

the inhibitory effect of ammonium-nitrogen on the biomass at the threshold level or stimulated 

the growth of gas forming microorganisms before the toxic threshold was reached.  In this case, a 

solids retention time below 30 days caused a measureable decline in gas production volumes 

after only seven days of feeding. Comparing gas production volumes to gas production rates at 

different SRTs revealed that the hourly gas production rates decreased at lower ammonium-

nitrogen concentrations than daily volumes. 

Similar to the ammonium-nitrogen toxicity test, the sodium chloride toxicity test showed 

significant decreases in hourly gas production rates during 24-hrs feed cycles as compared to the 

daily cumulative gas production volumes. Since the hydrogenotrophic and acetoclastic 

methanogenesis occur simultaneously, the presence of hydrogen gas doubled the gas production 

rate during the early stages of the reaction. A comparison of the volumes and rates as a 

percentage of the control reactor showed relatively stable daily gas production volumes but 

decreasing hourly gas production rates with increasing testing time and cumulative sodium 

chloride concentration. Therefore, gas production rates show toxic impacts well before they are 

seen in the daily gas production volumes. 

In as much as these anaerobic toxicity tests have provided useful information and 

relationships between ammonium-nitrogen concentration and loading rate, ammonium-nitrogen 

toxicity and SRT, as well as sodium chloride concentration and loading rate on anaerobic 

treatment process performance, environmental engineers may use this information to support the 

design and operation of anaerobic wastewater treatment plants that are potentially impacted by 



 

51 
 

these toxicants. Also, wastewater plant operators should consider longer SRT for waste water 

with high ammonia content and use gas production rates curves to determine toxicity quicker. 

The ammonium-nitrogen and sodium chloride toxicity tests were beneficial in measuring 

the gas production at short intervals (using a respirometer). The impact of these toxicants on gas 

production or COD conversion by biomass was more evident in the hourly production rates 

curve during 24 hours than in the cumulative production volumes curve after every 24 hours. An 

area for possible future research lies in determining the impact of different concentration of 

compounds like sodium chloride at different SRT and the impact of feed schedule and dosing 

rate on process configuration. 
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6.0 CONCLUSIONS 
 
The test program described in this report yielded the following conclusions: 

1. Ammonium-nitrogen toxicity test proved that the levels of ammonium-nitrogen loading 

that could be sustained indefinitely were relatively high (below 1500mg N/L). At a 

dosing rate equal or greater than 1,500 mg/L-d, ammonium–nitrogen would cause a 

measureable and sustained decrease in gas production rate with a resulting increase in 

soluble COD after only three days of feeding. In addition, the gas production rates as a 

percentage of control showed significant decrease relative to that control before the gas 

production volumes. 

2. The ammonium-nitrogen toxicity test at varied solid retention times showed the daily 

cumulative gas production volumes were the same at all solids retention time. However, 

the hourly gas production rate increased with increasing SRT and decreased with 

increasing time. 

3. Gas production rates expressed as a percentage of a control versus the cumulative 

ammonium-nitrogen concentration showed that the microorganisms acclimated to the 

ammonium–nitrogen at cumulative ammonium-nitrogen concentration of about 1200, 

1300, 1000 mg/L at 20, 30 and 45 days-SRT respectively.  

4. Sodium chloride exhibited a significant dose rate–cumulative concentration impact by 

day 3 at a concentration greater than 13,200 mg/L.  The culture seemed to be adversely 

affected more by cumulative concentration when operating at higher dose rates.   

5. From the three test series, toxicity was seen in hourly gas production rates at substantially 

lower cumulative toxicant concentrations than were seen in daily gas production 

volumes.   
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APPENDIX A: ANAEROBIC TEST SETUP 
 

1. Clean the test bottles and relate parts using conventional laboratory cleaners (such as 

AlconoxTM). Rinse thoroughly. (Note: Use of dichromate cleaning solution is not 

recommended). 

2. Insert a TelfonTM-coated magnetic stirring bar in each bottle (35-mm magnets seem to work 

best for bottle sizes ranging from 250 to 500 mL). 

3. Flush each bottle using nitrogen gas, a mixture of nitrogen-CO2, or methane-CO2, 

depending on test objectives. 

4. Transfer test culture from an anaerobic digester or laboratory-scale reactor to each test 

vessel using anoxic conditions to prevent oxygen contact with the test culture. (Note: The 

culture volume ideally should represent 75 to 80 percent of the reactor volume to minimize 

the effect of pressure and temperature variations). 

5. Place the screw cap with inserts butyl rubber septum on each test bottle. Tighten snugly to 

seal. (Note: To minimize the chance of leaks, use a new septum for each test). 

6. Add desired nutrients and/or synthetic substrates through the septum using a syringe. 

7. Place test bottles on the MS8-300 magnetic stirring base in a constant temperature room, 

incubator chamber, or water bath (35 mm stir bars have been frond to work best when using 

250 and 500 mL serum bottles). Adjust the stirring rate to provide good mixing action. 

(Note: The temperature of the test culture should be within +1oC of the test temperature 

before beginning the test). 

8. Vent the test bottles by briefly inserting a clean 20”-gage needle through the septum. This 

venting prevents blowing cell fluid from the cell due to gas buildup in the bottle during set 

up. 
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9. Insert the control needle attached to the tubing connected to a flow measuring cell into the 

septum of the test bottle. The needle should be inserted through the outer edge of the septum 

(between the edge of the cap and the thin ring on the septum) and at an angle of about 60 

degrees (from horizontal) to reduce needle strain on the septum. Be sure that water is 

removed from all tubing. Also, 20”-gage needles must be used for all tests. Otherwise, the 

calibration and stability of the system may be affected. For most dependable results, use a 

new needle for each test. 

10. Reset the cell counters and timers from the Control Screen and initiate data acquisition by 

clicking on the Start button. 

The Challenge AER-200 Respirometer manual (Unpublished) 
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APPENDIX B: ANAEROBIC EXPERIMENTAL FEEDSTOCKS 
 
This section contains the composition of all of the feeds and additives used in the anaerobic tests. 

 

B.1 20,000 mg/ L COD ACETIC ACID STABILIZATION FEEDSTOCK 

Preparing acetic acid stabilization feedstock, 95 mL of glacial acetic acid is added to 250 mL 

distilled water. KOH of 30% concentration is used to neutralize the mixture to a pH of 5.5.  The 

volume is made up to 500 mL with distilled water to achieve a COD of 200 mg for the acetic 

acid.  

 

B.2 20,000 mg/ L COD ACETIC ACID STABILIZATION FEEDSTOCK  
(Without base) 

For the acetate Control feedstock, 95 mL glacial acetic acid was added to 2500 mL distilled 

water and then the volume was made up to 500mL without neutralizing to achieve a 200 mg 

COD/mL acetic acid.  

 

B.3  20,000 mg/L COD ACETATE CONTROL FEEDSTOCK 

For the acetate Control feedstock, 18 mL glacial acetic acid was added to 500 mL NMB (Mineral 

I, Mineral II, and Nutrient solution described in Appendix A.3, A.4, and A.6) solution.  Then, 

3.5g KOH (Fisher Scientific) pellets was slowly added and mixed to give 3,000 mg/L alkalinity.  

Volume is made up to 1,000 mL using distilled water to achieve mixture COD of 20,000 mg/L. 
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 B.4 200,000 mg/L COD AMMONIUM-NITROGEN FEEDSTOCK 

 
 This feedstock was prepared by adding 96g of ammonium chloride to 300mL distilled water. 

Then, KOH of 30% concentration is added to neutralize and raise the mixture to a pH of 7.0 the 

volume is made up to 500ml with distilled water without overheating. This solution will contain 

50 mg NH4-N/mL.   

 

B.5 20,000 mg/L COD AMMONIUM ACETATE ACID FEEDSTOCK 

20 g of ammonium chloride (NH4Cl) is added to 500 mL distilled water. 18 mL glacial acetic 

acid is slowly added to this solution. Next, 3.5 g KOH pellets was added slowly while mixing to 

give 3,000 mg/L alkalinity.   The volume is made up to 1,000 mL using distilled water to achieve 

a COD of 20,000 mg.  The pH of the solution is checked and recorded 

 

B.6 20,000 mg/L COD AMMONIUM ACETATE FEEDSTOCK 

17.5 g of CH3CO2NH4 (ammonium acetate) was added to 500 mL distilled water. Then, 18 mL 

glacial acetic acid is added slowly to the mixture. The volume is made up to 1,000 mL using 

distilled water to achieve a COD of 20,000 mg COD/L. The pH of the solution is checked and 

recorded. 

 

B.7 400,000 mg/L COD ETHANOL STABILIZATION FEEDSTOCK 

244mL of ethanol was added to 500 mL NMB. The volume is made up to 1,000 mL using 

distilled water to achieve a COD of 400,000 mg COD/L. The pH of the solution is checked and 

recorded. 
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B.8 200,000 mg/L COD SODIUM CHLORIDE FEEDSTOCK I 

200g of NaCl (sodium chloride) was added to 500 mL distilled water. The volume is made up to 

1,000 mL using distilled water to achieve a COD of 200,000 mg COD/L. The pH of the solution 

is checked and recorded. 

 

B.9 1,500,000 mg/L COD SODIUM CHLORIDE FEEDSTOCK II 

150g of NaCl (sodium chloride) was added to 100 mL distilled water. The volume is made up to 

1,000 mL using distilled water to achieve a COD of 1,500,000 mg COD/L. The pH of the 

solution is checked and recorded 

 

B.10 NUTRIENT/MINERAL/BUFFER (NMB) SOLUTIONS FOR ANAEROBIC 
TREATBILITY TESTING 

The NMB water is a mixture of mineral base I, mineral base II, nutrient base and buffer base to  

 

B.10.1 MINERAL BASE I  

The following compounds was added to 800 mL of reagent quality water and then diluted to 1.0 L. 

(Note: Most of these minerals already may be present in municipal wastewater. This mixture may 

form a light precipitate and should be agitated vigorously before transferring)  

CoCl2 •6H2O  0.25 g    (0.062 mg Co/mL)  

Na2MoO4•2H2O  0.005     g   (0.0020 mg Mo/mL) 

FeCl2 •4H2O   4.0        g     (1.126 mg Fe/mL) 

NiCl2•6H2O   0.025     g   (0.0062 mg Ni/mL) 

MnCl2•4H2O  0.05        g    (0.0139 mg Mn/mL)  
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Na2SeO4      0.025      g   (0.0104 mg Se/mL) 

H3BO3    0.025      g    (0.0044 mg B/mL)  

CuCl2 •2H2O  0.007      g   (0.0026 mg Cu/mL) 

ZnCl2    0.02        g    (0.0119 mg Zn/mL) 

 

B.10.2 MINERAL BASE II 

The following compounds was dissolved in 800 mL of distilled water and then diluted to 1.0 L 

(Note:  Most of these minerals already may be present in municipal wastewaters). 

 CaCl2   15       g  (5.4 mg Ca/mL) 

 MgCl2•6H2O  20       g (2.36 mg Mg/mL) 

 

B.10.3 NUTRIENT BASE  

The following compounds was dissolved in 800 mL of distilled water, neutralized to pH 7 using 

50% NaOH and then diluted to 1.0 L. 

(Note:  Sufficient nitrogen and sulfate may be present in municipal wastewater)  

 NH4Cl  53      g  (13.9 mg N/mL) 

 KH2PO4 50      g (11.4 mg P/mL) 

 Na2SO4  30      g   (6.76 mg S/mL) 

 

B.10.4 BUFFER BASE  

The following compound was dissolved in 800 mL of distilled water and then diluted to 1.0 L 

 NaHCO3   60     g 
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B.10.5 NMB WATER 

The following solutions should be added to 800 mL of reagent grade water and then diluted to 1 L. 

Mineral I Solution  20mL/L 

Mineral II Solution  20mL/L 

Nutrient Solution  20mL/L 

NaHCO3  4 g/L 
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APPENDIX C: TEST PLANS 
 
This section contains the test plans for each of the tests run during this experiment. 
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APPENDIX C.1: AMMONIUM-NITROGEN TOXICITY TEST AT VARIED 

CONCENTRATION 

1. Obtain a 2-L sample of active mixed liquor from an operating anaerobic treatment plant, 

either full-scale or lab-scale. Measure sCOD, TSS, VSS, sNH3-N, sP, tP, total TKN. 

2. Prepare ammonium-nitrogen feedstock by adding 96 g NH4Cl to 300 mL distilled water.  

This material may not dissolve until neutralization. Use 30% KOH to raise the pH to 7.0.   

Make up the volume to 1000 mL using distilled water. Watch the temperature to make sure it 

does not overheat.  This solution contains 50 mg NH4-N/mL. 

3. Prepare nutrient/mineral/buffer (NMB) water by adding 20 mL Min I, Min II and Nutrient 

solutions from Appendix A and 4 g NaHCO3 per liter of distilled water.    

4. Prepare acetic acid stabilization feedstock:  Add 95 mL glacial acetic acid to 250 mL distilled 

water.  Neutralized to pH = 5.5 using 30% KOH. Make volume to 500 mL using distilled 

water (= 200 mg COD/mL acetic acid). 

5. Prepare acetic acid test feedstock: Add 95 mL glacial acetic acid to 250 mL distilled water.  

Do not neutralize. Make volume to 500 mL using distilled water (= 200 mg COD/mL acetic 

acid). 

6. Anaerobic toxicity tests 

A. Set up 8, 700 mL serum bottles with 500 mL culture volume to give 5,000 mg VSS/L.  

Use NMB water for dilution. 

B. Stabilize reactors for 2 to 3 days by feeding 6 mL/d stabilization acetate feedstock (Step 

4) to give a COD/VSS ratio = 0.5 (10 mL acetate solution/4000 mgVSS = 0.5). Let 

reactions go to completion before adding subsequent doses. 

C. Use the stabilization data to calculate biomass activity. 
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D. After stabilization is compete, feed the test reactors ammonia (Step 2) and un-neutralized 

acetate (Step 4) feedstocks as follows: 

R1:  Control with 6 mL acetic acid feedstock only, fed daily (F/M = 0.5 g/g) 

R2:  Control with 6 mL acetic acid feedstock only, fed daily 

R3:  Control with 2 mL NH4-N feedstock + 6 mL acetic acid feedstock daily  

(200mg N/L). 

R4:  Control with 5 mL NH4-N feedstock + 6 mL acetic acid feedstock daily 

 (500mg N/L). 

R5:  Control with 15 mL NH4-N feedstock + 6 mL acetic acid feedstock daily  

(1500 mg N/L). 

R6:  Control with 20 mL NH4-N feedstock + 6 mL acetic acid feedstock daily  

 (2,000 mg N/L). 

R7:  Control with 25 mL NH4-N feedstock + 6 mL acetic acid feedstock daily 

(2,500 mg N/L). 

7. Check and record pH daily before feeding and adjust to 7.0 as necessary using KOH or HCL. 

8. Measure gas production on each bottle using respirometers. 

9. Run tests for at least 10 days or until the gas production rate in the least-affected reactor is 

50% of that for the Control. 
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APPENDIX C.2: AMMONIUM-NITROGEN TOXICITY TEST AT VARIED SOLIDS 

RETENTION TIME 

1. The objective of this test series is to evaluate the impact of solids retention time on 

ammonium-nitrogen toxicity. 

2. Obtain a sample of active mixed liquor from an operating anaerobic treatment plant, either 

full-scale or lab-scale.  Measure sCOD, TSS, VSS, sNH3-N, sP, tP, total TKN.  

3. Prepare nutrient/mineral/buffer (NMB) water by adding 20 mL Min I, Min II and Nutrient 

solutions from Appendix A and 6 g NaHCO3 per liter of distilled water. 

4. Prepare acetic acid stabilization feedstock: Add 95 mL glacial acetic acid to 250 mL distilled 

water.  Neutralize to pH = 5.5 using 30% KOH. Make volume to 1000 mL using distilled 

water (100 mg COD/mL acetic acid). 

5. Prepare acetate control feedstock: Slowly add 18 mL glacial acetic acid to 500 mL NMB 

solution. Slowly add 3.5 g KOH pellets while mixing to give 3,000 mg/L alkalinity. Make 

volume to 1,000 mL using distilled water (20,000 mg/L COD). Check and record pH of this 

solution. 

6. Prepare ammonium acetate acid test feedstock: Add 20 g NH4Cl to 500 mL distilled water.   

Mix until it is dissolved. Slowly add 18 mL glacial acetic acid to this solution. Slowly add 

3.5 g KOH pellets while mixing to give 3,000 mg/L alkalinity. Make volume to 1,000 mL 

using distilled water (20,000 mg/L COD). Check and record pH of this solution. 

7. Anaerobic toxicity tests 

A. Set up 8, 700 mL serum bottles with 500 mL culture volume to give 2,500 mg VSS/L. 

Use NMB water for dilution. 
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B. Stabilize reactors for 2 to 3 days by feeding 6 mL/d stabilization acetate feedstock (Step 

4) to give a COD/VSS ratio = 0.48 (1200 mg acetate COD/2500 mg VSS = 0.48). Let 

reactions go to completion before adding subsequent doses. 

C. After stabilization is compete, feed the test reactors ammonium acetate feedstock (Step 4) 

feedstocks as follows: 

R1, R2:  Control 1 & 2: Waste 25 mL mixed liquor and feed 25 mL acetate  

Feedstock (Step 5) 

 R3, R4: 20-d SRT: Waste 25 mL mixed liquor and feed 25 mL ammonium acetate 

feedstock (Step 6) 

R5, R6: 30-d SRT: Waste 17 mL mixed liquor and feed 17 mL ammonium acetate 

feedstock (Step 6) 

R7, R8: 45-d SRT: Waste 11 mL mixed liquor and feed 11 mL ammonium acetate 

feedstock (Step 6). 

8. Check pH daily before feeding and adjust to 7.0 as necessary using KOH or HCL. 

9. Measure gas production on each bottle using respirometers. 

10. Run tests for at least 10 days or until the gas production rate in the least-affected reactor is 

50% of that for the Control. 
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APPENDIX C.3: SODIUM CHLORIDE TOXICITY TEST  

1. Obtain a 2-L sample of active mixed liquor from an operating anaerobic treatment plant, 

either full-scale or lab-scale.  Measure sCOD, TSS, VSS, sNH3-N, sP, tP, total TKN. 

2. Prepare nutrient/mineral/buffer (NMB) water by adding 20 mL Min I, Min II and Nutrient 

solutions from Appendix A and 4 g NaHCO3 per liter of distilled water.    

3. Prepare ethanol stabilization feedstock: Add 244 mL of ethanol to 500mL of NMB water. 

The COD of this solution should be 400,000 mg/L. 

4. Prepare sodium chloride feedstock I: Add 200 g of NaCl to 500 mL distilled water. The 

volume is made up to 1000 mL using distilled water to achieve a COD of 200,000 mg/L. 

5. Prepare sodium chloride feedstock II: Add 150 g of NaCl to 100 mL distilled water. The 

volume is made up to 1000 mL using distilled water to achieve a COD of 1,500,000 mg/L. 

6. Anaerobic toxicity tests 

A. Set up 8, 700 mL serum bottles with 500 mL culture volume to give 4,800 mg VSS/L.  

Use NMB water for dilution. 

B. Stabilize reactors for 2 to 3 days by feeding 6 mL/d stabilization ethanol feedstock (Step 

4) to give a COD/VSS ratio = 0.61 (10 mL acetate solution/4800 mgVSS = 0.61). Let 

reactions go to completion before adding subsequent doses. 

C. After stabilization is compete, feed the test reactors sodium chloride (Step 2) and un-

neutralized ethanol (Step 4) feedstocks as follows: 

R1: Control with 6 mL ethanol feedstock only, fed daily (F/M = 0.5 g/g) 

R2: Control with 1 mL NaCl feedstock I + 2 mL NaCl feedstock II + 6 mL ethanol 

feedstock daily (6,400 mg NaCl/L). 
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R3: Control with 2 mL NaCl feedstock I + 3 mL NaCl feedstock II + 6 mL ethanol 

feedstock daily (9,800 mg NaCl/L). 

R4: Control with 3 mL NaCl feedstock I + 4 mL NaCl feedstock II + 6 mL ethanol 

feedstock daily (13,200 mg NaCl/L). 

R5: Control with 4 mL NaCl feedstock I + 5 mL NaCl feedstock II + 6 mL ethanol 

feedstock daily (16,600 mg NaCl/L). 

R6: Control with 5 mL NaCl feedstock I + 6 mL NaCl feedstock II + 6 mL ethanol 

feedstock daily (20,000 mg NaCl/L). 

R7: Control with 6 mL NaCl feedstock I + 7 mL NaCl feedstock II + 6 mL ethanol 

feedstock daily (23,400 mg NaCl/L). 

R8: Control with 11 mL NaCl feedstock I + 8 mL NaCl feedstock II + 6 mL ethanol 

feedstock daily (28,8 00 mg NaCl/L). 

Check and record pH daily before feeding and adjust to 7.0 as necessary using KOH or 

HCL. 

7. Measure gas production on each bottle using respirometers. 

8. Run tests for at least 10 days or until the gas production rate in the least-affected reactor is 

50% of that for the Control. 
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