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Abstract 

 

Current market demands have pushed the capabilities of silicon to the edge. High 

temperature and high power applications require a semiconductor device to operate reliably in 

very harsh environments. This situation has awakened interests in other types of semiconductors, 

usually with a higher bandgap than silicon’s, as the next venue for the fabrication of integrated 

circuits (IC) and power devices. Silicon Carbide (SiC) has so far proven to be one of the best 

options in the power devices field. 

This dissertation presents the first attempt to fabricate a SiC linear voltage regulator. This 

circuit would provide a power management option for developing SiC processes due to its 

relatively simple implementation and yet, a performance acceptable to today’s systems 

applications. This document details the challenges faced and methods needed to design and 

fabricate the circuit as well as measured data corroborating design simulation results. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Motivation 

After the invention and revolution of portable devices such as cell phones and cameras, 

power management has become a critical factor in the proper operation and efficiency of such 

devices. Power management, in these cases, is responsible for supplying and conditioning power 

to the different circuits in the device. These circuits could be analog or digital in nature and are 

all usually powered by batteries which incur substantial voltage and current variations across 

time and over a wide range of operating conditions [1]. Power management in such cases is 

achieved by a regulator which minimizes these variations and provides stable and constant power 

to the circuits in the system under different loads and environmental settings. 

While it is true that regulation is very important in high performance applications, ideally 

any type of system should have some regulation. It is a common practice for Integrated Circuit 

(IC) designers to account for power supply variations whenever the specifications of a circuit are 

being determined. Ideally, if these variations in the supply could be reduced by a regulator, it 

would provide more flexibility to the design process and robustness to the circuit. It is important 

to notice that power management implies supplying a constant voltage regardless of current 

variations. Hence, a voltage reference differs from a voltage regulator by the fact that the former 

does not provide large currents. An ideal regulator should also protect the circuits it is powering 

up using features such as over-current protection, thermal shutdowns and open/short loads 

detection. 
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As mentioned before, regulation should also exist under the wide range of operating 

conditions the circuits are designed to operate in. In this context, applications in high temperature 

environments such as automotive and oil drilling exploration are now being enhanced due to 

recent developments in wide bandgap semiconductor materials such as Gallium Nitride (GaN) 

and Silicon Carbide (SiC). Prior to these developments, considerable heat sinking requirements 

and/or placing the circuits away from the heat source were some of the solutions used for high 

power and/or high temperature operation when Silicon (Si) was used. Silicon-on-Insulator (SOI) 

also provides an option for circuitry operating up to 225 °C in these kinds of applications [2]. 

However, the wide bandgap of GaN and SiC (about 3 times the 1.1 eV bandgap of Si) allows, in 

theory, the placement of these new devices or circuitry close to the heat source without any 

temperature risks (theoretically up to 600 °C) or breakdown voltage issues. 

The problem with these new materials is that they are not mature enough and are still 

being studied. While it is true that discrete devices are commercially available, the circuitry 

concept as in Si is still not adequate. Out of these wide bandgap semicondutors, SiC has proven 

to be the most suitable for the applications previously mentioned [3]. SiC Schottky diodes and 

power Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) are now being used in 

power electronic systems due to the large number of benefits such as low on-resistance, faster 

switching and temperature range of operation [4]. With these discrete devices being 

commercially available, the next logical step is to fabricate SiC ICs. Different Boolean gates and 

conventional operational amplifiers operating at temperatures of 300 °C and above have been 

fabricated in SiC and will be discussed in Section 2.3.2 However, the literature does not report 

any complex circuit fabricated in SiC, and there is currently no option for regulation in this field 

either.  
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1.2 The need for a SiC voltage regulator 

The research project under which this SiC voltage regulator is being fabricated is one of 

the first steps into fabricating SiC ICs. The project’s goal is to integrate an existing 4H-SiC 

power MOSFET from Cree Semiconductor with low voltage 4H-SiC depletion and enhancement 

NMOS in order to develop a prototype battery charger system for the next generation of Toyota 

Prius. Cree Semiconductor is fabricating both the high voltage and the low voltage 4H-SiC 

MOSFETs. 

Due to the importance of power management and the steps being taken towards 

fabricating SiC ICs, all the different features that we currently employ from Si circuitry should 

be explored with this new semiconductor. As argued before, power management is nowadays 

one of the most critical aspects in the design process, and this dissertation presents the first 

attempt to provide an option in that field. This dissertation presents the design process and 

experimental data of a SiC linear voltage regulator for high temperature applications. 

1.3 Dissertation structure 

This dissertation is arranged the following way: 

 Chapter 1: Introduction – A brief overview of the motivation behind this work.  

 Chapter 2: Silicon Carbide – This chapter presents an overview of the different properties 

of SiC and its advantages when compared to Si. It also presents where the state-of-the-art 

is in respect to fabricating devices and circuits using this semiconductor material. 

 Chapter 3: Cree SiC Process – Details of the process used to fabricate the transistors are 

presented. The challenges of the process and the repercussions in the design process are 

discussed as well. 
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 Chapter 4: Voltage Regulators – A detailed explanation of the classification and 

operation of voltage regulators is discussed. The state-of-the-art in Si voltage regulators 

is presented. 

 Chapter 5: SiC Voltage Regulator Design – In this chapter, a step by step explanation of 

the transistor level design process of the voltage regulator is presented. Simulations and 

performance are discussed in detail.  

 Chapter 6: SiC Voltage Regulator Testing and Characterization – The results of testing 

the SiC voltage regulator are summarized here. A performance comparison with Si 

voltage regulators is included.  

 Chapter 7: Conclusions and Future Work – This chapter presents the conclusions from 

the work presented in this dissertation. Recommendations for future work based on the 

work presented here are presented as well.  
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CHAPTER 2: SILICON CARBIDE 

 

2.1 SiC Properties 

SiC is positioned to be the semiconductor that will advance the state-of-the-art for high 

temperature electronics applications. SiC power devices offer tremendous advantages over 

conventional switch technology, including the possibility for 10× the power density, 10× the 

breakdown voltage, 1/10th the switching losses, higher switching frequencies, and operation at 

considerably higher temperatures [4], [5]. 

Depending on its polytype structure, SiC can be mainly classified as 3C, 4H and 6H poly 

type. 4H-SiC however, is preferred for power device structures due to its higher band gap (3.26 

eV for 4H-SiC and 3.0 eV for 6H-SiC). Simple circuits such as operational amplifiers and 

Boolean logic gates have been fabricated in 6H-SiC [6]-[9]; although new research is being 

oriented toward 4H-SiC due to its advantages in power electronics applications. As mentioned 

before, this project will integrate 4H-SiC power devices with 4H-SiC low voltage devices and 

hence we will refer to 4H-SiC only as SiC from now on.  

The literature shows the focus on SiC devices has been limited to power electronics 

applications and not extended to low voltage electronics due to the challenges faced with the 

fabrication process. These challenges are mainly due to the interface and oxide traps that degrade 

the performance of the devices by reducing mobility and causing threshold voltage instability 

[10]-[13]. This project, however, attempts to explore the SiC IC field to investigate the numerous 

benefits that could be obtained from it. These benefits are due mainly to the SiC properties 

described in this chapter. 
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2.1.1 Energy Band Gap 

Energy band gap is the property that allows SiC to be classified as a wide band gap 

semiconductor.  The band gap for Si is 1.1 eV, while the band gap for 4H-SiC is 3.26 eV. The 

larger band gap results in lesser thermal generation of carriers in the depletion region of devices. 

This situation is favorable for reducing the leakage current of devices which utilize P-N junctions 

to support voltages [14].  

The lesser generation of carriers is related to the intrinsic carrier concentration which is 

temperature dependent. For silicon, the intrinsic carrier concentration is given by: 

  (2.1) 

and for 4H-SiC, it is given by: 

  (2.2) 

 Plotting these two equations, as shown in Fig. 1, allows the grasping of their practical 

meaning. For example at room temperature Si’s intrinsic carrier concentration is 1.4 x 10
10

 cm
-3

, 

but at a temperature of about 550 °K (277 °C), it increases to about 1 x 10
15 

cm
-3

, matching a 

typical light doping concentration used to fabricate devices. This situation makes the doped areas 

useless and hence, the device unsuitable for high temperature. 4H-SiC on the other hand, has an 

intrinsic carrier concentration of 6.7 x 10
-11 

cm
-3

 at room temperature and only 3.9x10
7 

cm
-3

 at 

700 °K (427 °C), making it, in theory, able to operate at such high temperatures.  
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2.1.2 Impact Ionization Coefficients 

Reduced impact ionization coefficients are related to the higher breakdown voltages that 

wide band gap semiconductors offer when compared to Si. This is one of the main attributes of 

SiC for power device applications. Impact ionization is an avalanche process created by an 

electric field. In this case, a carrier is accelerated to a high enough kinetic energy to cause an 

ionization collision with the lattice. This single event results in carrier multiplication (generation 

of electron-hole pairs) which can become very high due to its avalanche nature [15]. The impact 

ionization coefficients for semiconductors are dictated by Chynoweth’s Law [16], [17]: 

  (2.3) 

 

Fig. 2.1 – Intrinsic carrier concentration of Si and 4H-SiC across temperature. 
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where E is the electric field component in the direction of the current flow. The parameters a and 

b depend on the semiconductor material and temperature.  

 The extracted impact ionization coefficients for Si and 4H-SiC are shown in Fig. 2.2. 

From there, it can be observed that the generation of carriers due to impact ionization in 4H-SiC 

occurs at an electric field an order of magnitude larger than in Si.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3 Electron Mobility 

This property is particularly important for SiC power devices since the conductivity of 

the drift region (the region designed to withhold the blocking voltage of the device) depends on it. 

The conductivity is defined as: 

  

Fig. 2.2 – Impact ionization coefficients in Si and 4H-SiC. 
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 (2.4) 

where μn is the mobility of electrons which are a function of doping concentration ND and 

temperature. The electron mobility in Si and SiC as a function of the doping concentration is 

given by: 

 
 (2.5) 

 
 

(2.6) 

The electron mobility at room temperature as a function of the doping concentration is plotted in 

Fig. 2.3. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 – Electron mobility for electrons in Si and 4H-SiC. 
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As a function of temperature and at low doping concentrations, the electron mobility in Si 

and SiC is given by: 

 
 (2.7) 

 
 

(2.8) 

 The mobility decreases in semiconductors as temperature increases due to enhanced 

phonon scattering [14]. This can be observed in the electron mobility for Si and SiC as a function 

of temperature shown in Fig. 2.4.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 – Electron mobility for electrons in Si and 4H-SiC. 
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2.2 Challenges in SiC 

 Even though SiC devices present great advantages over their Si counterparts, their 

fabrication still presents difficulties. The wide band gap of SiC is definitely one of its most 

attractive features since it allows high breakdown voltages, but it also causes a low intrinsic 

carrier concentration. This low concentration presents challenges with the inversion layer 

mobility and reliability in passivating dielectric layers [18].  

The inversion layer mobility challenges are explained by the large band gap of SiC which 

requires that the energy bands must bend three times more than Si in order to reach inversion. 

This results in a larger depletion width and hence in a larger surface electric field. At the same 

time, the surface roughness mobility decreases since it is inversely proportional to the square of 

the electric field [19]. The high density of traps in the SiC/SiO2 interface also plays a role in the 

inversion layer mobility. The traps reduce channel mobility because the trapped electrons cannot 

contribute to the current flow, and this reduces the inversion-layer charge density at a given bias 

voltage. These electrons also act as Coulomb scattering sites that reduce the inversion layer 

mobility at low fields.   

Since the surface field of SiC is larger than that of Si, the gate oxide layer must also be 

able to withstand this electric field. In addition to that, SiC is more sensitive to electrons being 

injected into the oxide since the barrier height for electron injection into the oxide is larger for Si 

than it is for SiC [18]. Overall, the SiC/SiO2 interface is one of the more challenging areas in SiC 

device fabrication due to all the different problems that arise from it.  

The literature reports improvements to some of the previously described challenges. The 

use of gate oxide processes based on Nitrogen (N) ion implantation and reduced thermal-budget 
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wet oxidation has shown improvement in the electron channel mobility [20]. In a similar manner, 

reducing the surface roughness by capped activation anneal with graphitized resist has also 

resulted in better mobility [21]. 

2.3 State-of-the-art in SiC Device Fabrication 

In the last couple of decades, many high voltage diodes, transistors and even integrated 

circuits have been experimentally demonstrated in SiC. Most of the research effort, however, has 

been to fabricate SiC devices to improve the performance and temperature capability of power 

electronics systems to a point that devices, such as 4H-SiC Schottky diodes, JFETs and 

MOSFETs, are now commercially available [22]-[24]. This section summarizes key features 

about the state-of-the-art devices in SiC.   

2.3.1 Power devices 

 Schottky Barrier Diodes (SBD) were the first SiC devices introduced in 2001 [25]. These 

unipolar devices (only one type of electrical carrier) are used mainly for rectifying purposes and 

they are currently available with blocking voltages up to 1700 V. These diodes can withstand a 

10x blocking voltage as their Si counterparts with the same SiC drift layer thickness [26]. They 

are commercially offered by a variety of vendors such as Cree and Infineon. 

 PiN diodes, although not commercially available, have been fabricated and tested at the 

research level. These bipolar devices have been reported to withstand up to 16 kV and 

surprisingly handle up to a hundred amps of current [27]. For these devices, forward voltage 

drop and reverse recovery current are the main features under investigation and improvement. 

 In addition to SBDs and PiN diodes, power switches are of great interest because of the 

benefits in different switching applications such as Hybrid Electric Vehicle (HEV) circuitry and 
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grid applications [27]-[30], where the low on-resistance of a SiC power switch, mixed with the 

abilities to operate at very high temperatures and block high voltages, make them ideal. SiC 

Commutated Gate Turn-Off Thyristor (SiC GTO) and Insulated Gate Bipolar Transistors (IGBT) 

have been reported [27] although focus seems to be on unipolar devices such as MOSFETs and 

Junction FETs (JFETs) in the 1200 V regime. This is mainly due to the minority carrier lifetime 

control issues associated with bipolar devices [26]. 

 Currently, 1200 V normally-on and normally-off SiC JFETs are commercially available 

from SemiSouth [24] and Cree offers the only commercial N-channel SiC MOSFET with a 

breakdown voltage of 1200 V. As described in the previous section, the SiC/SiO2 interface issues 

make SiC MOSFETs still very complicated to fabricate at a production level. Since JFETs do not 

need an oxide layer they are more commercially available.  

 There are currently a significant number of publications about power modules using SiC 

devices such as inverters and chargers [31] [32] where the main benefits of SiC, such as 

breakdown voltage and temperature capability, are fully exploited.    

2.3.2 Integrated Circuits 

 The literature reports some integrated circuits fabricated either in 6H-SiC or 4H-SiC. 

Some of these circuits are from times even before the SiC SBDs became commercially available 

in 2001. Since the development of SiC has been closely related to power electronic modules (due 

to the breakdown voltage and temperature capabilities) and as SiC fabrication still presents many 

challenges, most of the reported integrated circuits have been simple digital logic, such as 

inverters, ring oscillators and flip-flops. The exception has been that of operational amplifiers. 
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The intent of the digital logic circuitry is usually to use it in a form of a gate driver buffer or in a 

similar manner to control the power devices in a power module. 

   One of the most elaborate SiC ICs published is an intelligent gate driver fabricated in a 

5 μm, 6H-SiC CMOS process in 1999 [33]. This gate driver consists of digital logic, charge 

pump and protection circuitry along with a few others. However, even though different circuits 

were fabricated, only “some of the subcircuits have been measured and operated at temperatures 

up to 300 °C” [33] defeating the goal of an integrated circuit. Other SiC ICs reported in the 6H 

poly-type include NAND, NOR and XNOR gates, latches, flip-flops and adders among others [6], 

[8], and [9], and they have all been individually tested up to 300 °C. 6H-SiC MESFET 

operational amplifiers have also been reported [34] with operation up to 350 °C, and some others 

fabricated using 6H-SiC JFET with operation up to 600 °C [7]. 

 More recent literature indicates an apparent shift towards 4H-SiC ICs but still reports the 

presence of the same fabrication challenges discussed before. The trend in the circuits has 

remained the same: simple digital circuits, gate driver buffers and operational amplifiers but 

most of them are fabricated using BJT or JFET (avoiding the oxide layer issues) [35], [36]. This 

tendency to avoid oxide layers has even been practiced with 6H-SiC devices in digital logic and 

operational amplifiers fabricated recently by the NASA Glenn Research Center and tested up to 

500 °C [37], as opposed to the 6H-SiC CMOS processes from the decade before. The exception 

in this case is a recently reported NMOS-based enhancement SiC operational amplifier 

fabricated in a 4H-SiC substrate by General Electric and tested up to 350 °C [38]. At the end, 

even though SiC processes are still developing and being explored, there has been no attempt to 

design and fabricate circuits other than digital logic and operational amplifiers, making this SiC 

voltage regulator truly an advance of the state-of-the-art in the field.   
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CHAPTER 3: CREE SILICON CARBIDE PROCESS 

 

3.1 Overview 

As mentioned before, the main objective of this project is to integrate, in the same 4H-

SiC wafer, an existing Cree power MOSFET with low voltage devices used to drive the power 

device. Since the existing power MOSFET is already fabricated in an n-type substrate, the low 

voltage devices must be fabricated in the same substrate. Fig. 3.1 shows a cross-section of the 

integrated substrate as previously described.  

 

 

 

 

 

 

  

The low voltage process is a high risk attempt from Cree to fabricate complete functional 

integrated circuits in 4H-SiC. It is a 2 μm, all NMOS (depletion and enhancement) process with 

one metal layer and one poly layer. This latter detail becomes a challenge for designers since the 

layouts of the circuits will be larger than usual in order to avoid adding parasitic capacitances 

(due to high resistivity of poly) to the already high risk circuits. The gate oxide thickness in the 

 

Fig. 3.1 – Substrate integration of power devices with low voltage devices. 
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process is specified as 40 nm. The enhancement devices are intended to have a positive threshold 

voltage VT and the depletion devices (normally-on devices) are intended to have a negative VT.  

 Since this process is being built from the ground up, models had to be generated for the 

circuit designers. For this purpose, a 7 mm x 7 mm test chip with a large variety of transistor 

sizes, resistors, capacitors and other test structures was fabricated. The smallest transistor used 

was 8 μm x 2 μm and the largest transistor was 32 μm x 8 μm. Separate 120 μm x 120 μm pads 

were connected to each device terminal with each pad having an opening of 100 μm x 100 μm 

for proper probing.  

 The integration approach shown in Fig. 3.1 indicated the need for a p-well where the low 

voltage devices would be fabricated. This p-well can be obtained in two different ways [39]: 

 Selective ion implantation of the p-well with B or Al ions followed by high temperature 

annealing – This process is already part of the fabrication process of the power MOSFET, 

which makes this process easy to implement. The problem with this option is that the 

diffusion coefficients for SiC are very small even at high temperatures [14]. Therefore, 

the ion implantation process would aggravate the SiC/SiO2 interface issues previously 

presented.  

 Growth of a p-type epitaxial layer - A p-epi layer can be grown on top of the n-type 

substrate. This process allows a very well controlled p-doping concentration without 

aggravating the interface issues inherent to SiC. The disadvantage of this option is that a 

p-epi layer is not part of the standard fabrication process for the power MOSFET which 

could result in the increase of the cost of integration.  
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 The test chip was fabricated in three different doping profiles for each type of the p-well 

(p-epi and p-implant) options in order to determine the best option to proceed with the 

fabrication of the actual circuitry for the electric charger in this project. In addition to different 

doping profiles, there were two types of p-epi substrates, one with a threshold voltage adjust 

feature (to obtain a larger threshold voltage) and one without it. This additional classification in 

the p-epi susbstrate only concerns the enhancement devices. This was done in order to have 

better control of the threshold voltage of the devices at high temperatures. The depletion devices 

in both p-epi substrates have the same doping profile. Fig. 3.2 shows the different types of 

wafers used for the test chip. 

 

 

 

 

 

 

  

After characterization of the test chip, the wafers from one of the doping profiles of the p-

epi well option with VT adjustment were selected for the circuits fabrication and hence, to 

generate the models. More details about threshold voltage and small-signal parameters, such as 

transconductance and output resistance, will be discussed in the regulator design chapter.   

 

Fig. 3.2 – Different types of wafer used for the low voltage devices test chip. 



18 
 

3.2 Limitations 

 The most obvious limitation with this process is the lack of PMOS devices.  PMOS 

devices, besides being normally-off devices, allow for very low on-resistance when used as pull-

up devices. The NMOS depletion devices (normally-on) were the option in this process for these 

kind of devices, forcing designers to forgo the benefits of complementary MOSFET processes 

and go back to the first stages of Si circuit design when NMOS-only processes were the norm 

[40]-[42]. 

 Another important limitation in the process is inherent in the fabrication process of the 

low voltage devices. Since the goal of this project is to fabricate these devices on a p-well 

located on top of the n-type substrate (shared with the power MOSFET), the p-well will always 

have to be at the same potential as the n-substrate in order to reverse bias that junction. At the 

current stage of the project when integration with the power MOSFET has not yet taken place, 

the substrate will be connected to the lowest potential in the circuit (commonly ground) and 

hence, so will the p-well, which could be considered the “substrate” of the low voltage devices. 

The limitation imposed by this latter fact is that the bulk or body of the NMOS devices must 

always be connected to the lowest potential of the circuit (ground) rather than the source of the 

device, as it is usually done to avoid substrate bias voltage (VSB) issues in stacked devices. The 

equation for the threshold voltage of a MOSFET VT is given by [43]: 

 
 (3.1) 

where VTO is the threshold voltage for VSB = 0 V, ϕF is a physical parameter and γ is a fabrication 

parameter dependent on the doping concentration of the substrate, the permittivity of the bulk 

material and the oxide capacitance.  
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 From the previous equation it can be concluded that for stacked devices (where the 

source is above the lowest potential), there will always be a substrate bias voltage VSB which will 

result in an increase in threshold voltage. This increase could be quite significant depending on 

the value for VSB (further details in Chapter 5) and hence, could aggravate the already risky 

process with considerable limitations in terms of circuit design. 

 Capacitors also present a challenge in this process. While it is true that capacitors can be 

external (especially if they are large) to avoid the expense of adding parasitic capacitances and 

resistances to the circuit, ideally they should be integrated in the circuit. In this process, 

capacitors are formed using silicon dioxide as a dielectric between a poly layer and a metal layer 

as shown in Fig. 3.3. An additional gettering layer is added between the oxide and the metal in 

order to reduce mobile ion contamination as described in the next section. The issues with the 

capacitor formation process are the thickness of the dielectric, the distance between the poly 

layer and the substrate, and the high resistivity of the poly layer. This 119 Ω/□ resistivity adds an 

Equivalent Series Resistance (ESR) to the capacitor, a very important detail to be taken into 

account by designers, which, as in the case of a voltage regulator, could drastically affect the 

circuit performance. The effect of the distance between the layers can be explained using the 

equation for the capacitance of a capacitor C, defined as [44]: 

 
 (3.2) 

where εr is the relative permittivity of material between the plates, εo is the dielectric constant 

(8.85x10
-12

 F/m), A is the area of overlap of the two plates and d is the distance between them. 

From the measurements shown in Fig. 3.3 it can be seen that even though the process is not a 

sub-micron process, large areas would still be needed to obtain small capacitors due to the large 
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distance between the plates, i.e. a 1 pF capacitor would need an area of about 26,000 μm
2
. In 

addition to the area constraint, the fact that the distance between the poly layer and the substrate 

is also quite large would create a parasitic capacitor in series of similar value with the intended 

capacitor in the circuit. Due to all these reasons, if capacitors are integrated in the circuits, it will 

likely add risks and constraints to the already existing limitations of the process.  

 

 

 

 

 

 

 

 

 

3.2.1 Mobile Ion Contamination 

 Besides the previously foreseen limitations of the process, an unexpected event took 

place while characterizing the enhancement devices from the test chip. It was observed that the 

threshold voltage of the devices changed after the first measurement. After numerous 

measurements the threshold voltage remained the same, but it was already altered from the first 

measurement. As an example, Fig. 3.4 shows the input characteristics at room temperature on a 

 

Fig. 3.3 – Layers stack to obtain a capacitor in the Cree SiC process. 
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32 μm x 2 μm enhancement device which were used to generate device models [39]. It can be 

observed how, after the first measurement, the threshold voltage decreased. This behavior is 

explained by mobile positive ion contamination in the field oxide [45]. Due to the presence of 

alkali metal ions, such as sodium (Na) and potassium (K), in the silicon dioxide, a reduction in 

the threshold voltage occurs when an electric field is applied to the gate. This is because the ions 

drift to the Si/SiO2 interface due to the electric field and hence, they attract electrons making the 

device to turn on with a lesser gate voltage.  

 

 

 

 

 

 

 

 

 

  

This phenomenon occurred during testing and created problems decades ago when the 

manufacturing process was in development. Nowadays there are different techniques [46]-[48], 

 

Fig. 3.4 – Shift in threshold voltage after the first measurement due to mobile ion 

contamination in a 32 μm x 2 μm enhancement device at room temperature. 
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such as the use of phosphorus doped oxides (known as Phosphosilicate glass, PSG) or silicon 

nitride (Si3N4) top layers to trap the mobile ions and avoid their interference with the device 

performance. Such a gettering layer, as the one shown in Fig. 3.3, is the one Cree decided to 

implement in the fabrication of the voltage regulator (and the rest of the circuits for the charger 

project) in order to avoid any further effect of the mobile ions in the SiC devices. 

 In order to characterize the devices used to generate the models and minimize the risk of 

mobile ion contamination, different dies had to be used for different device sizes in such a way 

that only one measurement was performed on each die for a specific device. The same procedure 

was repeated for measurements over temperature. There is, of course, the uncertainty of knowing 

the extent to which these measurements were accurate enough, and therefore it has a significant 

impact on the generation of the models. For a designer, reliability on the device models is critical 

since that (aside from process variation) predicts the performance of the circuit after fabrication. 

This mobile ion contamination and its unknown effects on the models is probably the riskiest 

factor in the design of this voltage regulator. Unexpected shifts in threshold voltage not 

accounted for by the models could drastically affect the performance of any circuit regardless of 

the process used.  

3.3 Low voltage models 

 As mentioned before, the low voltage process developed by Cree consists of 

enhancement and depletion n-type MOSFETs. The breakdown voltage specified by Cree for 

these devices is 20 V. Due to the problems faced during the characterization stage of the test chip 

devices, SiC PSP models for the 32 μm x 2 μm enhancement and depletion type were the first 

ones to be developed at room temperature in order to meet the schedule for the project. Therefore, 

the initial design activities were performed using these models. After some issues with the SiC 
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PSP models were discovered, a Si PSP model for the same type of devices was developed only 

for room temperature. Eventually, the same model was scaled for the different device sizes, and 

finally, a discrete temperature model for 125 °C and 225 °C for each size was developed a 

couple of weeks before the circuits were sent to Cree for fabrication. Figs. 3.5, 3.6, 3.7 and 3.8 

show the measured data compared to the model data for the input and output characteristics of 

the 32 μm x 2 μm enhancement and depletion devices at 25 °C, respectively [39]. From these 

figures it can be observed how the input characteristics measured data (blue) fit well with the 

model (red curves) for the enhancement devices, but not so well for the depletion devices. This is 

due to limitations in the PSP model used for the project [39]. The output characteristics for both 

devices also suffer from some deficiency, mainly that the drain current never quite follows the 

measured data. This notorious discrepancy between the model and measured data represents a 

challenge for designers since the circuits have to be designed with a large range of operating 

conditions in order to ensure functionality. Designing for very precise analog performance has to 

be avoided due to the nature of the process and the models.   
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Fig. 3.5 – Input characteristics of a 32 μm x 2 μm enhancement device at 25 °C. 

            
Fig. 3.6 - Output characteristics of a 32 μm x 2 μm enhancement device at 25 °C. 
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      Fig. 3.7 – Input characteristics of a 32 μm x 2 μm depletion device at 25 °C. 

 
Fig. 3.8 - Output characteristics of a 32 μm x 2 μm depletion device at 25 °C. 
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  Due to the risk factor related to this project, since its beginning, it was required to make 

decisions related to the voltage regulator design that would maximize the chances of fabricating 

a working circuit. One of these decisions was to employ only the 32 μm x 2 μm devices in the 

design of the voltage regulator since the modeling efforts were focused on them since the very 

beginning, and they were in fact, the first models available. This in addition to the fact that since 

they have the largest W/L ratio of all the available devices, they would provide the largest 

current, a factor that was critical in the design of the pass device of the regulator. This section 

therefore, intends to present the performance details of these devices and how they impacted the 

design of the voltage regulator. Table 3.1 shows the approximated threshold voltage values for 

the 32 μm x 2 μm devices obtained from Figs. 3.5 and 3.7. 

Table 3.1 Approximated Threshold Voltage Values for the 32 μm x 2 μm Devices at 25 °C 

using the Low-voltage SiC Models. 

|VSB| (V) VT – Depletion (V) VT – Enhancement (V) 

0 -4.5 3.4 

3 -3.7 4.6 

6 -3.1 5.5 

9 -2.4 6.2 

12 -2.1 6.8 

15 -2.0 7.3 

 

 The two main small-signal parameters of interest from these devices are the 

transconductance, gm, and the output resistance, ro, of the transistors since they will be used for 
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the small-signal model of the voltage regulator. Fig. 3.9 shows the input characteristics of a 32 

μm x 2 μm enhancement device at 25 °C, 125 °C and 225 °C (right) and the transconductance 

plot (left) obtained by taking the derivative of the drain current. Fig. 3.10 shows the output 

characteristics of the same device at 25 °C, 125 °C and 225 °C (right) and the output resistance 

plot (left) obtained by taking the inverse of the derivative of the drain current. Figs. 3.11 and 

3.12 show the same characteristics for a 32 μm x 2 μm depletion device. For simulation purposes, 

VDS = VSB = 5 V for the input characteristics and VGS = VSB = 5 V for the output characteristics. 

From the input characteristics graphs, it can be seen that the depletion devices have a 

poor performance at 225 °C resulting in a poor transconductance value. Also, the increase in 

current with temperature in the enhancement devices is worth noting. In standard Si technology, 

drain current and threshold voltage decrease as temperature increases. In the current SiC 

technology, the drain current is strongly influenced by the presence of interface traps at the 

SiC/SiO2 interface as discussed in Section 2.2. It has been shown that as temperature increases, 

the occupancy of interface traps decreases, making more electrons available for conduction [49]. 

As a result, despite reduction in channel mobility, the overall current in enhancement MOSFETs 

increases.  

From the output characteristics graphs, it can be observed how significant the effects of 

the body-channel modulation are in this process. The slope of the transistors in saturation is quite 

large, almost resembling the behavior of a resistor more than that of a transistor. As a result, the 

output resistance varies continuously, and it is not as stable as in a well-defined Si process. This 

indicates that for design calculations, approximate numbers for transconductance and output 

resistance for both - enhancement and depletion devices- will have to be used.  
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Fig. 3.9 – Transconductance (left) and input characteristics (right) for a 32 μm x 2 μm 

enhancement device with VDS = VSB = 5 V at 25 °C, 125 °C and 225 °C.  
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Fig. 3.10 – Output resistance (left) and output characteristics (right) for a 32 μm x 2 μm 

enhancement device with VGS = VSB = 5 V at 25 °C, 125 °C and 225 °C.  
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 Fig. 3.11 – Transconductance (left) and input characteristics (right) for a 32 μm x 2 μm 

depletion device with VDS = VSB = 5 V at 25 °C, 125 °C and 225 °C.  

TEMPERATURE 
TEMPERATURE 

Gate to source voltage (V) Gate to source voltage (V) 

T
ra

n
sc

o
n
d

u
ct

an
ce

 (
m

A
/V

) 

D
ra

in
 c

u
rr

en
t 

(m
A

) 

25 °C 

125 °C 

225 °C 

 

25 °C 

125 °C 

225 °C 

 

Fig. 3.12 – Output resistance (left) and output characteristics (right) for a 32 μm x 2 μm 

depletion device with VGS = VSB = 5 V at 25 °C, 125 °C and 225 °C.  
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In addition to temperature, the substrate bias voltage also plays an important role in the 

performance of the devices as shown in Figs. 3.5 and 3.7. As explained in the previous section, 

since the substrate connection must always be connected to the lowest potential in the circuit, 

there will be a substrate bias voltage for stacked devices. More specific examples are the circuits 

shown in Fig. 3.13. Circuit (a) is a generic tail current circuit for an amplifier with NMOS input 

devices (only one input is shown). In this case, the input devices will have a substrate bias 

voltage and hence, their performance will be different to the bottom devices which have the same 

gate biasing voltage but have their source connected to ground. Circuit (b) is the NMOS 

depletion pass device of a generic linear regulator in series with resistors used as a feedback 

network. In this case, the pass device will have a substrate bias voltage equal to the output of the 

linear regulator, a detail that will seriously impact the design of the regulator in this dissertation.  

In the case of the amplifier, assuming a bias voltage for the tail current transistor of about 

7 V would result in a VSB of about 5 V for the transistors in the input stage. The difference in 

drain current and threshold voltage for an enhancement transistor in this input stage with 3 

different VSB values compared to the same device with VSB = 0 V can be observed in Fig. 3.14. 

In the case of the regulator, the difference is more noticeable since VDD is 20 V and the devices 

in this process are all NMOS. This implies that the highest output voltage of the regulator 

(measured at the source of the pass device transistor) is VDD-VT in order to allow the pass 

device to turn on. For the sake of argument, it is assumed that the output is set to 15 V and that a 

depletion transistor is used as the pass device in order to take advantage of its negative threshold 

voltage. This would result in VSB = 15 V and VDS = 5 V. The difference in threshold voltage and 

current is quite noticeable as shown in Fig. 3.15. It can be noticed that when VSB = 15 V, VT is 

about half of its normal value.  
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(a)        (b) 

Fig. 3.13 – Examples of stacked devices in a) an n-type input stage amplifier and b) NMOS 

depletion pass device in a generic linear voltage regulator. 
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Fig. 3.14 – Input characteristics for a 32 μm x 2 μm enhancement device with VDS = 5 V for 

VSB = 0, 5 and 10 V at 25 °C (left) and 225 °C (right). The increase in threshold voltage due 

to the increase in VSB can be observed. The threshold however, decreases, as temperature 

increases as it occurs in Si. 
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The gate capacitance is another parameter of interest - particularly for the design of a 

linear regulator. As will be discussed later on, the gate capacitance of a pass device in a generic 

linear regulator is a key component in its frequency response and stability. In this process, the 

total gate capacitance CGG, seen at the gate of the device was measured for the 32 μm x 8 μm 

devices [39]. The actual measurement though, was taken on a much larger 20 x 50 μm x 50 μm 

C-V test structure and then scaled down for each specific device. Figs. 3.16 and 3.17 show the 

measured and model data for the gate capacitance of a 32 μm x 8 μm enhancement and depletion 

device respectively. The C-V characteristic of the enhancement device shows a “hook and ledge” 

behavior due to the large density of interface states in the device [50]. 

 

 

Fig. 3.15 – Input characteristics for a 32 μm x 2 μm depletion device with VDS = 5 V for VSB = 

0 and 15 V at 25 °C (left) and 225 °C (right). The increase in threshold voltage due to the 

increase in VSB can be observed.  
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Fig. 3.16 – Gate capacitance measurements of a 32 μm x 8 μm enhancement device. 

 

Fig. 3.17 – Gate capacitance measurements of a 32 μm x 8 μm depletion device. 
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 As mentioned earlier, the gate capacitance value of the pass device is critical in the 

design of a linear regulator. Since the pass device will be in a configuration like the one shown in 

Fig. 3.13 (b), there will a substrate bias voltage VSB affecting the device. The increase in 

substrate bias voltage will actually decrease the value of the gate capacitance CGG. Since the 

source and drain regions of the devices are small compared to the bulk region, CGG is mostly 

dominated by the gate to bulk capacitance CGB. Then, as VSB increases, the depletion width 

under the gate of the device will increase as well. This depletion width, in terms of capacitance, 

is the separation between the layers (gate and bulk) of the parasitic capacitor CGB. Hence, based 

on (3.2), as the distance increases, the capacitance will decrease. Fig. 3.18 shows how the 

increase in VSB affects the total gate capacitance.  

 

 

 

 

 

 

 

  

In order to quantify this effect, an RC circuit using the gate capacitance of a 32 μm x 2 

μm depletion device with multiplicity of 2000 was simulated. The multiplicity is necessary in 

 

Fig. 3.18 – Effect of the substrate bias voltage in the total gate capacitance. 
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order to account for the large load current typically delivered by linear regulators. The drain of 

the device was left floating in order to make sure that only the gate capacitance of the device was 

the only capacitance seen by the input signal. A 10 MΩ resistor was used in order to maximize 

the time constant τ=RC of the circuit. A 1 Hz, 0-20 Vp-p, 50% duty cycle and trise = tfall = 100 ns 

square signal was used as input signal. The delay between the input signal and the output signal 

(measured at the gate of the device) will provide the value for the gate capacitance, taking into 

account that one time constant is what takes for the gate capacitance to charge to 63.2% of the 

input signal value [44]. Fig. 3.19 shows a schematic of the RC circuit and Fig. 3.20 shows the 

results with VSB = 0 V and VSB = 15 V. Table 3.2 summarizes the results.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.19 – Test circuit to measure the effect of the substrate bias voltage in the gate 

capacitance. The depletion device has a multiplicity of 2000. 
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Table 3.2 – Gate Capacitance Measurements of a 32 μm x 2 μm, M=2000 Depletion Device. 

|VSB| (V) τ (μs) R (MΩ) C (pF) 

0 1098 10 109.8 

15 265 10 26.5 

 

 From Table 3.2 it can be seen that the substrate bias voltage affects the gate capacitance 

by a factor of approximately 4. This detail was taken into account when analyzing the frequency 

response of the regulator. A similar, but lesser, effect in the gate capacitance should be expected 

in other transistors in the regulator with a non-zero substrate bias voltage. 

 

Fig. 3.20 – Effect of substrate bias voltage on the gate capacitance using a 32 μm x 2 μm 

depletion device at 25 °C. The red curve is the input signal, the blue curve is the output signal 

at VSB = 0 V and the black curve is the output signal at VSB = 15 V.  
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This section has presented the issues associated with the models used to design the linear 

voltage regulator. These issues are related to the limitations in the current SiC technology as well 

as the limitations in the process specifically used to design the circuit. These risks, and the 

uncertainty level of the process and the models, were considered when the regulator was 

designed. Relaxed specifications and simplified techniques were adopted in order to minimize 

the risks.  
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CHAPTER 4: VOLTAGE REGULATORS 

 

Power management is highly important in any electrical circuit. From the IC point of 

view, the designer tries to foresee any changes in the power supply for the circuit and designs 

accordingly. However, there could be significant variations in the power supply depending on 

loading or other conditions that could be very difficult to predict but which could drastically 

affect the performance of any circuit. Voltage regulators prevent this from happening by 

providing a very well defined steady voltage for a specific maximum load. Depending on the 

application, a properly selected voltage regulator can avoid any failure due to power supply 

variations. 

 Voltage regulators could be generally classified as linear or switching. Linear regulators 

are also called series regulators due to the fact that the pass element is in “series” between the 

input (the supply that is being regulated) and the load (the regulated output). The term “linear” 

refers to the fact that the current flow (from the pass device) and the control (the signal driving 

its gate) are continuous in time [1]. Due to the same reason, the output of a linear regulator 

cannot exceed its input. Switching regulators, on the other hand, can accommodate AC and DC 

inputs and outputs. From this, it can also be concluded that their circuits tend to be more 

complex. They are also larger due to the need of inductors. However, depending on the topology, 

switching regulators can deliver an output larger (boost converter) or smaller (buck converter) 

than its input. This allows a wide range of options for the switching regulator outputs. The 

voltage regulator discussed in this document is a linear type but a brief discussion about 

switching regulators will be presented for reference and comparison purposes. 
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4.1 Switching regulators 

 These types of regulators can handle Alternating Current (AC) and Direct Current (DC) 

input and output voltages. These types of conversions require, in many cases, the use of 

inductors, transformers, capacitors and diodes that, besides the actual switching devices and 

depending on the type of regulator and application, make the circuits bulkier and more 

complicated than linear regulators. From the IC point of view, as it pertains to this research, DC-

DC converters are then the most relevant types of switching regulators.  

 There is a large variety of switching regulators but generally, they can be classified into 

the following main types: 

 Buck – when the output produced is smaller in magnitude than the input. 

 Boost – when the output produced is larger in magnitude than the input. 

 Buck-boost – when the output produced is of opposite polarity of the input. 

 Flyback – when multiple outputs, larger and smaller in magnitude than the input, are 

produced.  

A Pulse Width Modulated (PWM) conditioner is a typical block of a switching regulator. 

The PWM controller is a combination of an analog signal from an error amplifier with a PWM 

Analog-to-Digital converter (ADC) that is used to control the “on” time of the switching devices 

in the regulator [1]. These switching devices usually need to be driven at high frequencies since 

this reduces the size and weight of the passive components in the circuit [2]. However, as a result 

of this fast switching, noise is introduced in the circuit. A positive feature of the switching 

devices is that their voltage drop is smaller than the voltage drop of a pass transistor of a linear 

regulator resulting in a reduction of dissipated power [1]. This links directly to the fact that 

switching regulators are more power efficient than linear regulators. 
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Efficiency η is defined as the ratio of the output power to the input power. The input 

power includes the power consumed by the regulator as well as the power delivered to the load.  

 
 (4.1) 

 This equation indicates that the quiescent current in a linear regulator IQ (the current not 

flowing to the load) and the difference between the input and output voltage makes the circuit 

less efficient. An expanded version of the efficiency equation helps visualize this relationship. 

 
 (4.2) 

 This implies that minimizing the quiescent current will improve efficiency, but it will still 

be limited by the ratio of the output voltage VOUT to the input voltage VIN. As mentioned 

previously, the voltage drop across the pass device of a linear regulator is larger than for the 

switching device in a switching regulator, and as a result, the efficiency of linear regulators is 

lower. Decreasing the difference between the input and output voltage will obviously increase 

the efficiency if the quiescent current is kept small compared to the output (load) current.  

4.2 Linear regulators 

The voltage regulator in this investigation is a linear regulator. This allows for a simpler 

and more IC oriented design with a broader range of applications. A basic linear regulator 

consists of five main blocks shown in Fig. 4.1: 

 Error amplifier – This circuit monitors the output for any changes in the load condition 

and generates an error signal that is sent to the gate of the pass device in order to 

compensate for the change.  

 Pass device – This device is in charge of delivering the current to the load. This is usually 

a very large transistor (BJT or MOSFET) with a very large gate capacitance that plays an 
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important role in the stability of the regulator. The size of the device depends on the load 

rating of the regulator. The pass device could be better explained as a load-variant 

resistance adjusted by the error amplifier. 

 

 

 

 

 

 

 

 

 

 

 

 

 Voltage reference – This constant voltage reference is constantly being compared by the 

error amplifier to the signal from the feedback network. This is a very critical block of 

the regulator since variations in this voltage reference, due to temperature or any other 

environmental effects, will directly impact the output of the regulator and hence its 

performance. These voltage references are usually designed around Si bandgap 

references due to their stability over temperature and other events. 

 Feedback network – This is mainly composed of two resistors in series with the pass 

device. The output of the regulator is located between the top resistor and the pass device 

                             
Fig. 4.1 – Block diagram of a linear voltage regulator.  
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and the connection point between the two resistors provides the feedback signal 

monitored by the error amplifier. Regulators employ a negative feedback loop meaning 

that a decrease in magnitude in the feedback signal will result in a change in signal from 

the error amplifier to the pass device to increase the output voltage. 

 Compensation network – In order for the regulator to be stable over frequency, either an 

external or an internal network (mainly composed of a large capacitor) is needed. The 

key role in the selection of the capacitor is its ESR which will also play an important role 

in the frequency response of the regulator.  

 

In addition to these blocks, there are a number of features added to voltage regulators in 

order to enhance their performance. Some of these include, but are not limited to, overcurrent 

protection, startup circuitry, thermal shutdown and open/short load detection and will be 

discussed in Section 4.3. These features are implemented by cleverly designed, sensitive and 

precise circuits which have been possible due to the maturity, reliability and technological 

advances of Si manufacturing process. 

Linear regulators could generally be classified based on the amount of power they are 

able to deliver to the load, the type of frequency compensation implemented and the pass device 

dropout voltage. Table 4.1 shows this classification [1]. 

Table 4.1 – Generic Linear Regulators Classification 

FEATURE CLASSIFICATION 

Power High if ILOAD > 1 A Low if ILOAD < 1 A 

Compensation External  Internal 

Dropout High if > 0.6 V Low if < 0.6 V 
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Power 

 The amount of power needed from a voltage regulator depends on the application. The 

literature indicates that the maximum output current for linear regulators range from 50 – 300 

mA. Most commercial linear regulators also fall within that range; although, there are also a few 

available in the 1 – 3 A range [51]. As mentioned before, the issue with linear regulators is that 

they are considered less efficient than switching regulators and at high power applications, this 

disadvantage worsens. A common technique, to take advantage of both types of regulators in a 

system, is to use one master switching regulator and then make use of linear regulators at the 

load locations. This technique is called point of load (PoL) regulation [1] and it is widely used in 

complex systems. 

 Compensation technique 

 This compensation has to do with the location of the dominant pole in the frequency 

response of the regulator (more details in Section 4.2.2), but not necessarily the location of the 

capacitor used to stabilize the regulator. If the dominant pole is located at the output of the 

regulator, then it is considered externally compensated. If the dominant pole is located in an 

internal node, then it is internally compensated. The confusion here arises from the fact that the 

external capacitor located at the output of the regulator is commonly the one used to stabilize the 

system, that is, to generate the dominant pole. This capacitor, however, even if it is connected to 

the output of the regulator, can be part of the IC using additional techniques to ensure frequency 

compensation. In that case, the regulator is still considered to be externally compensated. The 

literature also reports numerous capacitor-less linear regulators [52]-[54]. In these cases, the 

dominant pole is generated by an internal capacitor but still connected to the output of the 

regulator.  
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 Dropout voltage 

 This is defined as the minimum difference between the unregulated input supply and the 

regulated output supply that guarantees proper voltage regulation. Dropout voltage increases 

dissipated power which is an undesired situation. Current commercial low-dropout voltage 

regulators (LDO) offer dropout voltages as low as 30 mV [51] which minimizes drastically the 

amount of dissipated power. This is effectively achieved by the use of PMOS transistors as the 

pass device (unavailable in the Cree SiC process) or by the use of NMOS transistors as pass 

devices in conjunction with charge pumps. This latter technique, however, usually makes use of 

capacitors and clock signals in order to achieve the performance and features needed to drive the 

NMOS pass device. Such requirements would worsen the risks already presented in this process. 

4.2.1 Specifications 

The performance of a linear regulator is determined mainly by its response to changes in 

its input and load. Even though these specifications are DC parameters, the overall AC response 

of the regulator is of particular interest since it reflects its stability. This section intends to 

provide a description of both DC and AC specifications for linear regulators. 

Load regulation  

Load regulation (LDR) is defined as the change in DC output voltage as a response to 

changes in the DC load current. It is, in other words, the output resistance of the regulator (Ro-reg) 

[55], 

 
 (4.3) 

where Ro-pass is the output resistance of the pass device, AOL is the open-loop gain of the 

regulator and β is the feedback gain. An ideal linear regulator should show no change in its 

output voltage when there are changes in the load for which it is designed. In reality, this is not 
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true since the output of the voltage regulator will need a finite amount of time to respond to 

changes in the load. During this time, its output will change until the regulator starts to respond. 

In a system level, the parasitic resistance, inductance and capacitance introduced by wires and 

board connections will affect the load regulation performance since they will increase the time 

for the regulator to respond. 

Line regulation 

Line regulation (LNR) is defined as the change in DC output voltage with respect to 

changes in the DC input voltage. Power Supply Rejection (PSR), often mistaken with line 

regulation, includes the entire frequency spectrum. It is usually specified for specific frequencies, 

i.e. 30 dB at 1 kHz. 

The effects of power supply variation in a linear regulator come from the supply for the 

regulator itself as well as from variations in the voltage reference, VREF, used by the error 

amplifier (see Fig. 4.1). Since the regulator is a negative feedback loop, where the difference 

between the variations of VOUT and VREF are constantly amplified, changes in VREF due to power 

supply variation become significant in the performance of the regulator. In the same manner, any 

other factors, such as temperature variations, that affect VREF will affect the performance of the 

regulator. The voltage regulator in this dissertation will make use of an external reference in 

order to mitigate additional risks that could affect the performance of the regulator. More details 

about this are discussed in the regulator design chapter.  

Quiescent current 

Quiescent current, IQ, is defined as the DC current flowing through the feedback network. 

It is important for power dissipation calculations since it is constantly flowing regardless of the 
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load. Ideally, IQ should not change with variations in the load although in practice it varies due to 

the changes in resistance of the pass device and the load.  

Phase margin  

Phase margin is used to measure the stability of the regulator. An unstable regulator will 

present undesired oscillation in the output voltage. Literature indicates acceptable phase margins 

are usually at least 60 degrees [56]. More detailed information about stability and phase margin 

is discussed in Section 4.2.2. 

Transient response 

Typically, the transient response of a regulator is the behavior of the circuit to noise 

either from a switching load or a switching supply. The worst case scenario (and the most 

commonly tested) is when the load current suddenly changes from its lowest rated value to its 

highest one. Fig. 4.2 shows the typical transient response of a 15 V linear regulator to a load-

current step of 3 A. 

 

 

 

 

 

 

 

 

 

  

Fig. 4.2 – Typical response of a linear regulator (blue) to a sudden load current change (red). 
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 In order to better understand the different transitions shown in Fig. 4.2, a more detailed 

schematic of a linear regulator is shown in Fig. 4.3. In this case, the feedback (R1 and R2) and 

compensation networks (COUT and RESR) are clearly indicated. Also, since a regulator provides 

power to different circuits, such circuits usually make use of decoupling capacitors. This 

capacitance is represented as Cb, and depending on its value, could play an important role in the 

AC performance of the regulator. 

The transient response to a load-current step as the one shown in Fig. 4.2 starts with the 

time Δt1 that it takes the regulator (the feedback loop to be more specific) to start responding to 

the sudden change in load current. From this statement, it can be inferred that the closed-loop 

bandwidth of the regulator plays a crucial role, since the larger the bandwidth, the faster the 

regulator will respond. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 – Schematic of a generic linear regulator. 
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 Δt1 will also be affected by how large the parasitic capacitance of the pass device (Cpar) is 

because depending on the slew-rate (SR) of the error amplifier, the response time will be slower 

or faster [57]. Therefore,  

 
 (4.4) 

 
 

(4.5) 

where ΔV is the voltage variation in the parasitic capacitance of the pass device, and ISR is the 

slew rate current applied to that capacitance. Δt1 is also the time it takes the regulator to reach the 

lowest permissible undershoot voltage ΔVTRAN+, which will be a function of the output capacitor 

COUT, the voltage drop across RESR, the load current ΔILOAD momentarily supplied to the output 

by COUT, and the bypass capacitor Cb. Using the same basic capacitance equation as before, 

 
 (4.6) 

 After the lowest voltage has been reached, the feedback of the regulator starts to respond, 

and Δt2 is the time it takes for the pass device to charge the load capacitors [57] and reach its 

final VLDR value. From (4.3) it can be seen that VOUT =VLDR and therefore, 

  (4.7) 

In a similar manner to when the current steps up, it takes some finite amount of time Δt3 

for the regulator to respond when the current steps down. The feedback loop needs to respond to 

the load current change by “less” turning on the pass device. Once this time has elapsed, 

ΔVTRAN- has been reached and it is defined by a very similar equation to ΔVTRAN+. 

 
 (4.8) 
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 Finally, the voltage on the output capacitors settle down to its final value after some time 

Δt4 which can be expressed in terms of the quiescent current IQ, 

 
 (4.9) 

 One important fact to notice from Fig. 4.2 is that the response of the regulator is not 

symmetrical. This is due to the slew rate unidirectional limitation of the error amplifier that 

mainly affects the load-current step-up event. 

4.2.2 Stability in linear regulators 

 A stable regulator is defined as having a considerable phase margin open-loop response 

in order to avoid oscillations in its output voltage. In other words, the open-loop gain response of 

the regulator needs to be similar to a single pole system, that is, to cross the 0 dB axis with a 

slope of 20 dB/decade [58]. The issue with regulators is that due to their compensation network, 

capacitive loads and internal capacitances, there will be more than one pole in the system. The 

key is to spread them out in order to obtain a good phase margin (at least 60 dB) by inserting a 

zero in the system. The simplest form to insert a zero in the open-loop response is to make use of 

the ESR of the output capacitor. Fig. 4.4 shows the ideal open-loop response of a stable linear 

regulator.  

The AC schematic shown in Fig. 4.5 is used to determine the open-loop response of the 

regulator. For the purpose of analysis, the loop is broken in the feedback path. The open-loop 

response has an easily identifiable pole at the output of the error amplifier and a real component 

formed by the feedback resistors. The pass transistor with the entire output impedance (Zout) of 

the regulator provides the rest of the response. 
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Fig. 4.4 – Ideal open-loop response of a linear regulator. 

 

Fig. 4.5 – AC schematic used for open-loop response analysis. 
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 The overall response can be expressed as 

 
 (4.10) 

where gm,amp and gm,pass are the transconductances of the error amplifier and the pass device, 

respectively. Rout,amp is the output resistance of the error amplifier, Cpass is the parasitic 

capacitance of the pass device and Zout is the impedance of the regulator seen from the output. 

Zout can then be expressed as 

 
 (4.11) 

where the first term is approximately equal to rout,pass and this term will be denoted as Rout from 

now on.  

 Then Zout becomes, 

 (4.12) 

 

(4.13) 

 (4.14) 

and after rearranging the terms in the denominator 

 (4.15) 
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 (4.16) 

 

 (4.17) 

However Cout>>Cb and therefore, 

 

(4.18) 

 

(4.19) 

Finally Zout becomes 

 (4.20) 

Inserting this equation for Zout into the original open-loop response equation 

 

 (4.21) 
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 (4.22) 

 From this equation it can be observed that the open-loop response is determined at the 

DC level by the feedback resistors ratio and by the gain of the error amplifier and the pass device. 

The response consists of three poles and one zero that can be simplified by noticing that the ESR 

values are typically (and intended to be) very small even when compared with Rout which is very 

close to rout,pass. As a result,  

 
 (4.23) 

 
 

(4.24) 

 
 

(4.25) 

 
 

(4.26) 

 Ideally, the locations of the poles and zeroes should be as above in order to ensure the 

stability of the regulator as shown in Fig. 4.4. Proper selection of the output capacitor and its 

ESR value are critical for this purpose. Another important detail in the open-loop response of the 

regulator is to be aware that the output resistance of the pass device rout,pass will decrease as the 

load current increases displacing the pole to a higher frequency. Figs. 4.6 and 4.7 show the gain 

and phase response of a linear regulator, at no load and full load, respectively. The change in 

location of the dominant pole can be observed and as a result of this pole moves close to the zero 

making the gain and phase responses seem different. Also, mainly as a result of the decrease in 

rout,pass, a decrease in the gain is always expected at full load. Overall, this regulator is stable 

since the phase margin is larger than 60 degrees even at full load. This response was obtained 
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using a Cout = 10 μF, ESR = 0.5 Ω, Cb = 0.3 μF, R1 = 1 kΩ and R2 = 2 kΩ. The maximum load 

current was 3 A.  

Given the importance of the output capacitor and its ESR, commercial linear regulators 

usually provide a recommended capacitor size with its minimum and maximum value for ESR 

such that stability of the regulator is insured. In addition, plots for different ESR values versus 

load current for a specific capacitor size are usually included in the datasheets [59]. In real 

practice, ceramic capacitors can be used in series with a resistor in order to satisfy the ESR 

requirements for stability. Another option is to use tantalum capacitors although they tend to be 

larger and more expensive than ceramic capacitors [59].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6 – Gain response of a stable linear regulator without load and at a full 3 A load. The 

displacement of the dominant pole can be observed as a result of a decrease in the output 

resistance of the pass device. This also results in a gain loss at full load. 

LDO gain (no load) 

LDO gain (full load) 
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4.3 State-of-the-art in Si linear regulators 

 Due to the significant advances in Si manufacturing processes, a very large number of 

features are now part of the current Si linear regulators reported by the literature. As fabrication 

processes have moved into the sub-micron region, most linear regulators available are classified 

as LDOs. This section focuses on these types of regulators, and their most advanced features and 

topologies are presented.  

 One of the most significant features is the low-quiescent current and low dropout voltage 

since they both reduce the amount of dissipated power. This reduction is particularly interesting 

for mobile electronics applications where power becomes a major constraint, especially due to 

the reduction in power supply voltages as manufacturing technologies have advanced. A low-

quiescent current, IQ, improves the efficiency of the regulator as shown in (4.2). This is true 

Fig. 4.7 – Phase response of a stable linear regulator without load (red) and at a full 3 A load 

(black). The displacement of the dominant pole can be observed as a result of a decrease in 

the output resistance of the pass device. The zero at no load condition cancels out as a result 

of this displacement. 

LDO phase (no load) 

LDO phase (full load) 
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when there is no load current and the equation is dominated by IQ. At large load currents, the 

quiescent current is negligible and therefore, it can be used to improve the transient response of 

the regulator. Fig. 4.8 shows the three different scenarios of how the quiescent current behaves 

respect to the load current.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first scenario is when the quiescent current is maintained at a constant value 

regardless of the load current. This is obviously not a very efficient system but it could be 

suitable for certain applications where power dissipation is not critical. The second scenario, also 

                                           
Fig 4.8 – Quiescent current (black) behavior respect to load current changes (red) in a linear 

regulator. 
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called dynamic biasing, is when the quiescent current is increased only during the large transient 

current changes in the load. In the third scenario, the quiescent current increases to a higher value 

for the duration of the entire time the load is at its peak current value. This makes it less efficient 

than the second case but in both cases, the quiescent current is small compared to the load 

current. Therefore, with some additional circuitry, this quiescent current can be used to speed up 

the regulator response to changes in the load current. This is mainly achieved by improving the 

slew rate at the node where the parasitic gate capacitance of the pass device is located. 

Following this trend, Rincon-Mora [60] presents a 1.2 V / 0.9 V input/output voltages, 

230 μA quiescent current at its 50 mA maximum output current, externally compensated LDO 

with two particular features, a current efficient buffer and a current boosting technique. The LDO 

was fabricated in a CMOS, 2 μm process, but with the ability to fabricate vertical NPN 

transistors through the addition of a p-base layer.  The current efficient buffer senses the current 

through the pass device and a ratio of this current is fed back into the node charging up the 

parasitic capacitance of the pass device (Cpass in Fig. 4.5). At no load current, the current fed 

back is negligible (current efficient) but at full load, the current helps charge the parasitic 

capacitance and it displaces the parasitic pole associated with this node to higher frequencies, 

improving the frequency stability of the regulator. The current boosting technique makes use of 

the threshold voltage change due to the substrate bias voltage condition described in section 3.2. 

This substrate bias voltage change is achieved using a Schottky diode in a similar circuit and 

concept to the current efficient buffer. Since the pass device threshold is decreased at full load 

(due to the substrate bias voltage applied by the diode), then the pass device is driven harder, 

boosting its current as needed by the load. Fig. 4.9 shows a transistor-level schematic of the main 

features of this LDO [60]. 
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Different circuit techniques have been presented for low-voltage linear regulators 

attempting to improve the transient response. A high slew rate push-pull output amplifier is 

reported in [61]. The amplifier consists of two cross-couple connected common-gate differential 

input transconductance cells and a current summation circuit. This configuration allows for fast 

charging and discharging of the gate capacitance of the pass device. The LDO using this 

amplifier does not need any external or internal capacitors for frequency compensation due to the 

small input resistance of the differential cells. This LDO is fabricated in a 0.35 μm CMOS 

process with a quiescent current of 1.2 μA and a maximum load current of 50 mA. The same 

topology reported in [61] but with a Slew Rate Enhancement (SRE) circuit is reported in [62]. In 

 

Fig. 4.9 – The current efficient buffer and current boosting technique described in [60]. 
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this case, the SRE is only active during the transient changes in the load current (dynamic 

biasing) and it is placed in parallel with the amplifier reported in [61]. The SRE provides the 

dynamic current to charge and discharge the gate capacitance of the pass device even faster and 

hence, improving the transient response of the LDO type regulator. This LDO is capacitor-less, 

fabricated in a 0.35 μm CMOS process with a quiescent current of 8 μA and a maximum load 

current of 100 mA. The load regulation is indeed improved when compared to [61]. 

Another idea on how to improve the slew rate at the gate capacitance of the pass device is 

presented in [63]. In this case, a voltage spike detection circuit at the output of the regulator is 

used to improve the slew rate only when large transient changes occur in the load (dynamic 

biasing), making the system current efficient. The detection circuit makes use of coupling 

capacitors to detect the voltage spikes at the output and hence, adjustments can be made to the 

biasing currents in the circuitry. The LDO is capacitor-less, fabricated in a 0.35 μm CMOS 

process with a quiescent current of 19 μA, an output of 0.8 V and a maximum load current of 

66.7 mA. [61] - [63] make use of a non-traditional regulator topology to avoid the need for 

external or internal capacitors for frequency compensation of the regulator. This LDO topology 

is based on the flipped voltage follower (FVF) structure for low-voltage applications [64]. This 

structure is able to source large amounts of current due to its low output impedance. The FVF is 

a modified version of the super source follower (SSF) configuration. The SFF is intended to 

lower the output resistance of a standard source follower circuit by making use of a negative 

feedback loop [55]. Figs 4.10 and 4.11 show the FVF based LDO topology and the FVF 

configuration, respectively.  
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The elimination of compensation capacitors using the FVF topology favors integration 

and allows improving regulators to better suit the current low-voltage mobile applications.  

 

Fig. 4.11 – FVF configuration. 

 

Fig. 4.10 – FVF based LDO topology used in [55]-[57]. 
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However, FVF based LDOs using external capacitors are still possible as reported in [65]. This 

LDO makes use of the original FVF configuration where the source of the bottom transistor is 

connected to the gate of the pass device of the LDO. Since the voltage changes in the output are 

detected and adjusted only by the bottom transistor, the system is called a Single Transistor 

Control (STC) LDO. In order to avoid changes in the output due to temperature or process 

variation, the gate control signal for the bottom transistor is generated using a bandgap reference. 

Fig. 4.12 shows a schematic of this LDO. The LDO is stable over frequency with and without 

external capacitors proving the feasibility of the FVF based LDO topology to reduce the output 

impedance of the system. This LDO was fabricated in a 0.35 μm CMOS process, with a 

quiescent current of 95 μA, and a maximum load current of 50 mA.  Fig. 4.12 shows a schematic 

of this FVF based LDO with external compensation.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 – FVF based LDO with external frequency compensation. 
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 Most error amplifiers used in a generic linear regulator (Fig. 4.3) incorporate an output 

stage, also referred to as buffer. The buffer allows driving the large pass device quickly. This is 

accomplished by having low output impedance and also providing sourcing and sinking current 

to charge and discharge the parasitic capacitance of the pass device quickly [1]. Current efficient 

buffers, like the one reported in [60], are examples of this technique used to enhance the transient 

response of a regulator. A more recent LDO presented in [66] focuses on an impedance 

attenuated buffer to achieve a better performance. The LDO was fabricated in a 0.35 μm, twin 

well CMOS process, has a quiescent current of 20 μA, a maximum load current of 200 mA and 

makes use of a 1 μF external capacitor. This LDO follows the standard topology of a generic 

linear regulator shown in Fig. 4.3 but it places a buffer between the error amplifier and the pass 

device. The error amplifier in this LDO consists of a single stage folded cascode structure. The 

buffer allows for output resistance reduction at the gate of the pass device and current 

enhancement under different load conditions. The buffer makes use of an NPN transistor acting 

as a feedback device to achieve this goal. In addition, the frequency response of this LDO 

consists of only one pole before reaching its Unity Gain Frequency (UGF). This is due to the 

output resistance reduction technique which pushes the pole at the gate of the pass device to a 

higher frequency. A zero cancellation scheme is also implemented by using a very small internal 

compensation capacitor making the LDO stable over the entire load current range.  

 Finally, in the field of low power transient enhanced linear regulators, there is a simple 

but interesting structure that follows the generic linear regulator topology. The LDO reported in 

[67] makes use of multiple small-gain stages to enhance the transient response of the regulator. 

The LDO is fabricated in a 90 nm CMOS process, has a 1 V output, a maximum load current of 

50 mA, a quiescent current of 9.3 μA and makes use of a 1 μF capacitor with an ESR of 0.35 Ω. 
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The main technique in this regulator is to increase the loop gain and by doing so, the bandwidth 

of the regulator is also increased. This results in a load regulation improvement as indicated in 

(4.3). The problem in this design is frequency stability since poles and zeroes are being created 

by every single stage. The regulator, however, is frequency stable since the poles and zeroes 

from each stage are located beyond the UGF. This was possible because the gain factor of each 

individual stage was reduced; hence the parasitic gate capacitance at each stage input is small 

enough to push the poles and zeroes to high frequencies. At the end, the frequency response of 

the regulator is very similar to the one described in Section 4.2.2 since no additional poles and 

zeroes are part of the analysis. Fig. 4.13 shows a schematic of this linear regulator. 

 

 

 

 

 

 

 

 

 All the regulators presented up to this point have PMOS transistors as pass devices. This 

is because all of them are fabricated using low-voltage sub-micron technologies where low 

dropout is critical. The literature, however, reports linear regulators that make use of NMOS 

transistors as pass devices [68]-[71]. These regulators are usually focused on improving its PSR 

since they are used in System-on-Chip (SoC) applications for typical noisy environments [72]. 

Another focus of interest for these regulators is the very low output impedance obtained from the 

 

Fig. 4.13 – A multiple gain stages, transient enhanced LDO. 



64 
 

source follower configuration [73]. The limitation of this topology is that the output voltage 

needs to be lower than the gate voltage by at least VT. The common technique to overcome this 

problem, and still have a low dropout feature, is the use of a charge pump that allows the gate 

voltage of the pass device to be larger than the input voltage of the regulator. The tradeoff with 

charge pumps or similar circuits is the need for on-chip capacitors and clock signals. A common 

topology to improve PSR, and hence noise performance, in regulators with PMOS and NMOS 

pass devices is to cascode the devices. [70], [74] report this particular topology in order to isolate 

the pass device from noise from the input supply or from voltage stress. 

  The use of NMOS transistors as pass devices could also be determined by the features of 

the process used for fabrication. Su et al. report a high temperature, high voltage, linear regulator 

using a high voltage n-type DMOS as a pass device [75]. The regulator will be used in gate 

driver ICs for power converters inside the HEV. This linear regulator is fabricated in a 0.8 μm 

BJT-CMOS-DMOS (BCD) SOI process, has an output of 5.3 V and a maximum load current of 

200 mA. Because of the high voltage DMOS devices in this process, the input voltage for this 

regulator is 10-30 V and since its output is 5.3 V, there is no concern about low dropout 

performance, thus eliminating the need for a charge pump. The regulator follows a standard 

topology and it makes use of Proportional To Absolute Temperature (PTAT) and Complimentary 

To Absolute Temperature (CTAT) techniques to generate temperature independent current 

sources used in the error amplifier. The literature does not report many high temperature linear 

regulators. Honeywell, a well-known high temperature electronics company, reports another SOI 

linear regulator with output voltages between 5 V-15 V, maximum load current of 500 mA and 

external pass device [76]. Holter et al. also report a high temperature linear regulator fabricated 

in a 1.2 μm BiCMOS process with output voltages between 5 V -12 V and maximum load 
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current of 250 mA [77]. Nowadays, there are high temperature commercial linear regulators 

offered by Honeywell [78] and Texas Instruments [51], rated up to 225 °C and 210 °C, 

respectively. The maximum load current for these types of linear regulators is still in the 

hundreds of mA range.   

 This section intended to present the latest Si linear regulators reported by the literature. 

Due to the current advanced Si manufacturing capabilities in the sub-micron range, these latest 

regulators are usually all low-power and current efficient. In addition, since BJTs are current-

driven devices, they are not suitable for the current efficient and low power performance 

expected from the current regulators. This is why almost all of these designs are CMOS based.  

 Furthermore, since the operation of a system depends on the power delivered by the 

linear regulators, it is not uncommon to add protection circuits to the regulator. Some of them 

include, but are not limited to, overcurrent protection, thermal shutdown, under-voltage lockout, 

and soft start circuitry [51], [57]. Most of these features are to complement the performance at 

the system level without enhancing the core functionality of the regulator. Due to this reason, 

they were not discussed in this section.  
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CHAPTER 5: SiC VOLTAGE REGULATOR DESIGN 

 

 At this point, it should be apparent that the limitations in the Cree SiC process will be the 

major constraint for the design of the linear voltage regulator. The lack of PMOS devices in the 

process does not allow fabricating an LDO but rather a linear voltage regulator where the output 

will have to be no greater than VIN – VT,NMOS. In addition to this, the poor capability of the 

process to fabricate on-chip capacitors as described in Section 3.2, does not allow designing a 

charge pump for low dropout while using a NMOS transistor as a pass device. However, using a 

depletion NMOS transistor as a pass device provides a reasonable solution to this problem. Even 

though the dropout will still be larger than an LDO, it will be less than using an enhancement 

NMOS. As described in Section 3.2, the substrate bias voltage has a considerable effect in this 

process, and using the standard topology for a linear regulator, the effect on the threshold voltage 

would be an increase in the same way as in the circuit in Fig. 3.12 (b). Since the threshold 

voltage for a depletion device is negative, the maximum output of the voltage regulator with a 

depletion NMOS as a pass device will be larger than a regulator with an enhancement NMOS as 

a pass device.  The delicate part of this design technique will be to quantify the actual effect in 

the threshold voltage as accurate as possible in order to properly drive the pass device. 

 In the rest of the circuitry, i.e. the error amplifier, where depletion NMOS devices could 

be used as the loads of each stage, the substrate bias voltage might have a deeper effect. 

Depletion devices are generally used as loads and therefore, they will always have a substrate 

bias voltage different from 0 V. When these devices are used as loads, their gate is connected to 

their source [41] [42], and since their threshold voltage is negative, the devices are always on 

(VGS = 0 V and VGS>VT). When the substrate bias voltage effect is taken into consideration, the 

increase in the threshold voltage might reach a point where it becomes larger than 0 V and as a 
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result, the device will turn off. Therefore, depending on the operation of the circuit and the 

parameters of the device (W/L ratio, number of fingers, etc.), there can be different substrate bias 

voltages for each device in the same circuit, increasing the level of complexity in an already very 

sensitive and developing process. For this reason, the use of depletion NMOS as loads will be 

avoided in this design. n
+
 implant resistors will be used as pull-up devices to ensure the proper 

operation of the circuit and reduce the risks associated with the process.  

 All the previous reasons, and the fact that the process does not offer any diodes, also 

make it virtually impossible to design and fabricate a stable voltage reference for the error 

amplifier. As was discussed in Section 4.2, the stability of the voltage reference propagates 

throughout the entire regulator and it could have a severe impact in its performance. An external 

voltage reference will eliminate these risks and will still demonstrate the feasibility of a SiC 

linear regulator.  

 Finally, as mentioned at the beginning of this chapter, the limitation in fabricating only 

very small on-chip capacitors forces the regulator to be externally compensated, e.g. COUT in Fig. 

4.3 will be external. The feedback network will also be external in order to allow regulating at 

different voltages by using different values for R1 in the feedback network. As a general rule, 

circuits will need to be simple in order to ensure proper operation of the regulator despite the 

different limitations of the process, and risks will be reduced by using external components and 

reference voltages that require very precise and predictable operations that, at this point, only Si 

can provide. 

 In summary, it was decided to design the 15 V output, 3 A maximum load current SiC 

linear regulator with the following constraints:  

 Use a depletion NMOS transistor as a pass device. 
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 Use resistors as loads where needed. 

 Use an external voltage reference for the error amplifier.   

 Use an external capacitor for frequency compensation. 

 Use external resistors for the feedback network. 

 Design circuits that are simple in nature to ensure full functionality. 

5.1 Pass device 

In order for linear regulators to deliver large amounts of current as requested by the load, 

the pass device is usually a very large transistor. Besides the current, the size of the transistor 

(W/L ratio) depends also on the output voltage of the regulator. As mentioned earlier, the large 

size of the transistor implies also a very large parasitic capacitance which plays an important role 

in the performance of the regulator. 

In a very well defined process, a very good first order approximation of the pass device 

could be obtained from the standard saturation equation of a transistor [43]: 

 
 (5.1) 

where W/L is the width to length ratio of the transistor and k  is a process dependent parameter 

defined as

  (5.2) 

where μn is the electron mobility and COX is the oxide capacitance.  

  From the relationships, the very first unknown is the electron mobility. In Section 2.1.3, 

the electron mobility for 4H-SiC was defined by (2.6), which depends only on the doping 

concentration. The doping concentration profile of the wafer selected to develop these models 

peaked at about 5x10
16 

cm
-3

 [39]. From this, the electron mobility is about 802 cm
2
/Vs.  The gate 
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oxide thickness for the process is about 40 nm, and using 3.97 as the dielectric for silicon dioxide, 

results in an oxide capacitance of 0.878 fF/μm
2
. Setting the maximum current for the linear 

regulator at 3 A, VT = -2V, VDS,SAT = 5 V and solving for W/L in (5.1) yields a value of 3262. 

Table 5.1 summarizes the calculations. 

Table 5.1 – First-order Approximation of the W/L Ratio for the Pass Device. 

Doping concentration ND 5x10
16

cm
-3

 

Electron mobility μn 802 cm
2
/Vs 

Oxide capacitance COX 0.878 fF/μm
2
 

VT @ VSB=15 V -2 V 

VDS,SAT 5 V 

IMAX 3 A 

W/L 3262 

 

 The W/L ratio above means that only 204 - 32 μm x 2 μm depletion devices (a W/L = 16) 

would be needed. However, this result only takes into account the effect of the substrate bias 

voltage on the threshold voltage, not on the reduction in the drain current. From Fig. 3.14, the 

actual amount of current delivered by one 32 μm x 2 μm depletion device with a VSB = 15 V and 

VGS = 5 V (the maximum allowable VGS for an output of 15 V) at both corner temperatures can 

be determined. From these values, the total number of devices needed to deliver 3 A can be 

calculated since multiplicity is simply a scale factor in the models. The values and results are 

shown in Table 5.2. 
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Table 5.2 – Amount of 32 μm x 2 μm Depletion Devices Needed to Deliver 3 A Taking into 

Account the Drain Current Reduction due to the Substrate Bias Voltage. 

Temperature (°C) 25  225  

Drain current (mA) 3  1.75  

Devices needed 1000 1715 

  

 The results in Table 5.2 include all the known limitations to the process. In order to make 

the design flexible and minimize the risk, the number of devices was decided to be 2000. This 

implies a W/L total ratio of 16x2000 = 32,000. While it is true that setting the number of devices 

at 2000 implies a larger layout area and larger parasitic capacitance than needed, this decision 

intends to prevent unexpected limitations caused in the drain current of the devices due to the 

nature of this process or for any other reason. The parasitic capacitance for a 32 μm x 2 μm 

depletion device with M = 2000 and VSB = 15 V was already calculated to be 26.5 pF as shown 

in Table 3.2. 

 A very important detail to notice for this specific regulator is the use of an NMOS 

depletion device. Most regulators use PMOS devices for this purpose in order to achieve low 

dropout and improved efficiency. Since the source of the PMOS transistor is connected to the 

input voltage VIN, and the regulator output is measured at its drain, the transistor is in a common 

source configuration. A small-signal analysis of this kind of configuration as part of a linear 

regulator is shown in Fig. 5.1. The resistors R1 and R2 are the feedback network as shown in Fig. 

4.3. 

 As a result of this standard configuration, the pass device by itself has a gain which 

contributes to the overall gain of the regulator. This gain APASS is defined as 
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 (5.3) 

  

 

 

 

 

 

 

However, since the output resistance of the pass device is very low compared to the 

feedback resistors, the gain of the pass device is positive and can be approximated as 

  (5.4) 

 The difference arising from using a NMOS depletion device is that the transistor will be 

in a common-drain, also called source-follower, configuration. In this case, the output of the 

regulator is taken from the source of the pass device and as a result, the gain APASS is different 

from (5.4). Fig. 5.2 shows a small-signal analysis of the common-drain configuration as part of a 

linear regulator. 

From Fig. 5.2, the gain APASS can be defined as, 

 
 (5.5) 

  (5.6) 

  (5.7) 

  (5.8) 

  (5.9) 

 

Fig. 5.1 – Small signal analysis of a linear regulator with a PMOS pass device.  
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   (5.10) 

 
 (5.11) 

 
 (5.12) 

 

 

 

 

 

 

 

 

 

 

 

 The result in (5.12) indicates that using an NMOS transistor as the pass device (a 

limitation inherent to the process) will result in not obtaining a gain contribution from the pass 

device to the overall gain of the regulator , as it would occur if a PMOS transistor in a common-

source configuration was to be used. Standard linear regulators do benefit from the gain provided 

as a result of using a PMOS transistor as a pass device. This gain, in addition to the gain of the 

error amplifier, improves the transient response of the regulator and its overall performance. 

 In the case of this specific SiC regulator, the gain in the frequency response will come 

only from the error amplifier, from which (5.12) will be subtracted. This decrease in gain due to 

 

Fig. 5.2 – Small signal analysis of a linear regulator with a NMOS pass device.  
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the common-drain configuration is larger at high currents given that ro is inversely proportional 

to the drain current of the pass device as shown in (5.13). 

  
 (5.13) 

where VA is a process parameter called the Early voltage [43]. It is important to recall that the 

linear regulator will provide large amounts of current (in the Amps range) and therefore, the ro 

variation from no load to full load condition is significant. 

5.2 Feedback network 

The feedback network consists of two resistors in series, R1 and R2, as shown in Fig. 4.3. 

These resistors are sized depending on the desired output voltage VOUT, quiescent current IQ, and 

the reference voltage VREF used for the regulator based on the following equations. 

 
 (5.14) 

 
 

(5.15) 

 The efficiency of the regulator, as defined in (4.2), plays a key role in determining IQ. 

However, given that this is not a low-dropout regulator; the efficiency will mostly be determined 

by the VOUT to VIN ratio which equals 0.75. Therefore, the quiescent current needs to be small 

enough compared to the maximum load current of 3 A, so that it does not worsen the default 

75% efficiency. A quiescent current on the order of milliamps should be able to do this.  

 The other issue to take into account is that due to the large multiplicity of the pass device, 

providing such a small quiescent current during the no load condition implies that the pass 

device will be very close to being turned off. Such precise performance is to be avoided in this 

process as discussed before, although since the feedback network is external, the quiescent 
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current and feedback resistors could be adjusted if needed. For the sake of argument and 

simulation purposes, the quiescent current was set to IQ = 5 mA. As a result, 

 
 (5.16) 

The feedback network is part of the DC overall gain of the regulator as shown in (4.10), 

although its contribution can be better understood in terms of VREF and VOUT as described next. 

5.3 Voltage reference 

 The ideal voltage reference should be a voltage insensitive to changes in temperature, 

supply voltage and process variations. Because of these constraints and the limitations of the 

Cree SiC process it was decided to use an external voltage reference. VREF has an impact on the 

gain of the feedback network βfeedback based on the following equation. 

 
 (5.17) 

 Since the reference voltage is one of the inputs of the error amplifier, its value should be 

one that properly drives the gate of the input stage of the amplifier. Given that the supply for this 

process is 20 V and VT, based on Table 3.1 is at least 3.4 V, a mid-rail value of 10 V was chosen 

for VREF. This will ensure that the transistor at the input stage connected to VREF will be fully on 

and there will still be a 10 V margin for amplification from the error amplifier. With VREF 

defined, R1 and R2 can be calculated using (5.17). 

 
 (5.18) 

  (5.19) 

 Using also (5.17), the contribution of the feedback network to the overall DC gain of the 

regulator can be calculated as, 
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 (5.20) 

5.4 Compensation network 

The compensation network consists of a large capacitor COUT and its ESR. Since this 

compensation capacitor is usually large (in the μF range), due to the limitation of this process in 

fabricating large on-chip capacitors, COUT, was decided to be external.  

The output capacitor plays a crucial role in providing large transient currents to the load 

while the pass device starts responding. It also plays a role in generating the dominant pole in the 

frequency response as shown in (4.23). Both of these constraints determine the size of the 

capacitor and its ESR.  

When the load current suddenly increases, it takes a finite amount of time, Δt1 for the 

regulator to respond. As described in (4.5), this time depends on the bandwidth of the regulator 

and the time taken to charge up the parasitic capacitance of the pass device. During this time, 

COUT and any bypass load capacitors Cb (refer to Fig. 4.3) supply a certain amount of current, 

ΔILOAD, to the load. Since COUT is usually a very large capacitor when compared to Cb, most of 

the current will flow from COUT. There will be then, a voltage drop, ΔVESR, across the ESR 

defined by [1] as: 

 
 (5.21) 

 This voltage drop will be proportional to the current provided by COUT and it will stay at a 

steady value until the regulator responds [79]. Once the regulator responds, the entire load 

current will be provided by the pass device and hence, the voltage drop across ESR will return to 

zero. From all this, it can be concluded that the voltage drop across ESR is an undesired one 

from the point of view of the transient response. However, the ESR of COUT is still needed since 
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it contributes with the capacitance to provide a zero that helps obtaining a stable frequency 

response for the regulator as shown in (4.24). 

 The aim here is to obtain a range of values for COUT and ESR that will satisfy the 

conditions just described. From (4.5), an approximate value for the response time of the regulator 

can be obtained. For the sake of argument and specifications definition, the closed loop 

bandwidth of this regulator is assumed to be 1 MHz. Then Δt1 is greater than 1 μs. The load 

transient responses of regulators with large current capability are usually tested at a rate of 1 

A/μs [51]. This implies that at least 1 A of current must be provided by COUT before the regulator 

responds. Assuming that the voltage drop across COUT is desired to be not larger than 150 mV 

during Δt1 (1% of the desired 15 V output voltage) requires COUT to be larger than 6.67 μF. For 

simulation purposes, COUT was then set to 10 μF. This large value for COUT should also allow 

having a low frequency dominant pole to ensure the stability of the regulator.  

The value for ESR will have to be decided through simulations. It is only known at this 

point that it needs to be very small to improve the transient response of the regulator, but it has to 

be a value that still creates a zero at the right frequency to ensure stability. In addition, it is 

reported that capacitors usually have less than 2 Ω of ESR [58]. Based on these constraints and 

for initial simulation purposes, ESR was set equal to 0.5 Ω. 

An additional detail regarding the output capacitor for regulators is its Equivalent Series 

Inductance (ESL).  The ESL of a capacitor is aggravated by the parasitic inductance associated 

with layout and packaging. The effect of the ESL is directly proportional to the load current rate 

change. As mentioned before a 1 A/μs rate is typical of large load current regulators. Typical 

values for ESL are less than 5 nH [1] which implies a voltage drop of 5 mV. This is about 
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0.033% of the desired output voltage of the regulator. As a result, even though ESL could create 

an undesired voltage drop, the current capacitor technologies avoid such situations.  

5.5 Error amplifier 

 The error amplifier needs to magnify the difference between the change in the regulator 

output voltage detected by the feedback network, and the reference voltage. The error signal will 

drive the gate of the pass device accordingly and therefore, the gain of this signal is the most 

critical feature of the amplifier. The amplifier by itself does not need to be frequency stable; its 

only function is the amplification of the error. However, special attention has to be placed to the 

poles generated by the amplifier. As long as these poles are located at frequencies larger than the 

unity gain frequency of the regulator, they will have no effect in the regulator performance.  

 Based on the decisions at the beginning of this chapter concerning the design of this 

linear regulator, the error amplifier will not employ NMOS depletion devices as loads. Resistors 

will be used as loads in order to minimize risks. In addition to this, due to the same reasons why 

the depletion devices are avoided as loads, all the transistors in the error amplifier will be 

enhancement devices.  

 The first decision to be made is what topology to use. Based on the previous discussion, 

NMOS enhancement devices will be the input stage with resistors as loads. The tail current will 

also be an enhancement device biased by another enhancement device. Due to the lack of PMOS 

devices and to avoid substrate bias voltage conditions on the transistors, the error amplifier will 

be differential ended. Fig. 5.3 shows a schematic of the input stage of the error amplifier. Since 

only one output of the differential ended error amplifier is needed to drive the gate of the pass 

device, only half of the voltage gain from the error amplifier will be used by the regulator. This 

implies a 6 dB gain loss that will have to be taken into account for gain calculations. 
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In order to ensure functionality of this linear regulator, a simple approach similar to the 

one presented in [67] was selected for the error amplifier. The goal is to obtain as much gain as 

possible while keeping the regulator stable. Therefore, a large gain input stage followed by two 

medium gain stages was decided to be used for the error amplifier. All stages will have the same 

topology. Fig. 5.4 shows a schematic of the error amplifier topology decided for this linear 

regulator. Since there are 3 stages, OUT_3_N is the signal used to drive the gate of the pass 

device. 

The reason for the intermediate stages to not have the same gain as the input stage is to 

make sure that the poles from those stages are located at higher frequencies. From the small-

signal circuit for the input stage, the gain and pole for each stage can be obtained. Fig. 5.5 shows 

the circuit used for this analysis. From Fig. 5.5, it can be determined that the total gain AG for 

each stage, and the pole Perror associated with it, will be equal to, 

  (5.22) 

 

Fig. 5.3 – Input stage of the error amplifier. 
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 (5.23) 

where Cin is the gate capacitance of the transistor in the following gain stage. For the last stage, 

Cin will be equal to the gate capacitance of the pass device.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 From (5.22) it can be seen that specific values for the transconductance gm and the output 

resistance ro of the transistors used in each stage are needed in order to calculate the gain from 

 

Fig. 5.4 – Differential ended error amplifier schematic. The input stage is followed by two 

medium gain stages. 

FIRST STAGE SECOND STAGE THIRD STAGE 

 

Fig. 5.5 – Small-signal circuit of the input stage of the error amplifier. 
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each stage. A larger transconductance and a large output resistance will maximize the gain. A 

tradeoff however, will be needed since a larger drain current ID in a transistor implies a reduction 

in the output resistance as given in (5.13), but it also means a larger transconductance as given in 

(5.24), 

 
 (5.24) 

 From (5.23) it can be concluded that since the poles for each stage will be the product 

between the output resistance of the stage and the gate capacitance of the following stage, 

decreasing the transistor W/L ratio of the following stage will decrease the gate capacitance and 

hence, will move the pole to higher frequencies. It should be evident that by doing this, the drain 

current of the following stage will decrease, which as mentioned before, will imply a reduction 

in gain. The difference in drain current (and for that matter, tail current) among the stages is the 

reason why the second and third stage of the error amplifier in Fig. 5.4 do not use the same bias 

voltage for the tail current transistor. The reason why the bias current for the input stage was not 

scaled for the second and third stage is because the models did not reflect accurate current 

mirrors for this process. Similar to other situations, it was decided to minimize the risks by 

simply using an independent bias current for the second and third stage.  

 The next step before choosing the final values for the transistors and resistors shown in 

Fig. 5.4 is to determine the DC bias point needed from the error amplifier to properly drive the 

pass device.  The most sensitive bias point is when the load current is zero since the pass device 

is almost turned off. An inaccurate bias point in this situation will imply that: 

 Either the pass device would be off, making the regulator output 0 V.  
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 Or, the pass device would be delivering unnecessary current to the load or that the 

quiescent current would be larger than designed for. In either case, the efficiency of the 

regulator would be affected. 

The bias point at no load VG, can be approximated by using (5.1) where 

  (5.25) 

 The rest of the unknowns in (5.1) have been already determined and are summarized in 

Table 5.3. It should be noticed that the value for VT used in these calculations is -2.5 V rather 

than -2 V as shown in Table 3.1. This is due to the large number of transistors in parallel used for 

the pass device. At a specific gate voltage, the drain current for a single transistor will be 

multiplied by the number of transistors in parallel. Therefore, in order to meet the 5 mA 

requirement for the quiescent current, the transistors need to be even “less” turned-on so that the 

total current in the pass device does not exceed the specification. In addition, it was decided to 

use 2000, 32 μm x 2 μm depletion devices in parallel, which is a larger number than the 1715 

transistors shown in Table 5.2. As explained then, the intention is to minimize the risk by 

foreseeing limitations in the drain current due to the substrate bias voltage. However, the 285 

additional transistors for the pass device play a role in the calculation for the gate bias voltage at 

no load since their current is being added up with the rest of the devices.  

The result for VG was approximately 12.57 V for the linear regulator with no load current. 

This implies that in order to obtain this DC voltage in OUT_3_N, compromises among the drain 

current, load resistors and DC output values for each stage have to take place. In order to allow 

enough room for the DC swing of each stage due to the changes in the load current, it was 

decided to have a 10 VDC output from the input stage and about 11 VDC from the second stage. 

The DC output for the third stage is equal to the VG value just determined. Table 5.4 shows the 
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final values for parts of the error amplifier used for this linear regulator (Fig. 5.4). All transistors 

are 32 μm x 2 μm enhancement devices.  

Table 5.3 – Parameters used to Determine the Gate Bias Voltage for the Pass Device with 

No Load. 

W/L 32000 

IQ 5 mA 

VS 15 V 

VT -2.5 V 

k’ 70.44 μA/V
2
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Table 5.4 – Final Values for the Parts of the Error Amplifier Shown in Fig. 5.4. 

INPUT STAGE CONSTRAINT 

Input transistors multiplicity 100 Input characteristics simulations. 

RLOAD1=RLOAD2 24.3 kΩ DC output ~ 10 V 

RBIAS1 15.1 kΩ VGS for trail transistor 

Tail transistor multiplicity 5 Input characteristics simulations. 

Tail current ~0.8 mA Largest gain 

SECOND STAGE CONSTRAINT 

Input transistors multiplicity 10 Low gate capacitance 

RLOAD3=RLOAD4 43.7 kΩ DC output ~ 11 V 

RBIAS2 32.7 kΩ VGS for trail transistor 

Tail transistor multiplicity 5 Input characteristics simulations. 

Tail current ~0.4 mA Medium gain 

THIRD STAGE CONSTRAINT 

Input transistors multiplicity 10 Low gate capacitance 

RLOAD5=RLOAD6 35.3 kΩ DC output ~ 12.6 V 

Tail transistor multiplicity 5 VGS for trail transistor 

Tail current ~0.4 mA Input characteristics simulations. 

 

 In order to calculate the gain from each stage using (5.23), approximated values for the 

transconductance and output resistance of the input transistors for each stage need to be 
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determined. As shown in Section 3.3, these parameters vary a lot in this process depending on 

the voltages at the terminals of the transistors. After initial simulations of the entire regulator 

were run, the input transistors for each stage of the error amplifier had an average value for VDS 

and VSB of about 5 V under no load conditions for the regulator. With this information and using 

Figs. 3.8 and 3.9, approximated values for gm and ro can be obtained. Table 5.5 shows the results. 

It should be noted that Figs. 3.8 and 3.9 are for a 32 μm x 2 μm enhancement device with a 

multiplicity of 1. Table 5.5 accounts for the multiplicity of the transistors in each stage. 

Table 5.5 – Approximated gm and ro Values for the Transistors in the Different Stages in 

the Error Amplifier During No Load Conditions.  

FIRST STAGE 

Temperature (°C) gm (mA/V) ro (kΩ) 

25 (~VGS=4 V) 0.639 32.24 

125 (~VGS=3.5 V) 0.557 35.37 

225 (~VGS=3.3 V) 0.583 34.22 

SECOND AND THIRD STAGE 

Temperature (°C) gm (mA/V) ro (kΩ) 

25(~VGS=5.3 V) 0.129 194.3 

125 (~VGS=5 V) 0.132 193.8 

225 (~VGS=4.7 V) 0.113 196.1 

 

 Using the values from Table 5.5 and (5.23), the gain for the error amplifier can be 

calculated. The results are summarized in Table 5.6. The output resistance for each stage has to 

be calculated using the load resistor values from Table 5.4. In addition, the multiplicity of the 



85 
 

transistors for each stage has to be taken into account, noticing that for ro, the relationship is 

inversely proportional. 

Table 5.6 – Voltage Gain for the Error Amplifier Across Temperature. 

Temperature 

(°C) 

Output resistance (kΩ) Gain (dB) 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Error amplifier 

25 13.86 35.68 29.87 18.94 13.24 11.70 43.88 

125 14.40 35.66 29.86 18.08 13.44 11.89 43.41 

225 14.21 35.74 29.92 18.36 12.15 10.60 41.11 

 

 It can be observed that the gain of the error amplifier remains fairly constant over the 

temperature range. This is due to the changes in the current through the devices across 

temperature which forces the error amplifier to adjust the output from each stage accordingly, 

hence there are different VGS values for each stage in Table 5.5. It is also important to remember 

that the total gain for the error amplifier in Table 5.6 is the differential gain. Since only one 

output from the error amplifier is being used, the gain from the error amplifier as part of the 

regulator is decreased by 6 dB. This results in an average gain contribution across temperature of 

about 36.8 dB to the whole regulator gain. This gain is not final since the losses from the pass 

device and feedback network have to be taken into account. These details will be discussed in the 

next section. 

 It should be noted that the gain values in Table 5.6 are under no load condition. These 

values are expected to change under full load conditions since the error amplifier will respond to 

the changes in the load. These changes will directly impact the transconductance and output 

resistance values used to calculate the gain. 
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5.6 Linear voltage regulator 

 The design of the error amplifier concluded the design of the linear voltage regulator. Fig. 

5.6 shows a schematic of the entire regulator. For simulation purposes and in compliance with 

the fact that Cb<<COUT, Cb was set to 0.3 μF for simulation purposes. This value for Cb assumes 

three, 0.1 μF decoupling capacitors in parallel used for three different circuits powered by this 

linear regulator. The 0.1 μF value for a decoupling capacitor is a common value found in many 

datasheets and application manuals, but mainly, it is a value smaller enough than COUT (by a 

factor of 100) so that it will not interfere with the dominant pole created by COUT in the 

frequency response of the regulator. RLOAD represents the load current and assuming a 15 V 

constant output voltage across temperature, RLOAD will range from about 5 Ω (3 A load) to an 

infinite impedance (no load). The frequency response of the linear regulator was then simulated 

under all conditions to verify stability. 

 

 

 

 

 

 

 

 

   

 

Fig. 5.6 – Final linear regulator design. 
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5.7 Frequency response 

 An important value to determine before simulation is the DC gain of the common-drain 

configuration of the pass device as shown in (5.13). As was mentioned in Section 5.5, the DC 

voltage needed at the gate of the pass device under no load conditions is 12.57 V. Since the 

source of the pass device will be 15 V, VGS = -2.43 V, VDS = 5 V and VSB = 15 V. Under these 

conditions, the transconductance, output resistance and gain of the pass device under no load 

conditions can be approximated to be the values shown in Table 5.7. 

Table 5.7 – Gain Calculations of the Pass Device Under No Load Conditions. 

gm (mA/V) ro (kΩ) Gain (dB) 

5.347 0.774 -1.88 

 

 With this last stage gain known, the overall gain response under no load conditions for 

the regulator can be approximated using the values shown in Table 5.8. 

Table 5.8 – Linear Regulator Gain Calculations Under No Load Conditions. 

Element Gain (dB) 

Pass device -1.88 

Feedback network -3.52 

Error amplifier 36.8 

Total 31.4 
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 The total gain under no load conditions is not expected to change over temperature since 

most of this gain comes from the error amplifier and it was shown to be fairly constant across the 

entire temperature range in Table 5.6. The gain is, however, expected to change at full load since 

the small-signal parameters of every transistor in the circuit will vary and the error amplifier will 

have to respond to the changes in the load. This might imply that, at full load, the voltage needed 

at the gate of the pass device might be very high and hence the current will be reduced in the 

stages of the error amplifier. As has been discussed before, reducing the current affects the 

transconductance and output resistance values of the devices. 

 The linear regulator was simulated using the approach shown in Fig. 4.5. The frequency 

response at 25 °C under no load conditions is shown in Fig 5.7. These simulation results contain 

important information about the linear regulator design. First of all, the overall gain of the 

regulator is 30.42 dB, very close value to the calculated gain of 31.4 dB presented in Table 5.8.  
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From the phase response, a pole and a zero occur before crossing the 0 dB at a frequency 

of approximately 102 kHz. A second pole occurs right after the 0 dB crossing which is not the 

ideal response for a stable regulator. The goal is to cross the 0 dB line with a -20 dB/decade 

slope, achieved by creating a pole-zero-pole sequence before the crossing in the frequency 

response. In this case, since the gate capacitance of the pass device (second pole) is decreased by 

the 15 V substrate bias voltage condition, this pole is located at a frequency slightly larger than 

 

Fig. 5.7 – Frequency response of the linear regulator at 25 °C under no load conditions. From 

the error amplifier stages gain, it can be seen that the poles from the first and second stage 

(black and red curves respectively) are beyond the unity gain frequency of the regulator. The 

third gain stage (blue) generates the pole from the pass device gate capacitance right before 

crossing the 0 dB line. 
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the 0 dB crossing frequency. This situation would normally not occur in a process where the 

substrate bias voltage would not have such a significant effect. Nonetheless, the regulator is 

stable with a phase margin of 132 degrees and the flattening at the 0 dB crossing point is due to 

the proximity of the zero and the second pole.  

The simulated error amplifier gain is 36.09 dB, which is very close to the calculated gain 

of 36.8 dB presented in Table 5.8. Furthermore, the simulated gains from each stage are 

respectively 16.42, 13.75 and 11.94 dB, close to the calculated gains of 18.94, 13.24 and 11.70 

dB presented in Table 5.6.  

In addition, the poles from the second and third stage are located after the unity gain 

frequency of the regulator as intended. This validates the approach of using lesser gain in these 

stages by reducing the multiplicity and drain current of their transistors. The poles and zero from 

the frequency response in Fig. 5.7 can be calculated using (4.23) to (4.26). It should be noted that 

due to the common-drain configuration of the pass device in this design, the overall open-loop 

gain equation varies from (4.22). This variation is explained in the following calculations. 

 
 (5.26) 

 
 

(5.27) 

 
 

(5.28) 

 
 

(5.29) 

 As expected, the dominant pole (p1) does not seem to agree with the frequency response 

shown in Fig. 5.7 where it seems to be located around 1 kHz. The reason behind this discrepancy 
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is the common drain configuration of the pass device in the regulator. The behavior of the 

devices in this process also has a toll in this discrepancy, since the values for gm and ro are very 

sensitive to slight changes in the bias conditions for a specific situation.  

 In Section 4.2.2, the open-loop response equation for a regulator with a pass device in 

common source configuration was derived. The common source configuration was selected since 

most of the regulators nowadays use PMOS transistors as pass device. Due to lack of these 

devices in this process, this regulator was forced to have a pass device in the common drain 

configuration. The implications affect only the last term, gm,passZout, in (4.10) which is related to 

the gain and pole of the amplifier with the pass device. As indicated in (5.13), the gain of the 

common drain amplifier is slightly less than unity due to the configuration. Fig. 5.8 shows a 

more detailed small-signal model of the pass device for this specific regulator. The actual 

dominant pole location can be derived from analysis of this circuit. 

 

 

 

 

 

 

 

 

 

Fig. 5.8 – Complete small signal analysis of the pass device in the designed regulator.  
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 Following a similar analysis to the one leading to (5.12), the gain of the pass device is 

defined as follows. For a more simple algebra, the ESR of the output capacitor (too small to be of 

significance) and the bypass capacitor Cb (small compared to COUT) will not be included. The 

COUT and ro are the main contributors to the dominant pole. A detailed derivation of the gain of 

the pass device, including these terms, shows no conflict with the results of the following 

analysis.  

 (5.30) 

 (5.31) 

 (5.32) 

 

(5.33) 

 

(5.34) 

 

(5.35) 

 (5.36) 
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 Since rout,pass < R1+R2 and also less than RLOAD (specially at no load conditions), the gain 

of the pass device APASS can be simplified as 

 (5.37) 

 (5.38) 

 (5.39) 

 The result in (5.39) indicates that the dominant pole p1 is located at 

 
(5.40) 

 As mentioned earlier, the sensitivity of the devices in this process to slight changes in the 

bias conditions also affected the calculated value for the dominant pole. As will be shown in 

Section 5.8, the actual DC voltages of the pass device under no load condition are a little bit 

different from the values used to calculate the small-signal parameters shown in Table 5.7. As a 

result, using (5.40) and the new values for gm and ro yields a more accurate calculated value for 

the dominant pole. Table 5.9 summarizes the results. It should also be remembered that since the 

body and source in this process are not connected, the value for gm is affected. A more accurate 

calculation would include gmb in the analysis.   
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Table 5.9 – Accurate Dominant Pole Calculations Under No Load Conditions. 

DC bias values gm (mA/V) ro (kΩ) Gain (dB) Pole (Hz) 

VGS= -2.43 V, VDS=5 V, VSB=15 V 

(calculated) 

5.347 0.774 -1.88 20.6  

VGS= -2.28 V, VDS=5 V, VSB=15 V 

(simulated) 

34.2 0.136 -1.69 661 

 

 As it can be seen in Table 5.9, using both the values for gm and ro at the simulated DC 

bias conditions and the more specific equation for the dominant pole location, yield a result more 

in agreement with the 1 kHz location of the dominant pole shown in Fig. 5.7. The fact that the 

gain of the pass device did not change much validates these results. The reason for the slight 

change in the gain is that the changes in the DC bias condition affect gm and ro in different 

directions (gm is proportional to √ID while ro is inversely proportional to ID). In addition, the gain 

of the pass device is a ratio involving both parameters and as a result, the errors in the parameters 

cancel out.  

The simulated frequency responses under no load conditions at 25 °C, 125 °C and 225 °C 

are shown in Fig. 5.8. The simulation results shown in Fig. 5.8 corroborate the results shown in 

Table 5.6 for the calculated error amplifier gain across temperature.  Since most of the gain of 

the regulator comes from the error amplifier and this gain stays fairly constant, the overall 

response of the regulator stays constant as well.  
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The frequency response of the linear regulator at full load at 25 °C is shown in Fig. 5.9. 

This simulation shows a regulation gain of about 25.12 dB which represents a decrease of 5.3 dB 

when compared to the no load response. The error amplifier gain of 31.31 dB also shows a 

decrease of about 4.8 dB. From the gain in each stage, it can be seen that this overall gain loss is 

due to the gain loss in the third stage mainly. The reason is quite simple. The error amplifier 

responds to the change in load current by increasing the gate voltage applied to the pass device 

from 12.57 to 16.9 V. This means that the voltage drop across the load resistor in the third stage 

needs to be smaller. As a result, the current is reduced which translates to a smaller gain in this 

 

Fig. 5.8 - Frequency response of the linear regulator at 25 °C, 125 °C  and 225 °C under no 

load conditions. The response varies vary little with temperature as expected. 
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stage. Table 5.10 shows a quantified analysis of the gain decrease in the third stage of the error 

amplifier at 25 °C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.9 – Frequency response of the linear regulator at 25 °C and full load (3 A). A decrease 

in gain is observed as well as displacement of the dominant pole to a region nearby the zero. 

The regulator is still stable with a phase margin of about 62 degrees and a UGF of 626 kHz. 
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Table 5.10 – Small-signal Parameters for the Third Stage of the Error Amplifier Under 

Full Load Conditions. 

THIRD STAGE @VDS= 11.23 V, VGS=3.97 V, VSB=5.67 V 

Output DC voltage (V) 16.90 

gm (μA/V) 68.73 

ro (kΩ) 245.76 

ROUT (kΩ) 30.88 

Gain (dB) 6.54 

  

The new 6.54 dB gain for the third stage at full load represents a loss of 5.16 dB of gain 

for this stage when compared to the no load condition. This result explains the overall lower gain 

of the regulator in Fig. 5.9. The dominant pole movement is also explained by a change in the 

current, except that in this case, this is due to an increase in the drain current of the pass device. 

The increase, based on (5.12), decreases the output resistance of the pass device and as a result, 

the pole moves to a higher frequency. A new calculation for this dominant pole requires 

simulating the pass device using the new gate voltage value of 16.9 V (from Table 5.10). From 

the simulation, the small-signal parameters will be used together with (5.40) to calculate the new 

pole location. The results are shown in Table 5.11. The values from Table 5.11 can also be used 

to corroborate that the pass device gain at full load is not responsible for the overall gain loss 

shown in Fig. 5.9. The gain of the pass device at a full load is -1.66 dB compared to the -1.69 dB 

gain at no load. As showed before, the overall gain loss is mainly due to the third stage of the 

error amplifier.  
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Table 5.11 – Small-signal Parameters of the Pass Device Under Full Load Conditions at 

25 °C. 

PASS DEVICE @VDS= 5.12 V, VGS=2.02 V, VSB=14.88 V 

Source voltage (V) 14.88 

gm (A/V) 1.08 

ro (Ω) 4.40 

Pole location (kHz) 20.81 

 

 The new calculated location for this dominant pole under full load condition agrees with 

the simulated location shown in Fig. 5.9 with about the same margin of error as under the no load 

condition. In this occasion, the gain response crosses the 0 dB line at a -20 dB/decade slope as 

expected due to an increase in the UGF and a small movement of the third pole to the left. This 

third pole, located at the gate capacitance of the pass device, moved slightly to the left due to a 

small increase in the output resistance of the third stage from 29.87 kΩ (shown in Table 5.6) to 

30.88 kΩ (shown in Table 5.10). This changes the location of this pole to a frequency of about 

139.4 kHz under full load conditions, compared to 201.1 kHz under no load conditions. The zero 

formed by the ESR and the output capacitor does not change its location since the resistance and 

the capacitance are not dependent on load current changes or temperature. The simulated 

frequency responses under full load conditions at 25 °C, 125 °C and 225 °C are shown in Fig. 

5.10.  
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The decrease in the overall gain from 30.42 to 25.12 dB due to the change in load current 

at 25 °C is explained by the reduction in the gain of the third stage of the error amplifier. In the 

same manner, the reduction in the overall gain at full load when the temperature is increased to 

125 °C and 225 °C can be explained by recalculating the gain using the new biasing conditions 

in the transistors of the third stage of the error amplifier. Table 5.12 shows these biasing voltages 

at the two temperatures and the small-signal parameters under those conditions. 

 

Fig. 5.10 - Frequency response of the linear regulator at 25 °C, 125 °C and 225 °C under full 

load conditions. From the phase response it can be seen that the poles and zero barely move 

with temperature. The main issue with temperature variation is the decrease in the overall gain 

of the regulator which tracks the same behavior as the error amplifier gain.  
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Table 5.12 - Small-signal Parameters for the Third Stage of the Error Amplifier Under Full 

Load Conditions at 125 °C and 225 °C. 

Temperature Output (V) gm (μA/V) ro (kΩ) ROUT (kΩ) Gain (dB) 

125 °C 

(VDS = 11.99 V, 

VGS = 3.30 V,     

VSB = 5.65 V) 

17.64 56.11 292.63 31.50 4.95 

225 °C 

(VDS = 14.21 V, 

VGS = 1.74 V,     

VSB = 4.98 V) 

19.19 26.61 599.14 33.34 -1.04 

 

 From Table 5.12 it can be seen that the decrease in the overall gain of the regulator at 

high temperatures is again mainly due to the error amplifier. In the third stage of the error 

amplifier, the 4.95 and -1.04 dB gain at 125 °C and 225 °C, respectively, imply a loss of gain of 

1.59 and 7.58 dB, respectively, from the gain at full load condition at 25 °C for this stage. 

However, under full load conditions, the first and second stages also suffer from gain reduction 

at high temperatures. A similar analysis reveals that the sum of all these gain reductions does in 

fact agree with the overall gain reduction of the regulator across temperature as observed in Fig. 

5.10. 

At 225 °C the gain loss is considerable and therefore, a negative impact in the transient 

response of the regulator should be expected. The gain loss is, however, an expected effect of 

regulation. The error amplifier is providing a feedback and therefore adjusting its output 

accordingly. The first reaction to improve this situation would be to decrease the voltage 

reference in order to allow for a larger output swing of the error amplifier when large load 
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current changes occur. The problem with this is that by decreasing the voltage reference, the 

constant negative gain from the feedback network is increased as described in (5.20). Table 5.13 

summarizes the simulated frequency response results of the linear regulator. From the table, a 

decrease in the UGF under full load conditions can be observed as temperature increases. This 

change is also due to the gain reduction previously described. As the DC gain decreases, the 

curve will cross the 0 dB sooner and this will also result in an increase in phase margin.  

Table 5.13 – Simulated Results from the Frequency Response of the Linear Regulator. 

Temperature 

(°C) 

Load 

(A) 

Dominant 

pole (kHz) 

UGF  

(kHz) 

DC gain  

(dB) 

Phase 

margin (deg) 

Error amp 

gain (dB) 

25 

0 1.03(0.66) 102 30.42 132 36.09 

3 10(20.81) 626 25.12 62 31.31 

125 

0 1.03(0.66) 102 31.00 132 36.09 

3 10(20.81) 383 20.64 79 26.61 

225 

0 1.03(0.66) 46 30.42 132 36.09 

3 10(20.81) 17 4.58 135 11.03 

Simulated(Calculated) 

In addition to showing the change in UGF, the results in Table 5.12 indicate a 

temperature insensitive linear voltage regulator under no load conditions. Temperature comes 

into play under full load conditions by reducing the gain of the regulator. The palpable effect will 

be noticeable in the transient response discussed in the following section. 
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5.8 Transient response 

 After the frequency response of the linear regulator indicated stability, the regulator was 

then simulated with large load dumps. Fig. 5.11 shows the load regulation capabilities of the 

linear regulator at 25 °C, 125 °C  and 225 °C  to a sudden 3 A load current change at a rate of 1 

A/μs. The results are summarized in Table 5.14. 
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Fig. 5.11 – Load regulation across temperature 
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Table 5.14 – Load Regulation Simulated Results Across Temperature. 

Temperature (°C) Load (A) VOUT (V) Load regulation (mV/A) Load regulation (%) 

25 

0 14.99 

36.67 0.73 

3 14.88 

125 

0 14.98 

46.67 0.93 

3 14.84 

225 

0 14.97 

143.33 2.87 
3 14.54 

  

As expected, the load regulation worsens at 225 °C due to a decrease in the overall gain 

of the regulator as described in (4.3). The load regulation is still less than 3% (or 0.96 %/A) 

across the entire temperature range. This value is about 10 times larger than a Si, 3A LDO with a 

supply voltage of 0.8 to 5.5 V and rated up to 125 °C [80]. 

 Undershoot and overshoot voltages of the transient response (ΔVTRAN+ and ΔVTRAN- in 

Fig. 4.2) are also of interest. Zoomed in pictures of the areas of interest are shown in Fig. 5.12 

and 5.13. The results are summarized in Table 5.15. 

The undershoot voltage is a very important parameter for the proper operation of the 

circuits powered by the regulator. A very low undershoot voltage could force these circuits to 

stop operating. This parameter can be calculated using (4.6) and then compared to the simulated 

value. In order to calculate the undershoot voltage; the voltage drop across ESR and the 

momentary current supplied by COUT (while the regulator responds) need to be known. Table 

5.16 shows the simulated ΔVESR values and the comparison between the simulated and 
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calculated values for the undershoot voltage ΔVTRAN+. The current supplied by COUT can be 

calculated using ΔVESR and ESR = 0.5 Ω. 

Table 5.15 – Undershoot and Overshoot Values due to a 3 A Load Current Change. 

Temperature (°C) Undershoot (V) ΔVTRAN+ (mV) Overshoot (V) ΔVTRAN- (mV) 

25 14.76 230 15.01 130 

125 14.66 320 14.99 150 

225 14.27 700 15.02 480 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12 – Transient undershoot voltage due to a 3 A load current change. 
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 Table 5.16 – Simulated and Calculated Values Comparison for the Undershoot 

Voltage. 

Temperature (°C) ΔVESR (mV) ΔVTRAN+ simulated (V) ΔVTRAN+ calculated (V) 

25 174 0.23 0.27 

125 240 0.32 0.38 

225 527 0.70 0.83 

 

 

Fig. 5.13 – Transient overshoot voltage due to a 3 A load current change. 
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The response time of the linear regulator (Δt1 in Fig. 4.2) is another parameter of interest. 

The response time as described in (4.5) depends on the closed loop bandwidth BWCL, the gate 

capacitance of the pass device CPAR, the voltage variation at the gate of the pass device ΔV, and 

the current applied to this capacitance ISR. Since the regulator is a closed loop system, the values 

for BWCL are the same as the UGF values shown in Table 5.13. The simulated values for the 

remaining parameters across temperature are shown in Table 5.17.  

Table 5.17 – Simulated Parameter Values Affecting the Regulator Response Time. 

Temperature (°C) Δt1 (μs) ΔV (V) ISR (μA) 

25 2.97 4.17 68.2 

125 2.99 4.21 63.2 

225 2.99 5.65 80.3 

 

 Using Table 5.17, values for the response time can be calculated using (4.5). CPAR is the 

gate capacitance of the pass device equal to 26.5 pF as described in Section 3.3. Table 5.18 

shows the comparison between the measured and the calculated values for the response time. 

Table 5.18 – Simulated and Calculated Values Comparison for the Regulator Response 

Time. 

Temperature (°C) Δt1 simulated (μs) Δt1 calculated (μs) 

25 2.97 3.22 

125 2.99 4.37 

225 2.99 60.69 
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 The very large difference between the measured and calculated value for the response 

time of the regulator at 225 °C is due to the very low bandwidth of the regulator at that 

temperature. Since the response time in (4.5) is inversely proportional to the bandwidth, the 

response time increases. As discussed before, the low bandwidth is the result of a very drastic 

reduction in the gain of the regulator. A better calculated value for the response time can be 

obtained by using a more accurate equation for (4.5) defined as [1]: 

 
 (5.41) 

 Using this equation, the value Δt1 at 225 °C reduces to 23.6 μs. Even though this result is 

about 8 times larger than the simulated value, both (4.5) and (5.41) are intended to provide 

approximate values for the time response of the regulator. In addition to this, the largest 

discrepancy occurs at high temperatures, when the interface traps present in the SiC/SiO2 

interface of the enhancement devices alter the behavior of the devices as discussed in Section 3.3.  

An additional important feature to notice from Fig. 5.12 and 5.13 is the lack of ringing in 

the output of the regulator when the sudden load current change occurs. Typically, four rings or 

less are a sign of enough phase margin for a stable regulator [58]. As shown in Table 5.12, the 

phase margin across temperature is never less than 60 degrees.  

As discussed in Section 5.2, one of the benefits of having an external feedback network is 

the ability to obtain different regulated output voltages by simply changing the value of R1. Fig. 

5.14 shows the different output voltages, with a 3 A maximum load current, by sweeping R1 

from 0 to 1.5 kΩ.  
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From Fig. 5.14, it can be observed how at 225 °C, the regulated output voltage starts to 

saturate after about a 1 kΩ value for R1. This is due to the restriction on the maximum output 

voltage possible which results from using an enhancement NMOS device in the common drain 

configuration. From the graph it can be concluded that, if the regulator were to be used across 

temperature, the maximum output voltage will be about 15 V which is obtained by setting R1 = 1 

kΩ. This conclusion can be better understood by calculating the load regulation from the data 

contained in Fig. 5.14. Fig 5.15 shows the load regulation for different output voltages. 

 

 

 

 

 

 

 

 

 

From Fig. 5.15 it can be seen that the load regulation at 225 °C stays below 2% up to an 

output voltage of about 14.5 V. After that, the regulation increases drastically making it difficult 

to find an application where such regulation would be acceptable. The load regulation at 

different output voltages improves as the maximum load current decreases. Fig. 5.16 shows the 

 

Fig. 5.14 – Different output voltages (y-axis), at a 3 A load current, obtained by increasing the 

value of R1 (x-axis) from 0 Ω to 1.5 kΩ at 25 °C, 125 °C and 225 °C. 
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load regulation obtained for different output voltages at maximum load currents of 1 and 2 A. 

The requirements on output voltage, maximum load current and load regulation will depend on 

the application and the system specifications.  

 

 

 

 

 

 

 

 

 

As expected, load regulation is improved by decreasing the maximum load current from 

the regulator (Fig. 5.16). The maximum output voltage from the regulator also increases while 

still keeping a very low load regulation. For example, at 1 A load current, the maximum output 

voltage can be set to 17 V and the regulator will still have less than 2% load regulation even at 

225 °C.  At 2 A load current though, in order to keep the same load regulation, the output voltage 

can only be a maximum of about 15.5 V. Table 5.19 shows a comparison for a 15 V output 

voltage for different load currents at 25 °C, 125 °C and 225 °C. The load regulation expressed in 

mV/A might give the appearance, for a specific temperature, of improving as the load current 

 

Fig. 5.15 – 3 A load regulation for different output voltages at 25 °C, 125 °C and 225 °C. 
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increases as opposed to the load regulation expressed as a percentage that worsens. The 

interpretation of the results is that an increase in the load current by a factor of 2 or 3 does not 

imply an increase by the same factor in the load regulation in mV/A. The change in the load 

regulation indicates in fact, a factor of less than 1.  

 

  

 

 

 

 

 

 

 

The next important transient parameter for a linear regulator is line regulation. As 

described in Section 4.2.1, the DC line regulation is the variation in the DC output voltage of the 

regulator due to the changes in the DC input voltage. Fig. 5.17 shows the simulated line 

regulation performance of the regulator for a 15 V output voltage and a load current of 3 A. Fig. 

5.18 shows the line regulation for a 15 V output voltage and a load current of 1 A and Fig. 5.19 

shows the line regulation for a 10 V output and a load current of 3 A.  

 

Fig. 5.16 – Load regulation at 1 and 2 A for different output voltages at 25, 125 and 225 °C. 
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Table 5.19 – Load Regulation Simulated Results Across Temperature for Different Load 

Currents. 

Temperature (°C) Load (A) Load regulation (mV/A) Load regulation (%) 

25 

1 50.00 0.33 

2 40.00 0.53 

3 36.67 0.73 

125 

1 60.00 0.40 

2 45.00 0.60 

3 46.67 0.93 

225 

1 80.00 0.53 

2 90.00 1.20 

3 143.33 2.87 

  

 

 

 

 

 

 

 

 

Fig. 5.17 – Regulator output voltage (y-axis) as a function of the input voltage (x-axis) for a 3 

A load at 25 °C, 125 °C and 225 °C. 
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 As in the case of load regulation, line regulation improves as the output voltage of the 

regulator is decreased or the load current is decreased. For the purpose of comparison, the data in 

 

Fig. 5.18 – Regulator output voltage (y-axis) as a function of the input voltage (x-axis) for a 1 

A load at 25 °C, 125 °C and 225 °C. 
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Fig. 5.19 – Regulator output voltage (y-axis) as a function of the input voltage (x-axis) for a 3 

A load at 25 °C, 125 °C and 225 °C. 
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the previous figures will be analyzed for an input voltage of 18-22 V which represents a ±10 % 

variation from the nominal 20 V. In the case of a 15 V output, at 3 A load current (Fig. 5.17), the 

output to input voltage relationship for the 18-22 V input voltage range is not as linear as in Figs. 

5.18 and 5.19. A linear relationship between the input and output voltages for this case is 

calculated and presented, along with the other cases, in Table 5.20. From the figures and the data 

in Table 5.20, it can also be concluded that reducing the output voltage of the regulator has a 

larger noticeable effect than reducing the load current. For the 10 V output, at 3 A load current, 

an input voltage starting at about 16 V will probably provide a fairly constant output voltage. 

However, for the 15 V output, 1 A load current this starting voltage is about 17.5 V.  

Table 5.20 – Line Regulation Simulated Results Across Temperature for Different Load 

Currents and Output Voltages. 

Temperature (°C) Output (V) Load (A) Line regulation (mV/V) 

25 

15 3 57.3 

10 3 8.0 

15 1 23.7 

125 

15 3 102.3 

10 3 8.5 

15 1 30.3 

225 

15 3 385.3 

10 3 12.2 

15 1 57.0 
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 A final aspect to explore in the transient response is the effect of the ESL of the output 

capacitor. This simulation is just to quantify the maximum ESL value (if any) present in COUT. 

As discussed in Section 5.4, the current capacitor technologies enable capacitors to have ESL 

values less than 5 nH which should not be of any concern for this regulator. Fig. 5.20 shows the 

effect of ESL at 25 °C in the output of the 15 V, 3 A linear regulator. The values used for ESL 

were 0, 50 and 100 nH. ESL does not seem to affect the DC output voltage of the regulator but it 

does have an effect during the sudden load current changes. Ringing in the output voltage can be 

observed as ESL is increased. Needless to say, this is an undesired behavior for any linear 

regulator. Based on Fig. 5.20 and [58], an ESL=50 nH is the maximum allowable value for COUT 

since with this inductance ringing is not as notorious as with ESL=100 nH.  
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Fig. 5.20 – Transient response (top) at 25 °C of a 15 V output linear regulator to a sudden 3 A 

load current change using a 10 μF output capacitor with ESL=0 nH (black), 50 nH (blue) and 

100 nH (red). The circled areas are enlarged to show the ringing effect of ESL in the output 

voltage of the regulator.  
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5.9 Layout 

 The layout of the linear regulator as it was sent for fabrication is shown in Fig. 5.21. The 

dimensions are 2460 μm x 1680 μm. A standalone error amplifier was included in the run to 

measure the output biasing voltages for debugging purposes. The dimensions of the regulator by 

itself are 1539 μm x 1440 μm without pads. This standalone error amplifier and the linear 

regulator were placed inside an individual pad ring, isolated from the rest of the circuits in the 

run. The location of this pad ring inside the entire die sent for fabrication is shown in Fig. 5.22. 

In the entire die, additional substrate contacts were placed on the top and left side of the linear 

regulator pad ring to ensure a good ground connection to the substrate close to the output of the 

regulator.  

 Due to only one metal layer and one very resistive poly layer, the layout of the circuits 

was not a trivial matter. In order to avoid crossing over metal with poly, the layout had to be 

expanded. Even though this technique did not minimize the layout area, it did prove to be 

effective in reducing the parasitic resistance of the poly overlap connections. These resistances in 

some cases turned out to be in the range of kΩ. After the initial post-layout simulations, it was 

decided to completely avoid poly overlap connections since they were creating 1-2 V offsets in 

the output of the regulator and the error amplifier.  

  Since the input and output terminals of the regulator will handle up to 3 A of DC current, 

a total of 8 pads were used for each of them. In addition, thick metal traces were used to connect 

to these pads based on a specification from Cree that a 5 μm wide metal trace should handle at 

least 20 mA of DC current. Therefore, at its maximum load, the regulator will provide 3 A of DC 

current, needing at least 750 μm wide metal traces to handle this amount of current. Since each 

pad is 120 μm x 120 μm, using 8 pads suffice the metal thickness requirement. 



117 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 5.22 – Layout of the entire 8.7 mm x 5.8 mm SiC die sent for fabrication. 
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Fig. 5.21 – Layout of the linear regulator and a standalone error amplifier. 
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 The layout of the pass device also took into consideration the current limitation of the 

metal traces. The area of the pass device accounts for about 67% of the total area of the linear 

regulator. The 2000 transistors needed to compose the pass device were arranged in 20 rows, 

each with 100 transistors. This way, at a maximum load of 3 A, each transistor in the first row 

(drain), would see a maximum current of 30 mA. This 30 mA will then be distributed across the 

20 transistors in each column until the source of the pass device is reached. The ground terminal 

of the linear regulator in the layout is the ground reference for the error amplifier. Hence, it will 

never handle the large amounts of load current since the current will flow from the source of the 

pass device directly into the load.  

5.10 Post-layout simulations 

 The sole purpose of post-layout simulations is to ensure that the final layout of the 

circuits does not introduce parasitic elements (resistance and capacitance) that will impact their 

performance. As discussed in the previous section, the layout of the linear regulator was not 

trivial and it had to be done a few times before the parasitic elements did not affect the 

performance drastically. This section presents the comparison between the pre- and post-layout 

simulations of the linear regulator. The post-layout simulations include the connection to the 

pads providing the closest available resemblance of how the circuit will perform after fabrication. 

Satisfactory frequency and transient (load) responses at the corner temperatures should validate 

the final layout. Fig. 5.23 shows the frequency response of the regulator at 25 °C for the no load 

and full load conditions. Fig. 5.24 shows the same frequency response at 225 °C. Fig. 5.25 shows 

the load regulation performance at 25 °C and 225 °C and Fig. 5.26 shows an enlarged area of the 

undershoot and overshoot voltages for both temperatures. Tables 5.21 and 5.22 summarize the 

results for the frequency and transient responses, respectively.  
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Fig. 5.23 – Frequency response of the regulator at 25 °C for no load (left) and full load (right) 

condition. A displacement of the third pole can be observed. 
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Fig. 5.24 – Frequency response of the regulator at 225 °C for no load (left) and full load 

(right) condition.  

No load, 225 °C 

LDO gain pre-layout 

LDO gain post-layout 

No load, 225 °C 

LDO phase pre-layout 

LDO phase post-layout 

Full load, 225 °C 

LDO gain pre-layout 

LDO gain post-layout 

Full load, 225 °C 

LDO phase pre-layout 

LDO phase post-layout 



120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.25 – Transient response to a 3 A load current change at 25 °C (left) and 225 °C (right). 

The red and black curves are the post and pre layout simulations, respectively. 
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Fig. 5.26 – Undershoot (top) and overshoot (bottom) regions for the 3 A load current change 

in Fig. 5.25. The red and black curves are the post and pre layout simulations respectively. 
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Table 5.21 – Comparison Between the Pre and Post Layout Simulation Results for the 

Frequency Response of the Regulator at the Corner Temperatures. 

Temperature (°C) Load (A) DC gain (dB) UGF (kHz) Phase margin (deg) 

25 

0 30.42(30.42) 102(53) 132(110) 

3 25.12(24.32) 626(336) 62(69) 

225 

0 31.00(31.00) 46(37) 132(112) 

3 4.58(2.74) 17(11) 135(138) 

Pre-layout/(Post-layout) 

Table 5.22 – Comparison Between the Pre and Post Layout Simulation Results for the 

Transient Response of the Regulator at the Corner Temperatures. 

Temperature (°C) 

Load 

(A) 

Output 

(V) 

Load 

regulation (%) 

Undershoot 

(mV) 

Overshoot 

(mV) 

25 

0 14.99(14.99) 

0.73(0.80) 230(370) 130(180) 

3 14.88(14.87) 

225 

0 14.97(14.97) 

2.87(3.27) 700(930) 480(610) 

3 14.54(14.48) 

Pre-layout(Post-layout) 

 Looking at Figs. 5.23 and 5.24 and Table 5.21, the results for the frequency response 

before and after layout are very similar. There is a very small minimal difference in the DC gain 

of the responses. The largest difference occurs at 225 °C and that is due to the already 

deteriorated behavior of the error amplifier trying to keep up with the change in load current. 

This behavior is worsened by the parasitic elements as a result of the layout. The phase margin 
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stays always larger than 60 degrees, ensuring stability of the regulator. The decrease in UGF is 

related to the displacement of the second pole (Cpass and ROUT,amp) observed in Figs. 5.23 and 

5.24. This is due to the parasitic resistance of the routing layers that add up to ROUT,amp moving 

the pole slightly closer to the zero. The zero does not move under any condition since it is 

formed by ESR and COUT, both of which are external and not dependent on the layout of the 

regulator. The dominant pole (COUT and ROUT,pass) does not seem to move mainly also because 

COUT is external.  

The post-layout transient response does not show enough of a change in the load 

regulation to create any concern as well. The worst DC output voltage variation due to the layout 

is less than 0.5%. The increase in undershoot and overshoot voltages was expected due to the 

parasitic resistance associated with the routing layers that ends up in series with the ESR of the 

output capacitor.  

Overall, the post-layout simulation results are satisfactory. As mentioned before, this was 

achieved by a constant iterative process in the layouts of the pass device and the error amplifier. 

The results in Tables 5.21 and 5.22 indicate the present of parasitic elements but these do not 

compromise the performance of the linear regulator. Such parasitic elements were expected due 

to the lack of more than 1 metal layer for routing and a very resistive poly layer.  
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CHAPTER 6: SiC VOLTAGE REGULATOR TESTING AND CHARACTERIZATION 

 

 After the regulator was fabricated, it was packaged in a Kyocera 100-pin quad package. 

Fig. 6.1, 6.2 and 6.3 show, respectively, a picture of the fabricated die, the packaged die and its 

corresponding bonding diagram. Table 6.1 shows the respective pin names and numbers. 

 

 

 

 

 

 

 

 

 

 

 After the die were received, a quick measurement on some test devices in the die was 

performed. This was done in order to validate the accuracy of the models available for this 

process and the results were quite satisfactory for the enhancement devices. The depletion 

devices showed a leakage current of about 20-30 μA at small VSB values, but it disappeared as 

VSB was increased. The decision to not use depletion devices in the error amplifier and the fact 

 

Fig. 6.1 – Picture of the 8.7 mm x 5.8 mm fabricated die indicating the location of the linear 

regulator and the standalone error amplifier. 
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that the pass device (depletion type) has a constant VSB = 15 V, make this leakage effect 

irrelevant to the regulator performance. However, it should be pointed out that the models 

actually used in the design process before the linear regulator was sent for fabrication were not 

the same models used in this validation process. The reason for this is that before the model 

development process was complete, the modeling engineer was compelled to deliver a working 

version of the models to the designers to speed up the design process. After tapeout, the 

modeling engineer continued working on improving the models and it is that final version of the 

models that is used to validate them by comparing them to measured data from test structures in 

the die. Therefore, since the final models are more accurate than the models used for tapeout, 

some discrepancy between the measured and simulated data should already be expected. Fig. 6.4, 

6.5, 6.6 and 6.7 show the comparison between the models used for tapeout and the final version 

for the input and output characteristics of the enhancement and depletion devices, respectively.  

 

 

 

 

 

 

 

 

 

Fig. 6.2 – Picture of the die with wire bonds inside the 100 pin Kyocera package. 
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Fig. 6.3 – Bonding diagram for the linear regulator and the standalone error amplifier. 
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Table 6.1 – Pin Names and Numbers for the Linear Regulator Bonding Diagram. 

LINEAR REGULATOR ERROR AMPLIFIER 

Pin number Pin name Pin number Pin name 

1-2, 95-100 VOUT 5 OUT_P 

3 GND_REG 6 OUT_N 

4 VREF_REG 8 GND 

31 VFEEDBACK_REG 9 IN_P 

32-39 VDD_REG 10 IN_N 

 30 VDD 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.4 – Input characteristics model comparison for a 32 μm x 2 μm enhancement device. 
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Fig. 6.5 – Output characteristics model comparison for a 32 μm x 2 μm enhancement device. 

 

Fig. 6.6 – Input characteristics model comparison for a 32 μm x 2 μm depletion device. 
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 From the previous figures it can be seen that the models used for tapeout (black curves) 

and the final version (red curves) are actually different. In general, simulations with the final 

version of the models match the measured data better. Only the input characteristics of the 

depletion MOSFET are the same for both versions of the models. As expected, the discrepancy 

between the measured and modeled characteristics will propagate into all the stages of the design 

and will create an unavoidable variation between the collected and the simulated data.  

 After the linear regulator was packaged, Direct Bonded Copper (DBC) boards were 

fabricated. DBC boards are able to withstand very high temperatures and are therefore suitable 

for this specific application. Fig. 6.8 shows the packaged die mounted on the DBC board 

fabricated for the linear regulator. A Rogers 4350 PCB rated up to 288 °C [81] was also used to 

mount a different packaged die. Fig. 6.9 shows the packaged die mounted on the Rogers 4350 

 

Fig. 6.7 – Output characteristics model comparison for a 32 μm x 2 μm depletion device. 
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board. In addition, a simple 1 layer Printed Circuit Board (PCB) was sent for fabrication to be 

used as a daughter board. This will allow using surface mount parts for the external feedback and 

compensation networks as well as the load used to test the linear regulator, reducing parasitic 

elements associated with bread boards and through-hole components. Fig. 6.10 shows a picture 

of the PCB used for testing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8 – Packaged die mounted on DBC board used for testing. 
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Fig. 6.9 – Packaged die mounted on Rogers 4350 PCB used for testing. 
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 There are large amounts of data collected from three different die for this linear regulator. 

This chapter however, intends to consolidate this data and present the most relevant results that 

demonstrate the full functionality of the circuit under different conditions. All the data presented 

in this chapter is from the DC response of the regulator since the frequency response cannot be 

physically tested. Simulation data is the only source of information for that performance. This is 

mainly because in a linear regulator, the negative input of the error amplifier is connected to the 

output through one of the resistors of the feedback network and hence, any applied signal would 

be fed directly to the output. This would not allow performing an AC analysis, like the one 

shown in Fig. 4.5, where the feedback loop needs to be broken.  

DC testing of the linear regulator focused on its line and load regulation, and the transient 

response. These characteristics were evaluated primarily for the intended 15 V output voltage 

across temperature. However, in order to demonstrate functionality of the regulator at different 

 

Fig. 6.10 – Daughter board used for testing. 
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output voltages, some line and load regulation data was also collected for output voltages of 10 

and 12.5 V. The 10, 12.5 and 15 V output voltages were obtained using values of 0, 0.5 kΩ and 1 

kΩ, respectively, for R1 in the feedback network. In addition, ceramic and tantalum types of 

output capacitors were used for each test in order to observe, if any, differences in the 

performance of the regulator. The differences were almost negligible and therefore, only data 

using a ceramic output capacitor with a series ESR is included.  

The initial data obtained from the transient response test at 1 and 2 A showed some small 

signs of oscillation in the output of the regulator. While these signs of oscillation were still not 

critical (four rings or less), more detailed and extensive simulation at these load conditions 

indicated that reducing the value of ESR from 0.5 to 0.2 Ω guaranteed a larger phase margin 

across the entire load range (0 to 3 A). As discussed in the previous chapters, a phase margin 

larger than 60 degrees ensures frequency stability of a linear regulator. Therefore, a 10 μF 

ceramic capacitor in series with a 0.2 Ω resistor was used as compensation network to collect all 

the DC data presented in this chapter.  

Another important fact concluded from the initial transient response of the regulator is 

that the overshoot and undershoot voltages are about ±10% of the output when the ILOAD = 3 A at 

25 °C.  This means for example, that for VOUT = 15 V, the overshoot and undershoot peak 

voltages reach about 13.5 and 16.5 V, respectively. Needless to say, this behavior is undesired 

since it could cause unexpected behavior in the circuits being powered by the linear regulator. In 

addition, if these circuits have some kind of protection circuitry, such as an UVLO, it could turn 

the circuits off.  The fact that these large overshoot and undershoot voltages were observed at 

room temperature indicates that they would simply aggravate as temperature is increased. The 

explanation for this behavior is mainly due to the parasitic inductances associated with the test 
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setup and the process itself. Due to this situation, it was decided to focus the testing of the 

regulator with load currents up to 2 A (some data is still presented for ILOAD = 3 A). The 

capacitive load of the regulator was set to 0.3 μF as discussed in the design chapter.  

Due to the lack of any kind of ESD protection in the die, handling of the chips had to be 

done with extreme care and with proper grounding of the test bench and the person handling the 

chips.  

6.1 High temperature testing 

 The high temperature testing was performed using a hot plate and the temperature was 

monitored using a thermocouple attached to the board. As expected, there was heat loss due to 

the entire test setup and therefore, a thermal camera was used to determine the actual junction 

temperature of the die under no load conditions. In addition, to ensure that the thermal camera 

readings were also accurate, the exposed die was sprayed with a painting of known emissivity. 

This allowed finding a reliable correlation between the thermocouple reading, the hot plate 

reading and the actual junction temperature of the die. Fig. 6.11 and 6.12 shows the thermal 

camera pictures at 125 and 225 °C, respectively. Table 6.2 shows the temperature readings from 

the hot plate, the thermocouple and the thermal camera. 
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Table 6.2 - Temperature readings comparison 

Hot plate (°C) Thermocouple (°C) Thermal camera (°C) 

150 120 117 

260 225 219 

 

 

Fig. 6.11 – Thermal camera picture of Rogers 4350 PCB for testing at 125 °C 

Board Die 

Thermocouple 

 

Fig. 6.12 – Thermal camera picture of Rogers 4350 PCB for testing at 225 °C 

Board 

Die 

Thermocouple 
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 From Table 6.2, it can be seen that the thermocouple and thermal camera readings are 

very close to the actual desired testing temperatures (125 and 225 °C). However, since the load 

currents for this regulator are in the order of 1, 2 and 3 A, their effect on the temperature of the 

die is not negligible and it is a factor that must be taken into account when testing over 

temperature. Fig. 6.13 and 6.14 show the thermal camera pictures at 225 °C (based on Table 6.2) 

for 1 and 2 A of load current, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.13 – Thermal camera picture of Rogers 4350 PCB at 225 °C at 1 A of load current 

Board 
Die 

 

Fig. 6.14 – Thermal camera picture of Rogers 4350 PCB at 225 °C at 2 A of load current 

Board 
Die 
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 As expected, the temperature under large load currents increases drastically from the 

desired testing temperature. At 2 A, the change in temperature is about 60 °C from the claimed 

temperature of operation. Therefore, testing under these conditions was performed for very short 

periods of time and allowing time in between the tests to avoid overheating the die.   

6.2 Load regulation 

 The load regulation test consisted of measuring the output voltage of the regulator for 

different load currents across temperature. For this purpose, the daughter board and some 

external power resistors were used as resistive loads to obtain the different discrete data points. 

Fig. 6.15 shows the load regulation measured data for the three different output voltages across 

temperature. Table 6.3 shows a comparison between measured and simulated load regulation 

percentage at 225 °C (worst case condition). This data corroborates the simulated data by 

indicating an improvement in load regulation at lower output voltages.  

 The measured data differs slightly from the simulated data. However, as it was 

extensively discussed in this dissertation, differences between the simulated and measured data 

were expected due to the sensitivity of the process and the version of the models used to design 

the regulator. The packaging of the die and wire connection of the circuit are also expected to 

add some discrepancy as well.  

Even with the unaccounted parasitic element from the test setup of the process itself, load 

regulation is still less than 4.5% under the worst case condition. It is up to the systems designer 

and the intended application to determine the acceptable load regulation for the system and limit 

the maximum load current accordingly. 
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Fig. 6.15 – Load regulation for a 10, 12.5 and 15 V output voltage at 25, 125 and 225 °C. 
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Table 6.3 – Load Regulation Percentage Measured Data at 225 °C. 

  Measured Simulated 

Output (V) Load (A) VOUT (V) Load reg (%) VOUT (V) Load reg (%) 

10 

0 9.92 -- 10.09 -- 

1 9.85 0.71 10.03 0.59 

2 9.70 2.22 10.01 0.79 

12.5 

0 12.35 -- 12.53 -- 

1 12.21 1.13 12.48 0.39 

2 12.06 2.35 12.45 0.64 

15 

0 14.76 -- 14.97 -- 

1 14.41 2.37 14.89 0.53 

2 14.19 3.86 14.79 1.20 

 

6.3 Line regulation 

The line regulation test consisted of measuring the output voltage of the regulator for 

different DC input voltages. The region of most interest is for a ±10% variation from the nominal 

input 20 V supply. Fig. 6.16 shows the line regulation measured data for the three different 

output voltages at 25 °C under no load, 1 and 2 A conditions. 

A quantified value of the DC line regulation for a ±10% variation in the input voltage is 

presented in Table 6.4. Similar to load regulation, line regulation improves at lower output 

voltages. The DC line regulation for VOUT = 15 V across temperature under different load 
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conditions is shown in Fig. 6.17. Table 6.5 shows a comparison between measured and simulated 

line regulation data at 225 °C for VOUT = 15 V (worst case condition). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 6.16 – Line regulation at 25 °C for different output voltages under different load 

conditions. 

LOAD CURRENT 
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Table 6.4 – DC Line Regulation at 25 °C for Different Output Voltages Under Different 

Load Conditions. 

VOUT (V) Load (A) Line regulation (mV/V) 

10 

0 0 

1 2 

2 14 

12.5 

0 5 

1 6 

2 28 

15 

0 15 

1 20 

2 39 

 

Table 6.5 – DC Line Regulation for VOUT = 15 V at 225 °C for Different Load Currents. 

ILOAD (A) Measured line reg. (mV/V) Simulated line reg. (mV/V) 

0 31 20 

1 112 59 

2 192 168 
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The trend in Tables 6.4 and 6.5 is the same as in the load regulation data, that is, line 

regulation improves as the output voltage is decreased or as the load current is decreased for a 

specific output voltage. From the line regulation test, it can be concluded that the line regulation 

under worst case condition is 192 mV/V.  

6.4 Transient response 

The transient response test consisted of applying sudden load current steps to the 

regulator like the one shown in Fig. 4.2. For this purpose, the daughter board had series and 

parallel arrangements of 25 W power resistors in series with a Fairchild Semiconductor 

MOSFET, N-channel 60 V, 4 A power transistor with a maximum RDSON = 0.1 Ω [82]. The 

 

Fig. 6.17 – Line regulation for VOUT = 15 V across temperature under different load 

conditions. 
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source of the power MOSFET was connected to ground. The gate of the power MOSFET was 

driven by a 0-5 V pulse signal generated by an Agilent 81101A, 50 MHz waveform generator. 

The pulse signal width was set to 1 second so that the transient response would not be the 

response to a spike load current but rather to a continuous event. The response was captured by 

an Agilent 54622D, 100 MHz mixed-signal oscilloscope. The rise and fall times of the pulse 

signal were set to 1, 2 and 3 μs for the respective 1, 2 and 3 A transient load current tests in order 

to match the 1 A/μs current rate change used in simulations. Due to the time scale needed to 

observe the change in the output voltage of the regulator, the load current rise and fall had to be 

captured using separate pulses. Fig. 6.18 shows the transient response for VOUT = 15 V to a 3 A 

load current change at 25 °C. The large undershoot and overshoot voltages can be observed to be 

about ±10% of the desired output voltage.  

Due to these large undershoot and overshoot voltages it was decided to concentrate the 

testing of the linear regulator to a maximum load current of 2 A as it was mentioned at the 

beginning of this chapter. As discussed before, the unaccounted parasitic elements take a toll on 

the performance on the regulator. It should be noted also, that these parasitic elements and the 

discrepancy between the models used for the design of this regulator also probably affect the DC 

biasing of the error amplifier. This situation would result in an unaccounted gain reduction in the 

error amplifier that is also evident in the larger than simulated values for the load and line 

regulation data.  
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Fig. 6.18 – Transient response to a 3 A load current change at 25 °C for VOUT = 15 V. The top 

curve in each figure is the control signal applied to the gate of the power MOSFET. The 

output of the regulator in each figure is the bottom curve. 
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 Screenshots from the oscilloscope as the ones shown in Fig. 6.18 were taken for 10, 12.5 

and 15 V output voltages at 25, 125 and 225 °C for different load conditions. However, for 

brevity, only the waveforms for the worst case condition (225 °C and 2 A) for a 10 and a 15 V 

output voltage is presented here. Fig. 6.19 and 6.20 shows the transient response to a 2 A load 

current change for the conditions previously mentioned. Table 6.6 shows a summary of the 

complete transient test for VOUT = 15 V and a comparison between the measured and simulated 

values as well.  

Table 6.6 – Measured and Simulated Transient Performance of the Linear Regulator at 25, 

125 and 225 °C for VOUT=15 V.  

Temperature (°C) 

Load  

(A) 

VOUT (V) 

Undershoot  

(V) 

Overshoot  

(V) 

25 

0 14.76 (14.99) -- -- 

1 14.66 (14.94) 14.14 (14.92) 15.34 (15) 

2 14.54 (14.91) 13.63 (14.87) 15.75 (14.99) 

125 

0 14.75 (14.98) -- -- 

1 14.61 (14.92) 14.05 (14.89) 15.3 (14.98) 

2 14.26 (14.89) 13.48 (14.83) 15.72 (14.98) 

225 

0 14.76 (14.97) -- -- 

1 14.41 (14.89) 13.95 (14.85) 15.3 (15.01) 

2 14.19 (14.79) 13.30 (14.67) 15.63 (15.02) 

Measured (Simulated) 
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Fig. 6.19 – Transient response to a 2 A load current change at 225 °C for VOUT = 10 V. The 

top curve in each figure is the control signal applied to the gate of the power MOSFET. The 

output of the regulator in each figure is the bottom curve. 
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Fig. 6.20 – Transient response to a 2 A load current change at 225 °C for VOUT = 15 V. The 

top curve in each figure is the control signal applied to the gate of the power MOSFET. The 

output of the regulator in each figure is the bottom curve. 
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The previous figures might seem to differ in the DC output voltages of the regulator. The 

main reason for this is the nature of the regulator itself. The output voltage of the regulator is 

constantly adjusted based on changes detected by the feedback network. Every time a test was 

performed on the regulator, the conditions were intended to be the same but it is likely that 

minimum variations in the test setup would be detected by the feedback network.  

Also, at large loads (>1 A), the solder used for the power resistors in the daughter board 

started to melt after a couple of seconds. Even though these resistors were rated for this amount 

of power, the large amount of current had that effect on the solder material which translated into 

fluctuations in the resistive load (connections deteriorating). As a result, the transient and load 

regulation tests had to be performed quickly but, small fluctuations in the output voltage and 

current were still observed in the power supplies and in the oscilloscope.  

An important point to notice from all the transient response figures is the particular 

overshoot magnitude and discharging behavior when the load current suddenly goes back to zero 

(negative current dump). Undershoot voltages are also large in magnitude although they do not 

present the long discharging behavior that overshoot voltages experience. This is the result of 

large parasitic capacitances and the large output capacitor, resulting in a time constant associated 

with the discharging of the capacitor. The capacitor needs to discharge the excess current being 

dumped to it while the pass device is still on, waiting to be turned off by the feedback network. 

The magnitude of undershoot and overshoot voltages is due mainly to inductive kicks associated 

with the test setup and the regulator itself. As expected, as the load current is increased, this 

behavior at the output voltage of the regulator worsens. These inductive kicks and other type of 

undesired responses due to parasitic elements should be replicated in simulations for further 

development of the regulator as discussed in the next chapter.  
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Undershoot and overshoot voltages can be improved by using a larger output capacitor. 

This of course, comes at the expense of a bulkier capacitor and a larger discharging time during 

the negative current dump. Fig. 6.20 shows the transient response to a 2 A load current change at 

25 °C for VOUT = 15 V using COUT=15 μF (ESR=0.2 Ω). Table 6.7 shows a comparison between 

these test results and the same test results from Table 6.6 when COUT = 10 μF. While these values 

were only taken at 25 °C, the trend will remain the same across temperature.  

Table 6.7 – Measured Transient Performance of the Linear Regulator at 25 °C for VOUT = 

15 V with COUT = 10 μF and COUT = 15 μF.  

COUT (μF) 

Load  

(A) 

VOUT (V) 

Undershoot  

(V) 

Overshoot  

(V) 

10 

0 14.76 -- -- 

1 14.66 14.14 15.34 

2 14.54 13.63 15.75 

15 

0 14.73 -- -- 

1 14.66 14.42 14.97 

2 14.59 14.13 15.12 

 

While Table 6.7 validates that using a larger output capacitor does in fact improve 

undershoot and overshoot voltages, Table 6.6 shows a completely functional SiC linear voltage 

regulator for VOUT = 15 V up to a 2 A load current . The reason for which this regulator might 

not be feasible at a 3 A load current, as it was originally designed for, are the large undershoot 

and overshoot voltages mainly due to parasitic elements as previously discussed.   
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Fig. 6.20 – Transient response to a 2 A load current change at 25 °C for VOUT = 15 V with 

COUT=15 μF. The top curve in each figure is the control signal applied to the gate of the power 

MOSFET. The output of the regulator in each figure is the bottom curve. 
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6.5 Overall performance 

All the data presented so far corroborates that the regulator designed and fabricated for 

this dissertation is in fact, a fully functional one, with the limitation of the 2 A maximum load 

current. The expected differences between the measured and simulated data are explained by 

parasitic elements involved in the test setup and the different version of models used for the 

design of the circuit.  The 3 A maximum load current originally designed for, can be achieved by 

initially replicating the undesired transient responses obtained in the experimental data so that 

the parasitic elements can be quantified. With this information, then make the necessary changes 

to the regulator to counteract these undesired effects. The overall measured performance of the 

linear regulator for the nominal VOUT = 15 V and COUT = 10 μF is summarized in Table 6.8. 

All the data presented in this chapter comes from a single die mounted on a Rogers 4350 

PCB. However, data was also taken from two additional die in order to quantify the process 

variation. One of the die was mounted on a DBC board and the other die in a Rogers 4350 PCB. 

Table 6.9 shows a comparison of the DC output voltages and load regulation among the 3 die. 

PCB 2 denotes the board used to collect all the data presented up to this point.  

Table 6.9 indicates that there is less than 5% variation from the average value for the DC 

output voltages across temperature and different loads. In addition, the largest sample standard 

deviation for the DC output voltages is about 100 mV.  
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Table 6.8- Specifications of the SiC Linear Voltage Regulator for VOUT = 15 V. 

Temp 

(°C) 

Load 

(A) 

VOUT 

(V) 

Load reg 

(%) 

Line reg 

(mV/V) 

Undershoot 

(V) 

Overshoot 

(V) 

25 

0 14.76 -- 15 -- -- 

1 14.66 0.68 24 14.14 15.34 

2 14.54 1.49 36 13.63 15.75 

125 

0 14.75 -- 17 -- -- 

1 14.61 0.95 31 14.05 15.3 

2 14.26 3.32 55 13.48 15.72 

225 

0 14.76 -- 20 -- -- 

1 14.41 2.37 59 13.95 15.3 

2 14.19 3.86 168 13.30 15.63 
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Table 6.9- Process Variation Data for VOUT=15 V. 

 DBC PCB 1 PCB 2 Average 

Temp 

(°C) 

Load 

(A) 

VOUT 

(V) 

Load reg 

(%) 

VOUT 

(V) 

Load reg 

(%) 

VOUT 

(V) 

Load reg 

(%) 

VOUT 

(V) 

25 

0 14.79 -- 14.84 -- 14.76 -- 14.80 

1 14.63 1.08 14.74 0.67 14.66 0.68 14.68 

2 14.47 2.16 14.57 1.82 14.54 1.49 14.53 

125 

0 14.69 -- 14.83 -- 14.75 -- 14.76 

1 14.57 0.82 14.63 1.35 14.61 0.95 14.60 

2 14.3 2.65 14.45 2.56 14.26 3.32 14.34 

225 

0 14.83 -- 14.82 -- 14.76 -- 14.80 

1 14.56 1.82 14.48 2.29 14.41 2.37 14.48 

2 14.26 3.84 14.11 4.79 14.19 3.86 14.19 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

7.1 Summary 

The first reported SiC linear voltage regulator has been presented in this dissertation. 

Since the feedback and compensation networks are external, the feasibility of regulating at 

different voltages and load currents allows a large range of applications for this regulator. In 

general, any system should always include some type of regulation to allow proper operation of 

all the circuits in the system. This regulator provides the first option in voltage regulation for the 

developing SiC IC processes reported in the literature.  

 The developing nature of the SiC process used to fabricate this regulator limited the 

options available for topologies and features that could be used to design the regulator. The lack 

of a PMOS device is a particular limitation that simply allowed neither fabricating an LDO nor 

increasing the gain of the regulator. Overall, all the limitations discussed in Chapter 3 impacted 

every area of the design process - from the models used to simulate the circuit to the layout used 

to fabricate it. In addition to this, while the last version of the models for this process was very 

satisfactory when compared to the measured data, these were not the models used to simulate the 

regulator. As a result, this implied, from the beginning, that measured and simulated data were 

going to differ. In addition, the effect of parasitic capacitances and inductances observed during 

testing took a toll on the performance of the regulator limiting the maximum load current to 2 A 

in order for the undershoot and overshot voltages to stay within ±10% of the regulated output 

voltage.  A solution to this issue is discussed in the future work section.  

 At the end however, the approach of implementing a simple but working topology for the 

linear regulator proved to be correct. The simple fact that the depletion devices showed leakage 
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current at small VSB values validated the approach to use resistors as pull-up devices in the error 

amplifier. This leakage current did not affect the pass device (the only depletion type device in 

the regulator) because the leakage current disappears completely as VSB is increased. This is 

supported by pointing out that the DC current in the power supplies used for testing under no 

load conditions was always 6 to 7 mA, a result of adding the 5 mA quiescent current from the 

regulator with the ~1 mA quiescent current in the error amplifier. The use of an external voltage 

reference also proved to be correct for all the reasons previously discussed.  

 7.2 Future work 

 There are still areas of improvement for the linear voltage regulator presented in this 

dissertation. Some of them require further development of the process used to fabricate it, while 

others are needed to improve the performance of the regulator as it was originally designed. The 

main areas of improvement that would benefit this regulator are: 

Experimental testbench simulations 

 The effects of parasitic elements in the performance of the regulator need to be replicated 

in simulations. This would allow quantifying the amount of resistance, inductance and 

capacitance associated with the test setup and the process itself. The simulations would consist of 

the same schematics but adding elements, mainly resistors and inductors, almost at every pin of 

the chip so that cables, daughter board, wire bonds and any other type of external connection can 

be properly represented in the simulation.  

 Once this process is complete, the total amount of resistance, inductance and capacitance 

would allow the evaluation of their effects on the performance of the regulator. Series resistance 

between the output and feedback network for example, would shift the DC output voltage down. 
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Inductance would be responsible for the large undershoot and overshoot voltages observed 

during transient and any capacitance in series with the output capacitor would affect this 

response as well. Finally, the regulator can be altered to counteract these parasitic elements either 

by adjusting the external parts used to test the regulator (feedback resistors and output capacitor) 

or by internal changes to the design itself. It is important to recall however, that the current 

capability of the pass device as it is sized currently meets the 3 A maximum load current. In fact, 

Section 6.4 shows the regulator delivering a 3 A maximum load current. The issues here, as it 

has been described, were the large undershoot and overshoot voltages. Hence, the changes 

needed in the design to reach this specification satisfactorily are mostly related to the effect of 

parasitic elements observed during testing rather than the circuit not being able to deliver that 

amount of current. 

 Regardless of these simulations however, a PoL application type for this regulator (as 

discussed in Section 4.2) would alleviate some of these parasitic elements effects. Using the 

regulator in a system level application where the regulator is placed in proximity to the load 

(without the need of wires and with very short solder connections) would certainly reduce the 

parasitic elements and an improvement in performance would be observed.  

Larger gain from the error amplifier 

As discussed previously, all the gain in the regulator comes from the error amplifier. 

Therefore, increasing this gain will directly result in an improvement in performance of the 

regulator. Subject to improvement in the performance of the depletion devices in this process, 

different topologies making use of these devices as loads could be explored so that the gain 

increases. The efficiency of the regulator would not change in this case, since depletion devices 
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used as loads are normally on, equivalent to a resistor as it was used in this design. However, the 

larger output resistance of the transistors would possibly benefit the gain of the error amplifier.  

On-chip voltage reference 

This option depends directly on the maturity of the process used so that performance 

variations related to the fabrication process and temperature are very controlled. Assuming this is 

achieved, an on-chip voltage reference would make the linear regulator more suitable for IC 

applications. However, given the importance of this voltage reference in the performance of the 

regulator, detailed attention has to be put into the topology and design used for the voltage 

reference.  

Common-source configuration 

 This option also depends directly on the process used to fabricate the regulator. As of 

now, the Cree SiC process used only offers NMOS devices. As a result, the common-drain 

configuration of the pass device does not contribute to the gain of the regulator (gain less than 

unity). While it is true that a common-source configuration would require a PMOS device, it 

would contribute to the gain of the regulator and as a result, its performance would be improved. 

Having a PMOS device would also benefit the gain of the error amplifier and it would also allow 

exploring a large number of topologies available for amplifiers in CMOS processes.  

Under Voltage Lockout (UVLO) and Over-Current Protection (OCP) 

Most of today’s voltage regulators offer some kind of protection again current spikes and 

low input voltages. Therefore, once the fabrication process allows it, the addition of these 

protection features would certainly enhance the performance of the linear voltage regulator as a 



156 
 

system. These features, besides providing protection for the devices in the regulator, also ensure 

protection for the circuits powered by the regulator.  

7.3 Conclusion 

 The market’s demand for more robust systems in terms of voltage blocking capabilities 

and temperature of operation have led to explore new semiconductor devices. SiC has proven to 

be a solution to these demands due mainly to its wide band gap properties. However, the 

fabrication of SiC devices had been focused until now, on discrete devices such as diodes and 

transistors. This implied for example, having a mixture of SiC and Si IC in a power electronic 

system. As expected, the next logical step was to attempt to fabricate SiC IC that would allow 

designing an entire SiC system, exploiting at its maximum the benefits of this material. 

  In a similar logical step, once SiC ICs start maturing, power management options will be 

needed to ensure proper operation of a system. This SiC linear voltage regulator addresses this 

need and pushes forward the state-of-the-art in SiC so that one day, not that far ahead, there will 

be complete and sophisticated SiC systems as analogous to the ones available in Si presently.  
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